
https://doi.org/10.1007/s00165-019-00497-w
BCS © 2019
Formal Aspects of Computing (2019) 31: 733–749

Formal Aspects
of Computing

Bisimulation and Coinduction Enhancements:
A Historical Perspective
Damien Pous1 and Davide Sangiorgi2,3
1Univ Lyon, CNRS, EnsL, UCBL, LIP, 69342, Lyon Cedex 07, France
2University of Bologna, Bologna, Italy
3INRIA, Rocquencourt, France

Abstract. Bisimulation is an instance of coinduction. Both bisimulation and coinduction are today widely used,
inmany areas ofComputer Science, as well as outsideComputer Science.Over, roughly, the last 25 years, enhance-
ments of the principles and methods related to bisimulation and coinduction (i.e., techniques to make proofs
shorter and simpler) have become a research topic on its own. In the paper the origins and the developments of
the topic are reviewed.

1. Introduction

Bisimilarity has emerged as one of the most robust concepts discovered in Concurrency Theory, and is today
widely used in Computer Science. It is also used outside Computer Science, in areas such as Mathematics and
Cognitive Science. Bisimulation has also spurred the study of coinduction; indeed bisimilarity is an example of a
coinductive definition.

Bisimilarity was introduced (formulated by Park [Par81], refining ideas from Milner [Mil80]) as the notion
of behavioural equality for processes. The meaning of equality on processes has produced a rich and profound
debate (yet not exhausted) in Concurrency Theory, particularly in the 1970s and 1980s. The insights so produced
have made an immense contribution to establish the foundations of the area.

Bisimilarity is usually defined as the union of all bisimulations. And a bisimulation is a relation on the terms of
a language that is invariant under the observables of the language (i.e., what can be observed of the terms). Thus
the definition itself immediately leads to a well-established proof technique for bisimilarity: to prove two terms
bisimilar, find a bisimulation relation containing the two terms as a pair. This has turned out to be a powerful
proofmethod and one of the reasons for the success of bisimilarity. Indeed, in contrast with the common inductive
proof principle, the method can be naturally employed on terms denoting possibly infinite behaviours.

Over the years several enhancements of the proof method have been put forward, with the goal of making
it more effective (easier to use, both in paper proofs and in tools for automated or semi-automated analysis)
and more broadly applicable. For instance, in languages for process mobility or in higher-order languages, the
bisimilarity enhancements appear necessary to be able to carry out any non-trivial proofs of equality.Over, say, the
last 25 years, the bisimulation enhancements have become a research topic on its own. Theories of enhancements
have been proposed, with an algebraic flavour, and with connections to abstract mathematical structures such as
complete lattices and categories of coalgebras.

Correspondence to: D. Sangiorgi, E-mail: Davide.Sangiorgi@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1007/s00165-019-00497-w&domain=pdf

734 D. Pous and D. Sangiorgi

The objective of this paper is to track the history of the progress that has been made in the topic of enhance-
ments of the bisimulation proof method. We stress that the goal here is not to report the technical details of the
enhancements—though we will give intuitions and appropriate references. Moreover, we will not report on the
discovery of bisimilarity and coinduction; for this piece of history, see [San09]. Sometimes our search has not
been easy: especially at the beginning, enhancements have often been used as ‘minor’ auxiliary tools, with little
or no effort in isolating the concepts and crediting the relevant papers.

Bisimilarity and the bisimulation proof method are instances of a coinductive definition and of the coin-
duction proof method. Although we will not discuss coinduction here, the reader should bear in mind that the
enhancements outlined in the current paper for bisimulation apply to other coinductively defined notions, in-
cluding preorder relations; see [PS12] for a presentation of the coinduction enhancements following fixed-point
theory.

A special treatment is devoted to weak bisimilarity, that is, bisimilarity that distinguishes the observables
of a term from its internal activity. In programming languages, for instance, these forms of bisimilarity are
pragmatically the most relevant ones. This refinement makes the theory of enhancements considerably more
difficult than in the strong case.

We first review the definition of bisimilarity, in Sect. 2. Then, in Sect. 3, we explain how the first basic forms of
enhancementswere introduced. In Sect. 4we reviewmore advanced enhancements thatwere studied subsequently,
in various settings. In Sect. 5 we discuss progresses that were made toward an algebraic and compositional
theory of. Enhancements for weak forms of bisimilarity are discussed in Sect. 6. We finally describe the parallel
development of enhancements in category theory, using coalgebra, in Sect. 7.

Notation. Given two sets X , Y , we write P(X) for the set of subsets of X , X × Y for the Cartesian product of
X andY , andXY for the set of functions fromY toX . We write 2 for the set with two elements (Booleans). We
let R range over relations on sets, i.e., elements of P(X × X) for some set X . We write RS for the composition
of two relations (i.e., (x , z) ∈ RS holds if there exists y with (x , y) ∈ R and (y, z) ∈ S). We often use the infix
notation for relations, writing x R y for (x , y) ∈ R.

2. Bisimulation

We present bisimulation on Labelled Transition Systems (LTSs) because these are the most common structures
on which bisimulation has been studied. LTSs are essentially labelled directed graphs.

Definition 2.1 (Labelled Transition Systems) A Labelled Transition System is a triple (Prc,Act,
μ−→) where Prc is

a set of states, Act is a set labels, and for each label μ ∈ Act,
μ−→ is a relation on Prc called the transition relation.

In the definition above, the elements of Prcwill be called states or processes as this is the usual terminology in
concurrency. We use P ,Q to range over such elements, and μ to range over the labels in Act. Following the infix

notation for relations, we write P
μ−→ Q when (P ,Q) ∈ μ−→; in this case we call Q a μ-derivative of P , or simply

a derivative of P . We sometimes consider LTSs in which the states are produced by a grammar; for instance the
terms of the process language CCS [Mil89]. In these cases the LTS is often defined by means of rules in the style
of Plotkin’s Structured Operational Semantics (SOS) [Plo04a, Plo04b].

Definition 2.2 (Bisimulation) A binary relationR on the states of an LTS is a bisimulation if whenever P RQ :

1. for all P ′, μ with P
μ−→ P ′ there is Q ′ such that Q

μ−→ Q ′ and P ′ RQ ′;

2. the converse, on the derivatives of Q .

Bisimilarity, written∼, is the union of all bisimulations; thusP ∼ Q holds if there is a bisimulationRwithPRQ .

Bisimulation and Coinduction Enhancements 735

The definition immediately suggests a proof technique: to demonstrate that P and Q are bisimilar, find a bisim-
ulation relation containing the pair (P ,Q). This is the bisimulation proof method. We will not discuss here the
effectiveness of this proof method; the interested reader may consult concurrency textbooks in which bisimilarity
is taken as the main behavioural equivalence for processes, such as [Mil89, San12, SR12].

In the remainder of the chapter we often write challenge-response clauses along the lines of the those in
Definition 2.2: the universal and existential quantifiers in clauses (1) and (2) of Definition 2.2 can be used to
read the definition of bisimulation as a game, see e.g., [San12]. For simplicity we will omit these quantifiers; for
instance clause (1) above would be thus written:

1. if P
μ−→ P ′ then Q

μ−→ Q ′ and P ′RQ ′.

The definition of bisimilarity is an instance of a coinductive definition, and the bisimulation proof method an
instance of the coinduction proof method [MT91]. In the same way, the enhancements of the bisimulation proof
methoddiscussed in the following sections are instances of enhancements of the coinduction proofmethod [PS12].

3. Early ad-hoc enhancements

Bisimulation enhancements have been introduced as a technical tool to simplify bisimulation proofs, so to allow
more flexibility in the requirements for matching derivatives (the requirement P ′RQ ′ of Definition 2.2(1)).

The key observation is that a bisimulation relation often contains redundancies. What is a redundancy?
Intuitively a pair in a bisimulation R may be regarded as redundant if it can be inferred from other pairs in R
using certain reasonning rules. Usually those rules correspond to properties of bisimilarity, such as transitivity
and substitutivity. However this is by no means a rule: there can be surprising counterexamples, see e.g., Sect. 6
or [PS12].

3.1. The first enhancement: bisimulation up to bisimilarity

There is little doubt that the idea of enhancement is due to Milner, with ‘bisimulation up to bisimilarity’. It is
more difficult to trace the first documented occurrence. This is however likely to be Milner’s influential paper on
synchrony and asynchrony [Mil83], where the technique is used to prove a substitutivity property of bisimilarity
in recursive definitions. However, in the paper the technique is not introduced in the way today we are used to
(as found, e.g., in the book [Mil89] and as presented in Definition 3.1 below): a ‘bisimulation up to bisimilarity’
is simply a relation R such that ∼R∼ is a bisimulation. No ‘game conditions’ are proposed, though the use
of the enhancement in the paper corresponds to the game of Definition 3.1. Similar uses of the enhancement
appear in works in the following years that deal with substitutivity of bisimulation-like relations under recursion,
e.g., [Mil87, Wal87].

Milner realises that the technique can be used more generally to remove certain annoying redundancies found
in bisimulation relations. His observation is well exemplified in the way in which the technique is introduced in
his landmark book on CCS [Mil89]. Milner has to prove a simple result, namely that a binary semaphore (as
originally conceived by Dijkstra; Milner uses get and put for the operations called P and V by Dijkstra) can be
implemented as a parallel composition of two unary semaphores. A unary semaphore is written as a recursive
definition:

Sem � get.put.Sem

In the CCS syntax [Mil89], μ .P is an action prefixing (the action μ should be performed first, and then the
continuation P is run). Similarly, a binary semaphore Sem2(0) is specified as follows:

Sem2(0) � get.Sem2(1)
Sem2(1) � get.Sem2(2) + put.Sem2(0)
Sem2(2) � put.Sem2(1).

where + is the operator of sum (or choice). We refer to [Mil89] for the SOS semantics of CCS. A natural equality
to be proved is Sem | Sem ∼ Sem2(0), where ‘|’ is parallel composition. A bisimulation that demonstrates such a

736 D. Pous and D. Sangiorgi

result is, for Sem′ � put.Sem,

S � {(Sem2(0), Sem | Sem)
(Sem2(1), Sem | Sem′)
(Sem2(1), Sem′ | Sem)
(Sem2(2), Sem′ | Sem′) }

(The result actually holds for any n, the case n � 2 is the simplest.) In S, the pairs (Sem2(1), Sem | Sem′) and
(Sem2(1), Sem′ | Sem) differ only in the order of the components of the parallel composition. Since parallel
composition is commutative for bisimilarity (i.e., the law P | Q ∼ Q | P holds), the diagram chasing arguments
on one pair imply those on the other pair. In other words, it should not be necessary to check clauses (1) and (2) of
Definition 2.2 on both pairs. Yet, if we remove one of the pairs, the remaining relation is not a bisimulation. For
instance, if S ′ is the relation without the the pair (Sem2(1), Sem′ | Sem) then S ′ is not a bisimulation because from

the pair (Sem2(0), Sem | Sem), the challenge Sem | Sem get−−→ Sem′ | Sem cannot be matched by Sem2(0). However,
S ′ is a bisimulation up to ∼.

Definition 3.1 A relationR on processes is an bisimulation up to ∼ if whenever PRQ ,

1. if P
μ−→ P ′ then Q

μ−→ Q ′ and P ′ ∼R∼ Q ′ ;
2. the converse, on the derivatives of Q .

We recall that the relational composition ∼R∼ means that there are P ′′,Q ′′ with P ′ ∼ P ′′, Q ′ ∼ Q ′′, and
P ′′RQ ′′. In the proof of soundness of the technique, one shows that the relation∼R∼ (that containsR because∼
is reflexive) is a bisimulation. Intuitively, soundness exploits the transitivity of bisimilarity: instead of proving the
bisimilarity of the derivatives P ′,Q ′ we prove that for P ′′ and Q ′′, with the proviso that P ′ ∼ P ′′ and Q ′ ∼ Q ′′.
Thus from P ′′ ∼ Q ′′ we can derive P ′ ∼ Q ′ by transitivity.

In Milner’s example above about semaphores, the smaller relation S ′ is indeed a bisimulation up to ∼. The

problematic diagram-chasing argument on the challenge Sem | Sem get−−→ Sem′ | Sem is now solved using Sem2(1)
as an answer: Sem2(1) is related in S ′ to Sem | Sem′, which is strongly bisimilar to Sem′ | Sem.

The example brings up the essence of bisimulation enhancements, namely the possibility of carrying out proofs
using relations that are not themselves bisimulations, as required in the ordinary bisimulation proof method, but
contained in bisimulations. Andwhile in this specific example the benefits of the enhancement are quite limited, in
general they can be substantial. For instance, generalising the above example to n semaphores, the enhancement
would allow us to save exponentially many pairs. Several non-trivial proofs in Milner’s book [Mil89] make use of
the technique, often in connection with weak bisimilarity (Sect. 6).

3.2. Self-bisimulations

In [Cau90], Caucal defines a notion of self-bisimulation in the setting of BPA processes (they can be viewed as the
processes generated by a context-free grammar) that allows him to eliminate common prefixes and suffixes in the
derivatives of two processes. For instance, if P and Q are processes of a self-bisimulation and P has a transition

P
μ−→ R.P ′, then Q may answer with the transition Q

μ−→ R.Q ′ if P ′ and Q ′ are also in the self-bisimulation
relation (the common prefix R has been cancelled). Self-bisimulations have been used in [Cau90], as well as in a
number of other papers (e.g., [CHS95, HJM96b, HJM96a]), to establish decidability results for the classes of BPA
and BPP processes (roughly, the latter differ from the former in that the composition operator is commutative).
Caucal’s use of a bisimulation enhancement is interesting because it is more than just a proof simplification: it is
an essential tool to produce the decidability results. The key idea is that while bisimulations usually are infinite,
one can show in this settings that any pair of equivalent processes is related by a finite self-bisimulation.

3.3. Other enhancements

In [MPW89] (an earlier handwritten note with the technique is [Par87]), Milner, Parrow and Walker introduce
bisimulation up to restriction, as a way of removing, in the derivatives of two π -calculus processes on which the
bisimulation game is played, common outermost restrictions. The technique is introduced to simplify the proof

Bisimulation and Coinduction Enhancements 737

of substitutivity of bisimilarity with respect to the operator of parallel composition. The simplification takes care
of the dynamic creation of fresh names—the extrusion of the scope of a restriction, something that does not
happen in CCS. The technique is used to prove a few other laws, also combined with up-to-bisimilarity, obtaining
‘bisimulation up to bisimilarity and restriction’.

4. Theories of enhancements

Until mid 1990s most of enhancements are forms of ‘bisimulation up to bisimilarity’ (for various kinds of
bisimilarity, including strong and weak versions, see also Sect. 6). Enhancements are viewed as auxiliary tools
to simplify proofs. Generally, the simplifications, while elegant, are not critical, in that a proof without the
enhancement would not have been much more complicated—with the exception of Caucal’s self-bisimulations in
the decidability proofs recalled earlier.

The situation changes in the 1990s with the development of operational theories of languages for name
mobility such as the π -calculus [MPW89] and its many dialects, and of languages including higher-order features
(where variables may be instantiated with arbitrary terms), such as λ-calculi (following onAbramsky’s applicative
bisimilarity [Abr90]), CHOCS [Tho89], Higher-order π -calculus [San92], Mobile Ambients [CG98], and so on.
In these languages the enhancements seem essential to be able to obtain any non-trivial proof: defining an
appropriate bisimulation can be considerably hard (i.e., a bisimulation relation containing the pairs of interest),
let alone carrying out the whole proof.

The study of enhancements, as a topic on its own, is proposed in [San95]. This means both understanding
existing enhancements and looking for new forms of enhancements, and (above all) studying theories of en-
hancements, with an algebraic flavour, in which complex up-to techniques are derived by composing simpler
techniques by means of appropriate operators. The paper [San95] focuses on bisimilarity (in fact, strong bisimi-
larity). It introduces a few new forms of enhancements (e.g., ‘up to context’) and makes a proposal for an algebra
of enhancements, viewing enhancements as functions on relations (in the algebra, ‘up to bisimilarity’ turns out to
be derivable from a few constant functions). Following work, in particular Pous [Pou07a, Pou16] refines all this
and makes it even more general, as a fixed-point theory applicable to coinductive objects other than bisimilarity.
We recall below ‘up to context’ and a few other enhancements, deferring algebras of enhancements to Sect. 5.

4.1. Up to context

The enhancement called ‘up to context’ [San95] (the technique had actually already appeared, in the π -calculus,
in [San94], and is anticipated in the conclusions of [SM92]) allows us to cancel a common context in matching
derivatives. Here we are assuming—without getting into the mathematical details—that the process language is
defined by means of a grammar. We use C to range over context, i.e., terms with a hole.

Definition 4.1 A relationR on processes is a bisimulation up to context if whenever PRQ ,

1. if P
μ−→ P ′ then Q

μ−→ Q ′ and there is a context C , and processes P ′′,Q ′′ with P ′ � C [P ′′], Q ′ � C [Q ′′], and
P ′′RQ ′′;

2. the converse, on the derivatives of Q .

In this case, intuitively, the soundness of the technique relies on the substitutivity of bisimilarity, i.e., the fact
that bisimilarity is preserved by contexts. Hence from bisimilarity of P ′′ and Q ′′ we can infer bisimilarity of the
derivatives C [P ′′] and C [Q ′′]. Up-to-restriction is a special case of the up-to-context technique.

The up-to-context technique is important in languages that include name mobility or higher-order features.
Intuitively, in these languages terms may move; for instance, the values that are passed around may contain
‘code’. As a consequence, the ways in which a given term may evolve depend on what its outside environment
provides. Then up-to-context may allow one to separate concerns; for instance the contribution of the outside
environment from the rest of the term. While introduced in concurrency, the technique has been extensively
studied in λ-calculi, beginning with Pitts [Pit95], Lassen [Las98a, Las98b, Las99], Sands [San98]; recent studies
include Dal Lago and Gavazzo [LG19, Gav19]. Without up-to-context, in these languages bisimulation alone
would be often rather cumbersome to use, even on small examples, particularly when bisimulation is in the

738 D. Pous and D. Sangiorgi

‘environmental’ style (Sect. 4.2). In fact up-to-context has sometimes been hardwired into the definition itself of
bisimulation, e.g., [KW06]. Interesting examples of uses of the techniques include those by Merro and Zappa
Nardelli to derive algebraic properties of the Ambient calculus [MN05], and by Aristizabal et al. [ABLP17] for
a λ-calculus with delimited-control operators. (Note that these are all uses of ‘weak’ forms of bisimulations, as
discussed in Sect. 6.)

The up-to-context techniques can however be useful also in ordinary (as opposed to ‘higher-order’) languages,
to exploit the structure of the studied objects. See Sect. 4.3 for a striking example.

4.2. Other forms of enhancement

In ‘up to injective substitutions’ [San95], one is allowed to close the bisimulation game using an injective renaming
on the free identifiers of the derivatives. Again this technique makes sense on terms that have a structure and
where, therefore, it is possible to talk about ‘free objects’ such as identifiers (or names). The technique is useful in
languages inwhich, during the bisimulation game, name substitutionsmay be applied to terms (e.g., name-passing
calculi such as the π -calculus), or where the observables of the bisimulation game include binders with universal
quantifications on the possible choices for instantiation of the binders. The enhancement intuitively exploits the
invariance of bisimilarity under injective substitutions.

The previous enhancements exploit basic properties of bisimilarity, such as transitivity, substitutivity, invari-
ance under injective renaming. Bisimilarity has however been used on a variety of languages, sometimes taking
shapes much richer than that of Definition 2.2. For instance, the language may be typed and the pairs on which
the bisimulation game is played may become triples so to accommodate a typing environment. The extra com-
ponent may also be an environment that intuitively collects the knowledge that the external observer has so far
accumulated about the values received from the tested terms. This kind of bisimulations has appeared in concur-
rency [PS97, BS98a, AG98, BDP99] and has then been widely used in λ-calculi, e.g., [SP04, SP05, KW06, SKS07].
It may also be that the tested terms themselves are enriched with extra components, for instance representing
a store [KW06], or an execution stack [JPR09]. The tested terms may also be collections of terms, for instance
probability distributions as in forms of bisimilarity on languages with probabilities [SV16, CPV16].

In these cases, bisimulation enhancements may be introduced to be able to manipulate the extra components
so added, exploiting properties of bisimilarity on such components. For instance, a typing environment may be
modified by removing entries that mention identifiers that do not appear in the terms, or by strengthening or
weakening the types by applying appropriate subtyping relations. A number of enhancements have been proposed
along these lines; others adapt standard enhancements to such enriched settings. The range of possibilities is too
wide for us to be able to mention all of them. It is however at least worth mentioning that the case of transition
systems exposing probabilities (e.g., the probability that a certain transition will occur) is delicate, sometimes
even in (apparently) basic enhancements such as up-to-bisimilarity; see e.g., the bisimulation up to Markovian
bisimulation equivalence in [BBG98], a development of Milner’s bisimulation up to bisimilarity. Enhancements
for languages with probabilities or metrics have been studied by Vignudelli et al. [SV16, CPV16], and by Bonchi
et al. [BKK17, BKP18]. Enhancements were also used recently for the analysis of systems of polynomial ordinary
differential equations [Bor19]. Generally these are rather recent contributions, and the area remains a hot research
topic.

4.3. Enhancements for automata algorithms

In the early 1970s [HK71], Hopcroft and Karp proposed a simple algorithm to check language equivalence on
deterministic finite automata (DFA), using a so-called ‘union-find’ data structure to record equivalence classes.
Tarjan subsequently proved that this algorithm is almost linear [Tar75]. The algorithm is nowadays recognised
as a coinductive one: language equivalence in a DFA can be characterised as the largest bisimulation (for an
appropriate notion of bisimulation on DFA), so that to check language equivalence of two states, it suffices
to look for a bisimulation containing them. Applying this coinductive technique naively however only leads to
a quadratic algorithm. To achieve almost linear time complexity, Hopcroft and Karp exploit the equivalence
property. Using modern terminology, their algorithm looks for bisimulations up to equivalence rather than plain
bisimulations. By doing so, they are able to reduce the search space: bisimulations up to equivalence have size at
most linear (while bisimulations can have quadratic size).

Bisimulation and Coinduction Enhancements 739

This implicit use of enhanced coinduction was noticed by Bonchi and Pous [BP13, BP15], who extended the
idea to non-deterministic finite automata (NFA). Deciding language equivalence for NFA is harder: the problem
is PSpace-complete. It can be solved by using the powerset construction to determinise the automata, and then
applying Hopcroft and Karp’s algorithm. Such a procedure requires exponential time and space in worst case
since the determinised automata may contain exponentially many reachable states. A key observation is that the
states of the determinised automata bear some structure: determinised states are subsets of states from the initial
automata, and the language of a union of subsets is precisely the union of the languages of those subsets (in
symbols, L(X ∪ Y) � L(X) ∪ L(Y)). This structure makes it possible to define further enhancements and to
improve the algorithm. First, one can use bisimulations up to context by considering set-theoretical union as a
syntactic operator. Second, one can combine up-to-equivalence from Hopcroft and Karp’s algorithm with this
notion of up-to-context in order to obtain an up-to-congruence technique. (The resulting technique is similar in
spirit to Caucal’s self-bisimulations [Cau90] mentioned in Sect. 3.2.) While the worst case theoretical complexity
remains the same, the technique can yield significant efficiency improvements: a bisimulation up to congruence
does not need to explore all reachable subsets of the initial automata, so that the resulting algorithm often solves
in polynomial time families of NFA whose determinised automata have exponentially many states.

5. Compositions and algebras of enhancements

Different up-to techniques may sometimes be composed, so to magnify their usefulness. Examples of this have
been given in Sect. 4.3, in connection with up-to-context. Indeed in an up-to-context it seldom happens that the
common context already appears in the two derivatives, as required byDefinition 4.1. Usually the derivatives need
some massage to bring the context out. The massaging can be for instance achieved by applying some algebraic
laws for bisimilarity, which means combining up-to-context with up-to-bisimilarity. Clause (1) of Definition 4.1
thus becomes:

1. if P
μ−→ P ′ then Q

μ−→ Q ′ and there is a context C , and processes P ′′,Q ′′ with P ′ ∼ C [P ′′], Q ′ ∼ C [Q ′′], and
P ′′RQ ′′;

Early occurrences of combinations of up-to techniques include Milner et al. [MPW89] ‘bisimulation up to
bisimilarity and restrictions’, mentioned in Sect. 3.3 (it is a special case of the composition above, involving up-to-
context); and Caucal’s self-bisimulations [Cau90] as well as bisimulations up to congruence for non-deterministic
automata [BP13, BP15], which combine up-to-equivalence with a form of up-to-context, discussed in Sects. 3.2
and 4.3.

Nevertheless, combinations of up-to techniques remain rather rare and always ad hoc, until mid of the 1990s.
A theory of up-to techniques, with the possibility of combining them, is the main contribution in [San95]. In
the paper, a ‘bisimulation up to’ is a relation R for which one can play the bisimulation game and relate the
derivatives in a larger relation S. This motivates the following notion of progression: Given two relations R and
S, we say thatR progresses to S, writtenR � S if, whenever PRQ

1. if P
μ−→ P ′ then Q

μ−→ Q ′ and P ′ S Q ′;
2. the converse, on the derivatives of Q .

When R and S coincide, the above clauses are the ordinary ones for the definition of a bisimulation relation.
Using this definition one can view enhancements as functions F from relations to relations which are sound

with respect to bisimilarity, i.e., such that for all relation R, R � F(R) entails R ⊆ ∼. For instance, up-to-
bisimilarity corresponds to the function that given a relation R returns the composite relation ∼R∼; up-to-
equivalence corresponds to the function returning the equivalence closure of a relation; up-to-context to that
returning its contextual closure. Relevant questions are: which functions are sound?Which properties are satisfied
by the class of sound functions? Which conditions ensure soundness of functions?

It happens that the class of sound functions is not compositional: there are sound functions whose pointwise
union is not sound, and similarly for other function constructors, e.g., composition. This means that one cannot
freely use two sound functions in a bisimulation proof. To circumvent this difficulty, [San95] suggests a simple
functorial-like condition, called respectfulness. This condition requires that if R ⊆ S and R � S hold, then
F(R) ⊆ F(S) and F(R) � F(S) must hold too. The paper then goes on to prove the soundness of respectful
functions and to show that the class of respectful functions contains non-trivial functions and to study the closure

740 D. Pous and D. Sangiorgi

properties of the class with respect to various important function constructors, like composition, union, itera-
tion, chaining (chaining gives us relational composition). These properties allow one to construct sophisticated
sound functions—and hence sophisticated proof techniques for bisimilarity—from simpler ones. For instance,
bisimulation up to bisimilarity and its soundness are derived from two very simple basic functions, namely the
identity function and the constant-to-∼ function, which maps every relation onto ∼, applying the operator of
chaining.

Hirschkoff [Hir99] has formally verified the theory of respectful functions in Coq, and has used the the-
ory to develop a prototype for mechanically verifying bisimilarity results. This has been the first non-trivial
mechanisation of up-to techniques. At the time it was also one of the largest software developments made in
Coq.

Pous has later generalised this theory to arbitrary coinductive predicates, by stating it in the context of
complete lattices [Pou07a, PS12]. The starting point in this setting is Knaster-Tarski’s theorem [Kna28, Tar55]:
in every complete lattice, every monotone function has a greatest fixpoint, which is obtained as the union of all
post-fixpoints. Bisimilarity for all kinds of systems can be presented in this way, as well as coarser behavioural
equivalences or preorders (see Sect. 6 below). For instance, the following monotone function on relations admits
bisimilarity as its greatest fixpoint:

b : R 	→ {(P ,Q) | if P
μ−→ P ′ then Q

μ−→ Q ′ and P ′RQ ′;
and the converse on the derivatives of Q}

(Note that R ⊆ b(S) precisely if R � S.) Pous proposes to simplify the notion of respectfulness to that
of compatibility, which is simpler to state: a monotone function f is compatible with b if f ◦ b ⊆ b ◦ f
(roughly, this amounts to dropping the set-inclusion requirements in the definition of respectfulness). Com-
patible functions share all the good properties of respectful functions: they are sound, the composition of two
compatible functions remains compatible, and the pointwise union of a family of compatible functions is com-
patible. They are however more restrictive: there are respectful functions that are not compatible (e.g., up-to-
context).

Hur et al. [HNDV13] exploited the complete lattice setting to propose parameterised coinduction: a technique
making it possible to performandwrite coinductive proofs on the fly,without having to announce the bisimulation
candidatebeforehand.This is convenient because itmatches the actual practice:when trying toprove somethingby
coinduction it is in general difficult to correctly guess the appropriate bisimulation candidate fromscratch. Instead,
one generally starts with a small bisimulation candidate, which one enlarges whenever one realises that a new pair
of processes is needed. The idea of computing bisimulations ‘on the fly’ was not new: algorithms for this existed
in the 1990s, e.g., [FM91]. The main interest of [HNDV13] is for proof assistants, where one needs to construct
proofs rather than to execute algorithms, and in the implementation of the approach in the proof assistants
Isabelle/HOL and Coq. In the same paper, Hur et al. also show how to combine parameterised coinduction
with enhancements, by exploiting the straightforward property that, since respectful functions are closed under
arbitrary unions, there exists a largest respectful function (namely, the pointwise union of all respectful functions).
As a consequence, one does not need to choose the enhancement at the beginning of a proof: one can always
blindly use the largest respectful function: during the course of the coinductive proof, this function will allow us
to use any function which is known to be respectful.

Pous subsequently explored the idea of a largest enhancement and proposed to focus on the largest compatible
function, called the companion [Pou16]. This function enjoys many good properties (for instance, this is a closure
operator) and, surprisingly, coincides with the largest respectful function: those functions which are respectful but
not compatible are nevertheless contained in the companion. Moreover, Pous shows that the companion is itself
a coinductive object, so that enhancements can be used to prove that a given function is below the companion.
These second-order techniques are useful to validate enhancements like up-to-context.

The companion can also be characterised in terms of Kleene’s construction of the greatest fixpoint [PW16].
Indeed, the greatest fixpoint of a function b can be obtained as the limit of a sequence over ordinals defined
by iterating the function b. This sequence intuitively consists of approximations of the greatest fixpoint (e.g.,
for bisimilarity the nth element in the sequence is the notion of truncated bisimilarity where the bisimulation
game ends after n steps—n potentially beeing an ordinal). A function is below the companion if and only if it
preserves all the elements of this sequence of approximations. This approach to enhancements as ‘approximation
preserving’ functions has been implemented in Agda [Dan18], where sized types (intuitively, types indexed with
a bound on the size their elements) give an explicit access to the sequence of approximations: approximation
preserving functions become size-preserving functions (at least for coinductive datatypes that are obtained by a

Bisimulation and Coinduction Enhancements 741

sequence of approximations that converges at the first infinite ordinal ω: it remains unclear whether one can go
beyond this ordinal with sized types—moreover the development of a dependent type theory with sized types is
still an ongoing research program [Dan18, end of p.4]).

6. Weak bisimilarity

The bisimilarity discussed in earlier sections is often too restrictive, as it does not abstract over the internal be-
haviour of processes. To address this problem, weak bisimilarity has been introduced [HM85, Mil89]: it allows
processes to play the bisimulation game modulo silent transitions. By contrast, the ordinary bisimilarity is there-
fore often called strong bisimilarity. Since the process transitions are more involved and the equivalence itself is
coarser, the enhancements of the proof method for weak bisimilarity are even more important than those for
strong bisimilarity. Unfortunately the theory for the weak case is also more complex.

Webriefly recall the definition ofweakbisimilarity, referring to [San12] formore details both on itsmotivations
and on its technicalities. First, in the LTS we distinguish a special action, τ , that represents internal activity (i.e.,
an internal evaluation, or a synchronisation between two processes). We call visible the remaining actions, and
use � to range over them (whereas, as before, μ ranges over all actions). We then set:

• �⇒ as the reflexive and transitive closure of
τ−→; i.e., P �⇒ P ′ holds if P can evolve into P ′ by performing

some silent steps—possibly none.

• μ�⇒ as �⇒ μ−→�⇒ (the composition of the thee relations); i.e., P
μ�⇒ P ′ holds if there are P1 and P2 with

P �⇒ P1, P1
μ−→ P2 and P2 �⇒ P ′.

• ̂μ�⇒ as
μ�⇒ if μ �� τ , and as �⇒ if μ � τ .

Definition 6.1 (weak bisimulation and bisimilarity) A relation R is a weak bisimulation if whenever PRQ :

1. for all P ′, μ with P
μ−→ P ′ there is Q ′ such that Q

̂μ�⇒ Q ′ and P ′RQ ′ ;
2. the converse, on the derivatives of Q .

Weak bisimilarity, written ≈, is the union of all bisimulations.

Below, when discussing enhancements we simply indicate how the requirement P ′RQ ′ of clause (1) above is
modified; it is intended that a similar modification is made on clause (2).

Note that in Definition 6.1, the challenges for the bisimulation game are ‘strong’ (using the strong transition

relation
μ−→) whereas the answers are ‘weak’ (using the weak transition relation

̂μ�⇒). It would be possible to
use the weak relations also on the challenger side but this would make the associated proof method (and its
enhancements) harder to use in practice, as there would be more challenges to examine.

Aspointedout earlier, themost common formofbisimulation enhancement is ‘bisimulationup tobisimilarity’.
As in the strong case, in theweak case the firstmention of the techniquewe have found is inMilner’s paper [Mil83],
used to prove the substitutivity of bisimilarity under recursion. In both cases, a ‘bisimulation up to bisimilarity’
is defined to be a relation R that is contained in �R�, where � is the intended bisimilarity (strong or weak).
(The particular use of the up-to in [Mil83] matches the requirement (∗) below of a ‘bisimulation up-to ∼ and ≈’.)
Subsequent research in the 1980s continues to treat ’bisimulation up to bisimilarity’ in the weak case in the same
way as in the strong case. This leads to taking a ‘bisimulation up to≈’ to be a relationR in which the requirement
P ′RQ ′ of Definition 6.1 becomes:

P ′ ≈ R ≈ Q ′ (*)

This appears for instance in [Mil87] (proof of unique solution of equations), in the first version of the CCS
book [Mil89] (this was amended by an errata note by Milner, November 1990, concerning the theorem itself and
its applications in the book, and was then finally adjusted in the second edition of the book), as well as in papers
dealing with other weak behavioural relations (e.g., the divergence-sensitive preorder in [Wal87]).

742 D. Pous and D. Sangiorgi

Unfortunately, the combination of strong and weak transitions in (∗) makes the technique unsound. This
was proved, independently, by Sjödin and Jonsson and by Sangiorgi (both being private communications to
Milner, early 1990, see also [SM92, p. 35]) using more or less the same counterexample, namely R � {(τ.a.0, 0)}.
The processes τ.a.0 and 0 are not weakly bisimilar, but R does satisfy the above requirements. The problems of
‘bisimulation up to bisimilarity’ specific to the weak case are discussed in [SM92]. A simple solution consists in
replacing, on the challenger side, the occurrence of weak bisimilarity with strong bisimilarity, thereby modifying
the requirement of Definition 6.1(1) with

P ′ ∼ R ≈ Q ′ (**)

A relation satisfying these requirements is usually called a weak bisimulation up to ∼ and ≈.
However in this solution the presence of ∼ may represent a too heavy constraint. The goal is to replace ∼

with something as coarse as possible yet capable of guaranteeing soundness. The most useful solution proposed
in [SM92] involves the expansion preorder. The idea underlying expansion is roughly that ifQ expands P , then P
and Q are weakly bisimilar, and in addition, during the bisimulation game P never performs more τ transitions
than Q . Expansion is not an equivalence, it is just a preorder. Intuitively, expansion provides some control on
the number of τ -actions performed by related processes and this is sufficient to maintain the soundness of the

technique. Below, P
̂μ−→ P ′ holds if P

μ−→ P ′ or (μ � τ and P � P ′);

Definition 6.2 (Expansion relation) A relation R is an expansion if whenever PRQ ,

1. P
μ−→ P ′ implies Q

μ�⇒ Q ′ and P ′RQ ′ for some Q ′

2. Q
μ−→ Q ′ implies P

̂μ−→ P ′ and P ′RQ ′ for some P ′.

Q expands P , writtenP � Q , orQ � P , ifPRQ for some expansionR. The preorder� is the expansion relation.

Expansion had been proposed, some time earlier and independently, by Arun-Kumar and Hennessy [AH91],
for completely different reasons, namely to study a preorder giving information about the ‘efficiency’ of processes.

In the bisimulation up to expansion and bisimilarity [SM92] the requirement P ′RQ ′ of Definition 6.1(1) is
replaced by the coarser P ′ � R ≈ Q ′. This form of up-to is used in several subsequent works. A number of
variants exists, sometimes less powerful but easier to define. An example is ‘bisimulation up to deterministic
reduction’, in which the requirement becomes

there is a processes P ′′ with P ′ �⇒d P ′′ and such that P ′′R ≈ Q ′

where P ′ �⇒d P ′′ indicates that P ′ evolves into P ′′ in a deterministic manner, that is, the silent transitions
that bring from P ′ to P ′′ are the only transitions that the processes involved may perform. If P ′ �⇒d P ′′ then
P ′ � P ′′ holds, hence the technique is less powerful; however it may be more convenient to use, as it does not
require introducing an auxiliary relation such as expansion.This is how it is used byFournet andGonthier [FG05].

A limitation of the expansion preorder is that, for P � Q to hold, P must be more efficient than Q at any
point in time. To relax this constraint, Pous has studied techniques that rely on termination guarantees [Pou05,
Pou06, Pou07b]. Those take inspiration from rewriting theory techniques like Newman’s lemma [New42] (local
confluence and termination implies confluence) or decreasing diagrams [BKvO98] (intuitively, amethod originally
proposed to reduce the problem of showing confluence of a rewrite relation to showing its local confluence under
the condition that the confluence diagrams are decreasing with respect to some labelling). Such techniques are
quite powerful and make it possible to handle complex proofs on abstract machines [Pou08]; however, they tend
to be non-compositional: using the terminology from Sect. 5, those are sound techniques which are neither
compatible nor respectful.

The uses of the up-to-context for weak semantics are often coupled with up-to-expansion. In functional
languages, sometimes Sands’ improvement preorder is used in place of expansion, e.g., [Las98a, San98]. The
expansion and improvement preorder reproduce the same idea, namely efficiency. A direction for exploring
up-to-context and related techniques for weak bisimilarity is to use equations, and derive the techniques from
theorems about unique solution of equations [DHS17]. Equations may also be replaced by preorders called
contractions [San15] that play a role similar to that of expansion. The relationship between ordinary bisimulation
enhancements and techniques derived from ‘unique-solution theorems’ is not yet fully understood.

Bisimulation and Coinduction Enhancements 743

7. Coalgebra

In category theory, coalgebras make it possible to model state based systems in a unified way (e.g., processes,
automata, streams, weighted automata) [Jac16]. Given a functor F , an F -coalgebra is just an object X together
with a morphism α : X → FX . The idea is that the functor F describes a type of state-based system, and a
coalgebra for it is a system described by its state space (X), and dynamics (α). For instance, a coalgebra for
FX � P(A × X) is an LTS; a coalgebra for FX � 2 × XA is a deterministic automaton on the alphabet A, a
coalgebra for FX � 2 × P(X)A is a non-deterministic automaton, and so on.

A given functor F often has a final F -coalgebra, i.e, a coalgebra onto which every other coalgebra maps, in
a unique way.

Definition 7.1 An F -coalgebra (�,ω) is final if for every F -coalgebra (X , α), there exists a unique morphism
[·] : X → � such that the following diagram commutes:

X

α

��

[·] �� �

ω

��
FX

F [·]
�� F�

When it exists, the final coalgebra determines the denotational semantics of the considered systems. For instance,
for deterministic automata (FX � 2 × XA), the final coalgebra � consists of formal languages over A, and a
state x of a given coalgebra (i.e., of an automaton) is mapped to the language [x] it recognises. This is called the
final semantics: two states in a coalgebra are behaviourally equivalent if they are mapped to the same value in the
final coalgebra.

This setting has made it possible to study two kinds of coinductive enhancements: enhancements of the
associated corecursion schemes (Sect. 7.1) and enhancements of the bisimulation proof method for arbitrary
state-based systems (Sect. 7.2).

7.1. Enhanced corecursion schemes

Defining an object as a final coalgebra gives us a powerful way to construct its elements (e.g., LTSs, languages,
streams), simplyby exhibiting appropriate coalgebras: this is the corecursion scheme,which is dual to the recursion
scheme given by an initial algebra. Take for instance streams inRN, which are the final coalgebra forFX � R×X
and which have been studied in details by Rutten from the coalgebraic point of view [Rut00, Rut05, NR11]. The
first component of F intuitively corresponds to the head of the stream, and the second component to its tail.

One can define by corecursion the stream from (n) of natural numbers starting from a given number n by
using the coalgebra (N,n 	→ (n,n+1)). The commuting square characterising the unique map from(·) : N → R

N

obtained by finality (Definition 7.1) precisely specifies that the head of the stream from (n) is n, and that its tail
is from (n + 1).

Similarly, one can define the function that pointwise adds two streams, by using the coalgebra ((RN)2, (σ, τ) 	→
(σ0 + τ0, (σ ′, τ ′))), where for a given stream σ , σ0 denotes its head and σ ′ denotes its tail. By finality, one obtains
a function · + · : (RN)2 → R

N such that (σ + τ)0 � σ0 + τ0 and (σ + τ)′ � σ ′ + τ ′.
In both cases, we use a corecursion principle: in order to define a stream (or a family of streams), we define

its head and its tail, and we are allowed to use corecursively the concept being defined for doing so. There are
however constraints in order to ensure that the definition is not circular: with corecursion by finality, one only
has access to a name for the currently defined stream, not to the stream itself (e.g., in the first example, n + 1 is
only a preliminary name for the stream from (n + 1) to be defined, one cannot compute its tail when definining
the coalgebra). Similarly, in the second example, the pair (σ ′, τ ′) in the definition of the coalgebra is a name for
the stream σ ′ + τ ′ being defined.

It is often convenient to relax this condition. Suppose for instance that we want to define the shuffle product
of two streams, usually defined by the following equations:

(σ ⊗ τ)0 � σ0 × τ0 (σ ⊗ τ)′ � σ ′ ⊗ τ + σ ⊗ τ ′

744 D. Pous and D. Sangiorgi

Due to the outer occurrence of+ in the second equation,we cannot turn them into anF -coalgebra: the preliminary
names for σ ′ ⊗ τ and σ ⊗ τ ′ are not enough to call the previously defined function +. In fact, the existence and
unicity of a solution to these equations depends on the behaviour of the function +.

Now consider the functor TX � X 2. One can define an FT -coalgebra as follows: ((RN)2, (σ, τ) 	→
(σ0τ0, ((σ ′, τ), (σ, τ ′)))). Such an FT -coalgebra should be thought of as an F -coalgebra up to T : instead of
giving directly a name for the tail, we are allowed to give two names, (σ ′, τ) and (σ, τ ′), whose corresponding
streams should be combined by a function which still remains to be specified. In this case, we want to use the
function +, which is a T -algebra on the final F -coalgebra � � R

N: a function from T� � (RN)2 to R
N.

In symbols, the function ⊗ is the unique function satisfying the following diagram:

�2

α

��

⊗ �� �

ω

��
FT�2

FT⊗
�� FT�

F+
�� F�

Various conditions have been proposed in the literature to ensure the existence and unicity of solutions to such
equations [Bar04, LPW00,UVP01, Jac06,MMS13]. All of them essentially require that theT -algebra arises from
a distributive law ofT over F , i.e., a natural transformation λ : TF → FT . This is not surprising since the use of
suchdistributive laws is standard inmanydevelopments about coalgebra andoperational semantics [TP97,Kli11].

The notion of compatible function [Pou07a, PS12] (Sect. 5) actually is a special case of such distributive
laws in preorder categories. Conversely, the notion of companion (Sect. 5) can be generalised to the categorical
setting [PR17, BPR17]: it becomes a final distributive law, and under certain conditions it can be computed as
the codensity monad of the final sequence.

This led to the following alternative condition for the enhanced corecursion scheme above to be valid: the
T -algebra should be causal [PR17], i.e., in the case streams, the nth value of its result should depend only on
the n first values of its inputs: the operation does not perform lookaheads. Operations defined using the GSOS
format [Plo04b] typically satisfy this condition: lookaheads are not permitted in this format. So do size-preserving
functions from [Dan18].

The generalised powerset construction [SBBR10] provides another way to look at such enhancements of core-
cursion schemes. There, the key idea comes from the concrete example of finite automata: deterministic finite
automata (DFA) denote formal languages by final semantics, and non-deterministic finite automata (NFA) can be
seen as deterministic automata ‘up to non-determinism’. Indeed, recall that aDFA is coalgebra forFX � 2×XA,
and let T � P be the powerset functor. A NFA is a coalgebra for FTX � 2×P(X)A, i.e., an F -coalgebra up to
T : a state may have a set of successors along a given letter, rather than just a single successor.

The standard powerset construction makes it possible to determinise a NFA. It can be presented using the
following diagram, where (�,ω) stands for the final F -coalgebra of formal languages.

X

α

��

η �� TX
[·] ��

α#�����
��
��
��

�

ω

��
FTX

F [·]
�� F�

On the left, (X , α) is a NFA, an F -coalgebra up to T . It is extended into a DFA, a plain F -coalgebra (TX , α#)
with state space TX � PX , out of which we obtain the semantics, by finality. The situation is similar to that
of bisimulations up-to: ‘bisimulations up to valid principles’, even though they are not bisimulations, can be
extended to bisimulations, and are thus contained in bisimilarity.

A nice observation from [SBBR10] is that the above construction works whenever T is a monad and when
there exists a distributive law of thismonadT overF (η in the diagram is the unit of themonad, and α# is obtained
from α, the distributive law, and the multiplication of the monad). Thus we find again the same ingredients as
before, but here the emphasis is put on the concrete F -coalgebra which is constructed.

Bisimulation and Coinduction Enhancements 745

7.2. Categorical presentation of bisimulation up to context

Aczel and Mendler [AM89] and Turi and Plotkin [TP97] showed that when the functor F preserves weak pull-
backs (which many functors do), then the notion of behavioural equivalence naturally obtained through the final
semantics coincides with the following abstract notion of bisimilarity, based on spans of coalgebra homomor-
phisms.

Definition 7.2 An F -bisimulation between two F -coalgebras (X , α) and (Y , β) is an F -coalgebra (R, ρ) together
with two morphisms f : R → X and g : R → Y making the following diagram commute:

X

α

��

R
f�� g ��

ρ

��

Y

β

��
FX FR

Ff�� Fg �� FY

(Aczel and Mendler restrict to spans that actually correspond to set-theoretical binary relations, but this is
not crucial.) This notion actually maps in most cases to the standard and concrete notions defined for the
corresponding systems: R should be thought as a relation between X and Y , and the conditions on R amount
to saying that it is a bisimulation. (There are other candidates for abstract definitions of bisimilarity, e.g., [HJ98],
see [Sta11] for a comprehensive analysis of their relationships.)

Lenisa [Len99] and Bartels [Bar03] have studied enhancements in this abstract setting. For instance, they
deal with the case where the considered coalgebra carries some additional structure (e.g., those are coalgebras
of terms, like in process algebra, or coalgebras of sets, like with determinised automata). This is done abstractly
using amonadT to represent this structure: a coalgebra with structureT is a coalgebra with carrierTX for some
object X , and an F -bisimulation up to T between two F -coalgebras (TX , α) and (TY , β) is an FT -coalgebra
(R, ρ) together with two morphisms f : R → TX and g : R → TY making the following diagram commute:

TX

α

��

R
f�� g ��

ρ

��

TY

β

��
FTX FTR

Ff #
�� Fg#

�� FTY

(Where f # : TR → TX is obtained from Tf : TR → TTX using the multiplication of the monad T , and
similarly for g#.) Intuitively, in the case whereT is the termmonad for a process algebra, the aboveR is a relation
between processes, and the diagram asserts that R is a bisimulation up to context.

Like in the concrete case, one needs to impose conditions for such a technique to be sound; here again it
suffices for instance that there exists a distributive law of T over F [Bar03]. As mentioned above, this condition
resembles the notion of compatibility in complete lattices (f ◦ b ⊆ b ◦ f—Sect. 5); in fact, it can be shown that
when we have such a distributive law, then the function f corresponding to T for up to ‘T -context’ is indeed
compatible with the function b naturally associated to F [BPPR14].

7.3. Friends: enhanced corecursion in Isabelle/HOL

Enhanced corecursion schemes have been implemented recently by Popescu, Blanchette, Traytel et al. [BPT15,
BBL+17, BBB+17] in the proof assistant Isabelle/HOL. This makes it possible to work efficiently with many
coinductive datatypes, be it to define functions on those datatypes, or to reason about them.

In this line of work, they focus on bounded natural functors, which always admit final coalgebra; they
generically provide enhanced corecursion schemes using socalled friends: functions which are causal and actu-
ally correspond to distributive laws, as described in Sect. 7.1. They moreover automatically derive up-to-context
techniques, along the lines of Sect. 7.2, to ease proofs of equations on coinductive objects.

746 D. Pous and D. Sangiorgi

8. Conclusions

In this paper we have reviewed the history of the developments of enhancements of the bisimulation proofmethod
and more generally of the coinduction proof method. Those discussed are the origins of the main developments
that are known to the authors by the time of writing of this paper (August 2019). However the topic is still very
active, and we expect further developments will occur in the years to come.

For instance, we have mentioned that there is currently a lot of work on languages with probabilities or
metrics, while theories of enhancements for these languages are still in their early stages. New useful forms of
enhancements might be discovered, as well as better ways of transplanting known enhancements from ordinary
transition systems to the new settings.

Advances would also be welcome in the area of higher-order languages. As mentioned in Sect. 4.1, the
bisimulation enhancements are particularly effective in these languages, yet some basic forms of ‘up-to’, such
as up-to-context, are still poorly understood. An example is the relationship between the substitutivity or con-
gruence properties of bisimilarity with up-to-context. For basic forms of bisimilarity and basic languages, such
as applicative bisimilarity and pure call-by-name or call-by-value λ-calculus [Abr90], the proof techniques for
congruence of bisimilarity are well established. However the soundness of the corresponding up-to-context tech-
niques remains an open problem.

Another example of an open long-standing problem concerns the asynchronous π -calculus [HT91, Bou92]—
widely used as a model for distributed systems. In this calculus, in absence of operators for testing the identity
of names, bisimilarity is preserved by name substitutions [San00, BS98b], yet it is unknown whether name
substitutions could be used as an up-to technique (such a technique would be defined in the same manner as the
up-to injective substitutions in Sect. 4.2 but without the limitation that the substitutions should be injective). The
problem is relevant also for other forms of asynchronous calculi, e.g., in the CCS or Higher-Order π -calculus
style [San01].

Acknowledgements

Wewould like to thank the referees for many useful comments. Sangiorgi acknowledges support from theMIUR-
PRIN project ‘Analysis of Program Analyses’ (ASPRA, ID 201784YSZ5 004) and the H2020-MSCA-RISE
project ID 778233 “Behavioural Application Program Interfaces (BEHAPI)”. Pous was supported by the Euro-
pean Research Council (ERC) under the EuropeanUnion’s Horizon 2020 programme (CoVeCe, grant agreement
No 678157).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

References

[ABLP17] Aristizábal A, Biernacki D, Lenglet S, Polesiuk P (2017) Environmental bisimulations for delimited-control operators with
dynamic prompt generation. Log Methods Comput Sci 13(3)

[Abr90] Abramsky S (1990) The lazy lambda calculus. In: Turner DA (ed) Research topics in functional programming. Addison Wesley,
Boston, pp 65–116

[AG98] AbadiM,GordonAD(1998)Abisimulationmethod for cryptographic protocols. In:HankinC (ed) Proceedings of theESOP’98,
volume 1381 of LNCS. Springer, Berlin, pp 12–26

[AH91] Arun-Kumar S, HennessyM (1991) An efficiency preorder for processes. In: Proceedings of the TACS ’91, volume 526 of Lecture
notes in computer science. Springer, Berlin, pp 152–175

[AM89] Aczel P, Mendler NP (1989) A final coalgebra theorem. In: Proceedings of the category theory and computer science, volume
389 of LNCS. Springer, Belrin, pp 357–365

[Bar03] Bartels F (2003) Generalised coinduction. Math Struct Comput. Sci. 13(2):321–348
[Bar04] Bartels F (April 2004) On generalised coinduction and probabilistic specification formats. PhD thesis, CWI, Amsterdam
[BBB+17] Biendarra J, Blanchette JC, Bouzy A, Desharnais M, Fleury M, Hölzl J, Kuncar O, Lochbihler A, Meier F, Panny L, Popescu

A, Sternagel C, Thiemann R, Traytel D (2017) Foundational (co)datatypes and (co)recursion for higher-order logic. In FroCoS,
volume 10483 of LNCS. Springer, Belrin, pp 3–21

[BBG98] BravettiM, BernardoM,Gorrieri R (1998) A note on the congruence proof for recursion inmarkovian bisimulation equivalence.
In: Priami C (ed) Proceedings of the 6th internation workshop on process algebras and performance modeling (PAPM ’98), pp
153–164

[BBL+17] Blanchette JC, Bouzy A, Lochbihler A, Popescu A, Traytel D (2017) Friends with benefits—implementing corecursion in
foundational proof assistants. In: ESOP, volume 10201 of LNCS. Springer, Berlin, pp 111–140

Bisimulation and Coinduction Enhancements 747

[BDP99] Boreale M, De Nicola R, Pugliese R (1999) Basic observables for processes. Inf Comput 149(1):77–98
[BKK17] Bonchi F, König B, Küpper Sebastian (2017) Up-to techniques for weighted systems. In: TACAS, volume 10205 of LNCS.

Springer, Berlin, pp 535–552
[BKP18] Bonchi F, König B, Petrisan D (2018) Up-to techniques for behavioural metrics via fibrations. In: CONCUR, volume 118 of

LIPIcs, Schloss Dagstuhl, pp 17:1–17:17
[BKvO98] Bezem M, Klop JW, van Oostrom V (1998) Diagram techniques for confluence. Inf Comput 141(2):172–204
[Bor19] Boreale M (2019) Algebra, coalgebra, and minimization in polynomial differential equations. Log Methods Comput Sci 15(1)
[Bou92] Boudol G (1992) Asynchrony and the π -calculus. Technical Report RR-1702, INRIA-Sophia Antipolis
[BP13] Bonchi F, Pous D (2013) Checking NFA equivalence with bisimulations up to congruence. In: Proceedings of the POPL, ACM,

pp 457–468
[BP15] Bonchi F, Pous D (2015) Hacking nondeterminism with induction and coinduction. Commun ACM 58(2):87–95
[BPPR14] Bonchi F, Petrişan D, Pous D, Rot J (2014) Coinduction up-to in a fibrational setting. In: Proceeding of the CSL-LICS, ACM,

pp 20:1–20:9
[BPR17] Basold H, Pous D, Rot J (2017)Monoidal company for accessible functors. In: Proceedings of the CALCO, volume 72 of LIPIcs.

Schloss Dagstuhl
[BPT15] Blanchette JC, Popescu A, Traytel D (2015) Foundational extensible corecursion: a proof assistant perspective. In: ICFP, ACM,

pp 192–204
[BS98a] Boreale M, Sangiorgi D (1998) Bisimulation in name-passing calculi without matching. In: LICS, IEEE, pp 165–175
[BS98b] Boreale M, Sangiorgi D (1998) Some congruence properties for pi-calculus bisimilarities. Theor Comput Sci 198(1–2):159–176
[Cau90] Caucal D (1990) Graphes canoniques de graphes algébriques. ITA 24:339–352
[CG98] Cardelli L, Gordon AD (1998) Mobile ambients. In: Nivat M (ed) Proceedings of the FoSSaCS ’98, volume 1378 of LNCS.

Springer, Berlin, pp 140–155
[CHS95] Christensen S, Hüttel H, Stirling C (1995) Bisimulation equivalence is decidable for all context-free processes. Inf Comput

121(2):143–148
[CPV16] Chatzikokolakis K, Palamidessi C, Vignudelli V (2016) Up-to techniques for generalized bisimulation metrics. In: Desharnais J,

Jagadeesan R (eds) Proceedings of the CONCUR 2016, volume 59 of LIPIcs, Schloss Dagstuhl, pp 35:1–35:14
[Dan18] Danielsson NA (2018) Up-to techniques using sized types. PACMPL 2(POPL):43:1–43:28
[DHS17] Durier A, Hirschkoff D, Sangiorgi D (2017) Divergence and unique solution of equations. In: Meyer R, Nestmann U (eds) 28th

International conference on concurrency theory, CONCUR 2017, volume 85 of LIPIcs, Schloss Dagstuhl, pp 11:1–11:16
[FG05] Fournet C, Gonthier G (2005) A hierarchy of equivalences for asynchronous calculi. J Logic Algebr Program 63(1):131–173
[FM91] Fernandez J-C, Mounier L (1991) “On the Fly” verification of behavioural equivalences and preorders. In: CAV, volume 575 of

LNCS. Springer, Belin, pp 181–191
[Gav19] Gavazzo F (2019) Coinductive equivalences and metrics for higher-order languages with algebraic effects. PhD thesis, Univ.

Bologna
[Hir99] Hirschkoff D (1999) Mise en oeuvre de preuves de bisimulation. PhD thesis, Ecole Nationale des Ponts et Chaussées
[HJ98] Hermida C, Jacobs B (1998) Structural induction and coinduction in a fibrational setting. Inf Comput 145(2):107–152
[HJM96a] Hirshfeld Y, Jerrum M, Moller F (1996) A polynomial algorithm for deciding bisimilarity of normed context-free processes.

Theor Comput Sci 158(1&2):143–159
[HJM96b] Hirshfeld Y, Jerrum M, Moller F (1996) A polynomial-time algorithm for deciding bisimulation equivalence of normed basic

parallel processes. Math Struct Comput Sci 6(3):251–259
[HK71] Hopcroft JE, Karp RM (1971) A linear algorithm for testing equivalence of finite automata. Technical Report 114, Cornell

Univ., December
[HM85] Hennessy M, Milner R (1985) Algebraic laws for nondeterminism and concurrency. J ACM 32:137–161
[HNDV13] Hur C-K, Neis G, Dreyer D, Vafeiadis V (2013) The power of parameterization in coinductive proof. In: POPL, ACM, pp

193–206
[HT91] HondaK, TokoroM (1991) A small calculus for concurrent objects. In: Proceedings of the workshop on object-based concurrent

programming, OOPSLA/ECOOP ’90, ACM, New York, NY, USA, pp 50–54
[Jac06] Jacobs B (2006) Distributive laws for the coinductive solution of recursive equations. Inf Comput 204(4):561–587
[Jac16] Jacobs B (2016) Introduction to coalgebra: towards mathematics of states and observation, volume 59 of Cambridge tracts in

theoretical computer science. Cambridge University Press, Cambridge
[JPR09] Jagadeesan R, Pitcher C, Riely J (2009) Open bisimulation for aspects. Trans Asp Oriented Softw Dev 5:72–132
[Kli11] Klin B (2011) Bialgebras for structural operational semantics: an introduction. Theor Comput Sci 412(38):5043–5069
[Kna28] Knaster B (1928) Un théorème sur les fonctions d’ensembles. Annales de la Société Polonaise de Mathématiques 6:133–134
[KW06] Koutavas V, Wand M (2006) Small bisimulations for reasoning about higher-order imperative programs. In: Proceedings of the

33rd ACM SIGPLAN-SIGACT symposium on principles of programming languages, pp 141–152
[Las98a] Lassen SB (1998) Relational reasoning about contexts. In: Gordon AD, Pitts AM (eds) Higher order operational techniques in

semantics. Cambridge University Press, Cambridge
[Las98b] Lassen SB (1998) Relational reasoning about functions and nondeterminism. PhD thesis, Department of Computer Science,

University of Aarhus
[Las99] Lassen SB (1999) Bisimulation in untyped lambda calculus: Böhm trees and bisimulation up to context. Electr Notes Theor

Comput Sci 20:346–374
[Len99] LenisaM (1999) From set-theoretic coinduction to coalgebraic coinduction: some results, some problems. Electr Notes Comput

Sci 19:2–22
[LG19] Dal Lago U, Gavazzo F (2019) Effectful normal form bisimulation. In: ESOP ’19, volume 11423 of LNCS. Springer, Berin, pp

263–292
[LPW00] Lenisa M, Power J, Watanabe H (2000) Distributivity for endofunctors, pointed and co-pointed endofunctors, monads and

comonads. Electr Notes Comput Sci 33:230–260

748 D. Pous and D. Sangiorgi

[Mil80] Milner R (1980) A calculus of communicating systems, volume 92 of LNCS. Springer, Berlin
[Mil83] Milner R (1983) Calculi for synchrony and asynchrony. Theor Comput Sci 25:269–310
[Mil87] Milner R (1987) Operational and algebraic semantics of concurrent processes. Notes, November 1987. Appeared as Tech Rep

ECS-LFCS-88-46, Edinburgh 1988, and later as a chapter inHandbook of Theoretical Computer Science (vol. B), pp 1201–1242,
MIT Press, 1990

[Mil89] Milner R (1989) Communication and concurrency. Prentice Hall, Englewood Cliffs
[MMS13] Milius S, Moss LS, Schwencke D (2013) Abstract GSOS rules and a modular treatment of recursive definitions. Log Methods

Comput Sci 9(3)
[MN05] Merro M, Nardelli FZ (2005) Behavioural theory for mobile ambients. J ACM 52(6):961–1023
[MPW89] Milner R, Parrow J, Walker D (1992) A calculus of mobile processes, Part I and II. Technical report ECS-LFCS-89-85 and -86,

University of Edinburgh, 1989. Appeared in J. Inf. Comp. 100:1–77
[MT91] Milner R, Tofte M (1988) Co-induction in relational semantics. Theor Comput Sci 87:209–220, 1991. Also Tech. Rep. ECS-

LFCS-88-65, University of Edinburgh
[New42] Newman MHA (1942) On theories with a combinatorial definition of “equivalence”. Ann Math 43(2):223–243
[NR11] Niqui M, Rutten J (2011) A proof of Moessner’s theorem by coinduction. Higher Order Symb Comput 24(3):191–206
[Par81] Park D (1981) A new equivalence notion for communicating systems. In: Maurer G (ed) Bulletin EATCS, volume 14, pages

78–80, 1981. Abstract of the talk presented at the SecondWorkshop on the Semantics of Programming Languages, BadHonnef,
March 16–20 1981. Abstracts collected in the Bulletin by B. Mayoh

[Par87] Parrow J (1987) Notes ‘jp3’ on label passing. Handwritten notes
[Pit95] Pitts AM (1995) An extension of Howe’s construction to yield simulation-up-to-context results. Unpublished manuscript
[Plo04a] Plotkin GD (2004) The origins of structural operational semantics. J Logic Algebr Program 60–61:3–15
[Plo04b] Plotkin GD (2004) A structural approach to operational semantics. J Logic Algebr Program 60-61:17–139
[Pou05] Pous D (2005) Up-to techniques for weak bisimulation. In: Proceedings of the ICALP, volume 3580 of LNCS. Springer, Berlin,

pp 730–741
[Pou06] Pous D (2006) Weak bisimulation up to elaboration. In: Proceedings of the CONCUR, volume 4137 of LNCS. Springer, Berlin,

pp 390–405
[Pou07a] PousD (2007) Complete lattices and up-to techniques. In: Proceedings of the APLAS ’07, volume 4807 of LNCS, pages 351–366.

Springer, Belrin
[Pou07b] Pous D (2007) New up-to techniques for weak bisimulation. Theor Comput Sci 380(1–2):164–180
[Pou08] Pous D (2008) Using bisimulation proof techniques for the analysis of distributed algorithms. Theor Comput Sci 402(2–3):199–

220
[Pou16] Pous D (2016) Coinduction all the way up. In: Proceeding of the LICS, ACM, pp 307–316
[PR17] Pous D, Rot J (2017) Companions, codensity, and causality. In: Proceedings of the FoSSaCS, volume 10203 of LNCS. Springer,

Berlin, pp 106–123
[PS97] Pierce B, Sangiorgi D (2000) Behavioral equivalence in the polymorphic pi-calculus. In: Proceedings of the 24th POPL. ACM

Press, 1997. Full paper in JACM 47(3)
[PS12] Pous D, Sangiorgi D Enhancements of the bisimulation proof method. In: Sangiorgi and Rutten [SR12].
[PW16] Parrow J, Weber T (2016) The largest respectful function. Log Methods Comput Sci 12(2)
[Rut00] Rutten J (2000) Universal coalgebra: a theory of systems. Theor Comput Sci 249(1):3–80
[Rut05] Rutten J (2005) A coinductive calculus of streams. Math Struct Comput Sci 15(1):93–147
[San92] Sangiorgi D (1992) Expressing mobility in process algebras: first-order and higher-order paradigms. PhD thesis CST–99–93,

Department of Computer Science, University of Edinburgh
[San94] Sangiorgi D (1996) Locality and true-concurrency in calculi for mobile processes. In: TACS’94, volume 789 of LNCS, pages

405–424. Springer Verlag, 1994. Full version in TCS, vol 155, 39–83
[San95] Sangiorgi D (1998) On the bisimulation proof method. In: Wiedermann J, Háiek P (eds) Proceedings of the MFCS’95, volume

969 of LNCS, pp 479–488. Springer, Berlin 1995. Full version in J. MSCS, vol 8, pp 447–479
[San98] Sands D (1998) Improvement theory and its applications. In: Gordon AD, Pitts AM (eds) Higher order operational techniques

in semantics, publications of the Newton Institute, Cambridge University Press, pp 275–306.
[San00] Sangiorgi D (2000) Lazy functions andmobile processes. In: PlotkinG, Stirling C, TofteM (eds) Proof, language and interaction:

essays in honour of Robin Milner. MIT Press, Cambridge
[San01] Sangiorgi D (2001) Asynchronous process calculi: the first- and higher-order paradigms. Theor Comput Sci 253(2):311–350
[San09] Sangiorgi D (2009) On the origins of bisimulation and coinduction. ACM Trans Program Lang Syst 31(4):15
[San12] Sangiorgi D (2012) Introduction to bisimulation and coinduction. Cambridge University Press, Cambridge
[San15] Sangiorgi D (2015) Equations, contractions, and unique solutions. In: Rajamani SK, Walker D (eds) POPL 2015, ACM, pp

421–432
[SBBR10] Silva A, Bonchi F, BonsangueM, Rutten J (2010) Generalizing the powerset construction, coalgebraically. In: FSTTCS, LIPIcs,

pp 272–283. Schloss Dagstuhl
[SKS07] Sangiorgi D, Kobayashi N, Sumii E (2007) Environmental bisimulations for higher-order languages. In: Proceedings of the 22nd

IEEE symposium on logic in computer science (LICS 2007), pp 293–302. IEEE Computer Society
[SM92] Sangiorgi D, Milner R (1992) The problem of “weak bisimulation up to”. In: Proceedings of the 3rd CONCUR, volume 630 of

LNCS. Springer, Berlin, pp 32–46
[SP04] Sumii E, Pierce BC (2004)A bisimulation for dynamic sealing. In: Proceedings of the 31stACMSIGPLAN-SIGACT symposium

on principles of programming languages, pp 161–172
[SP05] Sumii E, Pierce BC (2005) A bisimulation for type abstraction and recursion. In: Proceedings of the 32nd ACM SIGPLAN-

SIGACT symposium on principles of programming languages, pp 63–74
[SR12] Sangiorgi D, Rutten J (eds) (2012) Advanced topics in bisimulation and coinduction. Cambridge University Press, Cambridge
[Sta11] Staton S (2011) Relating coalgebraic notions of bisimulation. Log Methods Comput Sci 7(1)

Bisimulation and Coinduction Enhancements 749

[SV16] Sangiorgi D, Vignudelli V (2016) Environmental bisimulations for probabilistic higher-order languages. In: Bodı́k R,Majumdar
R (eds) Proceedings of the POPL 2016, ACM, pp 595–607

[Tar55] Tarski A (1955) A lattice-theoretical fixpoint theorem and its applications. Pac J Math 5(2):285–309
[Tar75] Tarjan RE (1975) Efficiency of a good but not linear set union algorithm. J ACM 22(2):215–225
[Tho89] Thomsen B (1989) A calculus of higher order communicating systems. In: POPL’89, ACM, pp 143–154
[TP97] Turi D, Plotkin GD (1997) Towards a mathematical operational semantics. In: LICS, IEEE, pp 280–291
[UVP01] Uustalu T, Vene V, Pardo A (2001) Recursion schemes from comonads. Nord J Comput 8(3):366–390
[Wal87] Walker DJ (1987) Bisimulation and divergence in CCS. Tech report, LFCS, Dept of Comp Sci, Edinburgh Univ

Received 5 May 2019
Accepted in revised form 29 September 2019 by Cliff Jones and Jose N. Oliveira
Published online 8 November 2019

	Bisimulation and Coinduction Enhancements: A Historical Perspective
	Abstract
	1 Introduction
	2 Bisimulation
	3 Early ad-hoc enhancements
	3.1 The first enhancement: bisimulation up to bisimilarity
	3.2 Self-bisimulations
	3.3 Other enhancements

	4 Theories of enhancements
	4.1 Up to context
	4.2 Other forms of enhancement
	4.3 Enhancements for automata algorithms

	5 Compositions and algebras of enhancements
	6 Weak bisimilarity
	7 Coalgebra
	7.1 Enhanced corecursion schemes
	7.2 Categorical presentation of bisimulation up to context
	7.3 Friends: enhanced corecursion in Isabelle/HOL

	8 Conclusions
	Acknowledgements
	References

