Formal Aspects of Computing (1999) 11: 107-131
© 1999 BCS putine (1999) Formal Aspects

of Computing

A Case Study in the Specification and Analysis
of Design Alternatives for a User Interface

David Duke, Bob Fields and Michael D. Harrison

Human-Computer Interaction Group, Department of Computer Science, University of York, UK

Keywords: Human computer interaction; CSCW; MAL; Design space analysis

Abstract. There is considerable interest within the Human Computer Interaction
(HCI) community in the use of media spaces to enhance awareness and inter-
action between workers in offices or other spatially distributed environments. In
addition to the technical challenges of providing reliable and efficient audio-visual
communication, there are important social questions, in particular how users are
able to control access to their personal environments, and how to advise other
users about their level of availability. Within AMODEUS-2!, an ESPRIT Basic
Research Action concerned with the development, transfer and assessment of
techniques for modelling human-computer interaction, a prototype media space
has been analysed by various user and system oriented modelling techniques. This
paper describes how formal specification can be used to express requirements on
the interfaces needed to control access and availability in a media space. Beyond
its obvious use in clarifying the subtle relationship between these concerns, the pa-
per describes how the specification assists in assessing design options originating
from other modelling disciplines.

1. Introduction

An effective user interface is usually as important to the success of a system as
any of the components that manage the underlying functionality of the system. A
good user interface cannot turn an error-ridden product into a success, but a poor
user interface can render even the most rigorously designed and verified system

Correspondence and offprint requests to: David Duke, Department of Computer Science, University
of York, Heslington, York, YO10 5DD, UK. e-mail: duke@cs.york.ac.uk

I AMODEUS-2 technical reports are available electronically via http://www.mrc-apu.cam.ac.uk/
amodeus/index.html

108 D. J. Duke, B. Fields and M. D. Harrison

unfit for use. Indeed, it is often the case that when failures in critical systems
occur, the failure is due to ‘human error’ rather than faults in the software
system [Mac94], and too often humans are assisted into error by inadequacies
in the user interface [WJC94]. Of course, user interface design is a difficult
problem. It encompasses concerns ranging from the capabilities of low level
input and output devices, through interaction techniques that increasingly involve
concurrent aspects, through to social and cultural issues over the role of the
system and its interface in the workplace. Interface designers must thus consider
how the interface will support the functional behaviour of the system, how it will
support a user of the system in achieving their goals, and how it will fit into the
working environment.

The consequence of these issues is that human factors specialists and interface
designers frequently need to compare and assess design alternatives based on cri-
teria from a number of disciplines. How design decisions are reached is beyond the
scope of this paper; rather, this paper describes how formal models of interactive
systems can contribute to the analysis of interaction requirements. By organising
a formal model around a framework for describing interaction, it becomes possi-
ble to highlight significant issues early in the development process. As a result, we
show that formal representations and analyses can address issues of relevance at
the user interface of a system, not just within its “functional core” (see [Arc92]).

In user interface development, design alternatives arise from the analysis or
assessment of prototype interfaces by specialists such as cognitive user modellers
and task analysts. It is not always obvious whether recommendations coming
from such analyses are consistent or complementary, or indeed by what criteria
such alternatives can be compared and assessed. This paper demonstrates how
such design alternatives can be modelled formally, and consequently how such
models can be used to understand the relationship and trade-offs between al-
ternatives. The approach of this paper is a practical one; it demonstrates how
the user interface of an audio-visual communications environment (a ‘media
space’) can be modelled formally, and how such a model can be used to explore
design alternatives that address the problem of controlling accessibility within
such an environment. The media space described in this paper was used as an
exemplar within the AMODEUS-2 project, an ESPRIT funded research action
that investigated models of human-computer interaction. AMODEUS brought
together experts from both system and user modelling communities, and the
design alternatives considered in this paper were the result of analyses of the
exemplar carried out by two groups of user modellers. The project also included
researchers on methods for integrating design contributions, and on the problems
of transferring modelling and integration techniques into practice, and a wider
picture of the issues and techniques involved in HCI modelling can be found in
[BBDY6)].

Section 2 provides an informal description of media space systems, and the
problems of controlling access and availability through the interface to such
systems. Within the AMODEUS project, two approaches to user modelling were
applied to the access control problem, and both lead to proposals for new interface
designs, which are described informally. The section concludes by introducing the
basic concepts and definitions that will underly subsequent formal models of
the interface and the design alternatives. Our approach to the specification of
interactive systems, introduced in Section 3, is based on the interactor model
reported in [DuH93, DuH94b]. A high-level model is developed to specify the
meaning of access control in an audio-visual environment. This model is then

Specification and Analysis of Design Alternatives 109

extended to encompass the design recommendations from the two cognitive
modelling perspectives. Section 4 considers the analysis of the resulting models
to obtain an understanding of the differences and trade-offs involved. The paper
concludes with comments on the role of formal methods in the design of the user
interface.

2. Background
2.1. Media Spaces and Mediated Communication

The media space system described in this paper was a prototype, developed as
part of a project to support awareness and communication between personnel
on a construction project [BBD96]. It was based on technologies similar to those
developed at the Xerox Research Centre Europe in Cambridge (formerly known
as Rank Xerox Europarc), which was one of the partners in the AMODEUS-2
project. Examples of the kind of system being discussed here can be found in
[DoB92b, DoB92a]. In general, media space environments involve the integration
of audio and video systems with a software interface. For example, in the
‘Portholes’ environment described in [DoB92b] users are provided with a panel
of digital ‘snapshots’ taken from offices, plus facilities that allow a user to make
various kinds of audio-visual connections to the people shown on the panel. Apart
from providing the user with awareness about general activities within an office
environment, snapshots and brief one-way ‘glance’ connections support a form
of user discipline, whereby a user may desist from making ‘intrusive’ two-way
connections if they perceive that the person they wish to communicate with is
busy or non-interruptible. This relies on the goodwill and social responsibility of
the user population. In practice, discipline on the part of the users is backed up
by system software that allows users to decide who can make particular types of
connection to their nodes.

Two concepts have emerged to support the ability of users to control the kind
of connections that can be made to their node in a media space. First, a user may
signal their general availability to other users by a mechanism that provides other
users of the system with some indication of whether it is appropriate to attempt
communication. Second, the general availability of a user can be augmented or
overridden by the granting or revoking of specific accessibility rights to selected
users. Whether or not the specific accessibility settings that one person has
granted to another should be perceivable by the would-be-caller is a non-trivial
issue of social policy. Access permission and availability settings are enforced by
the software system whenever a connection is requested.

If users’ access permissions are static, i.e. are set once and then remain
unchanged, a simple array of toggle-buttons is probably adequate as a user
interface. However in a dynamic environment users may wish to change settings
relatively frequently, to reflect their changing availability to different groups within
an organisation. For example, during a meeting a manager may wish to block all
interruptions (regardless of source), while allowing certain people, her supervisor
for example, to make non-intrusive connections. Ideally, the user should be able
to set some level of availability that partially determines the connections allowed
by the system, relative to the access permissions granted in general to individuals.
One problem faced by the designers of such systems has been to understand the
interplay between these two forms of control. For example, are they orthogonal,

110 D. J. Duke, B. Fields and M. D. Harrison

or if not, how does one form interact or interfere with the other? In the case
of interactive systems such as the portholes interface, interference may not only
exist at the functional level, but also at the level of what a user understands
about the system. For this kind of problem a formal model may not, by itself,
provide much insight. Instead, a designer may need to call on techniques such as
user modelling or task analysis, and incorporate the results of such analyses into
the designed artefact.

2.2. User Models of a Media Space

Within the AMODEUS project, two approaches to cognitive user modelling
were applied to an example of the access control problem within ECOM, a
prototype media space developed within the ESPRIT EuroCODE project to
support remote collaboration on a large-scale civil engineering project. These
analyses were carried out by separate groups of modellers. A comprehensive
account of all the modelling approaches is presented in [BBD96]; here we are
concerned specifically with the results of the user modelling approaches known
as CTA (Cognitive Task Analysis) and PUM (Programmable User Models).

CTA employs a broad resource-based account of human information process-
ing to reason about aspects of a design that place particular demands on human
cognitive resources. The CTA analysis (see [BaM93, BaM95]) of the ECOM pro-
totype [MaB94] considers the ‘propositional’ knowledge that users will need to
interpret the interface, and the assumptions under which that knowledge will be
‘proceduralised’ into semi-automatic skills.

PUM uses a high-level description of a user’s goals and a system’s resources
to identify problems in the planning and execution of tasks to achieve intended
goals [BIY95]. The approach derives from the “Soar” [New90] tradition of goal-
directed cognitive simulation and concentrates much more directly on ‘procedural’
models of users’ tasks. The process of building a PUM involves expressing aspects
of the device, tasks and user knowledge within an ‘instruction language’. So, while
the CTA approach concentrates on a detailed model of the cognitive resources
and processes involved in accomplishing tasks, a focus of PUM modelling is
the procedural knowledge users have about their tasks. As is the case with
formalisation in general, the process of representing the problem explicitly often
draws out new insight, and the benefit of actually being able formally to reason
about or execute the resulting description can be marginal.

An important contribution from both of the analyses was the idea that the
notion of a general ‘level of availability’ should be separated clearly from the
concept of access permission granted to (or revoked from) particular users. In
both cases, these recommendations were expressed, not as abstract principles, but
as explicit design suggestions in the form of revised interface designs, and the
procedures by which users would achieve key tasks using these interfaces. This
point is particularly important; the experience of the HCI community is that
designers are not in general comfortable working with abstract recommendations
[BBS95], but want to see what the analysis is suggesting in terms of a concrete
interface. The danger of this approach is that details extraneous to the design
argument become captured in the redesign, and it becomes difficult to appreciate
what is fundamental to a design recommendation as opposed to what is superficial
detail. It might seem, therefore that the practice of HCI, with its focus on the
actualities of user interfaces, comes into conflict with accepted practice in the

Specification and Analysis of Design Alternatives 111

Availability level (cancel) ok)

Allow... connect glance snhapshot message

I N

...permitted », ’,
...none h

Fig. 1. Setting availability level in the CTA interface.

Connection Permission

Name connect glance snapshot message

X &

Paula McKay
Graham Thomas
Susan Jones
Andy Watson
Fred Smith

XX
X

L XXX
X | XXX X

Everyone else []

X
X
X g
X
L

[New name ...] [Remove name] [Cancel] OK]]

Fig. 2. Setting access permissions in CTA interface.

formal methods community, with its emphasis on abstract description. Resolving
this apparent tension is an area where the specification technique introduced in
the next section has been able to make valuable contributions.

The CTA Design Recommendation

In the CTA scheme, a user’s general level of availability may be overridden by
providing specific access control for certain combinations of users, and groups of
related media services called classes. As an example, the screen structure in Fig. 1
shows a possible implementation for setting general availability suggested by the
CTA analysis.

Here there are four classes of service; connect, glance, snapshot and message.
A second interface, illustrated in Fig. 2, is required in order to set specific access
permissions. This interface has two parts. A scrolling list contains the names
of users for whom specific permissions have been defined, and the checkboxes
across each row indicate those permissions. Users who have not been specifically

112 D. J. Duke, B. Fields and M. D. Harrison

My current availability is... yes no

...I can be looked at
...| allow interruptions

[Cancel] [[OK]]

Fig. 3. Setting general level of availability in the PUM interface.

named in the list are given the access permissions specified by the row of
buttons underneath the scrolling region. Informally, a would-be caller can obtain
a connection using a particular kind of communications service, ‘C’, if

1. the callee has set their availability level to allow all ‘C’ connections, or

2. if the callee has set the availability level for ‘C’ to allow only permitted ‘C’
connections, and either

(a) the callee has granted the caller specific permission to make this kind of
connection, or

(b) the callee has not explicitly listed the caller but has instead allowed anyone
not listed to make this class of connection.

The PUM Design Recommendation

The PUM suggestion for separating availability and access control is to use
the general availability only when user-specific permissions have not been set to
override the general settings. Availability in this model could be set using a panel
like the one shown in Fig. 3.

In their approach the PUM modellers have chosen to identify two classes of
connection, those that involve the caller obtaining visual information about the
callee (for example, a snapshot) and those that require the active participation
of the callee, for example a “vphone” link. Each user can indicate whether, by
default, they wish to allow either of these classes.

Figure 4 shows one possible realisation of the interface for setting specific
access permissions. The user selects the would-be-caller for whom the access
permissions are to be set from a pull-down menu on the left of the interface
containing the names of all of the users in the system. This user can then,
for each class connection, be given permission to always make a connection,
be refused permission for a class of connection, or can have their permission
determined by the callee’s default availability settings.

As an example, in Fig. 4, regardless of the fact that the callee’s default
prohibits looking but allows interruptions, the user Susan is always allowed to
look but never allowed to interrupt.

Specification and Analysis of Design Alternatives 113

Access permissions... (cancel) ok)

as current
user D never setting always
Susan may look at me {O O @J

@ may interrupt me {@ O O}

Fig. 4. Setting specific access permissions in the PUM interface.

2.3. An Abstract System Model of a Media Space

The results of the two user modelling analyses of ECOM certainly appear
different, but although the informal text provided with the design sketches suggests
that the results diverge, it is not obvious whether this is the result of fundamentally
different views over the management of accessibility and availability, or merely
superficial differences resulting from the independent development of two sets of
design sketches. It should be emphasised that this is not a criticism or problem
with the modelling; these ‘design suggestions’ are intended to help illustrate the
consequence of the modelling for the benefit of designers by showing one option
from a potentially large space that addresses an identified problem. By using a
common specification of the access control problem as a baseline, we will explain
exactly how the design proposals resulting from the two modelling approaches
are related, and will consequently be able to contribute arguments and criteria
that could be used within a design team to choose between these alternatives.

Before defining a model of a media space system it is necessary to introduce
some definitions for the basic concepts that will appear in the model. These
are: system users, kinds of service, and actual connections. At this point we
are deliberately loose about specification notation; the reader should be able to
map the definitions into their favourite language. We say more about the role of
notation later in the paper.

type user - a set representing the identities of users.
service - the kind of connections that are possible.
conn - connections linking two users by a service.

The type service is intended to include values such as snapshot, glance, and
connect, representing the different kinds of audio-visual facilities provided by the
system. The two parties to a connection are identified as the caller and the callee.
Their identities are extracted from a value ¢ : conn by the expressions ‘caller(c)
and ‘callee(c)’.

caller : conn — user - user who initiates a connection.
callee : conn — user - user who is connected to
type :conn — service - each connection involves one service.

It is also convenient to have a function that, given a caller, a service, and
a callee, will return the appropriate connection value. This function, written as

114 D. J. Duke, B. Fields and M. D. Harrison

‘©, is defined below. The axiom requires that any connection built from the
components of some connection ‘c’ will be equal to ‘c’; thus a connection is
defined completely by its components.

© : user X service X user — conn
V¢ : conn e ©(caller(c), type(c), callee(c)) = ¢

The most obvious requirement that a media space system should satisfy is that
it must only be possible to establish a connection if that connection is permitted
by the accessibility and availability settings in force at the time. Further, it should
be possible for users to change their accessibility and availability settings so that
specific access rights are defined. A number of desirable features can also be
identified. For example, a user should be able to determine what connections
they can make without having to request a connection and then have it refused.
Conversely, if a user perceives that a connection is allowed, then it should be
the case that such a connection will be permitted. One aim of separating out
accessibility from availability is that it should be possible for a user to change
their general availability easily, to reflect common changes of work, for example,
starting or ending a private meeting.

3. Modelling Interactive Systems
3.1. Formal Methods and Interactive Systems

One way in which formal methods have been finding successful application is
by working in combination with other modelling techniques, for example the
integration of formal methods with structured design and analysis techniques.

A number of approaches to the use of formal methods for the specification
of interactive systems have been developed and reported in the literature, see
for example [PaP97]. The approach that has been developed at York involves
organising a formal description into structures called interactors. These were
inspired, in part, by object-based approaches to specification, such as Object-
Z [CDD90] and the agent model [Abo90]. Interactors allow the specification
to be decomposed into self-contained units which focus attention on structures
and relationships that are of concern to user interface designers. Specifically, an
interactor [DuH93] consists of:

e an internal state, representing the functionality that some part of an interface
is controlling;

e a perceivable state, representing the information that is made available to
users of the system via some presentation [DuH94b]; and

e the actions that bring about changes in the internal and perceivable state.

Various specification notations, including Z and VDM, have been used to
express the behaviour of interactors; this paper employs a form of Modal Action
Logic (MAL) similar to that described by Ryan et al [RFM91]. The basic idea
employed here is to use MAL to express relations between the states before and
after the execution of actions. So an expression “pre = [a] post” means that if
an action a occurs in a state where the condition pre holds, the resulting state
will be one in which post holds. A summary of the logic, and brief description of
the mathematical notation used in this paper, is given in Appendix A. A simple

Specification and Analysis of Design Alternatives 115

example of an interactor, expressed using modal action logic, can be found in
Appendix B.

3.2. Access Control in a Media Space

The core of the media space specification defines the information that is accessed
and controlled through the user interface, specifically, the set of connections that
exist within the system and the set of connections that is permitted. Within this
model it is possible to state formally the requirement on access control, that the
system will establish only those connections that are permitted by the callee.

The model of core functionality is represented as an interactor called system,
which will subsequently be extended into other interactors that capture the
interface proposals in 2.2. The internal state of the interactor comprises three
attributes, permitted, established, and busy, which indicate, respectively, the set
of calls the system will allow, the set of calls that are currently established, and
the set of users who are currently busy with a call. The presentation of this state
consists simply of the attribute can-make, for which the " annotation indicates
that information about the connections that each user is allowed to initiate is
represented visually. That is not to say that the information is necessarily always
visible to the user (for instance, it could be obscured by another window).

interactor system

attributes
permitted P conn - the set of all calls that are permitted
established : P conn - the set of calls currently established
busy : Puser - the set of users who are currently busy

can-make :user — Pconn - the calls that a user is allowed to make
actions

request(conn) - request the system to make a connection
axioms
1 busy = {caller(c) o ¢ € established } U {callee(c) o ¢ € established }

A user is busy if they are the caller or callee of some connection.

caller(c) & busy

A callee(c) & busy

A ¢ € permitted

N established = X
Provided that the callee and caller are not busy, and the connection is permitted by the

system, the effect of requesting a connection is that it becomes established within the
system.

= [request(c)] established = X U {c}

3 ¢ € permitted < ¢ € can-make(caller(c))

The set of permitted connections contains exactly those connections that can be made by
any of the users in the system.

4 can-make(u) = {c : conn e u = caller(c)}

The set of connections that a user can perceive as possible is a subset of those connections
for which that user is the caller.

It should be noted that once a connection has been requested successfully, it
may be possible for the callee to change access permission and deny permission

116 D. J. Duke, B. Fields and M. D. Harrison

for the connection. Exactly how the system should mediate between existing
connections and access control is an issue that lies beyond the scope of this
paper, but for this reason the specification does not require that every established
call be in the permitted set.

The specification does not, and should not, mention the technical aspects of
establishing a connection (e.g. that suitable system resources must be available),
nor does it provide a complete model of the interaction involved in calling, for
example call termination is not mentioned. A more extensive specification of a
media space environment can be found in [DuH94a, DuH95a, DuH95b].

3.3. Incorporating Access Control

The system interactor describes the information used to control access within
a media space, but does not describe how users are expected to interact with
the system to modify that information. This kind of information was expressed
informally in the commentary that accompanied the interface design sketches.
Rather than attempt to extract the specifics of each proposal directly, we first
give a general model that characterises the difference between accessibility and
availability from the viewpoint of a user. This characteristic is common to both
proposed designs, and extracting the shared components into a single interactor
will provide a better basis for understanding the critical differences.

Rather than describing access control in terms of specific connection types, a
useful generalisation is to group connections into classes. At one extreme there
may be a single class of connection, so a user could grant or revoke all access
‘in one step’. At the other extreme each connection type may define a distinct
class, so this scheme also describes systems in which the user can permit or deny
each kind of connection selectively. It is assumed that each connection belongs
to exactly one class, as defined by:

type class - user’s view of classes of connection
class-of : service — class - the class of a given service type

The interactor access represents the information that the system provides to a
specific user (identified by the attribute owner) about accessibility and availability
settings. The ‘availability’ of the owner is represented by the set of classes that
will (generally) be accepted, while ‘accessibility’ is represented by a mapping that
associates a set of service classes with users of the system. In the interactor, these
concepts are expressed by the attributes general and specific. Ultimately, the value
of these attributes determine the permissions granted to other users of the system
by a specific user.

interactor access

system - inherit the model of the system
attributes

owner : user - the user who “owns” this node
general : P class - general availability of owner

vis | specific : user — Pclass - accessibility for specific users
granted : user — P class - connection classes permitted by owner

Three actions allow the user to toggle the setting for either the default or
specific connections:

Specification and Analysis of Design Alternatives 117

actions
set (P class) - set general availability
permit (user, class) - grant access to a user for a service class
revoke(user, class) - revoke access from a user for a service class

The axioms, given below, link the user’s access permission settings to the
global system view, and describe how access settings can be changed. However,
they do not describe how default and specific settings determine the calls for
which permission has been granted. The CTA and PUM analyses diverge on this
issue. The approach of each will be described by extending this general model.

axioms
1 class-of (s) € granted (u) < ©(u, s, owner) € permitted

A user can only grant access permission for calls that have that user as callee, and a call
to the owner of a node is permitted (by the system) if and only if permission for the call
has been granted

2 [set (lev)] general = lev
The ‘set’ action updates the owner’s availability setting.
3 specific(u) = A = [permit (u, c)] specific(u) = AU {c}

Granting permission for a user ‘v’ to make connections of class ‘c’ results in the addition
of ‘¢’ to the class of connections granted specifically to ‘u’.

4 specific(u) = A = [revoke(u, c)] specific(u) = A — {c}

Revoking permission for a user ‘0’ to make connections of class ‘c’ results in the removal
of ‘¢’ from the class of connections granted specifically to ‘u’.

5 u # v A specific(v) = A =
[permit (u, c) 4 revoke(u, c)] specific(v) = A

Granting or revoking specific access rights for a user ‘u’ does not affect the rights granted
by the owner to any other user.

3.4. The CTA Recommendation

The CTA user modellers recommended a design in which general availability
determined access permissions except for specific classes of connection. In these
cases permissions are defined on an individual basis, i.e. specific accessibility
permissions. This approach is represented in the interactor CTA-model. This
extends the generic access control framework with an attribute, exceptions, that
defines the connection classes for which access permission is to defer to specific
permission settings. It is then possible to give an axiom that links accessibility
and availability to the permissions granted by a specific user.

interactor CTA-model
access - inherit the access control model
attributes
exceptions: Pclass - service classes that defer to specific control

118 D. J. Duke, B. Fields and M. D. Harrison

axioms

1 granted (u) =

la (general — exceptions) U
1.b (specific(u) N exceptions)

Permission for a connection ‘c’ is granted by the owner of a node if either (1.a) the class
of that connection has not been deferred to access control and that class of service is
permitted at the current availability level, or (1.b) access permission for that service class
is deferred, and specific permission has been granted for the caller to make that class of
connection.

The CTA-model interactor describes a strategy for reconciling availability and
accessibility, but not describe how the state might be presented to users of the
access control system. Although both groups of user modellers employed user
interface sketches to illustrate their recommendations, the design of the actual
interface may best be undertaken by a graphic designer. A user interface devel-
opment toolkit may be needed, but the actual design of the contents should be
informed by psychological principles of display structure, for example [MSB95],
knowledge of representational structures [Tuf90], and an understanding of what
the display is to accomplish. In other words, the display must meet both human
and functional requirements, and the latter fall within the remit of formal mod-
elling. Whatever design is ultimately realised, that design should implement the
functionality of the underlying model.

In practice, the implementation of user interface components, at least for GUIs
composed of ‘standard’ widgets such as buttons, is a well understood problem
and it is unlikely that there would be much value in developing the specification
further. However, there are two cases where the application of formal methods
may be helpful.

e New interface technologies that involve novel use of modalities such as speech
and gesture, either sequentially or in combination, present both technical and
human factors challenges and designers may benefit from the insight into any
problem that can be gained by building a suitable model.

e Designers may need to assess or argue about the effectiveness of alternative
interface proposals in terms, for example, of how easily it allows users to
complete a task, or how much opportunity it presents for user error, and what
the consequences of error might be.

Although we do not claim that the media space system necessarily falls into
the first of these categories, it does provide a reasonable example with which to
illustrate the extension of the basic modelling approach to address lower-level
issues of interaction. We thus consider a possible realisation of the CTA design
alternative based on the design sketches for controlling availability (Fig. 1) and
accessibility (Fig. 2).

To describe the availability interface as an interactor we first define a type to
represent the ‘types of setting’ that appear in the column on the left hand side of
the interface component:

which-allowed ::= AllowAll | AllowSpecific | AllowNone

The interface is then expressed as an interactor:

Specification and Analysis of Design Alternatives 119

interactor CTA-availability
attributes
vis | settings: class — which-allowed - settings for each service class
actions

set-to(class, which-allowed) - set the allowed level for a class
axioms
1 settings = S = [set-to(c,a)] settings =S @ {c > a}

Setting the type of access for connection class ‘¢’ to ‘a’ overrides the old setting for ‘¢’ and
leaves all other settings unchanged.

The CTA-accessibility interactor represents the proposal to control specific
access settings. It has two attributes:

listed represents the users named within the ‘scrolling list’ in Fig. 2;

selected models the setting (i.e. whether selected or not) of all buttons available
via the interface at any given time. By ‘available’, we mean those buttons that
are present somewhere on the interface; we are not, at this level of detail,
modelling the effect of the scroll bar on the presentation, nor of buttons being
obscured by other windows.

The status of specific buttons is modelled in the specification by mapping the
name of button to a boolean value. However, to accommodate the ‘default’
accessibility information given by the special row of buttons labelled ‘Everyone
else’ in Fig. 2, the type defined to represent button names is defined as a union
type in the style of VDM [Jon90].

bt-name == (user X class) U class

That is, bt-name is the union of user-class pairs representing buttons used to
control access rights of specific users, and the service class names that identify
the buttons for ‘everyone else’.

interactor CTA-accessibility
attributes
vis | selected : bt-name — B - state of each button in the interface

listed :Puser - the users listed explicitly

actions
toggle(bt-name) - change the selected state of a button
remv-name(user) - remove a user from the specific list

new -name(user) - add a user to the list

120

D. J. Duke, B. Fields and M. D. Harrison

axioms
1 dom selected = (listed x class) U class
The interface contains a button corresponding to each listed user and service combination,
and a button for each service class.
2 listed = L An € L = [remv-name(n)] listed = L — {n}
A user can be removed from the set of listed users.
3 listed = L An ¢ L = [new-name(n)] listed = LU {n}
A user can be added to the set of listed users.
4 [new-name(n)] Vc : class o selected(n,c) < selected(c)
When a user is added to the set of listed users, the button settings for that user are taken
from the button settings in force for everyone not explicitly listed.
5 selected(b) = X = [toggle(b)] selected(b) = = X
Toggling a button ‘b’ changes it from selected to not selected, or vice versa.
6 a # b N selected(b) = X = [toggle(a)] selected(b) = X

Toggling a button ‘a’ leaves the selected state of all other buttons unchanged.

Note that, by preventing an already listed name from being added to the list
again, the behaviour specified by axiom 3 prevents accidental changes to access
permissions, as axiom 4 would require that the permissions of such a user be set
to those of the unlisted users. Such interplay between constraints in user interface
behaviour are not necessarily obvious from screen sketches and informal scenario
descriptions.

To close the model of the CTA recommendations, the three aspects of the
design — the basic model, and the interfaces for availability and accessibility
control — are brought together in the CTA-implementation interactor. The axioms
define the correspondence between interface features in the access and availability
specifications and state attributes and actions in the underlying CTA model.

interactor CTA-implementation

CTA-model
CTA-availability
CTA-accessibility

axioms

1

general = {c : class o settings(c) = AllowAll}

A user’s level of general availability is represented by the connection classes which any
other user can request.

exceptions = {c : class e settings(c) = AllowSpecific}

General availability defers to specific access permissions for those connections which are
marked as ‘as AllowSpecific’.

Yu € listed o specific(u) = {c : class | selected(u,c)}

When access permission defers from general availability to specific access rights, the
permissions granted to explicitly listed users are for those connection classes where the
button for that user - class combination has been selected.

Vu € (user — listed) e specific(u) = {c : class | selected(c)}

When access permission defers from general availability to specific access rights, the
permissions granted to any user not explicitly listed are determined by the status of the
buttons representing connection classes.

Specification and Analysis of Design Alternatives 121

The connection between the operation of specific buttons on the interfaces for
availability and accessibility control, and changes to the set of connections that
are permitted within the system, can be found through a chain of interactors:

e A connection request will be satisfied by the system only if it is a member of
the permitted set (axiom 2 of system).

e For a given caller, a connection for that caller is in the permitted set if and
only if permission for that caller to make that class of connection has been
granted by the callee (axiom 1 of access).

e For the CTA model, the link between the set of connections for which
permission is granted, and general (availability) and specific (accessibility)
settings is given by the axiom of CTA-model.

e The connection between the setting of buttons on the user interface panels
modelled by CTA-availability and CTA-accessibility is given by axioms 1 to
4 of CTA-implementation.

It is also possible to make the connection between interface actions and per-
mission settings explicit, by defining equivalences between toggle actions in given
situations and the generic permit and revoke actions within the access interactor.
Carrying out this mapping can provide interesting insight into the design of the
interface. The set of axioms given here as an extension to CTA-implementation
is not complete, but illustrates the point. First, as we would hope, operating a
button for a setting of an explicitly listed user affects only that user:

5 = selected (u, c) = toggle(u,c) = permit (u, c)
If a button for a user-class combination is not selected, then toggling the button is
equivalent to granting that user specific permission to make connections of a given class.
6 selected (u,c) = toggle(u,c) = revoke(u,c)

If a button for a user-class combination is selected, then pressing the button is equivalent
to revoking the specific permission of that user to make connections of the given class.

What is less obvious but also important is that adding a user to, or removing
a user from the list of explicit users also changes access permissions for that user.

7 = selected(c) N\ u € listed = remv-name(u) = revoke(u,c)

If the access settings for users explicitly listed do not allow connections of class ‘c’, then
removing a user from those given specific permissions revokes permission for that user to
make connections of class ‘c’.

8 selected(c) N\ u € listed = remv-name(u) = permit (u,c)

If the access settings for users explicitly listed do allow connections of class ‘c’, then
removing a user from those given specific permissions grants permission for that user to
make connections of class ‘c’.

Further statements could be made about the relationship between other
interface actions in terms of granting and/or revoking access permissions. Ideally,
such statements should be taken as conjectures which can be shown to follow
from the invariants. However, we have not developed the specification with proof
in mind; the activity reported here has, rather, been in the spirit of ‘Formal
Methods Light’ [Jon96].

At this point we have completed the specification of the design proposal
from the CTA modellers. It will be revisited in Section 4 in which this design is
compared with the proposal from the PUM modellers.

122 D. J. Duke, B. Fields and M. D. Harrison

3.5. The PUM Recommendation

The specification of the design recommendations from the PUM modellers follows
the approach adopted for the CTA analysis. First, the interactor PUM -model is
defined as an extension to the generic access control interactor. As was the
case in CTA-model, this interactor introduces an ‘exceptions’ variable, though
now the interpretation is different: the variable indicates, for each user, which
connection classes are subject to the user’s general availability, as opposed to
specific accessibility.

interactor PUM-model

access - inherit the access control model
attributes

exceptions : user — Pclass - classes that don’t defer to specific control
axioms
1 granted(u) =
la (general N exceptions(u)) U
1.b (specific(u) — exceptions(u))

Permission for a connection ‘c’ is granted by the owner of a node if either (1.a) the class of
that connection has been deferred to, and is permitted by, the current availability level, or
(1.b) access permission for that service class has not been deferred and specific permission
has been granted for the caller to make that class of connection.

To support the comparison between the PUM and CTA options, we again
extend the specification to incorporate details of the interface proposals for
controlling availability and accessibility. The interface sketched by the PUM
modellers to illustrate their approach to availability control was given in Fig. 3,
and is represented by the following interactor:

interactor PUM-availability

access - inherit the access control model
actions

toggle(class) - set and unset a service class
axioms

la (general = G A c € G) = [toggle(c)] general = (G — {c})
1b (general = G A ¢ ¢ G) = [toggle(c)] general = (G U {c})

Toggling the status of a connection class adds it to the connections that are generally
available, it was not in the set initially, or removes it from the set, if it was.

In the PUM interface for controlling accessibility (see Fig. 4), the access
permission for a given user can be set for each connection class to be: always
allow (AllowAll), never allow (AllowNone), or deferred to the general availability
setting (AllowSpecific). In the interactor, this is expressed as an attribute that
takes each user-class pair to one of the values in the type which-allowed that was
defined as part of the CTA specification.

Specification and Analysis of Design Alternatives 123

system

access

CTA-model PUM-model

CTA-accessibility CTA-availability PUM-accessability PUM-availability

CTA-implementation PUM-implementation

Fig. 5. Specification structure.

interactor PUM-accessibility
attributes
settings : (user X class) — which-allowed
actions
set-access(user, class, which-allowed)
axioms
1 settings = S = [set-access(u,c,a)] settings = S @ {(u,c)+— a}

Setting a specific access permission of ‘a’ for user ‘u’ and class ‘¢’ overrides the previous
permission set for that user and class, but leaves all other settings unchanged.

That completes our discussion of the model of PUM design options for access
control. Although a PUM -implementation interactor could be defined along the
same lines as CTA-implementation, we do not develop the PUM specification
further. For reference, Fig. 5 shows the structure of the model that has been
developed.

4. Analysis

The previous section has developed specifications of the CTA and PUM design
proposals from a common model of access control (the access interactor). In this
section we consider how these specifications can be used to contribute to the
analysis and comparison of these design options. Both sets of ‘recommendations’
separated a notion of general access permission from specific exceptions, and it
is interesting to note that the two models define different interpretations for the
meaning of ‘general’ permission defined in the access interactor. In the CTA-model
interactor, general access permissions are derived from a user’s availability, but
can then be overridden by the user’s specific accessibility settings. In contrast,
the PUM design represented by PUM -model uses the concept of accessibility to
define permissions, with the level of availability recruited only for determining the
access permissions of specific individuals. These different views of the relationship
between accessibility and availability have implications for how users will need
to interact with the interfaces to achieve specific goals.

4.1. Reasoning About Scenarios

The interface specification extracted from the user model analyses will be consid-
ered in the context of typical user level tasks that they are intended to support.

124 D. J. Duke, B. Fields and M. D. Harrison

In practice the identification of such tasks is an important part of requirements
gathering and human factors assessment, about which there are considerable bod-
ies of literature, see for example [Joh92]. In the case of access control, we have
chosen to define two scenarios which highlight the strengths and weaknesses of
each approach. Although these lack the authority of a real task model, they are
typical of scenario fragments given to the AMODEUS modellers by the media
space designers who were involved in the case studies.

Scenario S1 The ‘owner’ wishes to change permissions to allow all calls of a
certain class ‘c’. This goal can be achieved by a task 7 satisfying the property:

permitted = A = [T] permitted = AU
(u,s,owner) e u : user A class-of (s) = c}

Scenario S2 The ‘owner’ wishes to remove permission for some particular user ‘x’
to make a certain class ‘¢’ of connection. This goal is represented the following
constraint on task 7':

permitted = A = [T] permitted = A — {©(x,s,owner) o class-of (s) = ¢}

We will now illustrate how the specification of the interfaces can support
arguments over the interaction required within these scenarios.

CTA - S1 Assuming that the connection class corresponds to the general classes,
the CTA model supports S1 well; all the user need do is use set-to to allow all
calls in the class ‘c’, i.e. the user initiates the action

set-to(c, AllowAll)

PUM - S1 For the PUM model S1 is more difficult. From the specification, it
can be seen that the user has two options, described below, involving two sets of
users:

P = {u : user e settings(u,c) = AllowSpecific} - users permitted class ¢

N = {u : user e settings(u,c) = AllowNone} - users denied class ¢

Assuming that the owner is initially unavailable for communications of class
‘c’, the first option is to change the default setting to allow connections of type ‘c’,
and then change any exception that denies permission for ‘c’ so that ‘¢’ is allowed.
This can either be done by permitting ‘c’ outright, or by telling the system to take
the permission from the default setting. The actions required are:

toggle(c) - toggle the default permission for
service class c.

set-access(u, ¢, AllowSpecific) for u € N - override existing exceptions for
that class.

The second option assumes once more that the current default does not
allow connections of type ‘c’, and the user explicitly changes all exceptions where
necessary to allow the call. Here the required actions are, for each u € P UN :

set-access(u, c, AllowAll) - override all existing exceptions
for the class.

By taking the first option and changing the default permission, the user may
be able to cancel permission easily for the call class at some later time — the

Specification and Analysis of Design Alternatives 125

‘best’ option to take will clearly depend on the broader background of the user’s
pattern of access control.

CTA - S2 Scenario 2 appears to bring out the advantages of the PUMs approach.
In order to remove permission for a particular connection using the CTA ap-
proach, it may first be necessary to change general availability for the connection
class. However, since general availability overrides specific settings, this may also
deny access to users other than the one being excluded. A worst case scenario is
where the general availability for the connection class is set to ‘AllowAll’, but for
most users the specific setting is to refuse permission for that class. If R is the set
of users {u e ¢ ¢ specific(u)} then the actions required are:

set-to(c, AllowSpecific) - allow the use of class ‘¢’ only if given
specific permission

revoke(x,c) - remove permission from the designated
user

permit(u’, c) for each u’ € R - grant permission to all other users.

PUM - S2 In contrast to this, denying access to one user for a given class of
connection is straightforward in the PUM model; it just requires:

set-access(x,c, AllowNone) - refuse permission for ‘x’ to make connec-
tions of class ‘c’.

It should be noted that the same problems exist regardless of whether permis-
sion is being granted or denied. In the CTA design it is easy to make wholesale
changes in general availability, but it may become unwieldy when making lo-
calised changes. The PUM recommendation is the inverse, allowing easy control
over individual users’ access permissions but potentially complicating the task of
setting up a general availability level.

To conclude, we note that no axioms have been given to describe the initial
state of a system. For example, what should the initial general accessibility level
be set to for CTA, or what specific exceptions should be allowed by the PUM
approach? Two policies seem obvious, one to allow the user to make any call, the
other to refuse permissions for all calls. It depends on whether a user is going to
take a ‘negative’ view and only grant access to certain others, or a ‘positive’ view
and only refuse access to particular users.

4.2. Analysing Erroneous Actions

The previous sub-section shows how alternative interface designs may be com-
pared on the basis of the ease with which they support tasks a user may wish to
perform. Another, related criterion for selecting between alternatives is to con-
sider unintended user behaviour, or erroneous actions (see [FWH95, FHW97]).
By erroneous actions, we mean those that are possible, but unintended. Typically,
errors are counterproductive in the sense that they have a negative impact on
the achievement of an intended outcome (cf. [Rea90]). In doing this, the aim is
not to apportion blame for system failures to the user, but rather to address the
design issue of how what is known about human error can be better used in
design. When considering failures in human-system interaction, three factors are
significant: what errors can occur (and are likely to occur)? how easily can the
user detect and recover from these errors? and what is the effect of these errors?

126 D. J. Duke, B. Fields and M. D. Harrison

Table 1. Analysis of operator errors

Task Error Consequences

Omission of actions

1 Omit toggle(c) No effect, leaving permitted unchanged, so that no
new connections are allowed.
2 Omit set-access(u, c, AllowSpecific) User u incorrectly denied access.

Substitution of ¢’ for class ¢ (¢’ # ¢)

3 Substitute ¢’ for ¢ throughout The intended users are permitted the wrong kind of
access, but not given the intended access permissions
4 set-access(u,c’, AllowSpecific) User u is incorrectly permitted calls of class ¢’ # ¢,

but not given the intended access permissions
Substitution of u’ for some specific user u
5 set-access(u’,c, AllowSpecific) No change for user u’, as user u’ ¢ N was already

permitted to make calls of class c¢; permissions for
the intended user u are unchanged

Substitution of AllowSpecific for one user, u

6 set-access(u,c, AllowAll) Intended effect — user u is permitted class c
connections.

The first two of these issues, concerning the likelihood of particular errors
occurring and being detected and remedied, are empirical or psychological ques-
tions and will not be treated here. A systematic way of addressing the remaining
question, of analysing the effects of errors, relies upon a formalised model of
system and interface behaviour, as presented above. The starting point for an
analysis of the impact of human error is an understanding of the tasks the user
must perform, as well as a model allowing predictions to be made about the
effects of user actions on the system state. Samples of the former are given for
particular scenarios in the previous sub-section and the latter is provided by the
interactor specifications in preceding sections.

The approach to using task descriptions together with models of the system’s
behaviour to analyse user error will involve the systematic examination of some
of the ways that tasks can be carried out incorrectly. Two types of error will be
considered here: omission of an entire task action, and substitution of an incorrect
parameter to an action (which will typically correspond, in interaction with a real
implementation, to the mis-selection of a button or other control). These two
patterns of error are only a small (though important) selection from the large
body of literature on classifications of erroneous actions.

As an example of how an error analysis may be conducted, consider the
first PUM task given in Section 4 for scenario S1. The possible omission and
substitution errors that could occur in this are tabulated in Table 1. This table
shows the effects on the permitted set, calculated from the interactor specification,
that result if the remainder of the task is completed correctly. Although this
process of going from behaviours to their effects is described informally here, it
is underpinned by an analysis of the formal models described previously.

The consideration of user errors and their overall impact on the system can
form an important part of an analysis of a system’s usability. An analysis of this

Specification and Analysis of Design Alternatives 127

kind can help to distinguish between types of error (for example, between those
that have a relatively benign effect, and those that give users unintended access
permissions). Additionally, the analysis can help a designer to draw a further
distinction between the design proposals. For example, although the PUM S1
task is more complex than CTA S1, and therefore contains more opportunities
for error, many of the errors in the PUM task can be shown to be harmless, in the
sense that they don’t permit unintended connections. Subsequent design activity
might seek to address the error deemed sufficiently consequential in a number of
ways (for example, making the error impossible, or by allowing the error to occur
but supporting the user in detecting and recovering from it). Although such error
analysis remains largely an informal process, relying on the skill of the analyst,
formal models of the kind described in this paper can support the analysis in two
main ways.

Firstly, and perhaps most obviously, formal models can support the analyst in
determining the effects of user actions (and thereby in filling in the “consequences”
column of Table 1). This can be done either by proving conjectures about the
state of the system following an action or action sequence, or, where possible,
by executing or animating the specification. If it is found that an undesirable
state is reached as the result of some error in a task, then the designer may
wish to introduce interface features to discourage the error or mitigate its effects.
Everyday examples of such features are the “greying out” of non-permitted menu
items or the use of “modal” dialogue boxes which prevent progress being made
until an important action is carried out. The above analysis has suggested that
some of the erroneous performances of the task (3 and 4 in Table 1) may be
more consequential than others (they grant additional, unwanted permissions).
Re-design efforts can be targeted at these specific error forms, and can result
in a number of design possibilities (such as providing the user with an explicit
representation of the permitted set).

The second kind of support afforded by the use of formal models is that the
perceivable effects of erroneous action can be studied with the help of the “”
annotations of interactors’ state variables. This allows the analyst to investigate
whether the system’s user interface provides enough information for a user to
distinguish between states reached by correct and erroneous inputs.> Once again,
formal proof or animation of the specification could be employed here to reason
not about the whole state space of an interactor, but just about the portion of it
marked as perceivable.

In short, formal modelling can assist designers in clarifying what erroneous
actions are being considered. Furthermore, such models are important in analysing
what the effects of actions will be in the context of an otherwise correctly
performed task. In this way, formal modelling and an examination of error can
together contribute to the design of user interfaces that are robust to the rigours
of ordinary use.

5. Conclusions

This paper has described how a formal specification of two design alternatives
could support arguments over design options, both by clarifying the differences

2 Of course, the question of whether a user actually will notice when an error has been made, is a
psychological question that is outside the scope of the modelling activity described here.

128 D. J. Duke, B. Fields and M. D. Harrison

between options, and in terms of criteria such as support for specific tasks or
the likelihood and consequences of user error. In presenting this analysis, we
are not suggesting that user interface designers need or should become experts
in formal methods. A designer is interested in the consequences of the analysis,
not in its derivation, and typically there are factors affecting the choice between
design alternatives for which formal techniques are either impractical or simply
inappropriate.

Case studies such as this suggest that formal specification techniques can assist
in developing usable interfaces. A specification can make clear what information
can or should be presented to users, and what effect user actions should have
both on internal and perceivable state. In particular, this paper has shown that
a formal model of a system can be extended to capture recommendations from
other disciplines as part of the broader process of understanding, documenting,
and comparing design alternatives. We have used the resulting models for three
purposes:

e A specification can capture precisely design recommendations at a high level
of abstraction. CTA and PUMs recommendations for separating access per-
missions from general availability can be modelled independently of design
‘suggestions’ used to encapsulate the output of modelling. Although choice of
recommendations may be made on grounds other than their impact on the
functional behaviour of the system, at least that impact is known precisely.

e Competing design alternatives may also be contrasted on the basis of user
level criteria such as the nature of the tasks required to achieve particular
user goals or the effects that user errors will have on the system state.

e Recommendations from different modelling techniques can be compared.
Doing this for the CTA and PUMs recommendations for the access control
problem shows that they take opposite views of general versus specific access
permission. This is useful both for the designer, in comparing modelling
recommendations, and for the modellers themselves who may then be able to
look at the theory or rationale that led to a particular suggestion.

The AMODEUS project utilised and developed a number of techniques for
integrating multidisciplinary analyses [BID97], and the use of formal specifications
to contribute to the development to a space of design options and criteria
has already been documented, see for example [BFH95, BBD96]. However, the
complex interactions between accessibility and availability described in this paper
have been a problem for designers of media space systems, and what we have
demonstrated is that it is possible, by using mathematical models, to better
understand the relationships and trade-offs between interfaces that manage these
concepts. Such an analysis could be carried out formally, but in practice the
techniques described in this section are more in the spirit of the ‘formal methods
light” approach advocated for example by Jones [Jon96]. As is being discovered
in other areas such as information systems modelling and structured design, the
mathematics underlying formal methods can be recruited to enhance and clarify
existing techniques for describing and analysing problems. In this way, we believe
that formal methods do have a role in practical HCIL

Specification and Analysis of Design Alternatives 129

References

[Abo90]

[Arc92]

[BBDY6]

[BBS95]

[BIDY7]

[BFHY5]

[BaM93]

[BaM95]

[BIY95]

[CDDY0]

[DoB92a]

[DoB92b]

[DuH93]
[DuH94a]

[DuH94b]

[DuH954a]

[DuH95b)]

[DuH95¢]

[FHW97]

[FWHO95]

Abowd, G.: Agents: Communicating interactive processes. In D. Diaper, D. Gilmore,
G. Cockton, and B. Shackel, editors, Proceedings of INTERACT 90, pages 143-146.
North-Holland, 1990.

Arch, a metamodel for the runtime architecture of an interactive system. In ACM
SIGCHI Bulletin, Volume 24 Number 1, 1992. UIMS Developers Workshop.

Bellotti, V., Blandford, A. E., Duke, D. J., Maclean, A., May, J. and Nigay, L.: Controlling
accessibility in computer mediated communications: A systematic analysis of the design
space. Human Computer Interaction, 1996.

Bellotti, V., Buckingham Shum, S. J., MacLean, A. and Hammond, N.: Multidisciplinary
modelling in HCI design ... in theory and in practice. In Proc. CHI'95. ACM Press, 1995.
Blandford, A. and Duke, D. J.: Integrating user and computer system concerns in the
design of interactive systems. International Journal of Human-Computer Studies, 46:653—
679, 1997.

Bramwell, C., Fields, B. and Harrison, M. D.: Exploring design options rationally.
In P. Palanque and R. Bastide, editors, DSV-IS'95: Eurographics Workshop on Design,
Specification and Verification of Interactive Systems, pages 134-148. Springer-Verlag,
1995.

Barnard, P. J. and May, J.: Cognitive modelling for user requirements. In P.F. Byer-
ley, PJ. Barnard, and J. May, editors, Computers, Communication and Usability: Design
Issues, Research and Methods for Integrated Services, North Holland Series in Telecom-
munication. Elsevier, 1993.

Barnard, P. J. and May, J.: Interactions with advanced graphical interfaces and the de-
ployment of latent human knowledge. In Eurographics Workshop on Design, Specification
and Verification of Interactive Systems, pages 15-49. Springer, June 1995.

Blandford, A. E. and Young, R. M.: Separating user and device descriptions for mod-
elling interactive problem solving. In K. Nordby, P. Helmersen and D. J. Gilmore, and
S. Arnsen, editors, Human-Computer Interaction: INTERACT’95, pages 91-96. Chapman
and Hall, 1995.

Carrington, D. A., Duke, D. J., Duke, R. W,, King, P, Rose, G. A. and Smith, G.:
Object-Z: An object-oriented extension to Z. In S. Vuong, editor, Formal Description
Techniques (FORTE’89). North Holland, 1990.

Dourish, P. and Bellotti, V.: Awareness and coordination in shared workspaces. In Proc.
ACM Conference on Computer-Supported Cooperative Work CSCW’92. ACM Press, 1992.
Dourish, P. and Bly, S.: Portholes: Supporting awareness in a distributed work group.
In Proc. ACM Conference on Human Factors in Computing Systems CHI'92. ACM Press,
1992.

Duke, D. J. and Harrison, M. D.: Abstract Interaction Objects. Computer Graphics
Forum, 12(3):C-25 — C-36, 1993.

Duke, D. J. and Harrison, M. D.: Connections: From A(V) to Z. Technical Report
SM/WP29, ESPRIT BRA 7040 Amodeus-2, January 1994.

Duke, D. J. and Harrison, M. D.: A theory of presentations. In M. Naftalin, T. Denvir,
and M. Bertran, editors, FME’'94: Industrial Benefit of Formal Methods, volume 873 of
Lecture Notes in Computer Science, pages 271-290. Springer-Verlag, 1994.

Duke, D. J. and Harrison, M. D.: Folding human factors into rigorous development. In
F. Paterno, editor, Interactive Systems: Design, Specification and Verification, Focus on
Computer Graphics, pages 333-347. Springer-Verlag, June 1995.

Duke, D. J. and Harrison, M. D.: From formal models to formal methods. In R.N.
Taylor and J. Coutaz, editors, Proc Intl. Workshop on Software Engineering and Human-
Computer Interaction, volume 896 of Lecture Notes in Computer Science, pages 159-173.
Springer-Verlag, 1995.

Duke, D. J. and Harrison, M. D.: Interaction and task requirements. In P. Palanque
and R. Bastide, editors, DSV-IS'95: Eurographics Workshop on Design, Specification and
Verification of Interactive Systems, pages 54—75. Springer-Verlag, 1995.

Fields, B., Harrison, M. and Wright, P.. THEA: human error analysis for requirements
definition. Technical Report YCS-294, Dept. of Computer Science, University of York,
1997. Available via http://www.cs.york.ac.uk/~bob/papers.html.

Fields, B., Wright, P. C. and Harrison, M. D.: A task centered approach to analysing
human error tolerance requirements. In P. Zave, editor, Second IEEE International
Symposium on Requirements Engineering (RE’95), pages 18-26. IEEE Computer Society
Press, 1995.

130 D. J. Duke, B. Fields and M. D. Harrison

[Joh92] Johnson, P.: Human Computer Interaction: Psychology, Task Analysis and Software En-
gineering. McGraw-Hill, 1992.

[Jon90] Jones, C. B.: Systematic Software Development Using VDM. Prentice Hall International,
second edition, 1990.

[Jon96] Jones, C. B.: A Rigorous Approach to Formal Methods. IEEE Computer, 29(4):20-21,
1996.

[KMQ93] Kent, S. J., Maibaum, T. S. and Quirk, W. J.: Formally specifying temporal constraints
and error recovery. In Proc. of the IEEE International Workshop on Requirements Engi-
neering, pages 208-215. IEEE Press, 1993.

[Mac94] MacKenzie, D.: Computer-related accidental death: an empirical exploration. Science
and Public Policy, 21(4):233-248, August 1994.

[MaB9%4] May, J. and Barnard, P. J.: A cognitive task analysis of the EuroCODE exemplar
material. Technical Report UM/WP22, ESPRIT BRA 7040 Amodeus-2, 1994.

[MSB95] May, J., Scott, S. and Barnard, P. J.: Structuring Displays: A Psychological Guide.
Eurographics Tutorial Notes. European Association for Computer Graphics, Geneva,

1995.

[New90] Newell, A.: Unified Theories of Cognition. Harvard Universtity Press, 1990.

[PaP97] Paterno, F. and Palanque, P.: editors. Formal Methods in Human Computer Interaction.
Springer-Verlag, 1997.

[Rea90] Reason, J.: Human Error. Cambridge University Press, 1990.

[RFMO91] Ryan, M., Fiadeiro, J. and Maibaum, T.: Sharing actions and attributes in modal action
logic. In T. Ito and A.R. Meyer, editors, Theoretical Aspects of Computer Software,
volume 526 of Lecture Notes in Computer Science, pages 569-593. Springer-Verlag, 1991.

[Spi92] Spivey, J. M.: The Z Notation: A Reference Manual. Prentice Hall International, second
edition, 1992.
[Tuf90] Tufte, E. R.: Envisioning Information. Graphics Press, Cheshire CT, 1990.

[WIC94] Woods, D. D., Johannesen, L. J., Cook, R. I. and Sarter, N. B.: Behind human error:
Cognitive systems, computers and hindsight. State-of-the-Art Report SOAR 94-01,
CSERIAC (Crew System Ergonomics Information Analysis Center), December 1994.

A. Modal Action Logic

Axioms describing the behaviour of interactors are defined in this paper using
structured Modal Action Logic (MAL) [RFM91]. This has the usual operators
of classical first order logic, for example A (and), = (not), = (implies) and V
(for all), but also includes modal operators of the form [4] - where 4 is an
action expression. If P is a predicate, [A] P means that P must hold in the state
following performance of 4. Modal predicates often occur within implications;
P = [A] Q is read as ‘if P is true then performing action 4 will result in a state
where Q is true’. The action ‘A’ can either be atomic, or it can be an expression
representing either choice (B + C), parallel performance (B&C) of other actions
or exclusion (B — any action other than B).

Other mathematical notation is based loosely on Z [Spi92]. In particular,
we use the powerset constructor (P), cartesian product (x), disjoint union (U)
taken from VDM [Jon90], and function space (—). Operations involving sets
are the usual ones: U, N, — for set difference, and € (¢) for membership (non-
membership). For f : X —» Y,

domf ={x:X |3y :Y e(x,y)ef}.
For clarity, the tuple (x,y) is sometimes written using maplet notation x — .

Function overriding is represented as f @ g; for x € domg, (f ® g)(x) = g(x),
while for x € (domf —domg), (f @ g)(x) =1 (x).

Specification and Analysis of Design Alternatives 131
B. Interactor Representation

An interactor consists of internal state, perceivable state, and actions that operate
on both states. The behaviour of an interactor is described by a collection
of axioms expressed within some logic. For example, the following interactor
describes a simple button as might be found on a graphical user interface. The
button can be selected, and can be enabled or disabled. Both of these ‘properties’
are visually perceivable, but exactly how the button is presented is not of concern.

interactor button

attributes
vis | selected:B - in this case, just one boolean-value variable
vis| enabled : B - a flag to indicate whether pressing is allowed
actions

press - press the button

setMode(B) - control whether the button is enabled
axioms
1 enabled N selected = X = [press] selected = ~ X

If a button is enabled, and its selected state is “X’, then after the button has been pressed,
its selected state is flipped to ‘not X’.

2 [setMode(b)] enabled = b

Set the flag to indicate whether or not the button is enabled.

The state of the interactor is modelled by a set of typed attributes (variables),
in this case ‘selected’ and ‘enabled’. Variables that can be perceived by a user of the
system form the presentation and are annotated with the “modality” or channel
through which they can be perceived; see [DuH94b]. In the button interactor,
the fact that the button is selected (or not) is perceived visually (hence the vis
annotation). Two actions, press and setMode, are available; note that the latter
action is parameterised. The effect of the press action, specified by Axiom 1, is
to toggle the button between being selected or not selected. Free variables in
axioms, such as X in the example above, are implicitly universally quantified.
The intention is that the button will be used by other system components that
might respond to the ‘selected’ state, or use the setMode action, in application-
specific ways. In principle, some form of “frame condition” is required to define
which variables do not change when an action occurs. For example, axiom 2
above should also assert that the value of selected is unchanged by the setMode
action. This issue is discussed in [KMQ93]; frame conditions are omitted in this
paper unless they are crucial to the discussion. In addition to the modal operator
employed in this paper, MAL also includes a deontic component has been utilised
in related work [DuH95¢c, BBD96].

Received August 1996
Accepted in revised form April 1999 by D. J. Cooke

