
https://doi.org/10.1007/s00165-018-0467-1
BCS © 2018
Formal Aspects of Computing (2018) 30: 713–738

Formal Aspects
of Computing

A UTP approach for rTiMo
Wanling Xie1 Shuangqing Xiang1 and Huibiao Zhu1,2

1 Shanghai Key Laboratory of Trustworthy Computing,
MOE International Joint Laboratory of Trustworthy Software,
International Research Center of Trustworthy Software,
East China Normal University, Shanghai 200062, China
2 School of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China

Abstract. rTiMo is a real-time version of TiMo (Timed Mobility), which is a process algebra for mobile dis-
tributed systems. In this paper, we investigate the denotational semantics for rTiMo. A trace variable tr is intro-
duced to record the communications among processes as well as the location where the communication action
takes place. Basedon the formalizedmodel,we study a set of algebraic laws, especially the laws about themigration
and communication with real-time constraints. In order to facilitate the algebraic reasoning about the parallel
expansion laws, we enrich rTiMo with a form of guarded choice. This can enable us to convert every parallel
program to the guarded choice form. Moreover, we also provide a set of proof rules, which can be used to verify
the correctness and real-time properties of programs.

Keywords: rTiMo; Mobile systems; UTP semantics; Hoare logic

1. Introduction

With the development of cloud computing, mobile applications play an important role in modern distributed sys-
tems. Analyzing and verifying the increasing complexity of mobile applications effectively is of great significance.
Ciobanu et al. [CK11b] have first introduced a process algebra called TiMo (Timed Mobility) model for mobile
systems, where it is possible to add timers to the basic actions in addition to process mobility and interaction.
The model of time is based on local clocks in [CK11b]. Aman et al. [AC13] have extended the TiMo family
[CK11a, CJ12, CK15] by introducing a real-time version named rTiMo in which a global clock is used. The
rTiMo processes can move between different locations of a mobile distributed system and communicate locally
with other processes.

Regarding a programming language, there are four well-known methods for presenting semantics, including
operational semantics, denotational semantics, algebraic semantics and deductive semantics (originally called
axiomatic semantics) [Hoa13]. The operational semantics of a programming language suggests a complete set of
possible individual stepswhichmaybe taken in its execution [Plo04,Mil80].Anoperational semantics usually con-
sists of a set of transition rules. Denotational Semantics [Sto79] provides themathematical meanings to programs.
The approach of denotational semantics is under a purely mathematical basis. Thus, the denotational semantics
is more abstract. Compared with operational semantics, denotational semantics expresses what a program does .
An algebraic semantics [Hen88, HHH+87] consists of a set of algebraic laws and their deduced properties and
it fits well with symbolic calculation of parameters and structures of an optimal design, which has been used in
provably-correct compilation [He94, HHS93, DCS10]. Deductive semantics [Hoa69, O’H07] of a programming
language provides a set of proof rules, which can be used to specify and verify correctness and general properties
of a program.

Correspondence and offprint requests to: Huibiao Zhu (Email: hbzhu@sei.ecnu.edu.cn)
This paper extends the work published at UTP 2016 [XX16].

http://crossmark.crossref.org/dialog/?doi=10.1007/s00165-018-0467-1&domain=pdf
http://orcid.org/0000-0002-4044-7320

714 W. Xie et al.

In [AC13], Aman et al. have investigated the operational semantics of rTiMo. This paper considers the
denotational semantics for rTiMo, which can provide the precise understanding of rTiMo and deduce interesting
properties of programs. In our semantic model, we introduce a variable tr to record the communications among
processes. Based on the formalized denotational semantics, we investigate a set of algebraic laws, which not only
comprises algebraic laws similar to traditional algebraic laws, but also contains algebraic laws about migration
and communicationwith time constraints. In order to facilitate algebraic reasoning about parallel expansion laws,
we enrich rTiMo with a guarded choice construct which is classified into three types: communication guarded
choice, delay guarded choice and hybrid guarded choice. From a set of parallel expansion laws that we have
explored, we can see that every parallel program can be converted to the guarded choice form. In addition, we
also introduce a formalism based on Hoare Triples (precondition, program, postcondition) to specify and verify
the correctness and the real-time behavior of programs.

The remainder of this paper is organized as follows. Section 2 introduces the syntax of rTiMo and the concept
of guarded choicewhich is used to study the parallel expansion laws. Section 3 explores the denotational semantics
for rTiMo. Section 4 presents a set of algebraic laws, including the basic algebraic laws and the parallel expansion
laws which enable us to convert a parallel program to the guarded choice form. Section 5 provides a set of proof
rules, which are used to verify the correctness and progress properties. Section 6 is the related work about the
formal modeling and analysis of mobile distributed systems, rTiMo, UTP approach and Hoare Logic. Section 7
concludes the paper and discusses some possible future work.

2. The rTiMo calculus

In this section, we will give a brief introduction to the rTiMo calculus. rTiMo is a real-time version of TiMo
[CK11b], which is a process algebra for mobile distributed systems. rTiMo processes can move between different
locations in a distributed environment and communicate locallywith other processes. In otherwords, the processes
from different locations cannot communicate with each other. The syntax of rTiMo is given in Table 1 as it has
been introduced in [AC13]. In rTiMo, process migration and communication are controlled by using real-time
constraints. Timeouts are specified by a superscript �t where t is a timeout (deadline) of an action and t ∈ R+.

In rTiMo, the communication channels are point-point, i.e. each channel connects two processes, and syn-
chronous. Synchronous communication inside the network is by handshake synchronization of input and output
actions. rTiMo calculus enjoys some time properties such as (1) time determinism: the passage of time is deter-
ministic; (2) maximal progress: data transmissions cannot be delayed, they must occur as soon as a possibility
for communication arises. For example, let N � l [[a�t !〈v〉 then P else Q | a�t?(u) then P ′ else Q ′]], where
t > 0, then the output action and the input action take place via channel a at the activation time of N without
any time delay.

1. a�t !〈v〉 then P else Q indicates that anoutputprocess can sendmessage v for aperiodof t timeunits via channel
a. When the message v is sent successfully within t time units, the next process is P . If the communication
does not happen before the timeout t , the communication attempt is aborted and the next process is Q .

2. a�t?(u) then P else Q stands for an input process whose waiting time interval is t time units.When the process
receives a message via channel a within t time units, the control passes to process P . If the communication
does not take place before the deadline t , the waiting process gives up and it switches to the alternative process
Q . The input process binds the variable u within P (but not within Q).

3. go�t l then P denotes a migration process that moves to location l precisely after t time units. In other words,
after t time units, the migration action terminates and the next process is P running at the location l . And the
terminal time of the migration action is the activated time of the process P .

4. 0 denotes the process that terminates without taking any time.
5. P | Q stands for parallel composition.
6. l [[P]] specifies a process P running at location l .
7. L

∣
∣ L | N indicates a network can be a located process L or can be built from its components L | N .

A UTP Approach for rTiMo 715

Table 1. rTiMo syntax

Processes P ,Q ::� a�t !〈v〉 then P else Q
∣
∣ (output)

a�t ?(u) then P else Q
∣
∣ (input)

go�t l then P
∣
∣ (move)

0
∣
∣ (termination)

P | Q (parallel)

Located processes L ::� l [[P]]

Networks N ::� L
∣
∣ L | N

home

200

client

shopA shopB counter

100 80 20

gi�A gi�B �ll

Fig. 1. The initial network

We can also introduce the recursion in rTiMo. The semantics of the recursion can be defined according to
Pratt’s definition [Pra90], using the Knaster-Tarski fixed-point theorem [Tar55].

In order to support our algebraic expansion laws, we enrich rTiMowith a new concept, called guarded choice,
which is classified into three types:

1. []i∈I {gi → Ni } is communication guarded choice where gi is a communication guard. The guard is instanta-
neous whichmeans that it happens without any time delay. The guard gi can be expressed as a!〈v〉@l , a?(u)@l
or a.[v/u]@l , where a!〈v〉@l (a?(u)@l) indicates that the output (input) action happens at location l and uses
the channel a, and a.[v/u]@l denotes that the communication over channel a takes place at location l and
the variable u is replaced by the message v .

2. #t → N is delay guarded choice, where #t means delaying t time units and t ≥ 0. After delaying t time units,
the subsequent network is N .

3. The third guarded choice is hybrid guarded choice, which has the following formwhere the notation⊕ denotes
the disjointness of timed behaviors:

[]i∈I {gi → Ni }
⊕ ∃ t ′ ∈ (0...t) • (#t ′ → ([]i∈I {gi → N ′

i }))
⊕ #t → N ′

Example 2.1 Consider a simple shopping example. A client wants to buy a gift in the shoppingmall in a short time
and at a good price. The scenario involves four locations and four processes. The role of each process represented
in Fig. 1 is as below:

• client is a process that initially resides in the home location and has an amount of 200 cash. It wants to buy
a gift after comparing the prices of the gift in the two shops (shopA and shopB). After entering shopA, the
client receives the price of this gift in shopA and then the client moves to the shopB location to receive the
price of this gift in shopB . Finally, the client moves to the counter location to pay for the cheaper price and
returns to the home location.

• giftA communicates with the client to offer the price of this gift in shopA.

716 W. Xie et al.

home

120

client

shopA shopB counter

100 80 100

gi�A gi�B �ll

Fig. 2. A possible final network

• giftB communicates with the client to offer the price of this gift in shopB .
• till resides at the counter and has an initial amount of 20 cash. It can receive e-money paid by the client .

We use the following shorthand notations:

a!〈v〉 → P represents a�∞!〈v〉 then P else 0;

a?(u) → P represents a�∞?(u) then P else 0.

The rTiMo syntax of these processes is as below:

client(init) � go�4shopA then priceA?(p1) → go�3shopB then priceB?(p2) →
pay !〈min{p1, p2}〉 → go�5home then client(init − min{p1, p2})

giftA(price) � priceA!〈price〉 → giftA(price)

giftB (price) � priceB !〈price〉 → giftB (price)

till (cash) � pay�1?(payment) then till (cash + payment) else till (cash).

A possible final network after 12 time units is represented in Fig. 2. �

3. Denotational semantics

UTP [HH98] covers wide areas of fundamental theories of programs in a formalised style and acts as a consistent
basis for the principles of programming language. It provides the denotational semantics for Dijkstra’s nonde-
terministic sequential programming language based on predicate calculus of Tarki’s theory of relations [Tar55].
A complete algebra for the sequential programming language is derived, which can transform every program
to a normal form under a restricted notation. Many advanced programming language features are introduced,
including parallel composition, reactive processes and declarative programming.

UTP Theory is regarded as an excellent methodology for studying various kinds of programs. The important
advantages of denotational semantics are given as below:

1. “The behavior of each program can be predicated without actually executing it on a computer, and similarly
the semantics of a program language can be understood as a whole without visualizing how programs run on
a computer" [Wat91].

2. “Based on mathematical theory, we can reason about programs, for example, to prove that one program is
equivalent to another" [Wat91].

In this section, we present the denotational semantics for the rTiMomodel.We investigate the semantic model
of rTiMo and healthiness conditions which a program should satisfy in Sect. 3.1. In Sect. 3.2, we explore the
behaviors of the basic commands, including the located migration process, the located input process and the
located output process. The behaviors of guarded choice introduced in Section 2, which includes communication
guarded choice, delay guarded choice and hybrid guarded choice, are investigated in Sect. 3.3. In Sect. 3.4, we
investigate the behavior of the parallel composition.

A UTP Approach for rTiMo 717

3.1. The semantic model

In this subsection,we explore thedenotational semanticsmodel for rTiMo.Ourapproach is basedon the relational
calculus [HH98]. The time model in our semantic model is discrete. We introduce a pair of variables st and st ′
into our semantic model in order to denote the execution state of a program. st represents the initial execution
state of a program before its activation and st ′ stands for the final execution state of the program during the
current observation. A program may have two execution states:

1. completed state : A program has reached the completed state when it terminates successfully. “st �
completed” indicates that the previous program has terminated successfully and control passes to the cur-
rent program. “st ′ � completed” indicates that the current program has terminated successfully and control
passes to the next program.

2. wait state : A program may wait for communicating with another program via a specific channel or moving
from one location to another after the given time units. “st � wait” indicates that the predecessor of the
current program is in a waiting state. Thus, the current program cannot be activated. “st ′ � wait” indicates
that the current program itself is in a waiting state. Thus, the next program cannot be activated.

We describe the behavior of a process in terms of a trace of snapshots which record the sequence of the
communication actions that the process is able to engage in. In our semantic model, we introduce a variable tr
to denote that trace. The behavior of a communication action is specified by a snapshot which can be expressed
as a triple (t, κ, l) where:

• t indicates the time when the communication action takes place.
• κ denotes the message transmitted via a specific channel at the termination of a communication action. And
the form of κ is a.v , where a indicates the communication channel and v is the message transmitted. We
defineChan(κ) to obtain the communication channel andMess(κ) to obtain the message, i.e., if κ � a.v , then
Chan(a.v) � a and Mess(a.v) � v .

• l records the location at which the communication action takes place.

Compared tomany existingUTP theories [SZL+18,HH98], in addition to the communication, rTiMo calculus
has other interesting features, including time constrains and location information. Thus, the observations of an
rTiMo program can be described by a tuple:

(
←−−
time,

−−→
time, st, st ′, tr , tr ′), where

• ←−−
time and

−−→
time respectively denote the start point and the end point of the time interval over which the

observation is recorded.
• st represents the initial execution state of the program before its activation and st ′ stands for its final execution
state during the current observation.

• tr represents the initial trace of a program over the interval which is passed by its predecessor. tr ′ stands
for the final trace of a program over the interval. tr ′ − tr denotes the sequence of snapshots contributed by
the program itself during the interval. The t in the snapshot contributed by the program during the interval
ranges in [

←−−
time,

−−→
time], that is to say, t ∈ [

←−−
time,

−−→
time].

We now define ; operator for our semantic model to describe the behavior of sequential composition. It is
similar to the definition of sequential composition in relational calculus.

Definition 3.1 P ; Q �df ∃ t, s, r • P [t/
−−→
time, s/st ′, r/tr ′] ∧ Q [t/

←−−
time, s/st, r/tr].

Example 3.2 Let N1 � l1[[go�3l2 then a�2!〈v1〉 then b�3?(u2) else 0]],

N2 � l2[[a�6?(u1) then b�2!〈v2〉 else 0]].

Above, we use the following shorthand notations:

b�3?(u2) stands for b�3?(u2) then 0 else 0,

b�2!〈v2〉 stands for b�2!〈v2〉 then 0 else 0.

718 W. Xie et al.

Consider the trace of N3 � N1 | N2. Assume the activation time of N3 is at 0.
According to the syntax of rTiMo, the migration process moves to location l2 from location l1 after 3 time

units. Thus, the communication action takes place at time 3.
One possible trace of N1 is given as below:

〈(3, a.v1, l2), (3, b.v2, l2)〉
A possible trace of N2 is shown next:

〈(3, a.v1, l2), (3, b.v2, l2)〉
Hence, the one trace of N3 is as follows:

〈(3, a.v1, l2), (3, b.v2, l2)〉 �

Every programwill always satisfy some given healthiness conditions which are defined as equations according
to an idempotent function φ on predicates. And for a predicateP denoting a healthy program, we haveP � φ(P).
We next consider the healthiness conditions rTiMo programs should satisfy, and they are similar to the standard
UTP theory [HH98]. In our semantics model, the variable tr is used to record the execution trace of a program,
so this variable cannot be shortened. A formula P satisfies the healthiness condition (H 1).

(H 1) P � P ∧ Inv (tr), where Inv (tr) �df tr � tr ′, which states that tr is a prefix of tr ′.

As we have mentioned earlier on, a program may wait for communicating with another program via a
specific channel or moving from one location to another after a given time delay. For the migration process
home[[go�5shop then P]] which indicates that process P moves to location shop from location home after 5 time
units: if process P is asked to start in a waiting state of go�5shop, then P keeps itself unchanged; i.e., it satisfies
the following healthiness condition.

(H 2) P � � � st � wait � P ,

where � �df (st ′ � st) ∧ (
−−→
time � ←−−

time) ∧ (tr ′ � tr)

and P � b � Q �df (b ∧ P) ∨ (¬b ∧ Q)

The variable time is used to record the progress of a program and no program can ever make time go back-
wards, thus, it cannot be smaller. The predicate P which describes an rTiMo program behavior must therefore
imply this fact.

←−−
time and

−−→
time denote the start point and the end point of a program in our semantic model

respectively, thus, P should satisfy the following healthiness condition.

(H 3) P � P ∧ (
←−−
time ≤ −−→

time)

The definition of H function can be given as follows:

H (X) �df � � st � wait � (X ∧ Inv (tr) ∧ ←−−
time ≤ −−→

time)

From the definition of H function, we know that H (X) satisfies the healthiness conditions (H 1), (H 2) and
(H 3). The H function is used to define the denotational semantics for the rTiMo model.

Lemma 3.3 H (X 1 ∨ X 2); H (X) � (H (X 1); H (X)) ∨ (H (X 2); H (X))

The lemma above specifies a distributive law. The function H distributes through disjunction H (X 1∨X 2) �
H (X 1)∨H (X 2). Similar to the standard sequential composition, we have (X 1∨X 2); X � (X 1; X)∨ (X 2; X).
These two laws together provide justification for this distributive law.

3.2. Denotational semantics for basic commands

In this subsection, we investigate the behaviors of the basic commands, which include the located migration
process, the located input process and the located output process. We use beh(l [[P]]) to describe the behavior of
a process P running at location l .

A UTP Approach for rTiMo 719

We first investigate the denotational semantics of 0 at the location l . It is a termination process and the
execution state, the terminal time and the trace all keep unchanged.

beh(l [[0]]) �df H
(

st ′ � st ∧ −−→
time � ←−−

time ∧ tr ′ � tr
)

N ; M denotes the behavior that runs N and M sequentially and its semantics is given as below:

beh(N ; M) �df beh(N); beh(M)

We then explore the behavior of the located migration process l [[go�t l ′ then P]], it indicates that process P
moves to location l ′ from location l after t time units.

beh(l [[go�t l ′ then P]]) �df H

⎛

⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎝

(st ′ � wait ∧ −−→
time − ←−−

time < t)

∨
(st ′ � completed ∧ −−→

time � ←−−
time + t)

⎞

⎟
⎟
⎟
⎠

∧ tr ′ � tr

⎞

⎟
⎟
⎟
⎠

; beh(l ′[[P]])

For t time units, the migration action is in a waiting state and its trace is unchanged. After t time units elapse,
the migration action terminates successfully and the trace also remains unchanged. We record the terminal time
of the migration action using

−−→
time � ←−−

time + t which is also the activation time of the next action. After the
completion of the migration action, the subsequent behavior of the program is the behavior of process P which
runs at location l ′.

The located input process l [[a�t?(u) then P else Q]] indicates that if the program successfully receives an
input via channel a within t time units, then process P from location l gets the control. On the other hand, if
the communication does not happen before the deadline t , the waiting process gives up and it switches to the
alternative process Q located at l . The notation tr1̂tr2 is used to denote the concatenation of the two traces tr1
and tr2.

beh(l [[a�t?(u) then P else Q]]) �df

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∃m ∈ Type(a) •

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

H

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(st ′ � wait ∧ tr ′ � tr ∧
0 <

−−→
time − ←−−

time < t) ∨
(st ′ � completed ∧
append (a?(m)@l) ∧
0 ≤ −−→

time − ←−−
time < t)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

; beh(l [[P [m/u]]])

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∨

H
(

st ′ � completed ∧ tr ′ � tr ∧ −−→
time � ←−−

time + t
)

; beh(l [[Q]])

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where, append (a?(m)@l) �df tr ′ � tr̂〈(−−→time, a.m, l)〉 ∧ ¬(∀ t ′ ∈ (
−−→
time,∞) • tr ′ � tr̂〈(t ′, a.m, l)〉)

Here, Type(a) represents the type of the messages that channel a can communicate. There are two alternative
behavior branches to describe the execution of the located input process.

• Case 1: within t time units, the input action either waits for receiving a message via a specific channel, or com-
municates with the corresponding output action successfully. If the input action waits for receiving a message,
the execution state is wait and the trace is unchanged. If the input action happens successfully, the execution
state is completed and the snapshot (

−−→
time, a.m, l) contributed by the input action is attached to the end of

the program trace, which is described by the first predicate tr ′ � tr̂〈(−−→time, a.m, l)〉 in append (a?(m)@l).
The predicate ¬(∀ t ′ ∈ (

−−→
time,∞) • tr ′ � tr̂〈(t ′, a.m, l)〉) is used to ensure that the input action takes place

as soon as it is enabled. The subsequent behavior of the program is determined by process P from location l .
The notation P [m/u] denotes P in which all free occurrences of a variable u are replaced by m.

720 W. Xie et al.

• Case 2: the input action does not take place before the deadline t , the execution state is completed and the trace
remains unchanged. In this case, the subsequent behavior of the program is the behavior of the alternative
process Q from location l .

The located output process l [[a�t !〈v〉 then P else Q]] means that if the program sends the message v along
channel a within t time units successfully, the control passes into process P . On the other hand, if the communi-
cation does not happen before the timeout t , the communication gives up and the control passes into process Q .

beh(l [[a�t !〈v〉 then P else Q]]) �df

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

H

⎛

⎜
⎜
⎝

(st ′ � wait ∧ tr ′ � tr ∧ 0 <
−−→
time − ←−−

time < t) ∨
(st ′ � completed ∧ append (a!〈v〉@l) ∧

0 ≤ −−→
time − ←−−

time < t)

⎞

⎟
⎟
⎠

; beh(l [[P]])

∨

H
(

st ′ � completed ∧ tr ′ � tr ∧ −−→
time � ←−−

time + t
)

; beh(l [[Q]])

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where, append (a!〈v〉@l) �df tr ′ � tr̂〈(−−→time, a.v , l)〉 ∧ ¬(∀ t ′ ∈ (
−−→
time,∞) • tr ′ � tr̂〈(t ′, a.v , l)〉)

Similar to the located input process, there are also two branches to describe the execution of the located output
process. The first branch describes the case that the output action takes place within t time units and the case
that the output action does not happen before the deadline t is illustrated in the second branch.

3.3. Denotational semantics for guarded choice

As mentioned earlier, the guarded choice has three types: communication guarded choice, delay guarded choice
and hybrid guarded choice. Nowwe give the denotational semantics for these three types of guarded choice below.

Communication Guarded Choice.Wefirst consider the communication guarded choice, which is composed of a set
of communication guarded components. There are three types of the communication guard: a!〈v〉@l , a?(u)@l
and a.[v/u]@l , which all have been described earlier.

beh([]i∈I {gi → Ni }) �df

∨

i∈I beh(gi → Ni), where

if g � a!〈v〉@l , then

beh(g → N) �df H
(

st ′ � completed ∧ append (a!〈v〉@l) ∧ −−→
time � ←−−

time
)

; beh(N)

where append (a!〈v〉@l) has been defined in the denotational semantics of the located output process in Sect. 3.2.
The guard a!〈v〉@l is an instantaneous action, which means that it takes place without any time delay, thus the
termination time of a!〈v〉@l equals to its activation time.

If g � a?(u)@l , then

beh(g → N) �df

(

∃m ∈ Type(a) •
(

H
(

st ′ � completed ∧ append (a?(m)@l) ∧ −−→
time � ←−−

time
)

; beh(N [m/u])
))

where append (a?(m)@l) has been defined in the denotational semantics of the located input process.

If g � a.[v/u]@l , then

beh(g → N) �dfH
(

st ′ � completed ∧ append (a.[v/u]@l) ∧ −−→
time � ←−−

time
)

; beh(N [v/u])

where, append (a.[v/u]@l) �df tr ′ � tr̂〈(−−→time, a.v , l)〉 ∧ ¬(∀ t ′ ∈ (
−−→
time,∞) • tr ′ � tr̂〈(t ′, a.v , l)〉)

A UTP Approach for rTiMo 721

Delay Guarded Choice. For the delay guarded choice, it consists of only one time delay component. And we can
find that the denotational semantics of the delay guarded choice is similar to the denotational semantics of the
located migration process introduced in Sect. 3.2.

beh(#t → N) �df H

⎛

⎝

⎛

⎝

(st ′ � wait ∧ −−→
time − ←−−

time < t) ∨
(st ′ � completed ∧ −−→

time � ←−−
time + t)

⎞

⎠ ∧ tr ′ � tr

⎞

⎠ ; beh(N)

Hybrid Guarded Choice. The hybrid guarded choice has the following form:

N � []i∈I {gi → Ni }
⊕ ∃ t ′ ∈ (0...t) • (#t ′ → ([]i∈I {gi → N ′

i }))
⊕#t → N ′

where, []i∈I {gi → Ni } is communication guarded choice, #t ′ → ([]i∈I {gi → N ′
i }) consists of a delay guard followed

by a communication guarded choice where t ′ ∈ (0...t) and #t → N ′ is delay guarded choice.

beh(N) �df

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∨

i∈I beh(gi → Ni)
∨

∨

1≤i≤n

⎛

⎜
⎜
⎜
⎜
⎜
⎝

H

⎛

⎜
⎜
⎜
⎜
⎜
⎝

(st ′ � wait ∧ tr ′ � tr ∧
0 <

−−→
time − ←−−

time < t) ∨
(st ′ � completed ∧ append (gi) ∧

0 <
−−→
time − ←−−

time < t)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

; beh(N ′
i)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∨

H
(

st ′ � completed ∧ tr ′ � tr ∧ −−→
time � ←−−

time + t
)

; beh(N ′)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

From the denotational semantics of the hybrid guarded choice, we can find that the three branches correspond
to three cases which are progressive over time. The first branch describes the case that the action takes place at the
activation time. The second branch describes the case that the action waits for some time units before it happens.
And the case that the action does not take place before the deadline t is described by the third branch. As we
know, the three branches are progressive over time. Thus, from the time-related predicate, we can find that the
three branches are disjoint.

3.4. Denotational semantics for parallel composition

In this subsection, we explore the behavior of a network which is composed of a set of located processes running
in parallel. Let P and Q be the processes. The parallel composition l [[P]] | l ′[[Q]] performs process P from
location l and processQ from location l ′ running in parallel, where l and l ′ can be the same or different locations.
Its behavior is the composition of the behaviors of the two parallel components by merging their traces together.
The composition is described by the following definition.

beh(l [[P]] | l ′[[Q]]) � beh(l [[P]]) | beh(l ′[[Q]]), where

l [[P1]] | l ′[[P2]] �df

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∃ st1, st ′
1, st2, st

′
2, tr1, tr

′
1, tr2, tr

′
2,

←−−−
time1,

−−−→
time1,

←−−−
time2,

−−−→
time2 •

tr1 � tr2 � tr ∧ st1 � st2 � st ∧ ←−−−
time1 � ←−−−

time2 � ←−−
time ∧

P1[st1, st ′
1, tr1, tr

′
1,

←−−−
time1,

−−−→
time1/st, st ′, tr , tr ′,

←−−
time,

−−→
time] ∧

P2[st2, st ′
2, tr2, tr

′
2,

←−−−
time2,

−−−→
time2/st, st ′, tr , tr ′,

←−−
time,

−−→
time] ∧

Merge

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

722 W. Xie et al.

The first three predicates in the definition l [[P1]] | l ′[[P2]] describe the two independent behaviors of process
P1 from location l and P2 from location l ′ running in parallel. The last predicate Merge mainly does the merge
of the contributed traces of the two behavioral branches for recording the communications, which is defined as
below.

Merge �df

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

(st ′
1 � completed ∧ st ′

2 � completed) ⇒ st ′ � completed ∧
(st ′

1 � wait ∨ st ′
2 � wait) ⇒ st ′ � wait ∧

∃ s ∈ (tr ′
1 − tr) | (tr ′

2 − tr) • tr ′ � tr̂s ∧
−−→
time � max{−−−→

time1,
−−−→
time2}

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

The final execution state of the behavior of the parallel composition is determined by the two parallel com-
ponents together. The contributed traces of the two behaviors for recording the communication can be merged.
And the terminal time of the parallel composition is the maximum between the two terminal times of the parallel
components.

We first introduce some notations which will be used in the trace-merging definitions. The notation head(s)
is used to denote the first snapshot of the trace s and tail(s) is used to denote the result of removing the first
snapshot in the trace s . We use the projections to select the components of a snapshot:

π1((t, κ, l)) �df t π2((t, κ, l)) �df κ π3((t, κ, l)) �df l

The merging of the contributed traces of the two behaviors for recording the communication can be defined
as follows. The result of merging two empty traces (represented as ε) is still empty which is illustrated in the first
definition. For the two traces which are required to be merged, if one of them is empty and the other is nonempty,
the result of trace merging follows the nonempty one and the second and third definitions describe the case.

case 1 ε | ε �df {ε} case 2 s | ε �df {s} case 3 ε | t �df {t}
If both traces are nonempty, then we can use the following cases to merge the two traces. We below obtain

the first snapshot in the two traces respectively.

t1 � π1(head(s)), κ1 � π2(head(s)), l1 � π3(head(s)),

t2 � π1(head(t)), κ2 � π2(head(t)), l2 � π3(head(t)).

We first consider the case that t1 � t2 which means that the two actions κ1 and κ2 take place at the same time
(denoted by case 4).

case 4 s | t �df

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎝

(〈(t1, κ1, l1)〉̂(tail(s) | tail(t)) � Mess(κ1) � Mess(κ2) � ∅)

� Chan(κ1) � Chan(κ2) �
〈(t1, κ1, l1)〉̂(tail(s) | t) ∪ 〈(t2, κ2, l2)〉̂(s | tail(t))

⎞

⎟
⎟
⎠

, if l1 � l2;

〈(t1, κ1, l1)〉̂(tail(s) | t) ∪ 〈(t2, κ2, l2)〉̂(s | tail(t)), otherwise.

The communications in rTiMo are local, thus, in the fourth case, we first consider whether the two locations
l1 and l2 are same or not. If l1 and l2 are different, then a synchronization does not take place. We only need to
attach head(s) or head(t) to the end of the program trace. If the two locations are same, then we have the following
descriptions.

• IfChan(κ1) equals toChan(κ2) which means that the two channels are same, then we consider the messages.
IfMess(κ1) equals toMess(κ2) which means that the two messages are same, then a synchronization occurs
and a snapshot (t1, κ1, l1) contributed by this communication is generated. On the other hand, if the two
messages are different, then the result of trace merging is empty set ∅.

• IfChan(κ1) andChan(κ2) are different, then a synchronization does not happen and we only need to attach
head(s) or head(t) to the end of the program trace.

We now consider the case t1 < t2 which means that κ1 occurs before κ2 (denoted by case 5). In this case, we
only need to attach the first snapshot of s to the end of the program trace.

A UTP Approach for rTiMo 723

case 5 s | t �df 〈(t1, κ1, l1)〉̂(tail(s) | t).

Finally, we consider the case t1 > t2 which means that κ2 occurs before κ1 (denoted by case 6). In this case,
we only need to attach the first snapshot of t to the end of the program trace.

case 6 s | t �df 〈(t2, κ2, l2)〉̂(s | tail(t)).

Example 3.5 Consider the network N1 | N2 in Example 3.2, where the trace of N1 is below:

s � 〈(3, a.v1, l2), (3, b.v2, l2)〉
And the trace of N2 is below:

t � 〈(3, a.v1, l2), (3, b.v2, l2)〉
According to the trace-merging definition case 4, we can obtain

s | t � 〈(3, a.v1, l2)〉̂(s ′ | t ′)

where s ′ � 〈(3, b.v2, l2)〉, t ′ � 〈(3, b.v2, l2)〉
According to the trace-merging definition case 4, we can obtain

s ′ | t ′ � 〈(3, b.v2, l2)〉̂(ε | ε)

According to the trace-merging definition case 1, we can obtain

ε | ε � {ε}
Finally, we obtain the trace of the network by merging s and t below:

〈(3, a.v1, l2), (3, b.v2, l2)〉 �

4. Algebraic properties

Ourwork towards the formalizationof rTiMoaims todeduce its interestingproperties,whichareusually expressed
using algebraic laws and equations [HH98]. In this section, we explore a set of algebraic laws for rTiMo including
basic algebraic laws and a set of parallel expansion laws. The basic algebraic laws are introduced in Sect. 4.1. In
Sect. 4.2, we investigate the parallel expansion laws. And from these laws, we can find that every parallel program
can be converted to the guarded choice form.

We have presented the three types of guarded choice, including communication guarded choice, delay guarded
choice and hybrid guarded choice. Then, we find that the parallel composition of any two components can be
converted into the guarded choice form, i.e., the law (para-6) in Sect. 4.2 is for the parallel composition of a located
output process and a locatedmigration process and from this law, we can find that it can be converted into a hybrid
guarded choice. And in Sect. 4.2, we also investigate the laws for the parallel composition of any two guarded
choice components. And from these laws, we find that the form of the parallel result is still contained in the three
types of guarded choice. For example, the law (para-9) is for the parallel composition of a communication guarded
choice and delay guarded choice and from this law, we can see that it can be converted into a communication
guarded choice.

4.1. Basic algebraic laws

If a migration action has a timer which equals to 0, then process P migrates from location l to l ′ without any
time delay.

(move-1) l [[go�0l ′ then P]] � l ′[[P]]

A communication action has a timerwhich equals to 0, the process a�0∗ then P else Q continues as the alternative
process Q . Here, ∗ ∈ {!〈v〉, ?(u)}.
(output-1) l [[a�0!〈v〉 then P else Q]] � l [[Q]]

724 W. Xie et al.

(input-1) l [[a�0?(u) then P else Q]] � l [[Q]]

For the located migration process l [[go�t l ′ then P]], it first delays t time units, then process P moves to location
l ′.

(move-2) l [[go�t l ′ then P]] � #t → l ′[[P]] where t > 0.

For the located output process, if the output action happens at the start of the program, the subsequent process
is P from location l . On the other hand, the output action needs to wait for the specific input action trigged. If
the waiting time t ′ ranges in (0...t), the subsequent process is still P . The subsequent process isQ from location l
when the output action delays t time units, which means that the communication gives up and the control passes
into the alternative process Q .

(output-2) l [[a�t !〈v〉 then P else Q]]

� a!〈v〉@l → l [[P]]

⊕ ∃ t ′ ∈ (0...t) • (#t ′ → (a!〈v〉@l → l [[P]]))

⊕ #t → l [[Q]], where t > 0.

Proof
RHS

� {Def of Hybrid Guarded Choice}
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

H (st ′ � completed ∧ append (a!〈v〉@l) ∧ −−→
time � ←−−

time); beh(l [[P]])
∨

H

⎛

⎜
⎜
⎝

(st ′ � wait ∧ tr ′ � tr ∧ 0 <
−−→
time − ←−−

time < t) ∨
(st ′ � completed ∧ append (a!〈v〉@l) ∧

0 <
−−→
time − ←−−

time < t)

⎞

⎟
⎟
⎠

; beh(l [[P]])

∨

H
(

st ′ � completed ∧ tr ′ � tr ∧ −−→
time � ←−−

time + t
)

; beh(l [[Q]])

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

� {(H (X 1); Y)
∨
(H (X 2); Y) � H (X 1 ∨ X 2); Y }

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

H

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

(st ′ � completed ∧ append (a!〈v〉@l) ∧ −−→
time � ←−−

time) ∨
(st ′ � wait ∧ tr ′ � tr ∧ 0 <

−−→
time − ←−−

time < t) ∨
(st ′ � completed ∧ append (a!〈v〉@l) ∧

0 <
−−→
time − ←−−

time < t)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

; beh(l [[P]])

∨

H
(

st ′ � completed ∧ tr ′ � tr ∧ −−→
time � ←−−

time + t
)

; beh(l [[Q]])

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

� {Logical Equivalence}
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

H

⎛

⎜
⎜
⎝

(st ′ � wait ∧ tr ′ � tr ∧ 0 <
−−→
time − ←−−

time < t) ∨
(st ′ � completed ∧ append (a!〈v〉@l) ∧
(
−−→
time � ←−−

time ∨ 0 <
−−→
time − ←−−

time < t))

⎞

⎟
⎟
⎠

; beh(l [[P]])

∨

H
(

st ′ � completed ∧ tr ′ � tr ∧ −−→
time � ←−−

time + t
)

; beh(l [[Q]])

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

A UTP Approach for rTiMo 725

� {(−−→time � ←−−
time ∨ 0 <

−−→
time − ←−−

time < t) � 0 ≤ −−→
time − ←−−

time < t}
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

H

⎛

⎜
⎜
⎝

(st ′ � wait ∧ tr ′ � tr ∧ 0 <
−−→
time − ←−−

time < t) ∨
(st ′ � completed ∧ append (a!〈v〉@l) ∧

0 ≤ −−→
time − ←−−

time < t)

⎞

⎟
⎟
⎠

; beh(l [[P]])

∨

H
(

st ′ � completed ∧ tr ′ � tr ∧ −−→
time � ←−−

time + t
)

; beh(l [[Q]])

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

� {Def of Output Process}
LHS �

(input-2) l [[a�t?(u) then P else Q]]

� a?(u)@l → l [[P]]

⊕ ∃ t ′ ∈ (0...t) • (#t ′ → (a?(u)@l → l [[P]]))

⊕ #t → l [[Q]], where t > 0.

The located input process has the similar description with the located output process.

4.2. Algebraic laws for parallel composition

The located process l [[0]] is the identity of parallel composition.

(para-1) N | l [[0]] � N � l [[0]] | N

The parallel composition | is symmetric and associative.

(para-2) N | M � M | N

(para-3) N | (M | R) � (N | M) | R

(para-4) Let N1 � l [[a�t !〈v〉 then P else Q]], N2 � l [[a�t?(u) then P ′ else Q ′]],

N3 � N1 | N2, where t > 0.

Then, N3 � a.[v/u]@l → (l [[P]] | l [[P ′[v/u]]])

As mentioned earlier, rTiMo calculus enjoys the time property maximal progress: data transmissions cannot be
delayed, they must occur as soon as a possibility for communication arises. In the law (para-4), the output action
and the input action both are enabled at the current activation time of N3, thus, the communication takes place
at this time without time delay. In this law, an output process, from location l , succeeds in sending the message v
over channel a to an input process from location l without any time delay. Both processes continue to execute at
location l , the first one as P , the second one as P ′[v/u].

(para-5) Let N1 � l [[go�t1 l1 then P1]], N2 � l [[go�t2 l2 then P2]],

N3 � N1 | N2, where t1 > 0 and t2 > 0.

Then, we have the following three cases:

t1 < t2: N3 � #t1 → (l1[[P1]] | #(t2 − t1) → l2[[P2]])

t1 � t2: N3 � #t1 → (l1[[P1]] | l2[[P2]])

t1 > t2: N3 � #t2 → (#(t1 − t2) → l1[[P1]] | l2[[P2]])

726 W. Xie et al.

Law (para-5) is about the one for the parallel composition of two migration processes. There are three cases in
this law. The first case is that t1 is the smaller one and in this case N3 delays t1 time units first, process P1 moves
to location l1 and the second process P2 still needs to wait t2 − t1 time units. For the case t1 � t2, after delaying
t1 (t2) time units, P1 moves to location l1 and P2 moves to location l2. In the case t1 > t2, N3 delays t2 time units
first, process P2 then moves to location l2 and the first process P1 still needs to wait t1 − t2 time units.

(para-6) Let N1 � l [[a�t1 !〈v〉 then P else Q]], N2 � l [[go�t2 l ′ then P ′]],

N3 � N1 | N2, where t1 > 0 and t2 > 0.

Then we have three cases for N3:

t1 < t2: N3 � a!〈v〉@l → (l [[P]] | N2)

⊕ ∃ t ′ ∈ (0...t1) • (#t ′ → (a!〈v〉@l → l [[P]] | #(t2 − t ′) → l ′[[P ′]]))

⊕#t1 → (l [[Q]] | #(t2 − t1) → l ′[[P ′]])

t1 � t2: N3 � a!〈v〉@l → (l [[P]] | N2)

⊕ ∃ t ′ ∈ (0...t1) • (#t ′ → (a!〈v〉@l → l [[P]] | #(t2 − t ′) → l ′[[P ′]]))

⊕#t1 → (l [[Q]] | l ′[[P ′]])

t1 > t2: N3 � a!〈v〉@l → (l [[P]] | N2)

⊕ ∃ t ′ ∈ (0...t2) • (#t ′ → (a!〈v〉@l → l [[P]] | #(t2 − t ′) → l ′[[P ′]]))

⊕#t2 → (l [[a�t1−t2 !〈v〉 then P else Q]] | l ′[[P ′]]).

For the parallel composition of a located output process and a locatedmigration process indicated in law (para-6),
we have to consider the three cases t1 < t2, t1 � t2 and t1 > t2. Since the three cases have the similar descriptions,
here, we take the case t1 < t2 as an example.

In the case t1 < t2, if the output action occurs at the start of the program, the located output process evolves
as process P from location l and the located migration process keeps itself unchanged. On the other hand, the
output action enters a waiting state, if the waiting time t ′ ranges in (0...t1),N3 delays t ′ time units first, the output
action happens and the located output process continues as P from location l , the located migration process
should still wait t2 − t ′ time units. If the output action does not take place before the timeout t1,N3 delays t1 time
units, the located output process continues as the alternative processQ from location l and the located migration
process still needs to wait t2 − t1 time units.

(para-7) Let N1 � l [[a�t1 !〈v〉 then P1 else Q1]], N2 � l [[b�t2 ?(u) then P2 else Q2]],

N3 � N1 | N2, where 0 < t1 < t2.

Then, N3 � a!〈v〉@l → (l [[P1]] | N2)[]b?(u)@l → (N1 | l [[P2]])

⊕ ∃ t ′ ∈ (0...t1) • (#t ′ → (

a!〈v〉@l → (l [[P1]] | l [[b�t2−t ′
?(u) then P2 else Q2]])

[]b?(u)@l → (l [[a�t1−t ′
!〈v〉 then P1 else Q1]] | l [[P2]])))

⊕#t1 → (l [[Q1]] | l [[b�t2−t1 ?(u) then P2 else Q2]])

In law (para-7), the located output process and the located input process do not share the same communication
channel, which means that there is no message communication between them. The law (para-7) describes the
following three cases:

• Case 1: At the start point of the program, at least one of output action over channel a (a!〈v〉@l) and input
action over channel b (b?(u)@l) occurs, the first action of N3 is either a!〈v〉@l or b?(u)@l . When a!〈v〉@l is
the first action of N3, the located output process continues to be process P1 from location l and the located
input process remains unchanged. If the first action of N3 is b?(u)@l , the located output process keeps itself
unchanged and the located input process continues as process P2 from location l .

A UTP Approach for rTiMo 727

Table 2. Parallel composition of two guarded choice components
Communication GC Delay GC Hybrid GC

Communication GC
√ √ √

Delay GC
√ √

Hybrid GC
√

• Case 2:N3 enters the waiting state, if the waiting time t ′, which denotes the time a!〈v〉@l or b?(u)@l happens,
ranges in (0...t1), N3 delays t ′ time units first and the next action is either a!〈v〉@l or b?(u)@l .

• Case 3: If neither a!〈v〉@l nor b?(u)@l takes place before the timeout t1, then N3 delays t1 time units first,
the located output process continues as process Q from location l and the timer for the located input process
is �t2−t1 .

Next we investigate the laws for the parallel composition of two guarded choice components. And from these
laws, we can find that every parallel program can be converted into the guarded choice form. We have three types
about the guarded choice, including communication guarded choice, delay guarded choice and hybrid guarded
choice. Thus, there are six cases about the parallel composition of two guarded choice components, which are
illustrated in Table 2, where GC denotes Guarded Choice. The first case is the parallel composition of two
communication guarded choice components and the laws for the first case are given in (para-8-1) and (para-8-2).

(para-8-1) Let N � []i∈I {gi → Ni } and M � []j∈J{hj → Mj }.
Assume that there is no message communication between N and M .

Then, N | M � []i∈I {gi → (Ni | M)}[][]j∈J{hj → (N | Mj)}
Law (para-8-1) reflects the parallel composition of two communication guarded choices, in which two communi-
cation components do not share the same communication channels, which means there is no message communi-
cation between them. The case that two parallel communication components can communicate with each other
is illustrated in law (para-8-2).

(para-8-2) Let N 1 � []i∈I {gi → N 1i } and M 1 � []j∈J{hj → M 1j },
N � N 1[][]k∈K {ak !〈vk 〉@lk → N 2k },
M � M 1[][]k∈K {ak ?(uk)@lk → M 2k }.

Assume that there are no communications between N 1 and M 1.

Then, N | M � []i∈I {gi → (N 1i | M)}[][]j∈J{hj → (N | M 1j)}
[][]k∈K {ak .[vk/uk]@lk → (N 2k | M 2k)}

The second case is the parallel composition of communication guarded choice and delay guarded choice. And
the law (para-9) is for the second case. In the law (para-9), the communication guard gi is executed first, the
subsequent network evolves as (Ni | #t → N).

(para-9) []i∈I {gi → Ni } | #t → N � []i∈I {gi → (Ni | #t → N)}
The third case is the parallel composition of communication guarded choice and hybrid guarded choice, which
is indicated in the laws (para-10-1) and (para-10-2).

(para-10-1) Let N � []i∈I {gi → Ni },
M � []j∈J{hj → Mj }

⊕ ∃ t ′ ∈ (0...t) • (#t ′ → ([]j∈J{hj → M ′
j }))

⊕#t → M ′.

728 W. Xie et al.

Assume that there is no communication between N and M .

Then, N | M � []i∈I {gi → (Ni | M)}[][]j∈J{hj → (N | Mj)}
In the law (para-10-1), there is no communication between the two components, thus, the first action can be gi
or can be hj . The case that there is a message communication between the two components is showed in the law
(para-10-2).

(para-10-2) Let N 1 � []i∈I {gi → N 1i }, N � N 1[][]k∈K {ak !〈vk 〉@lk → N 2k },
M 1 � []j∈J{hj → M 1j }

⊕ ∃ t ′ ∈ (0...t) • (#t ′ → ([]j∈J{hj → M 1′
j }))

⊕#t → M 1′,

M � []j∈J{hj → M 1j }[][]k∈K {ak ?(uk)@lk → M 2k }
⊕ ∃ t ′ ∈ (0...t) • (#t ′ → ([]j∈J{hj → M 1′

j }))
⊕#t → M 1′,

Assume that there is no communication between N 1 and M 1.

Then, N | M � []i∈I {gi → (N 1i | M)}[][]j∈J{hj → (N | M 1j)}[][]k∈K {ak .[vk/uk]@lk → (N 2k | M 2k)}
The fourth case is the parallel composition of two delay guarded choices. And the laws for the fourth case are
given in (para-11-1), (para-11-2) and (para-11-3).

(para-11-1) #t1 → N1 | #(t1 + t2) → N2 � #t1 → (N1 | #t2 → N2)

(para-11-2) #t1 → N1 | #t1 → N2 � #t1 → (N1 | N2)

(para-11-3) #(t1 + t2) → N1 | #t2 → N2 � #t2 → (#t1 → N1 | N2)

The fifth case is the parallel composition of delay guard choice and hybrid guarded choice. And the law for the
fifth case is indicated in the law (para-12).

(para-12) Let N � []i∈I {gi → Ni }
⊕ ∃ t ′ ∈ (0...t1) • (#t ′ → ([]i∈I {gi → N ′

i }))
⊕#t1 → N ′,

M � #t2 → M ′.

Then, N | M has three cases:

t1 < t2: N | M � []i∈I {gi → (Ni | M)}
⊕ ∃ t ′ ∈ (0...t1) • (#t ′ → ([]i∈I {gi → N ′

i } | #(t2 − t ′) → M ′))

⊕#t1 → (N ′ | #(t2 − t1) → M ′)

t1 � t2: N | M � []i∈I {gi → (Ni | M)}
⊕ ∃ t ′ ∈ (0...t1) • (#t ′ → ([]i∈I {gi → N ′

i } | #(t2 − t ′) → M ′))

⊕#t1 → (N ′ | M ′)

t1 > t2: N | M � []i∈I {gi → (Ni | M)}
⊕ ∃ t ′ ∈ (0...t2) • (#t ′ → ([]i∈I {gi → N ′

i } | #(t2 − t ′) → M ′))

⊕#t2 → (N 1 | M ′)

A UTP Approach for rTiMo 729

where,

N 1 � []i∈I {gi → Ni }
⊕ ∃ t ′ ∈ (0...t1 − t2) • (#t ′ → ([]i∈I {gi → N ′

i }))
⊕#(t1 − t2) → N ′

In the law (para-12), there are three cases for the parallel composition of hybrid guarded choice and delay guarded
choice, including t1 < t2, t1 � t2 and t1 > t2. Here, we take t1 < t2 as an example to explain the execution of the
two parallel components. If the communication action in N takes place at the activation time of the program,
then gi is the first action of N | M and the subsequent network is Ni | M . The second branch means that the
communication action in N needs to wait t ′ time units where t ′ ranges in (0...t1). The third branch indicates that
the communication action in N does not happen before the timeout t1, then N | M delays t1 time units first, N
evolves as N ′ and M evolves as #(t2 − t1) → M ′.

The last case in Table 2 is the parallel composition of hybrid guarded choice and hybrid guarded choice, and the
law for the sixth case is given in (para-13-1) and (para-13-2).

(para-13-1) Let N � []i∈I {gi → Ni }
⊕ ∃ t ′ ∈ (0...t1) • (#t ′ → ([]i∈I {gi → N ′

i }))
⊕#t1 → N ′,

M � []j∈J{hj → Mj }
⊕ ∃ t ′ ∈ (0...t2) • (#t ′ → ([]j∈J{hj → M ′

j }))
⊕#t2 → M ′, where t1 < t2.

Assume that there is no message communication between N and M .

Then, N | M � []i∈I {gi → (Ni | M)}[][]j∈J{hj → (N | Mj)}
⊕ ∃ t ′ ∈ (0...t1) • (#t ′ → ([]i∈I {gi → (N ′

i | M 1)}[][]j∈J{hj → (N 1 | M ′
j)}))

⊕#t1 → (N ′ | M 2)

where, N 1 � []i∈I {gi → Ni }
⊕ ∃ t ′′ ∈ (0...t1 − t ′) • (#t ′′ → ([]i∈I {gi → N ′

i }))
⊕#(t1 − t ′) → N ′,

M 1 � []j∈J{hj → Mj }
⊕ ∃ t ′′ ∈ (0...t2 − t ′) • (#t ′′ → ([]j∈J{hj → M ′

j }))
⊕#(t2 − t ′) → M ′,

M 2 � []j∈J{hj → Mj }
⊕ ∃ t ′′ ∈ (0...t2 − t1) • (#t ′′ → ([]j∈J{hj → M ′

j }))
⊕#(t2 − t1) → M ′

In the law (para-13-1), there is no message communication between N and M . []i∈I {gi → (N ′
i | M)} in N | M

stands for that gi in N takes place at the activation time of the program, and after that, N evolves as Ni and M
keeps unchanged. []j∈J{hj → (N | Mj)} represents that hj inM is the first action of the two parallel components,
N keeps itself unchanged and M evolves as Mj . The second branch in N | M means that N and M both need
to wait for some time units before the communication actions happen. Thus, N | M first delays t ′ time units,
where t ′ ranges in (0...t1). After delaying t ′ time units, the next action can be gi or can be hj . The third branch
#t1 → (N ′ | M 2) in N | M indicates that the communication actions in N and M both do not take place
within t1 time units, thus, after delaying t1 time units, N evolves as N ′ and M evolves as M 2.

The case that N and M can communicate with each other is showed in (para-13-2).

730 W. Xie et al.

(para-13-2) Let N 3 � []i∈I {gi → Ni }
⊕ ∃ t ′ ∈ (0...t1) • (#t ′ → ([]i∈I {gi → N ′

i }))
⊕#t1 → N ′,

M 3 � []j∈J{hj → Mj }
⊕ ∃ t ′ ∈ (0...t2) • (#t ′ → ([]j∈J{hj → M ′

j }))
⊕#t2 → M ′,

N � []i∈I {gi → Ni }[][]k∈K {ak !〈vk 〉@lk → N 4k }
⊕ ∃ t ′ ∈ (0...t1) • (#t ′ → ([]i∈I {gi → N ′

i }[][]k∈K {ak !〈vk 〉@lk → N 4′
k }))

⊕#t1 → N ′,

M � []j∈J{hj → Mj }[][]k∈K {ak ?(uk)@lk → M 4k }
⊕ ∃ t ′ ∈ (0...t2) • (#t ′ → ([]j∈J{hj → M ′

j }[][]k∈K {ak ?(uk)@lk → M 4′
k }))

⊕#t2 → M ′, where t1 < t2.

Assume that there is no communication between N 3 and M 3.

Then, N | M � []i∈I {gi → (Ni | M)}[][]j∈J{hj → (N | Mj)}[][]k∈K {ak .[vk/uk]@lk → (N 4k | M 4k)}
⊕ ∃ t ′ ∈ (0...t1) • (#t ′ → ([]i∈I {gi → (N ′

i | M 1)}[][]j∈J{hj → (N 1 | M ′
j)}

[][]k∈K {ak .[vk/uk]@lk → (N 4′
k | M 4′

k)}))
⊕#t1 → (N ′ | M 2)

where N 1, M 1 and M 2 have been defined in the law (para-13-1).

5. Proof system for rTiMo

In this section, we present a proof system for rTiMo in order to prove the correctness of real-time systems formal-
ized in rTiMo. Program correctness is expressed by so-called correctness formulas [AdBO09]. The formalism to
specify real-time system which are described using rTiMo is proposed in Sect. 5.1. In Sect. 5.2, we will introduce
some auxiliary axioms and rules, which also have been introduced in [AdBO09, Hoo94, Hoo91]. In Sect. 5.3, we
give the proof rules for the basic commands. The proof rules for parallel composition are presented in Sect. 5.4.

5.1. Specification

The specifications in our paper are based on Hoare triples (precondition, program, postcondition) [Hoa69].
The formulas have the form {p} N {q} where p and q are assertions and N is a network. The precondition
p expresses assumptions about the values of local objects at the start of N , the beginning time of N and the
timed occurrence of observable actions. And the postcondition q expresses assumptions about the values of the
local objects at termination (if N terminates), the termination time (∞ if N does not terminate) and the timed
occurrence of observable actions. Compared with classical Hoare triples, we add time in assertions, this means
that our formalism can deal with partial correctness as well as progress properties. The assertions p and q in a
formula {p} N {q} are expressed in a first-order logic with the following primitives:

• Val denotes a set of logical value variables, i.e. v0, v1, v2, ..., vn .
• Time ∪ {∞} denotes a set of logical time variables, i.e. t0, ..., tn , where Time={t ∈ R | t ≥ 0}.
• A special variable time denotes the global clock, ranging overTime ∪ {∞}. An occurrence of time in precon-
dition p stands for the starting time of network N whereas in postcondition q it represents the termination

A UTP Approach for rTiMo 731

time (time � ∞ denotes the nonterminating computation, i.e., a waiting process is in an infinite waiting
state).

• Var denotes a set of program variables, ranging over Val . Let Var (N) be the set of program variables in
network N , and we require Var (N1) ∩ Var (N2) � ∅ for parallel composition N1 | N2.

• Chan denotes a set of communication channels. We define Chan(N) to denote the set of communication
channels in network N .

We next define some useful notations which will be used in our proof system:

• A at t denotes the observable action A happens at time t .
• A during I ≡ ∀ t ∈ I : A at t where A denotes the observable action and I denotes the time interval, i.e.
[t0, t1) (t0 < t1).

• p[v/u] denotes that the substitution of v for each free occurrence of variable u in assertion p.

In rTiMo, the communication channels are point-point, i.e. each connecting two processes, and synchronous.
To describe communication bymessage passing along synchronous channels, the assertion contains the following
primitives, where a ∈ Chan, v ∈ Val and t ∈ Time.

• a!@l at t : it denotes a process at location l is waiting to send a value via channel a at time t .
• (a!@l , v) at t : it denotes a process at location l starts sending value v via channel a at time t .
• a?@l at t : it denotes that a process at location l is waiting to receive a value via channel a at time t .
• (a?@l , v) at t : it denotes that a process at location l starts receiving value v via channel a at time t .

5.2. Auxiliary axioms and rules

In this subsection, we introduce some auxiliary axioms and rules presented in [AdBO09, Hoo94, Hoo91].
Nontermination axiom expresses that a program following a nonterminating computation has no effect.

Axiom 1. Nontermination

{p ∧ time � ∞} N {p ∧ time � ∞}
For invariance axiom, it expresses that an assumption satisfying certain restrictions is not affected by the

execution of any program.

Axiom 2. Invariance

{p} N {p}
provided no free variable of p is subject to change in N .

We can use the substitution rule to replace a logical variable in the precondition by any arbitrary expression
if this variable does not occur in the postcondition.

Rule 3. Substitution
{p} N {q}

{p[v/u]} N {q}
provided that u does not occur free in q .

Rule 4. Quantification

{p} N {q}
{∃ s : p} N {q}

provided s does not occur in q .
The conditional rule formalizes a case distinction according to the truth value of B .

Rule 5. Conditional
{p ∧ B} N1 {q}, {p ∧ ¬B} N2 {q}
{p} if B then N1 else N2 fi {q}

732 W. Xie et al.

Our proof system contains the disjunction and conjunction rules which are identical to the classical rules.

Rule 6. Disjunction

{p1} N {q1}, {p2} N {q2}
{p1 ∨ p2} N {q1 ∨ q2}

Rule 7. Conjunction

{p1} N {q1}, {p2} N {q2}
{p1 ∧ p2} N {q1 ∧ q2}

Rule 8. Composition

{p} N1 {p1}, {p1} N2 {q}
{p} N1; N2 {q}

Rule 9. Consequence

p → p1, {p1} N {q1}, q1 → q
{p} N {q}

The consequence rule allows us to strengthen the precondition and weaken the postcondition in a correctness
formula and enables the application of other proof rules.

The sequentialization rule is for disjoint parallel programs.

Rule 10. Sequentialization

{p} N1; N2 {q}
{p} N1 | N2 {q}

5.3. Proof rules for basic commands

In this subsection, we introduce the proof rules for the basic commands, including the empty command, output
command, input command and move command.

0 terminates immediately and has no effect.

Axiom 11. 0

{p} 0 {p}
There are two possibilities about the rule for the output construct l [[a�t !〈v〉 then P1 else P2]]. One possibility

is that the output action takes place within t time units after the starting time t0, leading to assertion p1 and after
that process P1 located at location l is executed leading to assertion q1. In this case, the output action can happen
at the start point t0. On the other hand, the output action needs to wait for the specific input action trigged. The
other possibility is that the output action does not happen before the timeout t , leading to assertion p2 and after
that process P2 at location l is executed leading to q2.

Rule 12. Output

(p ∧ time < ∞)[t0/time] ∧ (((a!@l , v) at t0 ∧ time � t0) ∨
(∃ t ′ ∈ (t0, t0 + t) : a!@l during [t0, t ′) ∧ (a!@l , v) at t ′ ∧ time � t ′)) → p1

(p ∧ time < ∞)[t0/time] ∧ a!@l during [t0, t0 + t) ∧ time � t0 + t → p2

{pi} l [[Pi]] {qi }, for i � 1, 2

{p ∧ time < ∞} l [[a�t !〈v〉 then P1 else P2]] {q1 ∨ q2}
There are also two possibilities about the rule for the input construct l [[a�t?(u) then P1 else P2]]. One

possibility is that the input action takes place within t time units after the starting time t0 leading to assertion p1
and after that process P1 located at location l is executed leading to assertion q1. In this case, the input action

A UTP Approach for rTiMo 733

either happens at the start point t0 or waits for the specific output action trigged. The other possibility is that the
input action does not happen before the deadline t , which leads to assertion p2 and after that process P2 located
location l is executed leading to q2.

Rule 13. Input

(p ∧ time < ∞)[t0/time] ∧ (((a?@l , v) at t0 ∧ time � t0) ∨
(∃ t ′ ∈ (t0, t0 + t) : a?@l during [t0, t ′) ∧ (a?@l , v) at t ′ ∧ time � t ′)) → p1[v/u]

(p ∧ time < ∞)[t0/time] ∧ a?@l during [t0, t0 + t) ∧ time � t0 + t → p2

{pi} l [[Pi]] {qi }, for i � 1, 2

{p ∧ time < ∞} l [[a�t?(u) then P1 else P2]] {q1 ∨ q2}

According to the algebraic lawmove-2 which has been introduced in Sect. 4, we know that the move construct
l [[go�t l ′ then P]] equals to #t → l ′[[P]], where #t means delaying t time units. Thus, we have the following move
rule:

Rule 14. Move

{p[time + t/time] ∧ time < ∞} #t {p}, {p} l ′[[P]] {q}
{p[time + t/time] ∧ time < ∞} #t → l ′[[P]] {q}

For the move rule, it first delays t time units, leading to assertion p, after which process P located at location
l ′ is executed leading to assertion q .

5.4. Proof rules for parallel composition

The proof rule for parallel composition has the following general form where we use a combinator Comb to
combine two assertions. The parallel composition l1[[P1]] | l2[[P2]] performs process P1 from location l1 and
process P2 from l2 running in parallel, where l1 and l2 can be the same or different.

Rule 15. Parallel Composition

{p1} l1[[P1]] {q1}, {p2} l2[[P2]] {q2},
Comb(q1, q2) → q

{p1 ∧ p2} l1[[P1]] | l2[[P2]] {q}

where we have the following assumptions:

• Var (l1[[P1]]) ∩ Var (l2[[P2]]) � ∅ for parallel composition l1[[P1]] | l2[[P2]].
• Var (qi) ⊆ Var (li [[Pi]]) and Chan(qi) ⊆ Chan(li [[Pi]]), for i � 1, 2.

We consider the following possibilities for Comb:

1. If time does not occur in q1 and q2, then we have the following definition:

Comb(q1, q2) ≡ q1 ∧ q2.
2. There is no doubt that the termination times of l1[[P1]] and l2[[P2]] may be different, that is to say that the

values of time in assertions q1 and q2 may be different. In order to obtain a general rule, we substitute logical
variable t1 and t2 for time in q1 and q2 respectively. Then the termination time of the parallel composition
l1[[P1]] | l2[[P2]] is the maximum between t1 and t2.

Comb(q1, q2) ≡ q1[t1/time] ∧ q2[t2/time] ∧ time � max (t1, t2).

734 W. Xie et al.

The communication rule expresses that an output action, from location l , succeeds in sending the message
v over channel a to an input action from location l without any time delay after the start point t0, leading to
the assertions p1 and p2 respectively. After that P1 and P2, which are both located at location l , run in parallel
leading to assertion q .

Rule 16. Communication

(p ∧ time < ∞)[t0/time] ∧ (a!@l , v) at t0 ∧ time � t0 → p1

(p ∧ time < ∞)[t0/time] ∧ (a?@l , v) at t0 ∧ time � t0 → p2[v/u]

{p1 ∧ p2} l [[P1]] | l [[P2]] {q}
{p ∧ time < ∞} l [[P]] | l [[Q]] {q}

where, P � a�t1 !〈v〉 then P1 else Q1,

Q � a�t2 ?(u) then P2 else Q2.

Example 5.1 Let us consider the network N1 | N2 in Example 3.2 again, where

N1 � l1[[go�3l2 then a�2!〈v1〉 then b�3?(u2) else 0]],

N2 � l2[[a�6?(u1) then b�2!〈v2〉 else 0]].

And we have the following shorthand notations:

b�3?(u2) stands for b�3?(u2) then 0 else 0,

b�2!〈v2〉 stands for b�2!〈v2〉 then 0 else 0.

Assume that the activated time of N1 and N2 is at 0. And according to the algebraic law para-6 in Sect. 4, we can
rewrite N1 | N2 as follows:

N1 | N2 = #3 → N3, where

N3 � l2[[a�2!〈v1〉 then b�3?(u2) else 0]] | l2[[a�3?(u1) then b�2!〈v2〉 else 0]]

We prove the following correctness formula using the proof system which we have introduced:

{time � 0} N1 | N2 {time � 3}
To this end we apply the move rule, then we have

{time � 0} #3 {time � 3}, {time � 3} N3 {q}
{time � 0} #3 → N3 {q}

Now we should prove that the assertion q in the correctness formula {time � 3} N3 {q} equals to or implies the
desired assertion {time � 3}. To this end we apply the communication rule, then we can obtain

t0 � 3 ∧ (a!@l2, v1) at 3 ∧ time � 3 → (a!@l2, v1) at 3 ∧ time � 3

t1 � 3 ∧ (a?@l2, v1) at 3 ∧ time � 3 → (a?@l2, v1) at 3 ∧ time � 3

{(a!@l2, v1) at 3 ∧ (a?@l2, v1) at 3 ∧ time � 3} l2[[P1]] | l2[[P2]] {q}
{time � 3} N3 {q}

where, P1 � b�3?(u2) then 0 else 0,

P2 � b�2!〈v2〉 then 0 else 0.

Since (a!@l2, v1) at 3 ∧ (a?@l2, v1) at 3 ∧ time � 3 → time � 3, we then obtain the correctness formula:

A UTP Approach for rTiMo 735

{time � 3} l2[[P1]] | l2[[P2]] {q}
In order to obtain the assertion q in the above correctness formula, we apply the communication rule again, then
we have

t0 � 3 ∧ (b?@l2, v2) at 3 ∧ time � 3 → (b?@l2, v2) at 3 ∧ time � 3

t1 � 3 ∧ (b!@l2, v2) at 3 ∧ time � 3 → (b!@l2, v2) at 3 ∧ time � 3

{(b?@l2, v2) at 3 ∧ (b!@l2, v2) at 3 ∧ time � 3} 0 | 0 {q}
{time � 3} l2[[P1]] | l2[[P2]] {q}

Since (b?@l2, v2) at 3 ∧ (b!@l2, v2) at 3 ∧ time � 3 → time � 3, we then obtain the correctness formula:

{time � 3} 0 | 0 {q}
By the axiom 0, we have

{time � 3} 0 {time � 3}
Finally, by the parallel composition rule, we obtain:

{time � 3} 0 {time � 3}, {time � 3} 0 {time � 3},
Comb(time � 3, time � 3) → time � 3

{time � 3} 0 | 0 {time � 3}

We now get the desired result, that is, the correctness formula {time � 0} N1 | N2 {time � 3} holds. �

6. Related work

In recent years, some work has been done to explore the formal modeling and analysis of mobile systems. Many
concepts fundamental to mobile systems have been represented implicitly in π − calculus in [Mil93, Mil99].
The ambient calculus has been introduced [CG00], where crossing of boundaries is used to represent process
mobility. In [Lak05], Lakos has presented a Petri Net formalism in which the mobility and the interplay between
connectivity and locality can be investigated. The Petri Net formalism proposed in [Lak05] has been extended
to Modular Petri Net [CP95, CP00] by adding the notion of nested modules called locations . And in [Lak09],
Lakos has used the Petri Net formalism to model and analyze mobile IP, which is an Internet standard catering
for mobile nodes using IP version 4 address. In addition, Lakos also has implemented the model by using the
modular analysis tool Maria [Mäk02].

In [MT08], Ma et al. have proposed an extended version of elementary object system (EOS) [Val98], called
EEOS. Based on the extended EOS (EEOS), they have explored a formal model, which is used to model and
analyze a generic secure mobile-agent system. The model supports both strong mobility and secure mobility
of a mobile agent. In [BSB11], Braghin et al. have presented an approach for the modeling and automated
verification of mobile systems, which supports exhaustive analysis of security policies. In their paper, they used
labeled Kripke structures (LKSs) to define the mobile system semantics. And the approach proposed in [BSB11]
can model some essential features of mobile systems, including thread locations, location distribution and thread
moving operations.

The calculus and approaches introduced above do not consider the time constraints, and the time-related
aspects of process migration and interaction have been studied in [CK11b, AC13, CKS15, AC15b]. In [CK11b],
Ciobanu et al. have first introduced a calculus named TiMo (TimedMobility) in which the dynamic evolution of
the whole system is based on local clocks. rTiMo [AC13] is a real-time version of TiMo [CK11b] and the model of
time is based on a global clock in rTiMo calculus. In rTiMo, the processes can move between different locations
and communicate locally with other processes. And the migration and communication are controlled by using
the real-time constraints. Aman et al. have used the calculus rTiMo to model critical systems in [AC15a].

736 W. Xie et al.

In [AC13], the operational semantics of rTiMo has been investigated. This paper studies the denotational
semantics and algebraic properties of rTiMo via the concept of Unifying Theories of Programming (abbreviated
as UTP) [HH98]. UTP covers wide areas of fundamental theories of programs in a formalized style and acts as
a consistent basis for the principles of programming language.

The UTP approach has been successfully applied in investigating the semantics and algebraic laws of a variety
of programming languages [MM05, DGJP04, HSM97, HHZ+15, Zhu05, Shi09, SZL+18]. Zhu has investigated
the operational, denotational and algebraic semantics for Multithreaded Discrete Event Simulation Language
(MDESL) in his thesis [Zhu05].MDESL is aVerilog-like language [Gol96,Gor95],whichhas real-time and shared
variable features. Shi has used the UTP approach to study the denotational semantics and algebraic semantics of
CSP# [SLDC09] in her thesis [Shi09]. The CSP# is a CSP-like language and it directly supports shared variables
which are not available in CSP (Communicating Sequential Processes) [Hoa85]. Woodcock et al. have applied
UTP to study the safety critical Java memory models [CWW13]. He has proposed a newmethodology for further
studying the UTP theory [He16].

In addition, in this paper, we also investigate the deductive semantics for rTiMo based on Hoare Logic
[AdBO09, Hoo94, Hoo91]. The deductive semantics provides a set of proof rules, which can be used to ver-
ify program correctness and general properties. Many approaches based on Hoare Logic have been presented
and widely used in a variety of domain, ranging from reasoning about actions with loop [HZ16], to proving
differential privacy [BGA+14], to linear systems [AMO13], to BPEL-like programs [LQQ08] and to dynamic
networks [dB02].

7. Conclusion and future work

rTiMo is a real-time version of TiMo, which is a process algebra for mobile distributed systems. In this paper,
we have studied the denotational semantics for rTiMo via the concept of UTP [HH98]. Based on the formalized
model, a set of algebraic laws have been investigated, especially the algebraic laws which can describe the time-
related features of rTiMo. In order to deal with the parallel expansion laws, we have introduced the concept of
guarded choice. From a set of parallel expansion laws, we can see every parallel program can be converted to the
guarded choice form. In addition, we also provide a set of proof rules in order to verify correctness and real-time
properties of the real-time programs.

Recently, Hoare has proposed the challenging research topic for studying the semantics linking where the
starting point is from the algebra semantics [Hoa13,HvS12,HvSM+16].Hoare andHehave studied the derivation
of operational semantics from the algebraic semantics [HH98, HH93]. Zhu et al. studied the semantics linking
theory for Verilog, System, PTSC (integrating Probability, Time and Shared-Variable Concurrency) and Web
transaction [ZHB08, ZHQB15, ZYH+12, ZHLB11]. For the future work, we also want to explore the linking
theory of the semantics for rTiMo. It is challenging for us to apply the concept of head normal form via the
achieved algebraic laws of rTiMo.

Hoare also proposed a method to relate the algebra to the proof rules of the axiomatic semantics [Hoa13].
This gives us another challenging research plan for studying the semantics linking starting from the axiomatic
semantics for rTiMo. It is challenging to give the translation between the algebraic semantics and axiomatic
semantics for rTiMo.

For the future work, we will also consider the implementation of the Hoare-style reasoning system for rTiMo
in proof assistant Isabelle/HOL [Pau94, vO01, ZZW+13] or any other theorem provers [FGH+14, QHL+14].

References

[AC13] Aman B, Ciobanu G (2013) Real-time migration properties of rtimo verified in Uppaal. In: 11th international conference,
SEFM 2013 software engineering and formal methods, Madrid, Spain, September 25–27, 2013, proceedings, pp. 31–45

[AC15a] Aman B, Ciobanu G(2015) Timed mobility and timed communication for critical systems. In: Formal methods for industrial
critical systems-20th international workshop, FMICS 2015, Oslo, Norway, June 22–23, 2015 proceedings, pp. 146–161

[AC15b] AmanB,CiobanuG(2015)Verificationof bounded real-timedistributed systemswithmobility. In: Proceedings of the 9thwork-
shop on verification and evaluation of computer and communication systems, VECoS 2015, Bucharest, Romania, September
10-11, 2015, pp 109–120

[AdBO09] Apt KR, de Boer FS, Olderog ER (2009) Verification of sequential and concurrent programs. Texts in computer science.
Springer

[AMO13] Arthan R, Martin U, Oliva P (2013) A Hoare Logic for linear systems. Formal Asp Comput 25(3):345–363

A UTP Approach for rTiMo 737

[BGA+14] Barthe G, Gaboardi M, Arias EJG, Hsu J, Kunz C, Strub PY (2014) Proving differential privacy in Hoare logic. In: IEEE
27th computer security foundations symposium, CSF 2014, Vienna, Austria, 19–22 July, 2014, pp. 411–424

[BSB11] Braghin C, Sharygina N, Barone-Adesi K (2011) A model checking-based approach for security policy verification of mobile
systems. Formal Asp Comput 23(5):627–648

[CG00] Cardelli L, Gordon AD. (2000) Mobile ambients. Theor Comput Sci 240(1):177–213
[CJ12] Ciobanu G, Juravle C (2012) Flexible software architecture and language for mobile agents. Concurrency and computation:

practice and experience 24(6):559–571
[CK11a] Ciobanu G, Koutny M (2011) Timed migration and interaction with access permissions. In: FM 2011: Formal methods-17th

international symposium on formal methods, Limerick, Ireland, June 20-24, 2011, proceedings, pp 293–307
[CK11b] Ciobanu G, Koutny M (2011) Timed mobility in process algebra and Petri nets. J Log Algebr Program 80(7):377–391
[CK15] Ciobanu G, KoutnyM (2015) Pertimo: A model of spatial migration with safe access permissions. Comput J 58(5):1041–1060
[CKS15] Ciobanu G, Koutny M, Steggles LJ (2015) Strategy based semantics for mobility with time and access permissions. Formal

Asp Comput 27(3):525–549
[CP95] Christensen S, Petrucci L (1995) Modular state space analysis of coloured Petri nets. In: 16th international conference

application and theory of petri nets 1995, Turin, Italy, June 26–30, 1995, proceedings, pp 201–217
[CP00] Christensen S, Petrucci L (2000) Modular analysis of Petri nets. Comput J 43(3):224–242
[CWW13] Cavalcanti A, Wellings AJ, Woodcock J (2013) The safety-critical java memory model formalised. Formal Asp Comput

25(1):37–57
[dB02] de Boer Frank S (2002) AHoare logic for dynamic networks of asynchronously communicating deterministic processes. Theor

Comput Sci 274(1-2):3–41
[DCS10] Duran A, Cavalcanti A, Sampaio A(2010) An algebraic approach to the design of compilers for object-oriented languages.

Formal Asp Comput 22(5):489–535
[DGJP04] Desharnais J, Gupta V, Jagadeesan R, Panangaden P (2004) Metrics for labelled markov processes. Theor Comput Sci

318(3):323–354
[FGH+14] Ferreira JF, Gherghina C, He G, Qin S, Chin W-N (2014) Automated verification of the FreeRTOS scheduler in Hip/Sleek.

STTT 16(4):381–397
[Gol96] Golze U (1996) VLSI chip design with the hardware description language VERILOG-an introduction based on a large RISC

processor design. Springer, Berlin
[Gor95] Gordon Michael JC (1995) The semantic challenge of Verilog HDL. In: Proceedings, 10th annual IEEE symposium on logic

in computer science, San Diego, California, USA, June 26-29, 1995, pp. 136–145
[He94] He J (1994)Provably correct systems:modellingof communication languages anddesignof optimized compilers.TheMcGraw-

Hill international series in software engineering
[He16] He J (2016) A new roadmap for linking theories of programming. In: Unifying theories of programming-6th international

symposium, UTP 2016, Reykjavik, Iceland, June 4–5, 2016, Revised Selected Papers, pp 26–43
[Hen88] Hennessy M (1988) Algebraic theory of processes. MIT Press series in the foundations of computing. MIT Press
[HH93] He J, Hoare CAR (1993) From algebra to operational semantics. Inf Process Lett 45(2):75–80
[HH98] Hoare CAR, He J (1998) Unifying Theories of Programming. Prentice Hall International Series in Computer Science
[HHH+87] Hoare CAR, Hayes IJ, He J, Morgan C, Roscoe AW, Sanders JW, Sørensen IH, Spivey JM, Sufrin B (1987) Laws of program-

ming. Commun ACM 30(8):672–686
[HHS93] Hoare CAR, He J, Sampaio A (1993) Normal form approach to compiler design. Acta Inf 30(8):701–739
[HHZ+15] Huang Y, He J, Zhu H, Zhao Y, Shi J, Qin S (2015) Semantic theories of programs with nested interrupts. Front Comput Sci.

9(3):331–345
[Hoa69] Hoare CAR (1969) An axiomatic basis for computer programming. Commun ACM 12(10):576–580
[Hoa85] Hoare CAR (1985) Communicating sequential processes. Prentice-Hall,
[Hoa13] Hoare T (2013) Unifying semantics for concurrent programming. In: Computation, logic, games, and quantum foundations.

the many facets of samson abramsky-essays dedicated to samson abramsky on the occasion of his 60th Birthday, pp 139–149
[Hoo91] Hooman J (1991)Compositional verificationof real-time systemsusing extendedhoare triples. In:Real-time: theory in practice,

REX workshop, Mook, The Netherlands, June 3–7, 1991, proceedings, pp 252–290
[Hoo94] Hooman J (1994) Extending Hoare Logic to real-time. Formal Asp Comput 6(6A):801–826
[HSM97] He J, Seidel K, McIver A (1997) Probabilistic models for the guarded command language. Sci Comput Program 28(2-3):171–

192
[HvS12] Hoare T, van Staden S (2012) In praise of algebra. Formal Asp Comput 24(4-6):423–431
[HvSM+16] Hoare T, van Staden S,Möller B, Struth G, ZhuH (2016) Developments in concurrent Kleene algebra. J Log AlgebrMethods

Program 85(4):617–636
[HZ16] He J, Zhao X (2016) Reasoning about actions with loops via Hoare logic. Front Comput Sci 10(5):870–888
[Lak05] Lakos C (2005) A Petri net view of mobility. In: Formal techniques for networked and distributed systems-FORTE 2005, 25th

IFIP WG 6.1 international conference, Taipei, Taiwan, October 2–5, 2005, proceedings, pp 174–188
[Lak09] Lakos C (2009) Modelling mobile IP with mobile Petri nets. Transactions on petri nets and other models of concurrency III.

Lecture notes in computer science 5800, Springer 2009, ISBN 978-3-642-04854-8, 3:127–158
[LQQ08] Luo C, Qin S, Qiu Z (2008) Verifying BPEL-like programs with Hoare Logic. Front Comput Sci China 2(4):344–356
[Mäk02] Mäkelä M (2002) Maria: modular reachability analyser for algebraic system nets. In: Applications and theory of Petri nets

2002, 23rd international conference, ICATPN 2002, Adelaide, Australia, June 24-30, 2002, proceedings, pp 434–444
[Mil80] Milner R (1980) A calculus of communicating systems (Lecture notes in computer science), vol 92. Springer
[Mil93] Milner R (1993) Elements of interaction-turing award lecture. Commun ACM, 36(1):78–89
[Mil99] Milner R (1999) Communicating and mobile systems-the Pi-calculus. Cambridge University Press, Cambridge
[MM05] McIver A,Morgan C (2005) Abstraction and refinement in probabilistic systems. SIGMETRICS Perform Eval Rev, 32(4):41–

47

738 W. Xie et al.

[MT08] Ma L, Tsai JJP (2008) Formal modeling and analysis of a secure mobile-agent system. IEEE Trans Syst Man and Cyber Part
A 38(1):180–196

[O’H07] O’Hearn PW (2007) Resources, concurrency, and local reasoning. Theor Comput Sci 375(1-3):271–307
[Pau94] Paulson LC (1994) Isabelle-A Generic theorem prover (with a contribution by T. Nipkow), volume 828 of Lecture notes in

computer science. Springer
[Plo04] Plotkin GD (2004) A structural approach to operational semantics. J Log Algebr Program 60-61:17–139
[Pra90] Vaughan RP (1990) Action logic and pure induction. In: Logics in AI, European workshop, JELIA ’90, Amsterdam, The

Netherlands, September 10–14, 1990, proceedings, pp 97–120
[QHL+14] Qin S, He G, Luo C, Chin W-N, Yang H (2014) Automatically refining partial specifications for heap-manipulating programs.

Sci Comput Program 82:56–76
[Shi09] Shi L (2009) Comparative studies, formal semantics and PVS encoding of CSP#. PhD thesis, East China Normal Univer-

sity,China
[SLDC09] Sun J, Liu Y, Dong JS, Chen C(2009) Integrating specification and programs for system modeling and verification. In TASE

2009, third IEEE international symposium on theoretical aspects of software engineering, 29–31 July 2009, Tianjin, China,
pp 127–135

[Sto79] Stoy JE (1979) Foundations of denotational semantics. In: Abstract software specifications, 1979 CopenhagenWinter School,
January 22 –February 2, 1979, proceedings, pp 43–99

[SZL+18] Shi L, Zhao Y, Liu Y, Sun J, Dong JS, Qin S (2018) A UTP semantics for communicating processes with shared variables and
its formal encoding in PVS. Formal Asp Comput

[Tar55] Tarski A (1955) A lattice-theoretical fixpoint theorem and its applications. Pac J Math, 5(2):285–309
[Val98] Valk R (1998) Petri nets as token objects: An introduction to elementary object nets. In: 19th international conference

application and theory of petri nets 1998 ICATPN ’98, Lisbon, Portugal, June 22-26, 1998, proceedings, pp 1–25
[vO01] von Oheimb D (2001) Hoare logic for java in Isabelle/HOL. Concurr Comput Pract Exp. 13(13):1173–1214
[Wat91] Watt DA (1991) Programming language syntax and semantics. Prentice Hall International series in computer science. Prentice

Hall
[XX16] Xie W, Xiang S (2016) UTP semantics for rTiMo. In Unifying theories of programming-6th international symposium, UTP

2016, Reykjavik, Iceland, June 4–5, 2016, Revised Selected Papers, pp. 176–196
[ZHB08] Zhu H, He J, Bowen JP (2008) From algebraic semantics to denotational semantics for Verilog. ISSE 4(4):341–360
[ZHLB11] Zhu H, He J, Li J, Bowen JP (2011) Algebraic approach to linking the semantics of web services. ISSE 7(3):209–224
[ZHQB15] Zhu H, He J, Qin S, Brooke PJ (2015) Denotational semantics and its algebraic derivation for an event-driven system-level

language. Formal Asp Comput 27(1):133–166
[Zhu05] Zhu H (2005) Linking the semantics of a multithreaded discrete event simulation language. PhD thesis, London South Bank

University UK
[ZYH+12] Zhu H, Yang F, He J, Bowen JP, Sanders JW, Qin S(2012) Linking operational semantics and algebraic semantics for a

probabilistic timed shared-variable language. J Log Algebr Program 81(1):2–25
[ZZW+13] Zou L, ZhanN,Wang S, FränzleM, Qin S (2013) Verifying Simulink diagrams via a hybrid hoare logic prover. In: Proceedings

of the international conference on embedded software, EMSOFT 2013, Montreal, QC, Canada, September 29–Oct. 4, 2013,
pp 9:1–9:10

Received 25 April 2017
Accepted in revised form 24 July 2018 by Jin Song Dong
Published online 10 August 2018

	A UTP approach for rTiMo
	Abstract
	1 Introduction
	2 The rTiMo calculus
	3 Denotational semantics
	3.1 The semantic model
	3.2 Denotational semantics for basic commands
	3.3 Denotational semantics for guarded choice
	3.4 Denotational semantics for parallel composition

	4 Algebraic properties
	4.1 Basic algebraic laws
	4.2 Algebraic laws for parallel composition

	5 Proof system for rTiMo
	5.1 Specification
	5.2 Auxiliary axioms and rules
	5.3 Proof rules for basic commands
	5.4 Proof rules for parallel composition

	6 Related work
	7 Conclusion and future work
	References

