
https://doi.org/10.1007/s00165-021-00536-5
The Author(s) © 2021
Formal Aspects of Computing (2021) 33: 575–615

Formal Aspects
of Computing

L*-based learning of Markov decision
processes (extended version)
Martin Tappler1,2, Bernhard K. Aichernig1 , Giovanni Bacci4,
Maria Eichlseder3, and Kim G. Larsen4

1 Institute of Software Technology, Graz University of Technology, Graz, Austria,
2 Schaffhausen Institute of Technology, Schaffhausen, Switzerland,
3 Institute of Applied Information Processing and Communications, Graz University of Technology, Graz, Austria
4 Department of Computer Science, Aalborg University, Aalborg, Denmark

Abstract. Automata learning techniques automatically generate systemmodels from test observations. Typically,
these techniques fall into two categories: passive and active. On the one hand, passive learning assumes no
interaction with the system under learning and uses a predetermined training set, e.g., system logs. On the other
hand, active learning techniques collect training data by actively querying the system under learning, allowing
one to steer the discovery of meaningful information about the system under learning leading to effective learning
strategies. A notable example of active learning technique for regular languages is Angluin’s L*-algorithm. The
L*-algorithm describes the strategy of a student who learns the minimal deterministic finite automaton of an
unknown regular language L by asking a succinct number of queries to a teacher who knows L.

In this work, we study L*-based learning of deterministic Markov decision processes, a class of Markov
decision processes where an observation following an action uniquely determines a successor state. For this
purpose, we first assume an ideal setting with a teacher who provides perfect information to the student. Then,
we relax this assumption and present a novel learning algorithm that collects information by sampling execution
traces of the system via testing.

Experiments performed on an implementation of our sampling-based algorithm suggest that our method
achieves better accuracy than state-of-the-art passive learning techniques using the same amount of test obser-
vations. In contrast to existing learning algorithms which assume a predefined number of states, our algorithm
learns the complete model structure including the state space.

Keywords: Model inference, Active automata learning, Markov decision processes

Correspondence to: Bernhard K. Aichernig, e-mail: aichernig@ist.tugraz.at

http://crossmark.crossref.org/dialog/?doi=10.1007/s00165-021-00536-5&domain=pdf
http://orcid.org/0000-0002-3484-5584

576 M. Tappler et al.

1. Introduction

Automata learning automatically generates models from system observations such as test logs. Hence, it enables
model-based verification for black-box software systems [HS18, AMM+18], e.g. via model checking. Automata
learning techniques generally fall into two categories: passive and active learning. Passive algorithms take a given
sample of system traces as input and generate models consistent with the sample. The quality and comprehen-
siveness of learned models therefore largely depend on the given sample. In contrast, active algorithms actively
query the system under learning (SUL) to sample system traces. This enables to steer the trace generation towards
parts of the SUL’s state space that have not been thoroughly covered, potentially finding yet unknown aspects of
the SUL.

Many active automata learning algorithms are based on Angluin’s L* algorithm [Ang87]. It was originally
proposed for learning deterministic finite automata (DFA) accepting regular languages and later applied to learn
models of reactive systems, by considering that system traces form regular languages [HNS03]. L* has been
extended to formalisms better suited for modelling reactive systems such as Mealy machines [MNRS04, SG09]
and extended finite state-machines [CHJS16]. Most L*-based algorithms, however, target deterministic models,
with the exceptions of algorithms for non-deterministic Mealy machines [KT14] and non-deterministic input-
output transition systems [VT15]. Both techniques are based on testing, but abstract away the observed frequency
of events, thus they do not use all available information.

Here, we present anL*-based approach for learningmodels of stochastic systemswith transitions that happen
with some probability depending on non-deterministically chosen inputs. More concretely, we learn determinis-
tic Markov decision processes (MDPs), like IoAlergia [MCJ+12, MCJ+16], a state-of-the-art passive learning
algorithm. Deterministic MDPs enjoy the property that a given observation following a specific action uniquely
determines a successor state.MDPs are commonly used to model randomised distributed algorithms [BK08], e.g.
in protocol verification [KNP08, NS06].

Overview. In this article, we present L*-based learning of MDPs from traces of stochastic black-box systems.
For this purpose, we developed two learning algorithms. The first algorithm takes an ideal view assuming perfect
knowledge about the exact distribution of system traces. The second algorithm relaxes this assumption, by
sampling system traces to estimate their distribution.We refer to the former as exact learning algorithm L∗

mdp
e and

to the latter as sampling-based learning algorithm L∗
mdp

. We implemented L∗
mdp

and evaluated it by comparing it
to IoAlergia [MCJ+12, MCJ+16]. The experiments presented in this article showed favourable performance of
L∗
mdp

. It produced more accurate models than IoAlergia given approximately the same amount of data. Hence,
the answer to our motivating question stated above is positive. Active learning can improve accuracy, compared
to passive learning. To the best of our knowledge, L∗

mdp
is the firstL*-based learning algorithm forMDPs that can

be implemented via testing. Our contributions in this context span the algorithmic development of two learning
algorithms, their analysis with respect to convergence and the implementation as well as the evaluation of learning
algorithms.

This article is an extendedversionof our conference paper “L*-basedLearningofMarkovDecisionProcesses”
presented at the 23rd Symposium on Formal Methods (FM 2019) [TAB+19]. The present article includes the
following additional material:

• a thorough description of the sampling-based teacher implementation for L∗
mdp

,
• an extended evaluation including additional experiments,
• we provide proofs for the exact algorithm L∗

mdp
e and show that the model learned by L∗

mdp
converges in the

limit to an MDP isomorphic to the canonical MDP representing the SUL.

Parts of this article have been included in the doctoral thesis of one of the authors [Tap19].

Synopsis. The paper is structured as follows. Section 2 introduces the notation used in the rest of the paper
as well as some preliminary notions of measure theory and MDPs. In Sect. 3 we consider different types of
observation sequences of MDPs and provide a semantic characterisation of MDPs in terms of observation
sequences. Section 4 presents the L∗

mdp
e algorithm: an L*-based technique that learns an exact andminimalMDP

modelling the SUL under the assumption that the teacher has perfect knowledge of the probability distribution
on traces. Then, in Sect. 5 we drop the latter assumption and describe the L∗

mdp
algorithm, a sampling-based

extension of L∗
mdp

e . In Sect. 6 we show that the model learned by L∗
mdp

converges to true canonical model in the
limit of the number of sampled traces.

L*-based learning of Markov decision processes (extended version) 577

Table 1. Notational conventions
Notation Condition Meaning

S∗ S is a non-empty set arbitrary-length sequences of elements in S
S l sequences of elements in S with length l
s · s ′ s, s ′ ∈ S∗ concatenation of s and s ′
ε empty sequence ε ∈ S∗
| s | length of sequence s
| S | cardinality of set S
e e ∈ S sequence e ∈ S∗ of length one (elements lifted to sequences)
s[i] s � s1 · · · sn ∈ S∗ s[i] is the ith element si . . . one-based indexed access
s[< i] s[< i] � s1 · · · s<i . . . subsequence of s with indexes j < i
s[≤ i] s[≤ i] � s1 · · · s≤i . . . subsequence of s with indexes j ≤ i
s[≥ i] s[≥ i] � s≥i · · · sn . . . subsequence of s with indexes j ≥ i
s[> i] s[> i] � s>i · · · sn . . . subsequence of s with indexes j > i
s � s ′ s is a prefix of s ′, i.e. ∃ t ∈ S∗ : s · t � s ′
s
 s ′ s is a suffix of s ′, i.e. ∃ t ∈ S∗ : t · s � s ′
A ·B A,B ⊆ S∗ pair-wise concatenation A ·B � {a · b | a ∈ A, b ∈ B}
prefixes(A) prefixes of sequences in A {a ′ ∈ S∗ | ∃ a ∈ A : a ′ � a}
suffixes(A) suffixes of sequences in A {a ′ ∈ S∗ | ∃ a ∈ A : a ′
 a}
P(C) C is a set power set of C
P(a) and p(a) a is an event probability of a
T (e) T is a multiset multiplicity of e in T

In Sect. 7 we perform an empirical analysis of our sampling-based algorithm and compare it with IoAler-

gia [MCJ+12, MCJ+16]. Section 8 reviews related work. We summarise our results in Sect. 9 and conclude in
Sect. 10.

2. Preliminaries

We introduce backgroundmaterial similar to our previouswork on stochastic automata learning [AT17b,AT19b,
TAB+19], partly following the presentation by Mao et al. [MCJ+16] and Forejt et al. [FKNP11]. An important
difference in the latter works [MCJ+16, FKNP11] is that we mainly consider finite traces and finite paths, as we
learn from finite traces that we sample via testing. In contrast to that, model checkingmostly considers properties
defined over infinite sequences [FKNP11]. We also use slightly different notation.

2.1. Notation

Table 1 introduces some notational conventions that we use throughout this article. The left column introduces
somenotation, themiddle column specifies conditions onvariables used in the table and the right columndescribes
the corresponding meaning of the notation. Note that conditions in Table 1 are cumulative, i.e., conditions
introduced in a row also hold in the rows below. In addition to that, we introduce some terminology and auxiliary
functions below.

578 M. Tappler et al.

2.1.1. Terminology

A set of sequences A ⊆ S ∗ is prefix-closed, if it contains all prefixes of all sequences in A, i.e., A � prefixes(A).
Analogously, A is suffix-closed if it contains all suffixes of all sequences in A, i.e., A � suffixes(A).

2.1.2. Auxiliary functions

In this article, we will use three random functions to perform probabilistic choices, for instance, to decide whether
test-case generation should be stopped. The function coinFlip implements a biased coin flip for performing a
binary probabilistic choice. It is defined for p ∈ [0, 1] ∩ Q by P(coinFlip(p) � true) � p and P(coinFlip(p) �
f alse) � 1 − p. The function rSel selects a single sample e from a set S according to a uniform distribution,
that is, ∀ e ∈ S : P(rSel(S) � e) � 1

|S | . The function rSeq takes a set S and a length bound b ∈ N to create a
random sequence s of elements in S . The length l ≤ b of s is chosen uniformly from [0 . . b] and each element of
s is chosen via rSel(S).

2.2. Probability distributions and random functions

Given a set S , we denote by Dist(S) the set of probability distributions over S , thus for all μ in Dist(S) we have
μ : S → [0, 1]∩Q such that

∑
s∈S μ(s) � 1. For simplicity, we consider only rational probabilities. Distributions

μ considered in this article may be partial functions, in which case we implicitly set μ(e) � 0 if μ is not defined
for e. ForA ⊆ S , 1A denotes the indicator function ofA, i.e. 1A(e) � 1 if e ∈ A and 1A(e) � 0 otherwise. Hence,
1{e} for e ∈ S is the probability distribution assigning probability 1 to e.

2.3. String notation

Let I and O be sets of input and output symbols. As explained below, outputs label states and inputs label
edges in MDPs, like in Moore machines. Hence, traces of MDPs are usually alternating sequences of outputs
and inputs that start and end with an output, because paths corresponding to traces start and end in a state. A
trace is therefore an input/output string s which is an alternating sequence of inputs and outputs, starting with
an output, i.e. s ∈ O × (I ×O)∗. We extend the general notational conventions for sequences introduced above,
like concatenation and indexed access, to such input/output string. The first element in such a string is generally
the first input-output pair and we access the initial output explicitly, if required. Furthermore, the length of an
input/output string is its number of pairs, thus traces consisting of only an initial output have length zero. Prefix-
and suffix-closedness are adapted analogously. In slight abuse of notation, we useA×B andA·B interchangeably
to simplify notation.

2.4. Active automata learning

We actively learn MDPs in the minimally adequate teacher (MAT) framework introduced by Angluin for the
L* algorithm [Ang87]. Algorithms in this framework interact with an MAT to learn automata accepting some
unknown regular language or modelling a black-box SUL. In the following, we describe how algorithms in the
MAT framework work by abstractly describing L*.

2.4.1. Minimally adequate teacher framework

AnMATusually needs to be able to provide answers to two types of queries that are posed by learning algorithms.
These two types of queries are commonly called membership queries and equivalence queries; see Fig. 1 for a
schematic depiction of the interaction between the learning algorithm, also called learner, and the MAT, also
called teacher. In order to understand the basic notions of queries, consider that Angluin’s original L* algorithm
is used to learn a DFA representing a regular language known to the teacher [Ang87]. Given some alphabet, the
L* algorithm repeatedly selects strings and performs membership queries to check whether these strings are in
the language to be learned. The teacher may answer with either yes or no.

L*-based learning of Markov decision processes (extended version) 579

Teacher
Learning
Algorithm

Equivalence Query (Hypothesis)
Yes / Counterexample

Membership Query
Yes / No

Fig. 1. The interaction between a learning algorithm and an MAT [Vaa17]

After some queries, the learning algorithm uses the knowledge gained so far and forms a hypothesis. A
hypothesis is a DFA consistent with the obtained information which is supposed to accept the regular language
under consideration. The algorithm presents the hypothesis to the teacher and issues an equivalence query in
order to check whether the language to be learned is equivalent to the language accepted by the hypothesis
automaton. The response to this kind of query is either yes, signalling that a correct DFA has been learned, or
a counterexample to equivalence. Such a counterexample serves as a witness showing that the learned model is
not yet correct, that is, it is a word in the symmetric difference of the language under learning and the language
accepted by the hypothesis.

After processing a counterexample, the learner starts a new round of learning. The new round again involves
membership queries and a concluding equivalence query. This general mode of operation is basically used by all
algorithms in the MAT framework with some adaptations.

2.5. Markov decision processes

MDPs allow modelling reactive systems with probabilistic responses. An MDP starts in an initial state. During
execution, the environment chooses and executes inputs non-deterministically upon which the system reacts
according to its current state and its probabilistic transition function. For that, the system changes its state and
produces an output.

Definition 2.1 (Markov decision process (MDP)). A labelled Markov decision process (MDP) is a tuple M �
〈Q, I ,O, q0, δ,L〉 where
• Q is a finite set of states,
• I is a finite set of input symbols,
• O is a finite set of output symbols,
• q0 ∈ Q is the initial state,
• δ : Q × I → Dist(Q) is the probabilistic transition function, and
• L : Q → O is the labelling function.

The transition function δ must be defined for all q ∈ Q and i ∈ I , thusMDPs are input enabled in our definition.
We consider only deterministic MDPs, therefore it must hold that

∀ q, q ′, q ′′ ∈ Q,∀ i : (δ(q, i)(q ′) > 0 ∧ δ(q, i)(q ′′) > 0)→ (q ′ � q ′′ ∨ L(q ′) �� L(q ′′)).

We generally consider deterministic labelled MDPs. Labelling of states with outputs allows us to distinguish
states in a black-box setting, thus it is essential for us. Deterministic MDPs define at most one successor state for
each source state and input-output pair, which ensures that a given trace always reaches the same state (see also
below). This assumption simplifies learning such that learning algorithms, like IoAlergia [MCJ+16], generally
place this assumption on SULs. We refer to deterministic labelled MDPs uniformly as MDPs.

As a shorthand notation, we use � : Q × I × O → Q ∪ {⊥} to compute successor states for a given source
state and an input-output pair. The function is defined by �(q, i , o) � q ′ ∈ Q with L(q ′) � o and δ(q, i)(q ′) > 0
if there exists such a q ′, otherwise � returns ⊥.

Additionally to requiring determinism and labelling, Definition 2.1 requires MDPs to be input enabled. They
must not block or reject inputs. Since we assume stochastic SULs to beMDPs, this allows us to execute any input
at any point in time. This is a common assumption in model-based testing [Tre08].

580 M. Tappler et al.

q0start q1 q2

but : 1

coin : 1

coin : 1

but : 0.1 but : 0.9

coin : 1

but : 1

{init} {beep} {coffee}

Fig. 2. An MDP modelling a faulty coffee machine
.

Example 2.1 (Faulty coffee machine). Figure 2 shows an MDP modelling a faulty coffee machine. Edge labels
denote input symbols and corresponding transition probabilities, whereas output labels in curly braces are placed
above states. After providing the inputs coin and but, the coffee machine MDP produces the output coffee
with probability 0.9, but with probability 0.1 it resets itself producing the output init.

Relation to other automata definitions. Other common definitions of MDPs do not include labels, but assign
rewards to transitions and states [Put94]. Since our goal is to learn models from observations of stochastic
systems, we use labels that represent those observations. We do not not consider rewards, as they are not required
in this context. In the context of verification, labels often denote propositions that hold in states [FKNP11, BK08],
that is, O � P(AP), where AP is a set of relevant (atomic) propositions, and L(q) returns the propositions that
hold in state q . In Sect. 7, we formulate model-checking queries over labels.

Closely related toMDPs are probabilistic automata [SL95]. General probabilistic automata actually subsume
MDPs [Sto02], but they usually do not include state labels. In particular, our definition of MDPs is similar to
reactive probabilistic automata [SdV04], with the main differences being the existence of state labels and that we
do not allow partial transition functions. As noted above, MDPs must be input-enabled.

2.6. Execution of Markov decision processes

A (finite) path ρ through an MDP is an alternating sequence of states and inputs starting in the initial state and
ending in some state qn ∈ Q , that is, ρ � q0 · i1 · q1 · · · in−1 · qn−1 · inqn ∈ Q × (I × Q)∗. The set of all paths
of an MDP M is denoted by PathM. In each state qk , the next input ik+1 is chosen non-deterministically and
based on that, the next state qk+1 is chosen probabilistically according to δ(qk , ik+1). Hence, we have for each k
that δ(qk , ik+1) > 0. In contrast to finite paths, infinite paths do not have a dedicated end state. An infinite path
ρ̂ is sequence q0 · i1 · q1 · i2 · · · [FKNP11]. We denote the set of infinite paths ofM by IPathM. Unless otherwise
noted, we refer to finite paths simply as paths, as we generally consider a test-based setting in which we execute
finite paths.

The execution of an MDP is controlled by a so-called scheduler, resolving the non-deterministic choice of
inputs. A scheduler, as defined below, specifies a distribution over the next input given the current execution path.
In other words, they basically choose the next input action (probabilistically) given a history of visited states.
Schedulers are also referred to as adversaries or strategies [MCJ+16].

Definition 2.2 (Scheduler). Given anMDPM � 〈Q, I ,O, q0, δ,L〉, a scheduler forM is a function s : PathM→
Dist(I).

The composition of an MDP M and a scheduler s induces a deterministic Markov chain [FKNP11]. A
Markov chain is a fully probabilistic system allowing to define a probability measure over paths. Below, we define
a probability measure over finite paths based on the definition in our article on learning-based testing [AT19b].

Probability distributions on paths. For a probability distribution over finite paths of an MDP M controlled by
scheduler s , we also need a probability distribution pl ∈ Dist(N0) over the path lengths.

L*-based learning of Markov decision processes (extended version) 581

Definition 2.3 (Path probabilities). An MDP M � 〈Q, I ,O, q0, δ,L〉, a scheduler s : PathM → Dist(I), and a
path length probability distribution pl induce a probability distribution P

l
M,s on finite paths PathM defined

by:

P
l
M,s (q0 · i1 · q1 · · · in · qn) � pl (n) ·

⎛

⎝
n∏

j�1
s(q0 · · · ij−1qj−1)(ij) · δ(qj−1, ij)(qj)

⎞

⎠ (1)

Alternatively to pl , probability distributions over finite paths may, e.g., include state-dependent termination
probabilities [MCJ+11].We take a path-based viewbecausewe actively sample fromMDPs.Moreover, probability
distributions are often defined for each state and are therefore parameterised by states [FKNP11]. Sincewe sample
all SUL traces starting from the initial state q0, Eq. 1 defines only probabilities of paths starting in q0.

Scheduler subclasses. There are subclasses of schedulers that are relevant to us.We implement equivalence queries
of L∗

mdp
through conformance testing, where we aim to cover/reach states in intermediate hypothesis MDPs.

Equivalence queries therefore require the computation of schedulers for probabilistic reachability properties.
These properties do not need general schedulers, but can be satisfied optimally with memoryless deterministic
schedulers [KP13]. A scheduler is memoryless if its choice of inputs depends only on the current state, thus it is
a function from the states Q to Dist(I). A scheduler s is deterministic if for all ρ ∈ PathM, there is exactly one
i ∈ I such that s(ρ)(i) � 1. Otherwise, it is called randomised. Example 2.2 describes an MDP and a scheduler
for our faulty coffee machine introduced in Example 2.1.

Example 2.2 (Scheduler for coffee machine). A deterministic memoryless scheduler s may provide the inputs
coin and but in alternation to the coffee machine of Example 2.1. Formally, s(q0) � 1{coin}, s(q1) � 1{but}, and
s(q2) � 1{coin}. By setting the length probability distribution to pl � 1{2}, all strings must have length 2, such
that, for instance, P

l
M,s (ρ) � 0.9 for ρ � q0 · coin · q1 · but · q2.

Traces. During the execution of a finite path ρ, we observe a trace L(ρ) � t . As mentioned above, a trace is an
alternating sequence of inputs and outputs starting with an output. The trace t observed during the execution of
ρ � q0 · i1 · q1 · · · in−1 · qn−1 · in · qn is given by t � o0 · i1 · o1 · · · in−1 · on−1 · in · on where L(qi) � oi .

We can define a probability distribution Pt lM,s over traces by Pt lM,s � P
l
M,s ◦L−1. By controlling path length

via pl , we also control the length of observed traces via pl . If it is clear from the context, we will write P
l
M,s for

traces as well instead of Pt lM,s .

3. MDP observations

In the following, we first introduce different types of observation sequences of MDPs and some related terminol-
ogy. Then, we formally define the semantics of MDPs in terms of observation sequences.

3.1. Sequences of observations

Let I and O be finite sets of inputs and outputs. Recall that a trace observed during the execution of an MDP is
an input-output sequence in O × (I × O)∗ (see also Sect. 2.5). We say that a trace t is observable if there exists
a path ρ with L(ρ) � t , thus there is a scheduler s and a length distribution pl such that P

l
M,s (t) > 0. In a

deterministic MDPM, each observable trace t uniquely defines a state ofM that is reached by executing t from
the initial state q0. We compute this state by δ∗(t) � δ∗(q0, t) where

δ∗(q,L(q)) � q,

δ∗(q, o0i1o1 · · · in−1on−1inon) � �(δ∗(q, o0i1o1 · · · in−1on−1), in , on).

If t is not observable, then there is no path ρ with t � L(ρ), denoted by δ∗(t) � ⊥. Therefore, we extend � by
defining �(⊥, i , o) � ⊥. The last output on of a trace t � o0 · · · inon is denoted by last(t).

582 M. Tappler et al.

We use three types of observation sequences with shorthand notations in this article:

• Traces: abbreviated by T R � O × (I ×O)∗

• Test sequences: abbreviated by T S � (O × I)∗

• Continuation sequences: abbreviated by CS � I × (O × I)∗ � I × T S
These sequence types alternate between inputs and outputs, thus they are related among each other. Asmentioned
in Sect. 2.3, we extend the sequence notations and the notion of prefixes to sequences containing both inputs and
outputs in the context of MDPs. Therefore, we extend these concepts also to T R, T S, and CS. For instance, test
sequences and traces are related by T R � T S ·O .

As noted above, an observable trace in T R leads to a unique state of an MDPM. A test sequence in s ∈ T S
of length n consists of a trace in t ∈ T R with n outputs and an input i ∈ I with s � t · i ; thus executing the
test sequence s � t · i puts M into the state reached by t and tests M’s reaction to i . Extending the notion of
observability, we say that the test sequence s is observable if t is observable. A continuation sequence c ∈ CS
begins and ends with an input, i.e. concatenating a trace t ∈ T R and c creates a test sequence t · c in T S.
Informally, continuation sequences test M’s reaction in response to multiple consecutive inputs.

The following lemma states that an extension of a non-observable traces is also not observable. We will apply
this lemma in the context of test-based learning.

Lemma 3.1 If trace t ∈ T R is not observable, then any t ′ ∈ T R such that t � t ′ is not observable as well.

Lemma 3.1 follows directly from Eq. 1. For a non-observable trace t , we have ∀ s, pl : P
l
M,s (t) � 0 and

extending t to create t ′ only adds further factors to Eq. 1. The same property also holds for test sequences.

3.2. Semantics of MDPs

We can interpret an MDP as a function M : T S → Dist(O) ∪ {⊥}, mapping test sequences s to output
distributions or undefined behaviour for non-observable s . This follows the interpretation of Mealy machines
as functions from input sequences to outputs [SHM11]. Likewise, we will define which function M captures the
semantics of an MDP by adapting the Myhill-Nerode theorem on regular languages [Ner58]. In the remainder
of this article, we denote the set of test sequences s whereM (s) �� ⊥ as defined domain dd(M) of M .

Definition 3.1 (MDPSemantics). The semantics of anMDP 〈Q, I ,O, q0, δ,L〉, is a functionM , defined for i ∈ I ,
o ∈ O , and t ∈ T R as follows:

M (ε)(L(q0)) � 1
M (t · i) � ⊥ if δ∗(t) � ⊥

M (t · i)(o) � p if δ∗(t) �� ⊥ ∧ δ(δ∗(t), i)(q) � p > 0 ∧ L(q) � o
M (t · i)(o) � 0 if δ∗(t) �� ⊥ ∧ � q : δ(δ∗(t), i)(q) � p > 0 ∧ L(q) � o.

Definition 3.2 (M -equivalence of traces). Two traces t1, t2 ∈ T R are equivalent with respect to M : T S →
Dist(O) ∪ {⊥}, denoted t1 ≡M t2, iff

• last(t1) � last(t2) and
• it holds for all continuations v ∈ CS thatM (t1 · v) � M (t2 · v).

A function M defines an equivalence relation on traces, like the Myhill-Nerode equivalence for formal lan-
guages [Ner58]. Two traces are M -equivalent if they end in the same output and if their behaviour in response
to future inputs is the same. Two traces leading to the same MDP state are in the same equivalence class of ≡M ,
analogously to the adapted Myhill-Nerode equivalence for Mealy machines [SHM11].

We can now state which functions characterise MDPs, as an adaptation of the Myhill-Nerode theorem for
regular languages [Ner58], like for Mealy machines [SHM11].

Theorem 3.1 (Characterisation). A functionM : T S → Dist(O) ∪ {⊥} represents the semantics of an MDP iff

1. ≡M has finite index, . . . finite number of states
2. M (ε) � 1{o} for an o ∈ O , . . . initial output

L*-based learning of Markov decision processes (extended version) 583

3. dd(M) is prefix-closed, and
4. ∀ t ∈ T R : either ∀ i ∈ I : M (t · i) �� ⊥ or . . . input enabledness
∀ i ∈ I : M (t · i) � ⊥.

Proof Direction ⇒: first we show that the semantics M of an MDP M � 〈Q, I ,O, q0, δ,L〉 fulfils the four
conditions of Theorem 3.1. Let t ∈ T R be an observable trace, then we have for i ∈ I , o ∈ O : M (t · i)(o) �
δ(q ′, i)(q) � p, where q ′ � δ∗(t), if p > 0 and L(q) � o. As M contains finitely many states q ′, δ(q ′, i) and
therefore also M (t · i) takes only finitely many values. M -equivalence of traces ti depends on the outcomes of
M and on their last outputs last(ti). Since the set of possible outputs is finite like the possible outcomes of M ,
M -equivalence defines finitely many equivalence classes for observable traces. For non-observable t ∈ T R we
have δ∗(t) � ⊥ which implies M (t · i) � ⊥. As a consequence of Lemma 3.1, we also have M (t · c) � ⊥ for any
c ∈ CS. Hence, non-observable traces are equivalent with respect toM if they end in the same output, therefore
M defines finitely many equivalence classes for non-observable traces. In summary, ≡M has finite index, thus
fulfilling the first condition.

According to Definition 3.1, it holds thatM (ε)(L(q0)) � 1, thus the second condition is fulfilled.
Prefix-closedness of the defined domain dd(M) of M follows from Lemma 3.1. Any extension of a non-

observable test sequence is also non-observable, thusM fulfils the third condition.
For the fourth condition, we again distinguish two cases. If t is a non-observable trace, i.e. δ∗(t) � ⊥, then

M (t · i) � ⊥ for all i ∈ I according to Definition 3.1, which fulfils the second sub-condition. For observable t ,
the distributionM (t · i) depends on δ(δ∗(t), i), which is defined for all i due to input enabledness ofM, satisfying
the first subcondition.

The semantics of an MDP satisfies all four conditions listed in Theorem 3.1.
Direction ⇐: from an M satisfying the conditions given in Theorem 3.1, we can construct an MDP Mc �
〈Q, I ,O, q0, δ,L〉 by:
• Q � (T R/ ≡M)\{[t] | t ∈ T R, ∃ i ∈ I : M (t · i) � ⊥}
• q0 � [o0], where o0 ∈ O such that M (ε) � 1{o0}
• L([s · o]) � o where s ∈ T S and o ∈ O , by Definition 3.2 all traces in the same equivalence class end with
the same output
• for [t] ∈ Q :

δ([t], i)([t · i · o]) � M (t · i)(o), defined by fourth condition of Theorem 3.1.

Each equivalence class of ≡M gives rise to exactly one state in Q , except for the equivalence classes of non-
observable traces. �

The MDP Mc in the construction above is minimal with respect to the number of states and unique up
to isomorphism. Therefore, we refer to an MDP constructed in this way as canonical MDP can(M) for MDP
semantics M . Mc is minimal, because any other MDP M′ with a lower number of states necessarily contains a
state that is reached by traces from differentM -equivalence classes. Consequently,M′ cannot be consistent with
the semanticsM .

ViewingMDPs as reactive systems, we consider twoMDPs to be equivalent if we make the same observations
on both.

Definition 3.3 (Output-distribution equivalence). MDPs M1 and M2 over I and O with semantics M1 and M2
are output-distribution equivalent, denoted M1 ≡od M2, iff

∀ s ∈ T S : M1(s) � M2(s).

4. Exact learning of MDPs

This section presents L∗
mdp

e , an exact active learning algorithm for MDPs. L∗
mdp

e serves as basis for the sampling-
based learning algorithm presented in Sect. 5. In contrast to sampling, L∗

mdp
e assumes the existence of a teacher

with perfect knowledge about the SUL that is able to answer two types of queries: output distribution queries
and equivalence queries. The former asks for the exact distribution of outputs following the execution of a test
sequence on the SUL. The latter takes a hypothesis MDP as input and responds either with yes iff the hypothesis
is observationally equivalent to the SUL or with a counterexample to equivalence. A counterexample is a test
sequence leading to different output distributions in hypothesis and SUL.

584 M. Tappler et al.

Table 2. An observation table created during learning of the faulty coffee machine (Fig. 2)
but coin

S init {init �→ 1} {beep �→ 1}
init · coin · beep {coffee �→ 0.9, init �→ 0.1} {beep �→ 1}
init · coin · beep · but · coffee {init �→ 1} {beep �→ 1}

Lt(S) init · but · init {init �→ 1} {beep �→ 1}
init · coin · beep · but · init {init �→ 1} {beep �→ 1}
init · coin · beep · coin · beep {coffee �→ 0.9, init �→ 0.1} {beep �→ 1}
init · coin · beep · but · coffee· but · init {init �→ 1} {beep �→ 1}
init · coin · beep · but · coffee· coin · beep {coffee �→ 0.9, init �→ 0.1} {beep �→ 1}

4.1. Queries
Before discussing learning, we formally define the queries available to the learner that focus on the observable
behaviour ofMDPs. Assume that we want to learn amodel of a black-box deterministicMDPM, with semantics
M . Output distribution queries (odq) and equivalence queries (eq) are then defined as follows:

• output distribution query (odq): an odq(s) returns M (s) for input s ∈ T S.
• equivalence query (eq): an eq query takes a hypothesis MDPH with semantics H as input and returns yes if
H ≡od M; otherwise it returns an s ∈ T S such that H (s) �� M (s) and M (s) �� ⊥.

Lemma 4.1 (Counterexample Observability). For any counterexample s to H ≡od M with M (s) � ⊥, there
exists a prefix s ′ of s with H (s ′) �� M (s ′) andM (s ′) �� ⊥, thus s ′ is also a counterexample but observable on the
SUL with semanticsM . Hence, we can restrict potential counterexamples to be observable test sequences.

Proof Since s is a counterexample and M (s) � ⊥, we have H (s) �� ⊥. Let s ′′ be the the longest prefix of s such
that M (s ′′) � ⊥, thus s ′′ is of the form s ′′ � s ′ · o · i with M (s ′)(o) � 0. Due to prefix-closedness of dd(H),
H (s) �� ⊥ impliesH (s ′′) �� ⊥, thereforeH (s ′)(o) > 0. Hence, s ′ withM (s ′) �� ⊥ is also a counterexample because
H (s ′)(o) �� M (s ′)(o)⇒ H (s ′) �� M (s ′). �

4.2. Observation tables

Like Angluin’s L* [Ang87], we store information in observation table triples 〈S ,E ,T 〉, where:
• S ⊆ T R is a prefix-closed set of traces, initialised to {o0}, a singleton set containing the trace consisting of
the initial output o0 of the SUL, given by odq(ε)(o0) � 1,
• E ⊆ CS is a suffix-closed set of continuation sequences, initialised to I ,
• T : (S ∪ Lt(S)) · E → Dist(O) ∪ {⊥} is a mapping from test sequences to output distributions or to ⊥,
denoting undefined behaviour. This mapping basically stores a finite subset of M . The set Lt(S) ⊆ S · I · O
is given by Lt(S) � {s · i · o | s ∈ S , i ∈ I , o ∈ O,odq(s · i)(o) > 0}.

We can view an observation table as a two-dimensional array with rows labelled by traces in S ∪ Lt(S) and
columns labelled by E . We refer to traces in S as short traces and to their extensions in Lt(S) as long traces.
An extension s · i · o of a short trace s is in Lt(S) if s · i · o is observable. Analogously to traces, we refer to
rows labelled by S as short rows and we refer to rows labelled by Lt(S) as long rows. The table cells store the
mapping defined by T . To represent rows labelled by traces s we use functions row(s) : E → Dist(O) ∪ {⊥} for
s ∈ S ∪ Lt(S) with row(s)(e) � T (s · e). Equivalence of rows labelled by traces s1, s2, denoted eqRowE (s1, s2),
holds iff row(s1) � row(s2) ∧ last(s1) � last(s2). It approximates M -equivalence s1 ≡M s2 by considering
only continuations in E , hence s1 ≡M s2 implies eqRowE (s1, s2). The observation table content defines the
structure of hypothesis MDPs based on the following principle: we create one state per equivalence class of
S/eqRowE , thus we identify states with traces in S reaching them and we distinguish states by their future
behaviour in response to sequences in E . The long traces Lt(S) serve to define transitions. This is a common
approach to hypothesis construction in active automata learning [SHM11]. Transition probabilities are given by
the distributions in the mapping T .

L*-based learning of Markov decision processes (extended version) 585

Algorithm 1 Function for making an observation table closed and consistent
1: function MakeClosedAndConsistent(〈S ,E ,T 〉)
2: if 〈S ,E ,T 〉 is not closed then
3: l ← l ′ ∈ Lt(S) such that ∀ s ∈ S : row(s) �� row(l ′) ∨ last(s) �� last(l ′)
4: S ← S ∪ {l}
5: return 〈S ,E ,T 〉
6: else if 〈S ,E ,T 〉 is not consistent then
7: for all s1, s2 ∈ S such that eqRowE (s1, s2) do
8: for all i ∈ I , o ∈ O do
9: if T (s1 · i)(o) > 0 and ¬ eqRowE (s1 · i · o, s2 · i · o) then

10: e ← e ′ ∈ E such that T (s1 · i · o · e ′) �� T (s2 · i · o · e ′)
11: E ← E ∪ {i · o · e}
12: return 〈S ,E ,T 〉
13: end if
14: end for
15: end for
16: end if
17: return 〈S ,E ,T 〉 � reached if already closed and consistent
18: end function

Example 4.1 (Observation table for coffee machine). Table 2 shows an observation table created during learning
of the coffee machine shown in Fig. 2. The hypothesis derived from that observable table is already equivalent to
the true model. The set S includes a trace for each state of the coffee machine. Note that these traces are pairwise
inequivalent with respect to eqRowE , where E � I � {but, coin}. As noted above, the traces labelled by Lt(S)
define transitions in hypotheses. For instance, the row labelled by init · but · init gives rise to the self-loop
transition in the initial state with the input but and probability 1. This is the case because the rows labelled by
init · but · init and init are equivalent, where init ∈ S corresponds to the initial state of the hypothesis.

Definition 4.1 (Closedness). An observation table 〈S ,E ,T 〉 is closed if for all l ∈ Lt(S) there is an s ∈ S such
that eqRowE (l , s).

Definition 4.2 (Consistency). An observation table 〈S ,E ,T 〉 is consistent if for all s1, s2 ∈ S , i ∈ I , o ∈ O such
that eqRowE (s1, s2) it holds either that (1)1 T (s1 · i)(o) � 0 ∧ T (s2 · i)(o) � 0 or (2) eqRowE (s1 · i ·o, s2 · i ·o).
Closedness and consistency are required to derive well-formed hypotheses, analogously toL* [Ang87].We require
closedness to create transitions for all inputs in all states and we require consistency to be able to derive deter-
ministic hypotheses. During learning, we apply Algorithm 1 repeatedly to establish closedness and consistency
of observation tables. The algorithm adds a new short trace if the table is not closed and adds a new column if
the table is not consistent.

We derive a hypothesisH � 〈Qh, I ,O, q0h, δh,Lh〉 from a closed and consistent observation table 〈S ,E ,T 〉,
denoted H � hyp(S ,E ,T), as follows:

• Qh � {〈last(s), row(s)〉 | s ∈ S }
• q0h � 〈o0, row(o0)〉, o0 ∈ S is the trace consisting of the initial SUL output
• for s ∈ S , i ∈ I and o ∈ O :

δh(〈last(s), row(s)〉, i)(〈o, row(s · i · o)〉) � p if T (s · i)(o) � p > 0 and 0 otherwise
• for s ∈ S : Lh(〈last(s), row(s)〉) � last(s).

4.3. Learning algorithm

Algorithm 2 implements L∗
mdp

e using queries odq and eq. First, the algorithm initialises the observation table
and fills the table cells with output distribution queries (lines 1 to 4). The main loop in lines 5 to 19 makes
the observation table closed and consistent, derives a hypothesis H and performs an equivalence query eq(H).

1Note that s1 ∈ S implies that T (s1 · i) �� ⊥ such that T (s2 · i)(o) � 0 follows from eqRowE (s1, s2) and T (s1 · i)(o) � 0.

586 M. Tappler et al.

Algorithm 2 The main algorithm implementing L∗
mdp

e

Input: I , exact teacher capable of answering odq and eq
Output: learned modelH (final hypothesis)
1: o� ← o such that odq(ε)(o) � 1
2: S ← {o0}
3: E ← I � Initialise observation table
4: fill(S ,E ,T)
5: repeat
6: while 〈S ,E ,T 〉 not closed or not consistent do
7: 〈S ,E ,T 〉 ← MakeClosedAndConsistent(〈S ,E ,T 〉)
8: fill(S ,E ,T)
9: end while

10: H← hyp(S ,E ,T)
11: eqResult ← eq(H)
12: if eqResult �� yes then
13: cex ← eqResult
14: for all (t · i) ∈ prefixes(cex) with i ∈ I do
15: S ← S ∪ {t}
16: end for
17: fill(S ,E ,T)
18: end if
19: until eqResult � yes
20: return hyp(S ,E ,T)

21: procedure fill(S ,E ,T)
22: for all s ∈ S ∪ Lt(S), e ∈ E do
23: if T (s · e) undefined then � we have no information about T (s · e) yet
24: T (s · e)← odq(s · e)
25: end if
26: end for
27: end procedure

If eq(H) returns a counterexample cex, we add all its prefix traces as short traces to S , otherwise Algorithm 2
returns the final hypothesis, as it is output-distribution equivalent to the SUL. Whenever the observation table
contains empty cells, the Fill procedure assigns values to these cells via odq.

Note that we use the classic L*-style counterexample processing, because other techniques to process coun-
terexamples are hard to apply efficiently in a sampling-based setting. It would be possible to adapt Rivest and
Schapire’s counterexample processing [RS93] in the exact setting considered in this section, but the main purpose
of introducing L∗

mdp
e is to provide a basis for the sampling-based L∗

mdp
.

4.4. Correctness and termination

In the following, we will show that L∗
mdp

e terminates and learns correct models. We consider learned models
correct if they are output-distribution equivalent to the SUL. Like Angluin [Ang87], we will show that the
derived hypotheses are consistent with queried information and that they are minimal with respect to the number
of states. For the remainder of this section, let M be the semantics of the MDP underlying the SUL and let
M � can(M) be the corresponding canonical MDP and letH � 〈Q, I ,O, q0, δ,L〉 denote hypotheses. The first
two lemmas relate to observability of traces.

Lemma 4.2 For all s ∈ T S, o ∈ O, e ∈ CS : M (s)(o) � 0⇒ M (s · o · e) � ⊥.
Proof. Let δM be the probabilistic transition relation ofM.M (s)(o) � 0 with s � t · i for i ∈ I implies that there
is no state labelled o reachable by executing i in the state δ∗M (t) (Definition 3.1), thus δ∗M (t · i ·o) � δ∗M (s ·o) � ⊥.
By Definition 3.1, M (s · o · i ′) � ⊥ for any i ′. Due to prefix-closedness of dd(M), we have M (s · o · e) � ⊥ for
all e ∈ CS. �

L*-based learning of Markov decision processes (extended version) 587

Lemma 4.3 Let 〈S ,E ,T 〉 be a closed and consistent observation table created by Algorithm 2. Then for s ∈ S
and s · i · o ∈ S ∪ Lt(S) we have T (s · i)(o) > 0.

Proof The lemma states that traces labelling rows are observable. Algorithm 2 adds elements to S and conse-
quently to Lt(S) in two cases: (1) if an equivalence query returns a counterexample and (2) to make observation
tables closed.

Case 1.Counterexamples c ∈ T S returned by equivalence queries eq(H) satisfyM (c) �� ⊥ (see also Lemma 4.1).
In Line 15 of Algorithm 2, we add tp to S for each tp · ip ∈ prefixes(c). Due to prefix-closedness of dd(M),
M (tp · ip) �� ⊥ for all tp · ip ∈ prefixes(c), and thereforeM (s · i)(o) � T (s · i)(o) > 0 for each added trace tp of the
form tp � s · i ·o with i ∈ I and o ∈ O . Due to its definition, the set Lt(S) is implicitly extended by all observable
extensions of added tp . By this definition, Lt(S) contains only traces t � s · i · o such that T (s · i)(o) > 0.
Case 2. If an observation table is not closed, we add traces from Lt(S) to S . As noted above, all traces t � s · i · o
in Lt(S) satisfy T (s · i)(o) > 0. Consequently, all traces added to S also satisfy this property. �

Theorem 4.1 (Consistency and minimality). Let 〈S ,E ,T 〉 be a closed and consistent observation table and let
H � hyp(S ,E ,T) be a hypothesis derived from that table with semantics H . Then H is consistent with T , that
is, ∀ s ∈ (S ∪ Lt(s)) · E : T (s) � H (s), and any other MDP consistent with T but inequivalent to H must have
more states.

The following four lemmas are necessary to prove Theorem 4.1.

Lemma 4.4 Let 〈S ,E ,T 〉 be a closed and consistent observation table. For H � hyp(S ,E ,T) and every s ∈
S ∪ Lt(S), we have δ∗(q0, s) � 〈last(s), row(s)〉.
Proof Similarly to Angluin [Ang87], we prove this by induction on the length k of s . In Sect. 2.3, we defined the
length of a trace as its number of input-output pairs. Hence, for the base case of k � 0, we consider the trace s
consisting of only the initial output o, that is, s � o. In this case, we have

δ∗(q0, o) � δ∗(〈o, row(o)〉, o) � 〈o, row(o)〉.
Assume that for every s ∈ S ∪ Lt(S) of length at most k , δ∗(q0, s) � 〈last(s), row(s)〉. Let t ∈ S ∪ Lt(S) be

a trace of length k + 1. Such a t is of the form t � s · i · ot , with s ∈ T R, i ∈ I , ot ∈ O . If t ∈ Lt(S) then s must
be in S , and if t ∈ S , then also s ∈ S because S is prefix-closed.

δ∗(q0, s · i · ot) � �(δ∗(q0, s), i , ot) (definition of δ∗)
� �(〈last(s), row(s)〉, i , ot) (by induction hypothesis)
� 〈ot , row(s · i · ot)〉 (definition of �)
if δ(〈last(s), row(s)〉, i)(〈ot , row(s · i · ot)〉) > 0
and L(〈ot , row(s · i · ot)〉) � ot

δ(〈last(s), row(s)〉, i)(〈ot , row(s · i · ot)〉) > 0
⇔ T (s · i)(ot) > 0 (construction of δ)
⇔ true (Lemma 4.3)

L(〈ot , row(s · i · ot)〉) � ot
⇔ true (construction of L)

Lemma 4.5 Let (S ,E ,T) be a closed and consistent observation table. Then hyp(S ,E ,T) is consistent with T ,
i.e. for every s ∈ S ∪ Lt(S) and e ∈ E we have T (s · e) � H (s · e).
Proof We will prove this by induction on k , the number of inputs in e. As induction hypothesis, we assume that
T (s · e) � H (s · e) for all s ∈ S ∪ Lt(S) and e ∈ E containing at most k inputs. For the base case with k � 1,
we consider e consisting of a single input, that is, e ∈ I . From Definition 3.1 we can derive that H (s · i) �� ⊥ if

588 M. Tappler et al.

δ∗(s) �� ⊥, which holds for s ∈ S ∪ Lt(S). Then we have:

H (s · i)(o) � δ(δ∗(s), i)(q) with L(q) � o
� δ(〈last(s), row(s)〉, i)(q) with L(q) � o (Lemma 4.4)
� δ(〈last(s), row(s)〉, i)(〈o, row(s · i · o)〉) (hypothesis construction)
� T (s · i)(o) (hypothesis construction)

For the induction step, let e ∈ E be such that it contains k + 1 inputs, thus it is of the form e � i · o · ek for
i ∈ I , o ∈ O , and due to suffix-closedness of E , ek ∈ E . Note that ek contains k inputs. We have to show that
T (s · e) � H (s · e) for s ∈ S ∪ Lt(S). Let s ′ ∈ S such that eqRowE (s, s ′), which exists due to observation table
closedness. Traces s and s ′ lead to the same hypothesis state because:

δ∗(q0, s) � 〈last(s), row(s)〉 (Lemma 4.4)

� 〈last(s ′), row(s ′)〉 (eqRowE (s, s ′))
� δ∗(q0, s ′) (Lemma 4.4)

Thus, s and s ′ are H -equivalent and therefore H (s · e) � H (s ′ · e). Due to eqRowE (s, s ′), T (s · e) � T (s ′ · e)
and in combination:

T (s · e) � H (s · e)⇔ T (s ′ · e) � H (s ′ · e)⇔ T (s ′ · i · o · ek) � H (s ′ · i · o · ek).
We will now show that T (s ′ · i · o · ek) � H (s ′ · i · o · ek) holds by considering two cases.
Case 1. Suppose that s ′ · i · o ∈ S ∪ Lt(S). Then, T (s ′ · i · o · ek) � H (s ′ · i · o · ek) holds by the induction
hypothesis, as ek contains k inputs.
Case 2. Suppose that s ′ · i · o �∈ S ∪ Lt(S). Due to s ′ ∈ S and the definition of Lt(S), we have

odq(s ′ · i)(o) � M (s ′ · i)(o) � 0.

By Lemma 4.2, it follows that M (s ′ · i · o · e) � ⊥ for any continuation e ∈ CS. Since the observation table is
filled via odq we have

T (s ′ · i · o · ek) � odq(s ′ · i · o · ek) � M (s ′ · i · o · ek) � ⊥.

By the induction base, we haveH (s ′ · i) � T (s ′ · i) for i ∈ I , thusH (s ′ · i)(o) � T (s ′ · i)(o), for which we know
T (s ′ ·i)(o) � 0, because s ′ ·i ·o �∈ S ∪Lt(S). Combinedwith Lemma 4.2, we can conclude thatH (s ′ ·i ·o ·ek) � ⊥.
In both cases, it holds that H (s ′ · i · o · ek) � T (s ′ · i · o · ek) which is equivalent to H (s · e) � T (s · e). �

With Lemma 4.5, we have shown consistency between the derived hypotheses and the queried information
stored in T . Now, we show that hypotheses are minimal with respect to the number of states.

Lemma 4.6 Let 〈S ,E ,T 〉 be a closed and consistent observation table and let n be the number of different
values of 〈last(s), row(s)〉, i.e. the hypothesis hyp(S ,E ,T) has n states due to its construction. Then any MDP
consistent with T must have at least n states.

Proof Let M′ � 〈Q ′, I ,O, q ′0, δ
′,L′〉 with semantics M ′ be an MDP that is consistent with T . Let s1, s2 ∈ S be

such that ¬ eqRowE (s1, s2), then (1) last(s1) �� last(s2) or (2) row(s1) �� row(s2). If last(s1) �� last(s2), then s1
and s2 cannot reach the same state inM′, because the states reached by s1 and s2 need to be labelled differently.
If row(s1) �� row(s2), then there exists an e ∈ E such that T (s1 · e) �� T (s2 · e). SinceM′ is consistent with T , it
holds also thatM ′(s1 · e) �� M ′(s2 · e). In this case, s1 and s2 cannot reach the same state as well, as the observed
future behaviour is different.

Consequently,M′ hasat leastn states, because theremust exist at least one state for eachvalueof 〈last(s), row(s)〉.
Two traces s1 and s2 satisfying 〈last(s1), row(s1)〉 �� 〈last(s2), row(s2)〉 cannot reach the same state. �
Lemma 4.7 Let 〈S ,E ,T 〉 be a closed and consistent observation table and H � hyp(S ,E ,T) be a hypothesis
with n states derived from it. Any other MDP M′ � 〈Q ′, I ,O, q ′0, δ

′,L′〉 with semantics M ′ consistent with T ,
initial output L′(q ′0) � L(q0), and with n or fewer states is isomorphic toH.

L*-based learning of Markov decision processes (extended version) 589

Proof From Lemma 4.6, it follows that M′ has at least n states, therefore we examine M′ with exactly n states.
For each state ofH, i.e. for each unique row value 〈last(s), row(s)〉 labelled by some s ∈ S , there exists a unique
state in Q ′. Let φ be a mapping from short traces to Q ′ given by φ(〈last(s), row(s)〉) � δ′∗(q ′0, s) for s in S .
This mapping is bijective and we will now show that it maps q0 to q ′0, that it preserves the probabilistic transition
relation and that it preserves labelling.
First, we start with the initial state and show φ(q0) � q ′0:

φ(q0) � φ(〈o, row(o)〉) where o is the initial output of the SUL

� δ′∗(q ′0, o)
� q ′0 (definition of δ′∗)

For each s in S , i in I and o ∈ O . We have:
δ(〈last(s), row(s)〉), i)(〈last(s · i · o), row(s · i · o)〉)

� T (s · i)(o) (hypothesis construction)
and

δ′(φ(〈last(s), row(s)〉), i)(φ(〈last(s · i · o), row(s · i · o)〉)))
� δ′(δ′∗(q ′0, s), i)(δ

′∗(q ′0, s · i · o))
� M ′(s · i)(o) (Definition 3.1)
� T (s · i)(o) (M′ is consistent with T)
Transition probabilities are preserved by the mapping φ.

Finally, we show that labelling is preserved. For all s in S :

L′(φ(〈last(s), row(s)〉)) � L′(δ′∗(q ′0, s))
� last(s) (definition of δ′∗)
and

L(〈last(s), row(s)〉) � last(s) (definition of L)
⇒ L′(φ(〈last(s), row(s)〉)) � L(〈last(s), row(s)〉)

Labelling is preserved by the mapping φ.

Hence, φ is an isomorphism betweenH and M′. �
This concludes the proof of Theorem 4.1. Lemma 4.5 shows consistency between the hypotheses and the

queried information stored in 〈S ,E ,T 〉. FromLemma 4.6 and Lemma 4.7, we can infer that anyMDP consistent
with 〈S ,E ,T 〉, but inequivalent to hypothesis hyp(S ,E ,T), must have more states than hyp(S ,E ,T).

Theorem 4.2 (Termination and correctness). The algorithm L∗
mdp

e terminates and returns anMDPH isomorphic
to M, thus it is minimal and it also satisfiesM ≡od H.

Proof
Termination. Let 〈S ,E ,T 〉 be a closed and consistent observation table and let c ∈ T S be a counterexam-
ple to equivalence between M and hypothesis hyp(S ,E ,T) with semantics H . Since c is a counterexample,
M (c) �� H (c). Now let 〈S ′,E ′,T ′〉 be an observation table extended by adding all prefix traces of c to S and
(re-)establishing closedness and consistency. For hyp(S ′,E ′,T ′) � H′ with semantics H ′, we have T ′(c) � M (c)
due to output distribution queries. Since H′ is consistent with T ′, we have T ′(c) � H ′(c) � M (c). Hence,
H ′(c) �� H (c), which shows thatH′ is not equivalent toH, with c being a counterexample to equivalence. We do
not remove elements from S ,E , orT , thusH′ is also consistent withT . Therefore,H′ must have at least one state
more than H according to Theorem 4.1. It follows that each round of learning, which finds a counterexample,
adds at least one state. Since Algorithm 2 derives minimal hypotheses andM can be modelled with finitely many
states, there can only be finitely many rounds that find counterexamples. Hence, Algorithm 2 terminates after a
finite number of rounds, because it returns the final hypothesis as soon as an equivalence query eq returns yes,
which happens once no counterexample can be found.

We now need to show that every individual round terminates after finite time. The loops starting in Line 14
and Line 22 terminate as they iterate over finite sets. The loop starting in Line 6 terminates, as every execution of
the loop either creates a new short row (making the table closed) or creates at least one new row that may be short

590 M. Tappler et al.

or long (making the table consistent). The former essentially creates a new hypothesis state and the latter either
creates a new state directly or violates closedness, which eventually creates a new state. Since we create minimal
hypotheses of finite-state MDPs, these two operations cannot be carried out indefinitely.

Algorithm 2 terminates because it performs a finite number of learning rounds and every individual round
terminates.
Correctness.The algorithm terminates when an equivalence query eq(H) does not find a counterexample between
the final hypothesis H and M. Since there is no counterexample at this point, we have H ≡od M. Theorem 4.1
states that H is minimal and M � can(M) is consistent with T , because T is filled through output queries.
Consequently, it follows fromLemma 4.7 thatH is isomorphic toM, the canonicalMDPmodelling the SUL. �

5. Learning MDPs by sampling

In this section, we introduce L∗
mdp

, a sampling-based learning algorithm forMDPs derived fromL∗
mdp

e . In contrast
to L∗

mdp
e , which requires exact information, L∗

mdp
places weaker assumptions on the teacher. It does not require

exact output distribution queries and equivalence queries, but approximates these queries via sampling by directed
testing of the SUL. Distribution comparisons are consequently approximated through statistical tests. While we
use similar data structures as in Sect. 4, we alter the learning algorithm structure. Since large amounts of data are
required to produce accuratemodels, the sampling-basedL∗

mdp
allows to derive an approximatemodel at any time,

unlike most other L*-based algorithms. This section is split into three parts: first, we present a sampling-based
interface between teacher and learner, as well as the interface between teacher and SUL. The second part and
the third part describe the adapted learner and the implementation of the teacher, respectively.

Confidence parameter. We apply statistical tests in both learner and teacher. The confidence levels of these tests
(see Condition 2.b of Definition 5.2) depend on a parameter α [CO99], which we assume to be globally accessible
to simplify presentation. For convergence proofs, we let α depend on the number of sampled traces in S, but we
observed slightly better performance for small constant values, such as 0.05; see also Sect. 7. In general, learning
performance can be assumed to be robust with respect to the exact setting of α. Carrasco and Oncina pointed
out that: “The algorithm behaved robustly with respect to the choice of parameter α, due to its logarithmic
dependence on the parameter.” [CO99]. Similar observations have been made by Mao et al. [MCJ+16], who
applied Hoeffding bounds as well.

5.1. Queries

The sampling-based teacher maintains a multiset of traces S for the estimation of output distributions.Whenever
new traces are sampled in the course of learning, they are added to S. In contrast to the exact setting, the teacher
offers four queries, namely an equivalence query and three queries relating to output distributions and samples S:
• frequency query (fq): given a test sequence s ∈ T S, fq(s) : O → N0 are output frequencies observed after s ,
where fq(s)(o) � S(s · o) for o ∈ O .
• complete query (cq): given a test sequence s ∈ T S, cq(s) returns true if sufficient information is available
to estimate an output distribution from fq(s); returns false otherwise.
• refine query (rfq): instructs the teacher to refine its knowledge of the SUL by testing it directed towards rarely
observed samples. Traces sampled by rfq are added to S, increasing the accuracy of subsequent probability
estimations.
• equivalence query (eq): given a hypothesis H, eq tests for output-distribution equivalence between the SUL
and H; returns a counterexample from T S showing non-equivalence or returns none if no counterexample
was found. As is common in active automata learning, we approximate equivalence queries in L∗

mdp
via

testing [SHM11]. For this reason, the approximate equivalence queries return none, rather than yes, if no
counterexample is detected.

L*-based learning of Markov decision processes (extended version) 591

The sampling-based teacher thus needs to implement two different testing strategies, one for increasing the
accuracy of probability estimations along observed traces (refine query) and one for finding discrepancies between
a hypothesis and the SUL (equivalence query). The frequency query and the complete query are used for hypothesis
construction by the learner.

To test the SUL, we require the ability to (1) reset it and to (2) perform an input action and observe the pro-
duced output. For the remainder of this section, let M � 〈Q, I ,O, q0, δ,L〉 be the canonical MDP underlying
the SULwith semanticsM . Based on q ∈ Q , the current execution state ofM, we define two operations available
to the teacher:

• reset: resetsM to the initial state by setting q � q0 and returns L(q0).
• step: takes an input i ∈ I and selects a new state q ′ according to δ(q, i)(q ′). The step operation then updates
the execution state to q ′ and returns L(q ′).

Note that we consider M to be a black box, assuming its structure and transition probabilities to be unknown.
We are only able to perform inputs and observe output labels. For instance, we observe the initial SUL output
L(q0) after performing a reset.

5.1.1. Queries: requirements and properties

The presentation of queries is tailored to our implementation L∗
mdp

, as we need to take practical insights regarding
the cost of sampling into account for efficient learning. Since this implementation-biased presentation may be
an obstacle towards the adoption and adaptation of L∗

mdp
, we provide general requirements and implementation

guidelines for queries in the following.

Trace storage. We assume that the teacher stores a multiset of traces. This assumption helps us to simplify the
presentation, but it is not required. To enable efficient learning and convergence, we need to ensure that all
sampled traces are stored somewhere. For example, a valid alternative approach would be that the learner keeps
track of all sampled information. In this scenario, the refine query would need to return a multiset of sampled
traces just like the equivalence queries, which would optionally also return a counterexample. In summary, there
needs to be a multiset S which contains all sampled traces. If the teacher keeps track of S, there needs to be a
way to query the information stored in S. Here, this is implemented through the frequency query that returns the
current information stored in S.

Convergence. Analogous to exact learning of DFA [dlH10], L∗
mdp

can learn solely from equivalence queries, but
it would be less efficient. To ensure convergence, implementations of L∗

mdp
need to satisfy the below requirements

concerning equivalence queries and completeness queries.
Equivalence queries generally sample traces of the SUL to find counterexamples to equivalence between the

SUL and the hypothesis. At the same time, the sampling also collects information on already explored parts
of the SUL’s state space. To ensure convergence in the limit, equivalence queries need to sample every input in
every reachable state infinitely often. To sample every input infinitely often, we assign a non-zero probability
to every input in all input selections performed during equivalence queries. To ensure that every state can be
reached, the length of traces must not be bounded, that is, every trace length must have a non-zero probability.
Our implementation of equivalence queries satisfies this requirement by using a geometric distribution of trace
length unless a counterexample is detected. Note that equivalence queries will eventually stop detecting new
counterexamples. IoAlergia assumes a similar sampling regime for convergence [MCJ+12, MCJ+16]

For implementations of the completeness query, there must exist a natural number k , such that cq(s) returns
true for a test sequence s if s has been sampled at least k times. Otherwise, cq(s) must return false. In other words,
the completeness queries must return true after having observed finitely many samples and it must not return
true for sequences that have not been observed.

Efficiency. Finally, we would like to discuss how the implementation of queries affects efficiency.
Completeness queries determine at which point sampled information is used to distinguish states. A low k for

determining completeness has the effect that more sequences are used to distinguish states. While theoretically
any k can be used, a low k may introduce spurious states in intermediate hypotheses in practice, which affects on
equivalence queries. Conversely, a large k may have the effect that a very large amount of samples is required to
distinguish states. In practice, a trade-off between the quality of intermediate models and the required number
of samples needs to be found.

592 M. Tappler et al.

The efficiency and accuracy of equivalence queries are affected by several factors, including the number of
sampled traces and their lengths. In general, these parameters have to be determined in relation to the avail-
able sampling budget. Sampling-based equivalence queries potentially allow to formally specify an accuracy by
choosing the number of sampled traces in relation to an error bound and confidence level [Ang87]. We refrain
from doing so by employing an online conformance-testing approach, which is more efficient than pure, unbiased
random sampling.

The refine query attempts to resample traces that have been observed before, but only rarely. It exploits known
information to increase the accuracy of intermediate hypotheses. An efficient implementation should adapt to
the SUL’s responses, by trying to resample any rarely observed trace rather than a specific one, as the probability
of resampling a specific trace is generally low.

Relation to other types of queries. Concept learning from samples often assumes the availability of either example
queriesEX (f ,D) [Val84,Kea98] or the weaker statistical queries STAT (f ,D) [Kea98], where f is a target concept
and D is a distribution over inputs. The former have been used, for instance, in DFA learning [Ang87] and the
latter for learning probabilistic finite automata [CG16]. Example queries return a positive example of the target
concept [Val84], whereas statistical queries return accurate estimations of probabilities of examples generated by
EX [Kea98]. Both queries have in common that they are defined relative to a distribution D over the examples,
which remains fixed during learning. For this reason, these queries are not directly applicable in MDP learning,
as the distribution of traces generated by an MDP changes depending on the applied scheduler. The refine and
equivalence queries shall adapt to and exploit information gained throughout learning. As a result, these queries
implicitly apply schedulers that change throughout learning.

We could fix the scheduler at the beginning of learning, for instance, by omitting refine queries and selecting
inputs uniformly at random during equivalence queries. In this way, we would use example queries with a fixed
distribution. However, this would come at the cost of efficiency and accuracy. Section 7 shows a comparison be-
tween L∗

mdp
and IoAlergia, for which we use a uniformly random sampling regime. There is no direct counterpart

of statistical queries in L∗
mdp

.

5.2. Learner implementation

5.2.1. Sampling-based observation tables

L∗
mdp

also uses observation tables, thereforewe use the same terminology as in Sect. 4. Sampling-based observation
tables carry similar information as their exact counterparts, but instead of output distributions in Dist(O), they
store non-negative integers denoting observed output frequencies. More concretely, observation tables in the
sampling-based setting store functions in (O → N0), from which we estimate probability distributions.

Definition 5.1 (Sampling-based observation table). An observation table is a tuple 〈S ,E , T̂ 〉, consisting of a
prefix-closed set of traces S ⊆ T R, a suffix-closed set of continuation sequences E ⊆ CS, and a mapping
T̂ : (S ∪ Lt(S)) · E → (O → N0), where Lt(S) � {s · i · o | s ∈ S , i ∈ I , o ∈ O : fq(s · i)(o) > 0}.
An observation table can be represented by a two-dimensional array, containing rows labelled with elements of
S and Lt(S) and columns labelled by E . Each table cell corresponds to a sequence c � s · e, where s ∈ S ∪Lt(S)
is the row label of the cell and e ∈ E is the column label. It stores queried output frequency counts T̂ (c) � fq(c).
To represent the content of rows, we define the function row on S ∪ Lt(S) by row(s)(e) � T̂ (s · e). The traces
in Lt(S) are input-output-extensions of S which have been observed so far. We refer to traces in S /Lt(S) as
short/long traces. Analogously, we refer to rows labelled by corresponding traces as short and long rows.

As in Sect. 4, we identify states with traces reaching these states. These traces are stored in the prefix-closed
set S . We distinguish states by their future behaviour in response to sequences in E . We initially set S � {L(q0)},
where L(q0) is the initial output of the SUL, and E � I . Long traces, as extensions of access sequences in S , serve
to define transitions of hypotheses.

L*-based learning of Markov decision processes (extended version) 593

5.2.2. Compatibility of observations

As in Sect. 4, observation tables need to be closed and consistent for a hypothesis to be constructed.Unlike before,
we do not have exact information to check equivalence of rows. We need to statistically test if rows are different.
Therefore, Definition 5.2 gives a condition to determine whether two sequences lead to statistically different
observations, meaning that the corresponding output frequency samples come from different distributions. The
condition is based on Hoeffding bounds [Hoe63] that are also used by Carrasco and Oncina [CO99]. In Defini-
tion 5.3, we further apply this condition in a check for approximate equivalence between cells and extend this
check to rows. Using similar terminology as Carrasco and Oncina [CO99], we refer to such checks as compatibil-
ity checks and we say that two cells/rows are compatible if we determine that they are not statistically different.
These notions of compatibility serve as the basis for slightly adapted definitions of closedness and consistency.

Definition 5.2 (Different). Two test sequences s and s ′ in T S produce statistically different output distributions
with respect to f : T S → (O → N0), denoted difff(s, s

′), iff

1. cq(s) ∧ cq(s ′) ∧ n1 > 0 ∧ n2 > 02, where n1 �
∑

o∈O f (s)(o), n2 �
∑

o∈O f (s ′)(o), and one of the
following conditions holds:

2.a. ∃ o ∈ O : ¬ (f (s)(o) > 0⇔ f (s ′)(o) > 0), or

2.b. ∃ o ∈ O :
∣
∣
∣
f (s)(o)

n1
− f (s ′)(o)

n2

∣
∣
∣ >

(√
1
n1

+
√

1
n2

)
·
√

1
2 ln

2
α
, where α specifies the confidence level (1 − α)2

for testing each o separately based on a Hoeffding bound [CO99, Hoe63].

Definition 5.3 (Compatible).Twocells labelledby c � s·e and c′ � s ′·e ′ are compatible, denotedcompatible(c, c′),
iff¬ diff

̂T (c, c ′). Two rows labelled by s and s ′ are compatible, denoted compatibleE (s, s ′) iff last(s) � last(s ′)
and the cells corresponding to all e ∈ E are compatible, i.e. ∀ e ∈ E : compatible(s · e, s ′ · e).

5.2.3. Compatibility classes

In Sect. 4, we formed equivalence classes of traces with respect to eqRowE to create one hypothesis state
per equivalence class. Now we partition rows labelled by S based on compatibility. Compatibility given by
Definition 5.3, however, is not an equivalence relation, as it is not transitive in general. As a result, we cannot
simply create equivalence classes.

We apply the heuristic implemented by Algorithm 3 to partition S . This heuristic chooses a representative r
for each block in the partition based on the amount of information available for r . The available information is
computed by the rank function in Algorithm 3, which basically checks how many input-output extensions of r
have been sampled. As in equivalence classes, every trace in a block is compatible with its block representative.

Algorithm 3 first assigns a rank to each trace in S . Then, it partitions S by iteratively selecting the trace r with
the largest rank and computing a compatibility class cg(r) for r . The trace r is the (canonical) representative for
s in cg(r), which we denote by rep(s) (Line 11). Each representative r is stored in the set of representative traces
R. In contrast to equivalence classes, elements in a compatibility class need not be pairwise compatible and an s
may be compatible with multiple representatives, where the unique representative rep(s) of s has the largest rank.
However, in the limit compatibleE based on Hoeffding bounds converges to an equivalence relation [CO99]
and therefore compatibility classes are equivalence classes in the limit; see Sect. 6.

Definition 5.4 (Sampling closedness). An observation table 〈S ,E , T̂ 〉 is closed if for all l ∈ Lt(S) there is a
representative s ∈ R with compatibleE (l , s).

Definition 5.5 (Sampling consistency). An observation table 〈S ,E , T̂ 〉 is consistent if for all compatible pairs of
short traces s, s ′ in S and all input-output pairs i · o ∈ I · O , we have that (1) at least one of the extensions
has not been observed yet, i.e. T̂ (s · i)(o) � 0 or T̂ (s ′ · i)(o) � 0, or (2) both extensions are compatible, i.e.
compatibleE (s · i · o, s ′ · i · o).

2A similar condition is also used in the compatibility checks by Carrasco and Oncina [CO99], which assumes no difference if there are
no observations for either s or s ′.

594 M. Tappler et al.

Algorithm 3 Creation of compatibility classes
1: for all s ∈ S do
2: rank(s)←∑

i∈I
∑

o∈O T̂ (s · i)(o)
3: end for
4: unpartitioned← S
5: R← ∅
6: while unpartitioned �� ∅ do
7: r ← m where m ∈ unpartitioned with largest rank(m)
8: R← R ∪ {r}
9: cg(r)← {s ∈ unpartitioned | compatibleE (s, r)}

10: for all s ∈ cg(r) do
11: rep(s)← r
12: end for
13: unpartitioned← unpartitioned \cg(r)
14: end while

The adapted notions of closedness and consistency of observation tables are based on compatibility and com-
patibility classes. Note that the first condition of consistency may be satisfied because of incomplete information.

5.2.4. Hypothesis construction

Given a closed and consistent observation table 〈S ,E , T̂ 〉, we derive a hypothesis H � hyp(S ,E , T̂) through
the steps below. Note that extensions s · i · o of s in R ⊆ S define transitions. Some extensions may have few
observations, such that

∑
o∈O T̂ (s · i)(o) is low and cq(s · i) � false. In case of such uncertainties, we add

transitions to a special sink state labelled by “chaos”, an output not in the original alphabet3. A hypothesis is a
tuple H � 〈Qh, I ,O ∪ {chaos}, q0h, δh,Lh〉 where:
• representatives for long traces l ∈ Lt(S) are given by (see Algorithm 3):
rep(l) � r where r ∈ {r ′ ∈ R | compatibleE (l , r ′)} with largest rank(r)
• Qh � {〈last(s), row(s)〉 | s ∈ R} ∪ {qchaos},

– for q � 〈o, row(s)〉 ∈ Qh\{qchaos}: Lh(q) � o
– for qchaos: Lh(qchaos) � chaos and for all i ∈ I : δh(qchaos, i)(qchaos) � 1

• q0h � 〈L(q0), row(L(q0))〉 (note that L(q0) ∈ S due to initialisation)
• for q � 〈last(s), row(s)〉 ∈ Qh\{qchaos} and i ∈ I (note that I ⊆ E):

1. If ¬ cq(s · i): δ(q, i)(qchaos) � 1, i.e. move to chaos
2. Otherwise estimate a distribution μ � δh(q, i) over the successor states:

for o ∈ O with T̂ (s · i)(o) > 0: μ(〈o, row(rep(s · i · o))〉) � ̂T (s·i)(o)
∑

o′∈O ̂T (s·i)(o ′)

5.2.5. Updating the observation table

Closedness and consistency. Analogously to Sect. 4, we make observation tables closed by adding new short
rows and we establish consistency by adding new columns. We refer to the function implementing that also as
MakeClosedAndConsistent. While L∗

mdp
e implemented by Algorithm 2 needs to fill the observation table after

executing MakeClosedAndConsistent, this is not required in the sampling-based setting due to the adapted
notions of closedness and consistency.

3This is inspired by the introduction of chaos states in ioco-based learning [VT15]. We also added such a state in our previous work on
stochastic automata learning [AT19b].

L*-based learning of Markov decision processes (extended version) 595

Trimming the observation table. Observation table size greatly affects learning performance, therefore it is com-
mon to avoid adding redundant information [RS93, IHS14]. Due to inexact information, this is hard to apply in
a stochastic setting. We instead remove rows and columns via a function trim once we are certain that removing
them does not change the hypothesis.

First, let us consider removing rows. Given an observation table 〈S ,E , T̂ 〉, we remove s and all s ′ such that
s � s ′ from S if:

1. there is exactly one r ∈ R such that compatibleE (s, r)
2. s �∈ R and ∀ r ∈ R : ¬ (s � r)
3. and ∀ s ′ ∈ S , i ∈ I , with s � s ′: difffq(s ′ · i , r · i) � false, where r ∈ R such that δ∗h(r) � δ∗h(s

′),
〈last(r), row(r)〉 � δ∗h(r), and δh is the transition relation of hyp(S ,E , T̂).

The first condition is motivated by the observation that if s is compatible with exactly one r , then all extensions
of s can be assumed to reach the same states as the extensions of r . In this case, s presumably corresponds to
the same SUL state as r , therefore we do not need to store s in the observation table. The other conditions
make sure that we do not remove required rows, because of a spurious compatibility check in the first condition.
The second condition ensures that we do not remove representatives and the third condition is related to the
implementation of equivalence queries. It basically checks for compatibility between the hypothesis hyp(S ,E , T̂)
and the frequency information available via frequency queries. This is done by checking if an extension s ′ of s
reveals a difference between the output frequencies observed after s ′ (queried via fq) and the output frequencies
observed after the representative r reaching the same hypothesis state as s ′. Put differently, we check if s ′ is a
counterexample to equivalence between hypothesis and SUL. Note that removed rows do not affect hypothesis
construction.

After we removed all rows matching the above criteria, we check if we can remove columns.4 The basic
intuition behind removing columns is that a continuation sequence e may have been added spuriously to E .
This may happen if the sequence e resolves an inconsistency that is present due to inaccurate information. In
later rounds, e may not be required anymore. Therefore, we remove every e ∈ E that can be removed without
introducing inconsistencies and without violating suffix-closedness of E .

More concretely, we perform the following steps on an observation table 〈S ,E , T̂ 〉. First, we sort E by
descending length.Then,we check for every e in the sortedE : (1) is 〈S ,E\{e}, T̂ 〉 consistent and (2) isE\{e} suffix-
closed? If both conditions evaluate to true, we remove e by updating the observation tables to 〈S ,E\{e}, T̂ 〉.

5.2.6. Learning algorithm

Algorithm 4 implements L∗
mdp

. It first initialises an observation table 〈S ,E , T̂ 〉with the initial SUL output as first
row and with the inputs I as columns (Line 1). Lines 2 to 5 perform a refine query and then update 〈S ,E , T̂ 〉
with output frequency information, which corresponds to output distribution queries in L∗

mdp
e . Here, the teacher

resamples the only known trace L(q0). Resampling that trace consists of observing L(q0), performing some input,
and observing another output.

After that, we perform Line 7 to Line 24 until a stopping criterion is reached. We establish closedness and
consistency of 〈S ,E , T̂ 〉 in Line 10 to build a hypothesis H in Line 12. After that, we remove redundant rows
and columns of the observation table via Trim in Line 13. Then, we perform an equivalence query, testing for
equivalence betweenSULandH. Ifwe finda counterexample,we add all its prefix traces as rows to the observation
table as in L∗

mdp
e . Finally, we sample new system traces via rfq to gain more accurate information about the SUL

(Lines 20 to 23). Once we stop, we output the final hypothesis.

Stopping. L∗
mdp

e and deterministic automata learning usually stop learning once equivalence between the learned
hypothesis and the SUL is achieved. In implementations of equivalence queries via testing, equivalence is usually
assumed to hold when no counterexample can be found. Here, we employ a different stopping criterion, because
equivalence can hardly be achieved via sampling. Furthermore, we may wish to carry on resampling via rfq
although we did not find a counterexample. Resampling may improve the accuracy of a hypothesis such that
subsequent equivalence queries reveal counterexamples.

4This optimisation was not part of the original conference paper [TAB+19].

596 M. Tappler et al.

Algorithm 4 The main algorithm implementing L∗
mdp

Input: sampling-based teacher capable of answering fq, rfq, eq and cq
Output: final learned model hyp(S ,E , T̂)
1: S ← {L(q0)}, E ← I , T̂ ← {} � initialise observation table
2: perform rfq(〈S ,E , T̂ 〉) � sample traces for initial observation table
3: for all s ∈ S ∪ Lt(S), e ∈ E do
4: T̂ (s · e)← fq(s · e) � update observation table with frequency information
5: end for
6: round ← 0
7: repeat
8: round ← round + 1
9: while 〈S ,E , T̂ 〉 not closed or not consistent do

10: 〈S ,E , T̂ 〉 ← MakeClosedAndConsistent(〈S ,E , T̂ 〉)
11: end while
12: H← hyp(S ,E , T̂) � create hypothesis
13: 〈S ,E , T̂ 〉 ← trim(〈S ,E , T̂ 〉,H) � remove rows that are not needed
14: cex ← eq(H)
15: if cex �� none then � we found a counterexample
16: for all (t · i) ∈ prefixes(cex) with i ∈ I do
17: S ← S ∪ {t} � add all prefixes of the counterexample
18: end for
19: end if
20: perform rfq(〈S ,E , T̂ 〉) � sample traces to refine knowledge about SUL
21: for all s ∈ S ∪ Lt(S), e ∈ E do
22: T̂ (s · e)← fq(s · e) � update observation table with frequency information
23: end for
24: until stop(〈S ,E , T̂ 〉, H, round)
25: return hyp(S ,E , T̂) � output final hypothesis

Our stopping criterion takes statistical uncertainty5 in compatibility checks into account.As previously noted,
rows may be compatible to multiple other rows. In particular, a row labelled by s may be compatible to multiple
representatives. In such a case, we are not certain which state is reached by the trace s . We address this issue by
stopping based on the ratio runamb of unambiguous traces to all traces, which we compute by:

runamb � | {s ∈ S ∪ Lt(S) : unambiguous(s)} |
| S ∪ Lt(S) | where

unambiguous(s)⇔ | {r ∈ R : compatibleE (s, r)} |� 1

More concretely, we stop if:

1.a. at least rmin rounds have been executed and
1.b. the chaos state qchaos is unreachable and
1.c. and runamb ≥ tunamb, where tunamb is a user-defined threshold,
or

2.a. alternatively we stop after a maximum number of rounds rmax.

5This form of uncertainty does not refer to uncertain behaviour in general, but to uncertainty related to decisions based on statistical
tests.

L*-based learning of Markov decision processes (extended version) 597

5.3. Teacher implementation

In the following, we describe the implementation of each of the four queries provided by the teacher. Recall that
we interact with the SUL with semanticsM via the two operations reset and step; see Sect. 5.1. The canonical
MDP can(M) �M � 〈Q, I ,O, q0, δ,L〉 has the same observable behaviour as the SUL.

5.3.1. Frequency query

The teacher keeps track of a multiset of sampled system traces S. Whenever a new a trace is added, all its prefixes
are added aswell, as they have beenobserved aswell. Therefore,wehave for t ∈ T R, t ′ ∈ prefixes(t) : S(t) ≤ S(t ′).
The frequency query fq(s) : O → N0 for s ∈ T S returns output frequencies observed after s :

∀ o ∈ O : fq(s)(o) � S(s · o)

5.3.2. Complete query

Trace frequencies retrieved via fq are generally used to compute empirical output distributions μ following a
sequence s in T S, i.e. the learner computesμ(o) � fq(s)(o)

∑

o′∈O fq(s)(o ′) to approximateM (s)(o). The complete query cq
takes a sequence s as input and signals whether s should be used to approximate M (s), for instance, to perform
statistical tests6. We base cq on a threshold nc > 0 by defining:

cq(s) �
⎧
⎨

⎩

true if
∑

o∈O S(s · o) ≥ nc
true if ∃ s ′, o, i : s ′ · o · i � s ∧ cq(s ′) ∧ S(s · o) � 0
false otherwise

Note that for a complete s , all prefixes of s are also complete. Additionally if cq(s), then we assume that we
have seen all extensions of s . Therefore, we set for each o with S(s · o) � 0 all extensions of s · o to be complete
(second clause). The threshold nc is user-specifiable in our implementation.

5.3.3. Refine query

Refine queries serve the purpose of refining our knowledge about output distributions along previously observed
traces. Therefore, we select rarely observed traces and resample them to perform this query. We implemented this
through the procedure outlined in Algorithm 5.

First, we build a prefix tree from rarely observed traces (Line 1 and Line 2), where edges are labelled by input-
output pairs and nodes are labelled by traces reaching the nodes. This tree is then used for directed online-testing
of the SUL via sampleSul (Lines 7 to 20) with the goal of reaching a leaf of the tree. In this way, we create
nresample new samples and add them to the multiset of samples S.

5.3.4. Equivalence query

Equivalence queries are often implemented via (conformance) testing in active automata, for instance, using the
W-method [Cho78] method for deterministic models. Such testing techniques generally execute some test suite
to find counterexamples to conformance between a model and the SUL. In our setup, a counterexample is a test
sequence inducing a different output distribution in the hypothesisH than in the SUL. Since we cannot directly
observe those distributions, we perform equivalence queries by applying two strategies to find counterexamples.
First,we search for counterexampleswith respect to the structure ofH via testing. Secondly,we check for statistical
conformance between all traces S sampled so far andH, which allows us to detect incorrect output distributions.

Note that all traces to the state qchaos are guaranteed to be counterexamples, as its label chaos is not part of
the original output alphabetO . For this reason, we do not search for other counterexamples if qchaos is reachable
in H. In slight abuse of terminology, we implement this by returning none from eq(H). L∗

mdp
in Algorithm 4

will then issue further rfq queries, lowering uncertainty about state transitions, which in turn causes qchaos to be
unreachable eventually.

6This query serves a similar purpose as the completeness queries used by Volpato and Tretmans [VT15].

598 M. Tappler et al.

Algorithm 5 Refine query

Input: observation table 〈S ,E , T̂ 〉, number of requested new traces nresample
Output: updated multiset of traces S
1: rare← {s | s ∈ (S ∪ Lt(S)) · E : ¬ cq(s)} � identify incomplete sequences
2: pre f i xT ree← buildPrefixTree(rare)
3: for i ← 1 to nresample do � collect nresample new samples
4: newTrace← sampleSul(pre f i xT ree)
5: S ← S � {newTrace}
6: end for
7: function sampleSul(pre f i xT ree)
8: node← root(pre f i xT ree)
9: trace← reset � initialise SUL and observe initial output

10: loop
11: input ← rSel({i ∈ I | ∃ o ∈ O, n : node

i,o−→ n}) � random input
12: output ← step(i) � execute SUL and observe output
13: trace← trace · i · o
14: if trace �∈ pre f i xT ree or trace labels leaf then � did we leave the tree?
15: return trace
16: end if
17: node′ ← n with node

i,o−→ n � move in tree
18: node← node′
19: end loop
20: end function

Testing of structure. Our goal in testing is to sample a trace of the SUL that is not observable on the hypothesis.
For this purpose, we adapted the randomised transition coverage testing strategy that we presented in previous
work [AT17a, AT19a] fromMealymachines toMDPs.We adapted this strategy rather than themutation strategy,
because it is unclear how to adapt the mutation strategy and our evaluation showed that transition coverage was
effective in most cases [AT19a]. It reliably found counterexamples with a low number of tests. Since MDPs
produce outputs in states, whereas Mealy machines produce outputs on transitions, we target state coverage in
MDP-based testing instead of transition coverage.

To test stochastic SULs, we generate test cases that interleave random walks in hypotheses with paths leading
to randomly chosen states. By performing many of these tests, we aim at covering hypotheses adequately, while
exploring new parts of the SUL’s state space through random testing. Due to the stochastic behaviour of the
SUL, we perform online testing. The online-testing procedure is outlined in Algorithm 6.

The algorithm takes a hypothesis and qSched as input where qSched is a mapping from states to schedulers.
Given q ∈ Q , qSched(q) is a scheduler maximising the probability of reaching q , therefore it selects inputs
optimally with respect to the reachability of q . As noted in Sect. 2, there exist memoryless and deterministic
schedulers foroptimal reachability [FKNP11]. Such schedulers takeonly the last state in the current executionpath
into account and they select inputs non-probabilistically. Hence, a scheduler qSched(q) is a function s : Q → I .

In Algorithm 6, we start by randomly choosing a target state qtarget from the states reachable from the initial
state (Line 3). These states are given by reachable(Q, qcurr). Then, we execute the SUL, either with random inputs
(Line 6) or with inputs leading to the target (Line 8), which are computed using schedulers. If we observe an
output which is not possible in the hypothesis, we return a counterexample (Line 13). Alternatively, we may stop
with probability pstop (Line 17). If we reach the target or it becomes unreachable, we simply choose a new target
state (Line 20).

For each equivalence query, we repeat Algorithm 6 up to ntest times and report the first counterexample that
we find, if any. In case we find a counterexample c, we resample it up to nretest times or until cq(c), to get more
accurate information about it. If we do not find a counterexample, we check for conformance between the current
hypothesis and the sampled traces S, as described below.

Checking conformance to S. For each sequence t · i ∈ T S with i ∈ I such that cq(t · i), we check for consistency
between the information stored in S and the current hypothesis H by evaluating two conditions:

L*-based learning of Markov decision processes (extended version) 599

Algorithm 6 State-coverage-based testing for counterexample detection
Input: H � 〈Qh, I ,Oh, q0h, δh,Lh〉, schedulers qSched
Output: counterexample test sequence s ∈ T S or none
1: qcurr ← q0h � current state
2: trace← reset
3: qtarget ← rSel(reachable(Qh, qcurr)) � choose a target state
4: loop
5: if coinFlip(prand) then
6: in← rSel(I) � random next input
7: else
8: in← qSched(qtarget) � next input leads towards target
9: end if

10: out ← step(in) � perform input
11: qcurr ← �h(qcurr, in · out) � move in hypothesis
12: if qcurr � ⊥ then � output not possible in hypothesis
13: return trace · in � return counterexample
14: end if
15: trace← trace · in · out
16: if coinFlip(pstop) then � stop with probability pstop
17: return none
18: end if
19: if qcurr � qtarget or qtarget �∈ reachable(Qh, qcurr) then
20: qtarget ← rSel(reachable(Qh, qcurr)) � choose new target
21: end if
22: end loop

1. Is t observable onH? If it is not, then we determine the longest observable prefix t ′ of t such that t ′ · i ′ · v � t ,
where i ′ is a single input, and return t ′·i ′ as counterexample fromeq(H).The sequence t ′·i ′ is a counterexample,
because at least one of its extensions has been observed (cq(t · i)⇒ S(t) > 0), but none of its extensions is
observable on the hypothesis.

2. If t is observable, we determine q � 〈o, row(r)〉 reached by t in H, where r ∈ R, and return t · i as
counterexample if difffq(t ·i , r ·i) is true. This statistical check approximates the comparisonM (t ·i) �� M (r ·i),
to check if t �≡M r . Therefore, it implicitly checksM (t · i) �� H (t · i), as t ≡H r .

If neither of the two equivalence checking strategies, i.e. testing of structure and checking conformance to S,
finds a counterexample, we return none from the corresponding equivalence query.

6. Convergence of L∗mdp

In the following, we will show that the sampling-based L∗
mdp

learns a correct MDP. Based on the notion of
language identification in grammatical inference [dlH10], we describe our goal as producing anMDP isomorphic
to the canonical MDP modelling the SUL with probability one in the limit.

To show identification in the limit, we introduce slight simplifications. First, we disable trimming of the
observation table (see Sect. 5.2), thuswe donot remove rows or columns. Secondly,we set prand � 1 for equivalence
testing and we do not stop testing at the first detected difference between SUL and hypothesis, but we stop solely
based on a pstop < 1.As a result, all input choices are distributed uniformly at random (i.e. equivalence testing does
not use schedulers for achieving state coverage) and the length of each test is geometrically distributed with pstop.
This is motivated by the common assumption that sampling distributions do not change during learning [dlH10].
Thirdly, we change the function rank in Algorithm 3 to assign ranks based on a lexicographic ordering of traces
rather than based on observed frequencies, such that the trace consisting only of the initial SUL output has the
highest rank.We actually implemented both types of rank functions and found that the frequency-based function
led to better accuracy, butwould requiremore complex proofs.We let the number of samples for learning approach
infinity, therefore we do not use a stopping criterion. Finally, we concretely instantiate the complete query cq by
setting nc � 1, since nc is only relevant for applications in practice.

600 M. Tappler et al.

6.1. Proof structure

We show convergence in two major steps: (1) first we show that the hypothesis structure derived from a sampling-
based observation table converges to the hypothesis structure derived from the corresponding observation table
with exact information. (2) Then, we show that if counterexamples exist, we will eventually find them. Through
that, we eventually arrive at a hypothesis with the same structure as the canonical MDP can(M), where M is
the SUL semantics. Given a hypothesis with correct structure, it follows by the law of large numbers that the
estimated transition probabilities converge to the true probabilities, thus the hypotheses converge to an MDP
isomorphic to can(M).

A key point of the proofs concerns the convergence of the statistical test applied by difff, which is based on
Hoeffding bounds [Hoe63]. With regard to that, we apply similar arguments as Carrasco and Oncina [CO99, p.
11–13 & Appendix]. Given convergence of difff, we also rely on the convergence of the exact learning algorithm
L∗
mdp

e discussed in Sect. 4.4. Another important point is that the shortest traces in each equivalence class of S/≡M

do not form loops in can(M). Hence, there are finitely many such traces. Furthermore, for a given can(M) and
some hypothesis MDP, the shortest counterexample has bounded length, therefore it suffices to check finitely
many test sequences to check for overall equivalence.

6.1.1. Definitions and notation

We show convergence in the limit of the number of sampled system traces n. We take n into account through a
data-dependent αn for the Hoeffding bounds used by difff defined in Definition 5.2. More concretely, let αn � 1

nr

for r > 2 as used by Mao et al. [MCJ+16], which implies
∑

n αnn < ∞. For the remainder of this section, let
〈Sn ,En , T̂n 〉 be the closed and consistent observation table containing the first n samples stored by the teacher
in the multiset Sn . Furthermore, let Hn be the hypothesis hyp(Sn ,En , T̂n), let the semantics of the SUL be M
and let M be the canonical MDP can(M). We say that two MDPs have the same structure, if their underlying
graphs are isomorphic, thus exact transition probabilities may be different. Now we can state the main theorem
on convergence.

Theorem 6.1 (Convergence). Given a data-dependent αn � 1
nr for r > 2, which implies

∑
n αnn <∞, then with

probability one, the hypothesis Hn is isomorphic toM, except for finitely many n.

Hence, in the limit, we learn anMDP that is minimal with respect to the number of states and output-distribution
equivalent to the SUL.

6.1.2. Access sequences

The exact learning algorithm L∗
mdp

e presented in Sect. 4 iteratively updates an observation table. Upon termi-
nation it arrives at an observation table 〈S ,E ,T 〉 and the corresponding hypothesis H � hyp(S ,E ,T) �
〈Qh, I ,O, q0h, δh,Lh〉. Let Sacc ⊆ S be the set of shortest access sequences leading to states in Q given by
Sacc � {s | s ∈ S , �s ′ ∈ S : s ′ � s ∧ s ′ �� s ∧ δ∗h(q0h, s) � δ∗h(q0h, s

′)} (the shortest traces in each equivalence
class of S/eqRowE � S/≡M). By this definition, Sacc forms a directed spanning tree in the structure ofH. There
are finitely many different spanning trees for a given hypothesis, therefore there are finitely many different Sacc.
Hypothesis models learned by L∗

mdp
e are isomorphic toM, thus there are finitely many possible final hypotheses.

Let S be the finite union of all access sequence sets Sacc forming spanning trees in all valid final hypotheses. Let
L � {s · i · o | s ∈ S , i ∈ I , o ∈ O,M (s · i)(o) > 0} be one-step extensions of S with non-zero probability.

Note that for the construction of correct hypotheses in L∗
mdp

e , it is sufficient for eqRowE to approximate
M -equivalence (see Definition 3.2) for traces in L. Actually, if eqRowE is equivalent toM -equivalence for traces
in L, then both are equivalent on all possible traces in T R. Consequently, the approximation of eqRowE via
compatibleE needs to hold only for traces in L.

L*-based learning of Markov decision processes (extended version) 601

Proof We now show that

∀ t1, t2 ∈ T R : eqRowE (t1, t2)⇔ t1 ≡M t2 follows from

∀ t ′1, t ′2 ∈ L : eqRowE (t
′
1, t
′
2)⇔ t ′1 ≡M t ′2.

Direction “⇐”:By thedefinitionof≡M andeqRowE ,wehaveeqRowE (t1, t2)⇐ t1 ≡M t2 for all t1, t2 ∈ T R
and all E ⊆ CS. Intuitively, two traces in the sameM -equivalence class cannot be distinguished by a finite set of
continuation sequences.
Direction “⇒”: Hence, it remains to show that ∀ t1, t2 ∈ T R : eqRowE (t1, t2) ⇒ t1 ≡M t2 if ∀ t ′1, t ′2 ∈
L : eqRowE (t ′1, t

′
2)⇔ t ′1 ≡M t ′2. We shall prove this by contradiction, thus we assume that there exist t1, t2 ∈ T R

such that eqRowE (t1, t2), but t1 �≡M t2, thus violating the implication.
Let t ′1 and t ′2 be traces in L such that t ′1 ≡M t1 and t ′2 ≡M t2. These traces exist, because L contains all

input-output extensions of traces corresponding to simple paths in the structure of the canonical MDP M. Put
differently, all states can be reached by traces in L. By our assumption and transitivity of≡M , we have t ′1 �≡M t ′2.
Since t ′1, t

′
2 ∈ L and eqRowE (t ′1, t

′
2)⇔ t ′1 ≡M t ′2 for such traces, it follows that ¬ eqRowE (t ′1, t

′
2).

Since t ′1 ≡M t1 and t ′2 ≡M t2, we have eqRowE (t ′1, t1) and eqRowE (t ′2, t2) (see Direction “⇐”). Due to the
transitivity of eqRowE and the assumption that eqRowE (t1, t2) holds, we can deduce eqRowE (t ′1, t

′
2). This is

a contradiction to the paragraph above. Hence, our assumption must be wrong. There does not exist a pair of
traces t1, t2 ∈ T R such that eqRowE (t1, t2), but t1 �≡M t2. �

6.2. Hoeffding-bound-based difference check

Before discussing hypothesis construction, we briefly discuss the Hoeffding-bound-based test applied by difff.
Recall that for two test sequences s and s ′, we test for each o ∈ O if the probability p of observing o after s is
different than the probability p ′ of observing o after s ′. This is implemented through:

∃ o ∈ O :

∣
∣
∣
∣
f (s)(o)
n1

− f (s ′)(o)
n2

∣
∣
∣
∣ >

(√
1
n1

+

√
1
n2

)

·
√

1
2
ln

2
α
� εα(n1,n2)

As pointed out by Carrasco and Oncina [CO99, pp. 11–13 and Appendix], this test works with a confidence
level above (1 − α)2 and for large enough n1 and n2, it tests for difference and equivalence of p and p ′. More
concretely, for convergence, n1 and n2 must be such that 2εα(n1,n2) is smaller than the smallest absolute difference
between any two different p and p ′. As our data-dependent αn decreases only polynomially, εα(n1,n2) tends to
zero for increasing n1 and n2. Hence, the test implemented by difff converges to an exact comparison between p
and p ′.

In the remainder of the paper, we ignore Condition 2.a for difff, which checks if the sampled distributions
have the same support. By applying a data-dependent αn , as defined above, Condition 2.b converges to an exact
comparison between output distributions, thus 2.a is a consequence of 2.b in the limit. Therefore, we consider
only the Hoeffding-bound-based tests of Condition 2.b.

6.3. Hypothesis construction

Theorem 6.2 (Compatibility convergence). Given αn such that
∑

n αnn < ∞, then with probability one:
compatibleE (s, s ′)⇔ eqRowE (s, s ′) for all traces s, s ′ in L, except for finitely many n.

Proof LetAn be the event that compatibleE (s, s ′) �⇔ eqRowE (s, s ′) and p(An) be the probability of this event.
In the following, we derive a bound for p(An) based on the confidence level of applied tests inDefinition 5.2 which
is above (1− αn)2 [CO99]. An observation table stores | S ∪ Lt(S) | · | E | cells, which gives us an upper bound
on the number of tests performed for computing compatibleE (s, s ′) for two traces s and s ′. However, note that
cells do not store unique information; multiple cells may correspond to the same test sequence in T S, therefore
it is simpler to reason about the number of different tests in calls to diff

̂T (c, c ′) � difffq(c, c
′) with respect to Sn .

A single call to difffq involves either 0 or | O | tests. We apply tests only if we have observed both c and c′ at least
once, therefore we perform at most 2 · | O | ·n different tests for all pairs of observed test sequences. The event

602 M. Tappler et al.

An may occur if any test produces an incorrect result, i.e. it yields a Boolean result different from the comparison
between the true output distributions induced by c and c′. This leads to p(An) ≤ 2 · | O | ·n · (1− (1− αn)2),
which implies p(An) ≤ 4 · | O | ·n · αn . By choosing αn such that

∑
n αnn <∞, we have

∑
n p(An) <∞ and

we can apply the Borel-Cantelli lemma like Carrasco and Oncina [CO99], which states An happens only finitely
often. Hence, there is an Ncomp such that for n > Ncomp, we have compatibleE (s, s ′) ⇔ eqRowE (s, s ′) with
respect to Sn . �
Lemma 6.1 Under the assumed uniformly randomised equivalence testing strategy, it holds for every s · i · o ∈
L : Sn (s · i · o) > 0 after finitely many n.

Proof Informally, wewill eventually sample all traces l ∈ L. The probability pL of sampling l � o0 ·i1 ·o1 · · · on ·i ·o
during a test, where l [≤ k] is the prefix test sequence of l of length k , is given by (note that we may sample l as a
prefix of another sequence):

pL � 1
| I |n+1M (l [≤ 1])(o1) · · ·M (l [≤ n])(on) ·M (l [≤ n + 1])(o)(1− pstop)n

Since every l ∈ L is observable, we haveM (l [≤ 1])(o1) · · ·M (l [≤ n])(on) ·M (t [≤ n + 1])(o) > 0, thus pL > 0.
Hence, there is a finite NL such that for all s · i · o ∈ L : Sn (s · i · o) > 0 for n > NL. �
Lemma 6.2 If compatibleE (s, s ′)⇔ eqRowE (s, s ′), then the set of representativesR computedbyAlgorithm3
for the closed and consistent observation table 〈Sn ,En , T̂n 〉 is prefix-closed.
Proof Recall that we assume the function rank to impose a lexicographic ordering on traces, thus all ranks are
unique. This simplifies showing prefix-closedness of R, which we do by contradiction. Assume that R is not
prefix-closed. In that case, there is a trace r of length n inR with a prefix rp of length n− 1 that is not inR. Since
rp �∈ R and because the representative rep(rp) has the largest rank in its class cg(rp), we have rp �� rep(rp) and
rank(rp) < rank(rep(rp)).

AsSn is prefix-closed andR ⊆ Sn , we have rp ∈ Sn . Let i ∈ I ando ∈ O be such that rp · i · o � r .Algorithm3
enforces compatibleE (rp, rep(rp)) and due to consistency, we have that compatibleE (rp · i ·o, rep(rp) · i ·o) �
compatibleE (r , rep(rp) · i · o). Since r is a representative in R, rep(rp) · i · o ∈ cg(r). Representatives r have
the largest rank in their compatibility class cg(r) and r �� rep(rp) · i · o, thus rank(r) > rank(rep(rp) · i · o).

In combination we have that

rank(rp) < rank(rep(rp)) and also
rank(r) � rank(rp · i · o) > rank(rep(rp) · i · o).

This is a contradiction given the lexicographic ordering on traces imposed by rank. Consequently, R must be
prefix-closed under the premises of Lemma 6.2. �
Lemma 6.3 Let 〈Sn ,En ,Tn 〉 be the exact observation table corresponding to the sampling-based observation
table 〈Sn ,En , T̂n 〉, i.e. Tn (s) � odq(s) for s ∈ (Sn ∪ Lt(Sn)) · E . Then, Tn (r · i)(o) > 0⇔ T̂n (r · i)(o) > 0 for
r ∈ R, i ∈ I , o ∈ O after finitely many n.

Proof First, we show for prefix-closed R (Lemma 6.2) that R ⊆ S , if compatibleE (s, s ′)⇔ eqRowE (s, s ′). S
contains all traces corresponding to simple paths of can(M), therefore we show by contradiction that no r ∈ R
forms a cycle in can(M).

Assume that r ∈ R forms a cycle in can(M), i.e. it visits states multiple times. We can split r into three parts
r � rp ·rc ·rs , where rp ∈ T R such that rp and rp ·rc reach the same state, rc is non-empty, and rs ∈ (I×O)∗ is the
longest suffix such that starting from δ∗(rp), rs visits every state of can(M) at most once. As R is prefix-closed, R
includes rp and rp · rc as well. The traces rp and rp · rc reach the same state in can(M), thus we have rp ≡M rp · rc
which implies eqRowE (rp, rp · rc) and compatibleE (rp, rp · rc).

ByAlgorithm 3 all r ∈ R are pairwise not compatible with respect to compatibleE , thusAlgorithm 3 ensures
¬ compatibleE (rp, rp · rc) for rp ∈ R and rp · rc ∈ R. This leads to a contradiction, therefore our assumption
is false and we can deduce that no r visits a state of can(M) more than once. As a consequence, it holds that
R ⊆ S .

Hence, every observable rl � r ·i ·o for r ∈ R, i ∈ I and o ∈ O is inL, asL includes all observable extensions of
S . ByLemma6.1,wewill sample rl eventually, i.e. T̂n (r ·i)(o) > 0 and thereforeTn (r ·i)(o) > 0⇔ T̂n (r ·i)(o) > 0
after finitely many n. �

L*-based learning of Markov decision processes (extended version) 603

Lemma 6.4 The chaos state qchaos is not reachable inHn , except for finitely many n.

Proof We add a transition from state q � 〈last(r), row(r)〉 with input i to qchaos if cq(r · i) � false. As we
consider nc � 1, cq(r · i) � true if there is an o such that T̂n (r · i)(o) > 0. Lemma 6.3 states that T̂n (r · i)(o) > 0
for any observable r · i · o after finitely many n. Thus, Lemma 6.3 implies cq(r · i) � true for all r ∈ R and
i ∈ I , therefore the chaos is unreachable inHn , except for finitely many n. �
Corollary 6.1 Let 〈Sn ,En ,Tn 〉 be the exact observation table corresponding to the sampling-based observation
table 〈Sn ,En , T̂n 〉, i.e. Tn (s) � odq(s) for s ∈ (Sn ∪ Lt(Sn)) · E . Then there exists a finite Nstruct such that the
exact hypothesis hyp(Sn ,En ,Tn) has the same structure as Hn for n > Nstruct.

By combining Theorem 6.2, Lemma 6.3 and Lemma 6.4, it follows that, after finitely many n, hypotheses
created in the sampling-based setting have the same structure as in the exact setting.

6.4. Equivalence queries

Theorem 6.3 (Convergence of equivalence queries). Given αn such that
∑

n αnn < ∞, an observation table
〈Sn ,En , T̂n 〉 and a hypothesis Hn , then with probability one, Hn has the same structure as M or we find a
counterexample to equivalence, except for finitely many n.

In the following, we introduce lemmas to prove Theorem 6.3, but first we recap relevant details of equivalence
queries. According to Corollary 6.1, there is an Nstruct such thatHn has the same structure as in the exact setting
and compatibleE (s, s ′) ⇔ eqRowE (s, s ′) for n > Nstruct. Therefore, we assume n > Nstruct for the following
discussion of counterexample search through the implemented equivalence queries eq. Let Hn be the semantics
of Hn . Recall that we apply two strategies for checking equivalence:

1. Random testing with a uniformly randomised scheduler (prand � 1): this form of testing can find traces s · o,
with s ∈ T S and o ∈ O , such that H (s)(o) � 0 and M (s)(o) > 0. While this form of search is coarse, we
store all sampled traces in Sn that is used by our second counterexample search strategy for performing a
fine-grained analysis.

2. Checking conformance with Sn : for all observed test sequences, we statistically check for differences be-
tween output distributions inHn and distributions estimated from Sn through applying difffq. Applying that
strategy finds counterexample sequences s ∈ T S such that M (s) �� ⊥ (as s must have been observed) and
approximately M (s) �� H (s).

Case 1. In the case that the hypothesis Hn and M have the same structure and n > Nstruct, such that
eqRowE (s, s ′) ⇔ compatibleE (s, s ′), we may still find counterexamples that are spurious due to inaccu-
racies. Therefore, we will show that adding a prefix-closed set of traces to the set of short traces Sn does not
change the hypothesis structure, as this is performed by Algorithm 4 in response to counterexamples returned by
eq.

Lemma 6.5 If Hn has the same structure as M and n > Nstruct, then adding a prefix-closed set of observable
traces St to Sn will neither introduce closedness-violations nor inconsistencies, hence 〈Sn ∪ St ,En , T̂n 〉 is closed
and consistent. Consequently, the hypothesis structure does not change, thus Hn has the same structure as
hyp(Sn ∪ St ,En , T̂n).

Proof Let t be a trace in St and qt � δ∗h(t) be the hypothesis state reached by t , which exists becauseHn has the
same structure as M. Let ts ∈ Sn be a short trace also reaching qt . Since M and Hn have the same structure,
t and ts also reach the same state of M, therefore t ≡M ts (by reaching the same state both traces lead to the
same future behaviour), which implies eqRowE (t, ts). With n > Nstruct, we have compatibleE (t, ts). By the
same reasoning, we have compatibleE (t · i · o, ts · i · o) for any i ∈ I , o ∈ O withM (t · i)(o) > 0; which is the
condition for consistency of observation tables, therefore adding t to Sn leaves the observation tables consistent.

Furthermore because 〈Sn ,En , T̂n 〉 is closed, there exists a t ′s ∈ Sn , with compatibleE (ts · i · o, t ′s). Since
compatibleE (t · i ·o, ts · i ·o) and because compatibleE is transitive for n > Nstruct, we have compatibleE (t ·
i · o, t ′s). Hence, adding t as to Sn does not violate closedness, because for each observable extension of t , there
exists a compatible short trace t ′s . �

604 M. Tappler et al.

Case 2. If Hn does not have the same structure as M and n > Nstruct, then Hn has fewer states than M. This
follows from Lemma 4.6 given that H is consistent with T̂n and compatibleE (s, s ′) ⇔ eqRowE (s, s ′). Since
M is minimal with respect to the number of states, Hn and M are not equivalent, thus a counterexample to
observation equivalence exists andwe are guaranteed to find any such counterexample after finitelymany samples.

Lemma 6.6 If compatibleE (s, s ′)⇔ eqRowE (s, s ′) for traces s and s ′ in Sn , then the hypothesis Hn derived
from 〈Sn ,En , T̂n 〉 has the minimal number of states among all MDPs consistent with T̂n with respect to diff

̂Tn
.

Proof Recall that for a given observation table 〈S ,E ,T 〉, the exact learning algorithm L∗
mdp

e derives the smallest
hypothesis consistent with T . By Corollary 6.1,Hn has the same structure as the smallest MDP consistent with
T . As diff

̂Tn
does not produce spurious results for n > Nstruct (Theorem 6.2), Hn has the same structure as the

smallest MDP consistent with T̂n with respect to diff
̂Tn
, therefore the number of states ofHn is minimal. �

Lemma 6.7 Let nq be the number of states of M, C � ⋃n2
q+1

i�0 (O × I)i and C obs � {c | c ∈ C : M (c) �� ⊥}. For
any other MDPM′ with at most nq states and semanticsM ′, we have ∀ c ∈ C obs : M (c) � M ′(c) iffM ≡od M′.

Hence, there is a finite setC obs of sequences with lengths bounded by n2
q +1 such that by testing all sequences

in C obs, we can check equivalence with certainty.

Proof Let M and M′ with states Q and Q ′ be defined as above, i.e. | Q |� nq and | Q ′ |≤ nq , and let
reachQSeq(t) ∈ (Q × Q ′)∗ be the sequence of state pairs visited along a trace t by M and M′, respectively.
M ≡od M′ iff for all t ∈ T R and i ∈ I , we have M (t · i) � M ′(t · i). If the length of t · i is at most
n2
q + 1, then t · i ∈ C . Otherwise, reachQSeq(t) contains duplicated state pairs, because | Q × Q ′ |≤ n2

q .
For t longer than n2

q , we can remove loops on Q × Q ′ from t to determine a trace t ′ of length at most n2
q

such that reachQSeq(t)[| t |] � reachQSeq(t ′)[| t ′ |], i.e. such that t and t ′ reach the same state pair. Since t
reaches the same state as t ′ in M and in M′, we have M (t · i) � M (t ′ · i) and M ′(t · i) � M ′(t ′ · i), thus
M (t · i) � M ′(t · i) ⇔ M (t ′ · i) � M ′(t ′ · i). Consequently for all t · i ∈ T R · I : either t · i ∈ C , or there is a
t ′ · i ∈ C leading to an equivalent check between M and M′.

We further restrict C to C obs by considering only observable test sequences in C . This restriction is justified
by Lemma 4.1. In summary:

M ≡od M′ ⇔ ∀ c ∈ T S : M (c) � M ′(c)
⇔ ∀ c ∈ C : M (c) � M ′(c)
⇔ ∀ c ∈ C obs : M (c) � M ′(c) �

Lemma 6.8 Under the randomised testing strategy with prand � 1 and pstop < 1, all c in C obs have non-zero
probability to be observed.

Proof Due to prand � 1 and pstop < 1 we apply uniformly randomised inputs during testing and each test has a
length that is distributed dependent on pstop. Let c � o0 · i1 · o1 · · · on−1 · in be a sequence in C obs with c[≤ k]
being its prefix of length k , then the probability pc of observing c is (note that we may observe c as a prefix of
another sequence):

pc � 1
| I |n M (c[≤ 1])(o1) ·M (c[≤ 2])(o2) · · ·M (c[≤ n − 1])(on−1) · (1− pstop)n−1

L*-based learning of Markov decision processes (extended version) 605

By definition of C obs, we have M (c[≤ j])(oj) > 0 for all indexes j and c in C obs, therefore pc > 0. �
In every round of L∗

mdp
, we check for conformance between Sn and the hypothesis Hn and return a coun-

terexample, if we detect a difference via difffq. Since we apply difffq, we follow a similar reasoning as for the
convergence of hypothesis construction. Here, we approximate M (c) �� H (c) for c ∈ T S by difffq(t · i , r · i),
where c � t · i for a trace t , an input i , and r ∈ R given by the hypothesis state 〈last(r), row(r)〉 reached by t .

Lemma 6.9 Given αn such that
∑

n αnn < ∞, then with probability one M (c) �� H (c) ⇔ difffq(t · i , r · i) for
c � t · i ∈ C obs and r as defined above, except for finitely many n.

Proof We use the identity H (t · i) � H (r · i) for traces t and r and inputs i , which holds because t and r reach
the same state in the hypothesisH. Applying that, we test forM (t · i) �� H (t · i) by testingM (t · i) �� H (r · i) via
difffq(t · i , r · i). We perform | O | tests for each unique observed sequence c, therefore we apply at most n· | O |
tests. Let Bn be the event that any of these tests is wrong, that is,M (t · i) �� H (r · i) �⇔ difffq(t · i , r · i) for at least
one observed c � t · i . Due to the confidence level greater than (1−αn)2 of the tests, the probability p(Bn) of Bn

is bounded by p(Bn) ≤ n · | O | · (1 − (1 − αn)2) ≤ 2 · n · | O | ·αn . By choosing αn such that
∑

n αnn < ∞,
we can apply the Borel-Cantelli lemma as in the proof of Theorem 6.2. Hence, Bn happens only finitely often,
thus there is an N1 such that for all n > N1 we have M (t · i) �� H (r · i) ⇔ difffq(t · i , r · i) for all observed
c � t · i ∈ C obs. Furthermore, the probability of observing any c of the finite set C obs during testing is greater
than zero (Lemma 6.8), thus there is a finite N2 such that Sn contains all c ∈ C obs for n > N2. Consequently,
there is an Ncex, such that Lemma 6.9 holds for all n > Ncex. �

Lemma 6.6 states that hypotheses Hn are minimal after finitely many n, thus all potential counterexamples
are in C obs (Lemma 6.7). From Lemma 6.9, it follows that we will identify a counterexample in C obs if one exists.
Combining that with Lemma 6.5 concludes the proof of Theorem 6.3.

6.5. Putting everything together

We have established that after finitely many n, the sampling-based hypothesis Hn has the same structure as in
the exact setting (Corollary 6.1). Therefore, certain properties of the exact learning algorithm L∗

mdp
e hold for the

sampling-based L∗
mdp

as well. The derived hypotheses are therefore minimal, i.e. they have at most as many states
asM. As with L∗

mdp
e , adding a non-spurious counterexample to the trace set Sn introduces at least one state in the

derived hypotheses. Furthermore, we have shown that equivalence queries return non-spurious counterexamples,
except for finitely many n (Theorem 6.3). Consequently, after finite n we arrive at a hypothesisHn with the same
structure asM.We derive transition probabilities by computing empiricalmeans, thus by the lawof large numbers
these estimated probabilities converge to the true probabilities. Hence, we learn a hypothesis Hn isomorphic to
the canonical MDP M in the limit as stated by Theorem 6.1.

More efficient parameters. So far, we discussed a particular parametrisation of L∗
mdp

. Among others, we used
uniformly random input choices for equivalence testing with prand � 1, and instantiated cq to accept samples
as complete after only nc � 1 observation. This simplified the proof, but is inefficient in practical experiments.
Completely random testing is generally inefficient for large systems and a small nc may lead to spurious states
in intermediate hypotheses. However, the arguments based on nc � 1, such as Lemma 6.3 and Lemma 6.4, are
easily extended to small constant values of nc : Since the samples are collected independently, any observation
that occurs at least once after a finite number of steps also occurs at least nc times after a finite number of steps.

7. Experiments

In active automata learning, our goal is generally to learn a model equivalent to the true model of the SUL. This
changes in the stochastic setting, where we want to learn a model close to the true model, because equivalence
can hardly be achieved. In this section, we evaluate the sampling-based L∗

mdp
and compare it to the passive

IoAlergia [MCJ+16], by learning several models with both techniques. In each case, we treat the known true
MDP modelM as a black box for learning and measure similarity to this model using two criteria:

606 M. Tappler et al.

C C C M
C M

S M G C G
M G C M
G S M G

Fig. 3. The first gridworld used in our evaluation

1. bisimilarity distance: we compute the discounted bisimilarity distance between the true model M and the
learned MDPs [BBLM13b, BBLM13a]. We adapted this distance measure from MDPs with rewards to
labelled MDPs, by defining a distance of 1 between states with different labels.

2. probabilistic model-checking: we compute and compare maximal probabilities of manually defined temporal
properties with all models using Prism 4.4 [KNP11]. The difference between probabilistic model-checking
results forM and the learned MDPs serves as a similarity measure.

We performed experiments with the gridworld model used in the conference version of this article [TAB+19]
and with two of the models that we used in the evaluation of our work on probabilistic black-box reachability
checking [AT19b], the slot machine, and the shared coin consensus protocol. In addition to that, we performed
experiments with another larger gridworld model. To account for the probabilistic nature of these experiments,
we repeated each of them ten times. In the following, we report meanmeasurement values unless otherwise noted.
All tables include mean values along with the corresponding standard deviations separated by ±. Experimental
results, the examined models, and the implementation of L∗

mdp
can be found in the evaluation material [Tap20].

7.1. Measurement setup

Like Mao et al. [MCJ+16] did in one of two configurations, we configure IoAlergia with a data-dependent
significance parameter for the compatibility check, by setting εN � 10000

N
, where N is the total combined length

of all traces used for learning. This parameter serves a purpose analogous to the α parameter for the Hoeffding
bounds used byL∗

mdp
. IoAlergia showed good performance under this configuration in the experiments discussed

in this section. In contrast to that, we observed that L∗
mdp

generally shows better performance with non-data-
dependent α, therefore we set α � 0.05 for all experiments. We sample traces for IoAlergia with a length
geometrically distributed with parameter pl and inputs chosen uniformly at random, like Mao et al. [MCJ+16].
The number of traces is chosen such that IoAlergia and L∗

mdp
learn from approximately the same amount of

data, where data is quantified by the combined length of all traces.
We implemented L∗

mdp
and IoAlergia using Java 8. In addition to our Java implementations, we use Prism

4.4 [KNP11] for probabilistic model-checking and an adaptation of the MDPDist library [BBLM] to labelled
MDPs for computing bisimilarity distances. We performed the experiments with a Lenovo Thinkpad T450
running Xubuntu Linux 18.04 with 16 GB RAM and an Intel Core i7-5600U CPU with 2.6 GHz.

7.2. Experiments with first gridworld

The basis for our first set of experiments is the gridworld that we used in the conference paper [TAB+19]. It
is shown in Fig. 3. In this example, a robot moves around in a world of tiles of different terrains. The terrains
are denoted by different shades of grey and uppercase letters. Generally, the robot can move into one of four
directions, but it cannot move into walls, which are denoted by black borders and tiles. Moreover, it may make
errors in movement depending on the target terrain. For instance, it may move south west instead of south, i.e.,
probabilistic errors allow to move diagonally. Each target terrain has a unique positive error probability, except
for C, which has an error probability of zero, thus moving to a C tile is always successful. There is a unique
starting tile with a single circle and a goal tile with a double circle. While moving, the robot can only observe the
terrain on which it is standing, whether it bumped into a wall and whether it is at the goal tile. Therefore, our aim
is basically to learn a map of the gridworld. The minimal true model of this gridworld has 35 different states.

L*-based learning of Markov decision processes (extended version) 607

Table 3. Results for learning the first gridworld example

true model L∗
mdp

IoAlergia

outputs – 2122580.2± 884024.02 2123799.9± 886998.79
traces – 354637.1± 163252.4 265323.6± 110502.47
time [s] – 179.43± 158.6 17.99± 8.91
states 35 35± 0 19.9± 1.73
δ0.9 – 0.1730± 0.022 0.5353± 0.0171
Pmax(F≤11(goal)) 0.9622 0.9603± 0.0058 0.2110± 0.0489
Pmax(¬ G U≤14(goal)) 0.6499 0.6498± 0.0142 0.1724± 0.0448
Pmax(¬ S U≤16(goal)) 0.6913 0.7006± 0.0095 0.1842± 0.0217

For L∗
mdp

, we set the sampling parameters to nresample � nretest � 300, ntest � 50, pstop � 0.25 and prand � 0.25.
As stopping parameters served tunamb � 0.99, rmin � 500 and rmax � 4000. Finally, we set the parameter pl for
IoAlergia’s eometric trace length distribution to 0.125.

Results. Table 3 shows the measurement results for learning the first gridworld. Active learning stopped after
1239.3 rounds on average, sampling 354637.1 traces (Row 2) with a combined number of outputs of 2122580.2
(Row 1). We see a large variation in the sampled data, as the length of the repeated experiments varied greatly.
Our stopping heuristic required a varying number of rounds to detect convergence. The bisimilarity distance
discounted with λ � 0.9 to the true model is 0.1730 for L∗

mdp
and 0.5353 for IoAlergia (Row 5); thus it can

be assumed that model checking the L∗
mdp

models produces more accurate results. This is indeed true for our
three evaluation queries in the last three rows. These model-checking queries ask for the maximum probability
(quantified over all schedulers) of reaching the goal within a varying number of steps. The first query does not
restrict the terrain visited before the goal, but the second and third require to avoid G and S, respectively. The
difference between the true values and the average model-checking results for L∗

mdp
is lower than 0.01, but the

results for IoAlergia differ greatly from the true values. One reason for this is that the IoAlergia models are
much smaller than the true model. The average number of states in IoAlergia models is 19.9, whereas L∗

mdp

always learned models with 35 states, which is the exact size of the true model.
IoAlergia is faster than L∗

mdp
, since L∗

mdp
applies time-consuming computations during equivalence queries.

However, the runtime of learning-specific computations is often negligible in practical applications. This is due to
the fact that the communication with the SUL during test-case execution usually dominates the overall runtime.
We, for instance, experienced that when we learned models of Message Queuing Telemetry Transport (MQTT)
brokers [TAB17].

Given the smaller bisimilarity distance and the lower difference to the true probabilities computedwith Prism,
we conclude that L∗

mdp
learns more accurate models.

7.3. Experiments with second gridworld

Figure 4 shows the second gridworld used in our evaluation. As before, the robot starts in the initial location in
the top left corner and can only observe the different terrains. The goal location is in the bottom right corner
in this example. The true minimal MDP representing this gridworld has 72 states. We configured learning as for
the first gridworld, but collect more samples per round by setting nretest � nresample � 1000. Table 4 shows the
measurement results including the model-checking results and the bisimilarity distances.

L∗
mdp

sampled on average 481203.5 traces with a combined number of outputs of 3013453.6. The combined
length of all traces is only about 42% higher than in the previous example, althoughL∗

mdp
sampledmore than three

times as many traces in a single round. This is the case, because learning generally stopped sooner. It stopped on
average after 521.2 rounds. We used similar model-checking queries as in the previous example that ask for the
maximum probability of reaching the goal location within varying number of steps. The third and fourth query
additionally specify to avoid the terrainsM and the S, respectively.We can again see that the L∗

mdp
models have the

same size as the minimal true model, while the IoAlergia models are much smaller. The bisimilarity distances
between the true model and the L∗

mdp
models are much smaller than for IoAlergia as well. Also as in the first

gridworld experiment, the difference to the true model-checking results is smaller for L∗
mdp

.

608 M. Tappler et al.

C C M C C G M S

C G G M C G

C M S G M C G

S C C C C G S C

M C C G S M C

G S M G G M

Fig. 4. The second evaluation gridworld

Table 4. Results for learning the second gridworld example

true model L∗
mdp

IoAlergia

outputs – 3012392.8± 696806.75 3013453.6± 697818.44
traces – 481203.5± 115931.30 376550.0± 87101.15
time [s] – 176.52± 46.15 20.75± 11.81
states 72 72.0± 0.0 33.1± 2.28
δ0.9 – 0.1472± 0.0221 0.5752± 0.0087
Pmax(F≤14(goal)) 0.9348 0.9335± 0.0035 0.0229± 0.0040
Pmax(F≤12(goal)) 0.6712 0.6708± 0.0062 0.0191± 0.0034
Pmax(¬M U≤18(goal)) 0.9743 0.9736± 0.0023 0.0213± 0.0043
Pmax(¬ S U≤20(goal)) 0.1424 0.1541± 0.0010 0.0276± 0.0045

7.4. Shared coin consensus-protocol experiments

The following experiments are based on the shared coin consensus protocol by Aspnes and Herlihy [AH90].
We examined this protocol also in previous work [AT19b], for which we adapted a model distributed with the
PRISM model checker [KNP11] that we now use again. The adaptations concern only minor changes such as
adding action labels for inputs, but we also slightly changed the functionality by doing that. For the purpose of
evaluating L∗

mdp
, these changes are immaterial, though.

In our experiments, we consider the protocol configuration with the smallest state space of size 272 with
two processes and the constant K set to 2. We set the learning parameters to nresample � nretest � ntest � 50,
pstop � 0.25 and prand � 0.25. We controlled stopping with tunamb � 0.99, rmin � 500 and rmax � 4000. Finally,
we set pl � 0.125 for IoAlergia.

Table 5 shows the measurement results computed in the evaluation of learned models of the shared coin
consensus protocol. Compared to the previous examples, we need a significantly lower sample size of 168503.9
traces containing 805132.5 outputs for convergence to be detected by our heuristic stopping criterion. This
happens despite the fact that the models are much larger. A reason for this is that there is a relatively large
number of outputs in this example, such that states are easier to distinguish from each other. The bisimilarity
distance is in a similar range as before for L∗

mdp
, which is again significantly smaller than IoAlergia’s bisimilarity

distance. The models learned by L∗
mdp

are larger than those learned by IoAlergia, which is also in line with
previous experiments. However, in this example the L∗

mdp
models are smaller than the true model. This happens

because many states are never reached during learning, as reaching them within a bounded number of steps has
a very low probability; see, for instance, the fifth model-checking query. This query determines the maximum
probability of finishing the protocol within less than 40 steps, but without consensus, as process p1 chooses heads
and process p2 chooses tails. The computed probability of this event is very low.

The other model-checking queries consider the maximum probability of: (1) finishing the protocol without
consensus, (2) finishing the protocol with consensus, (3) finishing the protocol without reaching an intermediate
counter state of 5, (4) finishing the protocol without reaching an intermediate counter state of 4. The queries
(5) to (8) bound the number of steps by less than 40, but consider the same properties as the queries (1) to (4),
which are unbounded. Here, we see that the model-checking results computed with the IoAlergia model are
more accurate in some cases, but L∗

mdp
produces more accurate results overall.

L*-based learning of Markov decision processes (extended version) 609

Table 5. Results for learning the shared coin consensus protocol
true model L∗

mdp
IoAlergia

outputs – 805132.5± 381915.49 806229.9± 382185.64
traces – 168503.9± 94605.49 100642.5± 47739.95
time [s] – 4156.62± 3586.10 1.54± 0.83
states 272 164.1± 6.35 94.4± 4.86
δ0.9 – 0.1187± 0.0188 0.4276± 0.0565
Pmax(F (finished ∧ p1 heads ∧ p2 tails)) 0.1069 0.0± 0.0 0.0± 0.0
Pmax(F (finished ∧ p1 tails ∧ p2 tails)) 0.5556 0.6713± 0.0254 0.6372± 0.0303
Pmax(counter �� 5 U finished) 0.3333 0.3975± 0.0185 0.5332± 0.0084
Pmax(counter �� 4 U finished) 0.4286 0.5125± 0.0239 0.6516± 0.0156
Pmax(F<40(finished ∧ p1 heads ∧ p2 tails)) 0.0017 0.0± 0.0 0.0± 0.0
Pmax(F<40(finished ∧ p1 tails ∧ p2 tails)) 0.2668 0.3129± 0.0107 0.2607± 0.0150
Pmax(counter �� 5 U<40 finished) 0.2444 0.2983± 0.01501 0.4422± 0.0052
Pmax(counter �� 4 U<40 finished) 0.2634 0.3262± 0.0162 0.4937± 0.0088

We see an increase in runtime compared to the gridworld examples. Learning the consensus-protocol model
took about 69 min on average, whereas learning the gridworld models took less than 3min. This is caused by the
larger state space, since the precomputation time for equivalence testing grows with the state space. Overall, we
see a similar picture as before: L∗

mdp
trades runtime for increased accuracy which we deem reasonable.

7.5. Slot-machine experiments

The final experiments in this section are based on a slot machine example that we also used in previous
work [AT19b] and which we adapted from Mao et al. [MCJ+12, MCJ+16]. The modelled slot machine has
three reels which are initially blank. There are three inputs, one for spinning each reel. Spinning causes the reels
to show either bar or apple, where the probability of bar decreases with increasing number of rounds of spinning.
After three rounds, a prize of 0, 2, or 10 is granted, depending on the final reel configuration. A fourth input
leads with a probability of 0.5 to immediate stopping or grants two extra rounds. The minimal model of the slot
machine has a state space of size 109.

We configured sampling for IoAlergia with pl � 0.125 and we set the following parameters for L∗
mdp

:
nresample � nretest � ntest � 300, pstop � 0.25, prand � 0.25, rmin � 500 and rmax � 18000. To demonstrate
the influence of the parameter tunamb, we performed experiments with tunamb � 0.9 and with tunamb � 0.99.

Table 6 and Table 7 show the results for tunamb � 0.9 and tunamb � 0.99, respectively. Configured with
tunamb � 0.9, L∗

mdp
stopped on average after 3850.7 rounds and it stopped after 15882.9 rounds if configured with

tunamb � 0.99. However, using the latter configuration we did not detect convergence in four of ten cases, i.e., we
stopped after rmax � 18000. We see here that learning an accurate model of the slot machine requires a large
amount of samples; in the case of tunamb � 0.99, we sampled 9439328.1 traces containing 30522642.9 outputs.
The amount of outputs is about 10 times as high as for the second gridworld example. However, we also see that
sampling more traces clearly pays off. The L∗

mdp
results shown in Table 7 are much better than those shown in

Table 6. Notably the state space stayed almost the same. L∗
mdp

configured with tunamb � 0.9 learned models of
approximately the correct size. In contrast, the IoAlergiamodels are smaller than the true model, similar to the
gridworld examples.

610 M. Tappler et al.

Table 6. Results for learning the slot machine with tunamb � 0.9
true model L∗

mdp
IoAlergia

outputs – 6302447.5± 1308561.26 6299688.8± 1305783.23
traces – 2129473.5± 436506.02 787805.8± 163570.07
time [s] – 1883.96± 499.19 39.5373± 31.86
states 109 107.7± 1.95 88.5± 1.27
δ0.9 – 0.1696± 0.0182 0.2849± 0.0050
Pmax(F (Pr10)) 0.3637 0.3878± 0.0235 0.3907± 0.0157
Pmax(F (Pr2)) 0.6442 0.6774± 0.0204 0.6863± 0.0100
Pmax(F (Pr0)) 1.0 1.0± 0.0 1.0± 0.0
Pmax(X (X (bar − bar − blank))) 0.1600 0.1606± 0.0009 0.1606± 0.0010
Pmax(X (X (X (apple− bar − bar)))) 0.2862 0.2870± 0.0014 0.2841± 0.0033
Pmax(¬ (F<10(end))) 0.25 0.3158± 0.0219 0.4136± 0.0272
Pmax(X (X (X (apple− apple− apple))) ∧ (F (Pr0))) 0.0256 0.0287± 0.0038 0.0127± 0.0018

Table 7. Results for learning the slot machine with tunamb � 0.99
true model L∗

mdp
IoAlergia

outputs – 30522642.9± 4897262.21 30517331.2± 4898907.76
traces – 9439328.1± 1657544.92 3815330.7± 612157.98
time [s] – 9038.91± 1772.11 1072.53± 1176.20
states 109 109.6± 0.97 97.8± 0.79
δ0.9 – 0.0624± 0.0419 0.2597± 0.0030
Pmax(F (Pr10)) 0.3637 0.3700± 0.0030 0.4101± 0.0161
Pmax(F (Pr2)) 0.6442 0.6533± 0.0045 0.6987± 0.0057
Pmax(F (Pr0)) 1.0 1.0± 0.0 1.0± 0.0
Pmax(X (X (bar − bar − blank))) 0.1600 0.1602± 0.0004 0.1604± 0.0005
Pmax(X (X (X (apple− bar − bar)))) 0.2862 0.2864± 0.0006 0.2860± 0.0008
Pmax(¬ (F<10(end))) 0.25 0.2749± 0.0245 0.4184± 0.0150
Pmax(X (X (X (apple− apple− apple))) ∧ (F (Pr0))) 0.0256 0.0265± 0.0005 0.0255± 0.0011

We also see in both settings of tunamb that L∗mdp models are more accurate than IoAlergiamodels, with respect
to bisimilarity distance and with respect to model-checking results. While the experiments with tunamb � 0.99
required the most samples among all experiments, they also led to the lowest average bisimilarity distance.

The first three model-checking queries determine the maximum probability of reaching one of the three prizes
issued by the slot machine. The next two queries consider certain reel configurations reached after exactly two and
three steps, respectively. The sixth query checks the maximum probability that ending the game can be avoided
for 9 steps. The final query computes the maximum probability of reaching the prize Pr0 and observing the reel
configuration apple− apple− apple after exactly three steps. It is noteworthy that the average model-checking
results for L∗

mdp
configured with tunamb � 0.99 are within a low range of approximately 0.025 of the true results.

A drawback ofL∗
mdp

compared to IoAlergia is again the learning runtime, as L∗
mdp

with tunamb � 0.99 required
about 2.5 h while learning with IoAlergia took only about 17.9 min. However, these numbers should be put
into context. In a non-simulated environment, the sampling time would be much larger than 2.5 h, such that the
learning runtime becomes negligible. Consider, for instance, a scenario where the sampling of a single trace takes
20 milliseconds. The sampling time of L∗

mdp
is about 52.4 h in that scenario which is about 21 times as long as the

learning runtime.

L*-based learning of Markov decision processes (extended version) 611

7.6. Discussion and threats to validity

Our case studies demonstrated that L∗
mdp

is able to achieve better accuracy than IoAlergia. The bisimilarity
distances of L∗

mdp
models to the true models were generally lower and the model-checking results were more

accurate. These observations should be investigated in further case studies. It should be noted, though, that the
considered systems have different characteristics, covering various model properties. The gridworld has a small
state space, but it is strongly connected and the terrains lead to different probabilistic decisions. For instance, if we
try to enterM there is a probability of 0.4 of entering one of the neighbouring tiles, whereas enteringC is generally
successful (the probability of entering other tiles instead is 0). The consensus protocol has a large state space with
many different outputs and finishing the protocol takes at least 14 steps. The slot machine requires states to be
distinguished based on subtle differences in probabilities, because the probability of seeing bar decreases in each
round.

L∗
mdp

has several parameters that affect performance and accuracy. We plan to investigate the influence of
parameters in further experiments. For the presented experiments, we fixed most of the parameters except for
nretest, ntest and nresample. However, we observed that results are robust with respect to these parameters. For
instance, we increased nresample from 300 for the first gridworld to 1000 for the second gridworld. Both settings led
to approximately the same results, as learning simply performed fewer rounds with nresample � 1000. Nevertheless,
we will examine in further experiments if the fixed parameters are indeed appropriately chosen and if guidelines
for choosing other parameters can be provided.

L∗
mdp

and IoAlergia learn from different traces, thus the trace selection may actually be a major reason for
the better accuracy of L∗

mdp
. We examined if this is the case by learning IoAlergiamodels from two types of given

traces: traces with uniform input selection and traces sampled during learning with L∗
mdp

. We noticed that models
learned from L∗

mdp
traces led to less accurate results in many cases, especially in terms of bisimilarity distance. For

this reason, we reported only results for models learned with IoAlergia from traces with uniformly distributed
inputs.

8. Related work

In this section, we review related work in the area of automata learning with a focus on learning stochastic and
non-deterministic automata.

Most sampling-based learning algorithms for stochastic systems are passive, hence they assume preexisting
samples of system traces. Their roots can be found in grammar inference techniques like Alergia [CO94] and
rlips [CO99], which identify stochastic regular languages. Similarly to these techniques, we also apply Hoeffding
bounds [Hoe63] in L∗

mdp
, to test for differences between samples of probability distributions.

Mao et al. [MCJ+11,MCJ+12,MCJ+16] learned stochastic automatamodels with the purpose of verification.
More concretely, they learned models for model checking. Notably, they developed IoAlergia as an extension
of Alergia to learn MDPs [MCJ+12, MCJ+16]. This learning technique basically creates a tree-shaped repre-
sentation of the sampled system traces and repeatedly merges compatible nodes to create an automaton. Finally,
transition probabilities are estimated from observed output frequencies. Like L∗

mdp
, IoAlergia converges in the

limit, but showedworse accuracy in our evaluation experiments in Sect. 7.Chen andNielsen [CN12] also described
active learning of MDPs, but used IoAlergia as a basis. They proposed to generate new samples by directing
sampling towards uncertainties in the data as a way to reduce the number of traces required for learning. In
L∗
mdp

, we base the sampling strategy not only on the data collected so far (refine queries), but also on the current
observation table and the derived hypothesis MDPs (refine and equivalence queries). With that, we do not only
target uncertainties in the collected data, but we also take information about the SUL’s structure into account.

Wang et al. [WSQ16] learn models using a variant of Alergia while taking properties into account with the
goal of probabilistic model-checking. Nouri et al. [NRB+14] combine stochastic learning and abstraction with
respect to some property, to improve the runtime of statistical model-checking (SMC). Ghezzi et al. [GPST14]
presented the BEAR approach that combines inference of probabilistic models and probabilistic model-checking
to analyse user behaviour in web applications. More concretely, the authors infer labelled discrete-time Markov
chains extended with rewards which they analyse using Prism [KNP11].

L∗
mdp

builds upon Angluin’s L* [Ang87], therefore it shares similarities with other L*-based work such as
active learning of Mealy machines [SG09, MNRS04]. Interpreting MDPs as functions from test sequences to

612 M. Tappler et al.

output distributions is similar to the interpretation of Mealy machines as functions from input sequences to
outputs [SHM11].

Volpato and Tretmans presented an L*-based technique for non-deterministic input-output transition sys-
tems [VT15]. They simultaneously learn an over- and an under-approximation of the SUL with respect to the
input-output conformance (ioco) relation [Tre96], a popular conformance relation in conformance testing. In-
spired by that, L∗

mdp
uses completeness queries and adds transitions to a chaos state in case of low/incomplete

information.
Beyond that, we consider systems to behave stochastically rather than non-deterministically. While Vol-

pato and Tretmans [VT15] leave the concrete implementation of queries unspecified, L∗
mdp

’s implementation
closely follows Sect. 5. Early work on ioco-based learning for non-deterministic systems has been presented by
Willemse [Wil06]. Khalili and Tacchella [KT14] addressed non-determinism by presenting anL*-based algorithm
for non-deterministicMealymachines.AsVolpato andTretmans [VT15], they assume tobe able to observe all pos-
sible outputs produced in response to input sequences through the repeated application of these sequences. Both
learning approaches for non-deterministic models assume a testing context, as we do. More recently, Pferscher
and Aichernig proposed an L*-based learning approach for observable non-deterministic finite state-machines
(ONFSMs) [PA20], which are similar toKhalili and Tacchella’s non-deterministicMealymachines. ONFSMs are
well-suited to capture non-deterministic behaviour resulting from abstraction, thus the approach enables efficient
learning.

Feng et al. [FHKP11] also presented L*-based learning for probabilistic systems. They learn assumptions in
the form of probabilistic finite automata for compositional verification of probabilistic systems in the assume-
guarantee framework. Their learning algorithm requires queries returning exact probabilities, hence it is not
directly applicable in a sampling-based setting. The learning algorithm shares similarities with an L*-based
algorithm for learning multiplicity automata [BV96], a generalisation of deterministic automata. In order to
extend the applicability of learning-based assume-guarantee reasoning for probabilistic systems, Komuravelli
et al. [KPC12] presented techniques for learning labelled probabilistic transition systems from stochastic tree
samples, where they rely solely on equivalence queries for active learning. Moreover, they described how their
algorithms can be applied to generate assumptions for assume-guarantee reasoning.

Further query-based learning in a probabilistic setting has been presented by Tzeng [Tze92]. The author
described a query-based algorithm for learning probabilistic automata and an adaptation of Angluin’s L* for
learning Markov chains. In contrast to our exact learning algorithm L∗

mdp
e , which relies on output distribution

queries, Tzeng’s algorithm for Markov chains queries the generating probabilities of strings. Castro and Gavaldà
review passive learning techniques for probabilistic automata with a focus on convergence guarantees and present
them in a query framework [CG16]. In contrast toMDPs, which are reactive, the learned automata are generative
probabilistic automata [SdV04]. Hence, the assumedmode of interaction with the environment is different.While
MDPs receive inputs (actions) and react probabilistically, generative probabilistic automata produce actions
probabilistically.

9. Summary

In this article, we presented twoL*-based algorithms for learningMDPs. For our exact learning algorithm L∗
mdp

e ,
we assume an ideal setting that allows to query information about the SUL with exact precision. Subsequently,
we relaxed our assumptions by approximating exact queries through sampling SUL traces via directed testing.
These traces serve to infer the structure of hypothesis MDPs, to estimate transition probabilities and to check
for equivalence between the SUL and learned hypotheses. The resulting sampling-based L∗

mdp
iteratively learns

approximate MDPs which converge to the correct MDP in the large sample limit. We implemented L∗
mdp

and
evaluated it by comparing it to IoAlergia [MCJ+16], a state-of-the-art passive learning algorithm for MDPs.
The evaluation showed that L∗

mdp
is able to produce more accurate models. To the best of our knowledge, L∗

mdp

is the first L*-based algorithm for MDPs that can be implemented via testing. Experimental results and the
implementation can be found in the evaluation material for L∗

mdp
[Tap20].

10. Conclusion

The evaluation of L∗
mdp

showed promising results. We applied it to successfully learn models of black-box systems,
such as a model of the shared coin consensus protocol. Our evaluation demonstrated that the learned models

L*-based learning of Markov decision processes (extended version) 613

accurately capture the true system behaviour in many cases. The results of model checking the learned gridworld
models, for instance, are very close to the true results.

In additon to providing a heuristic stopping criterion, we show that themodels learned byL∗
mdp

converge to the
true model in the limit. Although difficult in a verification context [MCJ+16], it would be worthwhile to analyse
L∗
mdp

with respect to probably approximately correct (PAC) learnability [Val84] to provide stronger convergence
guarantees. L∗

mdp
also provides room for experimentation. Different testing techniques, such as probabilistic

black-box reachability checking [AT19b], could be applied in equivalence queries.

Funding Open access funding provided by Graz University of Technology.

Acknowledgements

The work of B.Aichernig, M. Eichlseder and M.Tappler has been carried out as part of the TU Graz LEAD
project “Dependable Internet of Things in Adverse Environments”. The work of K.Larsen andG.Bacci has been
supported by the Advanced ERC Grant no. 867096 (LASSO).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party material in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit line to thematerial. If material is not included in
the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

References

[AH90] Aspnes J, Herlihy M (1990) Fast randomized consensus using shared memory. J Algorithms 11(3):441–461
[AMM+18] Aichernig BK, Mostowski W, Mousavi MR, Tappler M, Taromirad M (2018) Model learning and model-based testing. In

Bennaceur A, Hähnle R, Meinke K (eds) Machine learning for dynamic software analysis: potentials and limits—international
Dagstuhl seminar 16172, Dagstuhl Castle, Germany, April 24–27, 2016, revised papers, volume 11026 of lecture notes in
computer science. Springer, pp 74–100

[Ang87] Angluin D (1987) Learning regular sets from queries and counterexamples. Inf Comput 75(2):87–106
[AT17a] Aichernig BK, Tappler M (2017) Learning from faults: mutation testing in active automata learning. In: Barrett C, Davies M,

Kahsai T (eds) NASA formal methods—9th international symposium, NFM 2017,Moffett Field, CA, USA,May 16–18, 2017,
proceedings, volume 10227 of lecture notes in computer science, pp 19–34

[AT17b] Aichernig BK, Tappler M (2017) Probabilistic black-box reachability checking. In: Lahiri SK, Reger G (eds) Runtime
verification—17th international conference, RV 2017, Seattle, WA, USA, September 13–16, 2017, proceedings, volume 10548
of lecture notes in computer science, pp 50–67. Springer

[AT19a] Aichernig Bernhard K, Martin T (2019) Efficient active automata learning via mutation testing. J Autom Reason 63(4):1103–
1134

[AT19b] Aichernig BK, Tappler M (2019) Probabilistic black-box reachability checking (extended version). Form Methods Syst Des
[BBLM] Bacci G, Bacci G, Guldstrand LK, Mardare R. MDPDist library. http://people.cs.aau.dk/~giovbacci/tools/bisimdist.zip. Ac-

cessed on 04 Nov 2019
[BBLM13a] Bacci G, Bacci G, Larsen KG, Mardare R (2013) The BisimDist library: efficient computation of bisimilarity distances for

Markovian models. In: Joshi KR, Siegle M, Stoelinga M, D’Argenio PR (eds) Quantitative evaluation of systems—10th inter-
national conference, QEST 2013, Buenos Aires, Argentina, August 27–30, 2013. Proceedings, volume 8054 of lecture notes in
computer science. Springer, pp 278–281

[BBLM13b] Bacci G, Bacci G, Larsen KG, Mardare R (2013) Computing behavioral distances, compositionally. In: Chatterjee K, Sgall
J (eds) Mathematical foundations of computer science 2013—38th international symposium, MFCS 2013, Klosterneuburg,
Austria, August 26–30, 2013. Proceedings, volume 8087 of lecture notes in computer science. Springer, pp 74–85

[BK08] Baier C, Katoen JP (2008) Principles of model checking. MIT Press, Cambridge
[BV96] Bergadano F, Varricchio S (1996) Learning behaviors of automata from multiplicity and equivalence queries. SIAM J Comput

25(6):1268–1280
[CG16] Castro J, Gavalda R (2016) Learning probability distributions generated by finite-state machines. In: Heinz J, Sempere JM (eds)

Topics in grammatical inference. Springer, Berlin, pp 113–142

http://creativecommons.org/licenses/by/4.0/
http://people.cs.aau.dk/~giovbacci/tools/bisimdist.zip

614 M. Tappler et al.

[CHJS16] Cassel S, Howar F, Jonsson B, Steffen B (2016) Active learning for extended finite state machines. Formal Aspects Comput
28(2):233–263

[Cho78] Chow TS (1978) Testing software design modeled by finite-state machines. IEEE Trans Software Eng 4(3):178–187
[CN12] ChenY,NielsenTD(2012)Active learningofMarkovdecisionprocesses for systemverification. In: 11th international conference

on machine learning and applications, ICMLA, Boca Raton, FL, USA, December 12–15, 2012. Volume 2. IEEE, pp 289–294
[CO94] Carrasco RC, Oncina J (1994) Learning stochastic regular grammars by means of a state merging method. In: Carrasco RC,

Oncina J (eds) Grammatical inference and applications, second international colloquium, ICGI-94, Alicante, Spain, September
21–23, 1994. Proceedings, volume 862 of lecture notes in computer science. Springer, pp 139–152

[CO99] Carrasco RC, Oncina J (1999) Learning deterministic regular grammars from stochastic samples in polynomial time. Theor Inf
Appl 33(1):1–20

[dlH10] de la Higuera C (2010) Grammatical inference: learning automata and grammars. Cambridge University Press, New York
[FHKP11] Feng L, Han T, Kwiatkowska MZ, Parker D (2011) Learning-based compositional verification for synchronous probabilistic

systems. In: Bultan T, Hsiung P-A (eds) Automated technology for verification and analysis, 9th international symposium,
ATVA 2011, Taipei, Taiwan, October 11–14, 2011. Proceedings, volume 6996 of lecture notes in computer science. Springer, pp
511–521

[FKNP11] Forejt V, Kwiatkowska MZ, Norman G, Parker D (2011) Automated verification techniques for probabilistic systems. In:
Bernardo M, Issarny V (eds) Formal methods for eternal networked software systems—11th international school on formal
methods for the design of computer, communication and software systems, SFM 2011, Bertinoro, Italy, June 13–18, 2011.
Advanced lectures, volume 6659 of lecture notes in computer science. Springer, pp 53–113

[GPST14] C Ghezzi et al (2014) Mining behavior models from user-intensive web applications. In: Jalote P, Briand LC, van der Hoek A
(eds) 36th international conference on software engineering, ICSE’14, Hyderabad, India—May 31–June 07, 2014. ACM, pp
277–287

[HNS03] Hungar H, Niese O, Steffen B (2003) Domain-specific optimization in automata learning. In: Hunt Jr. WA, Somenzi F (eds)
Computer aided verification, 15th international conference,CAV2003, Boulder, CO,USA, July 8–12, 2003. Proceedings, volume
2725 of lecture notes in computer science. Springer, pp 315–327

[Hoe63] Hoeffding W (1963) Probability inequalities for sums of bounded random variables. J Am Stat Assoc 58(301):13–30
[HS18] Howar F, Steffen B (2018) Active automata learning in practice—an annotated bibliography of the years 2011 to 2016. In:

Bennaceur A, Hähnle R, Meinke K (eds) Machine learning for dynamic software analysis: potentials and limits—international
Dagstuhl seminar 16172, Dagstuhl Castle, Germany, April 24–27, 2016, revised papers, volume 11026 of lecture notes in
computer science. Springer, pp 123–148

[IHS14] Isberner M, Howar F, Steffen B (2014) The TTT algorithm: a redundancy-free approach to active automata learning. In:
Bonakdarpour B, Smolka SA (eds) Runtime verification—5th international conference, RV 2014, Toronto, ON, Canada,
September 22–25, 2014. Proceedings, volume 8734 of lecture notes in computer science. Springer, pp 307–322

[Kea98] Kearns MJ (1998) Efficient noise-tolerant learning from statistical queries. J ACM 45(6):983–1006
[KNP08] Kwiatkowska Marta Z, Gethin N, David P (2008) Analysis of a gossip protocol in PRISM. SIGMETRICS Perform Eval Rev

36(3):17–22
[KNP11] KwiatkowskaMZ, Norman G, Parker D (2011) PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan

G, Qadeer S (eds) Computer aided verification—23rd international conference, CAV 2011, Snowbird, UT, USA, July 14–20,
2011. Proceedings, volume 6806 of lecture notes in computer science. Springer, pp. 585–591

[KP13] Kwiatkowska MZ, Parker D (2013) Automated verification and strategy synthesis for probabilistic systems. In: Van Hung
D, Ogawa M (eds) Automated technology for verification and analysis—11th international symposium, ATVA 2013, Hanoi,
Vietnam, October 15–18, 2013. Proceedings, volume 8172 of lecture notes in computer science. Springer, pp 5–22

[KPC12] Komuravelli A, Pasareanu CS, Clarke EM (2012) Learning probabilistic systems from tree samples. In: Proceedings of the 27th
annual IEEE symposium on logic in computer science, LICS 2012, Dubrovnik, Croatia, June 25–28, 2012. IEEE Computer
Society, pp 441–450

[KT14] Khalili A, Tacchella A (2014) Learning nondeterministic Mealy machines. In: Clark A, Kanazawa M, Yoshinaka R (eds)
Proceedings of the 12th international conference on grammatical inference, ICGI 2014, Kyoto, Japan, September 17–19, 2014,
volume 34 of JMLR workshop and conference proceedings. JMLR.org, pp 109–123

[MCJ+11] Mao H, Chen Y, Jaeger M, Nielsen TD, Larsen KG, Nielsen B (2011) Learning probabilistic automata for model checking. In:
Eighth international conference on quantitative evaluation of systems, QEST 2011, Aachen, Germany, 5–8 September, 2011.
IEEE Computer Society, pp 111–120

[MCJ+12] Mao H, Chen Y, Jaeger M, Nielsen TD, Larsen KG, Nielsen B (2012) LearningMarkov decision processes for model checking.
In: Fahrenberg U, Legay A, Thrane CR (eds) Proceedings quantities in formal methods, QFM 2012, Paris, France, 28 August
2012., volume 103 of EPTCS, pp 49–63

[MCJ+16] MaoH,ChenY, JaegerM,NielsenTD,LarsenKG (2016) Learning deterministic probabilistic automata fromamodel checking
perspective. Mach Learn 105(2):255–299

[MNRS04] Margaria T, Niese O, Raffelt H, Steffen B (2004) Efficient test-based model generation for legacy reactive systems. In: Ninth
IEEE international high-level design validation and test workshop 2004, Sonoma Valley, CA, USA, November 10–12, 2004.
IEEE Computer Society, pp 95–100

[Ner58] Nerode A (1958) Linear automaton transformations. Proc AmMath Soc 9(4):541–544
[NRB+14] Nouri A, Raman B, Bozga M, Legay A, Bensalem S (2014) Faster statistical model checking by means of abstraction and

learning. In: Bonakdarpour B, Smolka SA (eds) runtime verification—5th international conference, RV 2014, Toronto, ON,
Canada, September 22–25, 2014. Proceedings, volume 8734 of lecture notes in computer science. Springer, pp 340–355

[NS06] Norman G, Shmatikov V (2006) Analysis of probabilistic contract signing. J Comput Secur 14(6):561–589
[PA20] Pferscher A, Aichernig BK (2020) Learning abstracted non-deterministic finite state machines. In: Casola V, De Benedictis A,

RakM (eds) Testing Software and Systems—32nd IFIPWG6.1 international conference, ICTSS 2020, Naples, Italy, December
9–11, 2020. Proceedings, volume 12543 of lecture notes in computer science. Springer, pp 52–69

L*-based learning of Markov decision processes (extended version) 615

[Put94] Puterman ML (1994) Markov decision processes: discrete stochastic dynamic programming. Wiley series in probability and
statistics. Wiley

[RS93] Rivest RL, Schapire RE (1993) Inference of finite automata using homing sequences. Inf Comput 103(2):299–347
[SdV04] Sokolova A, de Vink EP (2004) Probabilistic automata: system types, parallel composition and comparison. In: Baier C,

Haverkort BR, Hermanns H, Katoen J-P, Siegle M (eds) Validation of stochastic systems—a guide to current research, volume
2925 of lecture notes in computer science. Springer, pp 1–43

[SG09] ShahbazM, Groz R (2009) Inferring mealy machines. In: Cavalcanti A, DamsD (eds) FM 2009: formal methods, second world
congress, Eindhoven, The Netherlands, November 2–6, 2009. Proceedings, volume 5850 of lecture notes in computer science.
Springer, pp 207–222

[SHM11] Steffen B, Howar F, Merten M (2011) Introduction to active automata learning from a practical perspective. In: Bernardo M,
Issarny V (eds) Formal methods for eternal networked software systems—11th international school on formal methods for the
design of computer, communication and software systems, SFM 2011, Bertinoro, Italy, June 13–18, 2011. Advanced lectures,
volume 6659 of lecture notes in computer science. Springer, pp 256–296

[SL95] Segala R, Lynch N (1995) Probabilistic simulations for probabilistic processes. Nord J Comput 2(2):250–273
[Sto02] Stoelinga M (2002) An introduction to probabilistic automata. Bull. EATCS 78:176–198
[TAB17] Tappler M, Aichernig BK, Bloem R (2017) Model-based testing IoT communication via active automata learning. In: 2017

IEEE international conference on software testing, verification and validation, ICST 2017, Tokyo, Japan, March 13–17, 2017.
IEEE Computer Society, pp 276–287

[TAB+19] Tappler M, Aichernig BK, Bacci G, Eichlseder M, Larsen KG (2019) L∗-based learning of Markov decision processes. In: ter
Beek MH, McIver A, Oliveira JN (eds) Formal methods—the next 30 years—third world congress, FM 2019, Porto, Portugal,
October 7–11, 2019. Proceedings, volume 11800 of lecture notes in computer science. Springer, pp 651–669

[Tap19] Tappler M (2019) Learning-based testing in networked environments in the presence of timed and stochastic behaviour. PhD
thesis, Graz University of Technology

[Tap20] TapplerM (2020) Evaluation material for L∗-based learning ofMarkov decision processes. https://doi.org/10.6084/m9.figshare.
7960928.v2. Accessed on 06 Mar 2020, updated for extended version

[Tre96] Tretmans J (1996) Test generation with inputs, outputs and repetitive quiescence. Softw Concepts Tools 17(3):103–120
[Tre08] Tretmans J (2008) Model based testing with labelled transition systems. In: Hierons RM, Bowen JP, Harman M (eds) Formal

methods and testing, an outcome of the FORTEST network, revised selected papers, volume 4949 of lecture notes in computer
science. Springer, pp 1–38

[Tze92] Wen-Guey T (1992) Learning probabilistic automata and Markov chains via queries. Mach Learn 8:151–166
[Vaa17] Vaandrager Frits W (2017) Model learning. Commun ACM 60(2):86–95
[Val84] Valiant LG (1984) A theory of the learnable. Commun ACM 27(11):1134–1142
[VT15] VolpatoM, Tretmans J (2015) Approximate active learning of nondeterministic input output transition systems. ECEASST, 72
[Wil06] Willemse TAC (2006) Heuristics for ioco-based test-based modelling. In: Brim L, Haverkort BR, Leucker M, van de Pol J (eds)

Formal methods: applications and technology, 11th international workshop, FMICS 2006 and 5th international workshop
pdmc 2006, Bonn, Germany, August 26–27, and August 31, 2006, revised selected papers, volume 4346 of lecture notes in
computer science. Springer, pp 132–147

[WSQ16] Wang J, Sun J, Qin S (2016) Verifying complex systems probabilistically through learning, abstraction and refinement. CoRR,
abs/1610.06371

Received 17 March 2020
Accepted in revised form 30 January 2021 by Annabelle McIver, Maurice ter Beek and Cliff Jones
Published online 31 March 2021

https://doi.org/10.6084/m9.figshare.7960928.v2
https://doi.org/10.6084/m9.figshare.7960928.v2

	L*-based learning of Markov decision processes (extended version)
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.1.1 Terminology
	2.1.2 Auxiliary functions

	2.2 Probability distributions and random functions
	2.3 String notation
	2.4 Active automata learning
	2.4.1 Minimally adequate teacher framework

	2.5 Markov decision processes
	2.6 Execution of Markov decision processes

	3 MDP observations
	3.1 Sequences of observations
	3.2 Semantics of MDPs

	4 Exact learning of MDPs
	4.1 Queries
	4.2 Observation tables
	4.3 Learning algorithm
	4.4 Correctness and termination

	5 Learning MDPs by sampling
	5.1 Queries
	5.1.1 Queries: requirements and properties

	5.2 Learner implementation
	5.2.1 Sampling-based observation tables
	5.2.2 Compatibility of observations
	5.2.3 Compatibility classes
	5.2.4 Hypothesis construction
	5.2.5 Updating the observation table
	5.2.6 Learning algorithm

	5.3 Teacher implementation
	5.3.1 Frequency query
	5.3.2 Complete query
	5.3.3 Refine query
	5.3.4 Equivalence query

	6 Convergence of L*MDP
	6.1 Proof structure
	6.1.1 Definitions and notation
	6.1.2 Access sequences

	6.2 Hoeffding-bound-based difference check
	6.3 Hypothesis construction
	6.4 Equivalence queries
	6.5 Putting everything together

	7 Experiments
	7.1 Measurement setup
	7.2 Experiments with first gridworld
	7.3 Experiments with second gridworld
	7.4 Shared coin consensus-protocol experiments
	7.5 Slot-machine experiments
	7.6 Discussion and threats to validity

	8 Related work
	9 Summary
	10 Conclusion
	Acknowledgements
	References

