
https://doi.org/10.1007/s00165-021-00555-2

Formal Aspects of Computing (2021) 33: 1067–1114
Formal Aspects

of Computing

Comprehensive systems: a formal foundation
for multi-model consistency management
Patrick Stünkel1 , Harald König1,2 , Yngve Lamo1 and Adrian Rutle1
1Høgskulen på Vestlandet, Bergen, Norway
2FHDWHannover, Hanover, Germany

Abstract. Modelmanagement is a central activity in Software Engineering. Themost challenging aspect ofmodel
management is to keep inter-related models consistent with each other while they evolve. As a consequence,
there is a lot of scientific activity in this area, which has produced an extensive body of knowledge, methods,
results and tools. The majority of these approaches, however, are limited to binary inter-model relations; i.e.
the synchronisation of exactly two models. Yet, not every multi-ary relation can be factored into a family of
binary relations. In this paper, we propose and investigate a novel comprehensive system construction, which is
able to represent multi-ary relations among multiple models in an integrated manner and thus serves as a formal
foundation for artefacts used in consistency management activities involving multiple models. The construction
is based on the definition of partial commonalities among a set of models using the same language, which is used
to denote the (local) models. The main theoretical results of this paper are proofs of the facts that comprehensive
systems are an admissible environment for (i) applying formal means of consistency verification (diagrammatic
predicate framework), (ii) performing algebraic graph transformation (weak adhesive HLR category), and (iii)
that they generalise the underlying setting of graph diagrams and triple graph grammars.

Keywords: Multi-modelling; Inter-model consistency; Consistency verification; Consistency restoration; Model
synchronisation; Multi-directional transformations (MX); Model merging; Model weaving; Graph diagrams;
Triple graph grammars; Category theory; Adhesive categories

1. Introduction

Conceptual models, i.e. abstract specifications of the system under development, are recognised to be of major
importance in software engineering [WHR14]. Representing the whole system in a single (global) model is
generally unfeasible [CCP19], hence, different teams design and maintain several models (views) which focus
on different aspects of the system. This collection of inter-related models is often referred to as a multi-
model [BKMW09, SKLR18, DKL19]. A major issue of multi-models is comprehensive consistency management
[Ste20, FKWVH19, CCP19, SZ01], i.e. keeping the collection of models consistent w.r.t. each other under the
ongoing development process to avoid conflicting interpretations of what is being developed.

Correspondence to: Patrick Stünkel, e-mail: past@hvl.no

The Author(s) © 2021

http://crossmark.crossref.org/dialog/?doi=10.1007/s00165-021-00555-2&domain=pdf
http://orcid.org/0000-0002-0537-295X
http://orcid.org/0000-0001-6304-6311
http://orcid.org/0000-0001-9196-1779
http://orcid.org/0000-0002-4158-1644

1068 P. Stünkel et. al.

Fig. 1. Inconsistent class diagrams, inspired by [DKL19]

Model Synchronisation represents a means for (semi-)automatically restoring consistency in the event of vio-
lating model modifications, which is investigated by the cross-disciplinary research domain Bidirectional Trans-
formations (BX) [CFH+09]. BX has produced several important results and tools (see [ABW+19] for a recent
survey), however, the majority of these approaches are limited to a binary setting, i.e. keeping pairs of models
consistent. Stevens [Ste17] recognised this limitation in her outreach to the modelling community leading to an
increased momentum in this area [CKSZ19].

One way to address the multi-ary (n ≥ 2) setting is to consider it as a network of well-understood binary syn-
chronisation problems. However, not every multi-ary consistency rule can be factored into binary ones [DKL19];
e.g. the class diagrams A1, A2 and A3 in Fig. 1(a–c) are pairwise consistent but not altogether—since class inher-
itance is acyclic. Thus, “proper” multi-ary model synchronisation is needed.

According to [KM18] and [KMCD19], the primary approach for verifying the global consistency of structural
models ismerging [SNL+07]: Elements from all models are collected into a new global artefact wherein the inter-
related elements are identified. This construction is formally well-understood [BCE+06] and is underpinned by
the categorical concept of a colimit object [DXC11, KD17]. This idea was first proposed by Goguen in the 70s
[Gog73]. An example of a merge is shown in Fig. 1d (inter-relations given by sameness of class’ names). Indeed,
the merged model identifies the violation of inheritance acyclicity. The major drawback of this approach, apart
from the additional computational overhead, is that it forgets the origin of elements; e.g. that class Cwas member
of A1 and A2 but not A3. This is a problem when consistency rules depend on this membership information.

Model weaving [BBDF+06] is a another approach [FKWVH19, SDZKR18] to multi-ary synchronisation,
that avoids the aforementioned “information loss”. It treats inter-relations as an entity of its own right, which
are stored in a separate trace model, see Fig. 1e. The trace modelA0 for the situation in Fig. 1 contains three links
(idC , idD , idE) representing the class name identities and they are visualised using dashed lines. Hence, a trace
link represents a tuple of element references. Traversing the trace model and looking up element references in the
local models A1,A2,A3 allows to discover the inconsistency as well. But the implementation of the respective
“check”-function is more involved. Compared to the merge approach, weaving lacks an equally profound formal
foundation and as a result there is lack of interoperability between tools implementing this approach [DKPF09].
For example, due to incompatible trace model formats.

Still, theweavingapproachhighlights the important fact that inter-relationsbetweenmodels and their elements
are the most important ingredient in a multi-model. For the remainder of this paper, we call inter-relations on
the model level correspondences while inter-relations on the model element level are called commonalities. It is
important to note that a commonality may not always be an identity such as in Fig. 1. A commonality can also
express other types of relationships such as refinement, dependency, usage andmore, see [FKWVH19, TvdBS20].
Aligning models via an additional commonality structure has some tradition. For instance, it is the idea behind
Triple Graph Grammars (TGGs) [Sch94], a formal and mature BX approach with a focus on Model Driven
Engineering (MDE). The TGG approach considers models to have a graph-like structure, i.e. there is a common
underlying base modelling language; we will also stick to this idea of a common base language.

Our contribution in this paper is a novel construction called comprehensive system, which forms a formal
foundation for multi-modelling. The construction is based on a non-intrusive linguistic extension of the base
modelling language with commonality specifications. This allows us to work with an arbitrary number n ≥ 2 of
heterogeneously typed (local) models as one single (global) artefact. We show that comprehensive systems are a

Comprehensive systems: a formal foundation 1069

more expressive alternative to the (colimit-based)modelmerging approach and they are able to serve as the formal
underpinning for model weaving. Furthermore, we will prove that it is theoretically possible (i) to apply existing
means of consistency verification (diagrammatic predicates) on comprehensive systems, (ii) to apply the algebraic
graph transformation (GT) framework [EEPT06] on comprehensive systems, and (iii) that comprehensive systems
generalise the underlying categories of triple graphs and graph diagrams [TA15]—a multi-ary generalisation of
the former.

Considering Multi-Model Consistency Management as a three step process comprising the activities align-
ment, verification and restoration, comprehensive systems are located in the alignment phase. Verification and
restoration are enabled by showing that comprehensive systems admit all formal properties that are required to
apply mature model management frameworks for verification and restoration that already exist for local models.
The results in this paper are foremost of formal analytical nature. A practical evaluation is left for future work.

Changes compared to the conference version This article is an extended version of the paper Towards Multiple
Model Synchronization with Comprehensive Systems [SKLR20] published in the proceedings of the 2020 edition
of the Fundamental Aspects of Software Engineering conference. A major change to the conference version is
a completely rewritten “state of the art” (Section 3), which provides a more detailed overview of Multi-Model
Consistency Management and contemporary tool support. This allows to set the contribution of comprehensive
systems in a bigger context and to motivate their use case. Furthermore, the theory part is extended substantially:
We proved the fact that comprehensive systems are organized into a category that has the weak adhesive HLR
property w.r.t. a suitable class of reflective monomorphismsM (Corollary 1 in Section 4.4). This opens the door
for the application of the well-established GT-framework and represents a substantial extension compared to the
conference version.

Outline Section 2 introduces a Multi-Model Consistency Management scenario, which will be used as a
running example throughout the paper. Section 3 gives an overview of the state of the art ofMulti-Model Consis-
tency Management. Section 4 introduces comprehensive systems and their formal properties. Finally, Section 5
concludes the paper with references to related work and future work plans. Moreover, to make this paper self-
contained, there is an Appendix, which is divided into two parts. AppendixA contains background on category
theory that is required for the proofs in Section 4. AppendixB contains the detailed proofs of the theorems in
Section 4.

2. Use case

Our running example stems from the healthcare domain andmodels a patient referral process. A referral is “the act
of sending a patient to another physician for ongoingmanagement of a specific problemwith the expectation that
the patient will continue seeing the original physician for co-ordination of total care” [Seg92]. It is an important
and recurring process in the healthcare domain. Hence, ICT-support is desirable [WK19]. Furthermore, its design
is far from trivial as it involves multiple actors (software vendors, government officials, hospitals and physicians)
and aspects (data structures, behavior, interfaces, policies, etc.). A small excerpt of models involved in this design
is shown in Fig. 2 (ignore the dashed lines for the moment).

There is a processmodelA1 denoted in Business Process Model and Notation (BPMN) [Obj14], a datamodel
A2 denoted as a Unified Modelling Language (UML) class diagram [Obj15], and a decision model A3 denoted
in Decision Model and Notation (DMN) [Obj19]. The model in A1 represents a simplified version of the one
in [WK19] and specifies the behavioural aspect from the viewpoint of the referring physician: The process is
triggered by a patient’s appeal beginning with an introductory consultation. Afterwards, information about the
patient and its medical history is extracted while in parallel a consultant is selected via a business rule. The patient
information is then sent to the consultant. The consultant can either approve the referral or reject it. In the latter
case, another consultant has to be found. If a consultant accepts the referral, the process is finished.

This process model is related to the other models: The domain-specific behaviour of the “Select Consultant’’
activity inA1 is specified in the decision tablemodelA3, which for a given combination of values in input
side columns, assigns combinations of values in output side columns. The data objects (represented by
file symbols) inA1 are implemented by respective classes or attributes inA2. There are many more examples
of such relations in practice [FKWVH19, TvdBS20]: identity, usage, dependency, refinement, and so on. Hence,
there is a plethora of names for this concept. For example, traces [DKPF09], corrs [Sch94], morphisms [Ber03],
mappings, cross-reference links [dLGKH18].

1070 P. Stünkel et. al.

Fig. 2. Example models A1, A2 and A3 and their commonalities

As mentioned in the introduction, we use commonality [KG19] as the umbrella term for all kinds of structural
relationships between elements of disparate models. In Fig. 2, we depict commonalities using dashed lines.

During the development process, models A1,A2 and A3 will be modified by different parties, which can lead
to inconsistencies, e.g. changing the name of the “Select consultant” table in A3 without changing it in A1.
Consistency is often described by the absence of inconsistencies and an inconsistency, according to [SZ01], is
“a state in which two or more overlapping elements of different software models make assertions [...] which are
not jointly satisfiable”. Thus inconsistencies are manifold, ranging from the rather simple name inconsistency,
mentioned above, over structural inconsistencies (e.g. acyclic inheritance in Fig. 1) to more complex behavioural
and interaction inconsistencies, see [TvdBS20]. In the most abstract sense, we consider consistency as a system
state that is induced by the validity of so-called consistency rules [Egy07]. For our example, assume the following
consistency rules:

CR1 Every business rule activity in A1, must be defined by a decision table in A3 with the same name.
CR2 The input side columns (output side columns) of a table in A3 must correspond to data objects

that are consumed (produced) by a related (see CR1) business rule activity in A1.
CR3 Data objects in A1 must be implemented by a class or attribute in A2.
CR4 Every column in A3 must correspond to an attribute in A1 such that their types are compatible.
CR5 Data objects in A1, attributes in A2 and columns in A3 must be in ternary “to-one” correspondence.

3. State of the art

The problem of inconsistency among inter-related software models has been a major concern of the software
engineering community since the late eighties [SZ01]. A prominent study from these early times is theViewPoints
framework [FKN+92, FGH+93]: A complex system is described by a set of loosely coupled viewpoints, where
each viewpoint may use its own notation. Viewpoints pioneered the usage of logic to define consistency. Each
viewpoint has an internal consistency specification and the framework can check consistency both internally
to a viewpoint and externally between multiple viewpoints. When inconsistencies are discovered, theframework

Comprehensive systems: a formal foundation 1071

automatically tries to resolve them using so called meta-level axioms stated in temporal logic, which specify how
inconsistencies shall be addressed. A successor in this line of conception is Xlinkit [NEFE03, NEF03], a tool for
consistency management of XML documents. Consistency rules are defined by a combination of First-Order-
Logic (FOL) and XML Path expressions. When the tool discovers inconsistencies, it generates repair actions
based on the structure of formulas and the XML document.

With the advent of MDE, the issue of consistency among multiple models has become even more significant
[CCP19, Ste20]. This issue is featured in the following contemporary research domains, which mark the related
research areas of this work.

• Multi-View Modeling (MVM) [BBCW19, CCP19] can be seen as the continuation of the viewpoints idea
within MDE. The specification of a complex system requires a multitude of views, i.e. (partial) specifications
focusing on a certain aspect of the system (data types, behaviour, components). A prominent example of this
principle is UML: It comprises 14 different diagram types for modelling structural and behavioural aspects
of a system. The need for view-based specification has also been identified for domain specific modelling
languages [GBB12]. A major issue are overlaps between views, i.e. when they refer to the “same” concepts.
When a view is changed, it must ensure that all occurrences of overlaps are changed accordingly in other
views to not violate global consistency.

• The latter, known as the view-update problem, embodies the origin of the cross-disciplinary research area
BX [CFH+09, ASCG+18, ABW+19]. This area comprises researchers from databases, pure mathematics,
functional programming, graph transformation and (model-driven) software engineering. The solutions pro-
duced in BX are called synchronisers, i.e. propagation functions that translate updates from one data source to
another and vice versa. BX represents consistency as a correspondence relation [Ste08] between synchronised
data sources. The update propagation is considered correct when the propagation functions always return a
result that satisfies the correspondence relation.

• Megamodelling stands for a fundamental idea in MDE, where every artefact in the software development
process is a model [BJV04, Bé05, FN05]. Models are transformed (refined, translated, migrated) to eventually
yield a running system via model execution or code generation. The definition of a model transformation can
be seen as a model itself and its execution produces a trace-model. Thus, model transformations can again be
transformed by higher-order transformations. The fact that these artefacts depend on other models rises the
question of megamodel consistency [Ste20].

We group the research areas mentioned above under the term Multi-Model Consistency Management. To
avoid confusion by different terminology, we clarify the concepts ofMulti-Model ConsistencyManagement here.
Fig. 3 gives an overview of both the artefacts and activities in Multi-Model Consistency Management.

Multi-models are built from (local) models (abstract representations of certain parts of a system). Models
contain elements and are denoted in a graphical or textual modelling language. A collection of models denoted
in the same modelling language is called amodel space and is defined by ametamodel. A metamodel comprises a
definition of the language’s abstract concepts (compare the terms denoted in teletype font in Section 2) together
with their relationships and structural integrity rules. A multi-model (global) is a reification of a correspondence
relation among several models, called components of the multi-model. The definition of a correspondence relation
is based on consistency rules (e.g. CR1–CR5), which can be evaluated on a multi-model resulting in either true or
false. Validity of consistency rules is witnessed by commonalities, which establish structural relationships between
elements from disparate models (the dashed elements in Fig. 2). Thus, a multi-model is given by a collection
of models and commonalities among their elements. We can distinguish between consistency rules that only
refer to elements within the same model and those involving multiple models and commonalities. Following the
terminology from [UNKC08] the former are called intra-model consistency rules, also known as constraints. The
latter are called inter-model consistency rules.

The early literature [SZ01, FST96] identified the following list of activities of the Multi-Model Consistency
Management process:Detection of overlaps,Detection of inconsistencies,Diagnosis of inconsistencies,Handling of
inconsistencies, Tracking of inconsistencies, Specification and application of an inconsistency management policy.
This list still applies today but to simplify presentation, we will merge them into a three-stage process comprising
(I) Alignment, (II) Verification, and (III) Reconciliation. Providing an extensive overview of the state of the art
for each of these stages would go beyond the scope of this paper. Thus, we only give a brief description of each
stage and provide references to existing surveys for further details.

1072 P. Stünkel et. al.

Fig. 3.Multi-Model Consistency Management: Process and Artefacts

3.1. Alignment

Alignment involves the preparatory actions of detecting and representing commonalities. In addition, consis-
tency rules and policies [FKN+92] are defined. Policies are meta-rules, that specify how inconsistencies shall be
addressed. Spanoudakis and Zisman [SZ01] distinguish between preventive (not allowing certain actions in the
first place), remedial (immediate reaction on inconsistencies) or tolerating (doing nothing) policies.

This paper is about a novel formalism for representing multi-models to support consistency management.
Thus commonalities play a prominent role, which is why we provide a detailed treatment of their detection and
representation.

3.1.1. Commonality detection

The ISO 42010 standard [ISO11] considers the architecture description of a system to comprise multiple views
(i.e. models in our terminology). It further distinguishes between projective and synthetic approaches. In the
former case, every model is merely a projection of an underlying all-encompassing system model. The most
popular representative of this approach is UML [Obj15] itself: Every diagram displays a certain part of one
comprehensive underlying UML model. For example, the same method-instance may appear in a class diagram
and a sequence diagram. Thus, commonalities are already implicitly known and do not need to be discovered
any more. There can still be conflicts between views, e.g. when a method name is changed in one view and not
the other. The synthetic approach considers all models to be independent entities. Eventually, they have to be
composed [BCE+06] to yield the resulting system. There are also proposals for combining both projective and
synthetic approaches. Orthogonal software modelling [ASB10] is such a representative where one first has to
create a single underlying model (SUM) (synthetic) based on existing independent local models. The SUM is
then used to derive (projective) views from it, i.e. the composition of the synthetic approach is antedated. The
construction of a SUM [MWK+20] may be difficult and therefore some researchers proposed to only construct
it virtually [KKL+21].

Both synthetic and hybrid approaches require discovery of commonalities, which is also known as model
matching [KDRPP09]. Spanoudakis and Zisman [SZ01] identify four primary approaches for model matching.
The simplest (and arguably most naive) approach is to establish a commonality when there are two or more
elements in disparate modelssharing the same name.

Comprehensive systems: a formal foundation 1073

Table 1. Commonality representation approaches
Global Local

Intra-model Model merging Dynamic extension
Inter-model Model weaving Heterogenous transformation

Another variant is to rely on a shared ontology, which requires that all model elements have to be annotated
with a term from this ontology. In many cases, model matching via human inspection is required, i.e. users have
to manually define commonalities. Commonalities come in all different kinds and identifying them is far from
obvious. In [BEEH+19], the authors describe how a collaborative decision process can be used for this. Finally,
automated similarity analysis can be an option. However, being a special case of the weighted bipartite graph
matching problem, it is anNP-complete problem andmay therefore run into complexity issues [RC13,WWS+17].
For further surveys on (automatic) matching, we refer to [RB01, ES13, KDRPP09].

3.1.2. Commonality representation

Upon studying the literature related to the analysis of the structure of multi-models [KM18, CCP19, dLGKH18,
MJC17], we identified four primary approaches for representing commonalities. We call them Model Merging,
Model Weaving, Heterogeneous Transformations and Dynamic Extension.

Model Merging [SNL+07] means to collect all elements into an all-encompassing model, where elements
that are related by a commonality become identified. Projective view modelling approaches are always implicitly
based on model merging and Kienzle et.al. [KMCD19] claim that model merging is the default approach to align
structural models.

Model weaving is a different approach, which was originally introduced to trace the execution of model
transformations [BBDF+06]. It is closely related to model traceability [ARNRSG06]. Commonalities are stored
in a separate trace model, i.e. a collection of cross-reference-links. The trace model can be queried and modified
independently of the local models.

The Heterogeneous transformations approach does not represent commonalities explicitly. Instead they are
implicitly encoded in the definition of transformation functions, which are established between every pair of
models. This approach is common in BX, where these functions are called Put and Get [FGM+07]. Also, the
Queries Views Transformation (QVT) [Obj16a, Ste08] standard specifies commonalities in this way.

Dynamic extension was pioneered in [EHHS00] and is nowadays often implemented with more lightweight
dynamic modelling techniques such as facets [dLGKH18]. The idea is related to aspect-oriented programming.
Local models are enhanced with commonality meta-data when needed. For instance, we may add a boolean flag
to every business rule activity in Fig. 2 to check whether the activity has an associated decision table,
compare CR1.

These four approaches can be classified along a two-dimensional grid, shown inTab. 1with the twodimensions
global/local and intra-model/inter-model. Bothmerging andweaving store commonality information globally (as a
mergedmodel or a set of all cross-reference links). Heterogeneous transformations and dynamic extension do not
need to consider all models at once since commonality information is stored locally (usually pairwise). Merging
and dynamic extension represent the commonality information within models while weaving and heterogeneous
transformations represent it outside of the models.

3.2. Verification

Verification involves the activities centred aroundfinding and tracking (storing and reporting) inconsistencies. The
four approaches for finding inconsistencies, according to [SZ01], are logic-based (using a resolution procedure),
model-checking (enumerating all possible instances), specialized automated analysis or human-centred exploration
(inconsistencies are reported manually).

The first two approaches are generic: When models and consistency rules have an encoding as predicates and
formulas in a logic, one can use a resolution or model checking procedure that exist for the respective logic to
verify consistency. The limitation of both approaches is complexity (state explosion, non terminating resolution).
Thus, several means for specialized automated analysis have been developed. An example in the MDE domain is

1074 P. Stünkel et. al.

given by theObject Constraint Language (OCL) [WK99], which can be used to define and verify consistency rules
defined on UMLmodels. The work by Egyed and his collaborators [Egy07, RE12] comprises powerful and field-
tested tools that implement consistency verification and restoration in the context ofUML/OCL.Human-centred
exploration requires the most effort, however, it is the only way to discover inconsistencies for informally given
models and consistency rules. A comprehensive survey on consistency verification in the context of UML is given
in [KM18]. A more recent survey is [TvdBS20], which also includes other domains than software engineering,
e.g. electrical and mechanical engineering.

3.3. Reconciliation

When inconsistencies arise, theyhave tobe analysed andaddressed according to the predefinedpolicies. In general,
consistency violations trigger a semi-automatic consistency restoration procedure. The latter is also known as
update propagation, synchronisation ormodel repair. It is a vast research field and we can only sketch the primary
approaches and concepts here. Surveys on the field are given in [MJC17, ABW+19, SKRL21].

Approaches have been classified into constraint-, search- and propagation-based [OPN20, FKM+20,
WAF+19]. However, we want to use the classification from [SKRL21] and propose search-based and rule-based
as the two top level classifiers: Constraint-based can be seen as a special case of search-based model repair and
the term rule-based is used to include hand-crafted imperative approaches into the picture.

Search-based approaches are declarative. The repair problem is conceived as a search problem, where the
state space is given by the model space, state transitions are given by possible model modifications, and goal
states are those models that satisfy all user-defined consistency rules. A naive atomic search implementation treats
models as black boxes. Due to the sheer size of the state space, atomic search has to combined with additional
techniques such as heuristics [SMBB10] or machine learning [BMdlC+20] to cope with complexity. Thus, a
prevalent implementation strategy is to translate the problem into a logical representation such that efficient
off-the-shelf solvers can be used to perform the search. Examples are given by Echo [MC16] or JTL [EMM+12].
This type of search-based repair is well-aligned with verification using resolution or model-checking as it requires
a logical representation of models and consistency rules as well.

Rule-based approaches require more concrete user guidance on how to react to inconsistencies. We distin-
guish further between imperative or grammar-based approaches. In the former case, the developer has to write a
procedure, which will be executed in the event of a consistency violation [SDZKR18]. Imperative approaches give
no further guarantee about correctness. Grammar-based approaches represent a more declarative a approach
to rule-based repair. The grammar defines repair rules on a higher level of abstraction, which are then opera-
tionalised to produce concrete repairs. An example is the Model/Analyzer tool by Egyed et. al. [RE12], which
derives possible repairs from the structural rules defined by the UML metamodel. Another prominent formal
representative is given by the (algebraic) graph transformations framework [EEPT06]. The latter represents rules
by means of graph-homomorphisms and rule application is defined via a Double Pushout (DPO) construction
[EPS73]. Consistency rules are defined by means of a graph grammar [Roz97]. This framework offers means
for the analysis of internal properties (concurrency, confluence, termination) [EEPT06] and correctness properties
(compliance between rules and static conditions) [HP09].Model repair approaches, which utilize this framework,
exist both for local models [KR17, OPKK18, SLO19] and multiple models [HEO+11, WAF+19, FKM+20]. The
latter is represented under the umbrella of TGGs.

Orthogonally, model repair approachesmust take into account cross-cutting concerns such as user interaction,
incrementality, concurrency and optimality. The fact that repair results are not always unique necessitates user
interaction. For example, by letting the user choose a preferred solution among several possible solutions. The
Model/Analyzer tool [RE12] relies heavily on user interaction. Incrementality was highlighted by Giese [GW09]:
Complexity of model repairs should not depend on the size of the models but on the size of the modification, i.e.
avoiding to re-compute the whole correspondence relation from scratch. Support for concurrent model synchro-
nisation (repairing inconsistencies in the aftermath of parallel and independent model modifications) has been
rather limited until lately [OBE+13]. But recently there has been some interesting new results in this direction
related to rule-based approaches [OPN20, FKM+20, WFA20]. Finally, if there a multiple correct solutions for a
repair, there arises the questions of what should be considered the “best” solution. Both quantitative (i.e. metrics)
[MC16] and qualitative [CGMS15] measures have been proposed. However, it may be noted that some changes
can only be ameliorated instead of rectified completely [SZ01]. In fact, toleration of inconsistencies may be an
adequate reaction [NER01] as well.

Comprehensive systems: a formal foundation 1075

3.4. Existing tools

In accordance with the phases previously described, there is a large number of existing tools. Hence, it is not
possible to cover a broad selection here. We pick a small selection of contemporary tools to illustrate existing
issues in Multi-Model Consistency Management that we want to address by comprehensive systems.

3.4.1. Epsilon (matching, merging, verification)

Model-driven design and development is supported by model management tools providing facilities for common
tasks suchasquerying andmodifying amodel’s contents, verifying the consistencyof amodel,merging twomodels
or translating a model into a different representation. Epsilon1 [PKR+09] is a well-established representative of
such a model management tool. It is organized as a set of Domain Specific Languages (DSLs), one for each
model management task, and, among others, DSLs for matching (ECL), merging (EML) and verifying models
(EVL) [KPP06].

Listing 1: Model Matching and Merging with Epsilon DSL
1 /∗ match r u l e s ∗ /
2 rule MatchDecisionTableDef match l:A1!Activity with r:A3!DecisionTable
3 { guard : l.type = ActivityType:BUSINESS_RULE
4 compare : l.name = r.name }

5 rule MatchDataObjectCorrespondence match l:A1!DataObject with r:A3!Column
6 { guard: l.consumers.matches (). inputSideColumns.includes(r) or
7 l.producers.matches (). outputSideColumns.includes(r)
8 compare: l.name.isAlike(r.name) }
9 /∗ merge r u l e s ∗ /

10 rule MergeDecisionTableDef

11 merge l:A1!Activity with r:A3!DecisionTable into t : A+!DecisionTableDef
12 { t.name = l.name;
13 t.isMatched = true; }
14 rule MergeDataObjectCorrespondence

15 merge l : A1!DataObject with r : A3!Column into t : A+!DataObjectCorrespondence
16 { t.name = l.name; }
17 rule CopyBusinessRuleActivity

18 transform s : A1!BusinessRuleActivity to t : A+!DecisionTableDef
19 { guard : s.type = ActivityType:BUSINESS_RULE
20 t.name = s.name;
21 t.isMatched = false; }
22 /∗ c o n s i s t e n c y r u l e s ∗ /
23 context DecisionTableDef {
24 { constraint CR1 { check : self.isMatched

25 fix { var table : new A3!DecisionTable
26 table.name = self.name; } }
27 constraint CR2 { check : self.produces = self.outputSideColumns and
28 self.consumes = self.inputSideColumns } }

Listing 1 shows the Epsilon code needed to implement consistency verification for CR1 and CR2. In the
first step, elements from disparate models have to be matched (lines 2–8). Epsilon performs automatic pairwise
model matching, which is controlled by user-defined rules. A rule defines the model element types that should
be matched with each other (keywords match and with), when a commonality should be established (compare),
and optionally a filter-criterion (guard). The matching engine compares all pairs of model elements with the
respective types and creates commonalities when guard and match criterion are fulfilled. In Epsilon vernacular,
commonalities are calledmatch traces. They are processed further to create a mergedmodelA+, compare Fig. 1d.
This step is controlled via respective merge-rules (lines 10–16) and copy-rules (lines 17–21). Merge rules are
invoked for all match traces with the respective types and produce an element in the merged model. Afterwards
copy rules are invoked, which copy unmatched elements into the merged model. It is important to note that
our example in Section 2 is heterogeneous, i.e. the models are denoted in different modelling languages. In order
to create a merge in this case, we have to create a single underlying metamodel (SUMM) beforehand, which
encompasses concepts from BPMN, DMN and UML (i.e. another instance of model matching and merging on
the metamodel level). For more details about this issue, we refer to [DXC11].

1 https://www.eclipse.org/epsilon/

https://www.eclipse.org/epsilon/

1076 P. Stünkel et. al.

Fig. 4. Practical Challenges

When the merged model is created, we can check whether it fulfils the global consistency rules (lines 23–28),
which are formulated in an OCL-like language called Epsilon Verification Language (EVL). These rules can be
augmented with a fix statement (lines 25–26). The latter defines an imperative program to restore consistency,
e.g. creating the missing decision table.

Concerning the Epsilon solution in relation to our presentation of Multi-Model Consistency Management:
Matching is performed via automaticmodel comparison,which is controlled by user-defined rules, commonalities
are reified in a merged model, consistency verification is implemented via specialized verification means (EVL)
and repair is performed in an imperative rule-based manner.

In Section 1, we mentioned that merging is a forgetful operation: The origin of elements and the information
whether an element was merged with another is lost after the merge. Thus, in order to verify CR1, we had to
augment the merge-rule (line 13) and the copy-rule (line 21) with this meta-information to be available in the
resulting merged model, where consistency verification is performed.

While information loss can be overcome in the aforementioned way, Epsilon suffers from a major limitation:
In its present version it only supports pairwise matching. Therefore, while CR1–CR4 are implementable, CR5
cannot be realised with this tool since it requires a ternary relation. It is not enough to only look at the pairs
(A1,A2), (A2,A3) and (A1,A3). Consider the situation in Fig. 4a: Each model pairing is apparently consistent
since there are binary one-to-one correspondences but taken altogether the ternary “to-one” correspondence is
violated. We conclude with two requirements for a formal multi-modelling foundation.

Requirement 1 Comprehensive Systems must not forget the origin of elements from the original models.

Requirement 2 Comprehensive Systems must be able to handle arbitrary n-ary correspondences.

3.4.2. Generic and domain-specific trace models

Instead of turning the match traces into a merged model, we can turn them into a trace model. As pointed out in
[DKPF09], commonalities represent an entity of its own right. Augmenting a set of models with a trace-model
is known as model weaving [BBDF+06]. In its most generic form, a trace model is a (hyper-) graph. Elements
are either trace links (edges) or trace link ends (nodes). The latter serve as proxies [GHJV95] of elements
in another model. Working with such generic trace models is cumbersome and the definition of consistency
rules over such trace models becomes rather involved. In practice, one distinguishes between different types of
commonalities that are established only among elements having a specific type. For example, columns in A3 can
only be related to data objects in A1 and attributes in A2.

Thedefault approach to capture this notion is thedefinitionof adomain-specific tracemetamodel [FKWVH19,
SDZKR18], which contains domain-specific refinements of trace links and trace link ends. An overview
of generic and domain specific trace-models, their metamodels and instantiation relationships is shown in Fig. 4b.

Comprehensive systems: a formal foundation 1077

Fig. 5. TGG production rules

Metamodels are depicted as packages and models as files at the bottom. Notice the double nature of the generic
trace-metamodel: It can either be instantiated directly by a generic trace-model (1) or serve as the metamodel
for a domain-specific trace-metamodel, which is instantiated by a domain-specific trace model (2). The domain
specific trace metamodel is a suitable carrier for the definition of consistency rules. One may use Epsilon or other
model management tools to implement verification and repair [SDZKR18].

Note, that the existence of a separate trace model induces a new challenge: Because trace link ends are
proxies of elements in other models, we have created a situation that requires n-binary synchronisations, i.e.
when an element in a local model changes also its proxy in the trace model must change. Compared to the
solution in 3.4.1, the only major difference is the way of representing commonalities. The solution of using
domain-specific trace models is very common in practice, see [FKWVH19, SDZKR18]. However, Drivalos et.al.
[DKPF09] reported that there is missing interoperability between solutions using trace-models due to the fact
that many implementations are created in an ad-hoc manner.

Requirement 3 Comprehensive Systems shall provide a formal foundation for domain-specific trace-models in
model weaving.

3.4.3. Triple graph grammars

Finally, we investigate a formal approach that is based on an auxiliary commonality structure. TGGs [Sch94] are
means for defining consistency rules between two structures (e.g. models) represented as graphs in a declarative
manner. A TGG is graph grammar [Roz97], which trades “ordinary” directed graphs for triple graphs. The latter
is formally given by a pair of graphs2 (S ,T) connected by a “correspondence graph” C that relates S and T
via graph homomorphisms, resulting in a span S ← C → T . A single TGG � (tg0,R) comprises a start
triple graph tg0, e.g. one that is empty in all components, and a set of production rules R. In the default case,
production rules are monotonic production rules, which are formally given by inclusion-morphisms r :� L ↪→ R
(L and R being triple graphs), that specify how the two structures evolve simultaneously. Intuitively, monotonic
rules add elements to an existing context. In Fig. 5, we depict three exemplary production rules in an integrated
presentation: Elements in R \ L are added to an existing context. These are highlighted in Fig. 5 by a shaded
background and a ++-annotation. The remaining elements are members of L. The TGG induces a language:
The set of all triple graphs producible by applying a sequence of production rules on the start triple graph. This
language is a subset of all possible triple graphs and hence defines a consistency relation on the collection of all
triple graphs or equivalently a relation between S and T if the middle part C is ignored. The language generated
by the three rules in Fig. 5 (with an empty start triple graph) models the semantics of CR1 and CR2.

TGGs are a declarative approach. The grammar rules are used to automatically derive programs for (incre-
mental) model transformation [EEE+07, GW09], model matching [EEH08], consistency verification [LAS17]
and update synchronisation [HEO+11, HEEO12]. This is done via a so-called “operationalisation” of the gram-
mar rules [HEO+11]. Recently, the limited support [OBE+13] for concurrent model synchronisation has been
addressed from several researchers. Orejas et.al. [OPN20] investigate a theoretical approach to cope with conflict-
ing updates via parsing, Fritsche et.al. [FKM+20] address this issue from a practical side using precedence graphs,
andWeidmann et.al. [WFA20] combine the rule-based nature of TGGswith a search-based approach. There exist

2 Often named source and target due to historic reasons.

1078 P. Stünkel et. al.

industrial-proven state-of-the-art tool implementations forTGGs, e.g. eMoflon3 [WAF+19] andMoTE4 [GHL10].
Finally, practitioners have used TGGs as a graphical language for the definition of consistency rules, which were
used to generate an implementation in the Epsilon framework [FKWVH19, GdLKP10].

Classifying TGGs within Multi-Model Consistency Management, they come with automatic model match-
ing, specialized verification and a rule-based repair mechanism, which are based on a declarative grammar
specification. The commonality representation lies somewhere between model weaving and heterogeneous trans-
formations: There is no explicit trace-model but commonalities appear implicitly as correspondence graphs in
rule definitions.

As a conclusion, TGGs combine an intuitive visual language with a powerful theoretical framework and
tool support. However, triple graphs are by definition limited to binary situations and thus fail to capture the
semantics of CR5. A generalisation of triple graphs for multi-ary situations has been introduced in the form of
graph diagrams [TA15, TA16]. Graph diagrams allow the definition of multi-ary relations but require that the
arity of all relations is known beforehand because their underlying schema is fixed. We doubt that the set of all
necessary relations in a concrete use case can be known beforehand. Thus, we want to to develop a formalism
that can deal with these inter-relations more flexibly. In particular, we want to support the introduction of new
relations at runtime.

Requirement 4 Comprehensive Systems must support the flexible expression of multi-ary correspondence rela-
tions and also support relations that may change their arity over time.

4. Comprehensive systems

In this section, we define comprehensive systems. We begin with reviewing a formalisation of (local) models
and constraints imposed on them in Section 4.1. Afterwards, we develop the idea behind comprehensive systems
intuitively along our running example in Section 4.2 before providing the formal definition of comprehensive
systems using algebra and category theory in Section 4.3. In Section 4.4, we explore the theoretical properties of
comprehensive systems. Moreover, we show that they generalise graph diagrams and triple graphs in Section 4.5.
We conclude with a short discussion about the application of comprehensive systems in practice (Section 4.6),
their current limitations and how they satisfy the requirements from Section 3.4.

4.1. Software model formalisation

In our example use case (Section 2), we employ three modelling languages: BPMN, UML and DMN. Each
language is defined by a metamodel (syntactical representation of a class of models). These metamodels are
themselves defined using the meta-metamodelling language Meta Object Facility (MOF) [Obj16b]. MOF is
essentially a subset of the UML class diagram language comprising classes, attributes and references.
A simplified version of the BPMN metamodel, termed M 1, is depicted in Fig. 6a (clouds allude to concrete
syntax). MetamodelsM 2 andM 3 for UML class diagram and DMN decision tables can be defined accordingly
(excerpts of them are shown in Fig. 8). Ametamodel defines the concepts of the language together with structural
relations between concepts (signature) and structural integrity rules (formulas) over them. Structural integrity
rules, e.g. multiplicities (1..0, 1..1), are used to enforce common domain-specific requirements. Often, the built-
in mechanisms are not enough to encode all domain-specific requirements. Therefore, constraint languages such
as EVL [KPP08] or OCL [WK99] exist, which allow the designer to attach arbitrary user-defined constraints onto
metamodels. Fig. 6a features an attached constraint φ :�control flow, which is expressed as an OCL invariant
defined in Listing 2.

Listing 2: Constraint φ:=control flow formulated in OCL
context Event inv control_flow:

(self.type=EventType :: START implies
self.incoming ->count() = 0)

and (self.type=EventType ::END implies
self.outgoing ->count() = 0)

3 https://emoflon.org/
4 https://www.hpi.uni-potsdam.de/giese/public/mdelab/

https://emoflon.org/
https://www.hpi.uni-potsdam.de/giese/public/mdelab/

Comprehensive systems: a formal foundation 1079

Fig. 6.Metamodel Example and Base Language Signature

This constraint requires that every start eventmust not have any incoming sequence flow [Obj14, p. 237],
whereas end events must not have any outgoing sequence flow [Obj14, p. 245].

MOFand its derivations, such asEcore [SBMP08], arewidespread.However, we do not endorse one particular
modelling language and instead seek for a technology independent (= mathematical) formulation of models,
metamodels and constraints.

E-graphs [EEPT06] (see Fig. 6b) are one suitable formal interpretation of theMOF/class-diagram syntax and
thus an appropriate base modelling language B (linguistic (meta-) metamodel in [Kü06]) to encode the abstract
syntax graph defined by ametamodel. The E-graph language comprises the concepts GraphNodesGN (complex
types), Data Nodes DN (primitive types), as well as Graph Edges GE (associations) and Node Attribute Edges
NAE (attributes) together with appropriate owner and target functions. For the sake of simplicity we omitted
edge attribute edges, which are usually included in E-graphs.

It must be mentioned, that our formalism is not “tied” to E-graphs: The formal definitions in Section 4.3
are based on arbitrary graph-like structures (see Definition 1 in Section 4.3), where E-graphs are one concrete
example. Hence in the following, we use the term graph to refer to any kind of graph-like structures. To require
that the content of a (meta-) model must have a graph-like structure is not a major limitation since the majority
of graphical and textual modelling languages admit such a representation.

Metamodels are instantiated by models, which are object graphs typed over the abstract syntax graph defined
by the metamodel. Thus, ignoring their concrete syntax, the three models A1,A2 and A3 in Fig. 2 each form an
object graph w.r.t. M 1, M 2, and M 3. The instantiation relationship between a model A (object graph) and its
metamodel (class diagram) is formally represented by a graph homomorphism t : A→ M . Let for example a be
the element named “Diagnosis” in A1 then t(a) � DataObject ∈ M 1. Given a fixed metamodel M , we call the
collection of all typing morphism Mod(M) :� {t | t : A→ M } the model space defined byM .

Graphs and graph homomorphisms alone are not enough since metamodels also comprise built-in (e.g.
1..1, 0..1) and attached (e.g. control flow) constraints. Generalised sketches [DW07, Dis97] and theDiagram
Predicate Framework [RRLW12, RRLW09] (anMDE oriented adaptation of the former) provide an elegant, yet
flexible formalism to express different kinds of constraints in a uniform way and generalise the four approaches
presented in Section 3.2. The idea is to express constraints as diagrams (in the category theoretical sense) that
are bound to graph elements. Constraint semantics are kept abstract, i.e. delegated to an arbitrary predicate
library. This allows designers to implement constraint semantics using the formalism or tool of their choice:
EVL/OCL [KPP08, WK99], (nested) graph conditions [HP09], First-Order Logic (FOL) [NEFE03], or arbitrary
programming languages.

1080 P. Stünkel et. al.

Fig. 7. Diagrammatic Constraints in a Nutshell

The idea behind diagrammatic constraints is sketched in Fig. 7. A constraint φ (similar to a formula in FOL)
is formally given by a pair (p, b), which consists of a binding morphism5 b and a predicate p.

Predicates p are organised in an abstract but fixed predicate signature�. It can be thought of as a library,which
may contain the UML/MOF-constraints [RRLW09], functions on some base data types as in OCL [WK99],
and logical connectives [Wol21]. Each predicate has a fixed arity graph ar (p) and a semantic interpretation
�p� ⊆ Mod(ar (p)), i.e. a chosen subset of graphs typed over the arity graph closed under renaming. Semantics
are commonly defined given a boolean function checkp : Mod(ar (p))→ {true, false} which is equivalent to a
subset: Given amodel i ∈Mod(ar (p)) the check function applied on i returns true if and only if i belongs to the
semantics (checkp(i) � true⇔ i ∈ �p�). We then say that i satisfies p, written i |� p. As an a example, consider
the predicate target[1..1], which represents the UML multiplicity exactly one at the target side of an edge.
The arity of this predicate is a graph containing a single edge: ar (target[1..1]) :� Edge with GNEdge � {s, t},
GEEdge � {e},NAEEdge � DNEdge � ∅, ownerEdge(e) � s , and targetEdge(e) � t , recall Fig. 6b. Thus the function
checktarget[1..1] expects a typed graph i : I → Edge as input and verifies whether there is exactly one outgoing
edge for every node typed over s in I . A FOL-theoretic formulation of target[1..1]’s semantics may be given
as follows:

checktarget[1..1](i) � true⇔ (∀n ∈ GNI : i (n) � s ⇒ ∃ e ∈ GEI : owner I (e) � n (1)

∧ ∀n ∈ GNI , e, e ′ ∈ GEI : owner I (e) � n � owner I (e ′)⇒ e � e ′) (2)

The metamodel in Fig. 6a comprises several unnamed constraints, e.g. the edges src and trg both have the
predicate target[1..1] attached to them. The named constraint φ :�control flow exemplifies the binding of
a more complicated predicate. Its semantics are defined by the OCL-code in Listing 2 and the arity (scope) is the
subgraph ofM 1 highlighted in Fig. 6a.

To check whether an M -model satisfies a constraint φ � (p, b), one first has to “pull” the respective typing
homomorphism t : A → M “back” along the binding homomorphism b (i.e. querying the scope) and then
verify membership of the result w.r.t the semantics of p (i.e. invoking the check-function). When the binding
homomorphism is injective, this “pulling-back” or querying operation simply means forgetting all parts of A,
which t maps to an element outside of the scope of φ. The result of querying a typed graph t : A→ M along the
binding homomorphism b of a diagrammatic constraint φ � (p, b) is denoted by t∗b : A∗

b → ar (p) and we say
that t satisfies φ if and only if t∗b satisfies p:

t |� φ ⇔ t∗b |� p (3)

5 Considering binding as a homomorphism generalises binding of predicates in atomic formulas in FOL. E.g. think of a predicate lessEq
stating whether one number is less or equal than another. It can be used as a diagrammatic constraint where the arity graph is discrete, i.e. a
graph containing two nodes {1, 2}. Now writing lessEq(a, b) is interpreted as a graph homomorphism that binds 1 to a and 2 to b.

Comprehensive systems: a formal foundation 1081

If a set � of diagrammatic constraints (a set of formulas given in a specific logic) is imposed on M , then the
space is reduced to the subset Mod(M�) ⊆ Mod(M) of all consistent models typed over M subject to � (those
satisfying all constraints).

The fact that instances are interpreted as typed graphs induces a default multiplicity for edges: If there is no
additional multiplicity bound on the respective edge, this edge implicitly has the 0..* at both ends. This actually
differs from the default multiplicity in UML [Obj15], which is 1..1 at the target side (0..1 at the source). Thus,
for every metamodel in this paper it holds that, if there is no explicitly specified multiplicity, there is an implicit
0..* multiplicity at both ends.

To summarise the essence of generalised sketches/diagrammatic predicates: Software models and metamod-
els have a graph-like structure, models are typed graph-like structures, and the definition and verification of
constraints requires the existence of chosen subsets and a “pulling-back” (query) operation.

4.2. Intuition behind comprehensive systems

To align multiple models with each other in a multi-model, one needs a language to express commonalities
between these models. As discussed in Section 3, the majority of contemporary mapping languages are bound to
binary situations. A notably exception, which allows multi-ary correspondences is the commonalities language
by Klare and Gleitze [KG19].

Listing 3: Type Commonalities
1 commonality DataObjectClassImplementation { with BPMN:DataObject with UML:Class }
2 commonality BaseType { with UML:DataType with DMN:Type }
3 commonality DataObjectCorrespondence { with BPMN:DataObject with UML:Attribute with DMN:Column
4 has type referencing BaseType { = UML:Attribute.dataType = DMN.Column.type }
5 }
6 commonality DecisionTableDef { with BPMN:Activity whereat BPMN:Activity.type=BUSINESS_RULE
7 with DMN:DecisionTable
8 has name { = BPMN:Activity.name = DMN:DecisionTable.name }
9 has input referencing DataObjectCorrespondence {

10 = BPMN:Activity:consumes = DMN:Table: inputSideColumns }
11 has output referencing DataObjectCorrespondence {
12 = BPMN:Activity:produces = DMN:Table: outputSideColumns }
13 }

Listing 3 demonstrates how the commonalities from our running example in Fig. 2 are expressed in this
language. The keyword commonality initiates the definition of commonalities between instances of respective
elements, which stem fromdisparatemetamodels (referenced via the with keyword). Additionally, commonalities
may be linked with each other (keywords has and referencing). In [KG19], commonalities are used to define
expressions on them, which encode consistency rules. These expressions are translated into a so-called Reactions
language, which provides event-based model modification facilities to perform consistency restoration. Their
approach is part of the Vitruvius framework [KKL+21].

We do not want to go further into concrete details of this practical approach, but instead analyse the formal
semantics of the code in Listing 3. Commonalities together with their attributes and references, again, form a
graph. Consequently, it is reasonable to use the same graph-like language B for it. In such a way, the content of
Listing 3 induces an E-graph, shown in Fig. 8. The elements of this graph are depicted using dashed lines and
we call them commonality witnesses. Commonality witnesses reify a “tupling” of terms from disparate (meta-)
models. They are defined via the with keyword in Listing 3, visualised as dashed arrows (p1, p2, p3) in Fig. 8.
These arrows are called projections and represent the fundamental innovation compared to the situation of only
local models from Section 4.1. For example, lines 3–5 specify a commonality of the triple DataObject (M 1),
Attribute (M 2), and Column (M 3) reified under the name DataObjectCorrespondence in M 0. However, not
only the nodes (of the graphs) are related: In Listing 3, we see how the keyword has defines how inherent features,
i.e. edges, are related as well, e.g. line 4 specifies a commonality between the type attributes inM 2 and inM 3. The
same goes for the consumes/inputSideColumns, produces/outputSideColumns and name features of Activity
(M 1) and DecisionTable (M 3). Common edges require that their respective source and target nodes are also
related, e.g. the type-commonality depends on a commonality between Attribute and Column, which is already
given by the surrounding commonality-statement, as well as commonality between Type and DataType (see line
2). Hence, commonality specifications must preserve edge-node-incidences.

1082 P. Stünkel et. al.

Fig. 8. Commonality representative metamodelM 0

Projections represent an extension of our base language. The whole setting can be interpreted as a linguistic
extension in the sense of [dLG10, AK02]: The linguistic metamodel, which is induced by the base language B (e.g.
nodes and edges) is extended by the new projection concept.

The formal result of the specification in Listing 3 are 3 projection mappings pj : M 0 ⇀ M j (j ∈ {1, 2, 3}),
depicted by dotted arrows in Fig. 8. For example, p1(DecisionTableDef) � Activity ∈ M 1, the target meta-
model now encoded in p’s index.

Since the commonality tuples can be of arbitrary arity, thesemappingsmay be partial (highlighted by denoting
them as arrows headed with a half-tick: ⇀):

p1(BaseType) �⊥, p2(BaseType) � DataType, p3(BaseType) � Type
The above required edge-node-incidence means that defined-ness of pj (e) entails defined-ness of pj (v), where v
is the owner of e in M j , and

pj (v) � ownerM
j

(pj (e)) (4)
for all edges e in M 0 (and likewise for targets).

Hence, Listing 3 defines a comprehensive metamodelM in which commonalities are accurately specified with
the help of (a graph of) commonality representatives. Formally, we obtain a new graphM 0 and partial projections
pj : M 0 ⇀ M j for all j ∈ {1, . . . , 3}.

Now, turning to models A1 ∈ Mod(M 1), . . . ,A3 ∈ Mod(M 3), i.e. typed graph structures t1 : A1 →
M 1, . . . , t3 : A3 → M 3, it becomes apparent that we can establish a corresponding construction relating ele-
ments in the domains of these typing homomorphisms. They may be defined manually as in Listing 3 or using
(semi-)automatic matching procedures, see Section 3.4.1, based on keys, metrics or ontological equivalence. Inde-
pendently of how they are established, their formal representation is again a graph of commonality representatives
A0 and partial projections pA

j : A0 ⇀ Aj for all j ∈ {1, . . . , 3}. This alignment of models is implicitly shown
in Fig. 2. Each dashed circle (1a,1b,1c,1d,2,3) represents a commonality representative and each line ends at the
value under the respective projection. Some of the lines are binary, while others are ternary. The complete content
of Fig. 2 is called a comprehensive system where the dashed part represents the commonalities and the models
A1, . . . ,A3 are the components.

Models Ai are typed over their metamodels, i.e. there are typing morphisms ti : Ai → M i which can be
combined to one comprehensive typing of all components. This typing extends toA0 as well because elements aj
and ak (j �� k) of model components Aj and Ak are relatable only if their types tj (aj) and tk (ak) are related via
a representative w ∈ M 0. Thus, the specification in Listing 3 defines the possible types of commonalities. This is
the formal equivalent to domain-specific trace models, compare Section 3.4.2.

Comprehensive systems: a formal foundation 1083

Fig. 9. Compatibility of typing

A natural typing t0 of a commonality representative v of aj and ak is t0(v) :� w , such that

pj (t0(v)) � pj (w) � tj (aj) � tj (pA
j (v)), (5)

which shows that the typing extension t0 integrates smoothly (respecting commonalities) into a typing of all
parts of the comprehensive model, such that we end up with a single typed comprehensive system: t : A → M .
Conditions (4) (compatibility of projections with owner/target) and (5) (compatibility of typing and projections)
are visualized in Fig. 9, which shows an excerpt of the complete typed comprehensive system.

4.3. Formal definition of Comprehensive Systems

In this section, we want to develop a precise formal definition of the structures described so far. For this, we resort
to the mathematical language of category theory. This has several reasons. First of all, category theory allows for
very concise definitions due to its abstract nature. Secondly, category theory offers a built-in mechanism called
functor, which allows to compare two seemingly different formal structures. Finally, triple graphs and graph
diagrams, which represent the most directly related formal approach, are formulated in terms of category theory
as well. Thus, we can refer to them more easily using the same “language”.

This and the following Section 4.4 rely on the categorical conceptsCategory,Functor,Natural Transformation,
Universal Construction (Pushouts and Pullbacks), andPartial ArrowClassifier. Tomake this paper self-contained,
AppendixA contains a short overview over each of them. For a more detailed presentation, we refer to the
introductory textbooks [BW90, Pie91, Wal92].

Intuitively speaking, a category (Definition 8; AppendixA) can be seen as a generalised pre-order or alterna-
tively as a directed graph equipped with a (path) monoid. A category C comprises objects and morphisms a.k.a.
arrows. We write |C| to denote the class of objects in C and ArrC for the class of all morphisms in C. If the class
of objects is a set, the respective category C is called small. By convention, objects are denoted in capital letters
(A,B , . . .) and morphisms in small letters (f , g, . . .). A morphism f is an abstract means to compare two objects
A,B ∈ |C|, which are called domain (dom(f) � A) and codomain (codom(f) � B) of f . One may think of it as an
edge where domain and codomain represent source and target. Hence we will often denote them in an integrated
arrow-notation f : A → B . A hom-set C(A,B) is a subclass of ArrC and contains all morphisms that have A
as domain and B as codomain. In addition to that, there is a unique identity morphism idA : A → A for each
object A and morphisms f : A → B , g : B → C with incident domain/codomain (B) can be composed to yield
a morphism g ◦ f : A→ C (spoken “g after f ”). Composition is associative and neutral w.r.t. identities.

The most important example of a category is the category of sets and mappings SET. In this category, objects
are given by sets and morphisms are given by mappings between sets, i.e. total functions.

1084 P. Stünkel et. al.

Functors (Definition 10; AppendixA.1) are means to compare different categories. They comprise two map-
pings:One for objects andone formorphisms.Also theymust assure that identities and composition are preserved.
A functorG : B→ SET from a small category B into the category of sets and mappings SET is called a presheaf.
Furthermore, there is a functor category SET

B (Fact 2; AppendixA.1), which has such functors as objects and
morphisms are given by natural transformations (Definition 11; AppendixA.1) between them (think homomor-
phisms). Presheaves have some interesting properties: From a theoretical point of view they behave similar to
objects in SET [Gol06]. From a more practical point of view they are sufficiently concrete such that one can
talk about elements: Saying x ∈ G means that there is some object s ∈ |B| such that x ∈ G(s). They have been
called graph structures in [Lö93] and are closely related to algebras. A small category B can be interpreted as a
signature with unary operation symbols only. A presheaf G “interprets” every (sort) object s ∈ |B| as a set G(s)
and every (unary operation) morphism6 op : s → s ′ ∈ ArrB as a mapping G(op) : G(s) → G(s ′). This is also
called functorial or indexed semantics and SET

B corresponds to the class of algebras for a signature with unary
operations only B (think instance worlds of a metamodel). This also allows to consider substructures F ⊆ G ,
given by sort-wise subset relations. Categorically, this is represented by an inclusion morphism F ↪→ G , which is
a special monomorphism (Definition 16; AppendixA.2.2).

Finally, interpreting the diagram in Fig. 6b as the category B and setting G :� M 1 (from Fig. 6a), G has
the following components: G(GN) � {Pool, FlowNode, SequenceFlow, . . .}, G(GE) � {pool, src, trg, . . .},
G(NAE) � {name, type, . . .}, G(DN) � {String, ActivityType, . . .}, together with the respective owner and
target mappings.

Definition 1 (Base Language B and graph-like structures G). Let B be a small category called base (modelling)
language. The base language gives rise to a category of graph-like structures G :� SET

B (presheaves).

We will now introduce two formal definitions to express our linguistic extension. The first definition is closer
to practical implementations, while the second is closer to existing categorical frameworks. Both, formulations
will turn out to be equivalent.

4.3.1. Set-based definition

Let us fix a sufficiently large natural number n, the degree of the multi-model, and considering a synchronisation
scenario with model spaces (Mod(M j

�))j∈{1,...,n}, e.g. BPMN, UML, DMN and so on. As a consequence, we will
be regularly working with indices. By convention we will use i and j as index variables, where i runs between
0 ≤ i ≤ n and j runs between 1 ≤ j ≤ n, if not specified otherwise.

The build-up of a comprehensive system is similar to a graph-like structure (Definition 1) and encompasses
local models (components) together with their commonalities (witnesses + projections):

Definition 2 (Comprehensive Systems, Components, Commonalities). A comprehensive system C consists of

1. For every s ∈ |B| and 0 ≤ i ≤ n, there is a set Ci (s)
2. For every op : s → s ′ ∈ ArrB and 0 ≤ i ≤ n, there is a total function Ci (op) : Ci (s)→ Ci (s ′).
3. For every s ∈ |B| and 1 ≤ j ≤ n, there is a partial function pC

j ,s : C0(s) ⇀ Cj (s)

such that for all op : s → s ′ ∈ B and 1 ≤ j ≤ n the following statement holds:

If pC
j ,s (x) is defined, then pC

j ,s ′ (C0(op)(x)) is defined (6)

and pC
j ,s ′(C0(op)(x)) � Cj (op)(pC

j ,s (x)). (7)

The sets Cj (s) together with the total maps Cj (op) constitute the components, the sets C0(s) and total maps
C0(op) constitute the commonality witnesses, and the partial functions pC

j ,s represent the projections.
Note that (6) and (7) generalise the edge-node-incidences, mentioned in Section 4.2, compare(4).

6 The abbreviation “op” for arrows of the base shall indicate that B-arrows are certain operations constituting the structure of the base
language, such as owner and target operations of edges in graphs.

Comprehensive systems: a formal foundation 1085

Definition 3 (Homomorphisms between Comprehensive Systems). Let C ,D be comprehensive systems as defined
in Definition 2. A homomorphism between comprehensive systems is a family

(fi,s : Ci (s)→ Di (s))s∈|B|,0≤i≤n

of mappings compatible with (operation) arrows, i.e. ∀ i ∈ {0, . . . ,n},∀ op : s → s ′ ∈ ArrB:

fi,s ′ ◦ Ci (op) � Di (op) ◦ fi,s (8)

and compatible with partial (projection) mappings: For all j ∈ {1, . . . ,n}, s ∈ |B| and x ∈ C0(s):

pC
j ,s (x) is defined ⇒ pD

j ,s (f (x)) is defined and (9)

pD
j ,s (f (x)) � f (pC

j ,s (x)) (10)

where we write f instead of fj ,s , if the indexing becomes clear from the context.

Alternatively, we can visualize Definition 3 by a family of commutative cubes in SET, shown in (11) and
indexed by all op : s → s ′ ∈ B and 1 ≤ j ≤ n. Commutativity of the top and bottom faces encode that the
projections in the comprehensive systems C and D fulfil (6)+(7), while left and right faces encode compatibility
of f with operation arrows (8), and back and front faces encode compatibility of f with projections (9)+(10).
Compare also this formal cube with the example in Fig. 9.

Dj (s)
Dj (op)

����
��
��
��
�

D0(s)
pD
j ,s

�

D0(op)

����
��
��
��
�

Dj (s ′) D0(s ′)
pD
j ,s′

�

Cj (s)

fj ,s

��

Cj (op)

����
��
��
��
�

C0(s)

f0,s

��

pC
0,s�

C0(op)

����
��
��
��
�

C ′
j (s)

fj ,s′

��

C0(s ′)

f0,s′

��

pC
j ,s′

�

(11)

Definition 3 provides the material for formalising multi-models. A multi-model is a morphism t : A → M
between two comprehensive systems A and M , where M is the correspondence definition, see Fig. 3. In our
exampleM is the alignment of metamodelsM 1,M 2,M 3 augmented with type commonalities defined in Listing 3
and partly visualized in Fig. 8. The comprehensive system A typed over M is shown in Fig. 2. Members of A0

are all dashed circles and pA
j ,s assigns to each circle a line end in model Aj , where s is the respective element type

(node or edge). The mapping definition of the typing homomorphism t is implicitly given by the concrete syntax
and the legend in Fig. 2. See also Fig. 9.

Equations (9) and (10) (f substituted by t) reflect the demanded property (5), i.e. compatibility of common-
alities and typing. This can be seen in Fig. 2: the commonality 2 must connect a class with a data object for
instance.

Proposition 1 Comprehensive Systems together with their homomorphisms constitute a category CS.

Proof. An identity is a family of identities, composition is composition of mappings fj ,s . This yields neutrality
and associativity. Moreover, composed homomorphisms are still compatible with the inner structure (op,pi,s).
Whereas this follows in the usual way for op : s → s ′, transitivity of the defined-ness implication in (9) also yields
compatibility with partial functions. �

4.3.2. Span-based definition

An alternative approach for encoding commonality relations in a multi-model is to use spans. This approach was
used by the present authors in previous works [KD17, SKLR18]. Its formulation avoids SET-based concepts and
is based on the categorical concept of a diagram. Recall thatthe semantic interpretation of Listing 3 is a family of

1086 P. Stünkel et. al.

n partialG-morphisms (mj : M 0 ⇀ M j)1≤j≤n . The latter can formally be expressed by a special diagram functor
M : I → G, where the schema category I has the star-shape defined in (12) (identity arrows of I are omitted).
Additionally, these diagram functors are subject to the condition that M maps the inner edges (10, . . . ,n0) to
monomorphisms. This condition is due to a well-known categorical construction [RR88], which expresses partial
morphisms as a classes of binary spans (Definition 21; AppendixA.3).

2 1

−2

22��������
20

����
���

� −110
�����

���

11 �������

· · · 0

−j

j0 ��������
jj

�����
���

−n
n0��������

nn

����
���

j · · · n

(12)

We call these functors multi-span relations because spans are the categorical counterpart of relations.

Definition 4 (Multi-Span Relation). A functor M : I → G where the image of M (j0) for all 1 ≤ j ≤ n is a
monomorphism is called a multi-span relation.

Multi-Span Relations are functors, hence we can relate them by natural transformations (families of G-
morphisms). The latter are called multi-span relation morphisms.

Definition 5 (Multi-Span Relation Morphism). Let M and N be two multi-span relations. A multi-span relation
morphism f : M → N is a family of G-morphisms, depicted by the j -indexed family of diagrams (1 ≤ j ≤ n) in
(13) with the condition that squares (i) and (ii) commute.

M (0)
fM (0)

		

(i)

N (0)

M (−j)
��

M (j0)

��

M (jj)

fM (−j)
		

(ii)

N (−j)
��

N (j0)

��

N (jj)

M (j)
fM (j)

		 N (j)

(13)

Proposition 2 Commonality spans together with their morphisms establish a category M.

Proof. Follows immediately from the fact thatM ⊆ G
I is a full subcategory of the functor category GI. �

4.3.3. Equivalence of definitions

The following theoremshows theuseful fact that the set-baseddefinition inSection 4.3.1 of comprehensive systems
and the span-based definition Section 4.3.2 of multi-span relations are equivalent. The span-based definition
depicts commonalities externally while comprehensive systems internalise them. Thus, we may use M as a drop-
in-replacement forCS and vice versa. The external notionM turns out to bemore easy to handle in the theoretical
considerations inSection 4.4while the internal notionCS ismore closely alignedwith thedefinitionof localmodels
(functors into SET) and therefore easier to implement in concrete tools.

Theorem 1 (Equivalence of Categories). CS ∼�M.

Proof. See AppendixB.1. A part of the proof relies on the fact that (small) categories are cartesian closed, i.e.
there is an equivalence between functor categories SETB×I ∼� (SETB)I. �
In the following we are only speaking of comprehensive systems, bearing the above equivalence in mind.

Comprehensive systems: a formal foundation 1087

4.4. Formal properties

In the following, we investigate the formal properties of comprehensive systems, which demonstrates their the-
oretical utility as a foundation for multi-modelling. They fulfil all formal requirements for applying existing
frameworks for model verification and model transformation.

4.4.1. Consistency verification

Arguably the most important feature in Multi-Model Consistency Management is a means for consistency
verification. The diagrammatic constraint framework [RRLW12, RRLW09, DW07, Dis97] demonstrated in
Section 4.1 generalises many established verification tools and approaches. To be applicable on a certain class of
formal structures, the latter must form a category, which possesses all pullbacks (Definition 15; AppendixA.2.2).

Theorem 2 CS possesses all pullbacks.

Proof. See Appendix B.2. The proof is carried out component-wise and involves some diagram chasing using the
universal property of pullbacks. �

Theorem2 guarantees that we (theoretically) can apply mature consistency verification methods. We will now
demonstrate how to use multiplicities and OCL invariants for implementing CR1–CR5 from Section 2. Here, we
will also utilize Theorem1. The latter allows to “internalize” projections and commonalities, i.e. “flattening” the
linguistic extension by interpreting projections and commonalities as edges and nodes. Thus, they can equally be
carriers for diagrammatic constraints. Reconsider Fig. 8, this time paying special attention to multiplicities and
OCL constraints on the dashed part: The elements of M 0 become regular nodes with edges and attributes. The
projections pj become edges that comewith an implicit 0..1multiplicity at the target side (= partial function). To
navigate these elements, the comprehensive systems framework may enhance the OCL library with some helper
methods, shown in Listing 4, which allow to navigate projections in a forward (projection) and backward
(commonalities)7 direction.

Listing 4: Linguistic Extension in OCL
-- Retrieves all commonalities for the given element
context OclAny commonalities : Set
-- Retrieves all commonalities of given type for the given element
context OclAny commonalities(commonalityType : Classifier) : Set(T) =

self ->commonalities ()->select(c|oclIsTypeOf(commonalityType))
-- Returns the representation in the given component if invoked on a commonality witness
context OclAny projection(component: String) : OclAny

The following list explains the consistency rule implementations (CRIs) of the rules from Section 2.

CRI1 Is implemented with an OCL-invariant attached to Activity, which requires existence of the respective
commonality if the activity is a BUSINESS RULE:

context Activity inv:
self.type = ActivityType :: BUSINESS_RULE implies self ->commonalities ()->count() = 1

CRI2 Is implemented via an 1..1-multiplicity at the end of projection p1 on output and input together with an
1..1-multiplicity at the source of p3 on the same elements. The implicit source-edge-incidence guarantees
that owner/target relationships are also respected. Furthermore, it is important to note that multiplicities
on projections of edges are conditional because they depend on other commonalities, i.e. they are only
enforced if the respective owner-commonality exists.

CRI3 Is implemented by an OCL-invariant that checks existence of exactly one type of commonality exists:

context DataObject inv:
self ->commonalities(DataObjectClassImplementation)->count() = 1
xor
self ->commonalities(DataObjectCorrespondence)->count() = 1

CRI4 Is implemented by 1..1-multiplicities at the source of the projections p2 and p3 at type (similar to CRI2).

7 For readers with knowledge of the Epsilon Transformation Language: commonalities() is comparable to equivalents().

1088 P. Stünkel et. al.

CRI5 Is implementedby1..1-multiplicities at the sourceand targetof theprojectionsat DataObjectCorrespon-
dence. Note that the source of p1 only has 0..1 because DataObjects could alternatively be related via
DataObjectClassImplementation, see CRI3.

This list exemplifies that already multiplicities are “enough” to model many common consistency rules by
intelligently imposing them on projections. To make this mechanism more “user-friendly” one may think of a
catalogue of frequent commonality constraints. One example is the ForAll [DKPF09] constraint: “For every
element of type X there exists a related element of type Y .” This translates into an 1..1-multiplicity at the
source of the projection going into X and an 1..1-multiplicity at the target of the projection going into Y .
Another common case is the PropertyConsistency constraint: “For two R-related elements x and y the values
of the properties x.p and y.q must be equal”. The comprehensive system representation of this constraint will
encompass a commonalityR having a property, which projects to p and q. Then, the implicit node-edge-incidence
performs the necessary check. An empirical investigation of such common constraints is an interesting future
research direction.

However, not all consistency rules can be implemented this way, as seen above. In these cases, one can resort
to the expressive power of a constraint language such as OCL to define arbitrary user-defined constraints. Given
that one can resort to arbitrary OCL-invariants makes this framework very expressive [MC99], but it lacks
a reasoning system. The latter is useful for automatic analysis of inconsistencies [SLO18] and/or automatic
consistency restoration [SLO19], which is another interesting direction for future investigations.

4.4.2. Advantages over model merge

Alternatively, we could have tried to formulate CR1–CR5 utilizing model merge [SNL+07]. The latter is often
considered to be the standard approach for verifying consistency of multiple related models [KM18, KMCD19].
Formally, model merging can be defined by calculating a colimit object [DXC11, KD17, Gog73]: Every object
in M represents a diagram in G and the colimit object of this diagram is the merged model, a graph A+ ∈ G.
Intuitively, this result can be described as the union of all components wherein elements related by commonalities
are identified. For example, in the merge of models A1,A2,A3 in Fig. 2 the data object “Diagnosis” ∈ A1,
the attribute “shortDesc” ∈ A2 and the column “Diagnosis” ∈ A3 will be merged into the same element, say
Diag/descr of type DataObjectCorrespondence.

There are, however, global consistency rules that cannot be realised as a constraint on a merged model. This
holds especially for rules, which depend on the knowledge of the membership in local models, because the latter
information is lost in the merge.

This can be demonstrated with consistency rule CR1, which relies on the containment of elements (in this case
containment inA1 andA3). After mergingA1 withA3 there is only a single node representing “Select Consultant”
and there is no way of telling if this node had a representation in A1 and A3. We only know that it was present
somewhere. In contrast, we do not loose this differentiation in comprehensive systems and can successfully check
the validity of CR1.

Simultaneously, comprehensive systems can express everything that is expressiblewith constraints on amerged
model, by including respective computations in the verification procedure. Let us reconsider the example from
Fig. 1. In the introduction, we mentioned that the trace model (Fig. 1e) is able to uncover the inconsistency just as
the merge model (Fig. 1d) does. An OCL-implementation is shown in Listing 5. The central ingredient part is the
definition of the derived property globalSuper, which aggregates the super-class information for every class over
all models: A1,A2,A3. This is done by iterating over all commonalities. This principle of aggregating a property
over all related elements can be applied universally. A generic algorithm is described in [KD17, SKLR18]. Finally,
the absence of cycles is checked in the invariant noCycles, which is based on this derived property.

Listing 5: Simulating Merge Colculations

context (Ai)i∈{1,2,3}::Class
def: globalSuper : Set = self ->commonalities ()->collect(c|c.super)->including(self.super)
inv noCycles: self ->closure(globalSuper)->includes(self) = false

Thus, comprehensive systems are strictly more expressive than the (naive) model merge approach.

Comprehensive systems: a formal foundation 1089

4.4.3. Transformations

“Model transformations are the heart and soul of MDE” [SK03]. A mature, widespread and declarative (rule-
based) approach to model transformations is given by the graph transformation framework, see Section 3.3. The
framework is heavily basedon the categorical universal constructionof apushout (Definition 17;AppendixA.2.3).
To apply graph transformation to a certain class of structures of interest, one first has to show that they form a so-
calledweakadhesiveHLRcategory [EP06]w.r.t.M, whereM is a special sub-class of admissiblemonomorphisms
in the respective category.

Corollary 1 CS is a weak adhesive HLR category w.r.t. M.

Proving this Corollary requires to verify the existence of pushouts (where some morphisms of the pushout
diagram belong to the special class M) in our category CS (or M equivalently) and to check whether pushouts
have the so-called (weak) vanKampen property (Definition 18; AppendixA.2.3) [LS04, EP06]. The latter enforces
a well-behaved interplay between pushouts and pullbacks. Yet, Tobias Heindel, in his PhD thesis [Hei10a],
showed that it equivalently suffices to show the existence of (i) pushouts along M-morphisms, (ii) M-partial-
arrow classifiers (Definition 24; AppendixA.3), and that (iii) pushouts are preserved by pullbacks. This is the
strategy we are going to use to prove Corollary 1. First, we have to define the class of admissible monos for our
category of comprehensive systems. It turns out that we cannot choose all monomorphisms: For example, let
(m : A → B , f : A → C) be a span of CS-morphisms. If there is an incomplete commonality specification in A
containing a commonality representativewhich relates not asmany elements as its images inB andC , the pushout
construction may produce a commonality specificationD , in which the projection is no longer well-defined. This
effect has been studied in [KFST19, Ex.6.] as well. Thus, we cannot expect the existence of pushouts in general.

However, we claim that forM being the class of reflective monomorphisms, CS becomes a respective weakly
adhesive HLR category, in particular pushouts along M-morphisms exist.

Definition 6 (ReflectiveCS-Monomorphisms).LetC ,D be twocomprehensive systems, a reflectiveCS-monomorphism
m : C � D is a family

(ms,i : Ci (s)→ Di (s))s∈|B|,0≤i≤n

as defined in Definition 3 where every ms,i is injective and, additionally, the implication in (9) is turned into an
equivalence. Thus, “defined-ness” of a projection is not only preserved but also reflected.

Since CS ∼� M, there is an equivalent formulation of this condition in M. An M-monomorphism where
additionally the squares (i) in (13), are pullbacks, is called a reflective monomorphism.

Think of monomorphismsm as models of insertion: When elements that are not in the image ofm are thought of
as being added by D to the existing context C , then reflective morphisms are not allowed to “make” projections
for witnesses that already exist C “defined” in the target D .

Example 1 (Non-reflective CS-Monomorphisms). LetG :� SET, and n � 2. Further let L and R be two compre-
hensive systems with L1 � R1 � {A},L2 � R2 � {B}, and L0 � R0 � {C }. The projections are defined as follows:
pR
1 (C) � A, pL

2 (C) � pR
2 (C) � B , and pL

1 (C) is undefined. Now let m : A → B be a comprehensive system
morphism that is component-wise the identity. This morphism is monic but not reflective since defined-ness of
pR
1 is not reflected.

Example 1 illustrates a non-reflective monomorphism. From a practical point of view, this property prevents
the dynamic changes of the arity of a commonality. Next, we have to show thatM is admissible [RR88].

Proposition 3 The class of all reflective monomorphisms is an admissible class M of monos, i.e.

• it contains all isomorphisms,

• it is closed under composition,

• it is stable under pullback.

Proof. See Appendix B.3. The proof is carried out by diagram chasing and using the universal property of
pullbacks. �

1090 P. Stünkel et. al.

Now, one can show the existence of pushouts along M-morphisms, i.e. for spans where one of the legs is a
reflective CS-monomorphism.

Theorem 3 CS has pushouts alongM morphisms.

Proof. See Appendix B.4. The proof is largely carried out by component-wise considerations. The last part
however, requires a set-wise consideration to assure that projections are well-defined. �

The next part of the proof, following Heindel’s approach, concerns partial arrow-classifiers (Definition 24;
AppendixA.3). Intuitively, a partial-arrow classifier adds a substructure to a given object that represents “error”
(failed computations or unmappable elements). It is similar to the java.util.Optional data type in Java or
the Maybe-monad in Haskell. In SET, the partial arrow-classifier adds a ⊥-element to a given set. In the context
of van Kampen squares, this construction becomes relevant because it turns out to represent a right-adjoint
(Fact 10; AppendixA.3) to the so-called graphing functor (Definition 22;AppendixA.3) [Hei10a]. This guarantees
that pushouts are hereditary (Definition 23; AppendixA.3), a property closely related to the weak van Kampen
property [Hei10b], which was originally introduced in [Ken91].

Theorem 4 CS has M-partial arrow classifiers.

Proof. See Appendix 4. The proof is carried out component-wise and uses diagram chasing. �
The final ingredient is stability of pushouts under pullbacks, which corresponds to the “⇐”-direction in the

definition of van Kampen squares (Definition 18; AppendixA.2.3).

Theorem 5 Pushouts along M-morphisms in CS are stable under pullbacks, i.e. when (n, g) is the pushout of
(f ,m) in (14) and all vertical faces (front, back, left, right) are pullbacks then also (n ′, g ′) is the pushout of
(f ′,m ′).

A′ m ′
		

f ′

����
��
��
��

a

B ′

g ′����
��
��
��

b

C ′ n ′
		

c

D ′

d

A m 		

f

����
��
��
��

B

g
����
��
��
��

C
n

		 D

(14)

Proof. It is straightforward to prove this property from the fact that pushouts in G are stable under pullbacks
[LS04]. Thus, we can apply the fact that pushouts and pullbacks are constructed component-wise, compare proofs
of Theorem2 and Theorem3, and that stability of pushouts under pullbacks holds for each component in G.
�

4.5. Comparison with triple graphs and graph diagrams

In Section 3.4.3, we briefly introduced triple graphs, which are similar to comprehensive systems; both of them
are based on graph-like structures and their formulation is given in categorical terms. The original formulation by
Schürr [Sch94] was based on directed multi-graphs. It was later reformulated by Ehrig et. al. [EEE+07] in terms of
a functor category GX and abstracted into the framework of weak adhesive HLR categories [EP06], i.e. G being
an arbitrary weak adhesive HLR category. The schema category XTGG has the shape of a span, depicted in (15):

1 001

 02 		 2 (15)

Thus, the solution space is limited to binary scenarios. Trollmann and Albayrak [TA15, TA16] generalised the
TGG framework to cope with multiple models within a graph diagram (GD) framework.

Comprehensive systems: a formal foundation 1091

Fig. 10. Graph Diagram production rule

The idea is to allow for different types of schema categories X, which must satisfy the condition that the set
of objects can be divided into two disjoint sets of models N and relations R, i.e. |X| � R � N . All non-identity
morphisms are required to have a domain in R (relations) and codomain inN (models). Further, there is at most
one arrow in ArrX(r ,m) for fixed r ∈ R and m ∈ N . In such a way, graph diagrams, i.e. functors D : X → G,
can specify relations of different arities. Graph diagrams (GD) subsume TGGs, with R � {0} and N � {1, 2}.

They are, however, static: If r ∈ R has k outgoing morphisms with targets m1, ...,mk ∈ N , D(r) is a k -ary
correspondence relation with representatives which relate to exactly one element in each of the k models D(mj).
Consequently, the schema category has to change each time a new relation is added!

In the remainder of this section, we show that our framework is more general than graph diagrams GX for
the case that G is a presheaf (G � SET

B) in that there is an embedding functorT : GX → CS. The latter further
preserves pushouts, which model derivations in Graph Diagram Grammars (GDG). Hence we are able to replay
all TGG/GDG-computations in our framework, yet being able to cope with new relations without changing the
schema category, compare Requirement 4 in Section 3.4.3.

In the following, we write
∐

i∈I Di to denote the coproduct (Definition 3; AppendixA.2.1) of a collection
(Di)i∈I of G-objects. Note that a collection (fi : Di → D)i∈I of morphisms yields the morphism

∐
i∈I fi :∐

i∈I Di → D by the universal property of coproducts, i.e. the morphism, which acts as fi on each Di . Further,
we introduce a shorthand notation: ArrC(,B) :� {f ∈ ArrC | codom(f) � B}.

ByTheorem1, it suffices todefinea functor fromG
X toM.The compositionof this functorwith the equivalence

yields the desired result. This functor will also be called T.

Definition 7 (Translation FunctorT). Let a schema categoryX for graph diagrams be given with |X| � R�N and
let n be the cardinality of N . Without loss of generality, we assume N � {1, . . . ,n}. Let D be a graph diagram,
then we define a multi-span relation M :� T(D) intuitively as follows (recall the schema in (12)): The model
components ofM (j) (j ∈ N) are the same as those ofD , the commonality specificationM (0) is the disjoint union
of all relations in D , the middle objectsM (−j) are the union of those relations, the model D(j) participates in:

M (j) :� D(j) (Models are untouched)
M (0) :� ∐

r∈R D(r) (Coproduct of all relations)
M (−j) :� ∐

f ∈ArrX(,j) D(dom(f)) (Participating Relations of D(j))

for all j ∈ {1, . . . ,n}. Furthermore,

M (jj) � ∐
f ∈ArrX(,j) D(f) (Projections)

M (j0) :
∐

f ∈ArrX(,j) D(dom(f)) ↪→ ∐
r∈R D(r) (Domains)

Morphisms M (jj) are the unions of the domains of those morphisms that have target D(j) and inclusions arise
from the fact that coproducts in the above definition ofM (−j) (taken over some relations) are always subgraphs
of the complete coproductM (0) (which is taken over all relations).

The definition of T on arrows is straightforward and we give it only informally: If n : D ⇒ D ′ is an arrow
(natural transformation) between graph diagrams, then (1) T (n)i is a morphism which acts in the same way as
ni on D(i), if i > 0, (2) it amalgamates the actions of n on relations, if i � 0, which (3) naturally restricts to the
respective actions, if i < 0. It is then easy to see, that T (n) is a natural transformation.

1092 P. Stünkel et. al.

We illustrate the construction in Definition 7 at the example of a graph diagram production rule depicted in
the left side half of Fig. 10. The figure shows a production rule r : B ↪→ A in an integrated way, where B (before)
and A (after) are graph diagrams (A,B ∈ G

X). A contains all elements shown in Fig. 10 and B contains only
those elements, which are not shaded and missing the ++-annotation, compare Fig. 5 in Section 3.4.3. The set
of models in X is a three element set: N � {1, 2, 3} representing the three model spaces for BPMN, UML and
DMN. The relation set in X contains four elements: R � {(1, 2), (2, 3), (1, 3), (1, 2, 3), representing all binary
relations between the three model spaces and the ternary relation between all of them. Elements of R are tuples
and morphisms in X are projections πR

N : R → N . This schema is visualised by compartments in Fig. 10, where
each compartment depicts a graph (object in G), i.e. the image of A(x) (B (x)) for an x ∈ |X|. We introduce the
notation: Gx :� G(x) and if x is a tuple we may omit parentheses. The application of the translation functor
T on A will produce a comprehensive system M with degree n � 3, which is depicted in the right side half of
Fig. 10. The graphs M (j) are identical with Aj (1 ≤ j ≤ 3). The commonalities graph M (0) is the coproduct
(disjoint union) ofA1,2,A2,3,A2,3 andA1,2,3, i.e. the nodes {bt, dca, dc}. The domain of definitionM (−1) for the
projection on component 1 is the coproduct of A1,3,A1,2 and A1,2,3, i.e. the nodes {bt, dca}. The other domains
of definition are constructed accordingly. The mappingsM (j0) are simply the inclusion between coproducts, and
M (jj) are given by universal coproduct property (j ∈ {1, 2, 3}): Taking the union of all arrows from all relations
into component j , see Fig. 10.

Theorem 6 Functor T : GX → CS is an embedding and preserves pushouts.

Proof. See Appendix 6. �
We obtain as a consequence:

Corollary 2 Every sequence of rule applications in G
X has a unique representation of corresponding rule appli-

cations in CS and hence can be replayed in the general framework of comprehensive systems.

4.6. Comprehensive systems for consistency management

Finally, we discuss the role of comprehensive systems in the conceptual Multi-Model Consistency Management
process introduced in Section 3 and visualised in Fig. 3. Note that the artefacts Correspondence Definition and
Multi-Model as well as the activities Metamodel Alignment and Model Alignment have a shaded background to
highlight the activities that concerned with creation of comprehensive system.

A correspondence definition is built from givenmetamodels and consistency rules and is formally represented
by a comprehensive system M , defined using a suitable DSL such as the one in Listing 3. A multi-model is
built from local models and commonalities and is formally represented as a comprehensive system morphism
t : A→ M , see Section 4.2. The added value of using these artefacts instead of simply working with a collection
of models and commonalities (trace model), is that they provide a global view (like model merging), where one
can reuse existing means for verification and repair.

Comprehensive systems have a structure similar to those of local models and theoretically they allow to apply
existing methods for consistency verification, see Section 4.4.1. In particular, we can use established technologies,
such asMOF-basedmodelling languages to encode comprehensive systems andOCL/EVL to encode consistency
rules. A prototype implementation8 based on EMF has been started.

Moreover, comprehensive systems canbeused in different approaches formodel repair.On the onehand, using
the translation pioneered by Courcelle [Cou97], every graph, typed graph, E-graph and thus also comprehensive
system can be translated into first order logic (monadic second order logic). Let C be a comprehensive system
and recall Definitions 2 and 3: Every membership x ∈ Ci (s) becomes a unary predicate inC i S(x); operation
mappings Ci (op)(x) � y become binary predicates op C i(x , y). The same principle applies for projections
pC
j ,s and homomorphism components fi,s . Additionally, we have to add axioms that force Ci (op) and fi,s to be

total functions (left total and right unique), pC
j ,s to be partial functions (right unique), as well as the conditions

in (6)+(7), (10), and (9)+(8). When consistency rules are encode-able in FOL, we can utilise optimized off-
the-shelf SAT/SMT-solvers, e.g. the popular model finder Alloy [Jac16], or resolution procedures, such as e.g.
Prolog [CR96] to perform consistency verification and search-based model repair (finding a model satisfying the
formulas). However, it must be noted that this naive translation most likely will run into complexity issues.

8 https://github.com/webminz/comprehensivesystems-emf-prototype

https://github.com/webminz/comprehensivesystems-emf-prototype

Comprehensive systems: a formal foundation 1093

On the other hand, with Corollary 1 we have opened the door for graph transformation, i.e. rule-based
repair. Thus, we can built on existing results w.r.t. verification [HP09] and repair [KR17, SLO19, OPKK18].
Consistency rules may be encoded as a set of consistency-preserving grammar rules. Upon the detection of a
consistency violatingmodelmodification, the detected edit rule applicationmay be “completed” to an application
of a consistency-preserving rule [KKT13, TOLR17, OPKK18] based on the idea of match-consistent splitting
[EEE+07]. Furthermore, these rules can be analysed w.r.t. nested graph conditions supported by specialized
reasoning tools [LO14, SLO18], which have been shown to outperform generic solutions using off-the-shelf
solvers [Pen08]. Reasoning facilities enable various possibilities for investigating model repair in our formal
framework, see also [SLO19, HS18], and will therefore play an important role for future work.

As a conclusion, comprehensive systems are not “opinionated” in terms of what means for consistency
verification and model repair should be applied on them and we can re-use existing tools and methods.

4.7. Summary and limitations

Comprehensive Systems can be summarized by the slogan “from many models to one model”: The issue of
dealing with multiple models is addressed by a construction that yields a single artefact, on which existing
means for consistency verification and model repair can be reused, see Section 4.4. This includes technologies
such as MOF/EMF (model representation) and OCL/EVL (model verification) as well as theory and methods
such algebraic graph transformation. In the past, the construction of global artefacts was often equated with
model merging [SNL+07, BCE+06, RC13, DXC11]. Merging, however, poses some difficulties, especially if the
verification of a global constraint depends on knowledge about membership of model elements. In terms of the
four requirements stated in Section 3.4, comprehensive systems represent an alternative approach to merging
providing a formal construction for expressing multi-models and consistency rules on them, which does not
forget the original membership of model elements (Requirement 1), see Section 4.4.2. Comprehensive Systems
support general multi-ary (n ≥ 2) scenarios by definition (Requirement 2) and they formally capture the practical
workflow concerning trace models (Requirement 3). The workflow of constructing a domain-specific trace model
is mapped to the well-known (meta-) model-instance-pattern, see Section 4.2. Finally, comprehensive systems
generalise graph diagrams and triple graphs and allow a flexible introduction and removal of correspondences of
different arities (Req. 4), see Section 4.5. Thus, comprehensive systems represent a formal foundation for Multi-
Model Consistency Management that combines the practicality of a single artefact from model merging with
the flexibility and expressiveness from model weaving, see Section 3.1.2. The construction stresses the utility of
partial mappings in commonality specifications, which have been promoted in [SKLR18] and were also picked
up in [KFST19].

Regarding current limitations of our approach, we first have to state the conceptual restriction that we require
the existence of a graph-like universalmeta-language. Fromour experience, this is often the case.However, itmight
hamper applicability and may require to implement necessary translators or adapters to integrate heterogeneous
modelling tools. But, the fact that MOF and EMF/Ecore [SBMP08] are widespread graph-like languages allows
diverse applications. The main limitation of our approach is its current lack of practical evidence. A prototype
implementation has been started but empirical data w.r.t performance and scalability is missing. Furthermore,
comprehensive systems do not provide their own model repair concept and rely on existing solutions. We want
to address these challenges in the future.

5. Related and future work

Comprehensive Systems are located in the field of Multi-Model Consistency Management, which was briefly
overviewed in Section 3. We highlight the most tightly related studies here:

Triple graphs [Sch94] and its multi-ary variant, graph diagrams [TA15, TA16], are amature formal framework
for multi-model consistency management comprising industry-proven methods for consistency verification and
restoration [HEO+11, WFA20, FKM+20]. In Section 4.5, we showed that comprehensive systems are a strict
generalisation of triple graphs and graph diagrams.

Model weaving, i.e. using tracemodels (= commonalities), is often applied in practice. Samimi-Dehkordi et.al.
[SDZKR18] use trace models in their implementation of a model synchronisation framework based on Epsilon.
Their approach does not encompass a formalisation and does not provide any guarantee for the correctness of the
model repair. Feldmann et.al. [FKWVH19] use a similar approach in amulti-domain scenario. They use TGGs as

1094 P. Stünkel et. al.

a specification formalism to generate Epsilon code. Thus, the respective consistency rules can only express binary
consistency rules. Vitruvius [KKL+21] is a framework for view-based modelling based on a virtual SUM and
allows view synchronisation via user-defined expressions. The virtual SUM is created by defining mappings (=
type commonalities) between differentmetamodels.While their expression language is analysed froma theoretical
point of view, their proposal of a multi-ary mapping language [KG19], which was also featured in Section 4.2, is
missing such a formalisation.

Multi-ary delta lenses (MX-lens) [DKL19] are a formal framework for describing multi-ary model synchroni-
sation. It is defined on a more abstract categorical level than comprehensive systems and comprehensive systems
can be considered as a more concrete instantiation of the former. However, MX-lens also comprise propagation-
based means for model repair as a built-in feature. Comprehensive System are not directly tied to a specific model
repair approach. It is left open whether model-repair should be implemented using a rule-based or a search-based
approach.

Stevens [Ste20] proposes another approach to Multi-Model Consistency Management. Her approach takes
a workflow-oriented point of view and considers a network of correspondence relations, which are implemented
by abstract builders that implement consistency verification and restoration. In [Ste20], the correct and optimal
scheduling of these builders is analysed. This approach can be considered as a meta-approach that may be
combined with other approaches, including comprehensive systems.

The biggest limitation of our approach is practical evidence, which is currently lacking. Therefore, our imme-
diate next goal is to provide this missing evidence.Wewill also have to address the challenge ofmodel repair. Here,
the goal must be to re-use as much of existing approaches as possible. With the validity of Corollary 1, we are able
to use the algebraic graph transformation framework [EEPT06] and related approaches [HP09, SLO19, KR17].
We aim to built our repair approach on existing rule-based frameworks [KKT13, TOLR17,OPKK18], where con-
sistency is inductively defined via consistency-preserving rules and repair is performed by completing applications
of arbitrary edit-rules to consistency preserving rules. For this we have to further investigate the comprehensive
system equivalent of match-consistent rule splitting [EEE+07] in triple graph grammars. Theoretical research on
admissibility of other graph transformation approaches has already begun: In [KS20], we studied the possibility
of using a subclass of comprehensive systems for single pushout rewriting.

Synchronising multiple behavioural models with comprehensive systems is another open issue. In this paper
we focused mainly on (more or less static) structural models. Including behavioural semantics into the picture
requires to investigate commonalities between the dynamics of behavioural models as well.

Finally, analysing the nature of the most commonmulti-ary consistency rules poses as an interesting research
direction, see Section 4.4.1. An example of such a consistency rule is given by the ForAll-constraint [DKPF09],
which requires the simultaneous existence of a tuple of elements in disparate models. An empirical investigation
resulting in a catalogue of such rules is another possible future direction.

A. Categorical background

A structural overview over the contents and the dependencies between the individual sections of the Appendix is
given in Figure 11. This first appendix, section A briefly summarizes the categorical background that is required
for this paper. Amore in-depth introduction can be found in textbooks such as [BW90, Pie91,Wal92]. The second
appendix section B contains detailed proofs of the Theorems and Propositions in this paper.

A category is a collection of similarly-structured mathematical objects equipped with means to “compare”
these objects:

Definition 8 (Category). A category C consists of the following:

• A class of objects |C|.
• For every pair of objects A,B ∈ |C|, a class of morphisms called a hom-set C(A,B). For every member
f ∈ C(A,B), A � dom(f) is called the domain of f and B � codom(f) is called the codomain of f . The class
of all morphisms (union of all hom-sets) is denoted by ArrC.

• For every object A ∈ |C| there exists a unique identity morphism idA ∈ C(A,A).
• For every triple of objects A,B ,C ∈ |C| and morphisms f ∈ C(A,B) and g ∈ C(B ,C), there exists a
composite g ◦ f ∈ C(A,C).

Comprehensive systems: a formal foundation 1095

Fig. 11. Appendix Structure and Dependencies

such that

• Composition ◦ is neutral w.r.t. identities, i.e. for all f ∈ C(A,B):

idB ◦ f � f � f ◦ f ◦ idA (16)

• Composition ◦ is associative, i.e. for all f ∈ C(A,B), g ∈ C(B ,C), and h ∈ C(C ,D):

(h ◦ g) ◦ f � h ◦ (g ◦ f) (17)

Due to the abstract nature of categories, it is often not possible to check if two objects represent the same
thing because we cannot look into the internal structure objects. However, we can compare them via morphisms
and if two objects are related by invertible morphisms, they are called isomorphic, i.e. identical modulo internal
renaming.

Definition 9 (Isomorphism). Let C be a category and A,B ∈ |C| two objects in this category. A and B are
isomorphic, written A ≈ B , if there exist two morphisms i : A → B ∈ ArrC and i−1 : B → A ∈ ArrC such that
idA � i−1 ◦ i and idB � i ◦ i−1. Further, i and i−1 are then called isomorphisms.

Thus, in category theory many construction are only unique “up to isomorphism”.
Arguably, the most important category is the category of sets and mappings.

Fact 1 (Category SET). There is a category SET, whose class of objects is the class of all sets. The class of
morphisms is given by the class of all total mappings between sets. Identities are given by identical mappings and
composition is given by function composition.

A.1. Functors, natural transformations, adjunctions

A functor represents a means to “compare” two categories.

Definition 10 (Functor). Let C and D be two categories. A functor F : C→ D comprises,

• an object mapping, i.e. for every object A ∈ |C| in the source category, F assigns an object F (A) ∈ D in the
target category,

1096 P. Stünkel et. al.

• and a morphism mapping, i.e. for every morphism f : A → B , F assigns a morphism F (f) : F (A) → F (B)
in the target category,

such that

• identities are mapped to identities, i.e. for all A ∈ |C|: F (idA) � idF (A).

• and composition is preserved, i.e. for all f ∈ C(A,B) and g ∈ C(B ,C): F (g ◦ f) � F (g) ◦ F (f)9.

F is called an embedding, if it is injective on objects of C and injective on C(A,B) for all A,B ∈ |C|.

A natural transformation is a means to “compare” functors.

Definition 11 (Natural Transformation). Let F : C → D and G : C → D be two functors between the same
categories. A natural transformation α : F ⇒ G is given by a |C|-indexed family ofD-morphisms ((αA : F (A)→
G(A)A∈|C|, such that for every f ∈ C(A,B) the following diagram commutes:

F (A)
F (f)

		

αA

F (B)

αB

G(A)
G(f)

		 G(B)

(18)

The diagrams are also known as naturality squares.

Functors and natural transformations organise themselves into a category:

Fact 2 (Functor Category.) For every pair of categoriesC andD, There exists a functor categoryDC, whose objects
are the functors between C and D morphisms are given by the natural transformations between these functors.

Functors and natural transformations allow us to check whether two classes of mathematical structures are
essentially “the same”:

Definition 12 (Equivalence of Categories). Let C and D be two categories. They are said to be equivalent, written
C ∼� D, if there exists a pair of functors R : C → D and L : D → C together with two natural transformations
≈C: L ◦ R ⇒ 1C and ≈D: R ◦ L ⇒ 1D, where 1C and 1D denote identity functors (= identity in all components)
and all members of ≈C (≈D) are isomorphisms in C (D).

If these families of isomorphisms are actually identities, then C and D are said to be isomorphic.

Moreover, in category theory there is a weaker notion than equivalence, called adjunction10. Intuitively speak-
ing it means that two classes of structures are equivalent modulo some free construction that can be universally
applied. An example for such a construction is the free monoid A∗ (Kleene star) over a set A.

Definition 13 (Adjunctions, (Co)-Free constructions). LetC andDbe two categories andR : C→ D,L : D→ Cbe
two functorsbetween them.LandR are said tobeadjoint,writtenL � R if there exists twonatural transformations
η : 1D ⇒ R ◦ L (called unit) and ε : L ◦ R ⇒ 1C (called co-unit).

Equivalently, an adjunction can be defined as co-free construction w.r.t to a functor L : D → C. A co-free
constructions assigns to every C-object B a D-object R(B) and C-morphism εB : L(R(B)) → B such that for
every D-object A and C-morphism f : L(A) → B there exists a unique morphism f : A → R(B) such that
f � εB ◦ L(f). This is summarized in the diagram in (19).

9 Note, that the composition ◦ in the left hand side of the identity is the composition of C, while the composition in the right hand side is
the composition of D.
10 It is sometimes noted that this notion is the actual reason category theory was invented

Comprehensive systems: a formal foundation 1097

C

	
	
	
	
	
	
	
	 D

B L(A)
∀ f

L(f)��

A
∃!f

���
�
�
�

L(R(B))

εB

��

R(B)

(19)

A.2. Universal constructions

Universal constructions have proven to be important for many software theoretical methods. Intuitively universal
constructions can be described as a generalisation of meets and joins in a pre-order. Some well known examples
for universal constructions in SET are cartesian products or disjoint unions (coproduct). It is important to note
that SET possesses all these universal constructions and thus every category SET

B does as well [Gol06]. The
construction of universal constructions in those categories is carried out “pointwise”. We say that a universal
object is constructed “pointwise” in SET

B, if it is constructed separately for each B-object, e.g. in the case of
E-Graphs separately for the set of graph nodes, the set of attribute nodes, the set of graph edges, and the set of
node attribute edges. The universal properties of the universal constructions then guarantee, that the resulting
object is a well-defined object in SET

B. Examples are given in the proofs of Lemma 1, Lemma 2 and Lemma 3.
For more details on this idea, we refer to [Gol06].

A.2.1. Coproducts

Coproducts a.k.a. sums provide means to collect a set of objects and work with them uniformly, similar to type
abstraction in programming.

Definition 14 (Binary Coproduct). Let C be a category and A,B ∈ C be objects. A binary coproduct of A and
B is given by an object A + B and two coproduct injection morphisms ιA : A → A + B and ιB : B → A + B
such that for all pairs of C-morphisms f : A → C and g : B → C with C ∈ C there exists a unique morphism
[f ; g] : A + B → C such that [f ; g] ◦ ιA � f and [f ; g] ◦ ιB � g , visualized in the diagram in (20):

C

A + B

[f ,g]!

��

A

ιA

�����������

f

��

�
�
�
�
�
�

B

ιB

�����������

g

��

�
�
�

�
�

�
� (20)

The mediating morphism [f ; g] acts like f and g via case distinction. If a category C has coproducts of arbitrary
arity then there is a special nullary coproduct, the initial object 0, that has unique morphisms 0A : 0 → A
into every object A ∈ |C| and it is neutral w.r.t. binary coproducts, i.e. A + 0 ∼� A. A multi-ary coproduct∐

is then given by multiple applications of the binary coproduct operator, because the latter are associative
((A1 + A2) + A3

∼� A1 + (A2 + A3)) and commutative (A1 + A2
∼� A2 + A1) up to isomorphism. The (multi-ary)

coproduct over an I -indexed family of C-objects (Ai)i∈I is denoted (
∐

i∈I Ai , (ιi : Ai →
∐

i∈I Ai)i∈I) and the
mediating morphism for a family of morphisms (fi : Ai → C)i∈I by

∐
fi :

∐
i∈I Ai → C .

Fact 3 (Coproducts in SET.) SET has all coproducts. A binary coproduct in SET is given by disjoint union A �
B :� {(i , x) | (x ∈ A∧ i � 1)∨ (x ∈ B ∧ i � 2)} for A and B being sets. The initial object 0 in SET is the empty
set ∅.
Lemma 1 (Coproducts in SETB.) Every functor category SET

B has coproducts due to the fact that SET has all
coproducts and we can construct them pointwise.

Proof. Let F and G be two functor objects in SET
B and consider the family of diagrams in (21), whichindexed

1098 P. Stünkel et. al.

by f : A→ B ∈ ArrB

F (A)

F(f)

ιF (A)

����
���

���
��

G(A)
ιG(A)

�����
���

���
�

G(f)

F (A) +G(A)

F (f)+G(f)!

F (B)
ιF (B)

����
���

���
��

G(B)
ιG(B)

�����
���

���
�

F (B) +G(B)

(21)

The coproduct of F and G for objects A,B is given by constructing the respective coproducts F (A) + G(A)
and F (B) + G(B) in SET, the morphism mappings (F + G)(f) (dotted line) arises uniquely from the universal
property of coproducts. �

A.2.2. Pullbacks

A pullback can be seen as the categorical version of an inner join: two structures A and B are combined where
they coincide on a common structure C .

Definition 15 (Pullback). Let C be category and a co-span of C-morphismsA a→ C b← B be given. The pullback
of a and b is given by the span A

πA← A×(a,b) B
πB→ B such that a ◦πA � b ◦πB and for all pairs of C-morphisms

f : D → A and g : D → B such that b ◦ g � a ◦ f and there exists a unique morphism 〈f , g〉 : D → A×(a,b) B
such that πA ◦ 〈f , g〉 � f and πB ◦ 〈f , g〉 � g , visualized in (22):

D g

��

� � �
�

!
"

f

��

#
$
%
&
'
(
)

〈f ,g〉!
��

A×(a,b) B
πB 		

πA

p.b.

B

b

A
a

		 C

(22)

Fact 4 (Pullbacks in SET.) SET has all pullbacks: Given two mappings f : A → C and g : B → C with same
codomain the pullbackA×(f ,g)B is given by the fibred productA×(f ,g)B :� {(a, b) | a ∈ A, b ∈ B , f (a) � g(b)}.

Lemma 2 (Pullbacks in SET
B.) Every functor category SET

B has pullbacks due to the fact that SET has all
pullbacks and we can construct them pointwise.

Comprehensive systems: a formal foundation 1099

Proof. Let F ,G and H be objects in SET
B and ν : F ⇒ H and μ : G ⇒ H morphisms in SET

B. Consider the
following cube for some f : A→ B ∈ ArrB:

F (A)×(μ,ν) G(A)
μ′
A

�����
���

���
��

ν ′A 		

F×(μ,ν)G(f)!

G(A)

μA����
��
��
��
�

G(f)

F (A)

F (f)

νA
		 H (A)

H (f)

F (B)×(μ,ν) G(B)
ν ′B 		

μ′
B

�����
���

���
��

G(B)

μB����
��
��
��
�

F (B)
νB

		 H (B)

The pullback of μ and ν for objects A and B is given by constructing the respective pullbacks F (A)×(μ,ν) G(A)
and F (B)×(μ,ν) G(B) in SET along (μA, νA) and (μB , νB) respectively, the morphism mapping (F ×(μ,ν) G)(f)
(dotted line) arise uniquely from the universal property of the pullbacks in the bottom face of the cube. �
Definition 16 (Monomorphism). A morphismm : A→ B is called a monomorphism iff the pullback ofm andm
coincides with idA, see (23).

A
idA 		

idA

p.b.

A

m

A
m

		 B

(23)

In this case m has the left cancellation property, which is a consequence of the pullback property in (23):

m ◦ f � m ◦ g ⇒ f � g

We sometimes highlight the special property of m by denoting it with a special arrow m : A � B .

Fact 5 (Monomorphism in SET). In SET the class of monomorphisms is exactly the class of injective mappings.

Fact 6 (Pullbacks preserve Monos). If a is a monomorphism in the diagram of Def. 15, then πB is a monomor-
phism, as well.

A.2.3. Pushouts

A pushout can intuitively be described as gluing of two structures at a defined interface.

Definition 17 (Pushout). Let C be a category and a span of C-morphismsA a← C b→ B be given. The pushout of
a and b is given by the co-span A

ιA→ A +(a,b) B
ιB← B such that ιA ◦ a � ιB ◦ b and for all pairs f : A → D and

g : B → D there exists a unique morphism [f ; g] : A +(a,b) B → D such that [f ; g] ◦ ιA � f and [f ; g] ◦ ιB � g ,
visualized in (24):

C b 		

a

p.o.

B

ιB

 g

��

)
*
'
+
%
$
#

A

f 		

"
!

�
 � � �

ιA
		 A +(a,b) B

[f ,g]!

��
D

(24)

Fact 7 (Pushouts in SET). SET has all pushouts: Given two mappings f : C → A and g : C → B with same
domain, consider a relation∼ onA�B , defined as follows (ιA and ιB are the embeddings into the disjoint union

1100 P. Stünkel et. al.

A � B)

a ∼ b iff ∃ c ∈ C : ιA(f (c)) � a ∧ ιB (g(c)) � b

and≡ the least equivalence relation containing∼, then the pushout of f and g is given byA+(f ,g)B :� (A�B)/≡.

Lemma 3 (Pushouts in SET
B.) Every functor category SET

B has pushouts due to the fact that SET has all
pushouts and we can construct them pointwise.

Proof. Dual to the proof of Lemma 2. �
Pushouts play an integral role in the algebraic graph transformation framework [EEPT06], i.e. rule-based

rewriting is represented by pushout-diagrams in a suitable category. These categories are referred to as adhesive
categories and their definition is based on the so-called Van-Kampen property [LS04]:

Definition 18 (Van Kampen square). A pushout square (f ,m,n, g) as shown in the bottom of (25)

A′ m ′
		

f ′

����
��
��
��

a

B ′

g ′����
��
��
��

b

C ′ n ′
		

c

D ′

d

A m 		

f

����
��
��
��

B

g
����
��
��
��

C
n

		 D

(25)

is called a Van Kampen square iff

back faces are pullbacks ⇒ (front faces are pullbacks⇔ top face is pushout) (26)

Definition 19 (Adhesive Category). A category C is called adhesive iff

• C has all pullbacks,
• C has pushouts along monomorphisms (i.e. for spans where at least one leg is a monomorphism) which also
have the Van Kampen property (Definition 18).

Amore general andmorewidespread notion than adhesive categories is given by so-calledweak adhesiveHLR
categories, which also include practically relevant structures such as attributed graphs. This definition weakens
both the notion of Van Kampen squares and requires the existence of weak Van Kampen pushouts only along
for an admissible sub class of all monomorphism M. The latter is explicated further in SectionA.3.

Definition 20 (Weak Adhesive HLR Category). Let M be an admissible class of monomorphisms. A category C

is called a weak adhesive HLR (High Level Replacement) category iff

• C has pushouts and pullbacks alongM-morphisms and
• C pushouts along M-morphisms have the weak Van Kampen property, i.e. (26) is only required to hold for
commutative situations where m ∈M or b, c, d ∈M, cf. the diagram in (25).

A.2.4. Universal constructions and adjunctions

Fact 8 If L � R are two adjoint functors, then L preserves coproducts and pushouts and R preserves pullbacks.

A.3. Partial morphisms and partial arrow classifiers

The category SET denoted the category of sets and total functions. There is also a strict super-category SET ⊂
PSET of sets and partial functions (every total function is a special partial function). Here, we present a a generic
and category-independent approach to construct a category Par (C) of partial morphisms over a given category

Comprehensive systems: a formal foundation 1101

C, whose morphisms are called total. This well-known approach only requires C to have all pullbacks and was
introduced in [RR88].

The category Par (C) is a subcategory of the span category Span(C) over C, where the inner legs of these
spans are required to be monomorphisms:

Definition 21 (Partial Map category ParM(C)). The constituents of Par (C) are defined as follows:

• The class of objects coincides with class of objects in the base category, i.e. |Par (C)| � |C|
• Morphisms [m, f 〉 : A ⇀ B ∈ ArrPar (C) are equivalence classes of spans in C:

A X

m

f

		 B

X ′
��m ′

��,,,,,,, f ′

���������
∼�

�� (27)

Consider (27): a span (m, f) where m is a monomorphism can be seen as a representative of a partial map
fromA toB . Isomorphisms between apexes of these spans∼�: X ′ → X that are compatible with both legs (i.e.
m ′ � m◦ ∼� and f ′ � f ◦ ∼�) generate an equivalence relation and we write [m, f 〉 to denote one equivalence
class where (m, f) is a chosen representative. In SET-based categories, it is natural to choose m to be the
inclusion dom(f) ⊆ A as the chosen representative.

• Identities in Par (C) are those equivalence classes of spans, whose representatives are identities in C

• Composition of two partial morphisms [m, f 〉 : A ⇀ B and [n, g〉 : B ⇀ C is defined via pullback:

B

p.b.A X

m

f

��-----------
Y
��

n

��........... g
		 C

X ×(n,f) Y
��

n ′

��)))))))))) f ′

��//////////

(28)

i.e. the composition [n, g〉 ◦ [m, f 〉 is given by [m ◦ n ′, g ◦ f ′〉 and it can be shown that the choice of represen-
tative for this span is unique up to isomorphism.

Neutrality w.r.t. identities and associativity of composition results from the fact that pullbacks preserve
isomorphisms and the universal property of pullbacks.

The construction of partial map categories can further be restricted by replacing the class of all monomor-
phisms with an admissible subclass M of all monomorphisms, called dominion in [RR88]. To be considered
admissible, this classMmust allow the constructions shown in (27) and (28), i.e. it is closed under isomorphisms,
its is closed under composition, and stable under pullback, see Proposition 3. In this case, we call the respective
category ParM(C) an M-partial map category.

The categoryC is embedded intoPar (C)11 by the so calledgraphing functor,which is the identity onobjects and
maps every morphism f : A→ B to the span [idA, f 〉, where the identity idA on A is trivially a monomorphism.

Definition 22 (Graphing Functor
M).

M :�
⎧
⎨

⎩

C→ ParM(C)
A �→ A
f : A→ B �→ [idA, f 〉 : A ⇀ B

(29)

Pushouts in C that remain pushouts in ParM(C) after embedding them via
M are called hereditary [Ken91].
They are closely related to Van Kampen Squares [Hei10b].

11 We omit the indexM ifM is equal to the class of all C-monomorphisms.

1102 P. Stünkel et. al.

Definition 23 ((M)-Hereditary Pushout). Let (m ′, f ′) be the pushout of (f ,m) in C displayed in (30). It is called
(M)-hereditary iff after embedding in ParM(C) via
M, the square
M(f ′) ◦
M(m) �
M(m ′) ◦
M(f) is a
pushout in ParM(C) as well.

Or, equivalently [Hei10b]: The pushout (m ′, f ′) of (f ,m) is called hereditary iff for any commutative situation
shown in (30) where the left and back faces are pullback and a, b, c ∈ M it holds that the bottom face is a
pushout if and only if (1) the two front faces are pullbacks and (2) d ∈M.

A
f

����
��
��
��

m 		 B

f ′
����
��
��
��

C
m ′

		 D

A′
��

a

��

n 		

g

����
��
��
��

B ′

g ′����
��
��
��

��

b

��

C ′
��

c

��

n ′
		 D ′
��

d

��

(30)

Hereditaryness is immediately given, when
M has a right adjoint and therefore preserves colimits. The
foundation for this right adjoint are (M)-partial arrow classifiers, which “totalize” partial morphisms:

Definition 24 ((M)-Partial ArrowClassifier). LetB be an object inC. A (M-)partial arrow classifier forB is given
by a monomorphism (M-morphisms) ηB : B � LB such that for (M)-partial morphism span [m, f 〉 : A ⇀ B
there exists a unique morphism [m, f 〉 : A → LB (the totalization) such that the resulting square (31) is a
pullback:

X

f

		 m 		

p.b.

A

[m,f 〉!

	
	
	

B
ηB

		 LB

(31)

Fact 9 SET and SET
C have partial arrow classifiers. In SET, L adds a new ⊥-element to every set and turns

a partial function into a total function by mapping all non-mapped elements to ⊥. In SET
B, the construction

becomes more involved, see [Gol06, pp.202-210].

Fact 10 In a category with M-partial arrow classifiers, L extends to a functor that is right adjoint to
M and
defined as follows:

L :�
⎧
⎨

⎩

ParM(C)→ C

A �→ LA
[m, f 〉 : A ⇀ B �→ [ηA ◦m, f 〉 : LA→ LB

(32)

where the morphism-mapping [ηA ◦m, f 〉 is explained in further detail by the diagram in (33):

X

idX

		 m 		 A

idA

idA A

ηA

X 		 m 		

f

A 		
ηA 		

[m,f 〉

LA
[ηA◦m,f 〉

B 		
ηB

		 LB
idLB

LB

(33)

Comprehensive systems: a formal foundation 1103

The underlying co-free construction of the adjunction
M � L is shown in (34).

ParM(C)

	
	
	
	
	
	
	
	 C

B
MA
∀[m,f 〉

�

M([m,f 〉)�-
-
-
-
-

A
∃![m,f 〉

���
�
�
�

MLB
εB

�

LB

(34)

with εB :� [ηB , idB 〉 for all B ∈ |ParM(C)| and A ∈ |C|.
Finally, there is an important lesser known fact about partial arrow classifiers:

Lemma 4 When the morphism f in (31) is a monomorphism, so is [m, f 〉.
Proof. Consider again the diagram in (33) and recall the adjunction
M � L. Thus L has left adjoint in
M and
therefore preserves limits, including monomorphisms (which are just special pullbacks). Hence, [ηA ◦m, f 〉 is a
monomorphism since it Lf . Monomorphisms compose and so is [ηA ◦m, f 〉 ◦ ηA a monomorphism. The latter
is equal to [m, f 〉 because of the universal property of the partial arrow classifiers: The upper squares are trivially
pullbacks and the lower rectangle is a pullback by the universal property. The whole outline [idA ◦m, f ◦ idX 〉 is
a partial map and equal to [m, f 〉. Since there is a unique morphism that make the outer square a pullback, we
have

[m, f 〉 � [ηA ◦m, f 〉 ◦ ηA

which is a monomorphism. �

B. Proofs

B.1. Proof of Theorem 1

The schema for this proof is sketched in (35). Proposition 2 showed that M is a full subcategory of the diagram
category G

I � (SETB)I. Using cartesian closedness of the category of small categories [AHS90, 27.3 (e)], we get
that SETB×I ∼� (SETB)I. Intuitively, this means that a functor with two arguments (of type B and I, resp.) can be
curried, i.e. it can be interpreted as a family of functors, each of which has one argument of type B, and the family
varying over a parameter of type I. Finally, we define an auxiliary category N (B.1.1) as a subcategory of SETB×I

of those functors N : B × I → SET that map “the same” morphism (modulo the construction in [AHS90]) to
monomorphisms as in M (B.1.2). Finally, we show that N is isomorphic to CS.

SET
B×I

∼� [AHS90, 27.3 (e)]
		 (SETB)I

CS

∼� (Sect. B.1.3)

		 N
��

(Sect. B.1.1)

��

∼� (Sect. B.1.2)

		 M
��

(Prop. 2)

��
(35)

B.1.1. Definition of N

Because I contains 2n + 1 objects, the cartesian product B× I of B and I in the category of small categories has
2n + 1 copies B−n , . . . ,B0, . . . ,Bn of B together with arrow spans

(s, 0) (s,−j)
(ids ,j0)

(ids ,jj)

		 (s, j)

for each j ∈ {1, . . . ,n} and for each s ∈ |B|.

1104 P. Stünkel et. al.

As an example, we have drawn the category B× I for a star-shape Iwith degree n � 2 and B :� E s−→ V t←− E
(the signature for directed multi-graphs, where identities are omitted) in (36).

(V , 1)

(idN ,id1)

��

(N ,−1)

(idN ,id−1)

��(idN ,11)

(idN ,10)
		 (V , 0)

(idN ,id0)

��

(N ,−2)

(idN ,id−2)

�� (idN ,22)
		

(idN ,20)

 (V , 2)

(idN ,id2)

��

(E , 1)

(idE ,id1)

��

(s,id1)

��

(t,id1)

��

(E ,−1)

(idE ,id−1)

��

(t,11)

��""""""""""""""
(s,11)

��""""""""""""""

(idE ,11)

(idE ,10)
		

(s,id−1)
��

(t,id−1)
��

(s,10)

����������������

(t,10)

����������������
(E , 0)

(idE ,id0)

��

(s,id0)

��

(t,id0)

��

(E ,−2)

(idE ,id−2)

��

(t,20)

��""""""""""""""
(s,20)

��""""""""""""""

(s,id−2)
��

(t,id−2)
��

(idE ,22)
		

(idE ,20)

(s,22)

����������������

(t,22)

����������������
(E , 2)

(idE ,id2)

��

(s,id2)

��

(t,id2)

��
(36)

Hence, objects in SET
B×I are functors N : B× I → SET, which simultaneously act as 2n + 1 functors from

B to SET, augmented with spans

N ((s, 0)) N ((s,−j))
N ((ids ,j0))

N ((ids ,jj))

		 N ((s, j))

of total functions for each s ∈ |B| and all j ∈ {1, . . . ,n}.
We define N to be the subcategory of SETB×I, which maps all N ((ids , j0)) to to monomorphisms (injective

functions) in SET for all s ∈ |B|.
B.1.2. Equivalence of N andM

The equivalence between SET
B×I and (SETB)I is based on currying and un-currying the respective functor

definitions. The category M has imposed the restriction, that all images M (j0) : M (−j) → M (0) of j0 under
an M-object M are monomorphisms in G. The latter is represented as a family (M (j0)(op) : M (−j)(s) →
M (−j)(s ′))op:s→s ′∈ArrB , which has one-to-one correspondence with the family N ((op, j0)) (op : s → s ′ ∈ ArrB,
j ∈ {1, . . . ,n}).
B.1.3. Equivalence of CS and N

Let N ∈ |N| and C ∈ |CS|. We will show that every comprehensive system C has an equivalent representation as
an N-object. First, we define a one-to-one correspondence within C ’s components. We identify

• N ((s, i)) and Ci (s) for all s ∈ |B|, 0 ≤ i ≤ n (1. in Definition 2).
• and N ((op, idi)) : N ((s, i))→ N ((s ′, i)) and Ci (op) : Ci (s)→ Ci (s ′) for all (2. in Definition 2).

Furthermore, in Appendix A.3 it was demonstrated, how a partial morphism in some category can be expressed
by an equivalence class of spans with the inner leg being a monomorphism. Therefore,

• N ((s, k)) for all s ∈ |B|,−n ≤ k < 0 (the apex of the span),
• N ((ids , j0)) : N (s,−j) � N (s, 0) for all s ∈ |B|, 0 < j ≤ n (the domain embedding),
• and N ((ids , jj)) : N (s,−j)→ N (s, j) for all s ∈ |B|, 0 < j ≤ n (the concrete assignment)

form a concrete representative of the projection pC
j ,s : C0(s) ⇀ Cj (s) in C .

The remaining constituents of N :

• N ((op, j0)) for all 0 < j ≤ n and non-identity morphisms op : s → s ′ ∈ ArrB,
• N ((op, jj)) for all 0 < j ≤ n and non-identity morphisms op : s → s ′ ∈ ArrB

are subject to the following equations, which are a consequence of the definition of composition in the product
category B × I (compare with the diagonals in (36)) and of N being a functor (which must preserve these
compositions):

N ((ids ′, jj)) ◦N ((op, id−j)) � N ((ids ′, jj) ◦ (op, id−j))
� N ((op, jj))

Comprehensive systems: a formal foundation 1105

� N ((op, idj) ◦ (ids , jj))
� N ((op, idj)) ◦N ((ids , jj))

N ((ids ′, j0)) ◦N ((op, id−j)) � N ((ids ′, j0) ◦ (op, id−j))
� N ((op, j0))

� N ((op, idj) ◦ (ids , j0))
� N ((op, idj)) ◦N ((ids , j0))

These conditions correspond to the generalised edge-node incidence (6)+(7). Thus, N ((op, j0)) and N ((op, jj))
can be seen as reifications (witnesses) of this condition.

Hence CS ∼�M, as claimed.

B.2. Proof of Theorem 2

Let (m : B → D, f : C → D) be a co-span in CS. Utilizing Theorem 1, we chose to perform the proof in M, i.e
showing the existence of (g : A→ B ,n : A→ C) as a pullback for (m, f) in M.

Recall that G � SET
B has all pullbacks, which are constructed component-wise for each s ∈ |B| (Lemma 2).

The component-wise construction lifts to G
I (for each i ∈ I) resulting in the j -indexed family of cubes in shown

in (37). Note that for any objectM ∈ |M|, the span (M (0) � M (−j)→,M (jj)) in (13) can be seen as a partialG-
morphismmj : M 0 ⇀ M j . Thus, and because the choice of themonomorphism domain objectM (−j) inDef. 4 is
free up to isomorphism, by conventionwe can assume thatM (j0) is an inclusion:M (j0) �:⊆M

j : dom(mj) ↪→ M 0,
which explains the notation in (37).

A0 n0 		

g0

 000
000

000
00

C 0

f0

 000
000

000
00

0 B0 m0 		 D0

dom(aj)
dnj

		

dgj

-

A(j0)

	
	
	

��	
	
	
	

aj

	
	
	

	
	
	

dom(cj)
dfj

-

��

C (j0)

��

cj

−j

j0

��

jj

dom(bj)
dmj

		

bj

��

B(j0)

��

dom(dj)
��

D(j0)

��

dj

Aj
nj

		

gj

 00
000

000
000

C j

fj
 000

000
000

00

j B j
mj

		 D j

(37)

The spans (g0,n0), (dgj , dnj), and (gj ,nj) are constructed component-wise as pullbacks in M. The universal
pullback property of the top face w.r.t to the horizontal inner face in the middle provides the morphism A(j0)
that makes the upper rear faces commute. And the universal pullback property of the bottom face w.r.t to the
horizontal inner face in themiddle provides themorphism aj that makes the lower rear faces commute. It remains
to show that A ∈ |M|. For this we have to show that A(j0) is a monomorphism

Assume two morphisms x : X → dom(aj) and y : X → dom(aj) such that A(j0) ◦ x � A(j0) ◦ y .
Postcomposing this arrow simultaneosly with n0 and n0 yields

n0 ◦A(j0) ◦ x � n0 ◦A(j0) ◦ y
g0 ◦A(j0) ◦ x � g0 ◦A(j0) ◦ y

1106 P. Stünkel et. al.

using the commutativity of the left and back face, followed by monomorphism property of B (j0) and C (j0) we
get

dnj ◦ x � dnj ◦ y
dgj ◦ x � dgj ◦ y

Recall that the horizontal inner face is a pullback, i.e. dnj and dgj are jointly monic and therefore x � y as
required.

B.3. Proof of Proposition 3

Isomorphisms trivially yield naturality squares that are pullbacks. The composition of two reflective monomor-
phisms is a reflective monomorphism as well because pullbacks compose. To see that reflective monomorphisms
are stable under pullback, consider again our pullback construction inM from the proof of Theorem 2, depicted
in (37). This time, the upper front face is a pullback and all components of m are monic, i.e. m is a reflective
mono. We have to show that all components of n are monic and that the upper back face is a pullback, i.e. n
is a reflective mono. The former, however, is easy, since pullbacks in M preserve monomorphisms (recall that A
was constructed via taking pullbacks component-wise in Theorem 2). For the pullback property consider the
diagram in (38)

dom(aj)

(a)

� � A(j0)
		

dnj

B(j0)◦dgj

��
A0

(b)

g0 		

n0

B0

m0

dom(cj)
� � C (j0)

		

D(j0)◦dfj

��C 0 f0 		 D0

(38)

Weuse the fact that theupper front-face in (37) is apullbackbecausem is reflectivemonomorphismbyassumption.
We compose it with the horizontal inner face in (37), which is a pullback by construction resulting in a pullback
that forms the outer rectangle in (38). The right square (b) in (38) is the top face in (37) and therefore also
a pullback by construction. Now we know that the upper and lower triangles in (38) commute because they
represent the upper left and upper right faces in (37). Therefore, we can use the pullback-decomposition lemma
to conclude that (a) is a pullback, as desired.

B.4. Proof of Theorem 3

Let m : A � B and f : A → C be a span of comprehensive systems with m ∈ M a reflective monomorphism.
Again, we construct the pushout (g : B → D,n : C � D) component-wise in M like we did in the proof of
Theorem 2. The construction is dual to the one in the proof of Theorem 2 and again we have to pay special

Comprehensive systems: a formal foundation 1107

attention to the upper cubes (images of j0)

A0

f0

 000
000

000
00

		
m0 		 B0

g0
 000

000
000

00

C 0 		
n0

		 D0

dom(aj)
� �

A(j0)

��

		
dmj

		

dfj

-

dom(bj)

dgj

-

� �

B(j0)

��

dom(cj)
� �

C (j0)

��

		
dnj

		 dom(dj)

D(j0)

��	
	
	
	
	
	
	

(39)

Consider the commutative cube in (39). The rear faces are given via the span (m, f) where the back face is a
pullback because m ∈M. The top and bottom faces are constructed as pushouts and the by universal property
of the bottom face pushout, we get the morphism D(j0) that makes the front and right face commute. Since G
is adhesive [LS04], pushouts preserve monomorphisms such that n0 and dnj are monomorphisms.

Next, we show that the front face is a pullback, for this consider the diagram in (40).

dom(aj)
dfj

		

f0◦A(j0)

��

dmj

(a)

dom(cj)
� � C (j0)

		

dnj

(b)

C 0

n0

dom(bj)
dgj

		

g0◦B(j0)

!!
dom(dj)

D(j0)
		 D0,

(40)

The square (a) is a pushout by construction (bottom face in 39) and the outer square is a pullback composed
out of the back (pullback due the reflective property of m) and top face (pushouts along monomorphisms in
adhesive categories are pullbacks as well) in (39). Using the special pullback-pushout property [LS06, Lemma 6]
the square (b) becomes a pullback.

It remains to show that D(j0) is a monomorphism. For this consider the following SET-theoretic argument,
which is stable under sort-wise construction (lifts to SET

B): Assume D(j0) is not monic, then there are two
elements x , y ∈ dom(dj) thatD(j0) maps to the same element z ∈ D0. Now, we know that dom(dj) is the apex of
a pushout, therefore dnj and dgj are jointly surjective and thus x , y must have pre-images x ′, y ′ under (dnj , dgj)
in dom(cj) or dom(bj).

Note that the cases x ′, y ′ ∈ dom(cj) or x ′ ∈ dom(cj) ∧ y ′ ∈ dom(bj) disqualify immediately since (a) is
a pullback. Therefore consider the case x , y ∈ dom(bj) further. Then x ′, y ′ must have distinct images under
inclusion B (j0) in B0 that must be mapped to z via g0. Now D0 is also constructed as the apex of a pushout and
for x ′, y ′ ∈ B0 being mapped to the same element inD0, there must be pre-images of x ′, y ′ inA0 that are mapped
to the same element in z ∈ C 0. But dom(cj) is the pullback object of n0 and D(j0) and therefore z ∈ C 0 must
have two pre-images ins dom(cj) which violates the monomorphism property of C (j0) �.

Hence, we must conclude that D(j0) is a monomorphism.

B.5. Proof of Theorem 4

Let B be a comprehensive system. For the existence ofM-partial arrow classifiers, we have to show the existence
of an M-morphism ηB : B � LB such that for every span (f : X → B ,m : X � A) there exists a unique
morphism [m, f 〉 : A → LB such that the resulting square is a pullback. Again we perform the construction in

1108 P. Stünkel et. al.

M and focus on the image of j0’s. The case for jj ’s works analogously.

X 0

f0

 000
000

000
00

		
m0 		 A0

[m0,f0〉��� � � � � �

B0 		
ηB 0

		 LB0

dom(xj)
� �

X (j0)

��

		
dmj

		

dfj

-

dom(aj)

[dmj ,dfj 〉��0
0
0
0
0

� �

A(j0)

��

dom(bj)
� �

B(j0)

��

		
ηB(j0)

		 Ldom(bj)

[dηB j ,B(j0)〉

��

(41)

Consider the cube in (41).We use the fact thatG hasmono-partial arrow classifiers and construct the partial arrow
classifierofB inM component-wise.This gives the existenceofunique (dashedarrows) [m0, f0〉and [dmj , dfj 〉 such
that the top and bottom face become pullbacks. Using the partial arrow classifier property of ηB 0 : B0 � LB0

w.r.t. [ηB(j0),B (j0)〉 yields [ηB(j0),B (j0)〉 such that the front face becomes a pullback, i.e. ηB is a reflective
monomorphism if it is a monomorphism.Moreover, we have to show that the right face commutes. The former is
due to the fact that if in a partial arrow span [m, f 〉, f is a monomorphism, then also [m, f 〉 is a monomorphism,
see Lemma 4. To show that the right face commutes, i.e. [m0, f0〉 ◦ A(j0) � [dηBj ,B (j0)〉 ◦ [dmj , dfj 〉 consider
the diagram (42).

dom(xh)

f0◦X (j0)

		
dmj

		 dom(aj)

[dmj ,f0◦X (j0)〉
	
	

	
	 [m0,f0〉◦A(j0)

""

[dηB j ,B(j0)〉◦[dmj ,dfj 〉

##
B0 		

ηB0
		 LB0

(42)

Using the partial map [dmj , f0 ◦X (j0)〉w.r.t. ηB0 , there is a unique (dashed) arrowmaking the square a pullback.
Thus

[m0, f0〉 ◦A(j0) � [dmj , f0 ◦X (j0)〉 � [dηBj ,B (j0)〉 ◦ [dmj , dfj 〉

B.6. Proof of Theorem 6

An immediate consequence of the definitions of M in terms of coproducts is that T is injective on objects and
on morphism sets, hence an embedding, such that it remains to show preservation of pushouts.

As seen in Theorem 3, pointwise pushout construction of a span inMmay fail to belong toM. This obstacle
can be overcome because we use coproducts in the construction of T. Let ν : M → N :� T(n : D → H), then
the naturality squares ν0 ◦M (j0) � N (j0) ◦ dνj (images of j0’s) are pullbacks due to the following:

The definition of M (j0) can also be written

M (j0) :
∐

r∈R
D j

r ↪→
∐

r∈R
D(r)

with D j
r � D(r), if there is f ∈ ArrX(, j) and r � dom(f), and D j

r � 0 (the initial object, see Appendix A.2.1,
i.e. the empty graph) otherwise, because X + 0 ∼� X in G. Similarly, this inclusion can be extended for M 1.

Comprehensive systems: a formal foundation 1109

In both cases the summand-wise squares

D(r)
nr 		 H (r)

D j
r

nr or id0 		

id or 0D0(r)

��

H j
r

id or 0D1(r)

��
(43)

are pullbacks, such that it suffices to show that two pullback squares in G always add up to a pullback square of
their coproducts, see (44).

A1
h1 		 B1

(p.b.)

A2
h2 		 B2

⇒(p.b.)

A1 +A2
h1+h2 		 B1 + B2

(p.b.)

C1
h ′
1

		

k ′1

��

D1

k1

��

C2
h ′
2

		

k ′2

��

D2

k2

��

C1 + C2
h ′
1+h

′
2

		

k ′1+k
′
2

��

D1 +D2

k1+k2

��
(44)

This can be demonstrated as follows: G is known to be extensive, i.e. the functor + : G ↓ B1 × G ↓ B2 →
G ↓ (B1 + B2) between comma categories is an equivalence of categories, its inverse is taking pullbacks along
coproduct injections [CLW93]. This adds pullbacks adjacent on the right of the two left pullbacks in (44) and,
by pullback composition [BW90], we obtain two pullbacks with the arrow k1 + k2 as right vertical arrow. Since
G is a topos [Gol06], it can be shown that these two then add to the right pullback in (44), see $ 5.3. in [Gol06].

Now, consider the cube from (39) in the proof of theorem3. This time left and back faces are pullbacks. Using
the fact that pushouts in G are mono-hereditary, cf. definition 23 in AppendixA.3, we conclude that front and
right faces are pullbacks and that D(j0) is a monomorphism, i.e. the result is actually a comprehensive system.
Hence, we have to show that all components are pushouts, i.e. the right squares in (45) are pushouts in G for all
i ∈ ArrI.

D m ��

f

��

G1

f ′

��

M
μ ��

φ

��

N

φ′

��

M (i)
μi 		

φi

N (i)

φ′i

H m ′
�� J K

μ′
�� L K (i)

μ′
i 		 L(i)

(45)

This is, however, clear from the definition of T for i > 0 (because models are untouched and the left square is a
pushout by assumption). For i ≤ 0, all four objects in the right square are coproducts over a certain indexing set
I (I � ArrX for i � 0 and I � ArrX(, j) for i � −j < 0), where the coproduct amalgamates relation graphs of
the graph diagrams (index r ∈ R).

Finally, since
∐

is a functor from G
I to G, which is left-adjoint to the diagonal functor �I (cf. [BW90,

Ex.13.2.4]), it preserves colimits, hence all squares are pushouts, because in the left square there are pointwise
pushouts separately for each relation index r ∈ R.

Funding Open access funding provided by Western Norway University Of Applied Sciences.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party material in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit line to thematerial. If material is not included in
the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://creativecommons.org/licenses/by/4.0/

1110 P. Stünkel et. al.

References

[ABW+19] Anjorin A, Buchmann T, Westfechtel B, Diskin Z, Ko H-S, Eramo R, Hinkel G, Samimi-Dehkordi L, Zündorf A (2019)
Benchmarking bidirectional transformations: theory, implementation, application, and assessment. In: Software and systems
modeling

[AHS90] Adámek J, Herrlich H, Strecker GE (1990) Abstract and concrete categories: the joy of cats. Pure and applied mathematics.
Wiley

[AK02] Atkinson C, Kühne T (2002) Rearchitecting the UML infrastructure. ACM Trans Model Comput Simul 12(4):290–321
[ARNRSG06] Aizenbud-Reshef N, Nolan BT, Rubin J, Shaham-Gafni Y (2006) Model traceability. IBM Syst J 45(3):515–526
[ASB10] Atkinson C, Stoll D, Bostan P (2010) Orthographic software modeling: a practical approach to view-based development. In:

Maciaszek LA, González-Pérez C, Jablonski S (eds) ENASE 2009, communications in computer and information science.
Springer, Berlin, pp 206–219

[ASCG+18] Abou-Saleh F, Cheney J, Gibbons J,McKinna J, Stevens P (2018) Introduction to bidirectional transformations. In: Gibbons
J, Stevens P (eds) Bidirectional transformations: international summer school, 2016, LNCS. Springer, pp 1–28

[BBCW19] Bruneliere H, Burger E, Cabot J, Wimmer M (2019) A feature-based survey of model view approaches. Softw Syst Model
18(3):1931–1952

[BBDF+06] Bézivin J, Bouzitouna S, Del Fabro MD, Gervais M-P, Jouault F, Kolovos D, Kurtev I, Paige RF (2006) A canonical scheme
for model composition. In: Rensink A, Warmer J (eds) Model driven architecture—foundations and applications, lecture
notes in computer science. Springer, Berlin, pp 346–360

[BCE+06] Brunet G, Chechik M, Easterbrook S, Nejati S, Niu N, Sabetzadeh M (2006) A manifesto for model merging. In: GaMMa
’06. ACM, New York, NY, USA, pp 5–12

[BEEH+19] Bennani S, Ebersold S, El Hamlaoui M, Coulette B, Nassar M (2019) A collaborative decision approach for alignment of
heterogeneousmodels. In: 2019 IEEE 28th international conference on enabling technologies: Infrastructure for collaborative
enterprises (WETICE), pp 112–117. ISSN: 2641-8169

[Ber03] Bernstein PA (2003) Applying model management to classical meta data problems. In: CIDR
[BJV04] Bézivin J, Jouault F, Valduriez P (2004) On the need for megamodels. In: Proceedings of the OOPSLA/GPCE: best practices

for model-driven software development workshop, 19th Annual ACM conference on object-oriented programming, systems,
languages, and applications (2004), Vancouver, Canada

[BKMW09] Boronat A, Knapp A, Meseguer J, Wirsing M (2009) What is a multi-modeling language? In: WADT 2008. Springer, Berlin
pp 71–87

[BMdlC+20] Barriga A,MandowL, de la Cruz José LP, Rutle A, Heldal R, Iovino L (2020) A comparative study of reinforcement learning
techniques to repair models. In: Proceedings of the 23rd ACM/IEEE international conference on model driven engineering
languages and systems: companion proceedings,MODELS’20.Association forComputingMachinery,NewYork,NY,USA,
pp 1–9

[BW90] Barr M, Wells C (1990) Category theory for computing science. Prentice Hall
[Bé05] Bézivin J (2005) On the unification power of models. Softw Syst Model 4(2):171–188
[CCP19] CicchettiA,CiccozziF,PierantonioA (2019)Multi-viewapproaches for software and systemmodelling: a systematic literature

review. Softw Syst Model 18(6):3207–3233
[CFH+09] Czarnecki K, Foster N, Hu Z, Lämmel R, Schürr A, Terwilliger JF (2009) Bidirectional transformations: a cross-discipline

perspective. In: ICMT 2009, pp 193–204
[CGMS15] Cheney J, Gibbons J, McKinna J, Stevens P (2015) Towards a principle of least surprise for bidirectional transformations.

In: Proceedings of the 4th international workshop on bidirectional transformations co-located with software technologies:
applications and fFoundations (STAF 2015), vol 1396, pp 66–80

[CKSZ19] Cleve A, Kindler E, Stevens P, Zaytsev V(2019) Multidirectional transformations and synchronisations (Dagstuhl seminar
18491). Dagstuhl Rep 8(12):1–48

[CLW93] Carboni A, Lack S,Walters RFC (1993) Introduction to extensive and distributive categories. J Pure Appl Algebra 84(2):145–
158

[Cou97] Courcelle B (1997) The expression of graph properties and graph transformations in monadic second-order logic. In: Rozen-
bergG (ed)Handbook of graph grammars and computing by graph transformation.World Scientific, River Edge, pp 313–400

[CR96] Colmerauer A, Roussel P (1996) The birth of Prolog. In: History of programming languages—II. Association for Computing
Machinery, New York, pp 331–367

[Dis97] Diskin Z (1997) Towards algebraic graph-based model theory for computer science. Bull Symb Logic 3:144–145
[DKL19] Diskin Z, König H, Lawford M (2019) Multiple model synchronization with multiary delta lenses with amendment andK-

Putput. Form Aspects Comput 31(5):611–640
[DKPF09] DrivalosN,KolovosDS, Paige RF, FernandesKJ (2009) Engineering aDSL for software traceability. In: Gašević D, Lämmel

R, Van Wyk E (eds) Software language engineering, lecture notes in computer science. Springer, Berlin, pp 151–167
[dLG10] de Lara J, Guerra E (2010) Deep meta-modelling with MetaDepth. In: Vitek J (ed), Objects, models, components, patterns,

lecture notes in computer science. Springer, Berlin, pp 1–20
[dLGKH18] de Lara J, Guerra E, Kienzle J, Hattab Y (2018) Facet-oriented modelling: open objects for model-driven engineering. In:

SLE 2018. Association for Computing Machinery, Boston, MA, USA, pp 147–159
[DW07] Diskin Z, Wolter U (2007) A diagrammatic logic for object-oriented visual modeling. In: ACCAT ’07, pp 19–41
[DXC11] Diskin Z, Xiong Y, Czarnecki K (2011) Specifying Overlaps of heterogeneous models for global consistency checking. In:

MDI@MODELS 2010, pp 165–179
[EEE+07] Ehrig H, Ehrig K, Ermel C, Hermann F, Taentzer G (2007) Information preserving bidirectional model transformations. In:

Dwyer MB, Lopes A (eds) Fundamental approaches to software engineering, lecture notes in computer science. Springer,
Berlin, pp 72–86

Comprehensive systems: a formal foundation 1111

[EEH08] Ehrig H, Ehrig K, Hermann F (2008) From model transformation to model integration based on the algebraic approach to
triple graph grammars. Electron Commun EASST 10:65

[EEPT06] Ehrig H, Ehrig K, Prange U, Taentzer G (2006) Fundamentals of algebraic graph transformation. Springer
[Egy07] Egyed A (2007) Fixing inconsistencies in UML design models. In: Proceedings—international conference on software engi-

neering, pp 292–301
[EHHS00] Engels G, Hausmann JH, Heckel R, Sauer S (2000) Dynamic meta modeling: a graphical approach to the operational

semantics of behavioral diagrams in UML. In: Andy E, Stuart K, Bran S (eds) UML 2000—the unified modeling language,
lecture notes in computer science. Springer, Berlin, pp 323–337

[EMM+12] EramoR,Malavolta I,MucciniH, Pelliccione P, PierantonioA (2012)Amodel-driven approach to automate the propagation
of changes among architecture description languages. Softw Syst Model 11(1):29–53

[EP06] Ehrig H, Prange U (2006) Weak adhesive high-level replacement categories and systems: a unifying framework for graph
and petri net transformations. In: Futatsugi K, Jouannaud J-P, Meseguer J (eds) Algebra, meaning, and computation: essays
dedicated to Joseph A. Goguen on the Occasion of his 65th birthday, lecture notes in computer science. Springer, Berlin, pp
235–251

[EPS73] Ehrig H, Pfender M, Schneider HJ (O1973) Graph-grammars: an algebraic approach. In: 14th Annual symposium on
switching and automata theory (swat 1973), pp 167–180

[ES13] Euzenat J, Shvaiko P (2013) Ontology matching, 2 edn. Springer, Berlin
[FGH+93] Finkelstein A, GabbayD, Hunter A, Kramer J, Nuseibeh B (1993) Inconsistency handling in multi-perspective specifications.

In: Sommerville I, Paul M (eds) Software engineering—ESEC’93, lecture notes in computer science. Springer, Berlin, pp
84–99

[FGM+07] Foster JN, Greenwald MB, Moore JT, Pierce BC, Schmitt A (2007) Combinators for bidirectional tree transformations: a
linguistic approach to the view-update problem. ACM Trans Program Lang Syst 29(3):6

[FKM+20] Fritsche L, Kosiol J, Möller A, Schürr A, Taentzer G (2020) A precedence-driven approach for concurrent model synchro-
nization scenarios using triple graph grammars. In: Proceedings of the 13th ACM SIGPLAN international conference on
software language engineering. Association for Computing Machinery, New York, NY, USA, pp 39–55

[FKN+92] Finkelstein A, Kramer J, Nuseibeh B, Finkelstein L, Goedicke M (1992) Viewpoints: a framework for integrating multiple
perspectives in system development. Int J Softw Eng Knowl Eng 2(1):31–57

[FKWVH19] Feldmann S, Kernschmidt K, Wimmer M, Vogel-Heuser B (2019) Managing inter-model inconsistencies in model-based
systems engineering: application in automated production systems engineering. J Syst Softw 153:105–134

[FN05] Favre J-M, NGuyen T (2005) Towards a megamodel to model software evolution through transformations. Electron Notes
Theor Comput Sci 127(3):59–74

[FST96] Finkelstein A, Spanoudakis G, Till D (1996) Managing interference. In: Joint proceedings of the second international soft-
ware architecture workshop (ISAW-2) and international workshop on multiple perspectives in software development (view-
points’96) on SIGSOFT’96 Workshops, ISAW’96. ACM, New York, NY, USA, pp 172–174

[GBB12] Goldschmidt T, Becker S, Burger E (2012) Towards a tool-oriented taxonomy of view-based modelling. In: Sinz E, Schürr A
(eds) Modellierung 2012. Gesellschaft für Informatik e.V., pp 59–74. Accepted 14 Nov 2018. T09:41:29Z ISSN: 1617-5468

[GdLKP10] Guerra E, de Lara J, Kolovos DS, Paige RF (2010) Inter-modelling: from theory to practice. In: Petriu DC, Rouquette N,
Haugen Ø (eds) MODELS’10, lecture notes in computer science. Springer, Berlin, pp 376–391

[GHJV95] Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns: elements of reusable object-oriented software. Addison-
Wesley Longman Publishing Co., Inc., Boston

[GHL10] Giese H, Hildebrandt S, Lambers L (2010) Toward bridging the gap between formal semantics and implementation of triple
graph grammars. In: Validation 2010 workshop on model-driven engineering, verification, pp 19–24

[Gog73] Goguen JA (1973) Categorical foundations for general systems theory. In: Pichler F, Trappl R (eds) Advances in cybernetics
and systems research, pp 121–130. Transcripta Books

[Gol06] Goldblatt R (2006) Topoi: the categorial analysis of logic. Dover, revised edition
[GW09] GieseH,WagnerR (2009) Frommodel transformation to incremental bidirectionalmodel synchronization. SoftwSystModel

8(1):21–43
[HEEO12] Hermann F, Ehrig H, Ermel C, Orejas F (2012) Concurrent model synchronization with conflict resolution based on triple

graph grammars. In: de Lara J, Zisman A (eds) FASE 2012, Lecture notes in computer science. Springer, Berlin, pp 178–193
[Hei10a] Heindel T (2010) A category theoretical approach to the concurrent semantics of rewriting: adhesive categories and related

concepts. PhD thesis, University of Duisburg-Essen
[Hei10b] Heindel T (2010) Hereditary pushouts reconsidered. In: Ehrig H, Rensink A, Rozenberg G, Schürr A (eds) Graph transfor-

mations, lecture notes in computer science. Springer, Berlin, pp 250–265
[HEO+11] Hermann F, Ehrig H, Orejas F, Czarnecki K, Diskin Z, Xiong Y (2011) Correctness of model synchronization based on triple

graph grammar. In: Whittle J, Clark T, Kühne T (eds) MODELS 2011. Springer, Berlin pp 668–682
[HP09] Habel A, Pennemann K-H (2009) Correctness of high-level transformation systems relative to nested conditions†. Math

Struct Comput Sci 19(2):245–296
[HS18] HabelA, SandmannC (2018)Graph repair by graph programs. In:MazzaraM,Ober I, SalaünG (eds) Software technologies:

applications and foundations, lecture notes in computer science. Springer, Cham, pp 431–446
[ISO11] ISO/IEC JTC 1/SC 7 Software and systems engineering. Iso/iec/ieee 42010:2011 - systems and software engineering—

architecture description. https://www.iso.org/standard/50508.html. Accessed Dec 2011
[Jac16] Jackson D (2016) Software abstractions: logic, language, and analysis. MIT Press
[KD17] König H, Diskin Z (2017) Efficient consistency checking of interrelated models. In: ECMFA 2017, pp 161–178
[KDRPP09] KolovosDS,DiRuscioD, PierantonioA, PaigeRF (2009)Differentmodels formodel matching: an analysis of approaches to

support model differencing. In: Proceedings of the 2009 ICSE workshop on comparison and versioning of software models,
CVSM’09. IEEE Computer Society, Washington, DC, USA, pp 1–6

https://www.iso.org/standard/50508.html

1112 P. Stünkel et. al.

[Ken91] Kennaway R (1991) Graph rewriting in some categories of partial morphisms. In: Ehrig H, Kreowski H-J, Rozenberg G (eds)
Graph grammars and their application to computer science, lecture notes in computer science. Springer, Berlin, pp 490–504

[KFST19] Kosiol J, Fritsche L, Schürr A, Taentzer G (2019) Adhesive subcategories of functor categories with instantiation to partial
triple graphs. In: Guerra E, Orejas F (eds) Graph transformation, lecture notes in computer science. Springer, pp 38–54

[KG19] Klare H, Gleitze J (2019) Commonalities for preserving consistency of multiple models. In: MODELS 2019 companion, pp
371–378

[KKL+21] Klare H, Kramer ME, Langhammer M, Werle D, Burger E, Reussner R (2021) Enabling consistency in view-based system
development—the Vitruvius approach. J Syst Softw 171:110815

[KKT13] Kehrer T, Kelter U, Taentzer G (2013) Consistency-preserving edit scripts in model versioning. In: 2013 28th IEEE/ACM
international conference on automated software engineering (ASE), pp 191–201

[KM18] Knapp A, Mossakowski T (2018) Multi-view consistency in UML: a survey. In: Graph transformation, specifications, and
nets, LNCS 10800. Springer, Cham, pp 37–60

[KMCD19] Kienzle J, Mussbacher G, Combemale B, Deantoni J (2019) A unifying framework for homogeneous model composition.
Softw Syst Model 18(5):3005–3023

[KPP06] Kolovos DS, Paige RF, Polack FAC (2006) Merging models with the epsilon merging language (EML). In: Nierstrasz O,
Whittle J, Harel D, Reggio G (eds) Model driven engineering languages and systems, lecture notes in computer science.
Springer, Berlin, pp 215–229

[KPP08] Kolovos D, Paige R, Polack F (2008) Detecting and repairing inconsistencies across heterogeneous models. In: Proceedings
of the 2008 international conference on software testing, verification, and validation, ICST’08. IEEE Computer Society,
Washington, DC, USA, pp 356–364

[KR17] Kosiol J, Radke H (2017) Rule-based repair of emf models: formalization and correctness proof. In: GCM 2017
[KS20] König H, Stünkel P (2020) Single pushout rewriting in comprehensive systems. In: Gadducci F, Kehrer T (eds) Graph

transformation, lecture notes in computer science. Springer, Cham, pp 91–108
[Kü06] Kühne T (2006) Matters of (meta-)modeling. Softw Syst Model 5(4):369–385
[LAS17] Leblebici E, Anjorin A, Schürr A (2017) Inter-model consistency checking using triple graph grammars and linear optimiza-

tion techniques. In: Proceedings of the 20th international conference on fundamental approaches to software engineering—
Volume 10202. Springer, New York, NY, USA, pp 191–207

[LO14] Lambers L, Orejas F (2014) Tableau-based reasoning for graph properties. In: Giese H, König B (eds) Graph transformation,
lecture notes in computer science. Springer, Cham, pp 17–32

[LS04] Lack S, Sobociński P (2004) Adhesive categories. In: Walukiewicz I (ed) Foundations of software science and computation
structures, lecture notes in computer science. Springer, Berlin, pp 273–288

[LS06] Lack S, Sobociński P (2006) Toposes are adhesive. In: Corradini A, Ehrig H, Montanari U, Ribeiro L, Rozenberg G (eds)
Graph transformations, lecture notes in computer science. Springer, Berlin, pp 184–198

[Lö93] Löwe M (1993) Algebraic approach to single-pushout graph transformation. Theor Comput Sci 109(1):181–224
[MC99] Mandel L, Cengarle MV (1999) On the expressive power of OCL. In: Wing JM,Woodcock J, Davies J (eds) FM’99—Formal

methods, lecture notes in computer science. Springer, Berlin, pp 854–874
[MC16] Macedo N, Cunha A (2016) Least-change bidirectional model transformation with QVT-R and ATL. Softw Syst Model

15(3):783–810
[MJC17] Macedo N, Jorge T, Cunha A (2017) A feature-based classification of model repair approaches. IEEE Trans Softw Eng

43(7):615–640
[MWK+20] Meier J,WernerC,KlareH, Tunjic C,AßmannU,AtkinsonC, Burger E,ReussnerR,WinterA (2020)Classifying approaches

for constructing single underlying models. In: Hammoudi S, Pires LF, Selić B (eds) Model-driven engineering and software
development, communications in computer and information science. Springer, Cham, pp 350–375

[NEF03] Nentwich C, Emmerich W, Finkelsteiin A (2003) Consistency management with repair actions. In: ICSE’03, pp 455–464
[NEFE03] Nentwich C, Emmerich W, Finkelsteiin A, Ellmer E (2003) Flexible consistency checking. ACM Trans Softw EngMethodol

12(1):28–63
[NER01] Nuseibeh B, Easterbrook S, Russo A (2001) Making inconsistency respectable in software development. J Syst Softw

58(2):171–180
[OBE+13] Orejas F, Boronat A, Ehrig H, Hermann F, Schölzel H (2013) On propagation-based concurrent model synchronization.

Electron Commun EASST 57:66
[Obj14] Object Management Group (2014) Business process model and notation (BPMN) v.2.0.2
[Obj15] Object Management Group (2015) Unified modeling language (UML) v.2.4.1
[Obj16a] Object Management Group (2016) Meta Object Facility (MOF) 2.0 Query/View/Transformation (QVT) v.1.3. http://www.

omg.org/spec/QVT/1.3
[Obj16b] Object Management Group (2016) Meta object facility (MOF) core specification v. 2.4.1
[Obj19] Object Management Group (2019) Decision model and notation (DMN) v.1.2
[OPKK18] Ohrndorf M, Pietsch C, Kelter U, Kehrer T (2018) ReVision: a tool for history-based model repair recommendations. In:

Proceedings of the 40th international conference on software engineering: companion proceeedings, ICSE’18. Association
for Computing Machinery, New York, NY, USA, pp 105–108

[OPN20] Orejas F, Pino E, Navarro M (2020) Incremental concurrent model synchronization using triple graph grammars. In:
Wehrheim H, Cabot J (eds) Fundamental approaches to software engineering, lecture notes in computer science. Springer,
Cham, pp 273–293

[Pen08] Pennemann K-H (2008) An algorithm for approximating the satisfiability problem of high-level conditions. Electron Notes
Theor Comput Sci 213(1):75–94

[Pie91] Pierce BC (1991) Basic category theory for computer scientists. MIT Press, Cambridge

http://www.omg.org/spec/QVT/1.3
http://www.omg.org/spec/QVT/1.3

Comprehensive systems: a formal foundation 1113

[PKR+09] Paige RF, Kolovos DS, Rose LM, Drivalos N, Polack FAC (2009) The design of a conceptual framework and technical
infrastructure for model management language engineering. In: Proceedings of the 2009 14th IEEE international conference
on engineering of complex computer systems, ICECCS’09. IEEE Computer Society, Washington, DC, USA, pp 162–171

[RB01] Rahm E, Bernstein PA (2001) A survey of approaches to automatic schema matching. VLDB J 10(4):334–350
[RC13] Rubin J, Chechik M (2013) N-way model merging. In: ESEC/FSE 2013. ACM, New York, NY, USA, pp 301–311
[RE12] Reder A, Egyed A (2012) Computing repair trees for resolving inconsistencies in design models. In: 2012 Proceedings of the

27th IEEE/ACM international conference on automated software engineering, pp 220–229
[Roz97] Rozenberg G (1997) Handbook of graph grammars and computing by graph transformation, vol 1. World Scientific
[RR88] Robinson E, Rosolini G (1988) Categories of partial maps. Inf Comput 79(2):95–130
[RRLW09] Rutle A,Rossini A, LamoY,WolterU (2009) A diagrammatic formalisation ofMOF-basedmodelling languages. In: TOOLS

EUROPE 2009. Springer, Berlin, pp 37–56
[RRLW12] Rutle A, Rossini A, Lamo Y, Wolter U (2012) A formal approach to the specification and transformation of constraints in

MDE. JLAMP 81(4):422–457
[SBMP08] Steinberg D, Budinsky F, Merks E, Paternostro M (D2008) EMF: eclipse modeling framework. Pearson Education
[Sch94] Schürr A (1994) Specification of graph translators with triple graph grammars. In: WG’94, pp 151–163
[SDZKR18] Samimi-Dehkordi L, Zamani B, Kolahdouz-Rahimi S (2018) EVL+Strace: a novel bidirectional model transformation

approach. Inf Softw Technol 100:47–72
[Seg92] Segen JC (1992) The dictionary of modern medicine. CRC Press
[SK03] Sendall S, Kozaczynski W (2003) Model transformation: the heart and soul of model-driven software development. IEEE

Softw 20(5):42–45
[SKLR18] Stünkel P, König H, Lamo Y, Rutle A (2018) Multimodel correspondence through inter-model constraints. In: Conference

companion of the 2nd international conference on art, science, and engineering of programming, Programming’18 Compan-
ion. Association for Computing Machinery, New York, NY, USA, pp 9–17

[SKLR20] Stünkel P, KönigH, LamoY, Rutle A (2020) Towardsmultiple model synchronization with comprehensive systems. In: FASE
2020, volume 12076 of lecture notes in computer science. Springer, Cham

[SKRL21] Stünkel P, König H, Rutle A, Lamo Y (2021) Multi-model evolution through model repair. J Obj Technol 20(1):1:1–25
[SLO18] Schneider S, Lambers L, Orejas F (2018) Automated reasoning for attributed graph properties. Int J Softw Tools Technol

Transf 20(6):705–737
[SLO19] Schneider S, Lambers L, Orejas F (2019) A logic-based incremental approach to graph repair. In: Hähnle R, van der AW

(eds) Fundamental approaches to software engineering, lecture notes in computer science. Springer, pp 151–167
[SMBB10] Silva Marcos Aurélio AD, Mougenot A, Blanc X, Bendraou R (2010) Towards automated inconsistency handling in design

models. In: Advanced information systems engineering, lecture notes in computer science. Springer, Berlin, pp 348–362
[SNL+07] Sabetzadeh M, Nejati S, Liaskos S, Easterbrook S, Chechik M (2007) Consistency checking of conceptual models via model

merging. In: RE 2007, pp 221–230
[Ste08] Stevens P (2008) Bidirectional model transformations in QVT: semantic issues and open questions. Softw Syst Model 9(1):7
[Ste17] Stevens P (2017) Bidirectional transformations in the large. In: MODELS 2017, pp 1–11
[Ste20] Stevens P (2020) Connecting software build with maintaining consistency between models: towards sound, optimal, and

flexible building from megamodels. Softw Syst Model 6:66
[SZ01] Spanoudakis G, Zisman A (2001) Inconsistency management in software engineering: survey and open research issues. In:

Handbook of software engineering and knowledge engineering, pp 329–380
[TA15] Trollmann F, Albayrak S (2015) Extending model to model transformation results from triple graph grammars to multiple

models. In: ICMT’15, pp 214–229
[TA16] Trollmann F, Albayrak S (2016) Extending model synchronization results from triple graph grammars to multiple models.

In: Van Gorp P, Engels G (eds) Theory and practice of model transformations, lecture notes in computer science. Springer,
pp 91–106

[TOLR17] Taentzer G Ohrndorf M, Lamo Y, Rutle A (2017) Change-preserving model repair. In: Huisman M, Rubin J (eds) Funda-
mental approaches to software engineering, lecture notes in computer science. Springer, Berlin, pp 283–299

[TvdBS20] Torres W, van den Brand MGJ, Serebrenik A (2020) A systematic literature review of cross-domain model consistency
checking by model management tools. Softw Syst Model 6:56

[UNKC08] UsmanM, Nadeem A, Kim T, Cho E (2008) A survey of consistency checking techniques for UMLmodels. In: Proceedings
of the 2008 advanced software engineering and its applications, ASEA’08. IEEE Computer Society, USA, pp 57–62

[WAF+19] Weidmann N, Anjorin A, Fritsche L Varró G, Schürr A, Leblebici E (2019) Incremental bidirectional model transformation
with eMoflon: : IBeX. In: Cheney J, Ko H-S (eds) Proceedings of the 8th international workshop on bidirectional transfor-
mations co-located with the Philadelphia logic week, Bx@PLW 2019, Philadelphia, PA, USA, June 4, 2019, volume 2355 of
CEUR workshop proceedings, pp 45–55. CEUR-WS.org

[Wal92] Walters RFC (1992) Categories and computer science. Cambridge University Press, New York
[WFA20] WeidmannN, Fritsche L,AnjorinA (2020)A search-based and fault-tolerant approach to concurrentmodel synchronisation.

In: Proceedings of the 13th ACM SIGPLAN international conference on software language engineering. Association for
Computing Machinery, New York, NY, USA, pp 56–71

[WHR14] Whittle J, Hutchinson J, Rouncefield M (2014) The state of practice in model-driven engineering. IEEE Softw 31(3):79–85
[WK99] Warmer J, Kleppe A (1999) The object constraint language: precise modeling with UML. Addison-Wesley Longman, Boston
[WK19] Weber JH,KuziemskyC (2019) Pragmatic interoperability for ehealth systems: the fallbackworkflowpatterns. In: Proceedings

of the 1st international workshop on software engineering for healthcare, SEH’19, pp 29–36, Piscataway, NJ, USA. IEEE
Press. Montreal, QC, Canada

[Wol21] Wolter U (2021) Logics of first-order constraints—a category independent approach. arXiv:2101.01944

http://arxiv.org/abs/2101.01944

1114 P. Stünkel et. al.

[WWS+17] Wille D, Wehling K, Seidl C, Pluchator M, Schaefer I (2017) Variability mining of technical architectures. In: Proceedings of
the 21st international systems and software product line conference—volume A, SPLC’17, pp 39–48, New York, NY, USA.
ACM, Sevilla, Spain

Received 23 November 2020
Accepted in revised form 5 June 2021 by Jordi Cabot, Heike Wehrheim and Eerke Boiten
Published online 30 July 2021

	Comprehensive systems: a formal foundation for multi-model consistency management
	Abstract
	1 Introduction
	2 Use case
	3 State of the art
	3.1 Alignment
	3.1.1 Commonality detection
	3.1.2 Commonality representation

	3.2 Verification
	3.3 Reconciliation
	3.4 Existing tools
	3.4.1 Epsilon (matching, merging, verification)
	3.4.2 Generic and domain-specific trace models
	3.4.3 Triple graph grammars

	4 Comprehensive systems
	4.1 Software model formalisation
	4.2 Intuition behind comprehensive systems
	4.3 Formal definition of Comprehensive Systems
	4.3.1 Set-based definition
	4.3.2 Span-based definition
	4.3.3 Equivalence of definitions

	4.4 Formal properties
	4.4.1 Consistency verification
	4.4.2 Advantages over model merge
	4.4.3 Transformations

	4.5 Comparison with triple graphs and graph diagrams
	4.6 Comprehensive systems for consistency management
	4.7 Summary and limitations

	5 Related and future work
	A Categorical background
	A.1 Functors, natural transformations, adjunctions
	A.2 Universal constructions
	A.2.1 Coproducts
	A.2.2 Pullbacks
	A.2.3 Pushouts
	A.2.4 Universal constructions and adjunctions

	A.3 Partial morphisms and partial arrow classifiers

	B Proofs
	B.1 Proof of Theorem 1
	B.1.1 Definition of mathbbN
	B.1.2 Equivalence of mathbbN and mathbbM
	B.1.3 Equivalence of mathbbCS and mathbbN

	B.2 Proof of Theorem 2
	B.3 Proof of Proposition 3
	B.4 Proof of Theorem 3
	B.5 Proof of Theorem 4
	B.6 Proof of Theorem 6

	References

