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Abstract. This paper presents counterexample-guided inductive synthesis (CEGIS) to automatically synthesise
probabilistic models. The starting point is a family of finite-state Markov chains with related but distinct topolo-
gies. Such families can succinctly be described by a sketch of a probabilistic program. Program sketches are
programs containing holes. Every hole has a finite repertoire of possible program snippets by which it can be
filled. We study several synthesis problems—feasibility, optimal synthesis, and complete partitioning—for a given
quantitative specification ¢. Feasibility amounts to determine a family member satisfying ¢, optimal synthesis
amounts to find a family member that maximises the probability to satisfy ¢, and complete partitioning splits the
family in satisfying and refuting members. Each of these problems can be considered under the additional con-
straint of minimising the total cost of instantiations, e.g., what are all possible instantiations for ¢ that are within
a certain budget? The synthesis problems are tackled using a CEGIS approach. The crux is to aggressively prune
the search space by using counterexamples provided by a probabilistic model checker. Counterexamples can be
viewed as sub-Markov chains that rule out all family members that share this sub-chain. Our CEGIS approach
leverages efficient probabilistic model checking, modern SMT solving, and program snippets as counterexamples.
Experiments on case studies from a diverse nature—controller synthesis, program sketching, and security—show
that synthesis among up to a million candidate designs can be done using a few thousand verification queries.
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1. Introduction

Uncertainties and probabilities Computing systems nowadays have to deal with uncertainties of various forms.
Tons of data need to be treated, often from unreliable sources such as noisy sensors or the internet. The envi-
ronment of embedded computing systems is continuously subject to unpredictable changes. Illustrative examples
include robots and autonomous vehicles. More and more computing system modules incorporate machine learn-
ing mechanisms whose reasoning is inherently probabilistic. This entails that the traditional qualitative notion of
system correctness—a system is correct or not—becomes blurred. Quantifying (and minimising) the probability
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of encountering an anomaly or unexpected behaviour becomes crucial. This insight has led to a growing interest
in probabilistic models and programs in computing. Henzinger [Hen13] for instance argues that “the Boolean
partition of software into correct and incorrect programs falls short of the practical need to assess the behaviour
of software in a more nuanced fashion [...].” In his ASE 2016 keynote [Ros16], Rosenblum advocates taking
a more probabilistic approach in software engineering. Concrete examples include the quantitative analysis of
software product lines [GS13, VK13, RAN*15, CDKBIS, VtBLL18, LCA* 18], the synthesis of probabilities
for adaptive software [CvG™18, CGJ*16], and probabilistic verification at runtime to support verifying dynamic
reconfigurations [CGKM 12, FTG16].

Synthesis of probabilistic models and programs The development of computing systems under uncertainty is non-
trivial. Probabilistic programs are a prominent formalism to deal with uncertainty. Their main random component
is a random choice among several statements, e.g., assignments. Unfortunately, designing such programs is rather
intricate. A skeleton of the main control flow has to be completed with detailed, often unknown information such
as the exact probability distributions over statements or the final bits of the control structure. Their development
thus requires quantitative reasoning over, often a huge number of, alternative designs. For finite-state programs,
a possible remedy is to take the underlying operational model of a candidate program—typically a Markov
chain—and check it using an automated technique such as probabilistic model checking [Kat16, BAAFKI1S].
This amounts to verify each possible program in the design space. Alternatively, one can apply model checking
directly on some suitable representation of the entire (finite) design space [CDKBI18, CJTK19].

To synthesise probabilities—the transition labels in the operational model-—automated techniques such as
parameter synthesis [HHZ11, CDP*17, QDJ*16] and model repair [BGK* 11, CHH*13] have been successful.
They however only allow to amend or infer transition probabilities, whereas the control structure—the topology
of the underlying probabilistic model—is fixed. Adding or removing transitions is not admitted. That is to say,
every possible amendment keeps the topology of the Markov chain invariant. The topic of this paper is to allow
for changing the Markov chain’s topology. In an automated manner. More precisely, we consider the possible
deletion and/or addition of transitions. Changing the topology results in varying sets of reachable states. Viewing
Markov chains as operational model for (discrete) probabilistic programs, realisations may affect the control
structure as well as the probabilistic choices. The aforementioned parameter synthesis techniques are inadequate
for this problem, as they restrict symbolic expressions like 1/2—e to range over (0, 1), i.e., excluding zero (no
transition) and one (a Dirac transition). Topology changes often come at a price; e.g., for parametric Markov
chains the complexity of qualitative (i.e., zero-one) reachability becomes NP-complete whereas in absence of
topology changes a polynomial-time algorithm suffices [Chol7].

We describe the possible Markov chains by so-called families, finite sets of finite-state Markov chains. Family
members, i.e., Markov chains, are defined over the same set of states. The allowed topology changes within a
family are described by parameters in the Markov chain family description. A naive approach would be to verify
each family member separately so as to find a member (if any) satisfying a given specification. The aim of this
paper is to do this is a more efficient manner. At the syntactic level, families correspond to probabilistic programs
with “holes”. Every hole has a finite repertoire of possible program snippets by which it can be filled. This is
described at the model level by the parameters of a family. Program sketching [Sol13] naturally fits within this
setting. Program sketches succinctly describe the design space by providing the program-level structure but leaving
some parts like command guards or variable assignments unspecified.

Problem statement This paper considers the automated synthesis of finite-state probabilistic models and programs.
The input is a program sketch—a probabilistic program with holes where each hole can be replaced by finitely
many options—, a set of quantitative specifications that the program needs to fulfil, and a budget. Quantitative
specifications include imposing thresholds on reachability probabilities as well as on expected cumulative rewards.
All possible realisations have a certain cost and the synthesis provides a realisation that fits within the budget.
(Costs of realisations should not be confused with rewards in a Markov chain; rewards are earned on runs
of a Markov chain while costs of realisations refer to the expenses of a certain instantiation of a program
sketch. For instance, an assignment is considered cheaper as a more involved control structure.) We study several
synthesis problems—feasibility, optimal synthesis, and complete partitioning—for a given quantitative specification
¢. Feasibility amounts to determine a family member satisfying ¢, optimal synthesis amounts to find a family
member that maximises the probability to satisfy ¢, and complete partitioning splits the family into satisfying
and refuting members. Each of these problems can be considered under the additional constraint of minimising
the total cost of instantiation, e.g., what are all possible instantiations for ¢ that are within a certain budget?
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Fig. 1. CEGIS for probabilistic model and program synthesis.

Counter-Example-Guided Inductive Synthesis To tackle the aforementioned synthesis problems, we tailor and
generalise the paradigm of Counter Example-Guided Inductive Synthesis (CEGIS, cf. Fig. 1) [SLTB*06, ABD* 15,
SRBEO05, ADK ™ 18] to finite-state probabilistic models and programs. An overview of the approach is provided in
Fig. 1. Let us explain this process at the family level. Starting from a family, a candidate realisation D is selected
and discharged to a verifier. Using off-the-shelf probabilistic model-checking techniques [Kat16, BAAFK18], it
verifies whether D = ¢. Ifindeed D = ¢, then a solution is found. If D £ ¢, a counterexample (CE) is generated.

This CE is a fragment [WJA*14] D’ of the realisation D such that D’ refutes ¢. One may consider D’ as a core
of the family member D that suffices to show that D (= ¢.

The key step that the CE D’ is exploited by an SMT (satisfiability modulo theory)-based synthesiser to rule
out potentially many realisations (indicated by the dashed area in Fig. 1)—rather than just realisation D—at
once. Stated somewhat simplified, all realisations that have CE D’ as a fragment can be pruned as they all violate
the specification ¢. This synthesis-verification loop is repeated until either a satisfying realisation is found or the
entire family is pruned implying the absence of a realisation D = ¢. The CEGIS approach iteratively partitions a
family into “good”, “bad” and inconclusive realisations. It starts with a single candidate realisation, and rules out
several realisations by effectively exploiting counterexamples. In the syntax-based setting, CEGIS starts with a
program sketch, a program with holes, and iteratively search for good—or even optimal—instantiations of these
holes.

Challenges and solutions Tailoring CEGIS to probabilistic programs imposes two fundamental challenges:

e (a) CEs are structurally more complicated than for deterministic programs, and
e (b) verifying a proposed program requires numerical computations.

CE:s for deterministic programs are mostly single paths: a finite path ending in a bad state suffices to show the
violation of a safety property. In the probabilistic setting, CEs need to carry quantitative information and are no
longer single paths but sets of paths [HKD09]. This makes the pruning process computationally more demanding
and less effective compared to standard CEGIS. Whereas CEGIS fully relies on SMT techniques, in our setting,
SMT encodings of the underlying decision problems require numerical computation which is computationally
harder. We tackle these challenges by (a) adopting the notion of program-level CEs — a core sub-set of program
commands causing a violation of the quantitative specification — for probabilistic programs [DJW™* 14, WIV*15],
and (b) integrating a unique SMT-based pruning strategy with efficient numerical verification techniques [KNP11,
DJKV17]. Synthesis requires a generalisation of program-level CEs, viz. sub-programs, such that all CE extensions
adhering to the sketch violate the specification and thus can be safely abandoned as candidate program.

Outcomes To summarise, this paper presents a novel synthesis framework for probabilistic programs that adhere
to a given set of quantitative specifications and a given budget. Programs are represented in the PRISM modelling
language [KNP11], a probabilistic extension of reactive modules. Program sketches are PRISM modules with
holes. Specifications are expressed in PCTL (Probabilistic Computational Tree Logic) extended with rewards, a
standard temporal logic in probabilistic model checking [KNP11, DJKV17]. We formally define counterexamples
(CEs) for PRISM programs and extend a MaxSat approach to obtain such program-level CEs as a by-product of
the program verification. Our CEs are similar to program-level CEs [DJW* 14, WIV*15], and allow for a flexible
sketching language. To the best of our knowledge, this is the first CEGIS approach for probabilistic programs. To set
the scene, in the first part of the paper we consider the synthesis problem on the underlying operational model of
PRISM programs, finite Markov chains. We use families of Markov chains as operational counterpart of program
sketches and detail a CEGIS-style algorithm on these families. CEs at this operational level are sub-graphs of
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Markov chains. The second part of the paper shows how to generalise this approach on families to reason on
probabilistic programs with holes.

The CEGIS approach is sound and complete: either an admissible program does exist and it is computed, or
no such program exists and the algorithm reports this. We report on a prototypical implementation built on top
of the model checker Storm [DJKV17] using the well-known SMT-tool Z3 [dMBO0S]. Experiments on case studies
from a diverse nature—controller synthesis, program sketching, and security—demonstrate that synthesis among
up to a million realisations can be achieved by a few thousand verification queries. This results in a significant
speed-up compared to a baseline approach in which each individual realisation is verified.

Organisation of the paper The rest of this paper is organised as follows. Section 2 presents the necessary back-
ground on PRISM programs, Markov chains, and quantitative specifications. Section 3 defines the concept of
program sketches for PRISM programs, describes possible applications thereof, and formalises the various syn-
thesis problems considered in this paper. Section 4 introduces families of Markov chains and describes their
relationship to program sketches. Section 5 describes our CEGIS approach applied to families of Markov chains.
It in particular describes the use of counterexamples, and presents the verifier and the synthesiser algorithms.
Section 6 details how the CEGIS approach can be lifted to the program level. This includes a description of
program-level counterexamples, the program verifier and program synthesiser. It includes details on the used
SMT encodings and the usage of MaxSat for CE generation. Section 7 reports on our experimental validation us-
ing a prototypical implementation. Our evaluation focuses on comparing CEGIS to a baseline approach in which
all family members are verified, and on identifying the decisive factors that influence synthesis times. Section 8
wraps up and includes some pointers to future work.

This paper extends our publication in [CHJK19] by discussing CEGIS in greater detail. In particular, we
provide more background on families and program sketches, give additional illustrating examples, and add
sections on the necessary adaptions to achieve efficiency, and a comparison to an alternative approach based on

counterexample-guided abstraction refinement [CJJTK 19]. The extended material is partially based on [Jun20].

Related work CEGIS approaches. CE guided inductive synthesis (CEGIS) has been introduced as an SMT-
based synthesiser for sketches [SLTB*06]. Due to enormous improvements in SMT solving in the last decade,
CEGIS has been successfully applied to find programs for various challenging problems [SRBEO05, SLIBO0S].
Meta-sketches for optimal and quantitative synthesis in a deterministic setting have been considered in, e.g.,
[CCH*11, CCS14, BTGC16]. Sketches together with likelihood computation have been used to find probabilistic
programs that best match available data [NORV15]. Gerasimou et al. [GTC15] presented an approach resem-
bling ours. It synthesises probabilistic systems from specifications and parametric templates. The key difference
is that our approach prunes the design space by using counterexamples. Instead, [GTC15] leverages evolutionary
optimisation techniques without pruning. The evolutionary algorithms, driven by a fitness function capturing
the satisfaction probability, can get stuck in local minima and may thus miss the correct or optimal solution.
Completeness is thus only achieved by exploring all designs.

Markov chain families. Modal transition systems [LT88, AHL*08, Krel7] are a prominent representation of
sets of alternative designs. Parametric modal transition systems [BKL*15] allow for similar dependencies as in
program-level sketches. Synthesis for these modal transition systems has been considered in [BKL*12]. Prob-
abilistic extensions of modal transition systems have been considered in, e.g. [DKL*13]. Their focus was on
establishing a specification theory, and not on synthesis.

Verifying model families. An efficient verification procedure of qualitative properties on families of transition sys-
tems has recently been considered for LTL specifications by exploiting model-specification dependencies [DR18].
Model checking various related Markov models has been considered in the context of the quantitative verification
of software product lines [GS13, VK13, RAN*15, LCA*18]. The typical approach is to analyse all individual
designs (aka: product configurations) or build and analyse a single, so-called all-in-one, Markov decision process
(MDP) describing all the designs simultaneously. These techniques have been integrated into the software tools
ProFeat [CDKB18] and QFLan [VtBLL18]. The scalability of these approaches is limited even with using sym-
bolic methods. An incomplete method in [JHTT19] employs abstraction targeting a particular case study. An
abstraction-refinement scheme has recently been explored in [CJJTK 19]. It iteratively analyses an abstraction of a
(sub)set of designs—it is an orthogonal and slightly restricted approach to the inductive method presented here.
Detailed differences are discussed later in this paper.
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Parameter synthesis. A related approach is parameter synthesis in parametric Markov chains, in which tran-
sitions are labeled with functions such as p and 1—p over parameters. Successful approaches for the feasibil-
ity problem in this setting have been proposed in, e.g., [CDP*17, QDJ*16]. These works identify transition
parameters for which the instantiated models satisfy a quantitative specification. An extension to handle pa-
rameters affecting transition probabilities (rates) has been integrated into the evolutionary-driven synthesis
of robust systems [CvG*17a, CvG*18] and is available in the software tool RODES [CvG™17b]. Model re-
pair [BGK™*11, CHH™13] takes a Markov model that violates a specification and automatically adjusts its tran-
sition probabilities to produce a “repaired” model that meets the specification.

SMT and CEs in synthesis. SMT-based encodings for synthesis in Markov models or versions thereof for pop-
ulation models have been used in, e.g. [JJD*16, CCF*17]. These encodings are typically monolithic: they do
not prune the search space via CEs. Probabilistic CEs have been recently used to ensure that MDP controllers
obtained via learning from positive examples meet a given safety specification [ZL18]. Their CE-guided approach
ensures the resulting strategy to be close to the unknown expert strategy.

2. Preliminaries

Programs Probabilistic programs provide a concise modelling formalism in the development of systems under
uncertainty. We briefly introduce the PRISM-language as an example of such a language and illustrate our program
synthesis approach using PRISM programs. Alternative programming notations include MODEST [HH14], a
compositional process-algebraic language that is aimed at describing distributed systems, PGCL [MMS96], an
imperative while-language with coin flips as primitives, and JANI [BDH* 17], an expressive intermediate language
aimed to enable the use of different software tools as back-end for a variety of other domain-specific languages.
The synthesis techniques presented in this paper can be easily adapted to these languages'. Various models in
these languages are available from the quantitative verification benchmark set [HKP*19].

PRISM programs We briefly describe the PRISM guarded-command language. A PRISM program consists of one
or more reactive modules that may interact with each other. To ease the presentation, we consider a single module.
This simplification is not a restriction as every PRISM program can be flattened into this form. Flattening results
in programs that are more involved to analyse in an automated manner, but simplifies the technical explanation. A
module contains a set of bounded variables, the valuations of these variables span the state space of the underlying
model. Transitions between states are described by guarded commands of the form:

g — priuppt...... + pn i up,

The guard g is a Boolean expression over the module’s variables. If the guard g evaluates to true (for a given
variable valuation), then the module evolves into one of the n successor states by updating its variables. This is
accomplished in a program execution by selecting an update up according to the probability distribution given by
the expressions py, ..., p,. Every update is an assignment describing how (a subset of) the variables (the left-hand
side of the assignment) are reassigned based on an expression (the right-hand side). In every state enabling the
guard g, the evaluation of py, . . ., p, must sum up to one. This ensures a probability distribution over the possible
updates. Roughly speaking, a program L thus is a tuple (Var, Cmd) of variables and commands.

Definition 1 (Markov chain) A (discrete-time) Markov chain (MC) is a tuple D :=(S, ¢, P, rew) where S is a set
of states, 1 € S is an initial state, P: S — Distr(S) is a transition probability function?, and rew: S — R are
finite state rewards.

The operational semantics of the program L is given by a finite discrete-time Markov Chain (MC, for short)
denoted [ £ ]J. The details of this semantics are outside the scope of this paper and can be found in [KNPI11].
We explain a few details and then illustrate the semantics by an example. To obtain a direct mapping between
program £ and the underlying MC, we have to ensure that every reachable state of the program satisfies exactly
one command. The operation fixdl takes a program and adds commands that introduce self-loops for states

In particular, the implementation of our techniques (cf. Sect. 7.1) is based on JANI, and also supports PRISM.
2For Markov chains, we denote P(s)(s’) with P(s, s').
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module rex
x : [0..1] init 0;
y : [0..2] init 0O;

x=0&y <2 ->0.5: x’=1+ 0.5: y’=y+1;
y =2 ->1: y’=y-1;

x=1%&y !=2->1: x’=y & y’=x;
endmodule

-
@ = 3
0
=
-
~
)

), 09)

(b) Underlying model after fixing deadlocks.

(a) PRISM program
Fig. 2. PRISM program £ with underlying model [ fixdI(£) ]

without enabled guard: the operation thus fixes deadlocks. We disallow overlapping guards, that is, every two
different guards have to be disjunctive’. Assignments may violate resource bounds, contain divisions-by-zero,
etc. Programs that contains such assignments are ill-defined, as opposed to well-defined programs that do not
contain such assignments and that do not contain overlapping guards.

Example 1 Figure 2a shows a sample PRISM program. The program contains the variables = and y, where z is
either zero or one, and y ranges between zero and two. In total, there are thus 6 different variable valuations,
i.e., states. We denote states as tuples with the z- and y-value. The MC (after fixing deadlocks) is illustrated in
Fig. 2a. From state (0, 0), (only) the first guard is enabled. Thus there are two transitions, each with probability
a half: one transition in which z becomes one and one transition in which y is increased by one. We see a similar
pattern for state (0, 1) which also enables the first command. There is no guard enabled in state (1, 1), therefore
the fixdl operation adds a command to the program that produces a self-loop.

Specifications Quantitative properties of probabilistic programs can be specified using a probabilistic temporal
logic such as PCTL [BKO08]. For simplicity, we focus on reachability and expected state reward properties. A
reachability property has the following form: ¢ :=P, (¢ T') foraset T' C S of target states, threshold A € [0, 1] C
R, and comparison relation ~ € {<, <, >, >}. Let Pr (0 T') denote the probability to reach T from the initial
state ¢ in MC D. Then, D = ¢ if Pr,(OT) ~ A. A specification is a set & = {¢;};cs of properties, and D = &
if Vi e I. D = ¢;. We call upper-bounded properties (with ~ € {<, <}) safety properties, and lower-bounded
properties liveness properties*. The expected state reward property ¢ :=E-; (0 T) with ~¢ {<, <}foraset T C S
(where Pr (0 T) = 1)and A € Ry is satisfied in state ¢ if

(o]
Zr~PrD(n:sosl o Splso=tAs, € TArew(m)=r)~Xx
r=0

where Pr () denotes the probability of finite path 7 and rew(sy s; ... s,) = >, rew(s;). The interpretation
of ¢ on a probabilistic program is naturally carried over to the MC describing its operational semantics. That is,
a program L satisfies a specification @ if and only if [ £ ] = ©.

3. Synthesis for probabilistic program sketches

In this section, we introduce sketches of probabilistic programs and the syntax-guided synthesis problems con-
sidered in this paper.

3.1. What are program sketches?

Intuitively speaking, a program sketch [Soll13] is a syntactic template defining a high-level structure of an un-
derlying operational model. It concisely represents a priori knowledge about the system under development.

3Some tools permit overlapping guards and resolve the resulting nondeterminism by considering a uniform distribution over the guards.
4The correspondence to the standard qualitative, path-based notion of a safety property is that the safety properties can be refuted by a
set of finite paths.
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hole HX either { XA is 1 cost 3, 2}

hole HY either { YA is 1, 3 }

hole HZ either { 1, 2 }

constraint V(XA && YA);

module rex module rex

s : [0..3] init 0; s : [0..3] init 0;
s =0 ->0.5: s’=HX + 0.5: s’=HY; s =0 ->0.5: s’=1 + 0.5: s’=3;
s =1 -> 1: s’=s+HZ; s =1 ->1: s’=s+2;
s >= 2 -> 1: s’=s; s >= 2 -> 1: s’=s;
endmodule endmodule
(a) Program sketch S (b) Instantiation S({HX — 1,HY +— 3,HZ > 2})

Fig. 3. Running example

It effectively restricts the size of the design space and also allows for adding constraints and costs to various
designs. Program sketching has been successfully applied to e.g., scientific programs and concurrent data struc-
tures [ASFS18, GPS17]. We propose to extend sketches to probabilistic programs and in particular, to a language
which is supported by model checkers. Therefore, we focus our presentation on PRISM program sketches.

A sketch is a program that contains holes. Holes are the program’s open, i.e., undefined parts and may be
replaced by one of finitely many options. They are syntactically declared as:

hole h either {expr, ..., expr, }

where k& > 0, h is the hole identifier, and expr, is an expression over the program variables describing the i-th
option. Each option may be given a name and may be associated with a cost:

hole h either {n; is expr; cost ¢i,...,n; is expr;, cost cj}

where n; is the i-th option name and ¢; is the cost of the i-th option and is given as expression over natural
numbers. A hole 2 may be used in the updates of a command, in a similar way as a constant, and may occur
multiple times within one or multiple commands. Extensions to such occurrences are discussed in [Jun20, Ch. 6].
An realisation of a program sketch is a function that maps every hole onto one of its options. The option names
may be used to describe constraints on these realisations. These propositional formulae over option names restrict
realisations, e.g.,

constraint (m V m) = m3

requires that whenever the options n; or n are taken for some (potentially different) holes, option n3 is also to
be taken. Formally, program sketches are defined as follows.

Definition 2 (Program sketch) A (PRISM) program sketch S is a quadruple (L4, Oy, I', cost) where L4 is a
PRISM program with a set H of holes, Oy := |J,c;, Oy is the set of options where Oy, are the options of hole A,
I is a set of Boolean expressions over Oy, and cost: Oy — N are the option-costs.

Example 2 We consider a small running example to illustrate the main concepts. Figure 3a depicts the program
sketch S with holes H = {HX, HY, HZ}. The options of HX are Oyx = {1, 2}. The constraint forbids XA and
YA both being one; it ensures a non-trivial random choice in state s=0.

Definition 3 (Realisations of sketches) Let S := (L, O, I, cost) be a sketch.
o A sketch realisation v is a function

v:H — Oy suchthatforall h € H: v(h) € Oy,

that satisfies all constraints in I.
e The cost c(v) of realisation v is the sum of the costs of the selected options, c(v):= ), ., cost(v(h)).
e The sketch instantiation S[v] for realisation v is the program (without holes) Ly[H < v(H)] in which each
hole h € H in Ly is replaced by v(h).
Let R denote the set containing all realisations for S.

Example 3 We continue Example 2. The program in Fig. 3b reflects S[v] for realisation v:={HX +— 1, HY —
3, HZ + 2}, with c(v) = 3 as cost(v(HX)) = 3 and all other options have cost zero. For realisation v/ = {HX
2,HY,HZ — 1}, ¢(v') = 0. The assignment {HX, HY, HZ > 1} violates the constraint and is not a realisation.
In total, S represents 6 = 23 —2 programs and their underlying MCs.
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const int ACTIVE_HIGH = 0O; const int ACTIVE_LOW = 1; const int SLEEP = 3, const int OFF = 4;

hole either { ACTIVE_HIGH, ACTIVE_LOW, SLEEP, OFF }
hole either { ACTIVE_HIGH, ACTIVE_LOW, SLEEP, OFF 1}
hole either { ACTIVE_HIGH, ACTIVE_LOW, SLEEP, OFF }

module DPM
pm : [0..1] init O;

[sched] gqH = 1 & gL = 1 -> 1: pm’= ;
[sched] gqH = 1 & gL = 2 -> 1: pm’= ;
[sched] g = 9 & gL = 9 -> 1: pm’= ;

endmodule

module SYSTEM

qH : [1..9] init 1
gL : [1..9] init 1

éhémodule
Fig. 4. Part of a sketch for the DPM (dynamic power manager)

Sketches are well-defined, if all their realisations are well-defined programs.

3.2. Application view on sketches

Program sketching [Sol13] starts with a program sketch, a partial program in which certain (e.g., difficult) ex-
pressions, guards, and statements are left unspecified. The hypothesis of program sketching is that programmers
often have an idea about the main control flow of the program but filling in all low-level details is laborious and
error prone, and is left to an automated synthesiser. The synthesised program has to satisfy a given specification
®. The following examples give some insight into applications and challenges that are within the scope of the
CEGIS technique presented in this paper.

3.2.1. Sketching for controller synthesis

Many sketching challenges originate from controller synthesis problems on Markov decision processes (MDPs).
MDPs extend Markov chains by having a choice over probability distributions (over states) in each state. Stated
differently. an MC is an MDP in which in every state there is a single probability distribution. The choices between
the distributions in MDP states are resolved by strategies that describe the controller. There are often additional
constraints imposed on the realistic strategies, e.g., a controller may not be able to depend on the internal state
of a remote device. Sketching helps: A sketch may describe a partial strategy for partially observable MDPs,
decentralised MDPs, or other extensions to MDPs with restricted classes of strategies. Let us give some concrete
examples.

Example 4 Consider a dynamic power manager (DPM) optimising the energy consumption in a system, see,
e.g. [BBPM99, SDMO08, GTC15] that can be in different modes such as idle, sleep, on, etc. A DPM controls
changing the system’s power states at run time by issuing commands (like: go into sleep mode, wake up) to
the system depending on its workload (requests queued in buffers) and performance constraints. Example per-
formance constraints are e.g., restricting the maximal buffer occupancy or maximal number of lost requests. A
program sketch in this setting describes admissible control strategies. The synthesis goal is to find a DPM program
that satisfies the given constraints while minimising the expected energy consumption. Figure 4 shows a snippet
of a possible sketch for a DPM including partially specified commands of the form

[sched) gy & g1, — 1: pm' =y

where gy and g;, are (possible unknown) guards concerning the low-priority and high-priority request buffer,
respectively, and hole y represents an unknown update of the DPM state. The program synthesis then boils down
to finding the right system update (variable pm) for the observed system state (occupancy of low-priority and
high-priority request buffers).

Example 5 Consider a robot navigation task, in which a floor plan is divided into various rooms. The robot’s task
is to navigate to a particular room under certain side constraints, e.g., without visiting another room, or within
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const double pFAj;
const double pFB;

module encode hole either { 0, 1 }

s : [0..1] init 0; hole either { 0, 1 %

FA.' [6' 11 init 6. module encode

FB : [0..1] init O0; ;A:-[?é.li]lgiztoé'

s =0 -> pFA  pFB: s’=1 & FA’=1 & FB’=1 + 'B s [0 1] isit o
(1-pFA) = pFB: s’=1 & FA’=0 & FB’=1 + =0 -5 1: s'=1 & FA'=fa & FB’=
PFA % (1-pFB): s’=1 & FA’=1 & FB’=0 + s = PeE = =

- - . )= )= y=0 - ..

(1-pFA) % (1-pFB): s’=1 & FA’=0 & FB’=0; endmodule

endmodule

(a) A parametric MC description with features. (b) A sketch depending on features.

Fig. 5. Describing a SPL as parametric Markov chain (pMC) or sketch

a number of turns. The challenge is that the robot cannot distinguish all rooms, i.e., its location is only partially
observable. The robot thus has to make its decisions based on the sensor readings and its internal state only.
No information from the unobservable environment can be used in decision making. A controller that adheres
to this restriction is called admissible. When the internal states (including the memory of a controller) and the
possible sensor readings are fixed there are finitely many admissible controllers that can be adequately described
by a program sketch.

3.2.2. Sketching for software product lines

A software product line (SPL) is (according to Wikipedia®) “a set of software-intensive systems that share a
common, managed set of features satisfying the specific needs of a particular market segment or mission and
that are developed from a common set of core assets in a prescribed way.” Products in a SPL have different
features which may be understood as functionalities changing the behaviours of a core software system. SPLs
thus provide an elegant way to specify families of systems: every member of the family comprises the core system
together with a combination of features. Quantitative specifications relevant for SPLs include (minimising) the
probability of encountering an anomaly or unexpected behaviour, and limiting the expected energy consumption
of battery-based (software) systems, see e.g. [RAN*15]. SPLs and program sketches have strong similarities, in
particular they both consider a program with some unspecified behaviour. In sketching, the goal is to concretise
the unspecified behaviour such that the completed program satisfies a specification. In SPLs, the goal is to classify
which of the available behaviours yield a system (aka: product) that satisfies the specification. It is thus natural
to consider a sketch as the description of a SPL. The feasibility problem corresponds then to finding a product
of the SPL that satisfies a specification, while partitioning amounts to find all realisations that accept and reject
the specification, respectively.

Example 6 The Body Sensor Network (BSN [RAN™15]) SPL describes a network of connected sensors that send
measurements to a unit identifying health-critical situations. The BSN includes various configurations of binary
features, i.e., whether a sensor is available or not. For each feature, a Boolean parameter f is 1 if the feature is
active and 0 otherwise. The synthesis goal is to find all feature combinations for which the induced system meets
a certain reliability specification. We consider so-called variation points—states whose future behaviour depends
on the features—where depending on the availability of features F,, and F}, the model behaves differently.

Let us outline how to formulate this setting as parametric Markov chain (pMC). At a variation point, the
probability of every transition is scaled by factor p which equals f if the feature enables the transition and 1—f
otherwise. This results in the pMC described by the PRISM program in Fig. 5a. A program sketch concisely
represents such system as demonstrated in Fig. 5b. Furthermore, in a sketch, additional dependencies between
features may naturally be expressed by constraints.

Example 7 Consider the development of a communication system. To that end, we can buy two different types of
antennas, and configure both the number of retransmissions of each packet and the time elapse between successive
retransmissions. Consequently, large parts of the protocol description are shared among all these instances, but the
instances vary. For instance, a different number of retransmissions leads to a different topology of the underlying
MC.

Shttps://en.wikipedia.org/wiki/Software_product_line
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3.3. Synthesis problems

In general, we are interested in realisations of a given sketch that satisfy a given specification.

Definition 4 Let S be a sketch and @ a specification. A realisation v is accepting @, if S[v] = ®, and rejecting
® otherwise®. Let acc§ and rej‘g, denote the set of all accepting and rejecting realisations of & and sketch S,
respectively.

Allaccepting and rejecting realisations of S span the entire spectrum of realisations of S, i.e., accj Urej§ = Rs.
For singleton specifications ® = {¢}, we denote accf, by accy.

Lemma 1 For a sketch S and a specification @, it holds that
acc§ = ﬂ acc‘s and ref§ = U reji. D
ped ped

We are now in a position to formulate the synthesis problems of interest in this paper. Let S be a sketch and ® a
specification.

1. Feasibility problem: Is acc§ non-empty? In words, is there a realisation of S satisfying ®?

This problem is a typical instance of synthesis problems aimed to obtain an instantiation S[v] of S accepting ®
(if it exists). The dual problem is validity: is rejf, empty? The validity problem can be considered a verification
problem in which we aim to certify that certain system behaviour (characterised by —®) is irrespective of the
precise topology.

The optimal feasibility problems aims at determining optimal instantiation rather than some arbitrary instanti-
ation. We define this problem for specifications concerning the maximal reachability problem for a given target
set T. This formulation can be straightforwardly adapted to expected reward specifications or minimisation
objectives.

2. Max synthesis problem:

Find maxyer, Pr g (0 7). In words, find a realisation of S maximising the probability to reach T'.

The maximal synthesis problem can be naturally extended by considering a specification @ that restricts the
set of feasible solutions. In this case, we search for maxyc,ccs Prgp (0 T). A relaxed variant of the problem
searches for an almost optimal realisation. Formally, for a tolerance value € € (0, 1], find v € Rs such that

Vv e Rs: Pr si(OT) = € - Prg (O T). Typically, this variant is computationally less demanding.

Ultimately, it is useful to effectively analyse all instantiations and find the set acc§. This problem is known as
threshold synthesis [CDP*17] and includes finding a concise representation of accg and rejjg.

3. Complete partitioning problem: Find acc§, i.e., determine all realisations of S satisfying ®.

Finally, the synthesis problems may impose cost constraints on the realisations, see the cost c(v) in Definition 3.
In particular, we can either require that the cost of the resulting realisations is within a given budget or we can
search for v € acc§ that minimises the cost.

We illustrate the problem statements using two examples of before.

Example 8 Consider the communication protocol from Example 7. Potential specifications impose e.g., upper
bounds on the expected energy consumption and on the probability of successfully dropped packets. Feasibility
then amounts to finding an instance that satisfies both requirements, while max feasibility amounts to, e.g., finding
the instance with the lowest expected energy consumption that bounds the probability of successfully dropped
packets. Complete partitioning allows a designer to ensure that all released instances satisfy the specification.

Example 9 Consider the robot navigation task from Example 5. A safety property is that the probability of
crashing into static or dynamic obstacles is within a given threshold. A typical liveness property is that the

SRecall that S[v] = ® if D |= ®, where D = [ S[v]] is the MC describing the operational semantics of instantiation S[v].
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probability of reaching a particular room is above some threshold. The conjunction of these properties is a
sample specification. Solving feasibility with such a specification can, for fixed thresholds, result in an admissible
(fixed-memory) strategy. The outcome of max feasibility is a strategy that (almost, i.e., up to ¢) maximises the
probability of reaching a particular room while meeting the threshold on the probability of crashing. Partitioning
yields all strategies that meet the specification and may allow a designer to make a selection among them, based
on secondary objectives.

4. Families

This section presents our main conceptual ideas on a simple, low-level, representation of sets of MCs. These MCs
have a set of states in common, but their topology may vary. MCs with varying topology are a natural model
when aggregating various alternative designs, and closely related to sketches. In fact, they can be considered as
operational model of sketches as we will clarify in Sect. 4.2.

4.1. Families of Markov chains

We introduce a dedicated formalism to capture MCs with an uncertain topology.

Definition 5 (Family MC) A family MC (fMC)is a tuple ® = (5,t, Y, Domy, P, rew) with a finite set of states
S:= 8] x S, an initial state 1 € S, a finite set ¥ of parameters that range over Domy : ¥ — 29 a parameterised
transition probability function P: S — Distr (( Y US) x Sz), and rewards rew: § — Rsg.

We omit the rewards if rew(s):=0 forall s € S.

Remark 1 States in fMCs are tuples of the form (sj, s;). This state structure may look peculiar at first sight
but corresponds to the operational semantics of a probabilistic program where states are tuples that encode
program-variable valuations; this is illustrated further in Sect. 4.2.

Whereas transition probability functions of MCs map states to distributions over states, in fMCs these functions
map states to distributions over states whose first element is given by a parameter.

Remark 2 The signature of the transition function can be simplifiedto P: S — Distr ( Y x Sz) when a parameter
for every state in S; is used.

By varying these parameters, the topology varies. Assigning every parameter a concrete state yields an MC.

Definition 6 (Assignment) A (parameter) assignment of an fMC ® = (5] x 5, t, Y, Domy, P, rew) is a function
v: Y — S| where for all y € Y it holds that v(y) € Domy (y).

Let F5 denote the set of all assignments for ©. This set is finite, but exponentialin | YV |.
Definition 7 (Instantiation) Let ® = (5:= 5] x S,t, Y, Domy, P, rew) be an fMC and v an assignment for 2.
The instantiation ©[v] is the MC D[v]:= (S, ¢, P, rew), where for all s, s € S, with s’ :=(s{, s}):

P(s,s):=Phl:= > P(s)(y, ) + P(s)({s], 53)).
yeyY
v(y)=s;

We refer to sets of assignments as (sub)families. An fMC and a family may be seen as a generator for the set of
all instantiations:

Definition 8 (Generator for fMCs) The generator (9 | F) for fMC © and family F' C Fy is:
D|Fy:={D[v]|veF}
We write (D) to denote (D | Fo).
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(a) D[v1] with vi(z) == s2,v1(y) = s2 (b) Dve] with va(z) = s2,v2(y) = sa
1/10 /10 1/10 9/10
o @20 O ¢ @(%
(c) D[vs] with vz(z) == s3,v3(y) = s2 (d) Dlva] with va(z) = s3,v4(y) = sa

Fig. 6. The four different instantiations of family ©. States s; are denoted with ¢

Example 10 Considerthe MCD = (Sx{t},t, Y, Domy, P)where S :={sp, ..., s4},t:= (50, to),and Y := {z, y}
with Domy (z) :={s;, s3} and Domy (y) :={s, s4}, and P given by:

P({s, o)) :=1/2: (s1, to) + 1/2: (z, ty), P((s1, to)) :=1/10: (s0, to) +4/5: (y, to) +1/10: (s4, o),

P((s2, t0)):=1: (y, t),

P(<’53’ t0>) = 1: (‘937 tO)v ((545 )) - 1 (54’ tO)

Figure 6 depicts the generator (D). The captions clarify the assignments vy, .. ., v4. Consider the specification

D:={p:= P52/5(<>{52})}-

The instantiations vy, vy, v3 in Fig. 6a—c reject ® and the instantiation v4 in Fig. 6d accepts .

Remark 3 The example above corresponds to fMCs with | S, |= 1. Their main rationale is their simplicity.
Observe that whenever 5, is a singleton, we may omit explicitly denoting all tuples. We illustrate this based on
the example from above. We write s; to denote (s;, s;) and define P : S; — Distr(Y) by:

P(sy):=1/2: 81 +1/2: x, P(s1):=110: s +4/5: y + 1101 s4, P(s):=1: 1y,

P(S3) =1: 83, P(S4) =1: S4.
The class with | S, | =1 is not expressive enough for most practical purposes, as shown in [Jun20, Ch. 6], but is
useful to explain some concepts. Because all parametric transitions lead to a single state, taking such a transition

amounts to forgetting everything but this transition, which severely limits the applicability. The next example
shows a family with | S, |> 1.

Example 11 Consider the f MC® = (5] x 5,t, Y, Domy, P) where
St := {50, 81, %2}, S :={to, 1, b, B3}, L := (50, to), and Y := {y} with Domy (y) := {s0, 51}

The parametric transition function P is defined by:

P((s0, to)) :=1/2: (s1, to) +1/2: (2, to),

P((s1, to)):=1: (y, t1), P((s2, o)) :=1: (y, ),
P((s0, t1)):=1: (s0, 13), P((s1, 1)) :=1: (s1, B3),
P((s0, ) :=1: (51, 3), P((s1, &) :=1: (50, t3),

and for all other pairs (s, t) € S; x S: P({s, t)):=1: (s, t). Figure 7 shows the two MCs corresponding to
Fo and presents a graphical representation of the fMC. In particular, a dashed transition in Fig. 7c refers to a
parametric transition, i.e., to a transition that only exists for some parameter assignments. The label y clarifies on
which parameter the existence of the transition depends. By considering the first component of the target state,
one can determine for which assignments this transition exists.
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(a) MC D2[{y — so}] (b) MC Da[{y — 81}] (c) IMC D2

Fig. 7. Instantiations of the fMC from Example 11. States (s;, s;) are labelled as 4,j

Sketches Families
Sketch & Definition 2 ~ Family © Definition 5
Holes H Definition 2 ~ Parameters Y Definition 5
Instantiation S[v] is a program Instantiation D[v] is an MC
Realisations v € R Definition 3~ Assignments v € F Definition 6
Counterexamples are sets of commands. Definition 14 Counterexamples are sets of states.  Definition 12
Conflicts are partial realisations. Footnote 12 Conlflicts are partial assignments. Definition 9

Table 1. The table clarifies similar concepts in families and sketches. Some of these notions only occur later in the paper.

Synthesis problems for families of M Cs
The synthesis problems introduced in Sect. 3.3 for sketches carry over straightforwardly to families of MCs. For
example, the feasibility problem is formalised as follows.

Feasibility problem for fMCs:

Given fMC D, family F' C Fy, and specification ®, does D = @ for some MC D € (D | F)?

This is equivalent to: is acch N F # ¢¥? The following result characterises the complexity of this feasibility problem.

Lemma 2 [Jun20] For | S, |> 2, the feasibility problem for fMCs is NP-hard’.

4.2. Families versus sketches

The following example together with Table 1 clarify how sketches are natural descriptions of fMCs.

Example 12 The sketch in Fig. 8a reflects the fMC in Fig. 7c. Although the construction here is slightly com-
pressed, the idea is simple. The program contains two variables to reflect S; and .S;, and one hole to reflect the
parameter y.

hole HY either { 0, 1 } hole HX either { 1, 2, 4 }
module fam hole HY either { 1, 3, 5 }
s : [0..2] init O; module rex
t : [0..3] init O; s [0..10] init O;
s =0&t=0->0.5: s8’=1 + 0.5: s’=2; t [0..10] init O0;
s >0 & t =0 ->1: s’=HY & t’=s; s >t -> 0.5: s’=HX+HY + 0.5: s’=HY & t’=HX;
t =11t =3->1: t’=3; s <t -> 1: s’=s+HX & t’=HX;
t =2 ->1: s’=1-s & t’=3; s =t ->1: s’=s;
endmodule endmodule
(a) Sketching an fMC (b) Sketching beyond an fMC

Fig. 8. Sketches versus fMCs

"This statement is a correction of [CJJK 19] which omitted the restriction on the cardinality of S.
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Fig. 9. Schematic example run of CEGIS. The grid depicts a family with two parameters, each with 5 possible values. Thus, each cell
corresponds to a (parameter) assignment. Purple cells correspond to the currently considered assignment (rejecting), with light red indicating
assignments pruned in this iteration. The green cell corresponds to an accepting assignment

The constraints on sketches enable to concisely describe a subfamily in the modelling language. However, giving
semantics to sketches in terms of fMCs is not straightforward, as illustrated by the following example.

Example 13 The sketch in Fig. 8b goes beyond the sketch in Fig. 8a. First, both program variables s and ¢ are
affected by the holes. Second, the hole HX appears in updates for different variables, thereby encoding implicit
constraints on the possible combinations of commands in different instantiations of the sketch, and between the
assignments to the different program variables.

Additional dependencies between transitions may be expressed by some combination of constraints. Having
more program variables may be reflected by fMCs with state tuples with an entry for every program variable.
Families could be extended to formally support such constructions, but this would clutter their definition®. In
our experiments, sketches additionally contain the parallel composition of modules and further extensions to
ease modelling. Providing a formal fMC semantics to such sketches goes beyond the scope of this paper. Further
details can be found in [Ch. 6+7][Jun20].

Finally, we emphasise that the connection between the sketches and families together with Lemma 2 implies
the NP-hardness of the feasibility problem for probabilistic program sketches.

5. Counterexample-Guided Inductive Synthesis for Families

This section introduces counterexample-guided inductive synthesis (CEGIS) for families of MCs. (Syntax-Guided)
CEGIS [SLTB*06, ASFS18, JS17, ADK™"18] is a successful technique to synthesise programs. The aim of this
section is to provide intuition on our adaption of CEGIS. We only consider feasibility. Conceptually, CEGIS for
probabilistic models is easier to understand on an explicit model of fMCs than on sketches.

The idea is simple: let ® be a fMC and ¢ some property. We tackle the feasibility problem by an enumerative
search for an accepting (parameter) assignment for ¢, among all instantiations Fyp. After considering some
assignment v, we prune the search space of all assignments with additional unconsidered assignments: if v rejects
@, the verifier provides a counterexample indicating why the instantiation D[v] rejects ¢. This counterexample
may be thought of as a “core” of D[v] that suffices to show that D[v] rejects ¢. CEGIS then reasons that other
instantiations having the same core also reject ¢.

Example 14 Figure 9 illustrates the reasoning used by CEGIS. Consider a family with two parameters y; (hor-
izontal axis) and gy, (vertical axis), where each parameter has five possible values. Let some property of interest
be given. We start considering the assignment represented in the left lower corner. The assignment is rejecting,
and by the counterexample from the verifier we obtain that all assignments that assign y; to the first value are
rejecting. Thus, we prune the full column, i.e., we prune all five assignments that assign y; to its first value. Next,
we consider a yet unpruned assignment, and again obtain that the value for parameter , is irrelevant if y; is
assigned to the second value. In the third iteration, we do not get any non-trivial counterexample. In the fourth
iteration, we obtain that if 1, is assigned to the fourth value, the value for y; is irrelevant, thereby pruning the
fourth row. Finally, in the fifth iteration, we find a feasible instantiation and are done. Within five iterations, this
process covered 15 instantiations.

The CEGIS approach is illustrated in Fig. 10: a synthesiser (on the left) selects an assignment v, and the verifier
checks whether ®[v] accepts the specification. If it does accept the specification, we are done. Otherwise, the

8Tool support for fMCs actually covers these more complex models implicitly.
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family © specification

L instance

i Verifier
| i

no realisation :
conflict accept

¥ 3
unsatisfiable feasible realisation

Fig. 10. Schematic view on CEGIS for fMC feasibility (Repeated from Fig. 1)

verifier returns a conflict representing the holes that are relevant to form the core (the counterexample) of the
MC D[v]. This conflict allows the synthesiser to prune some instantiations rejecting ¢.

Example 15 Consider the fMC from Example 10. We may determine its complete partitioning by four model-
checking invocations. Our goal is to use less. To that end, we start by verifying ©[v;]. Assume the verifier (for
now, magically) reports that the value for parameter y is irrelevant for rejecting the specification. We may then
conclude that v, also rejects the specification. Thereby, we save one model-checking call.

In this section, we focus on feasibility, i.e., answering whether there exists an instantiation D € (®) such that
D = @. These ideas can be straightforwardly extended to max synthesis and partitioning as shown in Sect. 6.

5.1. Conflicts and the synthesiser

Before we focus on the conflict generation by the verifier, we introduce a naive synthesiser which interacts with
the verifier. The main goal is to formalise the type of conflicts that we expect the verifier to return. Intuitively,
a conflict may be thought of as encoding a particular set of (parameter) assignments. Therefore, we define the
following. A partial assignment v for an fMC D is a function

v: Y —> S U{Ll} suchthat ¥(y) € Domy(y)U{L}forally e Y.
Notice that this definition adapts Definition 6. For partial assignments vy, v, let

b C oy iff Di(y) € {a(y), L} forally € Y.

Definition 9 (Conflict) Let® be an fMC, ¢ a property, and v € Fg an assignment such that ®[v] j= ¢. The partial
assignment v, C v is a conflict in v for ¢ if

D[v'] ¥ ¢ for each v, < v'.
A set of conflicts is called a conflict set and an assignment v € Fp with D[v] & ¢ is called a trivial conflict.

To explore all instantiations, the synthesiser starts with a set @ :=Fp and picks some assignment v € Q°.
If D[v] = @, we return v; otherwise the verifier returns a conflict set {v,} and the () is pruned by removing all
v 2 ¥, for each ¥, in the conflict set. If () is empty, we are done and conclude that each assignment rejects some
property ¢ € ®.

Example 16 Recall Example 10, with the instantiations defined in Fig. 6. After considering vi = {z > $, y >
s}, the verifier magically returns the partial assignment v :={z > s, y > L} as a conflict for ¢. Assignment
v = {z — %,y > s4} 2 ¥ only differs from v; in the value of y. As v(y) = L, i.e., y is not included in the
conflict, we conclude D[v;] & ®. The partial assignments {z — s3,y — L} and {x — L,y — s3} are not
conflicts, as their z-value differs from .

To summarise, the synthesiser merely iterates over all assignments while discarding any assignment that is covered
by some conflict. The essential step thus is to find conflicts, which is the topic of the next section.

9We defer discussing details—like how to represent the set @—to program-level CEGIS.
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(a) D[v1], repeated from Figure 6(a) (b) Fragment of D[] (¢) subMC of D[] with C' = {0}
Fig. 11. Fragment and corresponding sub-MC that suffices to refute P<2/5(0{s2})

5.2. Counterexample-based verifier

The key task of a verifier is to check whether an instantiation accepts the specification. We require the verifier to
be sound and complete. Formally,

Definition 10 (Sound and complete verifier) Let © be an fMC, v an assignment, and ® a specification.

A verifier is sound and complete, if on termination (a) the returned conflict set is empty iff v is accepting ®, and
(b) if it is not empty, it contains a conflict ¥, € v for some ¢ € .

An example sound and complete verifier is a model-checking procedure that checks D[v]. If D[v] = @, then it
returns an empty conflict set, and otherwise it returns a conflict set containing the trivial conflict v. While this
verifier is sound and complete, the synthesiser still has to iterate over all assignments.

State-level counterexamples The verification procedure that we use to generate conflicts is built on top of the

concept of fragments of MCs [WJA+12]. We use the following two auxiliary concepts: The successors succ(.S’)
of a set of states S’ is defined as

succ(S) ={se S |3IveFp,Is €9 st. Pv](s')(s) > 0}.
The set occurs(s) of parameters occurring at a state s is defined by

occurs(s):={y € Y | 35 € S s.t. P(s)((y, s3)) > 0}.
Definition 11 (sub-fMC) Let® = (S, ¢, Y, Domy, P, rew) beanfMCwith C C §,: € C. Statesin C are referred
to as critical states. The sub-fMC of © with respect to C'is the fMC

D] C:= (C Usucc(O), ¢, U occurs(s), P, rew’)

seC
where P’ is defined by
, P(s ifseC,

Pis)i= {{s(,l 1} ifs e succ(C)\ C,

and rew’(s) = rew(s) for all s € C and rew(s) = 0 for all s € succ(C)\ C.

If the fMC is an MC, we refer to this construction as a sub-MC.
Example 17 Figure 11c shows the sub-MC D[v;]{ C of ®[v;] depicted in Fig. 11a with critical states C' = {sp}.

Recall that upper-bounded reachability properties are safety properties whereas lower-bounded reachability
properties are liveness properties. Let us first consider safety properties, and then discuss liveness. The essential
attribute of sub-MC:s is the following monotonicity which motivates the definition of a counterexample.

Proposition 1 ([WJA+12]) Let D be an MC and ¢ :=P,(0T) a safety property. For any set of critical states
C < Sit holds:

D] CWFg¢ implies D W g.

Definition 12 (Counterexample) Let D be an MC and ¢ :=P-;, (0 T') a property. Any set of critical states C € S
with D | C [~ ¢ is a counterexample (CE) for D and ¢.

Remark 4 We remark that conceptually, a counterexample is best described by a set of paths. The set of states
induces a subgraph, all pathsin that subgraph are the paths that together yield a such a path-based counterexample.
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Algorithm 1 Verifier (for safety properties on a family of MCs)

function VERIFY(fMC D, assignment v, safety specification @)

1:

2 Violated <« #; Conflict < @;

3 D < GENERATEMC(D, v) > Construct D := ®D[v] once
4 for all ¢ € ® do > Consider every property ¢ in specification ®
5: if not CHECK(D, ¢) then > Model checking: D = ¢?
6 Violated <« Violated U {¢} > store all violated properties
7 for all ¢ € Violated do > Generate counterexamples for each violated property
8 C, < CoMPUTECOUNTEREXAMPLE(D, ¢); > Take a MC and a spec, return a counterexample (Definition 12)
9 Conflict <— Conflict U GENERATECONFLICT(D, Cy) > Take a family and a counterexample, return a conflict (Definition 9)
10: return Conflict

However, in the scope of this paper and the implemented algorithm, we identify counterexample solely via the
aforementioned set of states.

Example 18 Recall Example 10. We have to check whether ®[v;] = P<x5(0{s2}). In fact, the paths in the fragment
of ®[v] in Fig. 11b (ignoring the outgoing transitions of states s; and s) suffice to show that the probability
to reach state s, exceeds 2/5. These paths are contained in the sub-MC D[v;] | C with critical states C' = {0}
as depicted in Fig. 11c. The fragment from Fig. 11b is part of D[v,] too. Formally, the sub-MC of D[v;]| C is
isomorphic to ®[v;]| C and therefore rejects ® too. Thus, D[v,] = P.

Next, we embed finding sub-MCs and generating conflicts from them into a verifier.

Verifier Algorithm I outlines a basic verifier. First, we construct D :=®[v] once (line 3). We then use an off-the-
shelf probabilistic model-checking procedure CHECK(D, ¢) to determine all rejected ¢ € @ (line 5). The algorithm
then iterates over the violated ¢ and computes critical sets C' of D that induce sub-MCs with D | C' }~ ¢ (line 8).
These critical sets for safety properties are obtained via existing methods [HKD09, ABD+14]. Adaptations for
liveness properties (in fact, lower bounded reachability properties) are discussed below. Next, the procedure
GENERATECONFLICT(®, () identifies the parameters | J, ., occurs(()s) € Y that occur in the sub-MCs © | C.
It returns the corresponding conflict Conflict(C, v), i.e., the partial assignment with Conflict(C, v)(y) = v(y) if
y € Uyeo occurs(()s) and L otherwise. Ultimately, it stores the conflict in the conflict set Conflict (line 9). The
proposition below clarifies the relation between critical sets and conflicts.

Proposition 2 If C is a counterexample for ®[v] and ¢, with D[v] j= ¢, then C is also a counterexample for each
D[V with v' 2 Conflict(C, v).

Example 19 Recall from Example 18 that v, rejects ®, and that we may deduce this by inspecting the sub-MC
from Fig. 11c. In particular, we may deduce that v, rejects ® without constructing D[v;]. Just considering v,, ©
and C suffices. First, take all parameters occurring in ® |, C. This operation yields {z} and may be implemented
by inspection of ©. The partial realisation v :={x + s, y — L} is a conflict. The assigned values for the other
parameters do not affect the shape of the sub-MC induced by C.

Conflicts for liveness properties To support liveness properties such as ¢ :=P.; (¢ T'), we first consider a (standard)
dual safety property ¢' :=P_;_;(0 B). The straightforward idea is to fix an instantiation and set B := S7—i.e., let
B be the states that reach the target with probability zero—based on [BK0S, Thm. 10.122 and Thm. 10.127]. For
any MC, the set B of states may be efficiently computed using graph algorithms. We have to be careful, however.

Example 20 We adapt Example 10. Consider ®[v;] and let ¢ :=P.35(0{s4}). Assignment v; rejects ¢. Let ¢' =
P_25(O{s2}) which is refuted with critical set C' = {sy} (as before). Although D[v,]| C is (again) isomorphic to
D[v1]4 C, assignment v, accepts ¢. The problem here is that the zero states depend on the assignment: state s; is
a zero-state for D[v;] as vi(y) = s;, but not a zero-state for D[v;], as va(y) = s4.

To prevent these situations, we ensure that the states in B are zero states in «// instantiations. We enforce this by
including the zero states for the current instantiation in the counterexample of ¢:

Definition 13 For any MC D and property ¢ :=P-;(¢ T) and C a counterexample for D and P<;_;(0.S%)). Then,
C U SZ is a counterexample for D and ¢.
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Algorithm 2 Synthesiser (feasibility synthesis for probabilistic programs)

. function SYNTHESIS(program sketch S, specification @, budget 5)

1

2 Y <« INITIALISE(S, B) > Construct propositional formula for set of realisations
3: while sat(y) # ¢ do > As long as not all realisations are pruned
4 v < GETREALISATION(a, € sat(y)) > Pick a realisation
5 Conf < VERIFY(S, v, ®) > Verify and return conflict sets
6 if Conf = (4 then return v > No conflict: This realisation satisfies the specification
7. Y=y A ( N econf LEARNFROMCONFLICT(S, \7)) > Prune the set of realisations using the conflicts
8 return Unsat

Together, this ensures that—in any instantiation with an isomorphic sub-MC—we reach states B = S with
a critical probability mass'® and never leave B. Indeed, this ensures that Proposition 2 holds also for liveness
properties.

Example 21 Continue the example above with liveness property ¢ :=P.3,(0{s4}). Recall that all instantiations
v, are given in Fig. 6. In D[v;], we obtain critical states {sy, s»}, different from the reasoning from Example 10.
For ®[v,], we obtain C”:={sy} U {s3} as critical states, and as D[v4]| C’ is isomorphic to D[vs]| C’, we obtain
that v; also rejects (liveness) property ¢.

Conflicts for expected rewards Performance criteria such as the expected time to completion or the expected
energy consumption are widespread and typically expressed as upper bounds on expected rewards. Algorithms
to compute counterexamples for upper bounded constraints on rewards have been considered in [QJD*15]. Put
in a nutshell, for MCs with finite expected rewards, the sub-MCs are changed such that all states in succ(C) \ C
are made target states and get zero reward assigned. If the reward collected in the counterexample already rejects
the upper bound, then any extension does. The results as presented for safety properties carry over immediately.
We omit a technical treatment of this construction. For lower bounds on expected rewards, there is no analogue
to the construction above.

6. Counterexample-guided Inductive Synthesis for Sketches

So far, we explained the underlying principles of CEGIS at the Markov chain level. Below we adapt CEGIS to
probabilistic programs described in the PRISM modelling language. In particular, we employ so-called program-
level counterexamples [DIW*14, WIV*15], rather than counterexamples that are sub-MCs. This adaption is
motivated by a number of observations. First, the program sketch contains additional information that may be
essential for quickly finding feasible solutions. Second, CEGIS has originally been formulated at the program level,
making the adaption to probabilistic program sketches natural. Third, methods for state-level CEs concentrate on
generating small CEs, where small is measured in the size (number of states) of the CE. For generating conflicts,
we would like a more flexible notion of small CEs, as we are interested in finding small conflicts. The notion of
size in program-level CEs is more flexible and thus easier to adapt.

This section presents a synthesiser working at the level of program sketches and an adapted verifier that uses
program-level counterexamples. The section finishes with some technical details about the verifier and a brief
outline of the treatment of ill-formed sketches by the synthesiser. Our method support sketches with holes in
guards. We reuse the running example from Fig. 3.

6.1. Program-level synthesiser

We present a synthesiser for the feasibility synthesis problem that acts on probabilistic programs and discuss the
adaptations for max synthesis and partitioning.

6.1.1. Feasibility

10A good implementation may find smaller counterexamples by taking an B’ € B such that Pr p(OB’) already exceeds 1 — A.



Counterexample-guided inductive synthesis for probabilistic systems 655

Overview The synthesiser is outlined in Algorithm 2. We give a brief overview before detailing its various steps.
The set of realisations not yet pruned is kept track of during the synthesis process. These realisations are rep-
resented by (the satisfying assignments of) the formula i over hole-assignments. Iteratively strengthening v by
adding conjunctions to thus prunes the set of realisations. The method INITIALISE(S, BB) constructs ¥ such that
Y represents all realisations that satisfy the constraints in the sketch S within the budget B. We exploit an SMT-
solver for linear-bounded integer arithmetic to obtain a realisation v consistent with v, or to return Unsat if no
such realisation exists. As long as new realisations are found, the verifier analyses them and returns a conflict set
Conf. If Conf = #, then v is accepting, and the search terminates. Otherwise, the synthesiser updates v based on
the conflicts. The realisation v is always pruned, i.e., after updating, v is not compliant with .

Initialisation INITIALISE(S, B): Let hole h € H have (ordered) options Oy, = {0;117 ..., op}. To encode realisation
v as SMT-formula, we introduce integer-valued meta-variables Ky :={k;, | h € H} with the semantics that
kp, = i whenever hole  has value o}, i.e., v(h) = o . We set

'(p = wopti A WF A 1//cosl’
where op; ensures that each hole is assigned to some option, ¢ ensures that the sketch’s constraints I'" are
satisfied, and .5 ensures that the budget B is respected. These sub-formulae!! are:

Vopi = \ 1<kn <IOn |, yr:= N yINi/kn = il,

heH yel
Ol
Wcostizzwhélg/\ /\ /\Khiiewhicost(oﬁb) ,
heH heH i=1

where

e y[N}i/k;, = i] denotes that in constraint y € I" each option name N}’ is replaced by an option o}, with k, = i,
e wj, are fresh variables storing the cost for the selected option at hole h.
Let us clarify the encoding with an example.
Example 22 For the sketch in Fig. 3a, we obtain (slightly simplified):
Yi=1<wkux <2A1<upy <2A1<kpz <2
A =(knx = 1 A kny = 1) A onx + oy +onz < B
A (kax =1 — oux = 3) A (kax =2 = onx = 0) A ony = 0 = wpz,
where kyy = 2 encodes HY +— 3. The formula ¢ encodes that there are two options for each hole and HX and

HY are not allowed to be both 1 by the sketch constraint. Finally, the cost for the first option for HX is 3, all
other costs are zero.

Finding a realisation GETREALISATION(v/): To obtain a realisation v, we check the satisfiability of v. The solver
either returns Unsat indicating that the synthesiser is finished, or Sat, together with a satisfying assignment

ay: Ky — N. The assignment a, uniquely identifies a realisation v by v(h) := 0," 1) The sum over all wy gives
c(v), i.e., the cost of the realisation.

Example 23 Consider ¢ from Example 22. The satisfying assignment (for B > 3) ay :={kux — 1, kuy, kuz —
2, wyx + 3, wyy, wugz — 0} represents v—with ¢(v) = 3—from Fig. 3b. Note that kyy = 2 encodes HY +— 3.

Verifying the realisation VERIFY(S[v], ®): invokes any sound and complete verifier, e.g., the verifier from Sect. 5.2,
or an adaption as presented in Sect. 6.2. Either v is accepting, or it returns a set of conflicts'?.

1'We additionally have to ensure that the integer variables are assigned integers.

12Asin Sect. 5.1: A partial realisation for S is a function ¥: H — Oy U {1} such that V h € H. ¥(h) € Oy, U{L}. For partial realisations
V1, Vo, let ¥y €V iff V() € {V2(h), L} for all h € H. Let v be a realisation such that S[v] }= ¢ for ¢ € ®. Partial realisation v, C visa
conflict for ¢ iff Vv' 2 v, S[V'] I~ ¢.
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Algorithm 3 Synthesiser (max synthesis for probabilistic programs)
1. function SYNTHESIS(S, @, B, target predicate T, tolerance ¢)

2 L* < 00, V¥ < Unsat > Max value and associated realisation
3 Y <« INITIALISE(S, B) > Construct propositional formula for set of realisations
4 while sat(y) # ¢ do > As long as not all realiations are pruned
5: v < GETREALISATION(ay, € sat(y)) > Select realisation
6 Conf, Apey, < OPTIMISEVERIFY(S, v, ®, T, 1*, ¢) & Either 2., > 1™ or verification of ® U {P(j_),+(0 T)}
7: if Conf = then \* « Aoy, V¥ < Vv > Improved best candidate
8: Y < ¥ A LEARNFROMCONFLICT(S, V) > Do not consider this candidate again
9 Y <—yYA ( /¢ econf LEARNFROMCONFLICT(S, \7)) > Prune design space
10: return v*

Example 24 We continue with v from Example 23. Consider & = {P-,[{ s=3]}. The verifier (for now, magically)
constructs a conflict set {v} with v = {HY > 3}.

Learning from a conflict LEARNFROMCONFLICT(S, V): For a conflict v € Conf, we conjoin v with

ﬂ( /\ Khiav(/ch))- )

heH,F(h)#L

This formula excludes realisations v/ O v. Intuitively, it asserts that the potentially accepting realisations (encoded
by the updated ) must pick a different option for at least one of the holes % assigned by v.

Example 25 We proceed with v = {HY > 3} from Example 24. The synthesiser updates ¥ < ¥ A kgy # 2. A
satisfying assignment {kyx, kgy, kuz —> 1} for ¢ encodes v’ from Example 3. As D[v'] = ®, the verifier reports
no conflict.

6.1.2. Max synthesis

Let us now adapt the synthesiser to support optimal synthesis, cf. Algorithm 3. We focus on maximising the
probability of reaching states 7" w.r.t. a tolerance ¢ € (0, 1]. The target states are described by a predicate T, i.e.,
a propositional formula over variables occurring in the sketch. The states satisfying this formula are the target
states. Algorithm 3 stores in " the maximal probability Pr g;(0 T') over all v, and this maximising v as v*. In
each iteration, an optimising verifier is invoked (line 6) on realisation v. An optimising verifier wraps standard
model-checking procedures to ensure the following behaviour. If S[v] = @ and Prg(0T) > A¥, it returns an
empty contflict set and A, := Prgp,;(0 T). Otherwise, it reports a conflict set Conf for @ U {P» )1+ (0 T)}.

Example 26 Consider some sketch with a target predicate T. We select a first realisation, which refutes the
specification ®. We apply pruning as in feasibility analysis. Assume that in the second iteration, we pick a
realisation which accepts ®. Furthermore, we obtain by model checking that the probability to reach the target
is 1/3. In the third iteration, we pick a realisation which accepts @, but the probability to the target is only !/4.

We use P-1,(0T) as a property for counterexample generation (we already know that it is rejected by the
current realisation). We may then prune additional realisations that do not improve our optimisation criterium.
In the fourth iteration, we then pick a realisation which satisfies the specification, and improves the reachability
probability to 3/4. We continue with these iterations, until we have used all realisations to either improve our
current optimum, or to prune (potentially other) realisations.

6.1.3. Complete partitioning

Recall that the goal of complete partitioning is to effectively find and represent all realisations accg, of sketch S
that satisfy ® and all realisations rejS that violate ®. The key idea is to use the CE-pruning to build a formula over
hole-assignments representing accg and rej$, respectively. As before, we start with a formula v representing all
realisations that satisfy the constraints in the sketch S within the budget 3. Algorithm 4 for complete partitioning
then iteratively builds formulae ¥+ and v, containing hole-assignments representing realisations satisfying ®
and —®, respectively. Building ¥, (line 13) is a straightforward adaptation of the feasibility algorithm. If a
realisation v violating ® (i.e., satisfying —®) is found, the algorithm extends i, with the hole-assignments



Counterexample-guided inductive synthesis for probabilistic systems 657

Algorithm 4 Synthesiser (complete partitioning for probabilistic programs)

function SYNTHESIS(program sketch S, specification &, budget 5)

1:
2 Y < INITIALISE(S, B) > Construct propositional formula for set of realisations
3 Y <« false, 1 < false
4 while sat(y A =y T A =y t) # G do > As long as not all realisations are partitioned
5. v < GETREALISATION(ay, € sat(y A =y T A =y L)) & Pick a realisation
6 Conf < VERIFY(S, v, ®) > Verify and return conflict sets for ®
7 if Conf = ) then > If the realisation v satisfies ®
8 Yy < true
9 for all p; € ® do
10: Conf; < VERIFY(S, v, —¢;) > Return conflict sets for each —¢;
1 Yy < Yy A (V‘-,econfi — LEARNFROMCONFLICT(S, \'/)) > Learn from v realisations satisfying ¢;
12: YT <y v, > Add realisations satisfying ® obtained from v
13: else yt <yt v (\/‘-,eConF — LEARNFROMCONFLICT(S, {1)) > Add realisations satisfying —=® learned from v
14: accy < Y AYT
Is: rejs < Y Ayt
16: return accy, rej$

Algorithm 5 Verifier

function VERIFY(Sketch S, realisation v, specification ®)

1:

2 Violated <« #; Conflict < @;

3 D < GENERATEMC(S, v) > construct [ S[v]] once
4 for all ¢ € ® do > Run model checking for each property seperately.
5: if not CHECK(D, ¢) then

6 Violated « Violated U {¢}

7 for all ¢ € Violated do > Generate conflicts for properties that are violated
8 Cy < COMPUTECOUNTEREXAMPLE(S[V], D, ¢) > For a program and a property, return a CE as in Definition 14
9 Conflict < Conflict U GENERATECONFLICT(S, C,) > Generate a conflict on the level of the sketch, see Proposition 3
10: return Conflict

representing realisations learned from all conflicts v obtained from v. Recall that LEARNFROMCONFLICT(S, V)
returns formulae describing realisations that must assign a different option to at least one of the holes that are
assigned by v. Therefore, the formula \/ ., = LEARNFROMCONFLICT(S, V) represents all realisations, learnt
from the realisation v, violating ®. Constructing v+ is more complicated due to the fact that the specification ®
includes a set of properties {¢;};er (i.e. ® = A,; ¢:) and thus a satisfying realisation has to satisfy all ¢;. For
each Conf; (obtained from the verification of —¢;), we learn (as above) formulae describing realisations satisfying
¢;. Realisations satisfying @ is then obtained as a conjunction of these formulae stored in ¥* (line 11) that is
used to iteratively built ¥ . The algorithm terminates if all realisations satisfying v are described in ¢ " or ¥+
and thus ¥ A =T A =L is not a satisfying formula. It returns the two propositional formulae — " and ¥+ —
as a compact representation of the partitioning.

6.2. Program-level verifier

We now adapt the state-level verifier from Sect. 5.2 in Algorithm 1 to use program-level counterexamples [WIV*15]
for generating conflicts. We show the adapted algorithm in Algorithm 5. The important change is that we now
work at the program level and thus use a different counterexample generation. All other changes are just to match
the syntax of this section.

Constructing the Markov chain GENERATEMC(S, v): This procedure first constructs the instantiation S[v], i.e., a
program without holes, from S and v, as in Fig. 3b: We replace each hole declaration in a sketch by a declaration
of integers in the PRISM program: Thus

hole h either ...; becomes const int h;

Constraints in the sketch are removed, as they are handled by the synthesiser. From the perspective of the
implementation, the passed program is a standard PRISM program with open constants. The sketch is parsed
once and appropriately instantiated with the realisations selected by the synthesiser. The underlying MC [ S[v]]
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module rex const int X = 1, Y = 3;
s : [0..3] init 0;
s 0 -> 0.5: s’=1 + 0.5: s’=3; module rex

module rex
s : [0..3] init 0;
s=0 -> 0.5:s8’=X + 0.5:8’=Y;

s 1 -> 1: s’=s+2; s : [0..3] init O; c=3 -> 5723
s >= 2 -> 1: s’=s; s=0 -> 0.5: s’=X + 0.5: s’=Y; endmodule
endmodule endmodule
(a) Program (repeated) (b) CE for upper bound (c) CE for lower bound

Fig. 12. Program (a) with CEs for (b) P<2/5(¢s=3) and (c) P.3/5(0s=2)

of the program instantiation is obtained via standard procedures, where transitions in the MC are annotated with
the commands that generated them.

Computing program-level CEs The method COMPUTECOUNTEREXAMPLE(S[V], D, ¢) computes program-level CE
as analogues of critical sets. These CEs are defined on commands rather than on states. Let £ = (Var, Cmd) be
a program and Cmd" € Cmd. Let £,c.ng = (Var, Cmd") denote the restriction of £ to Cmd’, with variables (and
initial states) asin £. Building £ cmg preserves non-overlapping guards, but may introduce deadlocks in [ £cma' ]
(just like a critical set introduces deadlocks). To remedy this, we use the operation fixdl introduced for programs,
see page 641.

Definition 14 (Program-level CEs) For program £ = (Var, Cmd) and specification ® with £ (£ ®, a program-level
counterexample Cmd’ € Cmd is a set of commands, such that for all (non-overlapping) programs £’ := (Var, Cmd”)
with Cmd” 2 Cmd’ it holds that fixdI(£') j& ®.

Example 27 We consider the setting from Example 24 in more detail. Recall that we consider S[v] as in Fig. 3b
(repeated in Fig. 12a) with & = {P-y;[¢ s=3]}. Figure 12b shows a CE. The probability to reach s=3 in the
underlying MC is 1/2 > 2/5.

From counterexample to conflict The method GENERATECONFLICT(S, v, Cmd) generates conflicts from counterex-
amples, i.e., from the set of commands Cmd. We map these commands from realisation S[v],cmd to commands
Cmd' in sketch S such that {cmd[v] | cmd € Cmd'} = Cmd. That is, we restore which holes appear in the part of
the sketch leading to the CE Cmd for S[v]. The conflict Conflict(Cmd, v)(h) := v(h) contains all h € H appearing
in Cmd'.

Proposition 3 If Cmd is a CE for S[v], then for any v’ 2 Conflict(Cmd, v), Cmd is also a CE for S[v'].

Example 28 The CEs in Fig. 12b contain commands which depend on the realisations for holes X and Y. For
these fixed values, the program rejects the specification independent of the value for Z, so Z. is not in the conflict
X+~ 1,Y — 3}.

6.3. Program-level CEs for CEGIS

We report how to compute program-level CEs in the context of CEGIS. Therefore, we first recapture a MaxSat-
based approach to computing counterexamples, show how we extend and improve that algorithm, and how to
integrate it into the conflict computation.

6.3.1. A MaxSat approach for safety properties

Our approach is inspired by (and re-uses parts of) an MaxSat [BHvMW09] approach from [DJW*14] to compute
program-level CEs which were proposed in [WIV*15].

Computing counterexamples The MaxSat technique computes a minimal program-level CE'® violating a safety
property, i.e., a reachability property with an upper bound .

3Differences with program-level CEs are discussed below.
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Definition 15 (High-level CEs) ([DJW™14]) Let program £ = (Var, Cmd) and ¢ = P, (0 T) s.t. £ = ¢.

The set Cmd’ € Cmd is a high-level counterexample if fixd|(Lcma') = ¢. A high-level CE is minimal, if for every
Cmd” C Cmd, fixdI(L|cma) E .

The set Cmd’ is not unique in general. The approach repeatedly solves MaxSat instances over the conjunction
of two propositional formulae, E and Y. The formula E encodes a selection of commands and (via a negation)
the MaxSat solver minimises the size of the command set. The formula Y encodes necessary constraints on valid
CEs, e.g, it states that a command enabled in the initial state must be selected. In this way, the MaxSat solver
returns a candidate set Cmd of commands. Using model-checking procedures it is then checked whether Cmd is
sufficient to exceed the probability bound A, i.e., whether or not it is a CE. If affirmative, Cmd by construction
is a minimal CE. Otherwise, the formula Y is strengthened to exclude Cmd and (possibly) other candidate sets.
Further details about this approach are given in [Hen18].

Program-level CEs versus traditional high-level CEs We aim to reuse the high-level CE computation. We observe
the following connection between high-level and program-level CEs.

Proposition 4 For safety properties, high-level and program-level CEs coincide.

Each program-level CE is trivially a high-level CE. A high-level CE is a program-level CE, as any additional
command may only be enabled in unreachable or deadlock states. Otherwise, the program would contain over-
lapping commands, violating Definition 14. Furthermore, unreachable states are irrelevant to any property and,
intuitively speaking, adding transitions to deadlocks cannot decrease the probability to reach the target states.

Remark 5 We do not adopt the CE notion of [WJV*15] as it is not straightforward to adapt to non-safety
properties, and our notion straightforwardly yields the soundness of the verifier.

Recall that we consider PRISM programs whose guards are disjunct. This assumption is more strict than the PRISM
semantics for MCs: There overlapping guards are resolved by rescaling (i.e., taking a uniform distribution over
enabled commands) instead of non-determinism (which is the standard semantics for MDPs). Assuming non-
overlapping programs is thus the same as assuming the MDP semantics for PRISM programs. This assumption
is crucial, as illustrated in the example below.

Example 29 Suppose we add the command s=0 -> s’=2 to the program in Fig. 12b. The program now has
overlapping guards (in state s=0). Applying the alternative rescaling semantics, the probability to reach s=3 in
this program, i.e., in the underlying MC, is reduced to 1/4. Thus, the extended program no longer rejects ®.

6.3.2. Beyond safety properties

Liveness properties Proposition 4 is crucial for the correctness of our approach, but does not hold for liveness
properties. This can be seen as follows. Suppose Cmd is a (high-level) CE for £ and liveness property ¢. Adding
commands may increase the probability mass of reaching the target, as discussed in Example 20 and may thus
yield a program £’ with £’ |= ¢. However, a high-level CE is a program-level CE only if there are no deadlocks
reachable in the MC [ £icmd |-

To obtain CEs for liveness properties, the idea, analogue to Sect. 5.2, is to trap more probability mass than
1— A in the bad states B:= 5%, from which T is unreachable. If there is less than A probability mass reaching
T, then more than 1— A probability mass reaches B. We thus first compute a high-level CE Cmd for reaching
states in B with probability at most 1— A. This is done using the approach explained above. We then extend Cmd
with commands ensuring that the states in B cannot reach 7. This done by adding commands that “lock” the
behaviour of states in B. Thereby, the program cannot be extended to a program with transitions from B to
T'. The resulting set of commands is a program-level CE as given in Definition 14. Note that these CEs are not
necessarily the smallest (in terms of the number of commands) for any given £ and ¢.

Example 30 The property ¢ = P.3;(¢s=2) is violated by the program in Fig. 12a. Figure 12c constitutes a CE
since with probability 1/2 state s=3 (in S_,T') is reached. Hence, the probability to ever reach s=2 is guaranteed
to be at most /2. Dropping the command with guard s=3 is insufficient: an additional command could add
transitions from s=3 and s=1 to s=2, thereby increasing the probability mass and exceeding the (lower) bound
of p.
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Expectedrewards For upper bounds on expected rewards, we adapt ideas of state-level CEs for rewards from [QJD*15]
to the program level. Intuitively, in the underlying MC of the program, we replace the self-loops introduced by
the fixdl operation by transitions to a target state. To be sound, the method has to assume that for each realisa-
tion, the probability to reach the target is one. Otherwise, the expected reward is by definition infinite, and the
instantiation may be rejected. We establish soundness by extending the specification to explicitly check that the
expected reward is finite. This extension amounts to specifying that the target states are reached with probability
one, and this part of the specification is then also amenable to counterexample generation. Support for lower
bounds on rewards requires additional assumptions and is not considered here.

6.3.3. Tightly integrating CE generation and CEGIS

So far, we considered the generation of CEs independent of their usage within CEGIS. In this section we describe
the most important changes we made to improve the integration of CE generation and CEGIS. The following
adaptions enable deriving conflicts that typically are smaller than the conflicts derived from the minimal CEs
described above. Smaller conflicts have more potential for effective pruning and thus often improve the perfor-
mance of the CEGIS framework. The conflicts we obtain using the techniques discussed below are at least as
small as before. We discuss the following aspects: how to focus on commands in CEs that are “relevant”?, how to
achieve more aggressive pruning by using several CEs rather than one?, and obtaining multiple CEs for various
properties in a simultaneous way?

Relevant commands The MaxSat approach in [DJW*14] minimises over all commands. However, the size of the
conflict only depends on the holes contained in the commands. Therefore, we amend the propositional formula
E to minimise the number of relevant commands. A command is relevant, if it contains a hole. Any non-relevant
command can be added to a CE without negatively affecting the size of the generated conflicts. This optimisation
significantly reduces the number of candidates considered during the CE generation. Formula Y still considers
all commands and enables a further restriction of the candidate command sets.

Example 31 In the sketch of Fig. 3a only the commands with guards s=0 and s=1 are relevant. Instead of
considering up to 2* candidate command sets (all four commands), we only consider up to 2> CEs (the two
relevant commands).

Multiple CEs CEs (even minimal ones) are not unique. CEs for the same realisation may lead to different conflicts.
Each such CE may be useful to prune realisations. Fortunately, our approach is not restricted to using specific
CEs. But minimality of CEs is crucial: if a proper subset of a CE Cmd is a CE, conflicts generated by Cmd do not
prune additional realisations. We thus extend the MaxSat loop as follows. If we encounter a CE Cmd, we extend
the propositional formula Y by blocking all CEs which include the set of relevant commands in Cmd. We may
then continue searching for further minimal CEs. Note that some generated conflicts may not prune any further
realisations, as these realisations might have been considered before. Interesting future work is to investigate
using additional knowledge from the synthesiser focusing on CEs that definitively prune unexplored parts of the
family.

CEs for specifications with multiple properties We so far considered CE generation for each property separately.
Computed CEs for a property might all be subsumed by CEs for other properties. It is thus beneficial to consider
all properties at once, thereby reducing the candidate CEs. We integrated support for CE generation for multiple
properties with the same target states in our prototypical implementation. For other property combinations, a
naive implementation induces a severe performance hit to the MaxSat solver. Proper support for such property
combinations is left for future work.

6.4. Support for ill-formed programs

Program sketches can induce ill-formed programs as sketch instantiations do not always induce a PRISM program.
Ill-formed programs do contain, e.g.:

e deadlocks, i.e., programs in which in a (reachable) state all guards evaluate to false,
e variables that go out of bounds, or
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e guards that overlap.

These phenomena are typically considered modelling errors and most model checkers may not even properly
check for such errors (as these checks may be computationally expensive). During analysis, such phenomena are
assumed to be absent, i.e., the analysis result of such programs is mostly unspecified. While it is convenient to
adopt such a policy for sketches, the existence of ill-formed programs is more likely as a sketch describes various
(possibly ill-formed) programs. Furthermore, while modelling concise sketches with small underlying MCs, it
may be hard to avoid including realisations that describe ill-formed programs. Imposing constraints to avoid
ill-formed programs is not helpful, especially when the sketch is used to search for a feasible realisation. Thus,
it is better to assume that sketches may contain ill-formed programs. The characteristics of ill-formed programs
mean that we can apply the same pruning techniques that we discussed above. Below, we briefly describe how
we support sketches with invalid realisations. Observe that we assume that such programs do not satisfy the
specification and should be considered as rejecting.

Out-of-bounds Variable bounds in programs should be respected. However, constraining a sketch to prevent the
generation of realisations that violate these bounds might be complex. Therefore, we extended the semantics such
that the underlying MC contains a sink state that reflects a variable being out-of-bounds (by checking the variable
values during the MC construction from the program). The specification is extended with a property asserting
that such sink state is reached with zero probability. This extension ensures that accepting assignments have no
variables that go out of bounds. CEs for this property can also be generated.

Overlapping guards As pointed out earlier, overlapping guards lead to non-determinism—and thus the opera-
tional models of programs are no longer MCs. The assumption of uniform resolution of this non-determinism
(as optional in PRISM) may prevent effective CE generalisation. Therefore, we reject sketch realisations with
overlapping guards. In order to mitigate the performance degradation caused by returning trivial conflicts, we
implement a similar extension as for out-of-bounds, in which we label states that satisfy guards of multiple
commands accordingly, and extend the specification to prevent reaching these states.

Deadlocks The existence of deadlocks prevents verifying unbounded reachability properties. Therefore, most
model checkers automatically apply the fixdl operation. While this operation is sensible for a single program, it is
not for sketches with holes in guards, as deadlocks are problematic in CE generalisation for liveness properties.
Thus, we treat them analogously to overlapping guards by labelling states accordingly.

7. Empirical Evaluation

This section contains information on the empirical evaluation of the proposed approach.

7.1. Set-up

Implementation We evaluate the synthesis framework within a prototype of Dynasty'4, a Python tool for the
synthesis in sketches. As an input, it takes a (constraint-free) program sketch in the PRISM language, together
with a list of options for each hole, a list of constraints, and a list of properties. Internally, sketches are translated
into the JANI modelling language. Dynasty contains an implementation of CEGIS as explained in this paper, with
the restriction that complete partitioning is only supported for single properties, but not for conjunctions thereof.
We use (the Python bindings of) the SMT-solver Z3 [dMBO0S] in the synthesiser, and (the Python bindings of) the
model checker STORM [DJKV17] for the verifier. In particular, we have extended STORM based on the description
in Sect. 6.3.

Research questions We compare the performance of the CEGIS approach with an enumerative approach as
baseline. The synthesis time of the baseline linearly depends on the number of realisations, and on the underlying
MCs’ size. We focus on sketches where all realisations are explored, as relevant for optimal synthesis. For concise

14 Available open-source on https:/github.com/moves-rwth/dynasty/
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presentation we use Unsat variants of feasibility synthesis. Enumerative methods perform mostly independent
of the order of enumerating realisations.

Environment All results are obtained on a Macbook MF839LL/A, within three hours and using less than 8§ GB
RAM.

7.2. Case studies
We consider the following three case studies:

Dynamic power management (DPM) The goal of this adapted DPM problem [BBPM99] is to trade-off power
consumption of complex electronic systems for performance in a controlled fashion. We sketch a controller that
decides based on the current workload expressed by the occupancy of low-priority and high-priority request
buffers, inspired by [GTCI15]. On buffer overflow, incoming jobs are lost. The fixed environment contains no
holes. The goal is to synthesise the guards and updates to satisfy a specification with properties such as ¢;: the
expected number of lost requests is below A, and ¢,: the expected energy consumption is below A,, and ¢3: the
expected number of lost low-priority requests is below X5.

Network intrusion This model (adapted from [KNPV09]) describes a network, in which the controller tries to
infect a target node via intermediate nodes. The node has to be attacked by intruding intermediate nodes. If an
attack fails, the node is temporarily on guard and more difficult to intrude. We sketch a partial strategy aiming
to minimise the expected time to intrusion based on intruded nodes and the last action. Constraints encode
domain-specific knowledge, e.g., we never target nodes whose neighbours are already infected.

Grid This model is based on a classical benchmark for solving partially observable MDPs (POMDPs) [KLC98].
Solving POMDPs amounts to find an observation-based strategy, i.e. a strategy that only on the basis of the
observations seen so far takes a decision. This problem is undecidable for the properties we consider. Therefore,
we resort to finding a deterministic k-memory strategy [MKKC99], a strategy that decides on the basis of the last
k observations, such that in expectation, the strategy requires less than A steps to reach the target. This task is still
hard: We create a family describing all k-memory strategies (for some fixed k) for the POMDP. Like in [JTW™*18]
actions are reflected by parameters, while parameter dependencies ensure that the strategy is observation-based.

7.3. Evaluation
We evaluate the results for DPM and summarise further results we obtained using our implementation.

DPM DPM has 9 holes with 260K realisations, and realisations have 5K (reachable) states on average, ranging
from 2K to 8K states. The baseline—enumerating all realisations—needs approximately 11 hours. We use this
sketch to illustrate the important performance characteristics of our approach.

The performance of CEGIS significantly depends on the specification,
namely, on the thresholds appearing in the properties.

Figure 13a shows how the number of iterations (left axis, green circle) in Algorithm 2 and the runtime in seconds
(right axis, blue) change for varying A, for property ¢; (plusses and crosses are explained later). We obtain a
speedup of 100x over the baseline for A, = 0.7- 1*, dropping to 23x for A = 0.95-1*, where 1" is the minimal
probability over all realisations. The strong dependency between performance and “unsatisfiability” is not sur-
prising. The more unsatisfiable, the smaller the conflicts (as in [DJW™14]). Small conflicts have a double beneficial
effect. First, the prototype uses an optimistic verifier searching for minimal conflicts; small conflicts are found
faster than large ones. Second, small conflicts prune more realisations. A slightly higher number of small conflicts
yields a severe decrease in the number of iterations. Thus

the further the threshold from the optimum, the better the performance.

Figure 13c indicates how often (x-axis) the verifier returns conflicts of certain sizes (y-axis) for different
properties (a bound on either the expected energy consumption or on the dropped messages in the queue), and
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Fig. 13. Performance (runtime and iterations) on DPM

different thresholds (indicated as fractions of 1*). The line (all) is explained later. In general, we observe that the
sum over all conflicts is larger if more conflicts are large. This is natural: the less we prune, the more realisations
have to be considered (yielding more conflicts). For more relaxed bounds (0.7 - 1*) more small conflicts result,
because it is easier to prune with such bounds.

Reconsider now Fig. 13a. Crosses and plusses correspond to a variant of the sketch in which the state space!
of the underlying MCs is blown up by a factor B-UP. Observe that performance degrades similarly for the baseline
and our algorithm, which means that

5

the speedup w.r.t. the baseline is not considerably affected by the size of the underlying M Cs.

We observed the same trend for various other models and specifications.

Figure 13d indicates how often (y-axis) the holes (x-axis) are included in a conflict. The orange bar is for ¢,
with threshold 0.7 - A*, whereas the blue bar is for ¢, with threshold 0.4 - A* and also goes from 0. The selected
thresholds are irrelevant for the message: How often a hole appears varies wildly. Roughly, the higher the bar the
harder it is to prune options in that hole. The hardness of a hole is (informally) correlated to the probability mass
of relevant paths touching commands containing the hole. More precisely, the hardness is partially affected by
the MC topology—hole X11 is in the command that is enabled in the initial state and thus, it is touched by all
probability mass, and always in the conflict—and partially as a consequence of the property—for ¢,, holes X13
and X31 are equally hard as the paths through them are equally relevant for the property ¢;, but not for ¢;.

Varying the sketch (slightly) tremendously affects performance. This is indicated in Fig. 13b that illustrates the
performance on variants of the original sketch with a single hole substituted by one of its options. The framework
performs significantly better on sketches with holes that lie in local regions of the MC. It is easier to find CEs

15This blow-up introduces counters to count events. We thereby change the structure slightly.
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threshold #iters | time (minutes) | speedup
0.7- 1% 116 <1 5230
0.8- A" 1105 27 127
0.9- 1" 9524 570 6
0.2-optimal (opt = 25.57) | 2056 52 65
0.1-optimal (opt = 25.42) | 12495 630 5

Table 2. Results for Intrusion model. The baseline algorithm would require more than 56 hours to explore the entire family.

that do not include such local regions of the MC and thus the framework can efficiently prune the corresponding
part of the family. On the other hand, holes relating to states that are spread all-over the MC are harder to prune
as typically very small CEs are required.

Finally, we explore the effect of a more complicated specification that has multiple (conflicting) properties: In
particular, we set A; = 0.7 - A}, A, = 1.2- A3 and A, = 0.7 - A3. Notice that each property is satisfiable on its own,
but their conjunction is unsatisfiable. Figure 13c (all) indicates that we indeed obtain a smaller number of large
conflicts: Some realisations may be effectively pruned by conflicts w.r.t. ¢;, whereas other realisations are easily
pruned by conflicts w.r.t., e.g., ¢>.

Intrusion This sketch has 26 holes and 6800K realisations. The underlying MCs have only 500 states on average.
We observe an even more significant effect of the property thresholds on the performance than for DPM, as the
number of holes is larger (recall the optimistic verifier). Table 2 reports the performance for different thresholds.

For threshold 0.7- A*, the conflicts typically cover just 8 holes, which leads to a speedup of several orders of
magnitude. Blowing up the MC does not affect the obtained speedups. Differences among variants of the sketches
are again significant, albeit less extreme than for DPM.

Furthermore, we investigate the performance of the almost optimal synthesis for the same sketch and property.
The last two rows of Table 2 show the results for the relaxed variant of the minimal synthesis with the tolerance
valuee = 0.2 and € = 0.1, respectively. These values should be compared with A = 0.8- A* and 0.9- A, respectively.
The required precision €, similarly as the threshold A, significantly affects the performance of the synthesis process.
First, we remark that the solution that we find when searching for an 0.2-optimal solution is indeed 0.022-
optimal and the 0.1-optimal solution is indeed 0.016-optimal. Comparing the run-times of the almost optimal
and feasibility synthesis with comparable thresholds (i.e., 0.8-1* and 0.9- A*) demonstrates the extra time the
optimal synthesis algorithm needs to find the e-optimal solution before the non-existence of another improving
solution is proved. The main reason for this overhead is that for optimal synthesis, we prune with respect with a
factor of the A found so far, whereas for feasibility checking A is fixed from the start.

Grid This sketch is structurally different: only 6 holes in 3 commands and 1800 realisations, but MCs having
100K states on average. Observe that reaching the targets with some minimal expected value below implies
that the goal is almost surely reached. The MCs’ topology and the few commands in the sketch make pruning
hard: our algorithm needs about 480 seconds and 453 iterations for A = 0.98 - A*. This is a 3.7x speedup
w.r.t. the baseline algorithm. Pruning mostly takes place by considering realisations that do not reach the target
almost surely. Therefore, the speedup is mostly independent of the relation between A and A*. Additionally, we
considered a more complicated variant of this benchmark, with 8 holes in 4 commands, yielding a family of
65K realizations. The considered specification and the average size of MCs in the family remain the same. Our
algorithm shows unsatisfiability in about 1.5 hours after more than 7K iterations. For this family, the speedup is
7.9x for A = 0.98 - 1*. The improved speedup for larger families indicates the potential scalability of the method.

Comparison with CEGAR We experimentally compared the approach with a CEGAR-prototype implementing
the method of [CJJK19], which applies an abstraction-refinement loop towards, e.g., feasibility synthesis on
families of Markov chains. In particular, the abstraction aggregates multiple assignments in a single model to
effectively reason about a family. This approach does not support multiple property specifications (as of now),
and, more importantly, the algorithm is conceptually not capable of handling constraints. For DPM with a
single property, the CEGAR-prototype is drastically faster (for unsatisfiable feasibility problems), while on Grid,
the CEGAR-prototype is typically (often significantly) slower. Comparing prototypes is intricate, but there is
a strength and weakness of the CEGIS prototype that explains the different characteristics (for unsatisfiable
instances). We conclude with a remark on satisfiable instances.
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Weakness: Upon invocation, the CEGIS verifier gets exactly one assignment and is (as of now) unaware of other
possible assignments. The verifier constructs a CE which is valid for all possible extensions (cf. Definition 14),
even for extensions which do not correspond to any realisation. It would be better if we compute CEs that
are (only) valid for the family. The following example (exaggerating DP M) illustrates that considering multiple
realisations at once may be helpful: Consider a family with a parametric transition (hole) from the initial state
and specification that requires reaching the failure state with probability smaller than 1/10. Assume that all 100
options lead to a failure states with probability 1. CEGIS never prunes this parameter as it is contained in the CE
for every assignment, and thereby considered relevant. However, knowing that all parameter assignments lead to
the failure state, makes the hole trivially not relevant. Thus, all corresponding assignments may be pruned.

Strength: The weakness is related to its strength: the verifier works with one concrete MC. An extreme example
(exaggerating Grid) is a sketch with holes hy, .. ., h,,, where hole hy hasoptions 1, . . ., m, and option ¢ makes holes
h; with j # i irrelevant (by the model topology). CEGIS considers a realisation, say {ho — 4, ..., hy — z,...},
that rejects the specification. As holes ; with j # 4 are not relevant, CEGIS finds a conflict {hy > 4, h; > z}.
Indeed, for every realisation, CEGIS is able to prune all but two holes. However, if the verifier would consider
many realisations for Ay, it may (without advanced reasoning) generate much larger conflicts. Thus, considering
a single realisation naturally fixes the context of the selected options and makes it clearer which holes are not
relevant.

Satisfiable instances: For satisfiable instances, CEGIS may start with an accepting realisation and immediately
terminate. The probability of this happening depends on the heuristic of the synthesiser and the fraction of
satisfiable instances. Further research is required for a proper comparison.

8. Conclusion

This paper presented a counterexample-guided inductive synthesis (CEGIS) approach to synthesise finite-state
probabilistic programs in a fully automated manner. The key idea is to reason about rejecting instantiations and
conclude (on the basis of diagnostic feedback provided by a verifier) that other instantiations must be rejecting
without analysing these instantiations separately. We have detailed this procedure for the operational model of
families of Markov chains, using sub-Markov chains as counterexamples, and then lifted this approach to PRISM
program sketches and program-level counterexamples. The empirical evaluation is encouraging, providing results
for program sketching, controller synthesis and security.

Future work include further improving the approach: We want to develop a synthesiser that selects better
instantiations. The use of evolutionary algorithms seems to be an interesting direction. We want to further
improve the verifier: First, the verifier is unaware of the notion of holes and generates counterexamples that
consist of a minimal number of commands containing any hole. Second, our counterexamples are on the level of
states, when smaller counterexamples could be obtained on the level of transitions. Third, the focus on minimal
counterexamples may create too much overhead, and a more greedy approach may be worthwhile. Finally, we
want to combine the verifier with the CEGAR prototype from [CJJK 19]. With these improvements in place, an
extended empirical evaluation would be worthwhile.
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