
Formal Aspects of Computing (2000) 12: 485–500
c© 2000 BCS Formal Aspects

of Computing

A Structured Way to Use Channels for
Communication in X-Machine Systems
Anthony J. Cowling1, Horia Georgescu2 and Cristina Vertan2

1Department of Computer Science, University of Sheffield, UK
2Faculty of Mathematics, Bucharest University, Romania

Abstract. This paper presents a new model for passing messages in communicating stream X-machine systems
(CSXMS). The components are stream X-machines with ε-transitions, acting simultaneously. The states are
partitioned into processing and communicating states. Passing messages between the X-machines involves
only communicating states. A communication matrix is used as a common memory. It is shown that a
structured way of using channels, namely via select constructs with guarded alternatives and terminate clause,
may be implemented. An automatic scheme for writing concurrent programs in an Ada-like style, starting
from a CSXMS, is proposed.

Keywords: Channel operations; Channels; Communicating systems of X-machines; X-machines

1. Introduction

The concept of X-machines was introduced by Eilenberg [Eil74], but they were not intensively studied until
Holcombe used them for specification purposes [Hol88]. This led to further research, which has proved the
power of the model.

The X-machine model extends the finite-state machine one. A new set Φ of basic processing functions is
added. The transitions between states are performed according to these functions. Another set X is added to
the model in order to characterise the internal memory of the machine. An input and an output tape are also
considered. The machine evolves from one state to another according to the current state, the content of the
input tape and internal memory and the function chosen to be applied. After the transition takes place a new
item may be added to the output tape.

During recent years much work has been done related to the generative power of these machines and
the possible use of them for testing [Cho78, HoI98, IpH96, IpH97, IpH01]. Very little attention has been
paid to the possible communication between these machines and consequently their use for specification of
concurrent processes. In [BGG98a, BGG98b, BGG98c, BGG01] cooperating distributed grammar systems
are used for modelling their concurrent behaviour.

Correspondence and offprint requests to: Tony Cowling, Department of Computer Science, University of Sheffield, Regent Court, 211
Portobello Street, Sheffield S1 4DP, UK. Email: A.Cowling@dcs.shef.ac.uk. Or Horia Georgescu, Department of Computer Science,
Faculty of Mathematics, University of Bucharest, 14 Academiei str., 70 109 Bucharest 1, Romania. Email: hg@phobos.cs.unibuc.ro.

486 A. J. Cowling et al.

In [BWW96] Barnard specified a model for communicating X-machines extending the X-machine model.
According to [BWW96] a communicating X-machine is a typed finite state machine which can communicate
with other X-machines via channels; these channels connect ports on each of the machines. However, the
message passing is not necessarily synchronous and is not done in a structured way.

Another approach is proposed in [GeV00], where the communication is done through a communication
matrix. Using this model in [BCG99] it is proved that communicating stream X-machine systems are
equivalent (from the generative power point of view) with a single X-machine. This model does, however, rely
on assumptions about the way in which the communication matrix is used, and it needs to be shown that
these assumptions can be justified.

In this paper we propose a slightly different version of the communicating X-machine model described in
[GeV00], and we show how this new model justifies the assumptions that are made in [BCG99]. This model
allows the use of channels as a mechanism for passing messages between the X-machines, and it shows how
the specific constructs for channels, such as select and terminate, can be implemented. Using this model of
communication in a system, we propose an automatic scheme for the generation of a concurrent program, in
which each process is associated with an X-machine.

2. Basic Definitions

For any set A, Aε denotes the set A∪{ε}, where ε is the empty sequence. A? denotes the free monoid generated
by A.

Definition 2.1. A stream X-machine with ε-transitions is a tuple: X = (Σ,Γ, Q,M,Φ, F, I, T , m0), where:

• Σ and Γ are finite sets called the input and output alphabets respectively;

• Q is the finite set of states;

• M is a (possibly infinite) set called memory;

• Φ is a finite set of partial functions of the form: f : M × Σε → Γε ×M;

• F is the next state function F : Q× Φ→ 2Q;

• I and T are the sets of initial and final states;

• m0 is the initial memory value

together with an input tape, an output tape and some state variables.

In the above definition, the set of variables together with the states of the tapes form a tuple which is called
the configuration of the machine.

Definition 2.2. A configuration of a stream X-machine with ε-transitions is a tuple: x = (m, q, s, g) where:

• m ∈M is the memory of the machine;

• q ∈ Q is the state of the machine;

• s ∈ Σ? is its input tape; and

• g ∈ Γ? is its output tape.

Note. Normally M will be structured as a product Ω1 ×Ω2 × . . ., where Ωi are finite alphabets. This structure
is sufficiently general [IpH96] to model many common types of machines from finite state machines (where
memory is trivial) to Turing machines (where the memory is a model of a tape).

In particular, this model also corresponds to a RAM memory, where there is a tuple of individual
variables (m1, m2, . . .) having values drawn respectively from the alphabets Ω1,Ω2 For such a memory
structure, the normal programming language convention will be followed, that a name such as m1 denotes
both the individual variable itself and also its current value, as the context requires. Since it is clear in
each definition which names denote variables and which names denote fixed sets of values, it has not been
considered necessary here to introduce separate notations to distinguish these two concepts.

The dynamics of this machine are that a computation starts from an initial configuration (m0, q0, s0, ε)
where q0 ∈ I and s0 ∈ Σ? is the input sequence. The computation then proceeds by a succession of transitions,
each of which produces a change in the configuration of the machine by means of a step that includes the
application of one of the functions f ∈ Φ.

Communication Channels in X-Machine Systems 487

f1

f2

1 2

Fig. 1. State transition diagram for the X-machine with X0(ε) = {an|n > 0}.

Definition 2.3. For any stream X-machine with ε-transitions X, configuration (m, q, s, g) and function f ∈ Φ, f
emerges from q, or is applied in q, if F(q, f) 6= ∅. Also, if f emerges from q and q′ ∈ F(q, f), then f reaches q′.

Note. The above definition implies that F must be a total function, which evaluates to ∅ for any pair (q, f)
in which the machine X does not have a possible next state.

Definition 2.4. A transition of a stream X-machine with ε-transitions is a change of configuration from x to
x′, denoted by x ` x′, where (m, q, s, g) and (m′, q′, s′, g′) are such that:

• s = σs′, σ ∈ Σε;

• there is a function f ∈ Φ which emerges from q and reaches q′; and

• for this function f, f(m, σ) = (γ, m′), where g′ = gγ, γ ∈ Γε.

If, in some configuration, there are several functions f which can be applied, then one of them is chosen
randomly. Alternatively, a configuration may be reached where there is no function f that can be applied, and
here there are at least two possible cases. One case, which corresponds to the behaviour that would normally
be expected for such a machine, is that q ∈ T (the set of final states). In this case the machine is said to
terminate. The other case is that q /∈ T , although if the machine is well behaved (in some sense that will not
be discussed further here) then this case should not arise. If it does occur, then the machine is said to block,
and this indicates that it has not carried out its computation properly.

Where a computation is carried out properly, then the output that it has computed can be defined. For

this purpose,
?` is used to denote the reflexive and transitive closure of `.

Definition 2.5. The output corresponding to an input sequence. For any s ∈ Σ?, the output corresponding to
this input sequence, computed by the stream X-machine with ε-transitions X, is defined as:

X(s) = {g ∈ Γ?|∃m ∈M, q0 ∈ I, q ∈ T , so that (m0, q0, s, ε)
?` (m, q, ε, g)}

Example 2.1. Let us consider the stream X-machine X0 with ε-transitions for which Σ = ∅, Γ = {a}, Q =
{1, 2}, M = {m0}, Φ = {f1, f2}, F(1, f1) = {1}, F(1, f2) = {2}, I = {1}, T = {2}, and f1(m0, ε) = (a, m0),
f2(m0, ε) = (ε, m0). The diagram corresponding to X0 is presented in Fig. 1.

Then X0(ε) = {an|n > 0}.
Note. Stream X-machines with ε-transitions are more general than stream X-machines. Indeed, there is no
stream X-machine X and no input sequence s so that X(s) = {an|n > 0} This does raise the issue as to whether
it is valid to describe these more general machines as possessing the stream property, but discussion of this is
beyond the scope of this paper. Hence, since only stream X-machines with ε-transitions are considered here,
we will refer to them, for short, as X-machines.

Definition 2.6. Communicating stream X-machine systems. A communicating stream X-machine system (CSXMS
for short) is a system: Sn = ((Xi)i=1,...,n, CMn, C

0), where:

• Xi = (Σi,Γi, Qi,Mi ×CMn,Φi, Fi, Ii, Ti, m
0
i) are X-machines;

• M = M1 ∪ . . . ∪Mn is the set of memory values and M̃ = M ∪ SS is the set of (general) values, where SS
is a set of special strings of symbols different from those in M. SS will be described later;

• CMn is the set of all matrices of order n× n with elements in M̃. This set defines the possible values for
the global memory of the system, which is used for communication between the component X-machines,
and so is referred to as the communication matrix. The elements of this matrix are therefore the values
that are being communicated between the components of the system;

• C0 ∈ CMn is the initial communication matrix;

• for any i and f ∈ Φi, f : Mi ×CMn × Σε
i → Γε

i ×Mi ×CMn.

488 A. J. Cowling et al.

Let Γ = Γ1 ∪ . . . ∪ Γn. A common output tape O is used by all components, and this contains sequences
g ∈ Γ?.

As with an individual X-machine, the state of the global memory together with the configurations of the
individual machines forms a tuple which is referred to as the configuration of the system.

Definition 2.7. A configuration of a CSXMS system Sn is a tuple: z = (z1, . . . , zn, C) where:

• zi = (mi, qi, si, gi), i = 1, . . . , n is referred to as the local configuration of the machine Xi;

• the tuple ((mi, C), qi, si, gi), i = 1, . . . , n is the actual configuration of the machine Xi, so that:

– mi ∈Mi is the local memory of Xi,

– qi ∈ Qi is the state of Xi,

– si ∈ Σ?
i is the current input sequence of Xi, and

– gi ∈ Γ?
i is the current output sequence of Xi, the elements of which are interleaved onto the common

output tape;

and

• C ∈ CMn is the communication matrix of the system.

For practical applications of these systems we will suppose that at any time at most one X-machine can
write on the common output tape, i.e. the writing operations are serialised. At first glance, this may seem
to be a prohibitive and unnatural restriction, but the serialisation problem will be solved in Section 4, after
introducing channels as a mechanism for intercommunication between X-machines.

Also, in the treatment of the definition above in [BCG99], an important assumption that was made is
that reading from and writing to the elements of the communication matrix in the global memory are done
under mutual exclusion, although no mechanism was presented there for ensuring that this assumption was
valid. For the moment this assumption will be made here too, but the way in which this mutual exclusion
can be guaranteed will then be described in the next section, after the basic communication mechanism has
been described here.

The standard set of special strings of symbols, as introduced in [BCG99], is SS = {λ,@}, where the
meaning of these symbols is described in the following paragraph. The actual messages passed from one
X-machine to another cannot be one of the strings in SS . Additional special strings of symbols will need to
be introduced later on.

For each pair (i, j) with i, j ∈ {1, . . . , n}, i 6= j, Cij is used as a temporary buffer for passing ‘messages’

from the X-machine Xi to the X-machine Xj . Initially, C0
ij is one of the values λ or @, depending on whether

or not messages are to be passed from Xi to Xj . For all i, C0
ii = @ because an X-machine never passes a

message to itself. During the operation of the system an element Cij may receive the value @, meaning that
the connection from Xi to Xj is then disabled. A disabled connection cannot be enabled later.

We will denote by +i the set of all elements in the ith column and ith row of the communication matrix
C . The significance of this is that, while in principle the whole of the matrix C forms part of the memory of
each X-machine Xi, in practice Xi is only permitted to access (read from or write into) the elements of +i.

Note. For the sake of simplicity, in the above description we suppose that all messages passed from any
X-machine to any other one will have the same type. This does not restrict the generality of the model, since
any message could begin with a flag indicating the type of message. The receiver could use this flag in order
to correctly decode the message.

In each X-machine Xi there are two kinds of states: Qi = Q′i ∪ Q′′i , Q′i ∩ Q′′i = ∅, where Q′i contains processing
states and Q′′i contains communicating states. In the diagrams below, any state x will be represented as x (if it
is a processing state), or as x (if it is a communicating state). The final states are processing states; there is
no function emerging from them.

Let x be a communicating state of the X-machine Xi and let f1, . . . , fk ∈ Φi be the functions emerging
from it, where any function fs, s ∈ {1, . . . , k}, is a communicating function, which may have one of the following
forms and meanings:

1. a memory value val is assigned to Cij , for some j 6= i:
if conditions then Cij ← val
where conditions depends on the current value of mi and +i;

Communication Channels in X-Machine Systems 489

2. a value is moved from Cji to some variable v of mi, for some j 6= i:
if conditions then v ← Cji, Cji ← λ
where conditions depends on the current value of mi and that of +i;

3. under some condition, some elements of +i are modified:
if conditions then modify +i,
where conditions involves elements in the domain of fs and the modifications consist of changing the
values of some elements of +i into one of the special symbols in SS .

Note. For communicating functions (emerging from a communicating state), the elements of +i may be both
observed and changed; the local memory mi may only be observed, with one exception, which is when a value
of an element of +i is assigned to some variable v of mi.

If more than one of the communicating functions f1, . . . , fk may be applied, one of them is chosen arbitrarily
to act. If none of these functions may be applied, the X-machine does nothing (so it does not change its
configuration).

Let now x be a processing state, which is not a final one, of the X-machine Xi and let f1, . . . , fk ∈ Φi

be the processing functions emerging from it. Then any function fs depends only on the local memory and
on the local input tape and is meant to (partially) change the current value of mi and possibly add some
information to the output tape O. None of these functions alter their local output tapes, so that these are not
used at all by the system.

As with the individual X-machines, if more than one of the processing functions f1, . . . , fk may be applied,
one of them is chosen arbitrarily to act. If none of these functions may be applied, the X-machine blocks and
so does the entire system. In this case the system will not have performed its computation properly, and so
the content of the output tape is not significant.

When an X-machine Xi moves to a final state, all elements in +i have to change their values into @.
Thus, in a system which is well behaved, a transition by a component machine to a final state will usually be
associated with a communicating function of the third form defined above.

A CSXMS starts with all X-machines in their initial states, C = C0 and mi = m0
i for all i ∈ {1, . . . , n}.

Thus, the initial configuration of the system is z0 = (z0
1 , . . . , z

0
n , C

0), where z0
i = (m0

i , q
0
i , s

0
i , ε) with q0

i ∈ Ii.
The component X-machines then act simultaneously, which means that at any given time some machines

may be in specific configurations while others are in the course of one configuration to another. The system
will stop successfully when all X-machines reach final states, at which point all values in C should be @.

Definition 2.8. A configuration of a CSXMS is a final one if zi = (mi, qi, si, gi) for all i = 1, . . . , n, with si = ε
and qi ∈ Ti.
We can think about a change of configuration of the system, denoted z |= z′, as follows: let t be the time when
the system reached the configuration z and t′ the closest following moment of time at which a component
terminates the execution of a function; then z′ is the configuration of the system at time t′. Of course, it
is possible that several components terminate the execution of a function at the same time t′. A change of
configuration:

z = (z1, . . . , zn, C) |= z′ = (z′1, . . . , z′n, C ′) (1)

with zi = (mi, qi, si, gi), z
′
i = (m′i, q′i , s′i, g′i), si = σis

′
i, σi ∈ Σε

i , g
′
i = giγi, γi ∈ Γε

i for any i, may be described as
follows. For i taking the values 1, 2, . . . , n in this order, there are two possibilities:

• either zi = z′i; or

• there exists a function f ∈ Φi emerging from qi and reaching q′i , q′i ∈ Fi(qi, f) and there exists a C ′ ∈ CMn,
such that f(mi, C, σi) = (γi, m

′
i, C
′).

Note. For a component machine Xi where zi = z′i , this does not necessarily mean that this component has
done nothing, but rather that it has not entirely completed executing a function. These partial actions do not
influence the completed ones since the memories mi are local to the components Xi and, according to the
assumption above, the access to each element Cij of the current matrix C is done under mutual exclusion.

Let
?|= be the reflexive and transitive closure of |=. Then the output computed by a CSXMS, if it terminates

properly, can be defined as follows.

490 A. J. Cowling et al.

x

terminate
z

yk

y2

y1alt1

alt2
altk

select
 alt1
or alt2

or altk
[or terminate]
end;

Fig. 2. The select construct for communicating states.

Definition 2.9. The output of a CSXMS corresponding to an input sequence. For any s = (s1, . . . , sn) ∈ Σ?
1 ×

. . .×Σ?
n, the output corresponding to these input sequences, computed by the system Sn, is defined as: Sn(s) =

{g = (g1, . . . , gn) ∈ Γ?
1 × . . . × Γ?

n | ∃ an initial configuration z0 and a final one z, where z0
?|= z, with

z = (z1, . . . , zn, C), C ∈ CMn and zi = (mi, qi, ε, gi) for all i = 1, . . . , n}.

3. Communicating X-Machine Systems Using Channels

The mechanism introduced above assures only a low level of synchronisation. In this section we will introduce
channels as a higher level of synchronisation. The mechanism resembles that found in Occam [Inm84] and
the formalism CSP [Hoa85, BuD93]. The CSXM systems prove to be a natural way for implementing
intercommunication between the components, namely through channels.

The classical communication through channels is described further. It involves send and receive operations;
the operations on each channel are synchronised. Each channel has a single sender and a single receiver.
Whichever process arrives at a channel operation first will be blocked until the process at the other end of the
channel reaches the complementary operation. When both processes are ready, a rendezvous is said to take
place, with data passing from the output of the sender to the input of the receiver. Only after this message
passing is complete can the two processes act further.

Our aim is to implement communication using channels between the components of a CSXMS. It will be
shown that the assumption in the previous section (about mutual exclusion when accessing the elements of
C) is no longer needed, since this kind of communication assures mutual exclusion.

For this aim, we will introduce in each communicating state of each X-machine Xi the classical select
construct with guarded alternatives and terminate clause, as presented in Fig. 2. The alternatives alts,
s ∈ {1, . . . , k}, should have the following forms:

1. [when condk =>] j ! val

2. [when condk =>] j ? v

with the following meanings:

1. if condk is fulfilled, then val has to be sent to the X-machine Xj (via Cij);

2. if condk is fulfilled, then v of Mi has to receive a value from the X-machine Xj (via Cji).

The alternatives are macrofunctions described below; val is a memory value, conds depends only on the local
memory Mi and the local input tape, and v is a variable of Mi. As usual, the square brackets show that the
information they include is optional.

The terminate clause acts as follows: if the other alternatives in the select construct are false and will
be false forever, then the X-machine stops. In other words, if present, the terminate clause applies when all
X-machines Xj to/from which Xi tries to send/receive messages had stopped. Executing terminate implies
moving into a final state.

In the following, the form of functions emerging from a communicating state can be only as in Fig. 2. In
order to implement the select construct in the communicating states, we will proceed as follows:

1. New strings are added to SS: SS = {λ,@, $,OK} ∪⋃n
j=1{(j, S), (j,R), (j, S), (j,R)}; the meaning of these

new elements will be described below.

2. An additional X-machine named Xn+1, also called Server, is introduced. It acts simultaneously with
X1, X2, . . . , Xn. Of course, now the communication matrix is of order (n+ 1)× (n+ 1). No actual messages

Communication Channels in X-Machine Systems 491

1 2 3 4 5 6 7 y
f9f8f7f5f3f2f1

f4

f6

Input protocol Actual send
Output

protocol

Fig. 3. The send macrofunction: [when cond =>] j ! val.

(memory values) are sent to Server or received by Server, i.e. the value of the elements of +n+1 are always
in SS .

3. Let s = n + 1 and let d be the sth column of C; so di = Cis, i ∈ {1, ..., n + 1}. During execution, the
following values may be assigned to di:

• @ (when we want Xi to stop); then @ has to be assigned to all elements in +i and a final state has to
be reached;

• (j, S), meaning that Xi asks Server for authorisation for sending a message to Xj;

• (j,R), meaning that Xi asks Server for authorisation for receiving a message from Xj;

• OK, if Server authorises a send/receive operation;

• (j, S), if Server rejects an attempt of Xi to send a message to Xj , due to the fact that Xj is not (yet)
ready to receive a message from Xi;

• (j,R), if Server rejects an attempt of Xi to receive a message from Xj , due to the fact that Xj is not
(yet) ready to send a message to Xi.

In this way, a CSXMS (using channels) is a system: Sn+1 = ((Xi)i=1,...,n+1, CMn+1, C
0) where Xn+1 = Server.

Each X-machine Xi will use di = Cis, with i 6= n+ 1, only:

• in the input and output protocols associated to the send and receive operations;

• when moving to a final state; in this case, di has to receive the value @. As mentioned before, afterwards
Xi has to assign @ to +i (in order to disable the connections between Xi and the other X-machines) and
stop.

The local memory L = Mn+1 of Server stores the set of those values i ∈ {1, . . . n} for which i ∈ L iff di 6= @.
Initially it contains all i with di = λ. While L is not empty, an item of L is chosen. When L becomes empty,
Server stops. For selecting an item from L we can do a random choice, we can organise L as a list etc.

When Server considers the value i, it acts as follows, where the symbol ‘−’ stands for no action:

case di of
@ : delete i from L;
di = (j, S) : if dj = (i,R) then di ← OK; dj ← OK

else if dj = (i,R)
then −
else di ← (j, S)

di = (j,R) : if dj = (i, S) then di ← OK; dj ← OK
else if dj = (i, S)

then −
else di ← (j,R)

else : −
end

Figures 3 and 4 describe the send and receive alternatives. Each of them is divided into three parts:
the input protocol, the actual send/receive part and the output protocol. Note that all the intermediate states
in these protocols are communicating states, since for each i ∈ {1, ..., n}, di is an element of +i.

492 A. J. Cowling et al.

1 2 3 4 5 6 7
g9g8g7g5g3g2g1

g4

g6

Input protocol Actual receive
Output

protocol

8 y
g10

Fig. 4. The receive macrofunction: [when cond =>] j ? v.

1 2 3
h2h1

Fig. 5. The terminate macrofunction.

f1: if cond& Cij 6= @ f2: di ← (j, S) f3: if di 6= (j, S)
then − then −

f4: if di = (j, S) f5: if di = OK f6: if di 6= OK
then − then − then −

f7: Cij ← val f8: if Cji = $ f9: di ← λ
then Cji ← λ

g1: if cond& Cji 6= @ g2: di ← (j,R) g3: if di 6= (j,R)
then − then −

g4: if di = (j,R) g5: if di = OK g6: if di 6= OK
then − then − then −

g7: if Cji 6= λ g8: Cij ← $ g9: if Cij = λ or Cij = @
v ← Cji;Cji ← λ then −

g10: di ← λ

Figure 5 describes the terminate alternative, where 3 is a final state.

h1: if for all j appearing in the other alternatives, dj = @
then −

h2: di ←@; +i ←@

Note 3.1. When working with di, the following assertions are true:

d1. initially di is @ or λ;

d2. after receiving the value @ (when Xi stops), di can no longer be modified;

d3. di may be modified only by:

d3.1. the X-machine Xi, in the input protocols (in order to ask for permission to send or receive a
message) and in the output protocols (where it receives the value λ);

d3.2. Server, when it receives a request from Xi for a communication with some Xj . Let us suppose that
Xi decides to send a message (the case when Xi decides to receive a message is treated in a similar
way). Xi is in state 3 and di = (j, S). Three cases may occur:

Communication Channels in X-Machine Systems 493

5 6 7 y
f9f8f7

Fig. 6. Actual send and output protocol.

5 6 7
g9g8g7

8 y
g10

Fig. 7. Actual receive and output protocol.

• dj = (i,R): Server authorises this communication, it assigns OK to both di and dj , and both
X-machines may start their actual send/receive parts by reaching state 5;

• dj = (i,R), i.e. Xj had previously tried to receive a message from Xi but was refused by Server,
and so returns to its state 1: Xi will remain in state 3 until dj gets a new value (through the

action of Xj); this new value will be obviously different from (i,R) so one of the other cases
will now apply, and Xi will actually leave state 3;

• dj 6= (i,R) and dj 6= (i,R) : Xi will return to state 1 with di = (j, S).

d3.3. Server, when it receives from some X-machine Xj a request for communication with Xi and
authorizes it as in d3.2; then it assigns OK to di;

d4. when Xi reaches state 4 in order to try to send or receive a message from/to Xj , di ∈ {OK, (j, S), (j,R)};
d5. when entering the actual send/receive part, di = OK and its value is not changed until reaching the

output protocol;

d6. after executing the output protocol, di = λ.

Note 3.2. When working with Cij , 1 6 i, j 6 n, the following assertions are true:

c1. initially Cij is @ or λ;

c2. after receiving the value @ (when Xi or Xj assigns this value to it, due to the fact that one of the
X-machines Xi or Xj stops), Cij can no longer take another value;

c3. when not in an actual send/receive, Cij ∈ {@, λ} and Cij can be modified only if Xi or Xj assigns to it
the value @;

c4. when entering an actual send/receive for a communication between Xi and Xj , Cij = λ, as well as Cji;

c5. when entering the output protocols of the send/receive actions, Cij = Cji = λ;

c6. when the execution of the system terminates normally, all elements of C are @.

Theorem 3.1. The implementation of select constructs in the communicating states is correct.

Proof. We will divide the proof into two parts.

Correctness of the message passing:

We are interested in the correctness of sending a message from Xi to Xj , 1 6 i, j 6 n. Let us suppose
that Server has authorised this transmission by assigning to di and dj the value OK. From c4 it follows that
Cij = Cji = λ. Now Xi has to perform the actions in Fig. 6:

f7: Cij ← val f8: if Cji = $ f9: di ← λ
then Cji ← λ

while Xj has to perform the actions in Fig. 7:

g7: if Cij 6= λ g8: Cji ← $ g9: if Cji = λ or Cji = @
then v ← Cij ;Cij ← λ then −

g10: dj ← λ

494 A. J. Cowling et al.

At the beginning Cij = λ, and so the conditions in g7 and f8 mean that the order of execution is compulsory:
f7, g7, g8, f8. This interleaving shows that the order in which the assignments: di ← OK and dj ← OK are
done by the X-machine Server is not relevant. At the same time, it is clear that the message passing v ← val
is achieved. Both machines will now have entered their output protocols.

Three cases may occur:

1. Xi and Xj terminate their output protocols simultaneously. In this case, no problem arises, as the actions
are disjoint.

2. Xi executes its output protocol first. Then di = λ, dj = OK, Cij = Cji = λ. If an X-machine (including
Xi) tries to communicate with Xj , it will fail (that is, the Server will refuse the request), since dj = OK.
It is important to note that now only Xi may modify Cji, namely by assigning to it the value @. This is
possible if Xi acts ‘very quickly’, assigns successively λ and @ to di and afterwards assigns @ to Cji. But
the condition ‘or Cji = @’ in Xj prevents Xj to be blocked in state 7.

3. Xj executes its output protocol first. Then dj = λ, di = OK, Cij ∈ {λ,@} and Cji = λ. If an X-machine
(including Xj) tries to communicate with Xi, it will fail, since di = OK.

Correct handling of the common matrix C by the client components Xi, i 6= n +1 :

We already proved that during the actual message passing the handling of the matrix C is done cor-
rectly. We have still to consider the way in which the X-machines perform the actions prior to stopping
(reaching a final state). Let us suppose that Xi tries to perform the actions: di ←@; +i ←@. The following
situations can occur:

• All X-machines Xj communicating with Xi have already stopped. In this situation the change of +i will
not affect the other X-machines.

• There is at least one process Xj which expresses its intention to communicate with Xi (i.e. Xj is in the
state 1) and Xi has not yet assigned @ to Cij or Cji. Then Xj will reach state 2, it will assign (i,R) or (i, S)
to dj , and will reach state 3. Xj will remain in state 3 until Server considers j. Since di ∈ {@, λ}, dj will

be set to (i,R) or (i, S) and Xj will again reach state 1. When Cij and Cji are or become both @, Xj will
not try again to communicate with Xi.

• There is at least one process Xj , which did not complete its action of receiving the message from Xi. As
we mentioned that the sequence f7, g7, g8, f8 is compulsory, it follows that Xj can only be in state 7 (in Fig.
4). If Xi has not already assigned @ to Cji, then Cji = λ (from the proof of the transmission’s correctness)
so Xj will complete the receiving action. If Xi has assigned @ to Cji, Xj will reach state 8 (according to
g9) and then will also complete the receiving action.

Note 3.3. From Note 3.2, it follows that when di = (j, S) and dj = (i,R) or di = (j,R) and dj = (i, S), then Xi

will remain in state 3; in this way, when two X-machines try to communicate, livelock is avoided.

Note 3.4. It is possible for Xi and Xj to try both to send and receive a message from the other one. The
direction in which the transmission will actually be done will then depend on both the item chosen by Server
from its local memory L and the alternatives chosen in each of the two X-machines. q

4. Writing on the Output Tape under Mutual Exclusion

In Section 2, we supposed that the writing operations on the output tape are serialised. Now we can show
how this may actually be achieved.

An additional X-machine Xn+2 with the alias Output is added to the system. The system now has the form:
Sn+2 = ((Xi)i=1,...,n+2,CMn+2, C

0) and Xn+2 is the only X-machine which alters its output tape (see Definition
2.6).

Writing to the output tape is achieved by sending a message to the X-machine Output. Now C is a square
matrix of order (n+ 2)× (n+ 2). The local memory Mn+2 of Output is a variable x. The output tape of Output
is initially void. In+2 = {1} and Tn+2 = {3}. The X-machine Output repeatedly tries to receive an item of data
from any of the X-machines X1, X2, . . . , Xn and to add it to its tape. When all these X-machines have stopped,
Output stops too (via the terminate clause). The state transition diagram for Output is shown in Fig. 8.

Communication Channels in X-Machine Systems 495

1 2

3

h

fi

g

Fig. 8. The state transition diagram for Output.

fi: i ? x for all i = 1, 2, . . . , n

g: terminate h: add x to the output tape

5. Examples

Example 5.1. The Producer–Consumer problem with bounded queue.
A producer produces items and places them into a buffer. The consumer takes items from the buffer and

consumes them. Let max be the size of the buffer. The constraints are the following:

• produce must always precede consume;

• the consumer takes the items from the buffer in the same order they were placed there, i.e. the buffer is a
queue;

• reading from an empty buffer and writing in a full buffer must be avoided.

We will suppose that these items are lowercase letters. The producer stops after sending the first letter z, and
the consumer stops after receiving the first z. The output tape has to contain the characters produced, as well
as the characters consumed; the last ones will appear in the uppercase form.

According to the previous section, we will model the problem with a CSXMS with five components.
The initial form C0 of the communication matrix C is:

@ λ @ λ λ
λ @ λ λ λ
@ λ @ λ λ
λ λ λ @ λ
λ λ λ λ @

X5 is the alias for the X-machine Output (the X-machine that achieves writing on the output tape under
mutual exclusion), while X4 is the alias for Server.

X1 corresponds to the producer. M1 contains a variable ch. The input tape L1 contains the items that the
producer intends to place in the queue; z ∈ L1. We have I1 = {1} and T1 = {4}. The state transition diagram
for X1 appears in Fig. 9(a).

f1: ch← first(L1) f2: 2 ! ch
L1 ← tail(L1)

f3: if ch = z then d1 ←@ f4: if ch 6= z then − f5: 5 ! ch

X3 models the activities of the consumer. m0
3 = ∅, I3 = {1} and T3 = {4}. The state transition diagram is

shown in Fig. 9(c).

h1: 2 ? ch h2: 5 ! uppercase(ch)

h3: if ch = z then d3 ←@ h4: if ch 6= z then −
The X-machine X2 implements the activities concerning the buffer. The local memory M2 contains a variable

496 A. J. Cowling et al.

1 2 3 4
h2h1 h3

h4
(c)

1 2 3 4
f2f1 f3

f4
(a)

5f5 2 1 3
g3g1

g5

(b)

g4g2

4

Fig. 9. The Producer–Consumer problem with bounded queue. The state transition diagrams for: (a) X1; (b) X2; (c) X3.

ch and a queue Q, the maximum size max of Q and the current size len of Q. Initially the queue is empty, so
that len = 0. We have I2 = {1} and T2 = {4}. The state transition diagram appears in Fig. 9(b).

g1: when len < max => 1 ? ch g2: ch⇒ Q; len← len+ 1

g3: when len > 0 => 3 ! first(Q) g4: Q← tail(Q); len← len− 1

g5: terminate

where ‘⇒’ is the operator used for adding an item to the queue.

Example 5.2. Finding the first n prime numbers.
We will introduce a CSXM system with n + 4 components. The X-machines X0, X1, . . . , Xn+1 form a

pipeline structure. The X-machine X0 pumps the numbers 2, 3, . . . to X1. For i = 1, . . . , n, the X-machine Xi

does the following: the first number it receives from Xi−1 is stored as a witness value and added to the output
tape. For the following numbers it receives, it checks if these are primes ‘from its point of view’, i.e. if the
witness value does not divide them; if so, the number is passed to Xi+1 (for further checking), otherwise it
is discarded. Obviously, the witness values of X1, . . . , Xn are the first n prime numbers. The X-machine Xn+1

receives numbers from Xn and discards them. A mechanism for proper termination of the system has to be
introduced. For this purpose the role of Xn+1 is changed: after it receives a value, it stops. In this way, by
introducing the terminate clause in the other X-machines, they will stop in the order: Xn,Xn−1, . . . , X0. Server
and Output are the aliases for Xn+2 and Xn+3.

The initial form C0 of the communication matrix C is:

@ λ @ . . . @ @ λ λ
λ @ λ . . . @ @ λ λ
@ λ @ . . . @ @ λ λ
· · · · · · · · · ·

@ @ @ . . . @ λ λ λ
@ @ @ . . . λ @ λ λ
λ λ λ . . . λ λ @ λ
λ λ λ . . . λ λ λ @

For the X-machine X0, M0 contains only a variable i initialised with 2. I0 = {1} and T0 = {3}. The state
transition diagram appears in Fig. 10(a), where:

f1: 1 ! i f2: i← i+ 1 f3: terminate

For each i = 1, . . . , n, the internal memory Mi of the X-machine Xi contains two variables x (the witness
value) and y. Ii = {1} and Ti = {6}. The state transition diagram is shown in Fig. 10(b), where:

g1: i− 1 ? x g2: n+ 3 ! x g3: i− 1 ? y

Communication Channels in X-Machine Systems 497

1 2 3
h2h1

1 2
f1

f3

f2

3

(a) (c)

1 2 3 4 5 6
g5g3g2g1

g4

(b)
g7

g6

Fig. 10. Finding the first n prime numbers. The state transition diagrams for: (a) X0; (b) Xi, i = 1, . . . , n; (c) Xn+1.

g4: if y mod x = 0 then − g5: if y mod x 6= 0 then −
g6: i+ 1 ! y g7: terminate

The internal memory of the X-machine Pn+1 contains a single variable x. In+1 = {1} and Tn+1 = {3}. The
state transition diagram appears in Fig. 10(c), where:

h1: n ? x h2: dn+1 ←@

6. From CSXM Systems to Concurrent Programs

In this section, the functions emerging from a communicating state may have only the forms given in the
previous sections. The way we modelled channel operations has the remarkable property that it allows an
automatic scheme for writing concurrent programs in an Occam, Pascal-FC or Ada-like style [BuD93, Geo97].

For each X-machine we will write a process as follows. The local variables correspond to the local memory
of the X-machine. For each non-final state x, a sequence of statements, labelled with x, will be produced:

1. If x is a communicating state, a select statement labelled with x will be provided. Each function emerging
from x corresponds to an alternative:

x : select
[when condition1 =>]
channel operation1; goto y1

. . .
or [when conditionk =>]

channel operationk; goto yk
[or terminate]
end

where the terminate alternative is present only if there is an (unique) function emerging from x and
labelled with terminate.

2. If x is a processing state, the following sequence of statements will be used:

x: b:=false;
repeat

i:=random(k)+1 { k functions are emerging from x;
random(k) returns one of the values 0, . . . , k − 1}

if fi may be applied then b:=true
until b;
apply fi;
choose randomly yi ∈ F(s, fi); goto yi

498 A. J. Cowling et al.

For the prime number generator described above in Example 5.2, the processes corresponding to the n + 4
X-machines of the system are:

process X0;
var i:integer;

begin
i:=2;
1: select

send i to P1; goto 2
or terminate
end;

2: i:=i+1; goto 1
end;

process Xn+1;
var x:integer;

begin
1: select

receive x from Xn; goto 2
end;

2: select
terminate

end
end;

For the X-machines X1, . . . , Xn the following process type may be written:

process type XType(i:integer);
var x,y:integer; b:boolean;

begin
1: select

receive x from Xi−1; goto 2
end;

2: select
send x to Xn+3; goto 3

end;
3: select

receive y from Xi−1; goto 4
end;

4: b:=false;
repeat

i:=random(2)+1;
if i=1 then b:=y mod x = 0

else b:=y mod x <> 0;
until b;
if i=1 then goto 3;

else goto 5;
5: select

send y to Xi+1; goto 3
or terminate
end

end;

Of course, the X-machines Xn+2 (alias Server) and Xn+3 (alias Output) are also included in the system
and are acting simultaneously with the ones considered above. We will describe only the process associated
to Xn+3:

Communication Channels in X-Machine Systems 499

process Xn+3;
var x,len:integer;

tape:array[1..100] of integer;
begin

len:=0; { len is the initial length of the tape }
1: select

1 ? x; goto 2;
or 2 ? x; goto 2;
. . .
or n ? x; goto 2;
or terminate

end;
2: len:=len+1; tape[len]:=x; goto 1

end;

7. Conclusions

The communicating X-machines models studied in [BCG99] and [GeV00] only provided a low level of
synchronisation. Moreover, they worked under the assumption that the X-machines act under mutual exclusion
which could not be guaranteed for many situations.

The CSXMS proved to be a natural way for implementing communication between the components
through channels. This paper deals mainly with the implementation of this mechanism. A new X-machine, the
Server, is added to the system. Any communication between two X-machines is performed only after the Server
allows it. The main operations send, receive and the terminate clause are implemented as macrofunctions,
using the lower-level facilities of the basic CSXMS model. The construct select with guarded alternatives is
also modelled.

Controlling the communications within this system requires the Server and the macrofunctions to interact
through the vector d which forms part of the communication matrix. These interactions do not require any
new basic features to be added to the system and so the results obtained in [BCG99] for the computational
power of CSXMS are still applicable. Using this approach, the correctness of this implementation is proved
in Theorem 3.1. This model of the system also assumes a unique output tape where the writing operations
are serialised, and Section 4 describes exactly how this serialisation is obtained.

Finally, for any CSXMS , Section 6 describes the mechanism for automatic generation of the corresponding
concurrent program, written in a Pascal-FC or Ada-like style. Of course, comparisons with these languages,
where the implementation models do not need any equivalent of our Server process, raise the issue of whether
a distributed solution could be developed here that did not require such a process. This issue requires further
investigation, and here we simply observe that these languages use syntactic constraints to restrict the direction
of communication through any given chanel, whereas our model cannot assume such restrictions, and so must
cater for the possibility of any machine trying to use any of its channels for either sending or receiving.

Further work that can be developed directly from the results described here concerns two aspects. One
is the use of this model for testing purposes, as compared with the less structured forms of CSXMS that
have been studied previously. The other is the implementation of alternative mechanisms that can be used
for message passing, such as remote procedure invocation for example.

References

[BCG99] Bălănescu, T., Cowling, A. J., Georgescu, H., Gheorghe, M., Holcombe, M. and Vertan, C.: Communicating stream
X-machines are no more than X-machines: Journal of Universal Computer Science, 5(9):494–507, 1999.

[BGG98a] Bălănescu, T., Georgescu, H. and Gheorghe, M.: Guarded additive valence grammars as models for synchronization
problems. In Annals of Bucharest University, Mathematics-Informatics series, Vol. 47(1), 19–26, 1998.

[BGG98b] Bălănescu, T., Georgescu, H. and Gheorghe, M.: On counting derivation in grammar systems. Romanian Journal of
Information Science and Technology, 1(1):23–42, 1998.

[BGG98c] Bălănescu, T., Georgescu, H. and Gheorghe, M.: Grammatical models for some process synchronizers. In Proceedings of
the MFCS’98 Satellite Workshop on Grammar Systems, Silesian University, Brno, pp. 117–137, 1998.

500 A. J. Cowling et al.

[BGG01] Bălănescu, T., Georgescu, H. and Gheorghe M.: Stream X-machines with underlying distributed grammars. Informatica
(submitted).

[BWW96] Barnard, J., Whitworth, J. and Woodward, M.: Communicating X-machines. Journal of Information and Software Tehnology,
38(6):401–407, 1996.

[BuD93] Burns, A. and Davies, G.: Concurrent Programming. Addison-Wesley, Reading, MA, 1993.
[Cho78] Chow, T. S.: Testing software design modeled by finite-state machines. IEEE Transactions on Software Engineering 4(3):178–

187, 1978.
[Eil74] Eilenberg, S.: Automata, Languages and Machines. Academic Press, New York, 1974.
[Geo97] Georgescu, H.: Concurrent Programming. Editura Tehnică, Bucharest, (in Romanian), 1997.
[GeV00] Georgescu, H. and Vertan, C.: A new approach to communicating X-machines systems. Journal of Universal Computer

Science, 6(5):490–502, 2000.
[Hoa85] Hoare, C. A. R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs, NJ, 1985.
[Hol88] Holcombe, M.: X-machines as a basis for dynamic system specification. Software Engineering Journal, 3:69–76, 1988.
[HoI98] Holcombe, M. and Ipate, F.: Correct Systems: Building a Business Process Solution. Springer, Berlin, 1998.
[Inm84] INMOS Limited: Occam Programming Manual. Prentice-Hall, Englewood Cliffs, NJ, 1984.
[IpH96] Ipate, F. and Holcombe, M.: Another look at computability. Informatica, 20:359–372, 1996.
[IpH97] Ipate, F. and Holcombe, M.: An integration testing method that is proved to find all faults. International Journal of

Computer Mathematics, 69:159–178, 1997.
[IpH01] Ipate, F. and Holcombe, M.: Generating test sequences from non-deterministic X-machines. Formal Aspects of Computing,

12(6):443–458, 2000.

Received December 1999

Accepted January 2001

