
https://doi.org/10.1007/s00165-019-00499-8
BCS © 2019
Formal Aspects of Computing (2020) 32: 1–32

Formal Aspects
of Computing

Linearizability on hardware weak memory
models
Graeme Smith1, Kirsten Winter1 and Robert J. Colvin1

1School of Information Technology and Electrical Engineering,
The University of Queensland, Brisbane, Australia

Abstract. Linearizability is a widely accepted notion of correctness for concurrent objects. Recent research has
investigated redefining linearizability for particular hardware weak memory models, in particular for TSO. In
this paper, we provide an overview of this research and show that such redefinitions of linearizability are not
required: under an interpretation of specification behaviour which abstracts from weak memory effects, the
standard definition of linearizability is sound and complete on all hardware weak memory models. We prove our
result with respect to a definition of object refinement which takes a weak memory model as a parameter. The
main consequence of our findings is that we can leverage the range of existing techniques and tools for standard
linearizability when verifying concurrent objects running on hardware weak memory models.

Keywords: Linearizability; Correctness; Concurrent objects

1. Introduction

Linearizability [HW90] is a widely accepted notion of correctness for concurrent objects [MS04] that relates the
behaviours of an object’s implementation to the possible behaviours of its specification. As a correctness notion it
benefits greatly from being compositional, i.e., the linearizability of each object of a system in isolation guarantees
that the overall system is also linearizable. This provides us with a practical approach to proving correctness.

At the level of implementation, operations on an object take time and hence they may overlap in a multi-
threaded program. This is obviously difficult to reason about. Linearizability allows us to prove, however, that
the behaviour of such an object implementation is consistent with that of a specification in which operations
are atomic, and hence cannot overlap. The key concept is the notion of a linearization point, a point where an
operation in the implementation can be thought of as taking effect atomically. Choosing such a point for each
operation in a concurrent history of an implementation allows us to match that history with a sequential history
of the specification. The sequential history is referred to as a linearization of the concurrent history.

Correspondence to: G. Smith, E-mail: smith@itee.uq.edu.au

http://crossmark.crossref.org/dialog/?doi=10.1007/s00165-019-00499-8&domain=pdf

2 G. Smith et al.

Fig. 1. Linearizability example

Figure 1 shows two linearizations of a concurrent history in which operation B of thread T1 overlaps with
operation C of thread T2. There are two important things to note. Firstly, the linearization point of an operation
must occur somewhere between its invocation, i.e., when it is called, and its response, i.e., when it returns. This
means that operations which do not overlap in the concurrent history occur in the linearization in the order
they were invoked. Secondly, overlapping operations in the concurrent history may occur in either order in
the linearization, regardless of the order of their invocations and responses. A concurrent history satisfies a
specification, provided one of its possible linearizations is a history of the specification.

A concurrent object is considered correct when each of its finite histories linearizes with a sequential history
of the specification. Hence, linearizability only checks safety properties of an object implementation, not liveness
properties [GY11, SW17]. Since linearizability is compositional, we can prove the correctness of a system of
interacting objects by showing each component object is linearizable with respect to its specification [HW90].

Recent work [BGMY12, GMY12, TMW13, DSD14, DD16, DJRA18, DDWD18] examines the applicability
of linearizability in the context of weak memory models of modern multicore architectures [SSO+10, SSA+11,
MHMS+12, AFI+08, AMT14, FGP+16, CS18]. These memory models improve hardware efficiency by reducing
accesses to global memory. Individual threads may operate on local copies of global variables, updates to the
global memory being made by the hardware and largely out of the programmer’s control.1 This can cause threads
executing on different cores to get out of sync with respect to the values of global variables.

For example, on the TSO (Total Store Order) architecture [SSO+10] a thread updating a global variable x
stores the new value in a per-core FIFO buffer. Threads executing on that core will then read x from the buffer,
rather than the global memory, until the new value is flushed from the buffer by the hardware. In the meantime,
threads on other cores read the value of x from the global memory or from their own core’s buffer when it has a
value for x .

There have been several attempts at defining linearizability for TSO. Burckhardt et al. [BGMY12] include a
notion of buffers in the specification of a concurrent object, and associate two atomic steps with each specification
operation: one where the effect of the operation updates the buffer, and a subsequent one where it takes effect
in the global memory. Gotsman et al. [GMY12] introduce nondeterminism into the specification to model that
a thread may, or may not, have seen a recent update. Both of these approaches change the specification that
the implementation needs to satisfy. The resulting specifications are less intuitive and do not correspond to
specifications that would normally be found as part of a software library.

Derrick et al. [DSD14] take a different approach, leaving the specification unchanged and instead changing the
definition of linearizability. A similar approach is used by Travkin et al. [TMW13, TW14] when developing tool
support for proving linearizability on TSO. These approaches (which we will collectively call TSO-linearizability)
change the bounds within which the linearization point must occur. Specifically, they do not require that the
linearization point of an operation occurs before its response; it can occur any time up to the final flush associated
with the operation. This could allow operation A of Fig. 1 to linearize after C in the case when its flush occurs
after C (see Fig. 2).

1 A programmer can add fences (or memory barriers) to code to force any pending updates to be written to memory. However, if used
indiscriminately, fences reduce the gains in efficiency that a weak memory model provides.

Linearizability on hardware weak memory models 3

Fig. 2. Linearizability example on TSO

Fig. 3. Program that can result in z � w � 0 on TSO

TSO-linearizability is the basis for the proof methods in [DSGD14] and [DSGD17]. As proved in [DS15]
it is compositional. It takes a particular view on the meaning of a specification in which, although operations
occur atomically, they do not necessarily take effect immediately. Assume, for example, we have an object o
with operations WriteX which writes value 1 to a variable x , WriteY which writes value 1 to a variable y , and
ReadX and ReadY which read the variables x and y respectively. When a straightforward implementation of o’s
operations (i.e., one not involving fences) is run on TSO, the program in Fig. 3 could result in both z and w being
equal to 0 (the initial value of both variables). This occurs when the flushes of both writes are delayed until after
both reads have executed. This somewhat surprising behaviour is considered correct by TSO-linearizability since
there is a linearization as shown in Fig. 4.

While this is a valid view of correctness, it requires the user to have a solid understanding of thememorymodel
in order to know what behaviour the object might engage in. In particular, as can be seen in Fig. 4, operations
may effectively occur out-of-order with respect to program order, i.e., the order they appear in the program text.
Under simple memory models like TSO, this is not too much of a burden for the user, but may become so under
more complex memory models, especially when the code of the object also becomes more complex.

Strengthening the definition of TSO-linearizability to ensure that events take effect in program order is
proposed in [DS15] and [DDGS15]. Under these definitions, the program in Fig 3 should never result in both
z and w equal to 0 if the operations behave according to their specification. While this overcomes the above
problem, it introduces a different one: the definition is no longer compositional. To see this, consider the example
in Fig 5 where o1 and o2 are different objects with an operation Write (to write a local variable of the object)
and an operation Read (to read the local variable).

Assume the implementation of each object (when run in isolation) is linearizable. When the objects are run
together, compositionality would ensure that the combined system is also linearizable. However, the composed
system of Fig. 5 can result in both x and y being set to 0 on TSO. This is possible since T2 may perform its write
to o2 and read from o1 before T1 writes to o1 (thus setting x to 0), but not flush the value it wrote to o2 until
after the other two threads have run to completion (setting y to 0).

Fig. 4. Linearization of the program of Fig. 3

4 G. Smith et al.

Fig. 5. Compositionality counter-example (triangular race)

This outcome is not possible, however, according to a specification based on operations taking effect in
program order: if x is set to 0 then this step and hence the write to o2 on T2 must have taken effect before
the write to o1 on T1 took effect, and hence before the read of o2 on T3. Hence, the composed system is not
linearizable.

Doherty and Derrick [DD16] provide a variant of TSO-linearizability which preserves program order and is
proved compositional when the client program is restricted to be free from operation races (like data races but at
the level of operations rather than individual lines of code). The program in Fig. 5 provides an example of such
a racy program showing a triangular race [Owe10] and hence Doherty and Derrick’s approach is not applicable.
While their result is a useful contribution, it does not allow us to prove linearizability of objects which may be
used in any context: something we would like for objects in a software library.

What is central to the quest to defining a suitable notion of linearizability is a reference point for correctness
under weak memory models that allows one to prove soundness and completeness. What does it mean for an
object implementation to behave correctly, andwhich behaviour of an object can be deemed incorrect? The answer
to this seemingly simple question requires some attention in the context of weak memory models. In [SWC18] we
provided such a notion of correctness, object refinement, which is based on a notion of trace refinement where the
object is viewed in the context of a client program. This notion is similar to contextual or observational refinement
[DG16, FORY10] but is geared for the context of weak memory models. Object refinement is parameterised by
the memory model it refers to, and is therefore generic and can be instantiated for any hardware weak memory
model. In this work we utilise this notion to provide a formal proof of soundness and completeness. In contrast
to all previous work, we prove that using standard linearizability (as originally proposed by Herlihy and Wing
[HW90]) is sound and complete not just on TSO, but any hardware weak memory model. It is, of course, also
compositional (as proved by Herlihy and Wing).

To do this, we adopt an alternative view of a specification in which its operations occur and take effect
atomically (rather than potentially taking effect later). This view of specifications has two advantages. Firstly,
it ensures that an implementation maintains the intent of the specification, e.g., an implementation of a lock
operation does not have a delayed effect that allows multiple threads to acquire the associated lock [DSD14].
Secondly, understanding a linearizable object’s specified behaviourwithin a programdoes not require a knowledge
of the memory model. Analogously to a specification of a concurrent object abstracting from the effects of
interleaving, the specification in this view also abstracts from the effects of weak memory models.

The paper is structured as follows. In Sect. 2 we outline the basic concepts of our theory including that of
effects2 which is key to our definitions. Based on these concepts, Sect.3 formalises the semantics of programs
under a given memory model and postulates some basic axioms that we assume of program behaviour under
weak memory. The semantics of a concurrent object in the context of a client program, under a memory model,
is elaborated in Sect. 4, distinguishing cases for the specification, in which operations are atomic, and the im-
plementation which includes non-atomic, and possibly non-terminating, operations. Section 5 ties these basics
into the notion of weak-memory trace refinement which defines refinement under memory model M for a client
program using an object and its specification, respectively. The definition is parameterised with a given memory
model for which we assume a semantics is given. Using weak-memory trace refinement we then define our notion
of object refinement under memory model M which delivers the notion of correctness for objects. In Sect. 6, we
prove that the standard definition of linearizability is both sound and complete with respect to our definition
of object refinement. Sect.7 illustrates how object refinement, and hence standard linearizability, can be used
to prove correctness of typical concurrent objects. The paper concludes with a discussion of related work in
Section 8.

2 Referred to as observations in our earlier work [SWC18].

Linearizability on hardware weak memory models 5

Contributions This paper is an extension of our previous paper [SWC18] in which our notion of object refinement
was first defined. That paper provided a reference point from which definitions of linearizability on different
hardwareweakmemorymodels couldbeproved soundand complete. Thedefinitionof object refinement abstracts
from the semantics of particular memory models, instead relying on an operational semantics, such as those for
TSO [SSO+10] and the significantly weaker memory models POWER and ARM [FGP+16, CS18], to provide
possible program behaviours. As it explicitly avoids out-of-thin-air results, it is not applicable to software weak
memory models such as C11 [BOS+11, NMS16].

In this paper, we use that parameterised definition to show that standard linearizability is sound and complete
for all hardware weak memory models. The assumptions that are required for the proofs are made explicit
as axioms of the program semantics. These axioms are derivable from concepts, like object encapsulation and
atomicity, and are independent of weak memory model behaviour. This is in contrast to previous work which
has changed the definition of linearizability, often for a specific memory model. Earlier in this section, we have
provided an overview of this body of earlier work and related the different definitions.

The main consequence of our findings is that we can leverage the range of existing techniques and tools for
standard linearizability when verifying concurrent objects running on hardware weak memory models.

2. Client programs and effect events

To investigate the behaviour of concurrent objects under hardware weak memory models, and relate their imple-
mentations to their specifications using refinement, we need to consider the calling context. Programs calling the
operations of a concurrent object are referred to as client programs, or clients for short. A client program P is
concurrent, running multiple threads Ti possibly on multiple cores, and is affected by the memory model of the
architecture it is running on. For some finite n, we have3

P �̂ T1 ‖ T2 ‖ . . . ‖ Tn .

Followingotherworkonconcurrent objects [HW90,FORY10,DG16], thebehaviourof aprogram is described
in terms of events that occur. We allow events to be program steps, operation events or, as introduced in Sect. 2.1,
effect events.

Program steps are any steps performed by the client other than calling an object operation. These are as-
signments, conditional branch instructions (e.g., if or while statements), other control instructions like vari-
ous forms of fences, atomic read-modify-write instructions which atomically perform these three steps (e.g.,
the compare-and-swap instruction CAS), and higher-level instructions which can, in many cases, be defined in
terms of assignments and/or conditional branches. For example, a statement await(z=1) could be defined as
while(z �� 1) {}.

Operation events abstract the behaviour of an operation call by a program. They include the invocation of the
operation (i.e., when it is called) and the operation’s response (i.e., when it returns). The operation events carry the
operation’s input and output values as parameters and thus reflect the operation’s externally visible behaviour.
The internal behaviour of an object is elided.

2.1. Effect events

Central to our definitions is the notion of an effect event. Such an event denotes the point in an execution where
a program step or an operation can be deemed to have taken effect and (if observable) has been observed by all
threads Ti of client P . Effect events are where the results of program steps and output values of operations (if
any) become known globally.

Note that an operation’s internal steps and their effects are not observable on the program level (due to object
encapsulation), and hence we record only one effect event per operation call. These operation effects are not
used for object refinement. Object refinement is based on the refinement of the client program and only takes
into account observable program steps. However, operation effects are essential when defining the semantics of
objects in a context of a client running under a weak memory model, as we will see in Sect. 4.

3 For simplicity, we do not consider dynamically spawned threads.

6 G. Smith et al.

Fig. 6. Client program

Introducing effect events allows us to decouple when events occur in a program andwhen they are observed by
other threads, whichmight not fall together under hardware weakmemorymodels. Program steps and invocation
and response events correspond to the points in an execution where the program counter (pc) is at the address of
the corresponding instruction. For an invocation or response, this instruction will be an update to pc, setting it
to where the execution should continue. Hence, for any memory model these events will remain in the order that
they occur in the program text.

The semantics specific to the memory model under consideration determines the possible orderings of the
effect events. Effect events occur only after their matching program event or, in the case of an operation, after
the matching invocation. Furthermore, for any program step or operation that writes to memory, its effect will
occur when all threads can either

(a) access the new value of a global program variable written by a program step, or
(b) access the values of all shared object variables written by an operation.

2.2. Programs

The behaviour of a concurrent program P under a weak memory model M can be described by a partial order
<PM

over the events of the program to which all possible executions of that program must adhere. When event
e occurs before event e ′ in the partial order, i.e., (e, e ′) ∈ <PM

then event e must occur before event e ′ in any
execution of P . When P involves branching (e.g., if or while statements), there will be several paths through P
(one corresponding to each combination of branches). The events of different paths need to be distinct which
can be ensured, for example, by including in each event an identifier of the path to which it belongs.

To understand what a partial order of a program for a particular memory model might look like consider the
example of a client program given in Fig. 6 with two global program variables x and z, running on two threads
T1 and T2. The threads call three operations of the same object o, of which the operation B does not write to
any shared object variable. Note that we assume that the result of any operation call is implicitly stored in a local
register (e.g., rA for the operation call o.A), and invA denotes the invocation of o.A, etc.

On a sequentially consistent (SC) architecture, i.e., one without a weak memory model, writes to global
variables occur instantaneously. Hence, the effect event for a program step occurs immediately after the program
step, and that of an operation between its invocation and response.

The partial order on the events of the program of Fig. 6 on SC is shown below. The branch in the partial order
after the program step z = 1 of thread T1 takes effect corresponds to the operation call o.B() of T1 occurring in
parallel with the code of thread T2.

invA effA resA x=rA effx=rA z=1 effz=1

invB effB resB

invC effC resC

await(z=1)

effawait(z=1)

OnTSO [SSO+10], writes to global variables and shared object variables become available to threads on other
cores when they are flushed. These flushes may occur at some later point, but we know that they occur in the
same order as the writes occurred. Hence, in the partial order of the events on TSO (depicted below), effA occurs
before effx�rA which occurs before effz�1. The effect event effB can only occur after invB but is not ordered with

Linearizability on hardware weak memory models 7

respect to the other effect events since o.B does not write to any shared variable, and hence does not have to
follow the FIFO order of flushes of writes. Similarly, the effect events effawait(z�1) and effC are un-ordered.

invA resA

effA

x=rA

effx=rA

z=1

effB

invC resC

effC

await(z=1)

invB resB

effz=1

effawait(z=1)

On ARM and POWER [SSA+11, MHMS+12, AFI+08, AMT14, FGP+16, CS18], the effect events might
occur out of (program-) order and also flushing of variables need not occur in a FIFO manner. Hence the effects
are un-ordered in the partial order of the program depicted below, apart from effA and effx�rA which are ordered
due to a data-dependency on register rA. As under TSO, the assignment to z and the await statement maintain
their order due to the data dependency (on z) and the synchronisation (await) between T1 and T2.

invA resA

effA

x=rA

effx=rA

z=1

effB

invC resC

effC

await(z=1)

invB resB

effz=1

effawait(z=1)

For programs with more than two threads, the semantics of ARM and POWER also allow non-multi-copy
atiomicity, i.e., where threads on different cores to the thread performing a write may see the write at different
times. On such a memory model, the effect will be the point where all cores have seen the write. In the operational
semantics of ARM and POWER in [CS18], non-multi-copy atomicity is modelled using a sequence of writes
where each write is associated with the set of thread identifiers of threads which have seen the write. The effect
occurs in this semantics when that sequence indicates that all threads have seen either the write or a future write
to the same variable, i.e., one that occurs later in the execution.

The order in which effect events occur in an actual behaviour of a program determines the value of the
output associated with the effect. This value must also correspond to the output value of the operation response
or program step that is observed through the effect event. This correspondence, which prevents out-of-thin air
results available in software memory models such as C11 [BOS+11, NMS16], is captured in a well-formedness
condition on traces formalised in the next section.

3. Semantics of programs relative to the memory model

The semantics of a program P under memory modelM is defined in terms of the set of events that can occur, and
a partial order<PM

over those events. The events are, on one hand, determined by P through the program text,
and, on the other hand, determined by the semantics of the memory model as outlined in Sect. 2. In this section,
we formalise the semantics of a program assuming its events and partial order are given.

3.1. Events

Let T be the set of all thread identifiers, and Call the set of all (unique) operation calls. An operation is then
defined as a call by a particular thread.

Op �̂ T × Call

LetPS denote the set of all program step events, andVal the set of all values (of input and output parameters),
including a special element⊥meaning ‘no value’. The set of all events is defined as follows, where each invocation
is associated with an input, and each response and effect with an output.

Event �̂ step(T ,PS) | eff (T ,PS) | inv (Op,Val) | res(Op,Val) | eff (Op,Val)

8 G. Smith et al.

In the remainder of this paper, we refer to step(T ,PS) and eff (T ,PS) as program events, ProgEvents , and to
inv (Op,Val), res(Op,Val), and eff (Op,Val) as object events, ObjEvents .

A program P has a set of events, events(P), such that for each invocation event in events(P), events(P) also
contains all possible corresponding response and effect events. That is, each called operation can respond and
take effect and the associated output is not under the program’s control.

∀ op : Op; in : Val •
inv (op, in) ∈ events(P) ⇒ ∀ out : Val • {res(op, out), eff (op, out)} ⊆ events(P) (1)

3.2. Traces

The semantics of a program P is described as a set of finite sequences of events, referred to as traces.4 In the
following ti denotes the i th element of a trace t , and #t its length.

For each trace t , each event is unique (similar events, e.g., calls to the same operation, may be annotated by
their relative position in the trace).

Trace �̂ {t : seqEvent | ∀ i , j ≤ #t • i �� j ⇒ ti �� tj }
The events of a trace and the order on these events are defined as follows.

events(t) �̂ {a : Event | ∃ i ≤ #t • ti � a}
<t �̂ {(a, b) : Event × Event | ∃ i , j ≤ #t • i < j ∧ ti � a ∧ tj � b}

Note that the order<t is a total order over the events in t , as a trace describes exactly one execution of a program.
As awell-formedness condition on traces we postulate that an invocation of an operation always occurs before

both the associated response and the associated effect. Similarly, a program step always occurs before its effect.
Also, the output value of an operation’s effect is the same as that of the corresponding response event. For any
trace t we have

(∀ a : Op; out : Val • (∀ j ≤ #t • tj ∈ {res(a, out), eff (a, out)} ⇒ ∃ in : Val ; i < j • ti � inv (a, in))) ∧
(∀ s : T ; p : PS • (∀ j ≤ #t • tj � eff (s, p) ⇒ ∃ i < j • ti � step(s, p))) ∧
(∀ a : Op; outr , oute : Val • {res(a, outr), eff (a, oute)} ⊆ events(t) ⇒ outr � oute) (2)

Since responses remain in the order they appear in the program text, the constraint on the outputs of effects and
responses prevents out-of-thin-air results.

3.3. Programs

The semantics of program P on memory model M is defined as the set of traces using only events from P and
whose orders adhere to the constraints prescribed by the partial order<PM

. That is, if a pair of events (a, b) is in
<PM

and b is in an execution of P on M then a occurs earlier in that execution. Hence the semantics of P on M
is defined as

[[P]]M �̂ {t : Trace | events(t) ⊆ events(P) ∧ <PM
� <t }

where <PM
� <t specifies whether an order is allowed by P on M , formally defined as

<PM
� <t �̂ ∀(a, b) : <PM

• b ∈ events(t) ⇒ (a, b) ∈ <t

That is, for any event b that occurs in trace t , if this event is constrained to come after another event a by<PM
,

then event a must also occur in t before event b. Note that it is not suitable to use the simple subset relation here,
i.e., <PM

⊆ <t , since trace t will not, in general, include all events b that are constrained by<PM
.

Since we are aiming at the most general description of program semantics under any memory model, we do
not explicitly prescribe<PM

.

4 Since we are interested in defining a notion of correctness that readily relates to linearizability, and hence only safety properties [GY11,
SW17], we do not consider infinite sequences of events in our semantics.

Linearizability on hardware weak memory models 9

Fig. 7. Scenarios of synchronisations between threads

Instead, based on the understanding of concurrent programs, concurrent objects and their interplay (as laid
out in Sect. 2), we formulate certain characteristics of<PM

that are shared by all memory models, and provide a
set of axioms in the remainder of this section.

In the context of this work, we are interested in both the order of operation events and the order between
operation and program events in <PM

. We define synchronisation (between threads) as an event on one thread
affecting the occurrence of another event on another thread. Synchronisation requires a writing and a reading
access to a shared variable (e.g., through an await statement or a conditional).Wemake the following assumptions
on objects and clients:

• The state space of an object is encapsulated and hence the client does not share any variables directly with
the object; communication occurs only through input and output values of the object’s operations.

• Consequently, synchronisation between two threads can only occur between program events (referred to as
program synchronisation) or between operation events (referred to as object synchronisation). The client cannot
directly synchronise with a step in an operation that occurs between its invocation and response, but only with
the invocation and response events themselves which serve as the interface between client and object. Figure 7
depicts the possible synchronisations by means of two scenarios: The scenario on the left illustrates program
synchronisation between the threads T1 and T2, in which the program synchronises on two program steps
which follow operation A and precede operation B, respectively. An example of this type of synchronisation
is given by the instructions z = 1 and await(z = 1) in Fig. 6. The scenario on the right illustrates operations
A and B overlapping and synchronising on the object level, outside the control of P .

• A client cannot enforce a flush within an operation; the operation’s implementation is outside the client’s
control.

From these assumptions we can deduce that <PM
can only enforce the invocation of an operation to occur

before another event, which is not the effect of the operation5, if and only if the response is also enforced to occur
before the event. (The implication from right to left holds due to the well-formedness condition (2).)

∀ e, inv (a, in), res(a, out) : events(P) •
e �� eff (a, out) ⇒ ((inv (a, in), e) ∈ <PM

⇔ (res(a, out), e) ∈ <PM
) (3)

Similarly,<PM
cannot enforce the response of an operation to come after another event, which is not the effect

of the operation, unless it also enforces the invocation to come after the event. (As above, the implication from
right to left holds due to well-formedness (2).)

∀ e, inv (a, in), res(a, out) : events(P) •
e �� eff (a, out) ⇒ ((e, res(a, out)) ∈ <PM

⇔ (e, inv (a, in)) ∈ <PM
) (4)

A similar condition holds for the order of effect events with respect to program events. Due to an object’s im-
plementation, the effect of an operationmight occur before its response event (e.g., if the operation is implemented
with fence instructions which prevent a delay in its effect), which is outside the control of P . Hence<PM

cannot
enforce the effect of an operation to come after another program event unless it also enforces the invocation to
come after the program event. (Again, the implication from right to left holds due to well-formedness (2).)

∀ e, inv (a, in), eff (a, out) : events(P) •
e ∈ ProgEvents ⇒ ((e, eff (a, out)) ∈ <PM

⇔ (e, inv (a, in)) ∈ <PM
) (5)

In some memory models, the order in which two effects can occur can be constrained (e.g., in TSO the order
of observable effects follows the order of the observed events), but only if the order of the corresponding events
is also enforced.

5 The other event can be the response of the operation since partial orders are reflexive and hence (res(c), res(c)) is in <PM for any c.

10 G. Smith et al.

Any order that is caused by the nature of a particular implementation (e.g., an additional fence instruction in
the code) is outside the control of P (similarly to the case above). This means, if the effects of two operations are
ordered then the order of the operations must be enforced, and hence the response of one operation must occur
before the invocation of the other.

∀ inv (a, in), eff (a, out), res(c), eff (c) : events(P) •
((eff (c), eff (a, out)) ∈ <PM

∧ c �� (a, out)) ⇒ (res(c), inv (a, in)) ∈ <PM

A similar condition holds if<PM
enforces an operation effect to occur after the invocation, response or effect

event of another operation. This is only possible if the two operations are ordered (and hence the response of
the first must occur before the invocation of the other). If the operations are not ordered by <PM

, they may
occur in either order (and hence the effects may occur in either order) or they may overlap. For overlapping
operations,<PM

cannot enforce an order of object events since any object synchronisation is beyond the control
of P . Therefore we can generalise the above axiom as follows.

∀ inv (a, ina), res(a, outa), eff (a, outa), inv (b, inb), eff (b, outb) : events(P) •
∀ e : {inv (a, ina), res(a, outa), eff (a, outa)} •

((e, eff (b, outb) ∈ <PM
∧ a �� b) ⇒ (res(a, outa), inv (b, inb)) ∈ <PM

(6)

As a consequence of these observations we deduce that an order between object events of two operations can
only be enforced by<PM

if<PM
also enforces that these two operations do not overlap.

Lemma 1 (Enforced ordering on object events).

∀ inv (a, ina), res(a, outa), eff (a, outa), inv (b, inb), res(b, outb), eff (b, outb) : events(P) •
∀ e : {inv (a, ina), res(a, outa), eff (a, outa)}; e ′ : {inv (b, inb), res(b, outb), eff (b, outb)} •

((e, e ′) ∈ <PM
∧ a �� b) ⇒ (res(a, outa), inv (b, inb)) ∈ <PM

The proof follows the simple application of Axioms (3) to (6) to all combinations of invocation, response and
effect events of the two operations.

4. Semantics of objects under weak memory models

To define object refinement, our notion of correctness, in Sect. 5, we need to constrain the behaviour of a program
to a particular object or collection of objects (called an object system in [FORY10]). In either case, the interface
between the program and the one or more objects is the operations of those objects, the outputs of which, when
the operations are called in a given sequence, reflect the objects’ behaviour including any interactions between
them. For ease of presentation, we consider a single object only, but the results also hold for a collection of
interacting objects whose interface is the operations of all objects in the collection.

Let t |ir denotes the trace t restricted to invocation and response events. The semantics of an object is given
as a set of histories, where each history is a trace with only invocation and response events.

History �̂ {t : Trace | t |ir � t}

4.1. Object implementation under weak memory models

An object implementation C has a set of object events, events(C), and, on a particular memory model M , a
prefix-closed set of histories made up of those events, [[C]]M .6

For any object implementationC , P [C] denotes the objectC operating in program P . It is only defined when
all invocation events of P are events of C . The semantics of C operating in P on memory model M , [[P [C]]]M ,
is given as those traces of P on M whose object events correspond to a history of C on M .

[[P [C]]]M �̂ {t : [[P]]M | ∃h : [[C]]M • t |ir � h}

6 The set of histories of C would be derived in an operational manner based on the weak memory model semantics. This may involve two
passes in which firstly effects and their placement are taken into account, and secondly response values are added to reflect this placement,
and effects are discarded.

Linearizability on hardware weak memory models 11

Fig. 8. Client program using lock

4.2. Object specification under weak memory models

An object specification A similarly has a set of invocation and response events, events(A), and a prefix-closed
set of histories, [[A]] (where prefixes are restricted to complete histories [HW90] in which the final event cannot
be an invocation). Since A represents a typical specification found in a software library, its set of histories is
independent of the memory model (hence there is no subscript). Any weak memory model behaviour is absent
from its histories due to its operations being atomic, i.e., they respond and take effect immediately and hence
occur without interference from other operations. That is, every history in [[A]] is a sequence of invocation and
response pairs, i.e., every invocation is followed by its response, and no overlapping of operations is possible.

∀ h : [[A]] •
(∀ i ≤ #h • hi � inv (a, in) ⇒ (i < #h ∧ ∃out : Val • hi+1 � res(a, out))) ∧
(∀ i ≤ #h • hi � res(a, out) ⇒ (i �� 1 ∧ ∃ in : Val • hi−1 � inv (a, in))) (7)

To capture atomicity of specifications in our semantics, the behaviour of a client using specification A is
restricted to those traces where only one operation is active at a time. For example, suppose the specification of
a lock object, lock, has an operation acquire which waits until the value of a variable of the object, x, is 1 and
sets it to 0, i.e., acquire is specified as await(x = 1); x := 0. Assuming x is initially 1, in the program of Fig. 8 the
intention would be that only one of y or z would be set to 1.

On SC, this intention is achieved when the invocation of acquire which occurs second does not happen until
after the first acquire has taken effect. On TSO and assuming T1 and T2 are running on different cores, the
intention is achieved when the invocation of acquirewhich occurs second does not happen until after the flush of
x from the acquire which occurs first. This flush might be delayed. On ARM and POWER (again assuming T1
and T2 are on different cores), the intention is achieved when the second invocation of acquire does not happen
until after the write to x by the first invocation has been seen by all threads (see description of non-multi-copy
atomicity in Sect. 2.1).

In all cases, the intention is met when the second occurrence of acquire is not invoked before the effect event
of the first occurrence. In general, for any object specification to behave as intended within a client context, an
operation invocation does not occur before the effect event of a previously invoked operation. (Note that due to
Axiom (7) invocations also must occur after responses of a previous operation.)

Provided all invocation events of a program P are events of a specification A, P [A] denotes the program P
operating with an abstract object whose behaviour satisfiesA. Tomodel atomicity, operations can only be invoked
after previous operations have taken effect (as motivated above). The semantics of P [A] is given as follows.

[[P [A]]]M �̂ { t : [[P]]M | ∃h : [[A]] • t |ir � h ∧
∀ c : Op × Val ; k ≤ #t • tk � inv (c) ⇒

∀ a : Op; in : Val ; i < k • ti � inv (a, in) ⇒
∃out : Val ; j < k • tj � eff (a, out) }

5. Object refinement

Correctness of an object is defined from the client program’s point of view. Such a program can only observe
changes to program variables, i.e., variables that are not defined locally on a thread or as part on an object. Let
t |global denote the observable behaviour of a trace t , i.e., the sequence of effect events of program steps which
write to global program variables. If for two traces t and t ′ we have t |global � t ′ |global , we call them matching
traces.

12 G. Smith et al.

A program P using C on memory model M refines P using A on M when any observable behaviour of the
former is a possible observable behaviour of the latter, i.e., each concrete trace has a matching abstract trace. We
refer to this property as weak-memory trace refinement.

Definition 1 Weak-memory trace refinement

P [A] �M P [C] �̂ ∀ t : [[P [C]]]M • ∃ t ′ : [[P [A]]]M • t ′ |global � t |global

An object implementationC refines an object specificationA under weak memory modelM if for all possible
client programs P , P using C weak-memory trace refines P using A under memory model M . We refer to this
property as object refinement.

Definition 2 Object Refinement under memory model M

A �M C �̂ ∀P • P [A] �M P [C]

If A �M C we say that C is correct with respect to A under memory model M .

6. Linearizability

Linearizability relates histories of an object implementation, whichmay have pending invocations, i.e., invocations
for which there is no response, to histories of an object specification which do not [HW90]. To do this, it needs
to complete the implementation histories. This can be done by adding a response when a pending invocation
is deemed to have taken effect, and removing the invocation when it has not [HW90]. For example, consider a
history comprising a read operation of a variable x occurring on a thread T1 concurrently with a write operation
to x on thread T2 where the latter has not yet responded. If the read operation returns the value from the write
operation, we can assume the write operation has taken effect and hence we add a response to the history. If the
read operation returns the value of x from before the write operation, we can assume the latter has not taken
effect and remove its pending invocation.7

To define linearizability, functions are put in place for adding responses, and removing invocations from
histories. The function ext returns the set of traces which extend a given trace with a sequence of responses such
that the result is still a trace, i.e., responses are only added for pending invocations.

ext(t) �̂ {t � tr : Trace | ∀ i ≤ #tr • ∃c : Op × Val • tri � res(c)}
The function comp returns the trace resulting from the removal of all invocations from a given trace which have
neither an effect nor a response.

comp(t) �̂
⎧

⎨

⎩

〈 〉, if t � 〈 〉
comp(tail t), if NoResp(t)
〈head t〉 � comp(tail t), otherwise

where NoResp(t) �̂ ∃a : Op; in : Val •
head (t) � inv (a, in) ∧ �out : Val ; i ≤ #t • ti ∈ {res(a, out), eff (a, out)}

The following formalisation of the standard definition of linearizability is based on that of Derrick et al.
[DSW11] which has been proved to correspond to the original definition by Herlihy and Wing [HW90]. (Note
that comp(h+) removes all pending invocations from h+ since histories do not have effect events.)

7 In this case, we could also add a response since the write could have taken effect, but after the read took effect. However, to be consistent
with the original definition of linearizability, we allow invocations to be removed.

Linearizability on hardware weak memory models 13

Definition 3 Linearizability (standard definition)

C linM A �̂ ∀ h : [[C]]M • ∃h ′ : [[A]] • ∃h+ : ext(h) • comp(h+) ∼ h ′ ∧ ≺comp(h+) ⊆ ≺h ′

where t ∼ t ′ denotes that t and t ′ are thread equivalent, i.e., when restricted to the events of any one thread
they have the same sequence of invocations and responses, and ≺t�̂ {(res(c), inv (d)) : <t }, i.e., ≺t captures the
order between operations in a trace (where an operation comes before another if its response is before the other’s
invocation).

The intuition behind the definition is that operations which are overlapping in comp(h+) are not ordered by
≺comp(h+) and, with ≺h ′ being a superset of ≺comp(h+), can occur in any order in h ′. For example, the overlapping
operations B and C of the implementation history of Fig. 1 can occur in any order in a linearization of that
history. This is equivalent to letting the linearization points of B and C occur anytime between the respective
operations’ invocations and responses.

Importantly, the definition is compositional (this property is proved for the above definition by Herlihy and
Wingwho refer to it as locality [HW90]). In the casewhen theobject implementationC is a collectionof interacting
objects, compositionality allows us to prove that C is linearizable to a specification of a similar collection of
interacting objects by proving each individual object implementation is linearizable to the corresponding object
specification.

In the remainder of this section, we prove that standard linearizability is sound and complete with respect to
our definition of object refinement. To facilitate the proofs, we introduce the following lemmas on completions
of traces whose proofs are included in “Appendix A”.

Lemma 2 If the events of a trace t are events of a program P then so are the events of any completion of t .
∀P • ∀ t : Trace • ∀ t+ : ext(t) • events(t) ⊆ events(P) ⇒ events(comp(t+)) ⊆ events(P)

Lemma 3 If a trace t is allowed by a program P on memory model M then so is any completion of trace t that
only adds responses for operations whose effects have occurred.

∀P ,M • ∀ t : Trace • ∀ t � tr : ext(t) •
(∀ i ≤ #tr ; c : Op × Val • tri � res(c) ⇒ ∃ j ≤ #t • tj � eff (c)) ∧ <PM

� <t ⇒ <PM
� <

comp(t�tr)

Lemma 4 The operation order of a completion of a trace t is a subset of that of t .

∀ t : Trace • ∀ t+ : ext(t) • ≺comp(t+) ⊆ ≺t

6.1. Soundness

The soundness of standard linearizability in the context of weak memory modelM can now be proved in relation
to our notion of object refinement under M .

Theorem 1 If an object implementation C linearizes with an object specification A on memory model M then
for all client programs P , P [C] is a weak-memory trace refinement of P [A] on M .

C linM A ⇒ ∀P • P [A] �M P [C]

The proof of this theorem takes any concrete history h of C and any abstract history h ′ of A, where the latter
is a linearization of the former, and any trace t of a program calling C that corresponds to the concrete history
h. From these ingredients we construct an abstract trace t ′ such that t ′ corresponds to the linearization h ′. That
is, we move the object events of t such that the operations do not overlap and also occur in the same order as in
h ′ in the resulting trace t ′. It then remains to show that the trace that is constructed in this way is indeed a trace
of the client calling the abstract object (i.e., that t ′ is a trace of P [A]).

Proof
Expanding linM and �M we have

(∀ h : [[C]]M • ∃h ′ : [[A]] • ∃h+ : ext(h) • comp(h+) ∼ h ′ ∧ ≺comp(h+) ⊆ ≺h ′) ⇒
∀P • ∀ t : [[P [C]]]M • ∃ t ′ : [[P [A]]]M • t ′ |global � t |global

14 G. Smith et al.

We need to prove that the consequent holds whenever the antecedent does. For any P , either [[P [C]]]M � ∅
and the consequent trivially holds, or there exists a trace t in [[P [C]]]M . In the latter case, we have that there exists
an h in [[C]]M such that t |ir � h (from the definition of [[P [C]]]M).

Given such a t and h, when the antecedent holds we also have an h ′ ∈ [[A]] and an h+ ∈ ext(h) such that

comp(h+) ∼ h ′ ∧ ≺comp(h+) ⊆ ≺h ′ (S1)

There may be a number of choices for h+ based on howmany pending invocations are given responses. We choose
h+ so that there is an added response for exactly those pending invocations whose effects occur in t . This is always
possible since we know that there exists at least one extension and related abstract history. Call them h+

0 and h ′
0,

respectively. h+
0 cannot have less than the required responses. If it did, comp(h+) would be left with a pending

invocation (with an effect) but no response. Hence, comp(h+) ∼ h ′ would not hold. If h+
0 has more than the

required responses, since [[A]] is prefixed-closed, we can find an h ′ which is a subsequence of h ′
0 which does not

have the additional operations corresponding to the extra responses.8 This h ′ will satisfy (S1) for our chosen h+.
Since t ∈ [[P [C]]]M , we can deduce from the definition of [[P [C]]]M that t ∈ [[P]]M , and with the definition of

[[P]]M , we have that

events(t) ⊆ events(P) ∧ <PM
� <t (S2)

Let t+ ∈ ext(t) be the trace that extends t with the same sequence of responses that h+ extends h. It follows that

t+ |ir � h+ ∧ comp(t+) |ir � comp(h+) (S3)

From (S2), Lemmas 2 and 3 (and since we choose h+ to only add responses to h for operations whose effects
occur in t) we have

events(comp(t+)) ⊆ events(P) ∧ <PM
� <comp(t+) (S4)

Since t+ |ir � h+ (S3) and comp(h+) ∼ h ′ (S1) we can deduce that

comp(t+ |ir) ∼ h ′ (S5)

Central to our proof is the fact that we can construct the abstract trace t ′ appearing in the consequent of the
theorem from trace comp(t+) and history h ′. This is done by means of a transformation function trans , which
reorders object events in comp(t+) to match the order in h ′, while maintaining the order of program events. We
let t ′ � trans(comp(t+), h ′, 〈 〉) using the following definition of the transformation function.

Definition 4 (Transformation function). Let a ∈ Op be an operation, in, out ∈ Val be inputs and outputs, and
r ∈ seqObjEvents a (remainder) sequence that temporarily stores invocations which will be placed into the
resulting trace at a later point. The latter allows the invocations in the original trace to be reordered in the
resulting trace.
Then trans(t, h ′, r) is equal to either
(T1) 〈inv (a, in), eff (a, out), res(a, out)〉 � trans(tail t, tail (tail h ′), r)

if head t � head h ′ � inv (a, in) ∧ ∃ i ≤ #t • ti � res(a, out),
(T2) trans(tail t, h ′, r � 〈inv (a, in)〉) if head t � inv (a, in) ∧ head h ′ �� inv (a, in),
(T3) trans(tail t, h ′, r) if head t ∈ {res(a, out), eff (a, out)},
(T4) 〈head t〉 � trans(tail t, h ′, r) if head t ∈ ProgEvents ∧ � i ≤ #r • ri � head h ′, or
(T5) 〈inv (a, in), eff (a, out), res(a, out)〉 � trans(t, tail (tail h ′), r − {inv (a, in)})

if ∃ i ≤#r • ri � head h ′ � inv (a, in) ∧ ∃ i ≤#t • ti � res(a, out).

Note that (T1)–(T5) cover all cases when t has a response for each invocation (as comp(t+) does). If the head
of t is an invocation, it is either added to t ′ (along with the corresponding effect and a matching response) (T1)
or added to r (T2).

8 Since there is at most one pending invocation per thread, such an h ′ will be in the prefix-closed set [[A]].

Linearizability on hardware weak memory models 15

If it is a response or effect, it is removed (T3). If it is a program event, and the head of h ′ is not in r , it is
added to t ′ (T4). If the head of h ′ is in r , it is added to t ′ (along with the corresponding effect and a matching
response) (T5). Since comp(t+ |ir) ∼ h ′ (S5), all invocations added to r will eventually be processed via the
recursive definition.

It is easy to prove that cases (T1)–(T5) of Definition 4 ensure that the newly constructed trace t ′ contains the
same invocation and response events as comp(t+) and its restriction to invocation and response events matches h ′.

events(t ′ |ir) � events(comp(t+) |ir) ∧ t ′ |ir � h ′ (S6)

Cases (T1) and (T5) in particular ensure that in the transformed trace the operations donot overlap (as invocations,
effects and responses of each operation are added to t ′ in one step).

∀ c : Op × Val ; k ≤ #t ′ • t ′
k � inv (c) ⇒

∀ a : Op; in : Val ; i < k • t ′
i � inv (a, in) ⇒ ∃out : Val ; j < k • t ′

j � eff (a, out) (S7)

With case (T4) we also ensure that program steps are in the same order in t and t ′.

t ′ |p � t |p (S8)

where t |p denotes the trace t restricted to program events. Hence, we have

t ′ |global � t |global (S9)

To prove the consequent of Theorem 1 it remains to show that t ′ ∈ [[P [A]]]M . Given the definition of [[P [A]]]M
and (S6) and (S7) this reduces to proving that t ′ ∈ [[P]]M , i.e., t ′ ∈ Trace, events(t ′) ⊆ events(P) and <PM

�<t ′ .

(i) t ′ ∈ Trace:
With t ∈ [[P [C]]]M and Lemmas 2 and 3 it follows that comp(t+) ∈ [[P]]M and hence is a Trace.
With events(t ′ |ir) � events(comp(t+) |ir) (S6) and t ′ |p � t |p (S8) and the fact that effects are only added
to t ′ to match existing responses [(T1) and (T5)], it follows that all events in t ′ are unique.
Due to cases (T1) and (T5) it is guaranteed that the order of object events in t ′ is well-formed, i.e., for all
inv (a, in) in t ′ we have inv (a, in) <t ′ res(a, out) ∧ inv (a, in) <t ′ eff (a, out).
From case (T4) it follows that the order of program events (program steps and their effects) is maintained in
t ′, i.e., for all step(s, p) and eff (s, p) in t ′ we have step(s, p) <t ′ eff (s, p).
From the above it can be deduced that since t is a well-formed trace, t ′ is also a well-formed trace, i.e.,

t ′ ∈ Trace (S10)

(ii) events(t ′) ⊆ events(P):
With events(comp(t+)) ⊆ events(P) [(S2) and Axiom (1)] and events(t ′ |ir) � events(comp(t+) |ir) (S6) and
t ′ |p � t |p (S8) and the fact that effects are only added to t ′ to match existing responses [(T1) and (T5)] and
these are in events(P) due to Axiom (1), it follows that

events(t ′) ⊆ events(P) (S11)

(iii) <PM
� <t ′ :

To prove this property it must be ensured that ∀(a, b) : <PM
• b ∈ events(t ′) ⇒ (a, b) ∈ <t ′ . This property

is split into the following four cases.

(a) The order between two program events that is enforced by <PM
is maintained in t ′.

∀ a, b : ProgEvents • (a, b) ∈ <PM
∧ b ∈ events(t ′) ⇒ (a, b) ∈ <t ′

(b) If<PM
enforces that a program event has to occur before an object event then this order is maintained by

t ′.

∀ p : ProgEvents ; e ∈ ObjEvents • (p, e) ∈ <PM
∧ e ∈ events(t ′) ⇒ (p, e) ∈ <t ′

(c) If<PM
enforces that an object event has to occur before a program event then this order is maintained by

t ′.

∀ p : ProgEvents ; e ∈ ObjEvents • (e, p) ∈ <PM
∧ p ∈ events(t ′) ⇒ (e, p) ∈ <t ′

16 G. Smith et al.

(d) The order between two object events that is enforced by <PM
is maintained in t ′.

∀ a, b : ObjEvents • (a, b) ∈ <PM
∧ b ∈ events(t ′) ⇒ (a, b) ∈ <t ′

These four remaining properties on t ′ rely firstly on assumptions on <PM
relating to constraints on object

events that might be enforced by P and M , which were outlined in Sect. 3, and secondly on properties of trans
relating to the order of program events in t ′ which can be deduced from Definition 4. The proofs are provided in
“Appendix B”. �

6.2. Completeness

Theorem 2 If we have an object implementation C and specification A such that, for all programs P , P [C] is a
weak-memory trace refinement of P [A] on memory model M then C linearizes to A on M .

(∀P • P [A] �M P [C]) ⇒ C linM A

The proof of this theorem is based on the notion of a “strongest” client program ̂P for each implementation
history h (the details of which are explained below). When such a strongest client program exists, the antecedent
of the theorem implies ̂P [A] �M

̂P [C] and we use this fact to prove that there exists an h ′ ∈ [[A]] such that h
linearizes to h ′. In the case that such a strongest client program does not exist, we show that either (i) the theorem
is trivially true, or (ii) there must be an h ′ ∈ [[A]] such that h linearizes to h ′. Applying these arguments to all h in
[[C]]M results in the theorem’s consequent being true.

The strongest client program ̂P of a history h is one which

1. allows h to occur enforcing the order of its operations, and
2. records every invocation and response in a global variable without delay.

Property 1 requires that ̂P enforces the order of operations (i.e., the response/invocation order) to be as
in h. Although ̂P cannot control the outputs of operations, if it calls the operations with the inputs in h the
corresponding outputs will be possible (since h is an implementation history). For operations on a particular
thread, the required order is enforced by ̂P ’s programorder. For operations on different threads, it can be achieved
using inter-thread program synchronisation where necessary. For example, if the implementation history h refers
to two threads, n and m, and the response of OpA(x) on n occurs before the invocation of OpB (y) on m in h
then ̂P could be of the form

. . . ; u :� OpA(x); z :� 1; . . . || . . . ; await(z � 1); v :� OpB (y); . . .

where initially z � 0 and the elided parts of the program do not change z .
Property 2 can be achieved, for example, with ̂P having global variables varinv and varres and every op-

eration call OpA(x) on thread n which returns a value appearing in ̂P as varinv � (n,OpA, x); fence; y �
OpA(x); varres � (n,OpA, y); fence, and every operation call OpA(x) which doesn’t return a value as varinv �
(n,OpA, x); fence; OpA(x); varres � (n,OpA,⊥); fence. Note that the recording of invocations and responses
using varinv and varres is decoupled from the actual operation invocations and responses, and hence interleaving
of the recording events from different threads is possible.

It is not necessarily the case that matching traces of such a strongest client program have the same sequence
of invocations and responses. This is due to the fact that an invocation might be recorded (via varinv) but the
operation not (yet) called, or an invocation and response have occurred but the response is not yet recorded
(recall that traces are prefix-closed). Nevertheless, for each abstract trace that matches a concrete trace we can
always find another abstract trace that also matches the concrete trace and additionally has the same sequence
of invocations and responses as the completed concrete trace.

Lemma 5 For an object implementation C which is an object refinement of a specification A under M , and any
client program P that records every invocation and response of an operation without delay, we have

∀ t : [[P [C]]]M • (∃ t ′ : [[P [A]]]M • t |global � t ′ |global) ⇒
∃ t ′′ : [[P [A]]]M • t |global � t ′′ |global ∧ ∃ t+ : ext(t) • comp(t+) |ir ∼ t ′′ |ir

Linearizability on hardware weak memory models 17

The proof of this lemma is based on the prefix closure of traces and can be found in “Appendix C”.

Proof of Theorem 2

Expanding linM and �M we have

(∀P • ∀ t : [[P [C]]]M • ∃ t ′ : [[P [A]]]M • t ′ |global � t |global) ⇒
∀ h : [[C]]M • ∃h ′ : [[A]] • ∃h+ : ext(h) • comp(h+) ∼ h ′ ∧ ≺comp(h+) ⊆ ≺h ′

Assuming the antecedent is true, we prove the consequent for any h ∈ [[C]]M . It will not be possible to
construct a strongest client program for h when the synchronisation between two threads, added explicitly or
via a fence, changes the behaviour of the operation occurring after the synchronisation. In the example above,
if synchronising using z causes OpB (y) to result in a different output then the resulting program will not allow
h to occur. This situation would arise, for example, on TSO where the effect of OpA(x) would necessarily occur
before the effect of z � 1 due to the FIFO order of the per-core buffer. In other words, there will be no strongest
client program when the behaviour of one operation (OpB (y) in the example) relies on the effect of an earlier
operation (OpA(x) in the example) being delayed.

For such a h, there are two possibilities.

(i) We can construct a program P such that P [C] has an observable behaviour not in P [A] due to the delayed
effect in h (since a similar delayed effect is not possible in P [A]), i.e., ∃P • ∃ t : [[P [C]]]M • t |ir � h ∧ ∀ t ′ :
[[P [A]]]M • t ′ |global �� t |global . In this case, the antecedent of the theorem does not hold, and the theorem is
trivially true.

(ii) Wecannot construct suchaprogramP andhence∀P • ∀ t : [[P [C]]]M • t |ir � h ⇒ ∃ t ′ : [[P [A]]]M • t ′ |global �
t |global . In this case, consider a program P0 which allows the history h to occur, and indicates (for any other
history) when the operations occur in the same order as in h by means of triangular races. For the example
with OpA and OpB , P0 is of the form

z � 1; || . . . ; u � OpA(x); w � z ; . . . || . . . ; await(z � 1); v � OpB (y); . . .

where z is initially 0 and the elided parts of the program do not change z , w or v . If P0 results in w � 0, we
can deduce that OpA(x) has occurred before OpB (y). Assume OpB (y) in C returns 1 when OpA(x)’s effect
has taken place and 0 otherwise. For history h, the program P0[C] will additionally result in v � 0 since the
effect of OpA(x) is delayed. Since we know there is an abstract trace t ′ matching each concrete trace t where
t |ir � h, it must be possible to have the result w � v � 0 from P0[A]. Therefore, there must be a history
h ′ ∈ [[A]] in which OpA(x) occurs before OpB (y) and the latter operation outputs 0 (even though the effect
of OpA(x) is not delayed). This history h ′ is a linearization of h. Hence the consequent of the theorem holds
for h.

For all other h ∈ [[C]]M , a strongest program ̂P can be constructed. From Property 1, we know that ̂P allows
h to occur, i.e., there exists a trace of ̂P [C] corresponding to h, and that ̂P enforces the operations to occur in
the order in h.

∃ t : [[̂P [C]]]M • t |ir � h (C1)
∀ c, d : Op × Val • (res(c), inv (d)) ∈ <h ⇒ (res(c), inv (d)) ∈ <

̂PM
(C2)

With Lemma 5 and the antecedent of the theorem we can deduce that if a concrete trace has a matching
abstract trace there always exists another matching trace which has the same invocations and responses.

∀ t : [[̂P [C]]]M • ∃ t ′′ : [[̂P [A]]]M • t |global � t ′′ |global ∧ ∃ t+ : ext(t) • comp(t+) |ir ∼ t ′′ |ir (C3)

Let t ∈ [[̂P [C]]]M be any trace satisfying (C1), i.e.,

t |ir � h (C4)

There exists an abstract trace t ′′ ∈ [[̂P [A]]]M and a trace t+ ∈ ext(t) such that the completion of t+ and the abstract
trace share the same invocations and responses [from (C3)].

comp(t+) |ir ∼ t ′′ |ir (C5)

18 G. Smith et al.

With Lemma 4, it follows that

≺comp(t+) ⊆ ≺t (C6)

Since t ′′ ∈ [[̂P [A]]]M , from definition of [[̂P [A]]]M we have that t ′′ ∈ [[̂P]]M and hence

events(t ′′) ⊆ events(̂P) ∧ <
̂PM

� <t ′′ . (C7)

and that there exists an h ′ ∈ [[A]] such that

h ′ � t ′′ |ir (C8)

From (C2) and (C4) we have

∀ c, d : Op × Val • (res(c), inv (d)) ∈ <t ⇒ (res(c), inv (d)) ∈ <
̂PM

(C9)

and with Lemma 4 and the definition of ≺
∀ c, d : Op × Val , t+ : ext(t) • (res(c), inv (d)) ∈ <comp(t+) ⇒ (res(c), inv (d)) ∈ <

̂PM
(C10)

Since <PM
allows t ′′ (C7) and with the definition of �

∀ c, d : Op × Val • (res(c), inv (d)) ∈ <
̂PM

∧ inv (d) ∈ events(t ′′) ⇒ (res(c), inv (d)) ∈ <t ′′ (C11)

From (C5) we know that ∀ d : Op × Val • inv (d) ∈ events(comp(t+)) ⇒ inv (d) ∈ events(t ′′) and hence from
(C10) and (C11) we have

∀ c, d : Op × Val • (res(c), inv (d)) ∈ <comp(t+) ⇒ (res(c), inv (d)) ∈ <t ′′ (C12)

which is ≺comp(t+)⊆≺t ′′ and hence we also have

≺comp(t+) |ir ⊆≺t ′′ |ir (C13)

Since t+ ∈ ext(t), and h � t |ir , there exists a h+ ∈ ext(h) such that

h+ � t+ |ir (C14)

From (C14) and (C13), it follows that

≺comp(h+)⊆≺t ′′ |ir (C15)

and from (C8)

≺comp(h+)⊆≺h ′ (C16)

This is the second conjunct of the consequent. We now derive the first.
From (C8) and (C5) we have

comp(t+) |ir ∼ h ′ (C17)

and hence with (C14)

comp(h+) ∼ h ′ (C18)

Thus conjoining (C18) and (C16) gives us

comp(h+) ∼ h ′ ∧ ≺comp(h+)⊆≺h ′ (C19)

which is the consequent of the theorem. �

Linearizability on hardware weak memory models 19

Fig. 9. Program using spinlock

7. Example applications

To demonstrate the application of standard linearizability for proving (or disproving) correctness of concurrent
objects, we discuss two typical examples, a spinlock [HS08] and a work-stealing deque [LPCZN13] (the latter
developed specifically for ARM). Our soundness result means that whenever an implementation is incorrect
with respect to a specification on a given weak memory model, we can use linearizability to prove this. Our
completeness result means that whenever an implementation is correct with respect to a specification on a given
weak memory model, again we can use linearizability to prove it.

7.1. Correctness on TSO

Consider a spinlock object with operations acquire, release and tryAcquire specified as follows.

acquire
await(x := 1);
x := 0

release
x := 1;

tryAcquire
if (x=1) x := 0; return 1
else return 0

A typical concurrent implementation [HS08] which is correct on SC is

acquire
while (true) {

if (TAS(x, 1, 0)=1) return
while (x=0) {}

}

release
x := 1;

tryAcquire
return TAS(x, 1, 0)

where TAS(x,a,b) is the atomic hardware primitive test-and-set which, when x is a, sets x to b and returns 1, and
otherwise returns 0. The TAS instruction has a built-in fence to ensure any change it makes to x is immediately
visible to all threads.

An earlier version of linearizability on TSO [DSD14] proved that this implementation is correct on TSO.
However (as discussed in Sect. 1) it did not require that abstract operations take effect immediately. Under our
definition of object refinement (for which we assume abstract operations take effect atomically), it is not correct.

Consider the client program in Fig. 9 which contains a triangular race. The program uses a spinlock object
sl for which we assume that initially x = 1 and z = 0. Following the operational semantics of TSO in [SSO+10],
one possible trace of this program is9

〈inv ((T2, sl.acquire),⊥), res((T2, sl.acquire),⊥), eff ((T2, sl.acquire),⊥), inv ((T2, sl.release),⊥),
res(T2, sl.release,⊥), step(T2, y :� 0), step(T1, z :� 1), eff (T1, z :� 1), step(T3, await(z � 1)),
eff (T3, await(z � 1)), inv ((T3, sl.tryAcquire),⊥), res((T3, sl.tryAcquire), 0), eff ((T3, sl.tryAcquire), 0),
step(T3,w :� 0), eff (T3,w :� 0), eff ((T2, sl.release),⊥), eff (T2, y :� 0)〉

This trace corresponds to thread T2 acquiring and releasing the lock and reading the initial value of z, but not
flushing the value written to x by the release operation until after the other two threads have run to completion.
The observable behaviour of the trace is

〈eff (T1, z :� 1), eff (T3,w :� 0), eff (T2, y :� 0)〉

9 The effects in TSO correspond to flushes for program steps and operations which write to global variables, and immediately follow the
program step or operation response otherwise.

20 G. Smith et al.

Fig. 10. Another program using spinlock

This is not an observable trace of the program running with an abstract object whose effects are not delayed: if
y=0 then the step y := z and hence sl.release on T2 must have occurred before z := 1 on T1, and hence before
sl.tryAcquire on T3. Hence, we do not have object refinement. We can prove this with the standard definition of
linearizability due to it being sound with respect to object refinement.

The spinlock implementation without the tryAcquire operation is, however, known to be correct on TSO
[SSO+10]. Again we can show this using our definition of object refinement.

The traces of the implementation derived from the operational semantics of TSO show that if an acquire has
responded (and hence has been observed due to the fence in the TAS) then another acquire cannot respond until
after a release on the same core has responded or a release on another core has been observed. This coincides
with what can be observed from the abstract specification, i.e., an acquire is always followed by a release (before
another acquire can occur). Hence, object refinement holds. Again we can prove this with the standard definition
of linearizability due to it being complete with respect to object refinement.

7.2. Correctness on ARM and POWER

It is easy to show that the spinlock implementation of Sect. 7.1, even without the tryAcquire operation, is not
correct onARMandPOWERusing our definition of object refinement. For example, consider the client program
in Fig. 10 for which we assume that initially x = 1 and y = 0. Following the operational semantics of ARM and
POWER given in [CS18], one possible trace of this program is10

〈inv ((T1, sl.acquire),⊥), res((T1, sl.acquire),⊥), eff ((T1, sl.acquire),⊥), step(T1, y :� 1),
inv ((T1, sl.release),⊥), res((T1, sl.release),⊥), eff ((T1, sl.release),⊥), inv ((T2, sl.acquire),⊥),
res((T2, sl.acquire),⊥), eff ((T2, sl.acquire),⊥), step(T2, y :� 1), inv ((T2, sl.release),⊥), res((T2, sl.release),⊥),
eff ((T2, sl.release),⊥), eff (T1, y :� 1), eff (T2, y :� 1)〉

This trace corresponds to the response of T1’s release operation being observed before its update to y. This
allows T2’s acquire to occur followed by its update of y before T1’s new value of y is observable by T2. Hence,
both threads update y to 1.

Since the observable behaviour 〈eff (T1, y :� 1), eff (T2, y :� 1)〉 of the above trace is not possible using the
specification, the implementation is not correct on ARM or POWER: object refinement does not hold. We can
prove this with the standard definition of linearizability due to it being sound with respect to object refinement.

7.2.1. Chase–Lev deque

As a more substantial example, consider the below code for a version of the Chase–Lev work-stealing deque
(double-ended queue) [CL05] developed specifically for ARM [LPCZN13]. The code shown corresponds to a
refactoring used in [CS18] which, for example, eliminates returns fromwithin a branch, and for simplicity assumes
the elements of the deque are integers.

10 In the operational semantics of [CS18] the placement of effects can be derived from the model of the “storage subsystem” which keeps
track of which updates to global variables have been seen by which threads.

Linearizability on hardware weak memory models 21

put(v)
int t;
t := tail;
tasks[t mod L] := v;
fence;
tail := t+1

take
int h,t,task;
t := tail-1;
tail := t;
fence;
h := head;
if (h <= t)

task := tasks[t mod L];
if (h=t)

if !CAS(head, h, h + 1) then
task := empty;

tail := tail+1;
else

task := empty;
tail := tail+1;

return task

steal
int h,t,task;
h := head;
fence;
t := tail;
cfence;
if (h < t)

task := tasks[h mod L];
cfence;
if !CAS(head, h, h+1)

task := fail;
else

task := empty;
return task

The deque is implemented as a circular array of size L with a head and tail pointer. Elements may be put on
or taken from the tail by a worker thread, and additionally, other (thief) processes may steal an element from the
head of the deque (in order to balance system workload). Since the put and take operations are executed by a
single thread, there is no interference between these two operations.

The put operation straightforwardly adds an element to the end of the deque, incrementing the tail pointer.
It includes a full fence so that the increment of the tail pointer does not take effect before the element is placed
in the array.

The interesting behaviour is in the way that the take and steal operations interact when called concurrently.
To take the task at position t = tail-1, the worker process decrements tail to equal t, thereby publishing its intent
to take that task. This publication, ensured by the following fence, means subsequent thief processes will not try
to steal the task at position t. It then reads head into h and if h < t knows that there is more than one task in the
deque and it is safe to take the task at position t, i.e., no thief process can concurrently steal it.

If t < h the worker knows the deque is empty and sets tail back to its original value. The final possibility
is that h = t. In this case, there is one task on the deque and conflict with a thief may arise. To deal with
this conflict, both the take and steal operations employ an atomic CAS (compare-and-swap) operation. An
operation CAS(x,y,z) checks whether x equals y and, if so, updates x to z and returns true, otherwise it returns
false leaving x unchanged. The CAS is atomic, and the update is immediately written to memory since the CAS
operation also implements a fence.

If h = t, rather than decrementing tail to take the task, the worker increments head. Therefore, if the worker
finds h = t, it restores tail to its original value. The steal operation works similarly. The operation reads the
deque’s head and tail into h and t, and if the deque is not empty tries to increment head from h to h+1 using a
CAS. If it succeeds, the value of head has not been changed since read into the local variable h and hence the
thief has stolen the task.

Additionally, the steal operation contains two control fence barriers (ctrl isync in ARM), denoted cfence
in code above. A control fence ensures all branch instructions occurring before it take effect before any loads,
i.e., reads of global variables, occurring after it. It can therefore be used to avoid speculative execution of loads
occurring in a branch. As shown in [CS18], the first control fence is redundant, and the second is incorrectly
placed. Eliminating the first cfence and swapping the order of the second cfence with the preceding assignment
gives the intended behaviour.

To show that we could also detect these problems using standard linearizability, we define the specification
of the expected deque behaviour in terms of a sequence q and sequence operations � (sequence concatenation),
head, tail, last and front. We also use � to denote nondeterministic choice, which is required to model that steal
may fail.

22 G. Smith et al.

Fig. 11. Program using the Chase–Lev deque

Fig. 12. Another program using the Chase–Lev deque

put(v)
q := q�〈 v〉

take
if q=〈 〉

return empty
else

q := front(q);
return last(q)

steal
if q=〈 〉

return empty
else

q := tail(q); return head(q)
�
return fail

Consider the simple program in Fig. 11 in which the deque d is initially empty and the circular buffer
implementing it initially holds only zeroes. An example trace of the program is

〈inv ((T2, d.steal),⊥), inv ((T1, d.put), 1), res((T1, d.put),⊥), eff ((T1, d.put),⊥), eff ((T2, d.steal), 0),
res((T2, d.steal), 0), step(T2, y :� 0), eff (T2, y :� 0)〉

This trace can occur since the load, t := tail, in steal does not need to take effect before the first control fence,
and the load after the if instruction can take effect before the if statement, so that the code between the full fence
and the second control fence is effectively

cfence; t :� tail; task :� tasks[h mod L]; if(h < t) .

Since the two loads are also not required to take effect in order on ARM, this can be effectively executed as

cfence; task :� tasks[h mod L]; t :� tail; if(h < t) .

Now assume that the steal operation is invoked and reaches the load, task := tasks[h mod L]. Since nothing
has been put into the deque, task will be set to the initial value at h which is 0. If the put operation is then
invoked and takes effect, when the steal continues it will load the new value of tail into t. Since this new value is
greater than h, and no other operation will change h in the program of Fig. 11, the steal operation will complete
returning 0.

The observable behaviour of this trace

〈eff (T2, y :� 0)〉
is not a possible observable trace of the program running with an abstract object: the only observable traces are
〈eff (T2, y :� empty)〉 and 〈eff (T2, y :� 1)〉. Hence, the failure of the implementation to meet the specification
could have been detected using standard linearizability.

As suggested in [CS18], the implementation can be fixed by moving the second control fence before the load
into task. This ensures the load into task takes effect after the if statement, and hence also after the load into t (the
latter cannot take effect after the if statement according to the semantics in [CS18]). Hence, task in steal can only
be set to empty or 1, and the only observable behaviours of the program are those satisfying the specification.

Consider, however, the program containing a triangular race in Fig. 12. On ARM the await instruction
includes a fence to prevent subsequent loads taking effect earlier than it. A possible behaviour of this program
when executed with the fixed implementation is

〈inv ((T2, d.put),⊥), res((T2, d.put),⊥), step(T2, y :� 0), step(T1, z :� 1), eff(T1, z :� 1), step(T3, await(z � 1)),
eff (await(z � 1)), inv ((T3, d.steal),⊥), res((T3, d.steal), empty), eff ((T3, d.steal), empty),
step(T3,w :� empty), eff (T3,w :� empty), eff ((T2, d.put),⊥), eff (T2, y :� 0)〉

Linearizability on hardware weak memory models 23

This occurswhen the effect of the put operation is delayed until after the steal operation has occurred. Specifically,
tail is not updated until after the steal operation. The observable behaviour is

〈eff (T1, z :� 1), eff (T3,w :� empty), eff (T2, y :� 0)〉
which is not a possible behaviour according to the specification. Hence, this would be detected when attempting
to prove standard linearizability. It could be fixed by adding a fence at the end of the put operation. Without this
additional fence, the program of Fig.12 can produce the unexpected observable behaviour above. If this behaviour
is deemed acceptable (as it is harmless if a thief process returns emptywhen there is in fact an element in the deque)
then to prove correctness would require a modification of the specification to allow steal to nondeterministically
return empty in such circumstances.

The need for a fence at the end of the put operation highlights a consequence of our notion of correctness. As
shown in Fig. 12, any operation whose effect can influence the outcome of another operation needs to be fenced
to be correct on a weak memory model. Note however that this does not mean all operations require fences. One
example of an operation where a fence is not required is the release operation of spinlock on TSO. Also, both
the take and steal operations of the Chase–Lev deque on ARMdo not need to be fenced when they fail to return
a task. In particular, it is not a problem when take does not immediately restore tail to its original value before
the next steal. Restoring tail’s original value is only required in take when the deque is empty, and if another put
occurs then tail will be correctly updated by the fence in put (since put and take are both only called by the same
worker thread).

8. Related work

Traditionally, trace refinement provides the notion of correctness for programs: an implementation is correct
with respect to its specification if and only if each observable behaviour of the implementation can also be
observed from the specification [BvW94, Bac90, AL91]. In recent work [SW17] we showed that trace refinement
and linearizability do not coincide; linearizability is, in general, weaker than trace refinement. This is because
in the context of concurrent objects that are called by a client program, an object implementation is deemed
correct if and only if the client program cannot differentiate between the object implementation and its abstract
specification. This notion of correctness differs from trace refinement.

To capture what is observed by client programs under sequentially consistent (SC) architectures (i.e., those
without a weak memory model), the notions of observational refinement [FORY10] and contextual refinement
[DG16] have been introduced. However, both of these definitions do not provide a notion of correctness under
weakmemorymodels, as they do not take into account that an event occurring on one threadmight be observable
later on another. Instead events become observable immediately after their occurrence. Our definition of object
refinement provides a correctness notion for concurrent objects which is applicable to weak memory models.

Bouajjani et al. [BMM11, BDM13] introduce a notion of robustness which requires each trace of a concurrent
implementation running on a weak memory model (specifically, TSO) to be equivalent to a trace of the imple-
mentation running on a sequentially consistent (SC) architecture. This is a stronger requirement than object
refinement which requires that each trace of a concurrent implementation has the same observable behaviour as a
trace of a specification. This allows the implementation to exhibit non-SC behaviour provided that it cannot be
observed by any client program. The release operation of spinlock on TSO, and the take and steal operations of
the Chase–Lev deque on ARM provide examples of where non-SC behaviour is allowed. Furthermore, robust-
ness checks a correspondence between a given implementation on two different memory models (a weakmemory
model and SC). Object refinement, on the other hand, checks a correspondence between an implementation and
a specification. If the specification is sufficiently weak then the implementation may exploit non-SC behaviour to
implement it.

Two recent publication are related to our result: Dongol et al. [DJRA18] investigate the effects of hardware
memory models like TSO, ARM and POWER, and Doherty et al. [DDWD18] investigate linearizability for
concurrent objects under C11.

24 G. Smith et al.

Dongol et al. [DJRA18] define real-time hb-linearisability as the correctness condition for concurrent ob-
jects running on multicore processors. This differs from our result due to the way the semantics of object
implementations and specifications are characterised. Similar to our work, traces follow a real-time ordering
of events which (on one thread) corresponds to the program order. Additionally, however, the events in each trace
(including the output values) have to satisfy the happens-before ordering hb (as defined in [AMT14]) postulated
for the weak memory model. For the abstract specification an additional specification order is introduced that
ensures the intended sequences of events (and output values). Real-time hb-linearisability extends standard lin-
earizability with an additional check that the specification order is maintained between matching abstract and
concrete histories.

In our work, both the happens-before order and the specification order are incorporated into the semantics
of concrete and abstract objects. Instead of introducing an additional check in the linearizability definition (and
hence strengthening it), we abstract from the ordering constraints of M and assume that [[A]] contains only those
histories that satisfy the specification order (and produce the intended output values) and similarly [[C]]M contains
only histories in which sequences of events and their output values satisfy the constraints imposed by the object’s
code and the memory model.

The benefits of this viewpoint are threefold: Firstly we can observe that standard linearizability is sound and
complete with respect to object refinement (no strengthening is required), and standard linearizability is known
to be compositional [HW90]. Secondly, our semantic model is generic and hence independent of any particular
weak memory model semantics (whereas [DJRA18] is linked to the semantic model of [AMT14]). Thirdly, the
assumptions we make on program/object semantics under weak memory models are formalised as simple axioms
(see Sects. 3 and 4). These axioms are generic in that they are based on principles of object encapsulation and
abstract specification—no reasoning about weak memory behaviour is required at this level.

Dongol et al. also define causal hb-linearisability for processes running on distributed systems (and potentially
future multicore architectures). This definition, motivated by requiring programs to have less synchronisation
overhead, removes the need to preserve the real-time order on events between the abstract and concrete specifica-
tions, preserving instead the happens-before order. As outlined in [DJRA18] this more relaxed definition allows
us to prove objects such as that in our Fig. 3 (repeated below) linearizable.

o.WriteX;
z := o.ReadY‖ o.WriteY;

w := o.ReadX

As discussed in Sect. 1 this program can produce the result z = w = 0 on TSO when the WriteX and WriteY
operations write value 1 to variable x and value 1 to variable y , respectively. This does not match any behaviour
of the abstract object whose operations are viewed as taking effect immediately. Hence causal hb-linearisability
is not sound with respect to our definition of object refinement.

Doherty et al. [DDWD18] define causal linearizability as their correctness condition which is closely related to
causal hb-linearisability [DJRA18] but improves on its compositionality result. Whilst causal hb-linearisability
is only compositional under certain constraints either on the abstract specification or on the client program,
causal linearizability is proved to be compositional for any specification and under any client. As with causal
hb-linearisability, however, it does not target hardware weak memory models, but the C11 memory model.
Consequently, it also is not sound with respect to our definition of object refinement.

Acknowledgements

The authors would like to thank Lindsay Groves and the anonymous reviewers of this paper for their valuable
feedback and advice. This work was supported by Australian Research Council Discovery Grant DP160102457.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Linearizability on hardware weak memory models 25

A. Proof of Lemmas

A.1. Proof of Lemma 2

Lemma 2. If the events of a trace t are events of a program P then so are the events of
any completion of t .

∀P • ∀ t : Trace • ∀ t+ : ext(t) • events(t) ⊆ events(P) ⇒ events(comp(t+)) ⊆ events(P)

Proof
Let P be a program, t ∈ Trace and t+ ∈ ext(t).
With the definition of comp we have that events(comp(t+)) ⊆ events(t+).
With the definition of ext it follows that ∃ tr : seqEvent •
(a) t � tr ∈ Trace ∧
(b) (∀ i < #tr • ∃c : Op × Val • tri � res(c)) ∧
(c) t+ � t � tr

From (c) we can deduce that events(t+) � events(t) ∪ events(tr),
and from (b) that ∀ b : events(tr) • ∃(op, out) : Op × Val • b � res(op, out).
With the definition of Trace and (a) it follows that ∃ in : Value • inv (op, in) ∈ events(t).
From this and Axiom (1) we can derive that events(t) ⊆ events(P) ⇒ events(tr) ⊆ events(P),
and with events(t+) � events(t) ∪ events(tr) we have that
events(t) ⊆ events(P) ⇒ events(t+) ⊆ events(P).
From this and events(comp(t+)) ⊆ events(t+) we can conclude that
events(t) ⊆ events(P) ⇒ events(comp(t+)) ⊆ events(P). �

A.2. Proof of Lemma 3

Lemma 3 states that if a trace is allowed by a program then so is any completion that only adds responses for
operations whose effects occur in the trace. The proof of this lemma relies on two sub-results which refer to the
construction of a trace’s completion, the addition of responses and the elimination of pending invocations.

In the following proofs, S \ T denotes the set S minus the elements of set T .

Lemma 3a. If a trace t is allowed by P on M , then so is any trace formed by adding a response to t when the
corresponding effect occurs in t .

∀P ,M • ∀ res(c) : events(P); t : Trace • (∃ i ≤ #t • ti � eff (c)) ∧ <PM
� <t ⇒ <PM

� <
t
�〈res(c)〉

Proof
From the definition of <

t
�〈res(c)〉

it follows that ∀(a, b) : <
t
�〈res(c)〉

\<t • b � res(c).

Let c � (a, out) where inv (a, in) and res(a, out) are in events(P), and let e be any event in events(P) such that
(e, res(a, out)) ∈ <PM

. For <PM
� <

t
�〈res(a,out)〉

to be true, we need to show that e is in t .

Case 1: e �� eff (a, out)
With Axiom (4) it follows that (e, inv (a, in)) ∈ <PM

.
Since t � 〈res(a, out)〉 ∈ Trace we know that inv (a, in) is in t and hence if <PM

� <t (i.e., the
second conjunct of the antecedent holds), we can conclude that e is in t .

Case 2: e � eff (a, out)
If ∃ i ≤ #t • ti � eff (c) (i.e., the first conjunct of the antecedent holds), then e is in t . �

Following Lemma 3a., if a trace t is allowed by a program P on memory model M , the trace formed by
extending t with a sequence of responses whose corresponding effects are in t is also allowed by P on M .

26 G. Smith et al.

Corollary 3.1

∀P ,M • ∀ t : Trace • ∀ t � tr : ext(t) •
(∀ i ≤ #tr ; c : Op × Val • tri � res(c) ⇒ ∃ j ≤ #t • tj � eff (c)) ∧ <PM

� <t ⇒ <PM
� <

t
�

tr

Lemma 3b. If, after removing an invocation from a trace, the resulting event sequence is still a trace, i.e., the
invocation was a pending invocation with neither a response or effect in the trace, then if the original trace is
allowed by a program P on memory model M , the resulting trace is allowed by P on M .

∀P ,M • ∀ inv (c) : events(P) • ∀ t � 〈inv (c)〉 � t ′ : Trace •
t � t ′ ∈ Trace ∧ <PM

� <
t
�〈inv (c)〉�t ′

⇒ <PM
� <

t
�

t ′

Proof
Let P be a program,M be a memory model, t � 〈inv (c)〉� t ′ ∈ Trace, <PM

� <
t
�〈inv (c)〉�t ′

and t � t ′ ∈ Trace.

We can deduce that ∀ a, b : Events • (a, b) : <
t
�〈inv (c)〉�t ′

\<
t
�

t ′
⇒ inv (c) ∈ {a, b}.

Case 1: For all e ∈ Event where (e, inv (c)) ∈ <PM
, with the definition of �, (e, inv (c)) is only enforced

byPM in traces that contain event inv (c). Since inv (c) �∈ events(t � t ′) trace t � t ′ is not affected
by the enforced ordering of (e, inv (c)).

Case 2: For all e ∈ Event and inv (a, in), res(a, out) ∈ events(P) where (inv (a, in), e) ∈ <PM
, if

e �� eff (a, out) then with Axiom (3) we also have (res(a, out), e) ∈ <PM
.

Hence if e ∈ events(t � 〈inv (a, in)〉 � t ′) then, when <PM
� <

t
�〈inv (a,in)〉�t ′

, we have e ∈
events(t ′) and also that res(a, out) ∈ events(t ′). Hence t � t ′ �∈ Trace which contradicts the
assumption.
If e � eff (a, out) and e ∈ events(t � 〈inv (a, in)〉 � t ′) then, by Axiom 2, it is in t ′. Hence
t � t ′ �∈ Trace which again contradicts the assumption.

On the other hand, if e �∈ events(t � 〈inv (a, in)〉 � t ′) then e �∈ events(t � t ′), and the ordering
of (inv (a, in), e) is not enforced on trace t � t ′.

From the above we can conclude that <PM
� <

t
�

t ′
. �

Following Lemma 3b., if a trace t is allowed by a program P on memory model M , the trace formed by
removing all pending invocations from t is allowed by P on M .

Corollary 3.2

∀P ,M • ∀ t : Trace • <PM
� <t ⇒ <PM

� <comp(t)

With the above two corollaries we can now prove Lemma 3.

Lemma 3. If a trace t is allowed by a program P on memory model M then so is any completion of t .

∀P ,M • ∀ t : Trace • ∀ t � tr : ext(t) •
(∀ i ≤ #tr ; c : Op × Val • tri � res(c) ⇒ ∃ j ≤ #t • tj � eff (c)) ∧ <PM

� <t ⇒ <PM
� <

comp(t�tr)

Proof
For any P , M , t ∈ Trace and t � tr ∈ ext(t) where tr only includes responses for operations whose effects
occur in t , with Corollary 3.2 we have <PM

� <
t
�

tr
⇒ <PM

� <
comp(t�tr)

. From this and Corollary 3.1 we

can deduce that <PM
� <t ⇒ <PM

� <
comp(t�tr)

.
�

Linearizability on hardware weak memory models 27

A.3. Proof of Lemma 4

Lemma 4 states that the operation order of the completion of a trace is a subset of the operation order of the
original trace. The proof of Lemma 4 is broken into two steps according to the two steps of the construction of
the completion of a trace. The first result states that additional responses that occur in a completion of a trace do
not cause a modification of the order of operations. A second result states that the removal of pending invocation
events does not affect the order of the remaining operations.

Lemma 4a. Adding a response event to a trace t does not affect the operation order ≺t .

∀ c : Op × Val • ∀ t � 〈res(c)〉 : Trace • ≺t � ≺
t
�〈res(c)〉

Proof
Since ≺t only includes pairs (res(c), inv (d)), i.e., where res(c) occurs in trace t before inv (d), adding a response
at the end of t does not change ≺t . �

As a consequence of Lemma 4a we can conclude that extending a trace t with a sequence of response events
does not affect ≺t .

Corollary 4.1

∀ t : Trace • ∀ t+ : ext(t) • ≺t � ≺t+

Lemma 4b. If, after removing an invocation from a trace, the resulting event sequence is still a trace, i.e., the
invocation was a pending invocation, then its ≺ order is a subset of that of the original trace.

∀ t � 〈inv (c)〉 � t ′ : Trace • t � t ′ ∈ Trace ⇒ ≺
t
�

t ′
⊆ ≺

t
�〈inv (c)〉�t ′

Proof
For any t � 〈inv (c)〉 � t ′ ∈ Trace, assume t � t ′ ∈ Trace.
From the definition of Trace we have inv (c) �∈ events(t) ∧ inv (c) �∈ events(t ′).
Then from the definition of ≺

t
�

t ′
it follows that ≺

t
�

t ′
�≺

t
�〈inv (c)〉�t ′

\ {(a, b) :<
t
�〈inv (c)〉�t ′

| b � inv (c)}.
Hence, we can deduce that ≺

t
�

t ′
⊆ ≺

t
�〈inv (c)〉�t ′

.
�

Following Lemma 4b., removing all pending invocations from a trace results in a trace whose ≺ order is a
subset of that of the original trace.

Corollary 4.2

∀ t : Trace • ≺comp(t) ⊆ ≺t

The two corollaries provide us now with a succinct proof of Lemma 4.

Lemma 4. The ≺ order of a completion of a trace t is a subset of that of t .

∀ t : Trace • ∀ t+ : ext(t) • ≺comp(t+) ⊆ ≺t

Proof
Let t ∈ Trace and t+ ∈ ext(t). With Corollary 4.2 it follows that ≺comp(t+) ⊆ ≺t+ and together with Corollary
4.1 we can conclude that ≺comp(t+) ⊆ ≺t . �

28 G. Smith et al.

B. Transformation function proofs

According to case (T4) in Definition 4 the order of program events in t ′ is the same as in comp(t+).

∀ a, b : ProgEvents • (a, b) ∈ <comp(t+) ⇒ (a, b) ∈ <t ′ (i)

Operation events may be reordered in t ′ compared to comp(t+) unless their order in h ′ is the same as that in
comp(t+):

– according to case (T1) an invocation will be placed at the same place in t ′ if comp(t+) and h ′ coincide on that
event.

– according to case (T2), invocations in comp(t+) that do not match the head of h ′ will be placed into the
remainder sequence r , whose content will be added later to t ′.

– according to step (T5), an invocation which has been placed into the remainder sequence r can be placed in
t ′ when it matches the event at the head of h ′. Its occurrence in t ′ will be later than in comp(t+).

– according to case (T3) the occurrence of responses and effects in comp(t+) will be discarded and instead these
events will be placed directly after their invocation event ((T1) and (T5)) to mimic atomicity of the abstract
operation.

– note that by (T4) program events will only be placed in t ′ if invocations at the head of h ′ and r do not match,
i.e., placing of object events has precedence over placing of program events.

It follows that, with respect to program events, invocations will either stay where they are or will be moved to a
later place in t ′. It is never the case that an invocation will be placed at an earlier place in t ′ (invocations only ever
move to the right) w.r.t. program events.

∀ x : ProgEvents, c : Op × Val • (x , inv (c)) ∈ <comp(t+) ⇒ (x , inv (c)) ∈ <t ′ (ii)

With respect to program events, responses and operation effects will always be placed earlier in t ′ but never later
than their placement in comp(t+). Responses and operation effects only ever move to the left w.r.t. program
events. If the invocation stays where it is in the order, then its response and effect will move to an earlier point
[due to (T1) and (T5)]. If the invocation event is placed at a later point it will never be placed after a program
event that followed its response event (due to the fact that the placement of object events has precedence over the
placement of program events).

∀ x : ProgEvents, c : Op × Val • (res(c), x) ∈ <comp(t+) ⇒ (res(c), x) ∈ <t ′ (iii)

Due to (T1) and (T5) operation effects will be placed at the earliest point in t ′ (i.e., directly before the response
event). Hence, with (iii) it follows that

∀ x : ProgEvents, c : Op × Val • (eff (c), x) ∈ <comp(t+) ⇒ (eff (c), x) ∈ <t ′ (iv)

The above properties of trans , (i)–(iv), and Axioms (3)–(6) of <PM
(on page 9) enable us to prove the four

cases which show that PM allows the constructed trace t ′, i.e., <PM
� <t ′ , from which we can conclude that

t ′ ∈ [[P]]M .

(a) ∀ a, b : ProgEvents • (a, b) ∈ <PM
∧ b ∈ events(t ′) ⇒ (a, b) ∈ <t ′

Proof
Since <PM

� <comp(t+) (S4)
∀ a, b : ProgEvents • (a, b) ∈ <PM

∧ b ∈ events(comp(t+)) ⇒ (a, b) ∈ <comp(t+)
with (i) we have
∀ a, b : ProgEvents • (a, b) ∈ <PM

∧ b ∈ events(comp(t+)) ⇒ (a, b) ∈ <t ′
and (S8)
∀ a, b : ProgEvents • (a, b) ∈ <PM

∧ b ∈ events(t ′) ⇒ (a, b) ∈ <t ′ �

Hence the order of program events that is enforced by PM is maintained by t ′.

(b) ∀ p : ProgEvents ; e : ObjEvents • (p, e) ∈ <PM
∧ e ∈ events(t ′) ⇒ (p, e) ∈ <t ′

Linearizability on hardware weak memory models 29

Proof
Case b1 : e is an invocation event
Since <PM

� <comp(t+) (S4)
∀ p : ProgEvents ; c : (Op × Val) •

(p, inv (c)) ∈ <PM
∧ inv (c) ∈ events(comp(t+)) ⇒ (p, inv (c)) ∈ <comp(t+)

with (ii) we have
∀ p : ProgEvents ; c : (Op × Val) • (p, inv (c)) ∈ <PM

∧ inv (c) ∈ events(comp(t+)) ⇒ (p, inv (c)) ∈ <t ′
and (S6)
∀ p : ProgEvents ; c : (Op × Val) • (p, inv (c)) ∈ <PM

∧ inv (c) ∈ events(t ′) ⇒ (p, inv (c)) ∈ <t ′

Case b2 : e is a response event
Let inv (a, in) and res(a, out) be in events(P), and assume that res(a, out) ∈ events(t ′).
Since t ′ ∈ Trace (S10), inv (a, in) ∈ events(t ′) (Axiom 2), and from (Case b1)
(p, inv (a, in)) ∈ <PM

⇒ (p, inv (a, in)) ∈ <t ′
and since inv (a, in) must occur in t ′ before res(a, out) (Axiom 2)
(p, inv (a, in)) ∈ <PM

⇒ (p, res(a, out)) ∈ <t ′ .
Hence, with Axiom 4 we have
(p, res(a, out)) ∈ <PM

⇒ (p, res(a, out)) ∈ <t ′
and therefore
∀ p : ProgEvents ; c : (Op × Val) • (p, res(c)) ∈ <PM

∧ res(c) ∈ events(t ′) ⇒ (p, res(c)) ∈ <t ′

Case b3 : e is an effect event
Following the same line of reasoning as in Case b2 (with Axiom 5 in place of Axiom 4) we have
∀ p : ProgEvents ; c : (Op × Val)} • (p, eff (c)) ∈ <PM

∧ eff (c) ∈ events(t ′) ⇒ (p, eff (c)) ∈ <t ′

Hence, with (Case b1), (Case b2) and (Case b3) it follows that the order of a program event followed by an
object event that is enforced by PM is maintained in t ′, i.e.,
∀ p : ProgEvents ; e : ObjEvents • (p, e) ∈ <PM

∧ e ∈ events(t ′) ⇒ (p, e) ∈ <t ′ �

(c) ∀ p : ProgEvents ; e : ObjEvents • (e, p) ∈ <PM
∧ p ∈ events(t ′) ⇒ (e, p) ∈ <t ′

Proof
Case c1 : e is an invocation event
Since <PM

� <comp(t+) (S4)
∀ p : ProgEvents ; res(a, out) : events(P) •

(res(a, out), p) ∈ <PM
∧ p ∈ events(comp(t+)) ⇒ (res(a, out), p) ∈ <comp(t+)

and with Axiom (3)
∀ p : ProgEvents ; inv (a, in), res(a, out) : events(P) •

(inv (a, in), p) ∈ <PM
∧ p ∈ events(comp(t+)) ⇒ (res(a, out), p) ∈ <comp(t+)

and with (S8)
∀ p : ProgEvents ; inv (a, in), res(a, out) : events(P) •

(inv (a, in), p) ∈ <PM
∧ p ∈ events(t ′) ⇒ (res(a, out), p) ∈ <comp(t+) .

With (iii) we have
∀ p : ProgEvents ; inv (a, in), res(a, out) : events(P) •

(inv (a, in), p) ∈ <PM
∧ p ∈ events(t ′) ⇒ (res(a, out), p) ∈ <t ′

and with Axiom (2)
∀ p : ProgEvents ; inv (a, in) : events(P) •

(inv (a, in), p) ∈ <PM
∧ p ∈ events(t ′) ⇒ (inv (a, in), p) ∈ <t ′

30 G. Smith et al.

Case c2 : e is a response event
Since <PM

� <comp(t+) (S4)
∀ p : ProgEvents ; c : Op × Val • (res(c), p) ∈ <PM

∧ p ∈ events(comp(t+)) ⇒ (res(c), p) ∈ <comp(t+)
with (iii) we have
∀ p : ProgEvents ; c : Op × Val • (res(c), p) ∈ <PM

∧ p ∈ events(comp(t+)) ⇒ (res(c), p) ∈ <t ′
and with (S8)
∀ p : ProgEvents ; c : Op × Val • (res(c), p) ∈ <PM

∧ p ∈ events(t ′) ⇒ (res(c), p) ∈ <t ′

Case c3 : e is an effect event
Following the same line of reasoning as in Case c2 (with (iv) in place of (iii)) we have
∀ p : ProgEvents ; c : Op × Val • (eff (c), p) ∈ <PM

∧ p ∈ events(t ′) ⇒ (eff (c), p) ∈ <t ′

Hence, with (Case c1), (Case c2) and (Case c3) it follows that the order of an object event followed by a
program event that is enforced by PM is maintained in t ′, i.e.,
∀ p : ProgEvents ; e : ObjEvents • (e, p) ∈ <PM

∧ p ∈ events(t ′) ⇒ (e, p) ∈ <t ′ �

(d) ∀ a, b : ObjEvents • (a, b) ∈ <PM
∧ b ∈ events(t ′) ⇒ (a, b) ∈ <t ′

Proof
Case d1 : a and b are events of the same operation
If the object events refer to the same operation, the reasoning is simply based on the fact that (T5) ensures
that the events occur in t ′ in the order (i) invocation before effect, and (ii) effect before response, and no
program/memory model combination can enforce an order contrary to this. (i) is common to all programs
on all memory models, and (ii) can occur on any program on any memory model (by adding a fence to the
operation if the memorymodel is not SC; under SC the effect always occurs immediately before the response).

Case d2 : a and b are events of different operations
If the object events refer to two different operations, we first prove that if an operation must occur before
another in P on M then this is also the case in t ′.
Since <PM

� <comp(t+) (S4)
∀ c, d : (Op × Val) • (res(c), inv (d)) ∈ <PM

∧ inv (d) ∈ events(comp(t+)) ⇒ (res(c), inv (d)) ∈ <comp(t+)
with comp(t+) |ir � comp(h+) (S3) and the definition of ≺t (on page 13) we have
∀ c, d : (Op × Val) • (res(c), inv (d)) ∈ <PM

∧ inv (d) ∈ events(comp(t+)) ⇒ (res(c), inv (d)) ∈≺comp(h+)

with ≺comp(h+) ⊆ ≺h ′ (S1) and events(t ′ |ir) � events(comp(t+) |ir) (S6)
∀ c, d : (Op × Val) • (res(c), inv (d)) ∈ <PM

∧ inv (d) ∈ events(t ′) ⇒ (res(c), inv (d)) ∈≺h ′
with t ′ |ir � h ′ (S6) and the definition of ≺t∀ c, d : (Op × Val) • (res(c), inv (d)) ∈ <PM

∧ inv (d) ∈ events(t ′) ⇒ (res(c), inv (d)) ∈ <t ′ (∗)
Using this result, we then show that if the events of the operations must occur in a specific order in P on M
then this is also the case in t ′.
Let a ∈ {inv (c, inc), res(c, outc), eff (c, outc)} and b ∈ {inv (d , ind), res(d , outd), eff (d , outd)} where c �� d ,
and assume (a, b) ∈ <PM

. Then from Lemma 1 we have (res(c, outc), inv (d , ind)) ∈ <PM
.

Hence, from (∗) we have
(a, b) ∈ <PM

∧ inv (d , ind) ∈ events(t ′) ⇒ (res(c, outc), inv (d , ind)) ∈ <t ′
Since (T1) and (T5) ensure that if inv (d) occurs in t ′ so do eff (d , outd) and res(d , outd), we have
(a, b) ∈ <PM

∧ b ∈ events(t ′) ⇒ (res(c, outc), inv (d , ind)) ∈ <t ′
and since (T1) and (T5) also ensure that the invocation, effect and response of an operation occur together
(a, b) ∈ <PM

∧ b ∈ events(t ′) ⇒ (a, b) ∈ <t ′

From (Case d1) and (Case d2) it follows that
∀ a, b : ObjEvents • (a, b) ∈ <PM

∧ b ∈ events(t ′) ⇒ (a, b) ∈ <t ′ �

Linearizability on hardware weak memory models 31

C. Completion of matching traces

Lemma 5. For an object implementation C which is an object refinement of a specification A, and any client
program P that records every invocation and response of an operation without delay, we have

∀ t : [[P [C]]]M • (∃ t ′ : [[P [A]]]M • t |global � t ′ |global) ⇒
∃ t ′′ : [[P [A]]]M • t |global � t ′′ |global ∧ ∃ t+ : ext(t) • comp(t+) |ir ∼ t ′′ |ir

Proof
For any client program P that records every invocation and response of an operation without delay it holds that
matching traces of [[P [A]]]M and [[P [C]]]M , i.e., those traces for which the sequence of observable steps is the same,
will differ by at most one invocation/response pair per thread (since after such a pair there would be a further
observable event before the next invocation). Hence, we consider the following 6 cases:

1. t and t ′ have exactly the same sequences of invocations and responses per thread. In this case, the lemma is
satisfied by choosing t ′′ � t ′ and t+ � t .

2. t ′ has extra invocation/response pairs (note that abstract traces cannot be extended by just an invocation (see
Axiom (7)). In this case, we choose t ′′ by removing the invocation/response pairs. This is always possible since
the [[P [A]]]M is prefix-closed (and there is at most one invocation/response pair on each thread). Then with
t+ � t , the lemma is satisfied.

3. t has extra invocation/response pairs. Since all responses are recorded byP , we know that there is an extension
of t in [[P [C]]]M with observable program steps recording each of the extra pairs. From the antecedent, there
must be a matching trace in [[P [A]]] and hence we know that there exists a t ′′ which extends t ′ with the
invocation/response pairs of t . Given this t ′′, the lemma is satisfied with t+ � t .

4. t and t ′ both have invocation/response pairs, but they are different. We use the prefix of t ′ which does not
have the invocation/response pairs (as in case 2), and extend it with the invocation/response pairs of t (as in
case 3) to get t ′′. Then the lemma is satisfied with t+ � t .

5. t has one or more extra invocations. In this case, for each invocation with an effect we add a response in t+ and
we extend t ′ with the matching invocation/response pairs (as in case 4) to get t ′′. The remaining invocations
will be removed by the function comp.

6. t has one or more extra invocations, and t ′ has extra invocation/response pairs. In this case, we use the prefix
of t ′ which does not have the extra invocation/response pairs (as in case 2), and extend t and this prefix of t ′
as in case 5.

�

References

[AFI+08] Alglave J, Fox A, Ishtiaq S, Myreen MO, Sarkar S, Sewell P, Nardelli FZ (2008) The semantics of power and ARMmultipro-
cessor machine code. In: Petersen L, Chakravarty MMT (eds) DAMP ’09. ACM, pp 13–24

[AL91] Abadi M, Lamport L (1991) The existence of refinement mappings. Theoret Comput Sci 82(2):253–284
[AMT14] Alglave J, Maranget L, Tautschnig M (2014) Herding cats: modelling, simulation, testing, and data mining for weak memory.

ACM Trans Program Lang Syst 36(2):7:1–7:74
[Bac90] Back R-JR (1990) Refinement calculus, part II: parallel and reactive programs. Stepwise refinement of distributed systems

models, formalisms, correctness. Springer, Berlin, pp 67–93
[BDM13] Bouajjani A, Derevenetc E, Meyer R (2013) Checking and enforcing robustness against TSO. In: FelleisenM, Gardner P (eds)

Programming languages and systems (ESOP 2013). Springer, Berlin, pp 533–553
[BGMY12] Burckhardt S, Gotsman A,Musuvathi M, Yang H (2012) Concurrent library correctness on the TSOmemory model. In: Seidl

H (ed) ESOP 2012, vol 7211. LNCS. Springer, Berlin, pp 87–107
[BMM11] Bouajjani A,Meyer R,Möhlmann E (2011) Deciding robustness against total store ordering. In: Aceto L, HenzingerM, Sgall

J (eds) Automata, languages and programming. Springer, Berlin, pp 428–440
[BOS+11] Batty M, Owens S, Sarkar S, Sewell P, Weber T (2011) Mathematizing C++ concurrency. In: POPL. ACM, pp 55–66
[BvW94] Back R-JR, von Wright J (1994) Trace refinement of action systems. CONCUR ’94, volume 836 of LNCS. Springer, Berlin,

pp 367–384
[CL05] Chase D, Lev Y (2005) Dynamic circular work-stealing deque. In: SPAA’05: proceedings of the 17th annual ACM symposium

on parallelism in algorithms and architectures, New York, NY, USA. ACM Press, pp 21–28

32 G. Smith et al.

[CS18] Colvin RJ, Smith G (2018) A wide-spectrum language for verification of programs on weak memory models. In: Havelund K,
Peleska J, Roscoe B, de Vink E (eds) FM 2018, vol 10951. LNCS. Springer, Berlin, pp 240–257

[DD16] Doherty S, Derrick J (2016) Linearizability and causality. SEFM 2016, volume 9763 of LNCS. Springer, Berlin, pp 45–60
[DDGS15] DongolB,Derrick J,GrovesL,SmithG(2015)Defining correctness conditions for concurrentobjects inmulticore architectures.

In: ECOOP ’15, LIPIcs. Schloss Dagstuhl – Leibnis-Zentrum für Informatik, pp 470–494
[DDWD18] Doherty S, Dongol B, Wehrheim H, Derrick J (2018) Making linearizability compositional for partially ordered executions.

In: Furia CA, Winter K (eds) IFM 2018, vol 11023. LNCS. Springer, Cham, pp 110–129
[DG16] Dongol B, Groves L (2016) Contextual trace refinement for concurrent objects: safety and progress. In: Ogata K, Lawford M,

Liu S (eds) ICFEM 2016. Springer, Berlin, pp 261–278
[DJRA18] Dongol B, Jagadeesan R, Riely J, Armstrong A (2018) On abstraction and compositionality for weak-memory linearisability.

In: Dillig I, Palsberg J (eds) VMCAI’18, vol 10747. LNCS. Springer, Berlin, pp 183–204
[DS15] Derrick J, Smith G (2015) A framework for correctness criteria on weak memory models. In: Bjørner N, de Boer FS (eds) FM

2015, vol 9109. LNCS. Springer, Berlin, pp 178–194
[DSD14] Derrick J, Smith G, Dongol B, Verifying linearizability on TSO architectures. In: Albert E, Sekerinski E (eds) iFM, (2014)

volume 8739 of LNCS. Springer, Berlin, pp 341–356
[DSGD14] Derrick J, SmithG,Groves L,Dongol B (2014)Using coarse-grained abstractions to verify linearizability onTSOarchitectures.

In: Yahav E (ed) HVC 2014. Springer, Berlin, pp 1–16
[DSGD17] Derrick J, Smith G, Groves L, Dongol B (2017) A proof method for linearizability on TSO architectures. In: Hinchey M,

Bowen JP, Olderog E-R (eds) Provably correct systems. Springer, Berlin, pp 61–91
[DSW11] Derrick J, Schellhorn G, Wehrheim H (2011) Mechanically verified proof obligations for linearizability. ACM Trans Program

Lang Syst 33(1):4:1–4:43
[FGP+16] Flur S, Gray KE, Pulte C, Sarkar S, Sezgin A, Maranget L, Deacon W, Sewell P (2016) Modelling the ARMv8 architecture,

operationally: concurrency and ISA. In: Bodik R, Majumdar R (eds) POPL 2016. ACM, pp 608–621
[FORY10] Filipović I, O’Hearn PW, Rinetzky N, YangH (2010) Abstraction for concurrent objects. Theor Comput Sci 411(51–52):4379–

4398
[GMY12] Gotsman A, Musuvathi M, Yang H (2012) Show no weakness: sequentially consistent specifications of TSO libraries. In:

Aguilera M (ed) DISC 2012, vol 7611. LNCS. Springer, Berlin, pp 31–45
[GY11] Gotsman A, Yang H (2011) Liveness-preserving atomicity abstraction. ICALP 2011, volume 6756 of LNCS. Springer, Berlin,

pp 453–465
[HS08] Herlihy M, Shavit N (2008) The art of multiprocessor programming. Morgan Kaufmann, Burlington
[HW90] Herlihy M, Wing JM (1990) Linearizability: a correctness condition for concurrent objects. ACM Trans Program Lang Syst

12(3):463–492
[LPCZN13] Lê NM, PopA, Cohen A, ZappaNardelli F (2013) Correct and efficient work-stealing for weakmemorymodels. In PPoPP’13,

ACM, pp 69–80
[MHMS+12] Mador-Haim S, Maranget L, Sarkar S, Memarian K, Alglave J, Owens S, Alur R, Martin MMK, Sewell P, Williams D (2012)

An axiomatic memory model for POWER multiprocessors. CAV’12. Springer, Berlin, pp 495–512
[MS04] Moir M, Shavit N (2004) Concurrent data structures. Handbook of data structures and applications 47(1–47):30
[NMS16] Nienhuis K, Memarian K, Sewell P (2016) An operational semantics for C/C++11 concurrency. In: OOPSLA. ACM, pp

111–128
[Owe10] Owens S (2010) Reasoning about the implementation of concurrency abstractions on x86-TSO. In: D’Hondt T (ed) ECOOP

2010, vol 6183. LNCS. Springer, Berlin, pp 478–503
[SSA+11] Sarkar S, Sewell P, Alglave J, Maranget L, Williams D (2011) Understanding POWER multiprocessors. SIGPLAN Not.

46(6):175–186
[SSO+10] Sewell P, Sarkar S, Owens S, Nardelli FZ, Myreen MO (2010) x86-TSO: a rigorous and usable programmer’s model for x86

multiprocessors. Commun ACM 53(7):89–97
[SW17] Smith G, Winter K (2017) Relating trace refinement and linearizability. Formal Asp Comput 29(6):935–950
[SWC18] Smith G, Winter K, Colvin RJ (2018) Correctness of concurrent objects under weak memory models. In Derrick J, Dongol B,

Reeves S (eds) Refine 2018, volume 282 of EPTCS. Open Publishing Association, pp 53–67
[TMW13] Travkin O, Mütze A, Wehrheim H (2013) SPIN as a linearizability checker under weak memory models. In: Bertacco V, Legay

A (eds) HVC2013, vol 8244. LNCS. Springer, Berlin, pp 311–326
[TW14] Travkin O, Wehrheim H (2014) Handling TSO in mechanized linearizability proofs. In: Yahav E (ed) HVC2014, vol 8855.

LNCS. Springer, Berlin, pp 132–147

Received 18 December 2018
Accepted in revised form 16 October 2019 by Michael Butler
Published online 15 November 2019

	Linearizability on hardware weak memory models
	Abstract
	1 Introduction
	2 Client programs and effect events
	2.1 Effect events
	2.2 Programs

	3 Semantics of programs relative to the memory model
	3.1 Events
	3.2 Traces
	3.3 Programs

	4 Semantics of objects under weak memory models
	4.1 Object implementation under weak memory models
	4.2 Object specification under weak memory models

	5 Object refinement
	6 Linearizability
	6.1 Soundness
	6.2 Completeness

	7 Example applications
	7.1 Correctness on TSO
	7.2 Correctness on ARM and POWER
	7.2.1 Chase–Lev deque

	8 Related work
	Acknowledgements
	A Proof of Lemmas
	A.1 Proof of Lemma 2
	A.2 Proof of Lemma 3
	A.3 Proof of Lemma 4

	B Transformation function proofs
	C Completion of matching traces
	References

