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Abstract. Deep neural networks (DNNs) have been shown lack of robustness, as they are vulnerable to small
perturbations on the inputs. This has led to safety concerns on applyingDNNs to safety-critical domains. Several
verification approaches based on constraint solving have been developed to automatically prove or disprove safety
properties for DNNs. However, these approaches suffer from the scalability problem, i.e., only small DNNs can
be handled. To deal with this, abstraction based approaches have been proposed, but are unfortunately facing the
precision problem, i.e., the obtained bounds are often loose. In this paper, we focus on a variety of local robustness
properties and a (δ, ε)-global robustness property of DNNs, and investigate novel strategies to combine the
constraint solving and abstraction-based approaches to work with these properties:

• We propose a method to verify local robustness, which improves a recent proposal of analyzing DNNs
through the classic abstract interpretation technique, by a novel symbolic propagation technique. Specifically,
the values of neurons are represented symbolically and propagated from the input layer to the output layer,
on top of the underlying abstract domains. It achieves significantly higher precision and thus can prove more
properties.

• We propose a Lipschitz constant based verification framework. By utilising Lipschitz constants solved by
semidefinite programming, we can prove global robustness of DNNs. We show how the Lipschitz constant
can be tightened if it is restricted to small regions. A tightened Lipschitz constant can be helpful in proving
local robustness properties. Furthermore, a global Lipschitz constant can be used to accelerate batch local
robustness verification, and thus support the verification of global robustness.

• We show how the proposed abstract interpretation and Lipschitz constant based approaches can benefit from
each other to obtain more precise results. Moreover, they can be also exploited and combined to improve
constraints based approach.

We implement our methods in the tool PRODeep, and conduct detailed experimental results on several bench-
marks.
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1. Introduction

The past few years have witnessed significant progress of deep neural networks (DNNs) in solving long-standing
artificial intelligent tasks, such as nature language processing [HDY+12], image classification [KSH12], and game
playing [SHM+16]. The technical progress has led to broad applications of DNNs to many industrial sectors, in-
cluding automotive, health and social care, and digital finance. The performance of these DNNs, when measured
with the prediction precision over a test dataset, is comparable to, or even better than, that of manually crafted
software. Not surprisingly, especially for safety-critical applications, the DNNs should be certified with respect
to safety properties.

The robustness property is one of themost important safety properties forDNNs. Intuitively, an input x , whose
classification is the target y , is said to be locally robust, if all neighboring inputs x ′ are being classified as y as well.
The L∞-norm is most widely used in characterizing neighbourhood relations, due to its intuitive interpretation
of the constraints for the input. Unfortunately, DNNs have been found lack of robustness. Specifically, [SZS+14]
discovered that it is possible to add a small, or even imperceptible, perturbation to a correctly classified input
and make it misclassified. Such adversarial examples have raised serious concerns on the safety of DNNs. If we
consider a self-driving system controlled by a DNN, a failure on the recognization of a traffic light may lead to
serious consequences because human lives are at stake.

Algorithms used to find adversarial examples are based on gradient descent (see e.g., [SZS+14, CW17]),
saliency maps (see e.g., [PMJ+15]), evolutionary algorithm (see e.g., [NYC15]), etc. Roughly speaking, these
are heuristic search algorithms without the guarantees to find the optimal values, that is to say, the bound
on the gap between an obtained value and its ground truth is unknown. If an adversarial example is found,
it demonstrates that the network is not robust at some input x . However, the certification of a robust input
x needs provable guarantees. Thus, techniques based on formal verification have been developed. Up to now,
DNN verification includes constraint-solving [PT10, KBD+17b, LM18, Ehl17, NKR+17, WK18, DSG+18],
layer-by-layer exhaustive search [HKWW17, WHK18, WZC+18], global optimization [RHK18a], and abstract
interpretation [GMDC+18, SGPV19b, SGM+18]. Abstract interpretation is a theory in static analysis which
verifies a program by using sound approximation of its semantics [CC77]. Its basic idea is to use an abstract
domain to over-approximate the computation on inputs. In [GMDC+18], this idea using abstract interpretation
was first employed for verifyingDNNs.However, abstract interpretation can be imprecise, due to the non-linearity
in DNNs. The paper[SGM+18] implements a faster Zonotope domain for DNN verification and it can deal with
more activation functions like sigmoid. In a later work, [SGPV19b] puts forward a new abstract domain specially
for DNN verification and it is more efficient and precise than Zonotope.

Another useful way to characterize robustness is exploiting the Lipschitz continuity. From the perspective of
functions, the Lipschitz constant is a measure of the sensitivity of a function, which indicates the maximum ratio
between variations in the output space and variations in the input space. When viewing the DNN as a function
characterizing it, its Lipschitz constant can be extremely useful in a variety of applications. A technique based
on semidefinite programming can be used to compute guaranteed upper bounds on the Lipschitz constant of
DNNs [FRH+19]. In this paper, we discuss how it can be used to verify robustness of DNNs. We consider first
local robustness based on general Lp-norms. We discuss how L1 and L2-norms can be encoded as constraints for
the inputs. Leveraging a property of Lipschitz continuous function, we show how to handle robustness properties
based on Lp-norms. Moreover, we consider global robustness properties and establish their connections.

An overview of the contributions of the paper is given in Fig. 1, which is detailed below.

• Firstly, this paper proposes a novel symbolic propagation technique to enhance the precision of abstract
interpretation based DNN verification. This part is based on our previous paper [LLY+19]. For every neuron,
we symbolically represent, with an expression, how its activation value can be determined by the activation
values of neurons in previous layers. By both illustrative examples and experimental results, we show that,
comparing with using only abstract domains, our new approach can find significantly tighter constraints over
the neurons’ activation values.
In Fig. 1, the abstract interpretation is at the center. Because abstract interpretation is a sound approximation,
with tighter constraints, we may feed the constraints to SMT based frameworks, which allow us to handle
larger networks.

• Secondly, we consider global robustness properties, asserting that when two inputs are close (specified by δ),
their values in the output stay also close by (specified by ε). By employing upper bound of Lipschitz constant,
we give two methods for verifying the norm-based robustness properties of DNNs, both of which are proved
to be sound.
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Fig. 1.Cooperation among three methods for robustness verification, in which AI, SMT and Lip are abbreviations for abstract interpretation,
satisfiability modulo theories and Lipschtiz respectively

For local Lp-norm robustness, we present a method to compute the maximum verifiable radius for a certain
input. For global robustness, we also present amethod to verify the so-called (δ, ε)-global robustness. Compar-
ing with abstract interpretation, Lipschitz based methods have complementary advantages. Lipschitz based
methods can handle robustness related to general Lp-norm, where the regions cannot be directly abstracted
by polyhedra (for example the L2-norm). Also, they are more efficient, especially for a batch task with large
number of inputs, because the Lipschitz constant can be reused to compute the maximum verifiable radius
through simple arithmetic operations on the output values for different inputs. In other words, when the
Lipschitz constant is obtained, the methods verify the robustness in a black-box way, regardless of the inner
structure of the DNN.

• Thirdly,we further showhow to intertwine the three verificationmethodologies, namely abstract interpretation,
SMT and Lipschitz constant based approaches, to achieve better performance. In Fig. 1, the solid arrows
demonstrate the improvements of the other two methods by invoking DeepSymbol [LLY+19].
– For SMT based methods, DeepSymbol provides the bounds on hidden neurons, which indicate the ranges
of the variables of the SMT problem encoded from a verification problem of local robustness. That will
significantly accelerate the solving procedure (the SMT based DNN verifier Reluplex [KBD+17b]).

– For Lipschitz constant based methods, DeepSymbol provides the bounds of slope restrictions of each
activation functions inDNN,which can be used to compute a tighter upper approximation of theLipschitz
constant for a given region. The regional Lipschitz constant will be further used to verify the (δ, ε)-global
robustness and leads to more precise results.

The dashed arrows reversely demonstrates the auxiliary role of Lipschitz constant based methods in verifying
local robustness properties.
– When the global Lipschitz constant is obtained, a robustness radius w.r.t. Lp-norm can be computed in
an efficient way for a certain input. So for the batch task of verifying local robustness, it can be used as
a filter to quickly recognize the robustness cases whose regions are covered by their radii. That will often
speed up the verification process.

We have implemented our approaches in the tool PRODeep [LLcH+20], and provided detailed experimental
results on benchmark datasets such as MNIST and DNNs trained for the ACAS Xu system.

Organization of the paper. We provide preliminaries in Sect. 2. Robustness properties for DNNs are presented in
Sect. 3. We present an overview of DNN verification methods in Sect. 4 and present our symbolic propagation
technique in Sect. 5. In Sect. 6, we introduce the algorithm which uses semidefinite programming to calculate
the Lipschitz constant of a given DNN and put forward a framework for verifying local and global robustness
of DNNs with the Lipschitz constant. Experimental evaluation is shown in Sect. 7. Soundness guarantees and
related works are further discussed in Sects. 8, and 9 concludes the paper.

2. Preliminaries

We recall some basic notions on deep neural networks and abstract interpretation. For a vector x̄ ∈ R
n , we use

xi to denote its i -th entry. For a matrixW ∈ R
m×n , Wi,j denotes the entry in its i -th row and j -th column.
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Fig. 2. A fully connected network: Each layer performs the composition of an affine transformation Affine(x̄ ; W , b) and the activation
function, where the coefficients of the matrix W are recorded on edges between neurons accordingly

2.1. Deep neural networks

Weworkwith deep feedforward neural networks, orDNNs, which can be represented as a function f : Rm → R
n ,

mapping an input x̄ ∈ R
m to its corresponding output ȳ � f (x̄ ) ∈ R

n . In this work we consider DNNs for
classification tasks. In this case, the output dimensions correspond to classification labels, and usually the label
given by a DNN f is the one with the maximum output, i.e., argmax1≤i≤n f (x̄ )i . A DNN has in its structure a
sequence of layers, including an input layer at the beginning, followed by several hidden layers, and an output
layer in the end. Basically the output of a layer is the input of the next layer. To unify the representation, we
denote the activation values at each layer as a vector. Thus the transformation between layers can also be seen
as a function in R

m ′ → R
n ′
. The DNN f is the composition of the transformations between layers, which is

typically composed of an affine transformation followed by a non-linear activation function. In this paper we
mainly consider one of the most commonly used activation functions – the rectified linear unit (ReLU) activation
function, defined as

ReLU(x ) � max(x , 0)

for x ∈ R and ReLU(x̄ ) � (ReLU(x1), . . . ,ReLU(xn )) for x̄ ∈ R
n . Besides ReLU, there are other activation

functions like sigmoid and tanh, defined as

σ (x ) � 1
1 + e−x

, tanh(x ) � ex − e−x

ex + e−x
.

Typically an affine transformation is of the form Affine(x̄ ; W , b) � Wx̄ + b : Rm → R
n , whereW ∈ R

n×m and
b ∈ R

n . Mostly in DNNs we use a fully connected layer to describe the composition of an affine transformation
Affine(x̄ ; W , b) and the activation function, if the coefficient matrix W is not sparse and does not have shared
parameters.We call a DNNwith only fully connected layers a fully connected neural network (FNN). Fig. 2 gives
an intuitive description of fully connected layers and fully connected networks. Apart from fully connected layers,
we also have affine transformations whose coefficient matrices are sparse and have many shared parameters, like
convolutional layers. Readers can refer to e.g. [GMDC+18] for its formal definition. In our paper, we do not
specially deal with convolutional layers, because they can be regarded as common affine transformations. In the
architecture of DNNs, a convolutional layer is often followed by a non-linear max pooling layer, which takes as
an input a three dimensional vector x̄ ∈ R

m×n×r with two parameters p and q which dividem and n respectively,
defined as

MaxPoolp,q(x̄ )i,j ,k � max{xi ′,j ′,k | i ′ ∈ (p · (i − 1), p · i ] ∧ j ′ ∈ (q · (i − 1), q · i ]}.
We call a DNNwith only fully connected, convolutional, and max pooling layers a convolutional neural network
(CNN).

In the rest of the paper, we let the DNN f have N layers, each of which has mk neurons, for 0 ≤ k < N .
Therefore, m0 � m and mN−1 � n.
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Fig. 3. An illustration of Examples 2.1 and 4.2, where on the right the dashed lines give the abstraction region before the ReLU operation
and the full lines give the final abstraction f �(X �)

2.2. Abstract interpretation

Abstract interpretation is a theory in static analysis which verifies a program by using sound approximation of
its semantics [CC77]. Its basic idea is to use an abstract domain to over-approximate the computation on inputs
and propagate it through the program. In the following, we describe its adaptation to work with DNNs.

Generally, on the input layer, we have a concrete domain C, which includes a set of inputs X as one of its
elements. To enable an efficient computation, we choose an abstract domainA to infer the relation of variables in
C.We assume that there is a partial order	 on C aswell asA, which in our settings is the subset relation⊆.We have
a concretization function γ : A → C which assigns each abstract element a ∈ A to its concrete element γ (a) ∈ C ,
which is the concrete semantics of the abstract element a. Note that, a ∈ A is a sound abstraction of c ∈ C if and
only if c 	 γ (a). Intuitively, here soundness guarantees that a sound abstraction is an over-approximation of the
concrete element.

In abstract interpretation, it is important to choose a suitable abstract domain because it determines the
efficiency and precision of the abstract interpretation. In practice, we use specific types of constraints to represent
the abstract elements. Geometrically, a certain type of constraints corresponds to a special shape. E.g., the
conjunction of a set of arbitrary linear constraints corresponds to a polyhedron. Abstract domains that are
suitable for for verifying DNN include Box, Zonotope [GGP09, GGP10], and Polyhedra, etc. We briefly recall
them and give an example showing intuitively how these three abstract domains work in the following.

Box. A box B contains bound constraints of the form of a ≤ xi ≤ b. The conjunction of bound constraints
expresses a box in the Euclidean space. The form of the constraint for each dimension is an interval, and thus it
is also named the Interval abstract domain.

Zonotope. AzonotopeZ consists of constraints of the formof zi � ai+
∑m

j�1 bij εj , whereai , bij are real constants
and εj is bounded by a constant interval [lj , uj ]. The conjunction of these constraints express a center-symmetric
polyhedra in the Euclidean space.

Polyhedra. A Polyhedron P has constraints of the form of linear inequalities, i.e.,
∑n

i�1 aixi + b ≤ 0 and it gives
a closed convex polyhedron in the Euclidean space.

Example 2.1 Let x̄ ∈ R
2, and the possible values of x̄ be X � {(1, 0), (0, 2), (1, 2), (2, 1)}. With Box, we can

abstract the inputs X as [0, 2] × [0, 2], and with Zonotope, X can be abstracted as
{

x1 � 1 − 1
2
ε1 − 1

2
ε3, x2 � 1 +

1
2
ε1 +

1
2
ε2

}

.

where ε1, ε2, ε3 ∈ [−1, 1]. With Polyhedra, X can be abstracted as

{x2 ≤ 2, x2 ≤ −x1 + 3, x2 ≥ x1 − 1, x2 ≥ −2x1 + 2}.
Fig. 3 (the left part) gives an intuitive description for the three abstractions.
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3. Robustness Properties

The problem of verifying DNNs with respect to a robustness property can be stated formally as follows.

Definition 3.1 ([GMDC+18]) Given a function f : Rm → R
n which expresses a DNN, a set of inputs X0 ⊆ R

m ,
and a property C ⊆ R

n , verifying the property is to determine whether Tf (X0) ⊆ C holds, where Tf (X0) :�
{f (x̄ ) | x̄ ∈ X0}. We write such a property (f ,X0,C ).

Verification of robustness properties over DNNs is contained in this problem. In this section we formally
introduce robustness properties in different settings, which are standard in DNN verification.

3.1. Local robustness

For a DNN, local robustness mainly focuses on the consistency of output labels in a neighborhood of a certain
input. Following the Def. 3.1, we obtain the local robustness property by letting X0 be a neighborhood of an
input x̄ with the output label l , and defining C to be the set {ȳ ∈ R

n | argmax1≤i≤n yi � l}. Different ways to
define the neighborhood X0 lead to the following definitions of local robustness.

3.1.1. Box-Based Robustness

Using the intervals of each variables is a basicway to define a robustness region,which is a box (or hyperrectangle).
As its name suggests, we focus on the robustness in the region which is the Cartesian product of constant intervals
containing the given input. Formally, for ᾱ, β̄ ∈ R

m
≥0,

NeighborhoodBox(x̄ , ᾱ, β̄) � {x̄ ′ ∈ R
m | x̄i − ᾱi ≤ x̄ ′

i ≤ x̄i + β̄i , 1 ≤ i ≤ m}.
In addition to giving the bounds of each variables in an explicit way, many other classes of neighborhoods of an
input can be reduced to a box.
L∞-norm By bounding the L∞-norm, the region named L∞ ball can be defined as B∞(x̄ , r ) � {x̄ ′ ∈ R

n |
‖x̄ ′ − x̄‖∞ ≤ r}. The L∞ norm is most widely used to characterise norm-based robustness for the following
reasons. First, an L∞ ball is a box region intuitively, which can be precisely represented by the box domain, so
all the tools mentioned in this paper can deal with such input constraints. Also, the L∞ based robustness usually
has an explicit meaning in DNN models. For example, in image recognition, the L∞ based robustness gives a
upper bound of the disturbance on all the pixels, but other Lp-norms, like the L2-norm, are not so intuitive in this
setting. Last but not least, the L∞ based robustness is stronger than Lp based robustness, since it is a standard
result that ‖x̄‖∞ ≤ ‖x̄‖p for any x̄ .

Brightness robustness In image recognition, brightness attack is a common way of attacking DNNs: It allows
pixels with brightness greater than 1 − δ to become brighter. Formally, the robustness region of this brightness
attack is

NeighborhoodBrightness(x̄ , δ) � {x̄ ′ ∈ R
m | ∀ i , 1 − δ ≤ x̄i ≤ x̄ ′

i ≤ 1 ∨ x̄i � x̄ ′
i }.

Brightness attack also describes a box region of the input layer (but not an L∞ ball), so SMT based and abstract
interpretation based methods can both deal with it precisely.

3.1.2. Norm-Based Robustness

A typical way to define neighbourhood of an input is to use norm distance, especially the Lp-norm. Many
attacking approaches make perturbation based on some Lp-norm to generate adversarial examples [MMS+18,
SRBB19, TB19], and [NWL19] proposes a method to defend from attacks based on Lp-norms.

Formally theLp-normonRn is a function ‖·‖p : Rn → [0,∞) which assigns a point x̄ ∈ R
n to a non-negative

value, and we can use ‖x̄ − x̄ ′‖p to characterize the Lp distance between x̄ and x̄ ′. For 1 ≤ p < ∞, the Lp-norm
is defined as

‖x̄‖p �
(

n∑

i�1

| xi |p
) 1

p

,
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Fig. 4. The boundaries of unit L1, L2 and L∞ balls in R
2

and the L∞ norm as mentioned above can be regarded as the Lp-norm with p tending to infinity, and it can be
explicitly expressed as

‖x̄‖∞ � max
1≤i≤n

| xi | .

As the case of the L∞ ball, the neighbourhood of an input x̄ bounded by the Lp-norm can be described as an Lp

ball: The Lp (closed) ball with the center x̄ ∈ R
n and the radius r > 0 is defined as

Bp(x̄ , r ) � {x̄ ′ ∈ R
n | ‖x̄ ′ − x̄‖p ≤ r}.

Figure 4 gives the boundaries of the unit L1, L2 and L∞ balls in R
2.

As is shown in Fig. 4, except for L∞ norm, the robustness region defined by Lp-norm cannot be abstracted
to a box precisely in general.
General Lp-norm For 1 < p < ∞, the constraints of an Lp ball is no longer linear, and they can not be
encoded precisely by the tools mentioned in this paper, like SMT-based tools (Reluplex, Planet, etc.), and abstract
interpretation based tools (ERAN, DeepSymbol, etc.). Although the L∞ based robustness implies Lp based
robustness, it may result in a big loss of precision: For instance, the Lebesgue measure of B∞(0, 1) is n! times that
of B1(0, 1) in R

n , so B∞(0, 1) may not be a good abstraction of B1(0, 1).
Up to now, there have been a few approaches to dealing with general Lp based robustness, and they are based

on the Lipschitz continuity of the network. A function f : Rm → R
n is Lipschitz continuous, if there exists

L > 0, s.t. for any x̄ , x̄ ′ ∈ R
m ,

‖f (x̄ ) − f (x̄ ′)‖2 ≤ L · ‖x̄ − x̄ ′‖2.
Here we can get an over-approximation of the output range of a Lipschitz continuous function on an L2 ball

if we know its Lipschitz constant L. Also, by using the inequality ‖x̄‖p ≤ n
1
p − 1

q ‖x̄‖q , where x̄ ∈ R
n , we can

obtain the output range with any Lp-norm on the input and the output layers as

m−( 1
p − 1

2 )‖f (y) − f (x )‖p ≤ ‖f (y) − f (x )‖2 ≤ L‖y − x‖2 ≤ n
1
2 − 1

q L‖y − x‖q , (1)

where n andm are the dimension of the input layer and the output layer, respectively. In [RHK18b], it is proved
that deep neural networks are Lipschitz continuous, and the authors provide an algorithm to calculate a Lipschitz
constant of a given DNN. Amore efficient and accurate algorithm for calculating a Lipschitz constant of a DNN
is proposed in [FRH+19], where the authors pose the Lipschitz estimation problem as semidefinite programming
(SDP). Finally, Fast-Lip [WZC+18] is an algorithm to over-approximate the output range of a given DNN on an
Lp ball using its Lipschitz constant.
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Fig. 5. (δ, ε)-global robustness: the absolute differences of outputs are bounded by ε when the distances between the inputs are bounded by
δ through the L2-norm. Here F (N , x̄ , l) is the value of the output node indicating the label l ∈ L for a given DNN N with an input x̄

These Lipschitz continuity based methods can help verify general Lp based robustness, and they can work on
DNNs with most activation functions including ReLU. The disadvantage of such methods is the low precision
since the use of the Lipschitz constant is even further from the precise reachability; it characterises the behaviour
of a DNN by an upper bound of the local change rate.

3.2. Global robustness

For a DNN, global robustness focuses on the global behavior of all inputs in a certain region. Specifically, the
(δ, ε)-global robustness constrains the absolute differences between each coordinates of outputs by the norm
distances of pairs inputs (see Fig. 5). In [KBD+17a], the (δ, ε)-global robustness was defined as below.

Definition 3.2 (Def. 2 of [KBD+17a]) A DNN f is (δ, ε)-globally robust in the input region D if

∀ x̄ , x̄ ′ ∈ D, || x̄ − x̄ ′ ||2≤ δ ⇒ ‖f (x ) − f (x ′)‖∞ < ε.

Fig. 5 gives an intuitive explanation of global robustness.
Although global robustness does not necessarily imply a corresponding local robustness property, yet they

still have a close relationship in that global robustness actually gives a valid Lipschitz constant, which is helpful
in local robustness verification. Compared with local robustness, a global robustness property is generally more
difficult to verify, because it is often difficult to consider the whole high dimensional input space.

4. Methods for Verifying Local Robustness

In this section, we review two main classes of techniques for verifying local robustness properties. First, we recall
constraint based DNN verification algorithms based on SMT solvers. Then, we describe how to use abstract
interpretation to verify DNNs.

4.1. SMT based methods

In [KBD+17b, Ehl17], two SMT solvers Reluplex and Planet were presented to verify DNNs. Typically an
SMT solver is the combination of a SAT solver with the specialized decision procedures for other theories.
The verification of DNNs uses linear arithmetic over real numbers, in which an atom may have the form of∑n

i�1 wixi ≤ b, where wi and b are real numbers. Both Reluplex and Planet use the DPLL algorithm to split
cases and rule out conflict clauses. They are different in dealing with the intersection. For Reluplex, it inherits
rules from the Simplex algorithm and adds a few rules dedicated to ReLU operation. Through the classical pivot
operation, it searches for a solution to the linear constraints, and then applies the rules for ReLU to ensure the
ReLU relation for every node. Differently, Planet uses linear approximation to over-approximate the DNN, and
manages the conditions of ReLU and max pooling nodes with logical formulas.

The following example shows that how we encode a DNN verification problem into an SMT problem.
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Example 4.1 Consider the toy network f (x̄ ) � ReLU
((

1 2
1 −1

)

x̄ +
(
0
1

))

. Basically we write all the transfor-

mations in the networks, namely y1 � x1 + 2x2, y2 � x1 − x2 + 1, z1 � ReLU(y1), and z2 � ReLU(y2). In
order to verify a property (f ,X ,C ), we only need to put the constraints above, along with the constraints of
X and the negation of C as the input to the SMT solver. If the SMT solver returns SAT, then we have found a
counterexample to violate the property, or otherwise the property is successfully verified.

Up to now, the state-of-art SMT based tools include Reluplex, Planet, and Marabou, and they support
only piece-wise linear activation functions, and linear constraints for input and output. SMT-based methods are
theoretically sound and complete, but their time complexity is proved to be NP-complete, so they do not scale
on large networks.

4.2. Abstract interpretation based methods

Under the framework of abstract interpretation, to conduct verification of DNNs, we first need to choose an
abstract domain A. Then we represent the set of inputs of a DNN as an abstract element (value) X �

0 in A. After
that, we pass it through the DNN layers by applying abstract transformers of the abstract domain. Recall that
N is the number of layers in a DNN and mk is the number of nodes in the k -th layer. Let fk (where 1 ≤ k < N )
be the layer function mapping from R

mk−1 to R
mk . We can lift fk to Tfk : P(Rmk−1 ) → P(Rmk ) such that

Tfk (X ) � {fk (x̄ ) | x̄ ∈ X }.
Definition 4.1 Anabstract transformerT �

fk
is a functionmapping an abstract elementX �

k−1 in the abstract domain

A to another abstract element X �
k . Moreover, T �

fk
is sound if Tfk ◦ γ ⊆ γ ◦ T �

fk
.

Intuitively, a sound abstract transformer T �
fk
maintains a sound relation between the abstract post-state and

the abstract pre-state of a transformer in DNN (such as linear transformation, ReLU operation, etc.).
Let Xk � fk (...(f1(X0))) be the exact set of resulting vectors in R

mk (i.e., the k -th layer) computed over the
concrete inputs X0, and X �

k � Tfk
�(...(Tf1

�(X �
0))) be the corresponding abstract value of the k -th layer when

using an abstract domain A. Note that X0 ⊆ γ (X �
0). We have the following conclusion.

Proposition 4.1 If Xk−1 ⊆ γ (X �
k−1), then we have Xk ⊆ γ (X �

k ) � γ ◦ T �
fk
(X �

k−1).

Proof. Because T �
fk
is a sound abstract transformer, we have

Xk � Tf (Xk−1) ⊆ Tf (γ (X �
k−1)) ⊆ γ ◦ T �

fk
(γ (X �

k−1)) � γ (X �
k ). �

Therefore, when performing abstract interpretation over the transformations in a DNN, the abstract pre-state
X �

k−1 is transformed into abstract post-state X �
k by applying the abstract transformer T �

fk
which is built on

top of an abstract domain. This procedure starts from k � 1 and continues until reaching the output layer (and
getting X �

N−1). Finally, we use X �
N−1 to check the property C as follows:

γ (X �
N−1) ⊆ C . (2)

The following theorem states that this verification procedure based on abstract interpretation is sound for the
DNN verification problem.

Theorem 4.1 If Equation (2) holds, then Tf (X0) ⊆ C .

Proof. By induction on N , it is easy to see that Tf (X0) ⊆ γ (X �
N−1), so Equation (2) implies Tf (X0) ⊆ C . �

It’s not hard to see that the other direction does not necessarily hold due to the potential incompleteness
caused by the over-approximation made in both the abstract elements and the abstract transformers T �

fk
in an

abstract domain.

Example 4.2 Suppose that x̄ takes the value in X given in Example 2.1, and we consider the transformation

f (x̄ ) � ReLU
((

1 2
1 −1

)

x̄ +
(
0
1

))

. Nowwe use the three abstract domains to calculate the resulting abstraction.

• Box. The abstraction after the affine transformation is [0, 6]× [−1, 3], and thus the final result is [0, 6]× [0, 3].
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• Zonotope. After the affine transformation, the zonotope abstraction can be obtained straightforward:
{

y1 � 3 +
1
2
ε1 + ε2 − 1

2
ε3, y2 � 1 − ε1 − 1

2
ε2 − 1

2
ε3 | ε1, ε2, ε3 ∈ [−1, 1]

}

.

The first dimension y1 is definitely positive, so it remains the same after the ReLU operation. The second
dimension y2 can be either negative or non-negative, so its abstraction after ReLU will become a box which
only preserves the range in the non-negative part, i.e. [0, 3], so the final abstraction is

{

y1 � 3 +
1
2
ε1 + ε2 − 1

2
ε3, y2 � 3

2
+

3
2
η1 | ε1, ε2, ε3, η1 ∈ [−1, 1]

}

,

whose concretization is [1, 5] × [0, 3].
• Polyhedra. It is easy to obtain the polyhedron before ReLU: P1 � {y2 ≤ 2, y2 ≥ −y1 + 3, y2 ≥ y1 − 5, y2 ≤

−2y1+10}. Similarly, the first dimension is definitely positive, and the second dimension can be either negative
or non-negative, so the resulting abstraction is (P1∧ (y2 ≥ 0))∨ (P1∧ (y2 � 0)), i.e. {y2 ≤ 2, y2 ≥ −y1 +3, y2 ≥
0, y2 ≤ −2y1 + 10}.

Fig. 3 (the right part) gives an illustration for the abstract interpretation with the three abstract domains in this
example.

The abstract value computed via abstract interpretation can be directly used to verify properties. Take the
local robustness property, which expresses an invariance on the classification of f over a region B (x̄0, δ), as an
example. Let li (x̄ ) be the confidence of x̄ being labeled as i , and l (x̄ ) � argmaxi li (x̄ ) be the label. It has been
shown in [SZS+14, RHK18a] that DNNs are Lipschitz continuous. Therefore, when δ is small, we have that
| li (x̄ )− li (x̄0) | is also small for all labels i . That is, if li (x̄0) is significantly greater than lj (x̄0) for j �� i , it is highly
likely that li (x̄ ) is also significantly greater than lj (x̄ ). It is not hard to see that the more precise the relations
among li (x̄0), li (x̄ ), lj (x̄0), lj (x̄ ) computed via abstract interpretation, the more likely we can prove the robustness.
Based on this rational, this paper aims to derive techniques to enhance the precision of abstract interpretation
such that it can prove properties that cannot be proven by the original abstract interpretation approach.

5. Optimisations by Symbolic Propagation

To improve the effectiveness and the efficiency of robustness verification by abstract interpretation, we introduce
symbolic propagation to take advantage of the linearity in most part of the DNNs. Comparing with traditional
abstract interpretation based methods, this method will significantly improve in terms of the precision and
memory usage. Futhermore, by providing neurons’ bounds computed by our method, it is possible to accelerate
the verification of SMT-based methods.

5.1. DeepSymbol: Symbolic propagation for DNN abstract interpretation

Symbolicpropagation canensure soundnesswhileprovidingmoreprecise results. In [WPW+18], a technique called
symbolic interval propagation is present andwe extend it to our abstract interpretation framework so that it works
on all abstract domains. First, we use the following example to show that using only abstract transformations in
an abstract domain may lead to precision loss, while using symbolic propagation could enhance the precision.
Example 5.1 Assume that we have a two-dimensional input (x1, x2) ∈ [0, 1] × [0, 1] and a few transformations
y1 :� x1 + x2, y2 :� x1 − x2, and z :� y1 + y2. Suppose we use the Box abstract domain to analyze the
transformations.

• When using only the Box abstract domain, we have y1 ∈ [0, 2], y2 ∈ [−1, 1], and thus z ∈ [−1, 3] (i.e.,
[0, 2] + [−1, 1]).

• By symbolic propagation, we record y1 � x1 + x2 and y2 � x1 − x2 on the neurons y1 and y2 respectively, and
then get z � 2x1 ∈ [0, 2]. This result is more precise than that given by using only the Box abstract domain.
Non-relational (e.g., intervals) and weakly-relational abstract domains (e.g., zones, octagons, zonotopes,

etc.)[Min17] may lose precision on the application of the transformations from DNNs. The transformations
include affine transformations, ReLU, and max pooling operations. Moreover, it is often the case for weakly-
relational abstract domains that the composition of the optimal abstract transformers of individual statements
in a sequencedoes not result in the optimal abstract transformer for the whole sequence, which has been shown in
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Example 3when using only theBox abstract domain.Anoption to precisely handle general linear transformations
is to use the Polyhedra abstract domain which uses a conjunction of linear constraints as domain representation.
However, the Polyhedra domain has worst-case exponential space and time complexity when handling the ReLU
operation (via the join operation in the abstract domain). As a consequence, DNNverificationwith the Polyhedra
domain is impractical for large scale DNNs, which has been also confirmed in [GMDC+18].

In this paper, we leverage symbolic propagation technique to enhance the precision for abstract interpretation
based DNN verification. The insight behind is that affine transformations account for a large portion of the
transformations in a DNN. Furthermore, when we verify properties such as robustness, the activation of a
neuron can often be deterministic for inputs around an input with small perturbation. Hence, there should
be a large number of linear equality relations that can be derived from the composition of a sequence of linear
transformations via symbolic propagation. And we can use such linear equality relations to improve the precision
of the results givenby theabstractdomains. InSect. 7, our experimental results confirmthat,when theperturbation
tolerance δ is small, there is a significant proportion of neurons whose ReLU activations are consistent, i.e., they
are always activated or deactivated.

First, given X0, a ReLU neuron y :� ReLU(
∑n

i�1 wixi +b) can be classified into one of the following 3
categories (according to its range information): (1) definitely-activated, if the range of

∑n
i�1 wixi +b is a subset of

[0,∞), (2) definitely-deactivated, if the range of
∑n

i�1 wixi +b is a subset of (−∞, 0], and (3) uncertain, otherwise.
Now we detail our symbolic propagation technique. We first introduce a symbolic variable si for each node i

in the input layer, to denote the initial value of that node. For a ReLU neuron d :� ReLU(
∑n

i�1 wici + b) where
ci is a symbolic variable, we make use of the resulting abstract value of abstract domain at this node to determine
whether the value of this node is definitely greater than 0 or definitely less than 0. If it is a definitely-activated
neuron, we record for this neuron the linear combination

∑n
i�1 wici + b as its symbolic representation (i.e., the

value of symbolic propagation). If it is a definitely-deactivated neuron, we record for this neuron the value 0 as its
symbolic representation. Otherwise, we cannot have a linear combination as the symbolic representation and thus
a fresh symbolic variable sd is introduced to denote the output of this ReLU neuron. We also record the bounds
for sd , such that the lower bound for sd is set to 0 (since the output of a ReLU neuron is always non-negative)
and the upper bound keeps the one obtained by abstract interpretation.

To formalize the algorithm for ReLU node, we first define the abstract states in the analysis and three trans-
fer functions for linear assignments, condition tests and joins respectively. An abstract state in our analysis is
composed of:

• an abstract element for a numeric domain (e.g., Box) n� ∈ N�,

• a set of free symbolic variables C (those not equal to any linear expressions),

• a set of constrained symbolic variables S (those equal to a certain linear expression), and

• a map from constrained symbolic variables to linear expressions ξ ::� S → {∑n
i�1 aixi + b | xi ∈ C}. Note

that we only allow free variables in the linear expressions in ξ .

In Algorithm 1, we show how to compute the transfer functions for linear assignments [[y :� ∑n
i�1 wixi + b]]�

which over-approximates the behaviors of y :� ∑n
i�1 wixi + b. In the beginning, all input variables are taken

as free symbolic variables. If n > 0 (i.e., the right value expression is not a constant), the variable y is added to
the constrained variable set S. All constrained variables in

∑n
i�1 wixi + b are replaced by their corresponding

expressions in ξ , with the resulting expression denoted by expr. Then, themap from y to the new expr is recorded
in ξ . Abstract numeric element n� is updated by the transfer function for assignments in the numeric domain
[[y :� expr]]�N� (note that we use [[·]]�N� to denote the transfer function in the numeric domain N�). If n ≤ 0, the
right-value expression is a constant, then y is added to C, and is removed from S and ξ .

The abstract transfer function for conditional test is defined as

[[expr ≤ 0]]�(n�,C,S, ξ ) ::� [[expr ≤ 0]]�N� (n�,C,S, ξ ),

which only updates the abstract element n� by the transfer function in the numeric domain N�.
The join algorithm in our analysis is defined in Algorithm 2. Only the constrained variables arising in both

input S0 and S1 with the same corresponding linear expressions are taken as constrained variables. The abstract
element in the result is obtained by applying the join operator in the numeric domain �N� .
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Algorithm 1: Transfer function for linear assignments [[y :� ∑n
i�1 wixi + b]]�

Input: abstract numeric element n� ∈ N�, free variables C, constrained variables S, symbolic map ξ
1 expr ← ∑n

i�1 wixi + b
2 When the right value expression is not a constant
3 if n > 0 then
4 for i ∈ [1,n] do
5 if xi ∈ S then
6 expr � expr|xi←ξ (xi )

7 end
8 end
9 ξ � ξ ∪ {y �→ expr} S � S ∪ {y} C � C \ {y} n� � [[y :� expr]]�N�

10 else
11 ξ � ξ \ (y �→ ∗) C � C ∪ {y} S � S \ {y} n� � [[y :� expr]]�N�

12 end
13 return (n�,C,S, ξ )

The transfer function for a ReLU node is defined as

[[y :� ReLU

(
n∑

i�1

wixi + b

)

]]�(n�,C,S, ξ ) ::� join([[y ≥ 0]]�(ψ), [[y :� 0]]�([[y < 0]]�)(ψ)),

where ψ � [[y :� ∑n
i�1 wixi + b]]�(n�,C,S, ξ ). For y ≥ 0, the output of a ReLU node is the same as the input,

and for y < 0, it outputs 0, so the transformer outputs the join of these two cases.

Algorithm 2: Join algorithm join

Input: (n�

0,C0,S0, ξ0) and (n�

1,C1,S1, ξ1)
1 n� � n�

0 �N� n�

1
2 ξ � ξ0 ∩ ξ1
3 S � {x | ∃expr, x → expr ∈ ξ}
4 C � C0 ∪ (S0 \ S)
5 return (n�,C,S, ξ )

For a max pooling node d :� max1≤i≤k ci , if there exists some cj whose lower bound is larger than the upper
bound of ci for all i �� j , we set cj as the symbolic representation for d . Otherwise, we introduce a fresh symbolic
variable sd for d and record its bounds wherein its lower (upper) bound is the maximum of the lower (upper)
bounds of ci ’s. Note that the lower (upper) bound of each ci can be derived from the abstract value for this neuron
given by the abstract domain.

The algorithm for max-pooling layers can be defined with the three aforementioned transfer functions as
follows:

join(φ1, join(φ2, . . . , join(φk−1, φk ))),
where φi � [[d :� ci ]]�[[ci ≥ c1]]� . . . [[ci ≥ ck ]]�(n�,C,S, ξ ).

Here φi represents the case that the variable ci is the maximum, and the abstract transformer outputs the join
of all possible cases φi .

Example 5.2 For the DNN shown in Fig. 6a, there are two input nodes denoted by symbolic variables x and y ,
two hidden nodes, and one output node. The initial ranges of the input symbolic variables x and y are given, i.e.,
[4, 6] and [3, 4] respectively. The weights are labeled on the edges. It is not hard to see that, when using the Interval
abstract domain, (the inputs of) the two hidden nodes have bounds [17, 24] and [0, 3] respectively. For the hidden
node with [17, 24], we know that this ReLU node is definitely activated, and thus we use symbolic propagation
to get a symbolic expression 2x + 3y to symbolically represent the output value of this node. Similarly, for the
hidden node with [0, 3], we get a symbolic expression x − y .
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(a) (b)

Fig. 6. An illustrative example of symbolic propagation
Then for the output node, symbolic propagation results in x + 4y , which implies that the output range of the

whole DNN is [16, 22]. If we use only the Interval abstract domain without symbolic propagation, we will get
the output range [14, 24], which is less precise than [16, 22].

For theDNN shown in Fig. 6b, we change the initial range of the input variable y to be [4.5, 5]. For the hidden
ReLU node with [−1, 1.5], it is neither definitely activated nor definitely deactivated, and thus we introduce a
fresh symbolic variable s to denote the output of this node, and set its bound to [0, 1.5]. For the output node,
symbolic propagation results in 2x + 3y − s , which implies that the output range of the whole DNN is [20, 27].

For a definitely-activated neuron, we utilize its symbolic representation to enhance the precision of abstract
domains. We add the linear constraint d �� ∑n

i�1 wici + b into the abstract value at (the input of) this node, via
the meet operation (which is used to deal with conditional test in a program) in the abstract domain [CC77]. If the
precision of the abstract value for the current neuron is improved, we may find more definitely-activated neurons
in the subsequent layers. In other words, the analysis based on abstract domain and our symbolic propagation
mutually improves the precision of each other on-the-fly.

After obtaining symbolic representation for all the neurons in a layer k , the computationproceeds to layer k+1.
The computation terminates after completing the computation for the output layer. All symbolic representations
in the output layer are evaluated to obtain value bounds.

The following theorem shows some results on precision of our symbolic propagation technique.

Theorem 5.1 In the following, Zonotope all refers to [GGP09, GGP10], whose implementation is included in
Apron.

(1) For anFNN f : Rm → R
n and a box regionX ⊆ R

m , the Box abstract domainwith symbolic propagation
gives a more precise abstraction for f (X ) than the Zonotope abstract domain without symbolic propagation.

(2) For anFNN f : Rm → R
n and a box regionX ⊆ R

m , the Box abstract domainwith symbolic propagation
and the Zonotope abstract domain with symbolic propagation give the same abstraction for f (X ).

(3) There exists a CNN g : Rm → R
n and a box region X ⊆ R

m s.t. the Zonotope abstract domain with
symbolic propagation give a more precise abstraction for g(X ) than the Box abstract domain with symbolic
propagation.

Proof. (1) Since an FNN only contains fully connected layers, we just need to prove that, Box with symbolic
propagation (i.e., BoxSymb) is always more precise than Zonotope in the transformations on each ReLU neuron
y :� ReLU(

∑n
i�1 wixi +b). Assume that before the transformation, BoxSymb is more precise or as precise as

Zonotope. Since the input is a Box region, the assumption is valid in the beginning. Then we consider three cases:
(a) in BoxSymb, the sign of

∑n
i�1 wixi + b is uncertain, then it must also be uncertain in Zonotope. In both

domains, a constant interval with upper bound computed by
∑n

i�1 wixi + b and lower bound as 0 is assigned
to y (this can be inferred from our aforementioned algorithms and [GGP09]). With our assumption, the upper
bound computed by BoxSymb is more precise than that in Zonotope; (b) in BoxSymb, the sign of

∑n
i�1 wixi + b

is always positive, then it must be always positive or uncertain in Zonotope. In the former condition, BoxSymb is
more precise because it loses no precision, while Zonotope can lose precision because of its limited expressiveness.
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In the latter condition, BoxSymb is more precise obviously; (c) in BoxSymb, the sign of
∑n

i�1 wixi + b is always
negative, then it must be always negative or uncertain in Zonotope. Similar to case (b), BoxSymb is also more
precise in this case.

(2) Assume that before each transformation on a ReLU neuron y :� ReLU(
∑n

i�1 wixi +b), BoxSymb and
ZonoSymb (Zonotope with symbolic propagation) have the same precision. This assumption is valid when the
input is a Box region. Then the evaluation of

∑n
i�1 wixi + b is the same in BoxSymb and ZonoSymb, thus in the

three cases:(a) the sign of
∑n

i�1 wixi + b is uncertain, and they both compute the same constant interval for y ;
(b) and (c)

∑n
i�1 wixi + b is always positive or negative, and they both lose no precision.

(3) It is easy to know that ZonoSymb is more precise or as precise as BoxSymb in all transformations. In
CNN, with Max-Pooling layer, we just need to give an example that ZonoSymb can be more precise. Let the
ZonotopeX ′ � {x1 � 2+ ε1 + ε2, x2 � 2+ ε1 − ε2 | ε1, ε2 ∈ [−1, 1]} and the max pooling node y � max{x1, x2}.
Obviously X ′ can be obtained through a linear transformation on some box region X . With Box with symbolic
propagation, the abstraction of y is [0, 4], while Zonotope with symbolic propagation gives the abstraction is
[1, 4].�

Thm 5.1 gives us some insights: The symbolic propagation technique is strong (even stronger than Zonotope)
in dealing with ReLU nodes, while Zonotope gives a more precise abstraction on max pooling nodes. It also
provides useful advice: When we work with FNNs with the input range being a box, we should use Box with
symbolic propagation rather than Zonotope with symbolic propagation since it does not improve the precision
but takes more time. Results related to Thm 5.1 are also illustrated in our experiments.

5.2. Accelerating SMT-based verification

Now we describe how to utilize the results of abstract interpretation with our symbolic propagation to improve
the performance of SMT-based DNN verification approaches.

Generally speaking, there is a huge bottleneck in efficiency of SMT-based DNN verification approaches,
e.g., relying on case splitting for ReLU operation. In the worst case, case splitting is needed for each ReLU
operation in a DNN, which leads to an exponential blow-up. In particular, when analyzing large-scale DNNs,
SMT-based DNN verification approaches may suffer from the scalability problem and account time out, which
is also confirmed experimentally in [GMDC+18].

In this paper, we utilize the results of abstract interpretation (with symbolic propagation) to accelerate SMT-
based DNN verification approaches. More specifically, we use the bound information of each ReLU node (ob-
tained by abstract interpretation) to reduce the number of case-splitting, and thus accelerate SMT-based DNN
verification.For example, onaneurond :� ReLU(

∑n
i�1 wici+b), ifweknowthat this node is adefinitely-activated

node according to the bounds given by abstract interpretation, we only consider the case d :� ∑n
i�1 wici + b and

thus no split is applied. We remark that this does not compromise the precision of SMT-based DNN verification
while improving their efficiency.

6. Lipschitz Constant Based Method

The Lipschitz constant of a DNN measures the maximum ratio between variations in the output space and
variations in the input space, which can be useful in DNN verification, especially when the properties are related
to general Lp-norms with 1 < p < ∞, whose regions cannot be expressed by linear constraints.

In this section we give a Lipschitz constant based method (Lip. method for short) for robustness verification.
We first need to obtain the Lipschitz constant of the DNN. The problem of computing an upper approximation
of the Lipschitz constant can be encoded into an SDP problem, which can be solved effectively by optimization.

For verifying the local robustness properties related to Lp-norm, we present a method to compute a lower
approximation of the maximum robustness radius. In what follows, we also call it maximum verifiable radius. We
also present a method to verify the (δ, ε)-global robustness of a DNN in a given region.

6.1. Approximating from above the Lipschitz constant by SDP

In this section we briefly review an algorithm to compute the Lipschitz constant of a given DNN proposed
by Fazlyab et al. [FRH+19]. Basically, this algorithm encodes the condition of Lipschitz continuity as semi-
positive definiteness of a matrix, and the calculation of the tight Lipschitz constant is reduced to a semidefinite
programming (SDP) problem.
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The difficulty of calculating the Lipschitz constant of a DNN is the non-linear activation functions, where we
usually have the form φ(x̄ ) � (ϕ(x1), . . . , ϕ(xn ))� of repeated non-linearity, where ϕ : R → R is the activation
function like ReLU, sigmoid, tanh, etc. Here we require that the function ϕ should be increasing. The Lipschitz
continuity of a DNN relies on the slope restriction of the activation function involved, defined as:

Definition 6.1 A function ϕ : R → R is slope-restricted on the interval [α, β], if for any x , y ∈ R satisfying x �� y ,

α ≤ ϕ(y) − ϕ(x )
y − x

≤ β.

The activation functions mentioned above are all slope-restricted: Especially, ReLU, tanh, and max pooling
are all slope-restricted on [0, 1], and sigmoid is slope-restricted on [0, 0.25].Whenwe have an activation function ϕ
which is slope-restricted on [α, β], then the function φ(x̄ ) � (ϕ(x1), . . . , ϕ(xn ))� satisfies the following incremental
quadratic constraint:

Lemma 6.1 ([FRH+19]) Suppose ϕ : R → R is slope-restricted on [α, β]. Define

Tn � {T ∈ Sn | T �
n∑

i�1

λii eie
�
i +

∑

1≤i<j≤n

λij (ei − ej )(ei − ej )�, λij ≥ 0},

where Sn is the set of symmetric matrices in R
n×n , and ei ∈ R

n is the vector in which the i -th entry is 1 and the
others 0. Then for any T ∈ Tn , the function φ(x̄ ) � (ϕ(x1) · · · ϕ(xn ))� : Rn → R

n satisfies
(

x̄ − ȳ
φ(x̄ ) − φ(ȳ)

)� ( −2αβT (α + β)T
(α + β)T −2T

) (
x̄ − ȳ

φ(x̄ ) − φ(ȳ)

)

≥ 0.

Lemma 6.1 provides a connection between Lipschitz continuity and semidefiniteness of a matrix. Now we
consider a single-layer DNN f (x̄ ) � W 1φ(W 0x̄ + b̄0) + b̄1, where φ(x̄ ) � (ϕ(x1) · · · ϕ(xn ))� and ϕ is slope-
restricted on [α, β]. The following theorem shows how theLipschitz continuity is connectedwith an SDPproblem.

Theorem 6.1 ([FRH+19]) If there exists ρ > 0 and T ∈ Tn , s.t.

M (ρ,T ) :�
(−2αβW 0�TW 0 − ρIn0 (α + β)W 0�T

(α + β)TW 0 −2T +W 1�W 1

)

≤ 0,

where Tn is what we define in Lemma 6.1, n0 is the dimension of the input, and ≤ 0 refers to the semi-negative
definiteness of a symmetric matrix, then

√
ρ is a Lipschitz constant for f .

To calculate a tighter Lipschitz constant, we only need to solve the optimisation problem

min ρ s.t.M (ρ,T ) ≤ 0 ∧ T ∈ Tn .

For a multi-layer DNN, we can also extend Thm. 6.1 to tackle multiple layers and transform the problem into an
SDP. Readers can refer to [FRH+19] for details. In this SDP problem, we have O(n2) variables λij to determine,
where n is the number of neurons in the DNN. To make the problem scalable, [FRH+19] proposed the following
modes.

• LipSDP-Network: it preserves all possible constraints between pairs and has O(n2) decision variables.

• LipSDP-Neuron: it ignores constraints between different neurons so that the matrix T is diagonal, which has
O(n) decision variables.

• LipSDP-Layer: it ignores the difference of variables in the same layer, i.e., on the same layer the matrix T
shares the same parameter, so the matrix T � diag(λ1 In1 , . . . , λl Inl

) has O(l ) decision variables, where l is
the number of layers in the DNN.

The above approach works on DNNs with only one kind of activation function ϕ. For those containing
more than one kind of activation function, we can make split to the layers of the DNN and consider each sub-
network which only has one kind of activation function. After adapting the algorithm for these sub-network, the
multiplication of the Lipschitz constants of the sub-networks is a valid Lipschitz constant for the DNN.
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6.2. Regionalization of Lipschitz constant by local slope bounds

An observation is that, when we adapt this algorithm to some robustness verification settings, like (δ, ε)-global
robustness in a certain region, we do not require the Lipschitz constant over the whole input space Rn . For a
fixed region D we are focusing on, we discuss how to obtain a more precise Lipschitz constant, by exploiting
the local slope bounds used in SDP solving. By invoking the abstract interpretation techniques (DeepSymbol we
proposed), we can obtain the range of all the input variables of the activation function ϕ, and further calculate
the range of the derivative of ϕ. For many popular activation function ϕ like ReLU, sigmoid, and tanh, which
are monotonic increasing, convex on (−∞, 0], and concave on [0,∞), the range of its derivative can be obtained
straightforward by the function values at the endpoints of the interval of the input. The following example shows
how we compute the local slope bounds and obtain the regional Lipschitz constant. In what follows, we denote
by LD the lower approximation of the regional Lipschitz constant for an input region D .

Example 6.1 Consider a DNN defined by f (x ) � tanh
((

1 2
1 −1

)

x +
(−2

0

))

. We can obtain the Lipschitz

constant L � 2.303 by solving the corresponding SDP problem.
Nowwe further consider the neighbourhoodD � B∞((1, 0)�, 0.1), then by using Box as the abstract domain,

we obtain the ranges of two tanh inputs are [−1.1,−0.9] and [0.9, 1.1], and the bounds of the slope of tanh in
this region are

α � ϕ′(1.1) � 1 − tanh2(1.1) � 0.3592 and β � ϕ′(0.9) � 1 − tanh2(0.9) � 0.4869.

Finally, by using the local slope bounds of the region,we can compute the regionalLipschitz constantLD � 1.122.

We can see from the example that the bounds of the slope of the activation function involved depend on the
region. This regionalization works well when we consider a very small region, and the range of slope is reduced
prominently such that we can obtain a more precise Lipschitz constant for a certain region. Furthermore, to
maintain the high efficiency, we tend to keep the lower bound α being 0 instead of a more precise but insignificant
improvement, which will preserve the sparsity of M (ρ,T ) .

6.3. Computing the maximum verifiable radius

Focusing on local robustness, once the lower approximation of the Lipschitz constant L is obtained, we can use
it to efficiently compute the maximum verifiable radius for a certain input. A sound method directly follows from
the following lemma, whose proof can be obtained by classical technique.

Lemma 6.2 Consider a DNN defined by f (x ) : Rn → R
m , whose Lipschitz constant is bounded from above by

L. Then for an input x̄ , the DNN is robust in Bp(x̄ , rp) with

rp � 2
1
p −1m

1
2 − 1

p

n
1
2 − 1

p L
(fτ1 (x̄ ) − fτ2 (x̄ )),

where fτ1 (x̄ ) and fτ2 (x̄ ) denote the largest and the second largest elements in {fτ (x̄ )}, respectively.
Proof. Generally, for Lp-norm robustness, we consider the neighbourhood Bp(x̄ , r ) of an input x̄ . According

to Inequality (1) on Page 7, we have the Lipschitz condition m−( 1
p − 1

2 ) || f (x̄ ′) − f (x̄ ) ||p≤ n
1
2 − 1

p Lr for any x̄ ′ in
Bp(x̄ , r ). Note that n andm here are the dimensions of x̄ and f (x̄ ), viz. the dimensions of the input layer and the
output layer.

We denote by τi the index of the element which is i -th largest in {fτ (x̄ )}. Then the DNN is robust overBp(x̄ , r )
if and only if

∧
τ ��τ1

fτ1 (x̄
′) > fτ (x̄ ′) for any x̄ ′ ∈ Bp(x̄ , r ). With �i � fi (x̄ ′) − fi (x̄ ), the Lipschitz condition is

equivalent to

(| �1 |p + | �2 |p + · · ·+ | �m |p) 1
p ≤ n

1
2 − 1

p

m
1
2 − 1

p

Lr , (3)

and the robustness condition can be further rewritten as
∧

τ ��τ1

fτ1 (x̄ ) − fτ (x̄ ) > �τ − �τ1 . (4)
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Fig. 7. The L2-norm radius at the output layer, where the yellow line represents the difference between f2(x̄ ) and f1(x̄ ), and the dashed green
line shows the distance between f (x̄ ) and the classification boundary, whose upper bound is given by both L · r and Corollary 6.1

From (3), we have

�τ − �τ1 ≤| �τ | + | �τ1 |≤ 2(| �τ |p + | �τ1 |p) 1
p

2
1
p

≤ 2n
1
2 − 1

p

2
1
p m

1
2 − 1

p

Lr ,

which follows from Jensen’s inequality and the fact that xp is convex on R≥0. Finally, we can immediately obtain

rp � 2
1
p −1m

1
2 − 1

p

n
1
2 − 1

p L
(fτ1 (x̄ ) − fτ2 (x̄ ))

as the maximum verifiable radius to ensure the inequality (4) holds. �

Specifically, we have the maximum verifiable radius r2 � fτ1−fτ2√
2L for the L2-norm. Intuitively, it demonstrates

that for any f (x̄ ′), the decrement from fτ1 (x̄ ) and the increment from fτ2 (x̄ ) should be bounded by L·r√
2
, otherwise

the L2-norm robustness may be destroyed. Similarly, we also have the maximum verifiable radius r∞ � fτ1−fτ2
2L′ for

L∞ norm, in which L′ � √
n
m
L.

Corollary 6.1 Consider aDNNdefined by f (x ) : Rn → R
m . LetLD be the upper bound of the regional Lipschitz

constant of the neighbourhood D � Bq (x̄ , r ). Then the DNN is robust in Bp(x̄ , rp) (for p ≤ q) with

rp � min

(

r ,
2

1
p −1m

1
2 − 1

p

n
1
2 − 1

p LD

(fτ1 (x̄ ) − fτ2 (x̄ ))

)

,

where fτ1 (x̄ ) and fτ2 (x̄ ) denote the largest and the second largest elements in {fτ (x̄ )}, respectively.
This corollary directly follows from the fact that LD only holds in the region D and the fact that Bp(x̄ , r ) ⊆
Bq (x̄ , r ) for p ≤ q .

Example 6.2 Consider the L2-norm local robustness of the DNN in Example 6.1. To compute the maximum
verifiable radius, we first compute the output f (x̄ ) � (−1.238, 0.761)�. Then by the formula in Lemma 6.2, we
immediately have r2 � 0.761−(−1.238)√

2·2.303 � 0.613, which implies that the DNN is robust in B∞((1, 0)�, 0.613). Fig. 7
illustrates the geometric significance of the formula, in which f1 � f2 is the robustness boundary at the output
layer.

Furthermore, by using the regional Lipschitz constant LD of D � B∞((1, 0)�, 0.1), we can also compute

another robustness radius as r2 � max
(
0.1, 0.761−(−1.238)√

2·1.122
)

� 0.1. Note that it is not as large as the robustness
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radius computed by the global Lipschitz constant. This case shows that regional Lipschitz constant will not
always benefit to obtain a better robustness radius, since the choice of the region may become a limitation.

Since the global Lipschitz constant holds for the whole domain of the DNN, Lemma 6.2 can be used to
efficiently compute sound robustness radii w.r.t. Lp-norm local robustness for any inputs. If we want to verify
local robustness for a large set of inputs, this technique can be used as a filter to quickly recognize the robustness
cases and speed up the verification process.

6.4. Verifying (δ, ε)-global robustness in a region

Now, we turn to the (δ, ε)- robustness properties for regions of inputs. The following lemma shows a sufficient
condition such that a DNN is globally-robust in an input region. It implies a sound method to verify global
robustness.

Lemma 6.3 Let N be a DNN expressing f : Rm → R
n , and D be a region of its input with the upper approxi-

mation of the regional Lipschitz constant LD . Then N is (δ, ε)-globally robust in the region D , if ε > n
1
2 − 1

p

m
1
2
LDδ.

Proof. We have C (N , x̄ , �) � f�(x̄ ). By Inequality (1), we have

m
1
2 || f (x̄1) − f (x̄2) ||∞≤ n

1
2 − 1

p LD || x̄1 − x̄2 ||p .

Furthermore, the post-condition ∀ � ∈ L, | C (N , x̄1, �) − C (N , x̄2, �) |< ε is exactly equivalent to an L∞-norm
bound on the difference of two outputs, viz. || f (x̄1) − f (x̄2) ||∞< ε. Then combining the pre-condition in the
definition of (δ, ε)-global robustness, we immediately have the lemma. �

Example 6.3 Here, we verify the global robustness of the DNN of Example 6.1 in the box regionD � [0.9, 1.1]×
[−0.1, 0.1]. Consider the global robustness with parameters δ � 0.06, ε � 0.04, andL2-norm in the pre-condition.
With the upper approximation of the regional Lipschitz constant LD � 1.122 for the regionD , it is easy to verify
that the DNN is (0.04, 0.06)-globally robust in D , since 0.06 > 1√

2
· 1.122 · 0.04 holds. Note that in this example,

we fail to verify global robustness using the global Lipschitz constant. Compared with global Lipschitz constant,
a regional Lipschitz constant will always show greater advantages for verifying (δ, ε)-global robustness, since the
region in which we expect to verify is known.

7. Experimental Evaluation

In this section, we present the design and results of our experiments.

7.1. Experimental setup

Implementation AI2[GMDC+18] is the first to utilize abstract interpretation to verify DNNs, and has imple-
mented all the transformers mentioned in Sect. 4. We have re-implemented these transformers and refer to them
as AI2-r. We then implement our symbolic propagation technique based on AI2-r and use AI2-r as the baseline
comparison in the experiments. Both implementations use general frameworks and thus can run on various
abstract domains. In this paper, we choose Box (from Apron 1), T-Zonotope (Zonotope from Apron 1 ) and
E-Zonotope (Elina Zonotope with the join operator 2) as the underlying domains. Our DNN verification tool
PRODeep [LLcH+20] integrates these methods. We use the code 3 from [FRH+19] to calculate the Lipschitz
constant.
Datasets WeuseMNIST [LBBH98] andACASXu [JGK+15, vEG14] as the datasets in our experiments.MNIST
contains 60, 000 28 × 28 grayscale handwritten digits. We can train DNNs to classify the pictures by the written
digits on them. The ACAS Xu system is aimed to avoid airborne collisions and it uses an observation table to
make decisions for the aircraft. In [JKO18], the observation tables are realized by training a DNN instead of
storing it.

1 https://github.com/ljlin/Apron_Elina_fork.
2 https://github.com/eth-sri/ELINA/commit/152910bf35ff037671c99ab019c1915e93dde57f .
3 https://github.com/arobey1/LipSDP.

https://github.com/ljlin/Apron_Elina_fork
https://github.com/eth-sri/ELINA/commit/152910bf35ff037671c99ab019c1915e93dde57f
https://github.com/arobey1/LipSDP
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Table 1. Experimental results of abstract interpretation for MNIST DNNs with different approaches
AI2-r Symb Planet
TZono EZono Box TZono EZono

FNN1 28.23348% 28.02098% 9.69327% 9.69327% 9.69327% 7.05553%
FNN2 24.16382% 22.13319% 1.76704% 1.76704% 1.76704% 0.89089%
FNN3 26.66453% 26.30852% 6.88656% 6.88656% 6.88656% 4.51223%
FNN4 28.47243% 28.33535% 5.13645% 5.13645% 5.13645% 2.71537%
FNN5 35.61163% 35.27187% 3.34578% 3.34578% 3.34578% 0.14836%
FNN6 38.71020% 38.57376% 7.12480% 7.12480% 7.12480% 1.94230%
FNN7 41.76517% 41.59382% 5.52267% 5.52267% 5.52267% 1h TIMEOUT
CNN1 24.19607% 24.13725% 21.78279% 7.58917% 7.56223% 8h TIMEOUT
CNN2 OOM OOM 1.09146% OOM OOM 8h TIMEOUT

(a) Bound proportions (smaller is better) of different abstract interpretation approaches with the robustness bound δ ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6}, and the fixed input pictures 767, 1955, and 2090;

AI2-r Symb Planet
Box TZono EZono Box TZono EZono

FNN1 11.168 0.2 13.482 0.5 44.05 0.5 12.935 0.6 17.144 0.6 45.88 0.6 20.179 0.6
FNN2 12.559 0 16.636 0.2 50.59 0.2 15.075 0.5 22.333 0.5 49.92 0.5 35.84 0.6
FNN3 12.699 0.2 18.748 0.3 49.812 0.3 19.042 0.6 28.128 0.6 54.77 0.6 76.106 0.6
FNN4 15.583 0.1 29.495 0.3 58.892 0.3 37.716 0.6 56.47 0.6 76.00 0.6 351.139 0.6
FNN5 28.963 0 81.49 0.2 149.791 0.2 90.268 0.4 154.222 0.4 173.263 0.4 1297.485 0.6
FNN6 62.766 0 398.565 0.1 538.076 0.1 323.328 0.3 650.629 0.3 745.454 0.3 15823.208 0.3
FNN7 111.955 0 1674.465 0 1627.72 0 642.978 0.3 1524.975 0.3 1489.604 0.3 1h TIMEOUT
CNN1 2340.828 0 6717.57 0.2 94504.195 0.2 5124.681 0.2 8584.555 0.3 45452.102 0.3 8h TIMEOUT
CNN2 41292.291 0 OOM 0 OOM 0 105850.271 0.3 OOM 0 OOM 0 8h TIMEOUT
(b) The time (in second) and the maximum robustness bound δ which can be verified through the abstract interpretation technique and the
planet bound, with optional δ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6} and the fixed input picture 2090;

AI2-r Symb Planet

Box TZono EZono Box TZono EZono

FNN1(60) 57 44 34 59 52 38 59 52 38 59 53 44 59 53 44 59 53 44 59 56 55

FNN2(120) 103 59 38 118 109 66 118 111 66 118 113 107 118 113 107 118 113 107 119 114 110

FNN3(150) 136 93 66 141 127 85 141 127 85 143 133 110 143 133 110 143 133 110 146 142 135

FNN4(300) 250 144 105 294 209 130 294 209 130 295 254 182 295 254 182 295 254 182 296 276 254

FNN5(600) 289 160 106 513 200 125 513 200 125 589 510 236 589 510 236 589 510 236 593 558 493

FNN6(1200) 472 247 181 782 339 195 782 339 195 1176 790 250 1176 790 250 1176 790 250 1189 1089 772

FNN7(1800) 469 271 177 770 350 200 775 350 200 1773 741 263 1773 741 263 1773 741 263 1h TIMEOUT

CNN1(12412) 12226 11788 11280 12371 12119 11786 12371 12122 11786 12373 12094 11659 12376 12193 11877 12376 12196 11877 8h TIMEOUT

CNN2(89572) 85793 77241 70212 OOM OOM 89190 86910 81442 OOM OOM 8h TIMEOUT

(c) The number of hidden ReLU neurons whose behavior can be decided with the bounds our abstract interpretation technique and Planet
provide, with optional robustness bound δ ∈ {0.1, 0.4, 0.6} and the fixed input picture 767

7.2. Symbolic propagation versus other abstract interpretation based methods

We compare seven approaches: AI2-r with Box, T-Zonotope and E-zonotope as underlying domains and Symb
(i.e., our enhanced abstract interpretation with symbolic propagation) with Box, T-Zonotope and E-zonotope
as underlying domains, and Planet [Ehl17], which serves as the benchmark verification approach (for its ability
to compute bounds). All the experiments are conducted on an openSUSE Leap 15.0 machine with Intel i7-4790
CPU@3.60GHz and 16GB memory.

On MNIST, we train seven FNNs and two CNNs. The seven FNNs are of sizes 3 × 20, 6 × 20, 3 × 50,
3 × 100, 6 × 100, 6 × 200, and 9 × 200, where m × n refers to m hidden layers with n neurons in each hidden
layer. CNN1 consists of 2 convolutional, 1 max-pooling, 2 convolutional, 1 max-pooling, and 3 fully connected
layers in sequence, for a total of 12,412 neurons. CNN2 has 4 convolutional and 3 fully connected layers (89572
neurons). On ACAS Xu, we use the same networks as those in [KBD+17b].

We consider the local robustness property with respect to the input region defined as follows:

Xx̄ ,δ � {x̄ ′ ∈ R
m | ∀ i .1 − δ ≤ xi ≤ x ′

i ≤ 1 ∨ xi � x ′
i}.

In the experiments, the optional robustness bounds are 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6.

Improvement on Bounds To see the improvement on bounds, we compare the output ranges of the above seven
approachesondifferent inputs x̄ anddifferent tolerances δ. Table 1 (a) reports the results on three inputs x̄ (No.767,
No.1955 and No.2090 in the MNIST training dataset) and six tolerances δ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}.
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Table 2. Bound proportions (smaller is better) for 1000 randomly sampled pictures from MNIST
testing set on FNN1 with δ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}

δ AI2-r Symb Planet
TZono EZono Box TZono EZono

0.1 7.13046% 7.08137% 6.15622% 6.15622% 6.15622% 5.84974%
0.2 11.09230% 10.88775% 6.92011% 6.92011% 6.92011% 6.11095%
0.3 18.75853% 18.32059% 8.21241% 8.21241% 8.21241% 6.50692%
0.4 30.11872% 29.27580% 10.31225% 10.31225% 10.31225% 7.04413%
0.5 45.13963% 44.25026% 14.49276% 14.49276% 14.49276% 7.96402%
0.6 55.67772% 54.88288% 20.03251% 20.03251% 20.03251% 9.02688%

In all our experiments, we set TIMEOUT as one hour for each FNN and eight hours for each CNN for a
single run with an input, and a tolerance δ. In the table, TZono and EZono are abbreviations for T-Zonotope
and E-Zonotope.

For each running we get a gap with an upper and lower bound for each neuron. Here we define the bound
proportion to statistically describe how precise a range an approach gives. Basically given an approach (like Symb
with Box domain), the bound proportion of this approach is the average of the ratio of the gap length of the
neurons on the output layer and that obtained using AI2-r with Box. Naturally AI2-r with Box always has the
bound proportion 1, and the smaller the bound proportion is, the more precise the ranges the approach gives
are.

In Table 1 (a), every entry is the average bound proportion over three different inputs and six different tol-
erances. OOM stands for out-of-memory, 1h TIMEOUT for the one-hour timeout, and 8h TIMEOUT for the
eight-hour timeout. We can see that, in general, Symb with Box, T-Zonotope and E-zonotope can achieve much
better bounds than AI2-r with Box, T-Zonotope and E-zonotope do. These bounds are closer to what Planet
gives, except for FNN5 and FNN6. E-zonotope is slightly more precise than T-Zonotope. On the other hand,
while Symb can return in a reasonable time in most cases, Planet cannot terminate in one hour (resp. eight hours)
for FNN7 (resp. CNN1 and CNN2), which have 1, 800, 12, 412 and 89, 572 hidden neurons, respectively. Also
we can see that results related to Thm. 5.1 are illustrated here. More specifically, (1) Symb with Box domain
is more precise than AI2-r with T-Zonotope and E-Zonotope on FNNs; (2) Symb with Box, T-Zonotope and
E-Zonotope have the same precision on FNNs; (3) Symb with T-Zonotope and E-Zonotope are more precise
than Symb with Box on CNNs.

According to the memory footprint, both AI2-r and Symb with T-Zonotope or E-Zonotope need more mem-
ory than the same approaches with Box do, and will crash on large networks, such as CNN2, because they run
out of memory. Figure 8 shows how CPU and resident memory usage change over time. The horizontal axis in
the figure is the time, in seconds, the vertical axis corresponding to the red line is the CPU usage percentage, and
the vertical axis corresponding to the blue line is the memory usage, in MB.

Greater Verifiable Robustness Bounds Table 1 (b) shows the results of using the obtained bounds to help verify
the robustness property. We consider a few thresholds for robustness tolerance, i.e., {0.1, 0.2, 0.3, 0.4, 0.5, 0.6},
and find that Symb can verify many more cases than AI2-r can with comparable time consumption (less than 2x
in most cases, and sometimes even faster).

Proportion of Activated/Deactivated ReLUNodes Table 1 (c) reports the number of hidden neurons whose ReLU
behaviour (i.e., activated or deactivated) has been consistent within the tolerance δ. Compared toAI2-r, our Symb
can decide the ReLU behaviour with a much higher percentage.

We remark that, although the experimental results presented above are based on 3 fixed inputs, more extensive
experiments have already been conducted to confirm that the conclusions are general. We randomly sample 1000
pictures (100 pictures per label) from the MNIST dataset, and compute the bound proportion for each of the
pair (m, δ) wherem refers to the seven approaches in Table 1 and δ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6} on FNN1. Each
entry corresponding to (m, δ) in Table 2 is the average of bound proportions of approach m over 1000 pictures
and fixed tolerance δ. Then we get the average of the bound proportion of AI2-r with TZono/EZono, Symb with
Box/TZono/EZono, and Planet over six different tolerances, 27.98623%, 27.44977%, 11.02104%, 11.02104%,
11.02104%, 7.08377%, respectively, which are very close to the first row of Table 1 (a).
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Fig. 8. CPU and memory usage

Comparison with the bounded powerset domain In AI2 [GMDC+18], the bounded powerset domains are used
to improve the precision. In AI2-r, we also implemented such bounded powerset domains instantiated by Box,
T-Zonotope and E-Zonotope domains, with 32 as the bound of the number of abstract elements in a disjunction.
The comparison of the performance on the powerset domains with our symbolic propagation technique (with
the underlying domains rather than powerset domains) is shown in Table 3. We can see that our technique is
much more precise than the powerset domains. The time and memory consumptions of the powerset domains
are both around 32 times greater than for the underlying domains, which are more than those of our technique.
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Table 3. Bound proportions (smaller is better) of different abstract interpretation approaches with the robustness bound δ ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6}, and the fixed input pictures 767, 1955, and 2090. Note that each entry gives the average bound proportion
over six different tolerance and three pictures

AI2-r Symb Planet
Box32 TZono32 EZono32 Box TZono EZono

FNN1 89.65790% 20.68675% 15.87726% 9.69327% 9.69327% 9.69327% 7.05553%
FNN2 89.42070% 16.27651% 8.18317% 1.76704% 1.76704% 1.76704% 0.89089%
FNN3 89.43396% 21.98109% 12.42840% 6.88656% 6.88656% 6.88656% 4.51223%
FNN4 89.44806% 25.97855% 13.05969% 5.13645% 5.13645% 5.13645% 2.71537%
FNN5 89.16034% 29.61022% 17.88676% 3.34578% 3.34578% 3.34578% 0.14836%
FNN6 89.30790% OOM 22.60030% 7.12480% 7.12480% 7.12480% 1.94230%
FNN7 88.62267% OOM 1h TIMEOUT 5.52267% 5.52267% 5.52267% 1h TIMEOUT

Table 4. The satisfiability on given δ, and the time (in second) with and without bounds generated by abstract interpretation with symbolic
propagation on the Box domain

δ � 0.1 δ � 0.075 δ � 0.05 δ � 0.025 δ � 0.01 Total
Result Time Result Time Result Time Result Time Result Time Time

Point 1 Reluplex SAT 39 SAT 123 SAT 14 UNSAT 638 UNSAT 64 879
Reluplex + ABS SAT 45 SAT 36 SAT 14 UNSAT 237 UNSAT 36 368

Point 2 Reluplex UNSAT 6513 UNSAT 1559 UNSAT 319 UNSAT 49 UNSAT 11 8451
Reluplex + ABS UNSAT 141 UNSAT 156 UNSAT 75 UNSAT 40 UNSAT 0 412

Point 3 Reluplex UNSAT 1013 UNSAT 422 UNSAT 95 UNSAT 79 UNSAT 6 1615
Reluplex + ABS UNSAT 44 UNSAT 71 UNSAT 0 UNSAT 0 UNSAT 0 115

Point 4 Reluplex SAT 3 SAT 5 SAT 1236 UNSAT 579 UNSAT 8 1831
Reluplex + ABS SAT 3 SAT 7 UNSAT 442 UNSAT 31 UNSAT 0 483

Point 5 Reluplex UNSAT 14301 UNSAT 4248 UNSAT 1392 UNSAT 269 UNSAT 6 20216
Reluplex + ABS UNSAT 2002 UNSAT 1402 UNSAT 231 UNSAT 63 UNSAT 0 3698

Faster Verification In this part we use the networks of ACAS Xu. In order to evaluate the benefits of tighter
bounds for SMT-based tools, we give the bounds obtained by abstract interpretation (on Box domain with
symbolic propagation) to Reluplex [KBD+17b] and observe the performance difference. The results are shown
in Table 4. Each cell shows the satisfiability (i.e., SAT if an adversarial example is found) and the running time
without or with given bounds. The experiments are conducted on different δ values (as in [KBD+17b]) and a fixed
network (nnet1 1 [KBD+17b]) and 5 fixed points (Point 1 to 5 in [KBD+17b]). The time our technique spends on
deriving the bounds is all less than 1 second. Table 4 shows that tighter initial bounds bring significant benefits to
Reluplex with an overall ( 1

5076 − 1
32992 )/

1
32992 � 549.43% speedup (9.16 hours compared to 1.41 hours). However,

it should be noted that, on one specific case (i.e., δ � 0.1 at Point 1 and δ � 0.075 at point 4), the tighter initial
bounds slow Reluplex, which means that the speedup is not guaranteed on all cases. 4

7.3. Lipschitz constant based method

In order to demonstrate the performance of the Lipschitz constant based method, we trained more MNIST
networks including three FNNs with the sigmoid activation function (sigmoid-FNN1∼3), three FNNs with the
tanh activation function (tanh-FNN1∼3), and twoFNNswith theReLUactivation function (FNN8andFNN9),
of sizes 1 × 20, 1 × 50, 1 × 30 + 1 × 20, 1 × 20, 1 × 50, 1 × 30 + 1 × 20, 7 × 1000, and 14 × 500, respectively,
where m × n refers to m hidden layers with n neurons in each hidden layer as mentioned before.

The experimental results are shown in Table 5, in which (a) and (b) show the Lipschitz constants computed
by SDP and (c) shows the comparisons between Lip. methods and Symb. approach for computing the maximum
verifiable radius.

4 For the case δ � 0.05 at point 4, Reluplex gives SAT and Reluplex+ABS gives UNSAT. This may be the result of a floating point arithmetic
error.
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Table 5. Experimental results of SDP methods for MNIST DNNs
Global Local 1 Local 2 Local 3
L. const Time L. const Time L. const Time L. const Time

tanh-FNN1 37.428 23.673 37.404 124.85 37.321 113.34 37.407 111.26
tanh-FNN2 39.723 44.717 39.611 258.42 39.704 234.2 39.716 245.32
tanh-FNN3 89.664 30.705 89.440 167.55 89.471 154.29 89.472 158.65
sigmoid-FNN1 26.039 22.013 26.029 105.93 26.032 107.3 25.809 103.01
sigmoid-FNN2 24.636 43.511 24.625 237.07 24.629 238.82 24.572 223.32
sigmoid-FNN3 63.695 30.716 63.364 152.48 63.573 155.08 63.578 157.57

(a) Comparison of precision and time (in seconds) of computing a global Lipschitz constant and regional Lipschitz constants
on small networks

L. const Time (s) Split Mode
FNN7 (9 × 200) 240.987 608.13 1 LipSDP-Neuron
FNN8 (7 × 1000) 4.60310E8 7.3674 1 LipSDP-Layer
FNN9 (14 × 500) 2.45117E13 6.185 1 LipSDP-Layer
FNN9 (14 × 500) 5.00261E12 261.57 2 LipSDP-Neuron
CNN1-Subnet1 41.020 39.13 1 LipSDP-Network
CNN1-Subnet2 11.259 7.0061 1 LipSDP-Network
CNN1-Subnet3 1.532 10.608 – LipSDP-Neuron
CNN1 (12412) 707.545 56.74 – Subnets

(b) SDP works on large networks
FNN1 FNN7
Input 1 Input 2 Input 3 Input 1 Input 2 Input 3

L. const 23.928 240.987
SDP safety L∞ ball 0.020 0.016 0.018 0.0024 0.0016 0.0024
Symb. safety L∞ ball 0.037 0.018 0.031 0.007 0.004 0.008

(c) Comparison of precision of the SDP methods and Symb

Effect of regionalization via slope bounds. In Table 5 (a), we show the global Lipschitz constants, the regional
Lipschitz constants for three randomly chosen inputs, and the computation times. The global Lipschitz constants
are computed via the global slope bounds ([0, 1] for tanh and [0, 0.25] for sigmoid). The regional Lipschitz
constants are computed via the local slope bounds in the region of Lp-norm ball with the radius 0.001. By
applying local bounds, the regional Lipschitz constants become tighter. Note that the effect depends on many
factors, including the size of the DNN, the chosen input, and the size of the region. Although the effect is
not significant, it may improve the precision of robustness verification. Furthermore, it brings a side effect on
efficiency, i.e., increasing the time consumption. A reasonable explanation is that it makes the matrix involved
less sparse when we assigns a positive number to α instead of 0.

SDP works efficiently on large networks. Table 5 (b) gives the experimental results of computing the Lipschitz
constants by SDP on large DNNs. If we choose the SDP mode properly and make some necessary splits on the
DNNs, then it is quite efficient to obtain a global Lipschitz constant. As we can see, the SDP methods are strong
in its high efficiency, applicability to more activation functions, and the globalization of the Lipschitz constants.

Lip. is not as precise as Symb. Here, we compare the performance of Lip. methods with our Symb. approach
for computing the maximum verifiable radius, and the experimental results are shown in Table 5 (c). Basically,
once we obtain a Lipschitz constant L of a DNN f , then we can obtain a safe L∞ ball. Also, through a simple
binary search, we can use Symb. to get the largest robustness L∞ ball. Table 5 (c) gives the results of the two
methodsworking onFNN1 andFNN7.We can see that abstract interpretation basedmethods gives larger radius,
so generally abstract interpretation is more precise than Lip. methods in DNN verificaiton. However, from the
perspective of efficiency, since the Lipschitz constant can be reused to compute the maximum verifiable radius
for different inputs and the procedure only invokes simple arithmetic operations in a non-iterative way. In other
words, Lip. method can be used to compute a rougher robustness bounds, less precisely but more efficiently than
the Symb. approach.
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Fig. 9. Results of batch local robustness filter using SDP

Table 6. The time (in seconds) of computing the Lipschitz constant
and verifying the L∞ robustness for ten thousand inputs with twenty
δ values from 0.01 to 0.2

Computing Lip. Verifying Total
tanh-FNN1 23.673 2.78 26.453
tanh-FNN2 44.717 14.48 59.197
tanh-FNN3 30.705 3.76 34.465

sigmoid-FNN1 22.013 2.86 24.873
sigmoid-FNN2 43.511 14.48 57.991
sigmoid-FNN3 30.716 3.61 34.326

7.4. Verifying robustness on batch inputs using SDP

We also use the Lipschitz constant based method to verify local robustness of batch inputs. We randomly select
10,000 inputs of MNIST as the batch, and verify them with the framework of Sect. 6.3 on the networks tanh-
FNN1∼3 and sigmoid-FNN1∼3. The results are shown in Fig. 9 and Table 6.

As canbe seen fromFig. 9, theLipschitz basedmethodverifies a substantial numberof cases in this experiment.
Moreover, Table 6 shows that the time costs of batch local robustness verification are less than one minute in
these situation and mainly lie on the computation of Lipschitz constants of the networks by using SDP. So as a
filter to speed up the verification proceed, this method is very efficient and scalable.

8. Discussion and Related Work

In this section, we discuss the soundness guarantee of the abstraction based approach and the precision of the
abstract domains, and then provide some closely related work.

8.1. Discussion on Soundness and Precision

Soundness is an essential property of formal verification. Abstract interpretation is known for its soundness
guarantee for analysis and verification [Min17], since it conducts over-approximation to enclose all the possible
behaviors of the original system. Computing over-approximations for a DNN is thus our soundness guarantee
in this paper. As shown in Thm. 4.1, if the results of abstract interpretation show that the property C holds
(i.e., γ (X �

N ) ⊆ C in Equation 2), then the property also holds for the set of actual executions of the DNN
(i.e., f (X0) ⊆ C ). If the results of abstract interpretation can not prove that the property C holds, however, the
verification is inconclusive. In this case, the results of the chosen abstract domain are not precise enough to prove
the property, and thus more powerful abstract domains are needed. Moreover, our symbolic propagation also
preserves soundness, since it uses symbolic substitution to compute the composition of linear transformations.
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On the other hand, many existing DNN verification tools do not guarantee soundness. For example, Relu-
plex [KBD+17b] (using GLPK), Planet [Ehl17] (using GLPK), and Sherlock [DJST18] (using Gurobi) all rely on
the floating point implementation of linear programming solvers, which is unsound. Actually, most state-of-the-
art linear programming solvers use floating-point arithmetic and only give approximate solutions which may not
be the actual optimum solution or may even lie outside the feasible space [NS04]. It may happen that a linear
programming solver implemented via floating point arithmetic wrongly claims that a feasible linear system is
infeasible or the other way round. In fact, the paper [DJST18] reports several false positive results in Reluplex,
and mentions that this comes from unsound floating point implementation.

Different abstract domains have different precision in verification. In our DNN verification settings, if the
input region is a box, then the precision has the following order: Box < T-Zonotope < E-Zonotope < DeepPoly
< Polyhedra. DeepPoly [SGPV19b] is a specialized abstract domain for DNN verification. An abstract element
in DeepPoly is a tuple a � (a≤, a≥, l̄ , ū), where a≤ and a≥ give the i -th variable xi a lower bound and an upper
bound, respectively, in the form of a linear combination of variables which appear before it, i.e.

∑i−1
k�1 wkxk +w0,

for i � 1, . . . ,n, and l̄ , ū ∈ R
n give the lower bound and upper bound of each variable, respectively. Box

loses precision on both affine transformations and non-linear activation functions, while the others only lose
precision on non-linear activation functions. With symbolic propagation, Box does not lose precision on affine
transformations any more, and Zonotope has better precision on uncertain ReLU neurons. Octagon is not often
used in DNN verification, since the weights in a DNN are generally not uniform and they do not fit for the
constraints of Octagon.

8.2. Related Work

Verification of neural networks can be traced back to [PT10], where the network is encoded after approximat-
ing every sigmoid activation function with a set of piecewise linear constraints and then solved with an SMT
solver. It works with a network of 6 hidden nodes. More recently, by considering DNNs with ReLU activation
functions, the verification approaches include constraint-solving [KBD+17b, LM18, Ehl17, NKR+17], layer-
by-layer exhaustive search [HKWW17], global optimisation [RHK18a, DJST18, RWS+19], abstract interpreta-
tion [GMDC+18, SGM+18, SGPV19b], functional approximation [XTJ18], and reduction to two-player game
[WHK18, WmWR+19], etc.

More specifically, In [KBD+17b] an SMT solver Reluplex is presented to verify properties on DNNs with
fully-connected layers. Independently [Ehl17] presents another SMT solver Planet which combines linear approx-
imation and interval arithmetic to work with fully connected and max pooling layers. Later, Reluplex has been
extended in Marabou [KHI+19] to support piece-wise linear activation functions and improves the efficiency.
Also, an abstraction-refinement framework is proposed in [EGK20], which helps reduce the size of DNNs to
verify. Methods based on SMT solvers do not scale well, e.g., Reluplex can only work with DNNs with a few
hidden neurons.

The above target mainly the verification of local robustness. Research has been conducted to compute other
properties, e.g., the output reachability. An exact computation of output reachability can be utilised to verify
local robustness. In [DJST18], Sherlock, an algorithm based on local and global search and mixed integer linear
programming (MILP), is put forward to calculate the output range of a given label when the inputs are restricted
to a small subspace. [RHK18a] presents another algorithm for output range analysis, and their algorithm is
suitable for all Lipschitz continuous DNNs, including all layers and activation functions mentioned before. In
[WPW+18], the authors use symbolic interval propagation to calculate output range. Compared with [WPW+18],
our approach is adequate for general abstract domains, while their symbolic interval propagation is designed
specifically for symbolic intervals. Further,methods based on star sets have been developed in [TLM+19, TBXJ20]
to compute a more precise reachablity for DNNs. Abstraction based output range analysis is proposed in [PA19]
to deal with larger models.

AI2[GMDC+18] is the first tool to use abstract interpretation to verify DNNs. They define a class of func-
tions called conditional affine transformations (CAT) to characterize DNNs containing fully connected, con-
volutional and max pooling layers with the ReLU activation function. They use Interval and Zonotope as the
abstract domains and the powerset technique on Zonotope. Compared with AI2, we use symbolic propagation
rather than powerset extension techniques to enhance the precision of abstract interpretation based DNN veri-
fication. Symbolic propagation is more lightweight than powerset extension. Moreover, we also use the bounds
information given by abstract interpretation to accelerate SMT based DNN verification. DeepZ [SGM+18] and
DeepPoly [SGPV19b] propose two specific abstract domains tailored toDNNverification in order to improve the
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precision of abstract interpretation on the verification onDNNs, and [SGPV19a] improves DeepPoly in perform-
ing linear over-approximation over multiple uncertain ReLU nodes together instead of one by one. In contrast
to these works, our work is a general approach that can be applied on various domains. Recently [APDC19] has
proposed an approach which uses machine learning to recommend the choice of split and abstract interpreta-
tion in DNN verification. This combines the various abstract interpretation techniques in a clever and effective
manner. Abstract interpretation based DNN verification can be performed in parallel on GPU and it improves
the size of the DNNs that can be treated to one million neurons [MSPV20].

Besides verification methods, adversarial attack and robustness training are also closely related to our work.
Adversarial examples and adversarial attack were first put forward in [SZS+14], and some famous robustness
attack methods include Fast Gradient Sign [MFF16], Jacobian-based saliency map approach [PMJ+16], C&W
attack [CW17], etc. In recent years a great number of works like [KSDG20, CH20, XD20, RCBG20, HZ20,
ZFY+19] have developed adversarial attack with a variety of methods and techniques. Robustness training for
DNNs can be traced back to [NW15, ARA+16], and the latest works include [MGN+20, WMB+19, YGZ18,
GDV20, RCJ19, ZG19]. These works improves the robustness of deep neural networks in the training step in
different ways for various DNN models and applications.

9. Conclusion

In this paper, we have studied different a variety of local robustness properties and the (δ, ε)-global robustness
property for deep neural networks, and the corresponding verification methods, based on abstract interpretation,
SMT, as well as Lipschitz constants.

We explore the potential of abstract interpretation for the verification of DNNs. We have proposed to use
symbolic propagation on abstract interpretation to take advantage of the linearity in most part of the DNNs,
which achieved significant improvements in terms of the precision and memory usage. This is based on a key
observation that, for local robustness verification of DNNs where a small region of the input space is concerned,
a considerable percentage of hidden neurons remain active or inactive for all possible inputs in the region. For
these neurons, their ReLU activation function can be replaced by a linear function. Our symbolic propagation
iteratively computes for each neuron this information and utilize the computed information to improve the
performance. This paper has presented with formal proofs three somewhat surprising theoretical results, which
are then confirmed by our experiments. These results have enhanced our theoretical and practical understanding
about the abstract interpretation based DNN verification and symbolic propagation.

We apply the tighter bounds of variables on hidden neurons from our approach to improve the performance
of the state-of-the-art SMT based DNN verification tools, like Reluplex. The speed-up rate is up to 549% in our
experiments. We believe this result sheds some light on the potential for improving the scalability of SMT-based
DNN verification: In addition to improving the performance through enhancing the SMT solver for DNNs,
an arguably easier way is to take an abstract interpretation technique (or other techniques that can refine the
constraints) as a pre-processing.

Furthermore, we propose a Lipschitz constant based verification framework. It is more efficient and scalable
to verify local or global robustness of DNNs with Lipschitz constants solved by semidefinite programming. We
present a method to compute a maximum verifiable radius for verifying the local robustness properties related
to Lp-norms. We also present a method to verify the (δ, ε)-global robustness of a DNN in a given region. The
maximumverifiable radii obtained canbeused as afilter in batch tasks to speedup the verificationprocess ofDeep-
Symbol, which meet the demand of working on large complex networks and more general robustness properties.

Acknowledgements

This work has been partially supported by Key-Area Research and Development Program of Guangdong
Province (GrantNo. 2018B010107004),NationalNatural Science Foundation ofChina (GrantNo. 61761136011,
61836005, 61872445, 62002363), and Natural Science Foundation of Guangdong Province, China (Grant No.
2019A1515011689).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Declarations: Conflicts of interest / Competing interests (Not applicable)

We claim no conflicts of interests.



Enhancing robustness verification for deep neural networks via symbolic propagation 433

Declarations: Availability of data and material (Not applicable)

We use MNIST and ACAS Xu as datasets. See Section 7.1 for details. All the networks we trained on MNIST
are contained in https://github.com/CAS-LRJ/LipSDP/tree/master/LipSDP/examples.

Declarations: Code availability (Not applicable)

PRODeep is open source in https://iscasmc.ios.ac.cn/prodeep. For other abstract domains and the SDP based
Lipschitz constant calculation, see Section 7.1 for details. All the experimental materials on Lipschitz constant
based verification are included in https://github.com/CAS-LRJ/LipSDP/tree/master/LipSDP/examples.

References

[APDC19] AndersonG, Pailoor S, Dillig I, Chaudhuri S (2019) Optimization and abstraction: a synergistic approach for analyzing neural
network robustness. In: McKinley KS, Fisher K (eds), Proceedings of the 40th ACM SIGPLAN conference on programming
language design and implementation, PLDI 2019, Phoenix, AZ, USA, June 22–26, 2019. ACM, pp 731–744

[ARA+16] Akhtar SW, Rehman S, Akhtar M, Khan MA, Riaz F, Chaudry Q, Young Rupert CD (2016) Improving the robustness of
neural networks using k-support norm based adversarial training. IEEE Access 4:9501–9511

[CC77] Cousot P, Cousot R (1977) Abstract interpretation: a unified lattice model for static analysis of programs by construction or
approximation of fixpoints. In: Fourth ACM symposium on principles of programming languages (POPL), pp 238–252

[CH20] Croce F, Hein M (2020) Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks.
CoRR, arXiv:2003.01690

[CW17] Carlini N,Wagner D (2017) Towards evaluating the robustness of neural networks. In: 2017 IEEE symposium on security and
privacy (SP) . IEEE, pp 39–57

[DJST18] Dutta S, Jha S, Sankaranarayanan S, Tiwari A (2018) Output range analysis for deep feedforward neural networks. In: NASA
formal methods - 10th international symposium, NFM 2018, newport news, VA, USA, April 17–19, 2018, Proceedings, pp
121–138

[DSG+18] Dvijotham K, Stanforth R, Gowal S, Mann TA, Kohli P (2018) A dual approach to scalable verification of deep networks.
CoRR, arXiv:1803.06567

[EGK20] Elboher YY, Gottschlich J, Katz G (2020) An abstraction-based framework for neural network verification. In: Lahiri SK,
Wang C (eds) Computer Aided Verification - 32nd international conference, CAV 2020, Los Angeles, CA, USA, July 21–24,
2020, Proceedings, Part I, vol 12224. Lecture Notes in Computer Science. Springer, pp 43–65

[Ehl17] Ehlers R (2017) Formal verification of piece-wise linear feed-forward neural networks. In: 15th International symposium on
automated technology for verification and analysis (ATVA2017), pp 269–286

[FRH+19] Fazlyab M, Robey A, Hassani H, Morari M, Pappas GJ (2019) Efficient and accurate estimation of lipschitz constants for
deep neural networks. In: Wallach HM, Larochelle H, Beygelzimer A, d’Alché-Buc F, Fox EB, Garnett R (eds) Advances in
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