https://doi.org/10.1007/s00165-020-00517-0

BCS 2020 Formal Aspects

Formal Aspects of Computing (2020) 32: 361-393 Of Computing
Check for
updates

An Event-B based approach for cloud
composite services verification

Aida Lahouij'®, Lazhar Hamel?, Mohamed Graiet® and Béchir el Ayeb?

LUniversité de Sousse, ISITCom, 4011 Hammam Sousse, Tunisia
2ISIMM, Monastir University, Monastir, Tunisia

3ENSAI RENNES, Bruz, France

4FSM, Monastir University, Monastir, Tunisia

Abstract. The verification of the Cloud composite services’ correctness is challenging. In fact, multiple
component services, derived from different Cloud providers with different service description languages and
communication protocols, are involved in the composition which may raise incompatibility issues that in
turn lead to a non-consistent composition. In this work, we propose a formal approach to model and verify
Cloud composite services. Four verification levels are considered in this article; the structural, semantic,
behavioral, and resource allocation levels. Therefore, we opted for the Event-B formal method that enables
complex problems decomposition thanks to its refinement capabilities. The proposed approach has proven its
efficiency for the modelling and verification of Cloud composite services. The proposed model comprises four
abstract levels with respect to the four verification axes. A proof-based approach is applied to the model’s
verification. We also succeeded in the validation of the model thanks to the model animation provided by
the PROB tool. The use of formal methods provides a rigorous reasoning and mathematical proofs on the
correction of the model which ensures the elaboration of correct-by-construction composite services.

Keywords: Formal verification, Cloud composite services, Semantic verification, Behavioral verification,
Resource allocation, Event-B

1. Introduction

In the last few years, there has been a growing interest in the verification of Cloud composite services
especially with the emergence of the Cloud computing paradigm [FE10] and the additional challenges it
brings. Service composition alone, without considering a Cloud environment, raises the need for design-
time verification approaches to check the correctness of the interactions between the different components
of a composite service. Indeed, the verification of the structural, semantic and behavioral matching of the
component services involved in the composition is necessary in order to avoid the inconsistencies in the
composite service and any possible deadlock situation that may occur during its execution. This task is not
trivial especially with the deployment of the composite services in the Cloud, which adds the necessity to
verify the Cloud resources allocated to the component services.

Correspondence to: Aida Lahouij, e-mail: aida.lahouij@gmail.com


http://crossmark.crossref.org/dialog/?doi=10.1007/s00165-020-00517-0&domain=pdf
http://orcid.org/0000-0003-4296-6893

362 A. Lahouij et al.

In fact, the Cloud environment provides three types of resources: computing, networking, and storage.
The resource’s elasticity and scalability are key features of the Cloud computing paradigm. A resource is
elastic if it can change its capacity at runtime. Elasticity is the ability to dynamically increase or decrease
infrastructure resources as needed to adapt to workload changes in an autonomic manner, maximizing the
use of resources. On the other hand, scalability handles the changing needs of an application within the
confines of the infrastructure by statically adding or removing resources to meet the application’s demands
if needed. A resource is shareable if it can be allocated to many activities’ instances. A multi-tenant resource
can be shared between the involved component services provided that its capacity is able to handle the
component service’ requests at the same time.

For several years, great efforts have been devoted to the verification of web services and more recently,
attention has shifted toward services deployed in the Cloud environment. Some verification approaches based
on formal languages have been proposed (e.g., Event-B [GMBG17], SOG [BKS*17, KTD11], and Process
Algebra [PF11], etc). Despite their efficiency when dealing with a particular verification problem, a key
limitation of such research approaches is that they address each problem separately. In other words, none
of them has proposed a full verification approach of the composite service. In this study, a new verification
approach is suggested in order to cover several sides of a Cloud composite service. The proposed approach
must guarantee that:

e The composite service provides the required functional level.

e The component services semantically match with respect to their inputs, outputs, preconditions, and
effects. This is related to data type compatibility between the linked components where the output of
service should be of the same type as the input of another resource.

e The component services protocols are compatible. This is related to the order of messages and the
deadlock freeness of the composition i.e., the reachability of the desired final composition state from the
initial state.

e The Cloud resources are correctly allocated to the component services in order to avoid any deadlock
situation when accessing the resources. The resources’ elasticity and shareability must be considered to
perform this verification.

As we can notice, the verification requirements are complex and divided into many levels. Therefore, we
opt for the Event-B [AM98] formal method that facilitates the modelling of complex systems through its
refinement capabilities. Formal verification is necessary in order to avoid incorrect composition behavior and
unnecessary executions of erroneous compositions. With first-order logic and set theory as underlying mathe-
matical notations, the Event-B method allows us to specify and model software systems in a mathematically
sound way. The use of formal methods is nowadays a necessity to create reliable software for critical and
complex systems. In [LHGM18], we have introduced a part of this model where we verify the composite
service behavior and resource allocation at runtime. The purpose of this paper is to extend the previous
work by presenting a global verification approach that deals with all verification levels at both design and
runtime. The objective is to verify the composite service’s correctness on several levels at both design time
and runtime to avoid any possible execution problems.

The remainder of this article is organized as follows; in the following section, we give a summary of
existing related works. In Sect. 3, we present our motivations. In Sect. 4, we go over the main requirements
considered in this paper. An overview of the Event-B method is given in Sect. 5. Our formal model is
introduced in Sect. 6. The verification and validation approach is detailed in Sect. 7. Finally, we conclude
and provide insights for future works in Sect. 8.

2. Related works

For several years, great efforts have been devoted to the study of the verification of composite services. In
this section, we discuss some of the proposed approaches and compare them to ours.

2.1. Semantic verification approaches

Many studies have been conducted on the semantic verification of services. For instance, authors in
[SMWZ15], propose a unified semantic Cloud Service Description Model (CSDM) extending the basic struc-



An Event-B based approach for cloud composite services verification 363

ture of the Unified Service Description Language (USDL) and defining cloud-service-specific attributes. The
CSDM integrates a module design of service integration and composition to support both syntactic and
semantic expressions of the service description, as well as to enable a variety of operations such as discovery
and match-making. The authors of this work considered an informal description of the model supported
by UML diagrams making the verification and validation of such a representation awkward. Besides, no
mechanism of matching was evoked in this work. Formal representation of the CSDM is required for the
verification and validation of the proposed model. In [ZGOHO09], the authors propose a matching algorithm
called SMA for automatic semantic web service composition. The service matching, in this algorithm, con-
sists of matching the output parameters of a service operation to the input parameters of an operation of
another service. Authors measure the matching degree Math(P1, P2) between the different service operators
opl and op2 by calculating the semantic similarity between a concept set P1 in the output parameters of
the operator opl and a concept set P2 in the input parameters of the operator op2. Like this approach, the
aim of this work is to propose a matching technique in order to verify the semantic compatibility between
the component services.

Authors in [EMAZ15] introduce a new method called ComSDM to model the concept of service-oriented
design in order to increase the reusability of the system and decrease its complexity while keeping the service
composition considerations in mind. The ComSDM method provides a mathematical representation of the
components of a service-oriented design using the graph-based theory to facilitate the design quality mea-
surement. To demonstrate that the ComSDM method is also suitable for composite services, the authors
implemented the case study of a smart home. The major drawback of this approach is the lack of matching
techniques adding to the absence of model verification and validation. The previously stated studies on the
semantic verification of composite services present certain weaknesses. Commonly, they are unsatisfactory
because they don’t give any proof on the model’s reliability and consistency. The model’s verification and
validation have been extensively performed in our work thanks to the Event-B tools and features. Addition-
ally, these studies ignore the preconditions and effects of the execution of services which makes it difficult to
guarantee a correct invocation and execution of services and their composition. In [WDJT16], authors deal
with automatic web service composition focusing on uncertain effects. To do so, they have used a graph-plan-
based approach consisting in introducing branch structures into composite solutions to cope with uncertainty
in the service composition process. However, conditions propagation is not considered in this work. Authors
in [AM16] propose a pattern-based orchestration model that considers IOPE (inputs, outputs, preconditions,
and effects). Condition’s propagation is considered in this work. It does not, however, deal with the uncertain
effects problem. Our approach presents more advantages, compared to the works stated above, by dealing
with both the uncertain effects problem and conditions propagation.

2.2. Behavior verification approaches

The recent years have witnessed the publication of several research papers dealing with the verification
of either services or composite services. For instance, different semi-formal languages and supporting tools
have been proposed in this context. In [LHJT14], a semantic-aware model checking (SAMC) approach is
proposed to capture the simple semantic information of services. The key limitation of this approach, which
is the major drawback of all semi-formal verification methods in general, is the lack of formal semantics.
Therefore, in this work, we opt for a formal method to model and verify Cloud composite services. The
benefits of using formal methods to ensure the correctness of systems are well-proven. Authors in [FW12],
present an abstract formalization of federated Cloud workflows using the Z notation [WD96]. In [CHHT 12,
the authors used the Labeled Transition System Analyser (LTSA) to present a A calculus model for analyzing
and verifying the resources used in web service applications in cloud computing environments. The work in
[AMJS11] presented a model called Event Condition Action (ECA). It uses the SPIN model checker [Hol97]
in order to verify the service agreement property. In [BSS19], authors verify the transactional behavior in
Business Process as a Service (BPaaS) configurations. A formal approach is used to verify that the selected



364 A. Lahouij et al.

configurable features do not violate any constraints defined by the client. Although these works use a formal
method to model and verify the Cloud’s open issues, they do not verify the correctness properties considered
in this paper.

In [AM16], authors seek to prove the soundness of composite services using a formal language for process
description called OFL and which takes into account resources and services relationships at different Cloud
Service Layers. In addition, they solve the problem of semantics-based matching and analysis of composite
processes by means of Condition Propagation. This work, however, does not cover the behavior and deadlock
freeness verification of composite services. Moreover, early research efforts often focus on non-functional
behavior of the composite service in terms of response time and financial cost [LHGT16, AGGH15]. Non-
functional properties verification is necessary to ensure an efficient composite service. However, it is not
sufficient. Proofs on the reliability of the composition are needed. In this paper, we are interested in checking
the functional behavior’s soundness with respect to relevant correctness properties.

2.3. Resource verification approaches

The work in [MKS13] uses High-Level Petri Nets (HLPN) to analyze and model the structural and behavioral
properties of three open-source VM-based cloud management platforms: Open Nebula, Eucalyptus and Nim-
bus. Recently, the work in [NSG'14] has also used Markov Decision Processes (MDP) for the cloud elasticity
modelling and then used the PRISM model checker in order to model and verify several elasticity decision
policies that aim to maximize user-defined utility functions. In [KMCB17], authors model and verify the
behavior of resources and their composition using Colored Petri Nets (CPNs). Although the proposed model
considers composition behavior properties, it presents several limitations when the composition involves a
large number of services. Model-checking suffers from the state-space explosion problem that makes the
exhaustive verification very difficult for large and complex systems. In addition, it is computationally expen-
sive to cover all the state space of the system’s model. In fact, abstraction is a powerful technique that
enables fitting big systems into model checkers, yet, it has not been well explored for the modelling and
verification of Cloud systems. In [HSDV13, HSD13, BYO™14], the authors focused on workflow scheduling
strategies and resource allocation algorithms using Cloud resources in an optimal way. They consider the
elasticity property of processes. They used Cloud-based resources on the PaaS level which are computing
resources (VMs) for the execution of business processes. In our work, we propose a verification approach of
resource allocation that seeks to check Cloud resource properties (elasticity and sheareability) and to avoid
deadlocks. Moreover, early research efforts often focus on non-functional behavior of the resource allocation
in terms of response time and financial cost [BKKM11, CWG09, JCM19, MEBR15]. In this paper, however,
we are interested in checking the functional behavior soundness with respect to Cloud properties.

Our work is inspired by the work in [GMBG17], where authors provide a formal description of the
resource perspective in the existing business processes in order to ensure the correctness of Cloud resources
allocation in business process modelling. The work uses the Event-B method to ensure the correctness of
Cloud resources allocation. Nevertheless, it does not consider Cloud services behavior. [GHMT17] proposes an
approach for the verification and deployment of elastic component-based applications based on the Event-
B formal method. The work consists of informally modelling the component artefacts and the elasticity
mechanisms (scaling up and down) for component-based applications. This work, however, does not consider
the checking of the functional behaviour’s soundness.

2.4. Discussion

The existent works generally focus only on one side of the verification. We find works that were interested only
on the semantic verification [SMWZ15, ZGOH09, EMAZ15, WDJ*16, AM16]. Even when examining these
works, we find those who have neglected the precondition and effects ([SMWZ15, ZGOH09, EMAZ15]) in
their semantic verification despite their increased importance in establishing semantic reliability especially in
the last few years. Other works [EMAZ15, WDJ¥16, AM16] does not afford any matching technique to check
the semantic matching among service. In the literature, we find also works that deal only with the behavior
requirements ([LHJ*14, FW12, CHH'12, AMJS11, Hol97]). Others were interested only in the resource



An Event-B based approach for cloud composite services verification 365

allocation problem ([MKS13, NSG*14, KMCB17, HSDV13, HSD13, BYO'14, GMBG17, GHMT17]).
Compared to these works, our work combines the modelling and the verification of the three require-
ments in the same model: Semantic, Behavior, and Resource requirements in Cloud composite services
applications. Likewise, works that focus only on the non-functional behavior of the resource allocation
[BKKM11, CWG09, JCM19, MFBR15] may guarantee an efficient set of resources but not a reliable one.

Adding to verification requirements, in the literature, we find a variety of verification methods. We dis-
tinguish semi-formal and formal languages. Semi-formal formal verification techniques [EMAZ15, WDJT16,
LHJ*14], in general, lack of formal semantics which makes the modelling and verification of reliable systems
a tedious task. Among formal methods, we can find those who suffer from state-space explosion problems
such as [FW12, MKS13, NSGT14, KMCB17]. In this work, our aim is to overcome the aforementioned veri-
fication limits by introducing a new approach, that takes advantage of the Event-B modelling method which
enables the modelling of systems by means of abstraction techniques. The important point, in our work, is
the incremental development of models for Cloud composite services verification. The use of the Event-B
method permits, thanks to a refinement technique, to master the complexity of a system by introducing its
details step by step. Moreover, the obtained model can be validated using the ProB animator/model-checker
that help us detect and fix some errors before the proof activity that can be long and tedious.

In this paper, while we refer to our earlier work [LHG18], [GLAT15], [GHMT17], and [LHG15], the focus
is different. The work proposed in this paper is new in the sense that it (1) proposes a formal verification of
the semantic properties of a composite service, (2) proposes a formal verification of the behavior properties of
a composite service, (3) tackles the problem of the Cloud resource allocation, (4) is based on a formal model
and (5) does not suffer from the problem of state-space explosion.

3. Motivations and problem statement

Let us consider the required composite service (the travel booking composite service) that must provide the
following functions:

1. Webform display (wfr): enables customers to enter the travel informations.

Flight searching (fs): enables customers to search for the requested flight.

Hotel searching (hs): enables customers to search for a hotel.

Booking (bg): used to book the flight and the hotel.

Payment (cp): after booking the flight and the hotel, the user proceeds to the payment.

6. The reservation confirmation (rc): a reservation confirmation is sent to the customer.

Uk

The required composite service takes as input the departure date, the return date, the departure city, and
the arrival city and produces as outputs the airline, the flight number, the seat number, and the hotel. We
use Business Process Model and Notation (BPMN) to describe our Travel booking composite service (see
Fig. 1). It is constituted of the following component services:

— Webform request (WFR): a webform is used to enter travel information such as the departure date, the
return date, the departure city, and the arrival city,

— Search Flights (SF): to search for the available flights at the required dates,

— Search Hotels (SH): to search for the available hotels at the required dates,

— Booking (BG): used to book the selected flight and hotel,

— Crredit card payment (CP): the payment service for the booked flight and hotel,
— The reservation confirmation (RC): sends an e-mail to confirm the reservation.

To run the aforementioned component services, Cloud resources are required. First, the execution of the
component service Web form request needs to communicate its inputs via a virtual networking Cloud resource
(Network1). The component services Search Flights and Search Hotels share the virtual machine (computel)
with 4 GB of RAM. Moreover, they respectively need the storage resources Storel and Store2. The component
service Booking stores its data in the storage resource Store3 which has a capacity of 5 GB of available storage
size. The execution of the Credit card payment service is performed in the virtual machine (compute2) with
2 GB of RAM. Finally, the component service Reservation confirmation needs to communicate its outputs
via a virtual networking Cloud resource (Network?2).



366

A. Lahouij et al.

Store2

Compute2
Store3

Search
Flights

Web Form - ;
Credit card Reservation

payment confirmation

request

Booking

Search
Hotels

: E Network?2

Computel

Network1

Fig. 1. The travel booking composite service

However, building the composition properly and ensuring its correct behavior is a difficult task. In fact,

several problems may occur when building and/or executing the composition:

Non-interoperability: Links between the output of a component service and the input of another
may be invalid. This is due to the difference in data types that each service handles. For example, the
component service booking only processes an array of values whose data type is a string. If it receives
values from the previous services with a different data type, the composition will be erroneous. a data
type mismatch causes interoperability issues between services.

Looping: Starting the composition by invoking the first component service, the process may not reach the
final expected result. This can be due to an end-loop occurring at a certain stage during the composition’s
execution, such as a loop in the execution of the preprocessing resource that can prevent the next resources
from running.

Dead service: A component service, such as Credit card payment, may not respond due to some technical
problems, and thus the next related service Reservation confirmation involved in the composition process
will not be invoked.

Resource conflict: When dealing with parallel services such as Search Flights and Search Hotels, conflict
in their execution may occur (deadlock). An exclusive shareable resource (Computel) cannot be consumed
by more than one component service at the same time. For instance, the composite service may end up
in a deadlock situation, since Computel is allocated simultaneously to Search Flights and Search Hotels.
Resource capacity: A non-elastic resource, for example, Store3, cannot be allocated by the component
service Booking while its available capacity (5 GB) does not fit the needed capacity (10 GB).

To overcome these problems, we propose an Event-B approach to model the behavior of Cloud compo-

nent services and verify the correctness of their composition. Such a modelling language should cover the
requirements listed below:

Semantic verification: allows the checking of the composition’s syntax and thus ensures better man-
agement of the links between the component services. It also involves the verification of the preconditions
and effects of each component service. A matching technique is introduced in the following section.

Behavior verification: In order to verify the correctness of the composition’s behavior, the proposed
approach should be able to verify the behavioral properties (Reachability, Liveness, and Persistence).
This requirement is met via the analysis of the candidate service protocols to find possible mismatches.



An Event-B based approach for cloud composite services verification 367

i GenericOp! e ;

Inpruts Outputs

Fig. 2. Vertical matching

e Resource allocation verification: the proposed approach must check different Cloud resource prop-
erties (share-ability, elasticity, scalability)

In order to cope with the requirements mentioned above, we propose in this paper a formal approach
based on the Event-B method to model Cloud services and their composition. With its formal syntax and
semantics, the Event-B specification is able to validate the behavior of the built models through the execution
of several verification properties.

4. Modelling requirements

In this section, we provide insight into the main concepts related to the verification of Cloud composite
services. Modelling requirements are progressively extracted from the presented concepts.

4.1. Semantic requirements

In the following, we concentrate on analysing the semantic support from literature in order to give an overview
of the basic semantic concepts, relations, and mappings schemes. Verifying the semantics of the component
services is crucial in order to ensure the accuracy of the composite service. Therefore, in this work, we use
a matching technique to verify the interoperability between the component services. This technique consists
mainly of matching some of the outputs of a service to all of the inputs of the next service since it is assumed
that a service cannot be executed if one of its inputs is not available. The service functionalities and interface
information are given in terms of its inputs, outputs, preconditions, and effects (IOPEs) [Sub04]. Inputs and
outputs denote the information transformation while preconditions and effects denote the changes produced
by the service’s execution.

Inputs and Outputs: In the following, we describe the possible matching cases:

e Vertical matching: in this matching scheme, we check whether a generic service GenericS (i.e composite
service) can be substituted by a set of atomic services S1...Sn (component services). This matching
consists in verifying whether the generic operation GenericOp of GenericS can be substituted by a set
of atomic operations. A generic operation can be substituted by a sequence of operations only if the
following requirements are met (Fig. 2):

Sem1. Opl (the first operation in the sequence of operations) has the same inputs as the GenericOp.

Sem?2. Opn (the last operation in the sequence) has a set of outputs that includes all of the outputs of the
GenericOp.

For instance, in our motivating example, there must be an operation of the web form request service that
has the same inputs as the Travel booking composite service (the departure date, the return date, the
departure city, and the arrival city). And the Reservation confirmation service must have an operation
that has a set of outputs that includes all of the outputs of the travel booking composite service (the
airline, the flight number, the seat number, and the hotel).



368 A. Lahouij et al.

q - ) 7 - p P
| s— ) S RS - X

[] oP1 =yl =
=1l e i / jp—

Outputs Inputs

Fig. 3. Horizontal matching

e Horizontal matching: checks whether two services S1 and S2 can be linked together, which consists in
checking whether their operations OP1 and OP2 can be coordinated together.

Sem3. OP1 and OP2 can coordinate only if the inputs of OP2 are included in the outputs set of OP1
(Fig. 3).

Back to our motivating example, the Booking service, for example, must provide the inputs of the Credit
Card Payment service. The Booking service must have an operation that has a set of outputs (the price,
the credit card number, the credit card balance, the credit card expiration date) that includes the inputs
required by the operation of the Credit Card Payment service (the price, the credit card number, the
credit card balance, the credit card expiration date).

Preconditions and Effects: Considering only the matching among the inputs and outputs is not enough
when we are dealing with service composition [WDJZ14] because inputs and outputs only specify the data
transformation produced by a service [Sub04], which contains the underlying functional knowledge of the
service. In addition to these parameters, the actual execution of a service may still need to satisfy some
prerequisites. The prerequisites and consequences, often known as the Preconditions and Effects of services,
describe the execution conditions of a service and the changes resulting from its execution, thereby facilitating
the automation of discovering and composing services. Such information was not well studied and fully
utilized in the previous methods for automatic service composition. The preconditions and effects (PE) are
defined by logic predicates and are difficult to manage. After the execution of a Cloud Service, some things
may happen or change: these are the effects that the service produces. The execution of the Cloud services
may change the truth value of some predicates: a running composite service may evaluate some predicates
as true or false after the execution of any activity. Meeting the preconditions is assured by the previously
executed services at any time in the composite process and condition values may change during its execution.
This is an effect we call Condition Propagation and it provides a means to describe the semantics of the
whole composite service.

For Condition Propagation, we assume that, in order to bind a real service to the workflow, it must
meet all the preconditions and, after its execution, it must produce all the declared effects. The important
point is to understand if a service can avoid meeting a precondition because of Condition Propagation. The
preconditions of an activity depend on the effects of previously executed activities. The real problem is to
understand if a composite service is correct in terms of IOPE matching. Therefore, we define the following
requirements:

Sem4. The first component service must have the same preconditions as the request since a service cannot
run unless its preconditions are satisfied.

Sem5. The composite service’s effects must match the request’s desired effects.

Sem6. Each component service’s preconditions must not contradict the effects produced by previous com-
ponent services.

4.2. Behavioral requirements

In this section, we explain how analyzing the services’ protocols helps us to find out possible interoperability
issues. In this work, the behavioral verification is performed at design time (i.e the discovery and the selection
of component services) and at runtime. Therefore, we adopt the bidirectional compatibility (BC) notion
introduced in [DOS12] to check the matching of the protocols. It is the most intuitive notion of compatibility.
It requires that when one service can send a message, there is another service which eventually receives
that message, and when one service is waiting to receive a message, then, there is another service which



An Event-B based approach for cloud composite services verification 369

must eventually send that message. Furthermore, the protocols must be deadlock-free. In order to interact
properly, two services must be behaviorally compatible. Behavioral compatibility implies the compatibility
of the protocols associated with each service. Two services have a behavioral mismatch if their protocols
get stuck during their interactions. In fact, the component services communicate according to a business
protocol that specifies the order in which the messages are exchanged. However, two component services can
get stuck during their interaction due to behavioral constraints in their protocols. Behavioral mismatches are
identified in the protocols by analyzing the ordering constraints of the exchanged messages and the existence
of deadlocks. The following behavioral requirements are considered in this work:

Behl. For each component service, when its protocol is waiting to receive a message there must be another
component service that will send that message.

Beh2. For each component service, when its protocol is going to send a message there must be another
component service that will receive that message.

Beh3. The receiver’s Queue must be able to receive the message.

Beh4. The composite service must be deadlock-free (i.e starting from an initial state, we can reach the
desirable final state).

4.3. Resource requirements

To execute a composite service, Cloud resources are required. The Cloud environment provides three types
of resources: computing, networking, and storage. Resources’ elasticity and scalability are key features of the
cloud computing paradigm. A resource is elastic if it can change its capacity at runtime. Elasticity is the
ability to increase or decrease infrastructure resources dynamically as needed to adapt to workload changes in
an autonomic manner. However, scalability handles the changing needs of an application within the confines
of the infrastructure via statically adding or removing resources to meet the application’s demands if needed.
A resource is shareable if it can be allocated to many activities’ instances. The capacity of a multi-tenant
resource, shared between the N services of the composition, must be able to handle the N services requests.
To manage the resource allocation process correctly, different requirements should be satisfied. For instance,
we consider the following shareability requirements:

Sh1l. A non-shareable resource cannot be allocated to more than one service.

Sh2. At most one service can be running on a non-shareable resource.

Sh3. A shareable resource can be allocated to more than one service.

Sh4. One or more services can be running on a commonly shareable resource.

Sh5. At most one service can be running on an exclusively shareable resource at the same time.
Ral. The resource is of the same type as the required resource and,

Ra2. there is enough resource capacity to handle the service or,

Ra3. there is not enough resource capacity to handle the service however the resource is Elastic or,
Rad4. there is not enough resource capacity to handle the service however the resource is Scalable.
Ra5. The resource is shareable or,

Ra6. the resource is not shareable and it is not allocated to any other service.

The structure of Ral up to Ra6 could be expressed explicitly by the formula Ral A (Ra2 V Ra3 V Ra4) A
(Rab V Ra6). The above requirements are expressed in the Event-B language presented in the following
section.

5. Overview of the Event-B method

The B-method was developed by Jean-Raymond Abrial [Abr88] and has been used in major safety-critical
system applications in Europe such as the Paris Metro Line 14. It has a robust, commercially available
tool support for specification, design, proof, and code generation. Event-B is an evolution of the B-method
also called classical B [Abr05]. Event-B [AM98] reuses the set-theoretical and logical notations of the B
method and provides new notations for expressing abstract systems or simply models based on events[CMO08].



370 A. Lahouij et al.

CONTEXT MACHINE ANY ANY
cont B Name X Xr
Sets S p—-— WHEN WHEN
Constants Variables G G,
Axi = Invariants ' THEN THES
xioms A iy Act Act,
END Events END END
Fig. 4. Event-B constructs Fig. 5. Event-B event and refinement event

Through sequential refinement, this formal method enables the incremental development of software step by
step from the most abstract level to more detailed levels and possibly to the code level. The complexity of a
system is mastered thanks to the refinement concept allowing to gradually introduce the different parts that
constitute the system starting from an abstract model to a more concrete one. A stepwise refinement approach
produces a correct specification by construction since we prove the different properties of the system at each
step. Event-B is supported by the Eclipse-based RODIN platform [ABH™10] on which different external tools
(e.g. provers, animators, model-checkers) can be plugged in order to animate/validate a formal development.

An Event-B specification is made of two elements: context and machine (Fig. 4). A context describes the
static part of an Event-B specification. An Event-B context is optional and contains essentially the following
clauses: the clause SETS that describes a set of abstract and enumerated types, the clause CONSTANTS
that represents the constants of the model and the clause AXIOMS that contains all the properties of the
constants and their types. A context can optionally extend another one by adding its name to the clause
EXTENDS. A context is referenced by the machine in order to use its sets and constants by adding its
name in the clause SEES. An Event-B machine describes the dynamic part of an Event-B specification. It
is composed of a set of clauses organized as follow; the clause VARIABLES representing the state variables
of the model, the clause INVARIANTS defining the invariant properties of the system which must allow,
at least, the typing of the variables declared in the clause VARIABLES and finally the clause EVENTS
containing the list of events related to the model. An event is modelled with a guarded substitution and fired
when its guards are evaluated to true. The events occurring in an Event-B model affect the state described
in the clause VARIABLES. A machine can optionally refine another one by adding its name in the clause
REFINES. An event consists of a guard and a body (Fig. 5). When the guard is satisfied, the event can
be activated. When the guards of several events are satisfied at the same time, the choice of the event to
enable is deterministic. Refinement is a process of enriching or modifying a model in order to augment
the functionality being modelled, or/and explain how some goals are achieved. Both Event-B elements, the
context, and the machine can be refined. A context can be extended by defining new sets and/or constants
along with new axioms. A machine is refined by adding new variables and/or replacing existing variables by
new ones that are typed with an additional invariant. New events can also be introduced to implicitly refine
a skip event. In this paper, refined events have the same form.

Proof-based development methods integrate formal proof techniques in the development of software
systems. The main idea is to start with a very abstract model of the system under development. We then
gradually add details to this first model by building a sequence of more concrete ones. As such, an Event-
B model is controlled by means of a number of proof obligations, which guarantee the correctness of the
development. Different types of proof obligations exist in Event-B. Proof obligations types help to understand
why each proof obligation is generated and to which part of the model the particular proof obligation
is related. Note that the structure of a proof obligation name in Event-B is cause/proof-obligation-type.
The cause could be an event, invariant or axiom. The proof-obligation-type is one of the predefined proof
obligation types in Event-B.

e Well-Definedness (WD): partial functions are used in Event-B quite frequently. Using partial functions
could result in reasoning about badly-defined expressions in proofs which can be difficult and tedious
to work with [ABH'10]. Therefore it is necessary to prove that partial functions are applied only to
arguments in their own domain. So WD proof obligations ensure that partial functions are never applied
to arguments outside their set domain.



An Event-B based approach for cloud composite services verification 371

( Structural level ‘I

[ Context StructC1 ]4— sees —[ Machine StructM1 ]

) 4

extends [ . ] refines
1 Semantic level 5
1 L J) 1
[ Context SemC1 ]4— sees —[ Machine SemM1 ]J
A A
™ T
extends ( ] refines
1 Behavioral level 'l
& 1 L /) 1 B
[ Context BehC1 ]4— sees —[ Machine BehM1 ]
NG * 4‘ J
extf_ends [ Resource level ] refl.nes
i I L J l N
[ Context ResC1 ]4— sees —{ Machine ResM1 ]
2 S

Fig. 6. CloudM specification

e Feasibility of non-deterministic events (FIS): Event-B requires actions to be feasible when their guards
(preconditions) are true [ABHT10]. This means that an action must yield success if its preconditions
hold. This is ensured by this type of proof obligations.

e Invariant Preservation (INV): ensures that the invariants hold over events. This means that it must be
proved that invariants are always valid even after actions are applied.

Event-B includes other types of proof obligations for guards, witnesses, and theorems (derived axioms) as
well, but they are not discussed here as they are not necessary for the understanding of the present work.

6. Modelling cloud composite services with Event-B

In this section, we detail our Event-B-based formal approach for the verification of Cloud composite services
correctness. It covers the structural, semantic, behavioral and resource properties of a composite service.

6.1. The architecture of the Event-B specification

Figures 6 and 7 depict the formalization architecture of our Event-B model denoted by CloudM and the
events’ refinement. Our model’s abstraction is provided in four levels:

o StructM1 sees StructC1 and models the structural properties of the Cloud composite service. This
machine contains five events. The SelectService event to select the component services and the
RunComponent, RunComposite, Terminate and Time events to run the selected component services.

e SemM1 refines StructM1 and introduces the semantic properties. The SelectService event is refined in
this machine to handle the semantic requirements. The RunComponent, RunComposite and Terminate
events are also refined in this machine to verify the semantic requirements at run time.

e BehM1 refines SemM1 by adding the behavioral properties of the composition. This machine contains
the second refinement of the SelectService event to check the services’ protocols compatibility. The
RunComponent, RunComposite and Terminate events are also refined to verify the composite service
execution. Additional events are defined at this level; the Non_Blocking_Send, Blocking_Send, Send_Ack
and Consume events that manage the messages exchange between running component services.



372 A. Lahouij et al.

[ Structural level } [ Semantic level ]

Machine StructM1 I\Illachm_e SemM1
Events : SelectService, RunComponent, refines Events:: Se e.ctSerwce., Ruanmponent,

RunComposite, Terminate, Time RunComposite, Terminate, Time

D

refines
1

Machine ResM1 .
Machine BehM1
Events : SelectService, RunComponent,
Events : SelectService, RunComponent,
RunComposite, Terminate , Time,
refines RunComposite, Terminate , Time,

Non_blocking_send, Blocking_send, fon bleicking scid Elockine send
Send_Ack, Consume, AllocateResource,
Send_Ack, Consume

DecResCap

[ Resource level Behavioral level ]

Fig. 7. The events’ refinement

[ Structural level ]

[ Context StructC1 ]4— sees —{ Machine StructM1 ]J

Fig. 8. The first abstraction level

e ResM1 refines BehM1, where details about the resource allocation are added. At this level, this machine
sees the context ResC1. Two events are introduced in this machine; the AllocateResources and DecResCap
events in order to manage the resources allocation.

Parts of this model have been introduced in [LHGM18] and extended in this article. In this previous work, we
have performed the verification of the composite service’s behavior and resource allocation only at runtime.
In this paper, we extend the previous verification levels by performing an additional verification at the
candidate services selection time. We have also presented the structural and semantic verification at both
design time and runtime. In the meanwhile, we have also made some rectifications to the model presented in
[LHGM18]. The result is a complete model that covers all the verification sides and avoids the execution of
erroneous service compositions. In the following, we present the formalization of our modelling requirements
for each abstraction level.

6.2. Modelling the structural requirements

At this level, we model the structure of the composite service. It consists on modelling the elements constitut-
ing a composite service as well as an atomic service. For instance, it is axiomatic to define that a composite
service is made of a non empty set of services, that a service must provide a business function, therefore,
it must have at least one operation, etc. At this level, we have also to select the services constituting the
composite service with regard to the required functionalities. Namely, the selected services must provide the
set of required functions. Therefore, we have defined the SelectService event. This abstraction level must
also guarantee that these functions are executed in the required order.



An Event-B based approach for cloud composite services verification 373

CONTEXT StructC1
SETS

Services Functions Operations Requests State

CONSTANTS
FctOfOp OpOfS ExeT
AXIOMS
axml: finite(Services) A  finite(State) A
finite(Functions) A  finite(Operations) A

finite(Requests)
axm2: FctOfOp € Operations — Functions
axm3: OpOfS € Services + Py (Operations)
axmé4: FExeT € Services + Ny
axmb: rankf € Functions -+ N

END

Fig. 9. The StrcutC1 context description

MACHINE StructM1
SEES StructC1
VARIABLES

Composites Components SerOf St ReqOf FctOfReq
T t RunningS

INVARIANTS

invi: Composites C Services
inv2: Components C Services
inv3: partition(Services, Composites, Components)

inv4d: SerOf € Composites + P (Components)
invs: St € Services — State

inv6: ReqOf € Composites -+ Requests

inv7: FctOfReq € Requests + P (Functions)

inv8: T € N

inv9: tE€N

inv10: RunningS C Services
END

Fig. 10. The StrcutM1 machine description

This is ensured by the RunComposite, the RunComponent and the Terminate events. Any disorder in the
execution of the services my lead to a deviation from the required business function.

In Event-B, this first abstraction level is constituted of the Event-B context StructC'1l and the machine
StructM 1 (Fig. 8). The elements that describe a composite service are defined thanks to the Event-B sets,
constants and variables. Relations between these elements are given in the Event-B axioms and invariants.
The selection, at this level, is limited to the service’s functions. In other words, for each function required
by the composite service, a service providing this function is selected. In the StructC1 context, we have
introduced the enumerated sets Services, Functions, Operations, Requests, and State in order to model the
structure of a composite service (Fig. 9). The set Services models the set of Cloud services (composite
services and component services). The set Operations models the set of operations provided by the services
set. Functions is the set of available functions. The set Requests is used to type the composite services’
requests. The set State models the set of states that a service goes through during its lifecycle. In the axioms
clause, we have typed the following constants:

— The axiom axm! is added to specify that all the defined sets are finite.

— The constant FctOfOp denotes the function provided by each operation (azm2). It is modelled by a total
function since each operation must provide at least one function.

— OpOfS is a constant that denotes the set of operations provided by each service (azm3).
— We have associated an execution time EzecT to each service in azm4.



374

A. Lahouij et al.

any

end

Event SelectService (ordinary) =

where

then

scfop

grdl: s € Components A St(s) = deployed

grd2: c¢ € Composites A ¢ € dom(ReqOf) N ReqOf(c) € dom(FctOfReq) N c €
dom(SerOYf)

grd3: f € FctOfReq(ReqOf(c)) A (op € OpOfS(s) A's € dom(OpOfS) A
FctOfOp(op) = f)

actl: SerOf(c) := SerOf(c) U {s}
act2: St(s) := readyTolnvoke
act3: FctOfReq(ReqOf(c)) := FctO fReq(ReqOf(c)) \ {f}

Fig. 11. The SelectService event description

Event RunComposite (ordinary) = Event RunComponent (ordinary) =
any any
c sc
where where
grdl: c € Composites A c € dom(SerOf) grdl: s € Components A c € dom(SerOf)
grd2: St(c) = required grd2: (s € SerOf(c)) A (¢ — running € St)
grd3: ¢ € dom(ReqOf) N ReqOf(c) € grd3: s+~ readyTolnvoke € St
dom(FctOfReq) A FctOfReq(ReqOf(c)) = @ then
then actl: St(s) := running
act1: St(c) 1= running act2: RunningS := RunningS U {s}
end ’ ’ act3: t:=T
end

Fig. 12. The RunComposite and RunComponent events description

— rankf (azmb) is a total function denoting the order of the required functions.

The above context is seen (clause SEES) by the machine StructM1 that defines some variables to model

the dynamic properties of the structural model (Fig. 10).

— We have defined the variables Composites and Components to respectively model the composite services

set and the component services set.

— We have then partitioned the Services set in the invariant inv8 into Composites and Components.

— The component services of a composite service are denoted by the partial function SerOf (inv4).

— St denotes the state of a service (inv5). It changes during the service’s life cycle.

— To each required composite service, we have associated a request denoted by the function ReqOf (inv6)
— and to each request a set of required functions denoted by FctOfReq (inv7).

In this work, we perform the verification at both design time and runtime. For design-time verification,
we have defined the SelectService event in Fig. 11. This event is enabled to select the component services
with respect to some functional, semantical and behavioral requirements. At this first abstraction level,
we only verify that the selected services provide the set of functions required by the composite service.
s is a deployed component service (grdl). The required composite service is denoted by ¢ (grd2). The
component services must provide the functions specified by the request (grd3). For each required function
(f € FctOfReq(ReqOf(c))), a service s is selected such that it provides an operation with the required
functionality (op € OpOfS(s) A s € dom(OpOfS) N FctOfOp(op) = f).

It is important to check the execution of the component services at runtime to detect eventual
errors. Therefore, we have defined the RunComposite event that triggers the composite service’s execution
(Fig. 12). A composite service execution runs only if all the required component services have been selected.



An Event-B based approach for cloud composite services verification 375

o~

Event Terminate (ordinary)
any
S

where

grdl: s € Components A s € RunningS A s € dom(ExeT)
grd2: (T —t) > ExzeT(s)
then

actl: St(s) := terminated
act2: RunningS := RunningS \ {s}
end

Fig. 13. The Terminate event description

( Structural level ]

[ Context StructC1 ]4— sees —[ Machine StructM1 ]

7Y 4

extends

[ ] 1 refines
1 Semantic level X
1 L4 J 1

[ Context SemC1 ]4— sees —[ Machine SemM1 ]

Fig. 14. The second abstraction level

This event has a parameter ¢ that denotes a composite service (¢ € Composites). The component services
of the composite ¢ must be already selected i.e ¢ € dom(SerOf) (grdl) and FctOfReq(ReqOf (¢))=2 (grd3).
FctOfReq(ReqOf (¢))=9 means that a service is already selected for all the required functions. In the previ-
ously introduced event SelectService, each time we select a service for a required function, this function is
deleted from the variable FctOfReq representing the set of required functions for a given request. The state
of the composite service changed from required (grd2) to running (actl).

After executing this event, the RunComponent event is enabled so that we can execute the component
services of this composition (Fig. 12). To execute a component service, at this level, the composite service it
belongs to must be running. This event has two parameters s and ¢ that respectively denote the component
service (s € Components (grdl)) to be executed and the composite service it belongs to (s € SerOf(c)
(grd2)). The composite service ¢ must be already running (¢ — running € St (grd2)) and the component
service is ready to invoke (s +— readyTolnvoke € St (grd3)). After the execution of this event, the state of
the component service is changed to running (actl) and it is added to the set of running services (act2).
The execution start time is denoted by T (act3). The time is incremented in the Time event. Each time it is
triggered, it increments the time T (7 =T + 1). It can be triggered as much as needed. Once the accorded
execution time is reached, the Terminate event (Fig. 13) is enabled to terminate the component service
execution. The component service execution is terminated only if its execution time is completed. The event
has only one parameter s that denotes the component service to terminate (s € Components). The service’s
state must be running (s € RunningS). In the guard grd2, the current running time (7 — ¢) must exceed
the execution time (EzeT(s)) estimated for the service s. The state of s is set to terminated (actl), and s
is deleted from the set of running services (act2).



376 A. Lahouij et al.

CONTEXT SemC1
EXTENDS StructC1
SETS

Parameters Types PE
CONSTANTS

In Out I O TypeOf

AXIOMS
axml: finite(Parameters) A finite(Types) A
finite(PE)
axm2: In C Parameters
axm3: QOut C Parameters
axm4: I € Operations -+ P (In)

axmb: O € Operations + P1 (Out)
axm6: TypeOf € Parameters — Types

END

Fig. 15. The SemC'l context description

6.3. Modelling the semantic requirements

So far, we have modelled the basic concepts of a composite service. In this section, we focus on the modelling
of the semantic features and requirements of a composite service. These features consist mainly on the
parameters of the service’s operations and their types and the preconditions and effects of the service’s
operations. The aim here is to find a matching between the inputs and outputs of the related component
services and to check gradually the consistency of the operations’ preconditions and effects. The verification
of these semantic relations is performed at both design and run time. At design time, we have refined the
SelectService event by introducing the semantic matching rules (see Sect. 4). For instance, the selected
services must have the same inputs as the required composite service and must produce the same outputs
as the required composite service. A service can not be executed without its required inputs. Therefore a
component service is selected only if the set of inputs it requires are performed by the previously selected
service(s). For the run time verification, we have refined the RunComponent event to ensure the semantic
correctness during the component services execution. Namely, we have to ensure that each component service
meets all the preconditions and produces the declared effects.

For this purpose, we extend the StructC'1 context by the SemC'1 context and refine the StructM 1 machine
by the SemM1 machine (Fig. 14). In the following, we start by representing the SemC'1 context (Fig. 15).
New sets are added to the model, namely Parameters, Types, and PE (preconditions and effects). This
context elements are defined as follows:

— Parameters denote the set of an operation’s parameters. It is divided into two sets In and Out (azm?2
and azm3).

I in axm/ refers to the inputs of an operation. It is a partial function from the set Operation to a power
set of inputs In. This means that an operation may have zero or many inputs.

— O in azmd refers to the outputs of an operation, it is a partial function from the set of Operation to a
non-empty power set of outputs Out. Which means that an operation must produce at least one output.

TypeOf is a total function that assigns a type to each parameter (axm6).
We have previously introduced services preconditions and effects that are modelled by the PE set.
— All sets are set to finite in the axiom axml.

The context Sem(C'1 is seen by the machine SemM1 that refines the StructM 1 machine and models the
dynamic part of the semantic model (Fig. 16). It is described as follow:

— The variables Regln and ReqOut models the request’s inputs and required outputs, respectively (invl
and inv2).

— A rank is associated with each component service to represent its order of execution in the composite
service (inv3). Parallel services have the same rank.



An Event-B based approach for cloud composite services verification 377

MACHINE SemM1
REFINES StructM1
SEES SemC2
VARIABLES

ReqIn ReqOut rank PR EFF precsR precsOp effsR
effsOP AcEff

INVARIANTS

invi: ReqlIn € Requests — P (In)

inv2: ReqOut € Requests — P (Out)

inv3: rank € Components — N

invd: PR C PE

invs: EFF C PE

invé: precsR € Requests -+ P (PR — BOOL)
inv7: effsR € Requests + P(EFF — BOOL)
inv8: precsOp € Operations + P (PR — BOOL)
inv9: effsOP € Operations+ P(EFF — BOOL)
inv10: AcEff C (EFF — BOOL)

END

Fig. 16. The SemM1 machine description

Event SelectService (ordinary)
extends SelectService

where

grd4 “].‘inite(SerOf(c)) A finite(FctO f Req(ReqO f(c)))
grds: op € dom(I)

grd6:

(card(SerOf(c)) = 0 A (Vi-i € ReqIn(ReqOf(c)) = (3i'-op € OpOfS(s) A s € dom(OpOfS)

Aop € dom(I) Ni' € I(op) A TypeOf(i) = TypeOf(i')))) (1)

\

(card(SerOf(c)) > 0 A (Vi-i € I(op) = (Jo,0p’,s"-s" € SerOf(c) As' € dom(OpOfS)

Nop' € OpOfS(s’') Aop' € dom(O) Ao € O(op’) A TypeO f(i) = TypeO f(0)))) (2)

\

(card(FctOfReq(ReqO f(c))) = 1 A (Vo-o € ReqOut(ReqO f(c)) = (o’ -op € OpOfS(s)

A s € dom(OpOfS) A op € dom(O) Ao’ € O(op) A TypeO f(0) = TypeOf(0d')))) (3)
then

act4rank(s) = rank(f)
end

Fig. 17. The first refinement of the SelectService event

— The PE set is comprised of preconditions and effects (inv/ and inv5).

— precsR denotes the set of preconditions of the request (inv6). It is modelled by a partial function from
the Requests set to the power set P (PR — BOOL), which means that a request can have zero or many
preconditions and each predicate is evaluated to TRUE or FALSE. Similarly, for the effects, a partial
function effsR is defined in the invariant inv7.

— In the invariant inv8, precsOp defines the set of preconditions imposed by each service operation. The
same holds for the effects of an operation, a partial function effsOP is defined in the invariant inv9.

— In the invariant inv10, AcEff denotes the set of effects accumulated during the composite service’s
execution. AcEff is used in order to model the conditions propagation since the preconditions of an
action depend on the effects of the previously executed activities.

In the following, we refine the SelectService event (Fig. 17) by adding semantic constraints. The selection
here is based on the semantic matching between component services.



378 A. Lahouij et al.

Event RunComponent (ordinary) =
extends RunComponent

any

op
where

grd4 s € dom(OpOfS) A op € OpOfS(s) Aop € dom(ef fsOP) A op € dom(precsOp) A ¢ € dom(ReqO f) A
ReqOf(c) € dom(precsR) A ReqOf(c) € dom(effsR) N's € dom(rank) A ((rank(s) = 1) vV (Vp-(p €

Components) A (p € dom(rank)) A (rank(p) = (rank(s) — 1)) = p — terminated € St)
grds:  (rank(s) = 1 A (Vi-i € RegIn(ReqOf(c)) = (3i'-op € dom(I) ANi' € I(op) A TypeOf(i) =

TypeOf(i')))) V (rank(s) > 1 Aop € dom(I) A (Vi-i € I(op) = (3s',0p’-s'" € SerOf(c) Ns' €
dom(OpOfS)Aop’ € OpOfS(s')A(s" € dom(rank))Aop’ € dom(O)A (rank(s’) = (rank(s)—1))A(Jo-(o €
(g(op’)) A (TypeOf(i) = TypeOf(0))))))

gr

(r;znk(s) = 1A (Vpp € precsR(ReqOf(c)) = (p € precsOp(op))) A finite(precsR(ReqOf(c)))

A finite(precsOp(op)) Acard(precsR(ReqO f(c))) = card(precsOp(op))) (4)
Vv

(rank(s) > 1 A (¥Vp-p € precsOp(op) = —(Je-e € AcEff A dom(e) = dom(p)

A ran(e) £ ran(p))) (5)
\Y

(finite(SerOf(c)) A rank(s) = card(SerOf(c)) A (Ve-e € ef fsR(ReqO f(c))

= (c € ef fsOP(0p)))) (©)

then

Aééi;:"AcEff = AcEff U ef fsOP(op)
end

Fig. 18. The RunComponent event description

A component service is selected only if it semantically matches with other component services with
respect to matching schemes previously introduced in Sect. 4.1. Namely, we have to verify that the selected
component services have the same inputs and produce the same outputs as the required composite service
and that each selected service inputs will be provided by the ancestor selected services. The three dots refer
to the guards of the previous abstraction level. To model the Vertical matching 1:N (Seml), we assume
that the first service must have the same inputs as the required composite service since a service can not
be executed without its required inputs (The formula (1) in grd6). For each input ¢ of the request of the
composite ¢, the candidate component service must have an operation op whose input i’ has the same type
as 4. The formula (2) in grd6 models the horizontal matching. It serves to check that the operations of the
component services can be coordinated. Therefore, for the rest of the services, we assume that a component
service is selected only if the set of inputs it requires are performed by the previously executed service(s)
(TypeOf (i)=TypeOf (0)) (Sem3). Therefore for each input ¢ of the candidate service s, there must be a
component service s’ that has been previously selected s’ € SerOf(c), SerOf(c) is the set of component
services of the composite service and has an operation op’ whose output o is of the same type as of the input
1. Namely, the component service must get its inputs from the previously executed component services. To
finish modelling the Vertical matching 1:N, we have defined the formula (3) where we assume that the last
component service must produce the required outputs (i.e the same type of outputs defined in the request)
(Sem2). For each output o of the request, the candidate service s must have an operation op whose output
o' is of the same type as o. In other words, the final component service must produce exactly the same
outputs as the required composite service or more.

Then, we have proceeded to the composite service’s verification at runtime. The semantic constraints
must be preserved in order to ensure the semantic correctness of the composite service during its execution.
Mainly the condition propagation, where each component service must meet all the preconditions and,
after its execution, it must produce all the declared effects. Therefore, we have refined the RunComponent
event (Fig. 18). A third parameter op denoting the service operation is added to this event’s parameters.



An Event-B based approach for cloud composite services verification 379

( Structural level |

[ Context StructC1 }4— sees —[ Machine StructM1 ]

4 4

extends ( . | refines
1 Semantic level X
s 1 [ ) 1
[ Context SemC1 ]4— sees —[ Machine SemM1 ]
4 A A
k. o 2 -2
extends ( ] refines
1 Behavioral level ]
g L J 1
[ Context BehC1 }4— sees —[ Machine BehM1 ]
.

Fig. 19. The third abstraction level

To run the component service s, the execution of the previous component services must be terminated
(Vp-(p € Components) N (p € dom(rank)) A (rank(p)=(rank(s) — 1)) = p +— terminated € St))) (grd4).
rank(p) is the rank of the component service p preceding the component service s. The service s is going
to be executed therefore the previous component service p which rank is equal to rank(s) — 1 must be
already executed and its state must be terminated. In the event guard grd5, we formalize Sem1, Sem2,
and Sem3 as previously described in the SelectService event guard. We presume that a component service
cannot be executed if it does not meet these requirements. In the guard grd6 (Fig. 18), we have defined
the PE requirements. Similarly to the inputs and outputs, each service precondition must be satisfied by
the previous services’ effects. We presume that a service cannot be executed if its preconditions are not
satisfied. In formula (4), we assume that the first component service must have the same preconditions as
the composite service. It denotes that for all preconditions p such that p is a precondition of the required
composite service (p € precsR(ReqOf(c))), p must belong to the set of preconditions of the operation of the
service s (p € precsOp(op)). precsR(ReqOf (¢)) and precsOp(op) are finite sets and the number of elements
of the set precsR(ReqOf (¢)) is equal to the number of elements of the set precsOp(op). In other words, the
first component service must have exactly the same preconditions as the request. Additional preconditions
may disable the execution of the component service. We assume that for each precondition p, there is no
effect e of any previously executed service at any time in the composite service execution that may contradict
p (formula (5)). For each precondition of the operation op of the service s, there should not be an effect
e element of the actual effects set AcEff, such that it contradicts p. For instance the range of p is TRUE
and the range of e is FALSE. In formula (6), we assume that the last component service produces the same
effects as the required composite service. It denotes that for each effect e of the composite service ¢, there
should be an element of the effsOP(op) set of the last component service. effsOP(op) denotes the set of
effects of the service operation op. In the actions clause, the action act4 is defined to add the effects of the
actual service execution to the effects of the previously executed services.

6.4. Modelling the behavioral requirements

In this section, we model the behavioural requirements that a composite service must meet. Therefore,
features related to the composite behavior have been added to the model. For instance, we have introduced
the component services’ protocols, the protocol messages, the reception capabilities and the patterns used
for the messages interchange. In this work, we content to model the blocking and non-blocking send patterns.
At this refinement level, we model and verify the behavior of the component services. The selected services
must be compatible in terms of interacting protocols in order to avoid blocking situations. Wherefore, in this
section, we refine the SelectService in order to introduce behavior requirements. For instance, we assume that
for each message that will be sent/received, there is a component service that will respectively receive/send
that message.



380 A. Lahouij et al.

CONTEXT BehCl1
EXTENDS SemC1
SETS

Messages Protocols Queues Type
CONSTANTS

ProtOf RMsg SMsg Id
AXIOMS

axml: ProtOf € Services — Protocols
axm2: RMsg € Protocols + P (Messages)
axm3: SMsg € Protocols + P (Messages)
axmé4: Id € Messages — N

END

Fig. 20. The Beh(C'l context description

MACHINE BehM1
REFINES SemM1
SEES BehC1
VARIABLES

Queue Qsize SReqM RReqM send receive STP Ack
WaitForAckOf Consumed

INVARIANTS

invl: Queue € Components — P (Messages)
inv2: Qsize € Components — N

inv3: SReqM € Requests — P (Messages)
inv4d: RRegM € Requests — P (Messages)
inv6: send € Messages + Components

invé: receive € Messages + P (Components)
inv7: STP € send — Type

inv8: Ack € Messages + Components

inv9: WaitForAckOf € Ack + BOOL
inv10: Consumed € Ack - BOOL

END

Fig. 21. The BehM1 machine description

Such constraints enable us to avoid any blocking situation where for example a component service is
waiting to receive a message however none of the other component services is willing to send it, dragging
the composite service execution to failure. This design-time verification is enhanced by a runtime verifica-
tion performed by the refined events: RunComposite, RunComponent and Terminate. We also introduced
new events (Non_blocking_send, Blocking_send, Send_Ack and Consume) in order to model the send pat-
terns. This runtime verification is performed to ensure reliable communication between interacting protocols.
Therefore, we have extended the SemC'1 context by the Beh(C'1 context and refined the SemM 1 machine by
the BehM1 machine (Fig. 19). We start by representing the BehC'1 context (Fig. 20). We mainly define new
sets namely the Protocols, Messages, Queues, and Type sets. These sets are used to type constants in the
AXIOMS clause as follows:

— The constant ProtOf is introduced to represent the protocol of each service (azm1). It is a total function
from the Services set to the Protocols set. It means that each service has exactly one protocol.

— RMsg represents the set of messages that a component service requires (azm2). It is a partial function
from the Services set to the power set of Messages.

— SMsg models the set of messages that a component service has to send (azm3). It is a partial function
from the Services set to the non-empty power set Messages.

— Id represents a unique identifier for each message (azm4).

The above context is seen, in the clause SEES, by the machine BehM1 (Fig. 21). In this second level of
refinement, we define new variables as follows:



An Event-B based approach for cloud composite services verification 381

Event SelectService (ordinary) =
extends SelectService
any
scfop
where

grd8 se dom/(ProtOf)

grd9:
(card(SerOf(c)) = 0 A ProtOf(s) € dom(RMsg) A (Ym-m € RMsg(ProtOf(s)) =
(3m'-m’ € SReqM (ReqO f(c)) A Id(m) = Id(m’)))) (7)
V

(card(SerOf(c)) > 1 A ProtOf(s) € dom(RMsg) A (Ym-m € RMsg(ProtOf(s)) =
(3s',m’'-s" € SerOf(c) A s’ € dom(ProtOf) A ProtOf(s') € dom(SMsg) A (m' € SMsg(ProtOf(s"))
Ald(m) = Id(m'))))) (8)

grd10:
(card(SerOf(c)) > 0 A ProtOf(s) € dom(SMsg) A (Ym-m € SMsg(ProtOf(s)) =
(3s',m’'-s’ € Components A s’ € dom(ProtOf) A ProtOf(s’) € dom(RMsg) A m’ € RMsg(ProtOf(s’))

Ald(m) = Id(m')))) ()
E/card(FctOfReq(Rerf(c))) = 1A ProtOf(s) € dom(SMsg) A (Ym-m € SMsg(ProtOf(s)) =
(3m'-m’ € RReqM (ReqO f(c))AId(m) = Id(m’)))) (10)
then
end St

Fig. 22. The second refinement of the SelectService event

— Queue, in the invariant invl, is a total function that returns the set of messages waiting in the service
queue. Each component service can have zero or many services in its queue.

— The queue size (Qsize) of each component service is denoted by a total function @Qsize (inv2).

— Each composite service request is created after receiving a message from the consumer and is supposed
to send the request’s result which is the composite service’s execution result. This is modelled in Event-B
via the total functions SRegM and RReqM (inv3 and invj) that respectively denote the set of messages
sent by the requester and the set of messages he expects to receive.

— Send, in the invariant inv5, refers to the send actions. It is a partial function between the message to be
sent and the component service that waits for this message.

— The same goes for the receive action in the invariant inv6.

— STP is a total function defined for each send’s action to denote the type of send (whether it is a blocking
or a non-blocking send).

— In a blocking send action, the service sends the message and stays blocked until receiving the message
acknowledgment. Therefore, we have defined in inv8 and inv9 the Ack and the WaitForAckOf functions
to manage the blocking send actions. They respectively refer to the message acknowledgment required
by the sender and the state of the sender (whether it is waiting for an acknowledgment or not).

— Consumed, in the invariant inv10, denotes whether the received message is consumed by the component
service or not.

The component services’ protocols must be compatibles in order to avoid blocking situations. Namely, for
each required message there will be a sender and for each message to be sent there will be a receiver. Such
verification enables us to avoid deadlock situations. We proceed to the description of the second refinement
of the SelectService event (Fig. 22). At this level, we check the protocols compatibility between candidate
services at the selection process. In the guard g¢rd9, in formula (7), we assume that the set of messages
required by the first component service matches with the set of messages received by the request.



382 A. Lahouij et al.

Event RunComposite (ordinary) = Event RunComponent (ordinary) =
extends RunComposite extends RunComponent
any any
C s cC
where where
grd5 Tsse SerO f(c)As € dom(rank)Arank(s) =1 grd? se dom(ProtOf) A ProtOf(s) € dom(RMsg)
grdé: Jtp-tp= NBS grd8: Vm-m € RMsg(ProtOf(s)) = (3Im'-m/ €
grd7: Im-ReqOf(c) € dom(SRegM) A m € Queue(s) A Id(m) = Id(m'))
SReqM (ReqOf(c)) then
then
et end
act2: send := send U {m + s|ReqOf(c) €
dom(SRegM) N m € SReqM(ReqOf(c)) Ns €
SerOf(c) A s € dom(rank) A rank(s) =1}
act3: STP := STP « {m — s — tplm €
SReqM (ReqO f(c))Atp = NBSAs € SerOf(c)As €
dom(rank) A rank(s) = 1}
end

Fig. 23. The second refinement of the RunComposite and RunComponent events

It denotes that for each message m such that m is requested by the protocol of s (ProtOf(s)), there exists
m’ a message of the request such that (Id(m)=Id(m’)). In other words, the first component service must
require the same messages as the composite service since a service cannot be executed unless it have received
all its required messages. For the rest of the component services, we have defined the formula (8) where for
each message m requested by the candidate service s, there must be a service s’ preceding s (s’ € SerOf(c))
and willing to send a message m’ (m’ € SMsg(ProtOf(s’)) such that Id(m)=Id(m'). Namely, a component
service must dispose of its required messages in order to execute. These messages must be provided by
previously executed services. The same goes for the send action messages. When a message is going to be
sent, there must be a service that is waiting for that message (grd10). In the description above the event guard
grd9 models the behavioral requirement Beh1 and the guard grd10 models the behavioral requirement Beh2.
The runComposite event is refined in Fig. 23. The composition’s execution starts by sending the messages of
the request to the first component service. These messages generally contain the inputs of the composition.
Namely, to run a composite service at this level the first component service must be selected and the send
type and the message(s) of the request must be defined. This event is triggered only if the guards grd5, ¢grd6,
and grd7 are evaluated to TRUE. In the guard grd5, we presume that there exists a component service s
already selected (s € SerOf(c)) and with rank equal to 1 (rank(s)=1). In the guard grd6, we presume that
there exists a non-blocking (NBS) send type tp. Here we use the non-blocking send type for the messages
exchange between the requester and the composite service. In the guard grd7, we presume that there exists
a message m of the request. This message(s) communicates the inputs of the request. The execution of the
composite service should result in defining the messages to send to the first component service. In the actions
clause, we define the actions to perform once the guards are evaluated to TRUE. The message m and the
service s are added to the send function in act2. Here each message of the request is added to the send set
representing the set of messages that are ready to be sent. s is the first component service and the recipient
of this message(s). The type of the send action is set to non-blocking send (NBS) in the action act3. To run
each component service, we presume that each required message must be received in its messages’ queue.
This requirement is modelled in grd8 of the RunComponent event (Fig. 23).

We have considered two sending patterns in this work: the non-blocking and the blocking send patterns
defined respectively by the Non_blocking_send and Blocking_send events (Fig. 24). In the Non_blocking_send
situation, the sender sends the message without requesting any acknowledgment from the receiver. However,
in the Blocking_send situation, the sender sends the message and stays blocked until the reception of the
message acknowledgment from the message receiver. The Non_blocking_send event has three parameters:
the composite service ¢, the component service s, and the message m. It is triggered when the message m
is going to be sent by the service s with a non blocking. send type STP(m — s)=NBS. The queue of s is
able to receive the message m (card(Queue(s)) < Qsize(s)) (Beh3). On the other hand, the Blocking_send
event has two parameters: the component service s and the message m.



An Event-B based approach for cloud composite services verification 383

Event Non_blocking send (ordinary) = Event Blocking send (ordinary) =
any any
msc m s
where where
grd2: ¢ € dom(SerOf) A s € SerOf(c) grd3: m € dom(send) A s = send(m)
grd3: m € dom(send) A s = send(m) grd4: m > s € dom(STP)ASTP(m — s) = BS
grd4: m s s € dom(STP) AN STP(m — s) = NBS grds: s € dom(Queue) A finite(Queue(s)) A's €
grds: s € dom(Queue) A finite(Queue(s)) A s € dom(Qsize)
dom(Qsize) A card(Queue(s)) < Qsize(s) grd6: card(Queue(s)) < Qsize(s)
then then
actl: send := send \ {m — s} actl: send := send \ {m — s}
act2: STP:= STP\{m— s— NBS} act2: STP := STP\{m — s— BS}
act3: Queue(s) := Queue(s) U {m} act3: Queue(s) := Queue(s) U {m}
end actd: Ack := Ack U {m — s
acts: WaitForAckOf := WaitForAckOf < {m —
s TRUE)
act6: Consumed := Consumed < {m +— s —
FALSE)}
end

Fig. 24. The Non_blocking_send and Blocking_send events description

Event Send_Ack (ordinary) = Event Consume (ordinary) =
any any
sm ms
where where
grdi: m +— s € dom(WaitForAckOf) A grdl: s € dom(Queue) A m € Queue(s)
; _ grd2: St(s) = running
then WaitFor AckOf(m — s) = TRUE grd3: m — s € dom(WaitForAckOf) A
WaitForAckOf(m — s) = FALSE
actl: WaitForAckOf(m — s) := FALSE then
end

act2: Queue(s) := Queue(s) \ {m}
act3: Consumed(m — s) := TRUE

actd: WaitForAckOf := WaitForAckOf \ {m —
s FALSE}
end

Fig. 25. The Send_Ack and Consume events description

It is triggered when the message m is going to be sent by the service s with a blocking send type. In the
guard grd6, the queue of s is able to receive the message m (Beh3). In the action act4, the pair (m,s) is
added to the Ack set. This means that the sender is waiting to receive the acknowledgment of the message
m sent by s.

We have defined the Send_Ack event (Fig. 25) that is triggered when a component service receives a
message with a blocking acknowledgment. This event’s execution sends an acknowledgment to the message’s
sender. WaitForAckOf is then set to false (actl). Once the acknowledgment (grd3) is sent, the message
can be consumed via the Consume event (Fig. 25). The message m is deleted from the queue of the service
and Consumed is set to true (act3). The second refinement of the Terminate event is given in Fig. 26. The
service’s execution ends by deleting the received messages from the Ack and Consumed sets (act{, act5).
The outputs of the service are sent to the next service in (act6) and the type of send is set to blocking BS
(act?). The requirement Beh4 is met if all the component services’ executions terminate correctly.

6.5. Modelling the resource requirements

In the Cloud environment, services are hosted in the virtual machines running on the Cloud’s infrastructure.
Therefore, a set of physical resources are allocated to each component service in order for it to execute,
which is not a trivial task. A set of constraints should be considered in order to perform correct and efficient
resource allocation. In this section, we model the resource properties of a Cloud composite service. Therefore
we have added the resources and their features to the model. For instance the resource state, type, sharing
properties and capabilities.



384 A. Lahouij et al.

Event Terminate (ordinary) =
extends Terminate

any

S C
where

grd4 ce dom(SerOf) Ns € SerOf(c) Ns € dom(ProtOf) A ProtOf(s) € dom(SMsg) A ProtOf(s) €
dom(RMsg)

grd5: Vm-m € RMsg(ProtOf(s)) = (3m'-m/ — s € dom(Consumed) A Consumed(m’ — s) = TRUE A

Id(m) = Id(m/))

grd6: (3tp, ser-ser € SerOf(c) A ser € dom(rank) A rank(ser) = rank(s) + 1 Atp = BS) V (rank(s) =
mazx(ran(rank)))

then

actd: Ack := Ack\{m — ser|m — ser € dom(Consumed) AConsumed(m — ser) = TRUE Aser = sAm

ser ¢ dom(WaitForAckOf)}
act5: Consumed := Consumed \ {m — ser — TRUE|ser € SerOf(c) Am — ser € dom(Consumed) A

Consumed(m — ser) = TRUE A ser = s Am — ser ¢ dom(WaitForAckOf)}
act6: send := send<-{m — ser|ProtOf(s) € dom(SMsg)Am € SMsg(ProtOf(s))Ac € dom(SerO f)Aser €

SerOf(c) A ser € dom(rank) A rank(ser) = rank(s) + 1 A ((3m'-m’ € RReqM (ReqOf(c)) A Id(m) =
Id(m/)) v (3m'-m’ € RMsg(ProtO f(ser)) A Id(m) = Id(m/g))}
act7: STP := STP < {m > ser — tp|m € SMsg(ProtOf(s)) A ser € SerOf(c) A ser € dom(rank) A
rank(ser) = rank(s) + 1 Atp = BS A ((3m/-m/ € RReqgM (ReqOf(c)) A Id(m) = Id(m’)) v (3m/-m/ €
RMsg(ProtO f(ser)) A Id(m) = Id(m’)))}
end

Fig. 26. The Terminate event description

We have also defined for each component service the type of resource it needs and the required capacity.
At this level, the aim is to manage reliable resource allocation and to avoid blocking situations that may
occur when allocating resources to services. Therefore we have introduced constraints on the resource sharing
between component services through the model invariants. Namely, a non-shareable resource should not be
allocated to more than one single service. If a non-shareable resource is allocated simultaneously to two
parallel services, for example, the execution of one of the services will fail. We have also introduced new
events related to the resource perspective. The AllocateResource event conducts the resources allocation
to different component services. The DecResCap decreases the capacity required by the service from the
available resource capacity. Adding to the refinement of the ancestor events (RunComponent and Terminate).
This fourth level of abstraction (Fig. 27) is constituted of the context ResC1 that extends BehC1 (Fig. 28)
and the machine ResM1 that refines BehM1 (Fig. 29).

The ResC1 context models the static properties of a Cloud resource. Its constituting elements are
described as follows:

— The set Resources represents the set of resources.

— The set Sh represents an enumeration of a resource’s possible sharing types. A resource can be exclusively
shareable (IsExcSh), commonly shareable (IsComSh) or not shareable (NotSh). A partition of the set Sh
is then given in the axiom axm?2.

— The set TypeR represents an enumeration of a resource’s possible types. A resource can be a computing
resource (CompRes), a storage resource (StorRes) or a network resource (NetRes). A partition of the set
TypeR is therefore given in the axiom azm9.

— The set StateR represents an enumeration of a resource’s possible states. A resource can be either available
or not (azml). A resource is considered unavailable if all its capacity is consumed.

— TypeOfr, in the axiom azxm8, is a total function assigns a type to each resource.

— GCa in axiom azxm10 denotes the global capacity of a resource.
The machine ResM1 sees the context ResC1 and models the resource allocation requirements (Fig. 29). We
have extended the model by adding variables related to the resource perspective as follows:

— ACa denotes the available capacity of a resource. It is represented by a partial function from the set
Resources to the set of positive numbers N (inv1).



An Event-B based approach for cloud composite services verification 385

{ Structural level ]

[ Context StructC1 ]4— sees —[ Machine StructM1 ]

s ¥
extends [ ] ] refines
1 Semantic level X
( 1 8 )] 1
[ Context SemC1 ]4— sees —[ Machine SemM1 ]
\ A A
™ T
extends ( | refines
1 Behavioral level ]
¢ 1 L ) 1 A)
[ Context BehC1 ]4— sees —[ Machine BehM1 ]
- A L
ext(_ands [ Resource level ] refl_nes
s i \ ) 1 N
{ Context ResC1 ]4— sees —[ Machine ResM1 ]
J

Fig. 27. The fourth abstraction level

CONTEXT ResC1
EXTENDS BehCl1
SETS

Resources Sh TypeR StateR
CONSTANTS

Nav Av IsExcSh IsComSh NotSh CompRes StorRes NetRes TypeOfr GCa
AXIOMS

axml: partition(StateR, {Nav}, {Av})

axm2: partition(Sh,{IsExcSh},{IsComSh}, {NotSh})
axm9: partition(TypeR, {CompRes},{StorRes}, {NetRes})
axm8: TypeO fr € Resources — TypeR

axm10: GCa € Resources + Ni

END

Fig. 28. The ResC'1 context description

— IsSh, IsEl, and IsSca are total functions denoting, respectively, a resource’s shareability, elasticity and
scalability (inv7, inv8, inv9).

— A resource can be allocated either statically or dynamically (at runtime) to some component services.
The set of services a resource is allocated to is defined by the partial function AllocTo from the Resource
set to the power set of Components (inv6).

— The set of services that are actually running on the resource are given by the total function RrunnigSer
(invb).

— We associate to each service a set of required resource types denoted by the partial function ReqTyR
(inv2).

— The capacity amount that a component service requires from each required resource type is denoted by
the partial function RCa (inv3).

To correctly manage the resource allocation, different requirements should be satisfied. In this paper, we
consider the following shareability requirements defined in inv10, invll, invl2, invl3 and invld (Fig. 29):



386 A. Lahouij et al.

MACHINE ResM1
REFINES BehM1
SEES ResCl1
VARIABLES

ACa ReqTyR ResSt RrunnigSer AllocTo IsEl IsSca IsSh RCa
INVARIANTS

invl: ACa € Resources -+ N

inv2: ReqTyR € Components + P (TypeR)

inv3: RCa € (Components -+ TypeR) + Ny

inv4: ResSt € Resources — StateR

invs: RrunnigSer € Resources + P (Components)

invé: AllocTo € Resources + P (Components)

inv7: IsSh € Resources — Sh

inv8: IsEl € Resources - BOOL

inv9: IsSca € Resources — BOOL

invi0:  Vr-r € Resources A IsSh(r) = NotSh A r € dom(AllocTo) N finite(AllocTo[{r}]) =

card(AllocTo[{r}]) <1
invil: Vr.r € Resources A IsSh(r) = NotSh A r € dom(RrunnigSer) A finite(RrunnigSer[{r}]) =

card(RrunnigSer[{r}]) <1
invi2:  Vr.r € Resources A IsSh(r) # NotSh A r € dom(AllocTo) A finite(AllocTol[{r}]) =

card(AllocTo[{r}]) > 0
invi13: Vr-r € Resources A IsSh(r) = IsComSh Ar € dom(RrunnigSer) A finite(RrunnigSer[{r}]) =

card(RrunnigSer[{r}]) >0
invi4: Vr-r € Resources A IsSh(r) = IsExcSh Ar € dom(RrunnigSer) A finite(RrunnigSer({r}]) =

card(RrunnigSer[{r}]) <1
END

Fig. 29. The ResM 1 machine description

o~

Event AllocateResource (ordinary)
any
T s ip
where
grdl: s deployed € St A s € dom(ReqTyR) Ntp € ReqTyR(s) A TypeO fr(r) =tp Ar
grd2: 7 € dom(ACa) A {s — TypeOfr(r)} € dom(RCa) A (RCa({s — tp}) < ACa(r)V

ACa(r) ANIsEl(r) = TRUE) V (RCa({s — tp}) > ACa(r) A IsSca(r) = TRUE))
grd3: (IsSh(r) = IsComSh)V (IsSh(r) = IsExcSh A (AllocTo(r) = @V (Vser-ser € AllocTo(r) A ser €

dom(rank) A s € dom(rank) A rank(ser) # rank(s)))) V (IsSh(r) = NotSh A (AllocTo(r) = @))

€ dom(AllocTo)
(RCa({s — tp}) =

then

actl: AllocTo := AllocTo < {r — AllocTo(r) U {s}}
act2: ReqTyR(s) := ReqTyR(s) \ {TypeOjfr(r)}
end

Fig. 30. The AllocateResource event description

— In the invariant inv10, a non shareable resource (IsSh(r)=NotSh) can not be allocated to more than one
service (card(AllocTo[{r}]) < 1) (Shl).

— In the invariant nv11, we presume that at most one service (card(RrunnigSer[{r}]) < 1) can be running
on a non shareable resource (IsSh(r)=NotSh) (Sh2).

— In the invariant inv12, a shareable resource (IsSh(r) 7 NotSh) can be allocated to more than one service
(card(AllocTo[{r}]) > 0)(Sh3).

— In the invariant inv13, we presume that one or more services (card(RrunnigSer[{r}]) > 0) can be running
on a commonly shareable resource (IsSh(r)=IsComSh) (Sh4).

— In the invariant inv14, we presume that at most one service (card(RrunnigSer[{r}]) < 1) can be running
on an exclusively shareable resource(IsSh(r)=IsEzcSh) at the same time (Sh5).

The AllocateResource event (Fig. 30) formalizes the resource allocation process. To properly allocate a
resource to a service, we consider the following requirements:



An Event-B based approach for cloud composite services verification

Event RunComponent (ordinary) =
extends RunComponent
any

S cC
where

grd9 se dom(ReqTyR)
grd10: Vip-tp € ReqTyR(s)=>(3r-r € dom(AllocT o)A
s € AllocTo(r) A TypeO fr(r) = tp)
then

end

Event DecResCap (ordinary) =
any
s
where
grdl: r € dom(AllocTo) N's € AllocTo(r) A
s + running € St Ar € dom(ACa) A
{s — TypeOfr(r)} € dom(RCa) AN r €

dom(RrunnigSer)
gra2: ACa(r) = (RCa({s = TypeOfr(r)}))
then

actl: RrunnigSer := RrunnigSer < {r +—

RrunnigSer(r) U {s}}
act2: ACa(r) := ACa(r)—RCa({s — TypeO fr(r)})
end

Fig. 31. The RunComponent and DecResCap events description

Event Terminate (ordinary) =
extends Terminate
any

scrTr
where

then

acts: AllocTo(r) := AllocTo(r) \ {s}

end

grd? re dom(RrunnigSer) A s € RrunnigSer(r) As € AllocTo(r) Ar € dom(AllocTo) A1 €
dom(ACa) A {s — TypeO fr(r)} € dom(RCa)

act9: RrunnigSer(r) := RrunnigSer(r) \ {s}

act10: ACa(r) := ACa(r) + (RCa({s — TypeOfr(r)}))

Fig. 32. The Terminate event description

387

— In the guard grdl, the resource is of the same type as the required resource type (tp € ReqTyR(s) A

TypeOfr(r)=t) (Ral) and,

— there is enough resource capacity to handle the service (RCa({s — tp}) < ACa(r)) (¢grd2) (Ra2) or,

— there is not enough resource capacity to handle the service (RCa({s — tp}) > ACa(r)), however the
resource is Elastic (IsEl(r)=TRUE) (grd2) (Ra3) or,

— there is not enough resource capacity to handle the service (RCa({s — tp}) > ACa(r)), however the
resource is Scalable (IsSca(r)=TRUE) (grd2) (Ra4).

— The resource is shareable (IsSh(r) H NotSh) (grd3) (Rab) or,
— the resource is not shareable (IsSh(r)=NotSh) and it is not allocated to any other service (AllocTo(r)=2)

(grd3) (Ra#).

Once the above requirements are fulfilled, the action actl is triggered, and the resource is allocated to the
service. The type of the required resource is deleted from the set of required types (act2). After defining
the resource allocation event, we have to refine the events defined in BehM1 in order to verify the resource
properties of the running composite service. We first start by refining the RunComponent event (Fig. 31).
To run a component service, for each resource type it requires there must be a set of resources allocated to
this service with the required capacity (grd10). Once the service is running on the adequate resource, the
resource’s capacity is decreased by the event DecResCap (Fig. 31) (act2). In actl, the service s is added to

the set of services running on the resource r.

We then, refine the Terminate event (Fig. 32). Once terminated, the service releases the allocated resources.



388 A. Lahouij et al.

The terminated component service is deleted from the set of services running on the resource and the set of
services to which the resource is allocated (act8, act9). Also, the resource’s capacity occupied by the service
is released (act10). The proposed resource allocation verification allows avoiding deadlocks when parallel
component services are executed simultaneously.

6.6. Summary of the development

To sum up, the model presented above (see the model specification in Fig. 6 and the events’ refinement
in Fig. 7) addresses the verification of the composite services. Its aim is to compose and execute compo-
nent services in a consistent way. The developed model is able to select component services that meet the
requirements thanks to the SelectService event. Namely, it selects services that provide the required functions
and semantically match. It also guarantees that the selected service’ protocols match in order to prevent
deadlock situations. Resources are allocated to selected component services in a rigorous way thanks to the
AllocateResource event. The present work handles also the runtime verification of the composite service. The
selected component services are accurately executed in the RunComponent event. A component service is
executed only if it provides the required function, its preconditions are met and its inputs are received. Inputs
are communicated thanks to the behavior refinement where we have defined the send patterns (Blocking send
and non-blocking send patterns) in the Blocking_send and Non_blocking_send events. These patterns ensure
a reliable communication of messages between component services. Thanks to the presented features, our
model deals with the composite service verification problem in a comprehensive and consistent way.

7. Verification and validation

In this section, we describe the steps followed in order to verify and validate our model. The verification
covers the static and dynamic properties of the model. The static properties are expressed through the
invariants. The invariants of the model must hold for all states of the model; they must hold at the initial
state and must be preserved by each event. Dynamic properties refer to the temporal properties of the
system. Such properties could not be expressed through invariants. They express the different states of the
system at different animation times.

Indeed, the validation consists in observing the specification’s behavior. The Rodin platform! provides the
plugin ProB [LB03] for the animation and validation of Event-B specifications. This plugin gives us the
possibility to play different scenarios by showing, at each stage, the values of each variable and distinguishing
the enabled events from the disabled ones.

7.1. Proof-based verification

The term proof obligation is mentioned in this section regularly. It is in fact, a theorem that needs to be
proved in order to verify the correctness of the model [Pad11]. The proof obligations (POs)? are automatically
generated by the Proof Obligation Generator tool of the Rodin Platform. The generated proof obligations
were of types well-definedness (WD) and Invariant preservation (INV) (for the invariants of the model). The
INV POs ensure that each event preserves the invariants. The name of an INV PO is of the form evt/inv/INV
where for each event, we have to establish that:

VS, C,X.(ANG A Inv = [Act]Inv)
where the event actions Act must preserve the invariant Inv. In other words, INV POs guarantee that:

e The initialization of a machine leads to a state where the invariants are valid.

e Assuming that the machine is in a state where the invariants are preserved, every enabled event leads to
a state where the invariants are still preserved.

Lhttp://www.event-b.org/.
2For more details on proof obligations rules please refer to the B-Book [Abr05] on page 190.


http://www.event-b.org/

An Event-B based approach for cloud composite services verification

Table 1. Formal definition of the well-definedness PO (WD) [Abr05]

v @ Proof Obligations
@ Terminate/invS/INV
@' Terminate/grd3/WD
@ Time/inv8/INV

v @ Proof Obligations
@ RunComponent/grd5/WD
@ RunComponent/grdd/WD
@' SelectService/act4/WD

v @ Proof Obligations
@ Terminate/act7/WD
@ Terminate/act6/WD
@ Terminate/act5/WD

Mathematical expression ‘Well-definedness condition

inter (S) S+

Nz-P|T Jz- P

f(E) f is a partial function and E € dom(f)

E mod F 0<EAOKF

card(S) finite(S)

min(S) SAHONIz-(Vn-neS=z<n)

max(S) SAANJz-(Yn-neS=z>n)

v @ StructM1 v @ SemM1 v @,BehM1 v @ ResM1

© Variables > © Variables © Variables © Variables
< Invariants < Invariants < Invariants < Invariants
# Events # Events %, Events # Events

v @ Proof Obligations
@' Terminate/act10/WD
@' Terminate/actd/WD
@' Terminate/act8/WD

389

@ Terminate/inv14/INV
@' Terminate/inv13/INV
@ Terminate/inv12/INV
@ Terminate/inv11/INV
@ Terminate/inv10/INV
@ Terminate/inv6/INV

@ Terminate/inv5/INV

@' RunComponent/invd/INV
@ RunComponent/inv5/INV
@ RunComponent/grd2/WD
@ RunComposite/inv5/INV
@" RunComposite/grd2/WD
@ RunComposite/grd3/WD
@ SelectService/act3/WD

@ SelectService/inv3/INV
@ SelectService/grd7/WD
@ SelectService/grd6/WD
@ SelectService/grd4/WD
@ INITIALISATION/inv12/INV
@ INITIALISATION/inv9/INV
@ INITIALISATION/inv8/INV

@" Terminate/act4/WD
@ Terminate/inv14/INV
@ Terminate/inv13/INV
@ Terminate/inv12/INV
@ Terminate/inv10/INV
@ Terminate/inve/INV
@ Terminate/grd6/WD

Fig. 33. Proof obligations of the model

The well-definedness proof obligation rule (WD) ensures that a potentially ill-defined axiom, theorem,
invariant, guard, action, variant, or witness is indeed well defined [Abr05]. For a given modelling element
(axm, thm, inv, grd, act or a variant, or a witness x in an event evt), the names are: axm/WD, thm/WD,
inv/WD, grd/WD, act/WD, VWD | evt/x/WWD. The specific form of this proof obligation rule depends
on the potentially ill-defined expression. This is indicated in Table 1. A PO can be either automatically or
interactively discharged (green symbol), or undischarged (orange symbol). The symbol ”A” means that the
PO is automatically discharged. Figure 33 reports some POs that are generated while proving the consistency
of the model.

Modelling in Event-B relies entirely on the interplay between editing models and analyzing their proof
obligations. Proof obligations are generated not only to ensure that each event preserves the invariants, but
also to verify that the refinement had been correctly performed. To prove that a refinement is correct, we
have to establish the following two proof obligations:

e guard refinement: the guard of the refined event should be stronger than the guard of the abstract one:
v(S,C, S5, C, V, Vi, X, X).(AA Ay A Inv A Inv, = (G = G))
e Simulation: the effect of the refined action should be stronger than the effect of the abstract one:
Y(S, C, S, Coy, V, Vi, X, X0).(A A A A Inv A Inw, A [Act,) Inv, = [Act]Inv)
In other words, to ensure a correct refinement, we must prove two things:

e The concrete events can only occur when the abstract ones occur.

e If a concrete event occurs, the abstract event can occur in such a way that the resulting states correspond
again, i.e. the gluing invariant remains true.

For Feasibility POs we have to ensure that the action of an event is always feasible whenever the event is
enabled. In other words, there are always possible after values for the variables, satisfying the before-after
predicate. In practice, we prove feasibility for individual assignment of the event action. For deterministic
assignments, feasibility holds trivially [Hoal3].

To summarize, 157 proof obligations have been generated: 83 of them are automatically discharged by
the automatic prover. It fails to discharge the remaining proofs due to the numerous steps they require and
not on account of their difficulty. To finish discharging these proofs, we resorted to the interactive prover
and helped it find the right steps and rules to apply. The proof statistics are given in Fig. 34.



390

A. Lahouij et al.

Element Mame  Total Auto Manual Reviewed Undischarged

CloudM 157 a3 74 0 0
BehM1 B4 32 32 0 0
Resh1 51 24 27 0 0
SemM1 17 - 13 0 0
Structh1 25 23 2 0 0

Fig. 34. Proof statistics

7.2. Validation by animation

For model validation, we use the ProB animation [LB03]. ProB is an animator, constraint solver and model
checker for the B-Method. It allows fully automatic animation of B specifications and can be used to sys-
tematically check a specification for a wide range of errors. The constraint-solving capabilities of ProB can
also be used for model finding, deadlock checking and test-case generation [LTZT13]. We use animation to
execute specifications. Thanks to ProB we have played and observed different scenarios in order to check
the behavior of our model. The animation is performed on a concrete Event-B model. For this purpose, we
have given values to the carrier sets, constants, and variables of the model. To do so, we have considered the
motivating example introduced in Sect. 3. The animation consists of the following steps (Fig. 35):

Stepl. we start by firing the SETUP-CONTEXT event that gives values to the constants and carrier sets
in the context,

Step2. we then fire the INITTALISATION event to set the model into its initial state,

Step3. we, finally, proceed to the steps of the scenario to check. At each step, the animator computes all
guards of all events, and enables the ones with true guards, and shows parameters which make
these guards true. After event firing, substitutions are computed and the animator checks if the
invariants still hold.

For instance, we animated the complete behavior of the composite service while verifying the different states
in which it may move. We have successfully applied the animation of ProB on our final level of refinement

as follows:

Step3-1.

Step3-2.

Step3-3.

Step3-4.

Step3-5.
Step3-6.

Step3-7.

Step3-8.

Step3-9.
Step3-10.

We start by firing the SelectService event which selects a set of component services according
to the previously defined requirements.

Before running, the required resources are allocated to each component service using the
ResourceAllocation event, with respect to the previously defined resource allocation and share-
ability requirements.

The RunComposite event is then enabled to run the composite service.

The request inputs are sent to the first component service by means of the non-blocking send
pattern using the Non_Blocking_Send event.

The RunComponent event is then enabled,

The resource capacity is decreased (DecResCap event) and the received messages are consumed
(Consume event).

The execution of the component service is terminated (Terminate event) after the completion
of its execution time (Time event: (T-t)=ExeT(s)) and the allocated resources are released.
The outputs of the component service are sent either using the non-blocking send pattern
(Non_Blocking_Send event) or the blocking send pattern (Blocking_Send event), to the next
component service.

The RunComponent event is then enabled again.

If there is a message sent according to the blocking send pattern, the Send_Ack event is enabled
and the execution stays blocked until the reception of the acknowledgment by the sender and
the animation resumes from Step3-6.



An Event-B based approach for cloud composite services verification 391

[SETUP_CONTEX'Ij

INITIALISATION

l SelectService I
N

[Reso urceAllocati on]

nb msg nb msg
l Non_BIocking_Send] RunComponent Blocking Send

if non_blocking_send if blocking_send

<

Send_Ack

nb msg

DecResCap

Terminate

Fig. 35. Animation scenario

If the composite service is behaviourally incorrect, the animation stops without reaching the final service
which incites the designer to make the necessary modifications to the composite service to avoid any deadlock
situations. Compared to existing works, the proposed approach is complete. It combines the modelling and
the verification of the structure, semantics, behavior of composite service and allocated resources in the
Cloud context. Our approach is an incremental approach of modelling and verification of composite services
in the Cloud context. The use of Event-B allows us to master the complexity of the composite service by
introducing its details step by step. Event-B is well-known by its mathematical bases for the specification,
development, and verification of complex applications. The correctness and the consistency of our model are
validated by the use of the ProB animator/model checker and the proof activity. It is noted also that the
Event-B method does not suffer from the state explosion problem which is not the case for other verification
methods used in the literature.



392 A. Lahouij et al.

8. Conclusion

In this work, the focus of attention was on the verification of the correctness of Cloud composite services.
The proposed approach is based on the Event-B formal method. The designed formal model comprises
four abstraction levels to model the structural, semantic, behavioral and resource allocation requirements
that must be considered in order to avoid inconsistent composite services. A proof-based approach, coupled
with a model animation, is performed in order to verify and validate the proposed model. Thanks to the
proposed approach, we succeeded to rigorously design and verify Cloud composite services. On the basis
of the promising findings presented in this paper, work on the remaining issues is continuing and will be
presented in future papers. For instance, we aim, in the near future, to extend this work by considering the
resource elasticity problems. We are also developing an Eclipse plugin to automate the present approach in
order to be readily used in practice.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

[ABHt10] Abrial J-R, Butler M, Hallerstede S, Hoang TS, Mehta F, Voisin L (2010) Rodin: an open toolset for modelling
and reasoning in event-b. Int J Softw Tools Technol Transf 12(6):447-466

[Abr88] Abrial JR (1988) The B tool (Abstract). Springer, Berlin, pp 86-87

[Abr05] Abrial J-R (2005) The B-book—assigning programs to meanings. Cambridge University Press, Cambridge

[AGGH15] Abbassi I, Graiet M, Gaaloul W, Hadj-Alouane NB (2015) Genetic-based approach for ATS and sla-aware web
services composition. In: Web information systems engineering—WISE 2015—16th international conference, Miami,
FL, USA, November 1-3, 2015, Proceedings, Part I, pp 369-383

[AM9g] Abrial J-R, Mussat L (1998) Introducing dynamic constraints in B. In: B’98: recent advances in the development
and use of the B method, second international B conference, Montpellier, France, April 22-24, 1998, Proceedings,
pp 83-128

[AM16] Amato F, Moscato F (2016) Pattern-based orchestration and automatic verification of composite cloud services.

Comput & Electr Eng 56:842-853

[AMJS11] Abdelsadiq A, Molina-Jimenez C, Shrivastava S (2011) A high-level model-checking tool for verifying service agree-
ments. In: Proceedings of 2011 IEEE 6th international symposium on service oriented system (SOSE), pp 297-304

[BKKM11] Byun E-K, Kee Y-S, Kim J-S, Maeng S (2011) Cost optimized provisioning of elastic resources for application
workflows. Future Gener Comput Syst 27(8):1011-1026

[BKST17] Boubaker S, Klai K, Schmitz K, Graiet M, Gaaloul W (2017) Deadlock-freeness verification of business process
configuration using SOG. In: Maximilien M, Vallecillo A, Wang J, Oriol M (eds) Service-oriented computing.
Springer, Cham, pp 96-112

[BSS19] Bourne S, Szabo C, Sheng QZ (2019) Transactional behavior verification in business process as a service configu-
ration. IEEE Trans Serv Comput 12(2):290-303

[BYO'14] Bessai K, Youcef S, Oulamara A, Godart C, Nurcan S (2014) Scheduling strategies for business process applications
in cloud environments. Int J Grid High Perform Comput, 5:65-78, 01

[CHH*12] Chen J, Huang L, Huang H, Yu C, Li C (2012) A formal model for resource protections in web service applications.
In: 2012 international conference on cloud and service computing, pp 111-118

[CMO08] Cansell D, Méry D (2008) The event-b modelling method: concepts and case studies. pp 47-152

[CWG09] Cao Q, Wei Z, Gong W (2009) An optimized algorithm for task scheduling based on activity based costing in cloud
computing. In: 2009 3rd international conference on bioinformatics and biomedical engineering, pp 1-3

[DOS12] Durdn F, Ouederni M, Salaiin Gwen (July 2012) A generic framework for n-protocol compatibility checking. Sci
Comput Program 77(7-8):870-886

[EMAZ15] Elhag AAM, Mohamad R, Aziz MW, Zeshan F (2015) A systematic composite service design modeling method
using graph-based theory. PLoS One 10(4):1-26, 04

[FE10] Furht Bo, Escalante A (2010) Handbook of cloud computing. 1st edition. Springer, Berlin

[FW12] Freitas L, Watson P (2012) Formalising workflows partitioning over federated clouds: multi-level security and costs.
In: 2012 IEEE eighth world congress on services, pp 219-226

[GHMT17] Graiet M, Hamel L, Mammar A, Tata S (2017) A verification and deployment approach for elastic component-based
applications. Formal Asp Comput 29(6):987-1011

[GLAT15] Graiet M, Lahouij A, Abbassi I, Hamel L, Kmimech M (2015) Formal behavioral modeling for verifying SCA
composition with event-b. In: 2015 IEEE international conference on web services, ICWS 2015, New York, NY,
USA, June 27-July 2, 2015, pp 1724

[GMBG17] Graiet M, Mammar A, Boubaker S, Gaaloul W (2017) Towards correct cloud resource allocation in business pro-
cesses. IEEE Trans Serv Comput 10(1):23-36

[Hoal3] Hoang TS (2013) An introduction to the event-B modelling method, pp 211-236. 07

[Hol97] Holzmann GJ (1997) The model checker spin. IEEE Trans Softw Eng 23(5):279-295



An Event-B based approach for cloud composite services verification 393

[HSD13]

[HSDV13]
[JCM19]

[KMCB17]

[KTD11]
[LBO3]

[LHG15]

[LHG16]

[LHG18]

[LHGMI8]

[LHJ*+14]

[LTZ*13]
[MFBR15]
[MKS13]
[NSGt14]

[Pad11]
[PF11]

[SMWZ15]
[Sub04]
[WD96]
[WDJ+16]
[WDJZ14]

[ZGOHO09)

Hoenisch P, Schulte S, Dustdar S (2013) Workflow scheduling and resource allocation for cloud-based execution of
elastic processes. In: 2013 IEEE 6th international conference on service-oriented computing and applications, pp
1-8

Hoenisch P, Schulte S, Dustdar S, Venugopal S (2013) Self-adaptive resource allocation for elastic process execution.
In: 2013 IEEE sixth international conference on cloud computing, pp 220-227

Jana B, Chakraborty M, Mandal T (2019) A task scheduling technique based on particle swarm optimization
algorithm in cloud environment. In: Proceedings of SoCTA 2017, pp 525-536. 01

Kallab L, Mrissa M, Chbeir R (2017) Bourreau Pierre Using colored petri nets for verifying restful service compo-
sition. In: Panetto H, Debruyne C, Gaaloul W, Papazoglou M, Paschke A, Ardagna CA, Meersman R (eds) On the
move to meaningful internet systems. OTM 2017 conferences. Springer International Publishing, Cham, pp 505-523
Klai K, Tata S, Desel J (2009) Symbolic abstraction and deadlock-freeness verification of inter-enterprise processes.
Data Knowl Eng 70(5):467-482. In: Business Process Management, 2011

Leuschel M, Butler M (2003) Prob: a model checker for b. In: Araki K, Gnesi S, Mandrioli D (eds) FME 2003:
formal methods. Springer, Berlin, pp 855-874

Lahouij A, Hamel L, Graiet M (2015) Formal modeling for verifying SCA dynamic composition with event-b. In:
24th TEEE international conference on enabling technologies: infrastructure for collaborative enterprises, WETICE
2015, Larnaca, Cyprus, June 15-17, 2015, pp 29-34

Lahouij A, Hamel L, Graiet M, Elkhalfa A, Gaaloul W (2016) A global sla-aware approach for aggregating services
in the cloud. In: On the move to meaningful internet systems: OTM 2016 conferences—confederated international
conferences: CooplS, C&TC, and ODBASE 2016, Rhodes, Greece, October 24-28, 2016, Proceedings, pp 363-380
Lahouij A, Hamel L, Graiet M (2018) Deadlock-freeness verification of cloud composite services using event-b.
In: On the move to meaningful internet systems. OTM 2018 conferences—confederated international conferences:
CooplS, C&TC, and ODBASE 2018, Valletta, Malta, October 22-26, 2018, Proceedings, Part I, pp 604-622
Lahouij A, Hamel L, Graiet M, Malki ME (2018) A formal approach for cloud composite services verification. In:
11th IEEE conference on service-oriented computing and applications, SOCA 2018, Paris, France, November 20-22,
2018, pp 161-168

Leesatapornwongsa T, Hao M, Joshi P, Lukman JF, Gunawi HS (2014) Samc: semantic-aware model checking for
fast discovery of deep bugs in cloud systems. In: Proceedings of the 11th USENIX conference on operating systems
design and implementation, OSDI’14, pp 399414, Berkeley, CA, USA. USENIX Association.

Laili Y, Tao F, Zhang L, Cheng Y, Luo Y, Sarker BR (2013) A ranking chaos algorithm for dual scheduling of
cloud service and computing resource in private cloud. Comput Ind 64(4):448-463

Mastelic T, Fdhila W, Brandic I, Rinderle-Ma S (2015) Predicting resource allocation and costs for business
processes in the cloud. In: 2015 IEEE world congress on services, pp 47-54

Malik SUR, Khan SU, Srinivasan SK (2013) Modeling and analysis of state-of-the-art vim-based cloud management
platforms. IEEE Trans Cloud Comput 1(1):1-1

Naskos A, Stachtiari E, Gounaris A, Katsaros P, Tsoumakos D, Konstantinou I, Sioutas S (2014) Cloud elasticity
using probabilistic model checking. 05

Padidar S (2011) A study in the use of event-b for system development from a software engineering viewpoint
Papapanagiotou P, Fleuriot J (2011) Formal verification of web services composition using linear logic and the
pi-calculus. In: 2011 IEEE ninth European conference on web services, pp 31-38

Sun L, Ma J, Wang H, Zhang Y (2015) Cloud service description model: an extension of usdl for cloud services.
IEEE Trans Serv Comput, (99):1-1

W3C Member Submission (2004) Owl-s: semantic markup for web services. https://www.w3.org/Submission/OWL-
S/.

Woodcock J, Davies J (1996) Using Z: specification, refinement, and proof. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA

Wang P, Ding Z, Jiang C, Zhou M, Zheng Y (2016) Automatic web service composition based on uncertainty
execution effects. IEEE Trans Serv Comput 9(4):551-565

Wang P, Ding Z, Jiang C, Zhou M (2014) Constraint-aware approach to web service composition. IEEE Trans Syst
Man Cybern Syst 44(6):770-784

Zeng C, Guo X, Ou W, Han D (2009) Cloud computing service composition and search based on semantic. In:
Proceedings of the 1st international conference on cloud computing, CloudCom ’09, Springer, Berlin, pp 290-300

Received 15 March 2019
Accepted in revised form 28 July 2020 by Michael Butler
Published online 19 September 2020


https://www.w3.org/Submission/OWL-S/
https://www.w3.org/Submission/OWL-S/

	An Event-B based approach for cloud composite services verification
	Abstract
	1 Introduction
	2 Related works
	2.1 Semantic verification approaches
	2.2 Behavior verification approaches
	2.3 Resource verification approaches
	2.4 Discussion

	3 Motivations and problem statement
	4 Modelling requirements
	4.1 Semantic requirements
	4.2 Behavioral requirements
	4.3 Resource requirements

	5 Overview of the Event-B method
	6 Modelling cloud composite services with Event-B
	6.1 The architecture of the Event-B specification
	6.2 Modelling the structural requirements
	6.3 Modelling the semantic requirements
	6.4 Modelling the behavioral requirements
	6.5 Modelling the resource requirements
	6.6 Summary of the development

	7 Verification and validation
	7.1 Proof-based verification
	7.2 Validation by animation

	8 Conclusion
	References




