
https://doi.org/10.1007/s00165-018-0453-7
BCS © 2018
Formal Aspects of Computing (2018) 30: 351–380

Formal Aspects
of Computing

A UTP semantics for communicating processes
with shared variables and its formal encoding
in PVS
Ling Shi1, Yongxin Zhao2, Yang Liu3, Jun Sun4, Jin Song Dong1,5, and Shengchao Qin6

1 School of Computing, National University of Singapore, Singapore, Singapore
2 Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, China
3 School of Computer Engineering, Nanyang Technological University, Singapore, Singapore
4 Singapore University of Technology and Design, Singapore, Singapore
5 Institute for Integrated Intelligent Systems, Griffith University, Nathan, QLD, Australia
6 Teesside University, Middlesbrough, UK

Abstract. CSP#(communicating sequential programs) is amodelling languagedesigned for specifying concurrent
systems by integrating CSP-like compositional operators with sequential programs updating shared variables.
In this work, we define an observation-oriented denotational semantics in an open environment for the CSP#
language based on the UTP framework. To deal with shared variables, we lift traditional event-based traces
into mixed traces which consist of state-event pairs for recording process behaviours. To capture all possible
concurrency behaviours between action/channel-based communications and global shared variables,we construct
a comprehensive set of rules on merging traces from processes which run in parallel/interleaving. We also define
refinement to check process equivalence and present a set of algebraic laws which are established based on our
denotational semantics. We further encode our proposed denotational semantics into the PVS theorem prover.
The encoding not only ensures the semantic consistency, but also builds up a theoretic foundation for machine-
assisted verification of CSP# specifications.

Keywords: UTP; Denotational semantics; Shared variables; Encoding

1. Introduction

Communicating Sequential Processes (CSP) [Hoa85], a prominentmember of the process algebra family, has been
designed to formally model concurrent systems whose behaviours are described as process expressions together
with a rich set of compositional operators. It has been widely accepted and applied to a variety of safety-critical
systems [WLBF09]. However, with the increasing size and complexity of concurrent systems, it becomes clear
that CSP is deficient to model non-trivial data structures (for example, hash tables) or functional aspects. To

Correspondence and offprint requests to: Y. Zhao E-mail: yxzhao@sei.ecnu.edu.cn.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00165-018-0453-7&domain=pdf

352 L. Shi et al.

solve this problem, considerable efforts on enhancing CSP with data aspects have been made. One approach is to
integrate CSP (or CCS [Mil89], another popular process algebra) with state-based specification languages, such
as Circus [WC02], CSP-OZ [Fis97, Smi97], TCOZ [MD00, MD02, QDC03], CSPσ [CH09], CSP‖B [ST05], and
CCS+Z [GS97, TA97].

Inspired by the related works, CSP# [SLDC09] has been proposed to specify concurrent systems which
involve shared variables. It combines the event-based specifications with the state-based programs by introducing
data operations to handle state transitions. CSP# integrates CSP-like compositional operators with sequential
program constructs such as assignments and while loops, for the purpose of expressive modelling and efficient
system verification. In addition, CSP# is supported by the PAT model checker [SLDP09] and has been applied
to a number of systems available at the PAT website (http://pat.comp.nus.edu.sg/).

An operational semantics of CSP# was defined by interpreting the behaviour of CSP# models using labelled
transition systems (LTS) [SLDC09]. Based on this semantics, model checking CSP# becomes possible. Never-
theless, the proposed operational semantics is not compositional and thus lacks the support of compositional
verification of process behaviours. Meanwhile, the model checking method based on the operational semantics
is certainly limited by the state explosion problem. In practice, the method can only be used for checking the
finite state transition systems. Therefore, there is a need for defining a compositional denotational semantics to
explain the notations of the CSP# language and further developing a theorem proving approach to complement
the model checking approach for system verification.

In this article, we propose a denotational semantics for CSP# and develop an interactive theorem proving
framework to support compositional verification. We firstly present an observation-oriented denotational se-
mantics for the CSP# language based on the UTP [HH98] framework in an open environment, where process
behaviours can be interfered with by the environment. The proposed semantics not only provides a rigorous
meaning of the language, but also allows one to deduce algebraic laws [HHH+87] describing the properties of
CSP# processes. To deal with shared variables, we lift traditional event-based traces into mixed traces (consist-
ing of state-event pairs) for recording process behaviours. To handle different types of synchronisation in CSP#
(i.e., action-based and synchronised handshake), we construct a comprehensive set of rules on merging traces
from processes which run in parallel/interleaving. These rules capture all possible concurrent behaviours between
event/channel-based communications and global shared variables.

Proving our deduced algebraic laws is important as such proofs can validate the correctness of our proposed
CSP# denotational semantics. However, manual proving is tedious, and subtle mistakes or omissions can easily
occur at any stage of the proofs. Moreover, a high grade of automated verification of system properties can
save much human effort. Therefore, a tool that allows semantics encoding and supports machine-assisted proof
is needed. In this work, we further encode the proposed observation-oriented denotational semantics into the
Prototype Verification System (PVS) [ORS92], which is an integrated framework for formal specification and
verification. PVS is an interactive theorem prover based on classical higher-order logic, similar to other theorem
provers such as HOL [GM93], Isabelle [Pau94] and Coq [BBC+96]. Nonetheless, PVS supports a richer type
system and provides the ability to define subtypes. In our encoding, we apply the built-in PVS theories for sets
to the CSP# semantics, including the encoding of the semantic model, expressions, sequential programs, and
CSP# processes. In addition, we use the predefined function subset? to represent the refinement relationship,
and apply the predefined fixed point theory to formalising recursive processes.

Contribution We highlight our contributions below.

• We propose a denotational semantics for the CSP# language based on the UTP framework, including a
semantic model and process semantics. The proposed semantic model deals with both communicating pro-
cesses and shared variables. It can alsomodel both action-based synchronisation and synchronised handshake
over channels. Moreover, our model can be adapted/enhanced to define the denotational semantics for other
languages with similar concurrency mechanisms.

• We encode the proposed denotational semantics in the PVS theorem prover. The encoding not only checks the
consistency of the semantics, but also provides a framework for developing machine-assisted verification for
CSP# specifications. In addition, the proved laws can act as auxiliary reasoning rules to improve verification
automation.

The remainder of this article is organised as follows: Sect. 2 briefly introduces the CSP# language, the UTP
framework and the features of PVS. Section 3 constructs the observation-oriented denotational semantics in
an open environment based on the UTP framework; healthiness conditions are also defined to characterise the

http://pat.comp.nus.edu.sg/

A UTP semantics for communicating processes with shared variables and its formal encoding in PVS 353

semantic domain. Section 4 discusses the algebraic laws. Section 5 formalises our denotational semantics in
PVS. Section 6 discusses related work. Section 7 concludes this article with possible future work. This article is
based on the publication [SZL+13] with a complete denotational semantics of CSP# and the encoding of CSP#
denotational semantics in PVS.

2. Preliminaries

In this section, we first introduce CSP# covering its syntax, informal descriptions, and an illustrative example
using the Dekker’s mutual exclusion algorithm. We next introduce the UTP theory which will be used in Sect. 3.
Finally, we introduce some knowledge of PVS that will be used in the encoding of CSP# denotational semantics.

2.1. The CSP# language

CSP# [SLDC09] integrates CSP-like compositional operators with sequential program constructs such as assign-
ments and while loops. It directly supports shared variables which are not available in the original CSP [Hoa85].
Shared variables can be updated in sequential programs.

2.1.1. Syntax

A CSP# model may consist of definitions of constants, variables, channels, and processes. A constant is defined
by keyword #define followed by a name and a value, e.g., #define max 5. A variable is declared with keyword
var followed by a name and an initial value, e.g., var x � 2, and its scope is global. A channel is declared using
keyword channel with a name, e.g., channel ch. A process is specified in the form of Proc(i1, i2, . . . , in) � P,
where Proc is the process name, (i1, i2, . . . , in) is an optional list of process formal parameters and P is a process
expression.

Program ::� CSP#Par∗ – model
CSP#Par ::� #define cons v – constant

| var x � v1 – variable
| channel ch – channel
| ProcDel – process

ProcDel ::� Proc(ParDel) � P | Proc � P – process declaration
ParDel ::� i | i,ParDel – parameter declaration
P,Q ::� Stop | Skip – primitives

| a → P – event prefixing
| ch!exp → P | ch?m → Proc(m) – channel output/input
| {prog} → P – data operation prefixing
| [b]P – state guard
| P � Q | P � Q – external/internal choices
| P ; Q – sequential composition
| P \ X1 – hiding
| P ‖(X1,X2) Q | P |||X2

Q – parallel/interleaving
| N | μN • P – recursion

where cons is an identifier for a constant whose value is v, x is an identifier for a variable whose initial value is v1,
ch is an identifier for a channel, Proc is a process name, i is an identifier for a variable denoting a process formal
parameter, P and Q are processes, a is an action name, exp is an arithmetic expression, m is a bound variable,
prog is a sequential program updating global shared variables, b is a Boolean expression, X1 is a set of actions,
X2 is a set of synchronous channel inputs and outputs, and N is an identifier. In addition, the syntax of prog is

354 L. Shi et al.

illustrated as follows.

prog ::� skip – idle
| abort – abort
| x � exp – assignment
| prog; prog – composition
| if b then prog else prog – conditional
| while b do prog – iteration

exp ::� v | x | exp + exp | exp − exp | exp ∗ exp
b ::� true | false | exp op exp | ¬b | b ∧ b | b ∨ b

where op ∈ {��, ! �,<,≤,>,≥}
Stop is the process that communicates nothing and Skip is the process that terminates successfully. Event

prefixing a → P engages in action a first and afterwards behaves as processP. In CSP#, channels are synchronous
and their communications are achieved by a handshaking mechanism.1 Specifically, a process ch!exp → P which
is ready to perform an output through ch will be enabled if another process ch?m → Proc(m) is ready to perform
an input through the same channel ch at the same time, and vice versa. The expression exp in ch!exp is evaluated
atomically with the occurrence of the output. In process {prog} → P, prog is executed atomically, and after that
process behaves as P. Process [b]P waits until condition b becomes true and then behaves as P. The checking of
condition b is conducted atomically with the occurrence of the first event or state transition in P. External choice
P � Q is resolved only by the occurrence of a visible event or a state transition, and internal choice P � Q is
resolved non-deterministically. Sequential compositionP ; Q behaves asP untilP terminates and then behaves as
Q. Process P \X1 hides all occurrences of actions inX1. In process P ‖(X1,X2) Q, P andQ run in parallel, and they
synchronise on common communication events inX1 and communications through synchronous channels inX2.
In contrast, in process P |||X2

Q, P and Q run independently (except for communications through synchronous
channels in X2) [SLS+12].

2.1.2. Concurrency

As mentioned earlier, concurrent processes in CSP# can communicate through shared variables, events, or syn-
chronous channels.

Shared variables in CSP# are globally accessible; they can be read andwritten by different (parallel) processes.
Shared variables can be used in guard conditions, sequential programs in data operations, and expressions in
the channel outputs; nonetheless, they can only be updated in sequential programs. Furthermore, to avoid any
possible data race problem when programs execute atomically, sequential programs from different processes are
not allowed to execute simultaneously.

A synchronisation event, which is also called an action, occurs instantaneously, and its occurrencemay require
simultaneous participation by multiple processes. In contrast, a communication over a synchronous channel is
two-way between a sender process and a receiver process. Namely, a handshake communication ch.exp occurs
when both processes ch!exp → P and ch?m → Q(m) are enabled simultaneously. We remark that this two-
way synchronisation in CSP# [SLS+12] is different from CSPM where multi-part synchronisation between many
sender and receiver processes is allowed [Ros97].

2.1.3. Example

Dekker’s algorithm [Dij68] is the first correct solution to the mutual exclusion problem between two processes.
It allows two processes to share a single-use resource without conflicts using shared memory for communication
only. The mutual exclusion requirement is assured by three aspects: (1) no process will enter its critical section
without setting its flag, (2) one process checks the flag of the other process after setting its own, and (3) if both
flags are set, the turn variable is used to allow only one process to proceed. In our CSP# model, we define shared

1 Asynchronous channels are supported as well but not discussed in this article; and they can be simulated easily with global variables.

A UTP semantics for communicating processes with shared variables and its formal encoding in PVS 355

variables to specify concurrency using shared-memory communication.

1. var turn � 0
2. var flag0 � false
3. var flag1 � false
4. P0 � {flag0 � true} → (P0Check; (css0 → cse0 → {turn � 1} → {flag0 � false} → P0))
5. P0Check � [flag1]flag1readT → ([turn �� 0]turnRead0 → P0Check

� [turn ! � 0]turnRead1 → {flag0 � false} → P0Wait)
� [¬flag1]flag1readF → Skip

6. P0Wait � [turn �� 0]turnRead0 → {flag0 � true} → P0Check
� [turn ! � 0]turnRead1 → P0Wait

7. P1 � {flag1 � true} → (P1Check; (css1 → cse1 → {turn � 0} → {flag1 � false} → P1))
8. P1Check � [flag0]flag0readT → ([turn �� 1]turnRead1 → P1Check

� [turn ! � 1]turnRead0 → {flag1 � false} → P1Wait)
� [¬flag0]flag0readF → Skip

9. P1Wait � [turn �� 1]turnRead1 → {flag1 � true} → P1Check
� [turn ! � 1]turnRead0 → P1Wait

10. Dekker � (({turn � 0} → (P0 |||∅ P1)) � ({turn � 1} → (P0 |||∅ P1)))\ {turnRead0, turnRead1, flag0readT , flag0readF ,

flag1readT , flag1readF }

In the above model, shared variable turn denotes who has a priority to enter the critical section, and shared
variables flag0 and flag1 denote the status of acquiring the resource to enter the critical section of process 0 and 1,
respectively. Our model corresponds to the pseudocode of the Dekker’s algorithm [Dek] step by step and uses an
event to specify the condition checking over a shared variable and a data operation to specify the value updating
of the shared variable in [Dek].

CSP# process P0 specifies that before entering the critical section, process 0 first sets its flag to be true
(capturing mutual exclusion requirement (1)) and then checks the other process’s flag (capturing mutual exclusion
requirement (2)) modelled by CSP# process P0Check. P0Check specifies two possible behaviours, on one hand,
if the other process’s flag is also set (captured by condition flag1), then the turn variable is checked (capturing
mutual exclusion requirement (3)). Event flag1readT captures the operation on checking the true value of the
variable flag1 in the pseudocode, and condition checking flag1 is performed simultaneously with the occurrence
of flag1readT . If it is the process 0’s turn (condition turn �� 0 being true), it moves to process P0Check for
another checking modelled by process recursion. If the turn belongs to the other process (condition turn ! � 0
being true), the flag of process 0 is cleared (modelled by data operation {flag0 � false}) before busy waiting.
Process P0Waitmodels the busy waiting for the turn assigned to process 0. After the turn being assigned, process
0 sets its flag (modelled by data operation {flag0 � true}), and moves to the checking process P0Check. On the
other hand, if process 1’s flag is not set (¬flag1 at line 5), then process 0 starts to enter the critical section. We
specify event css0 and cse0 at line 4 to represent a critical section start and a critical section end respectively. After
exiting its critical section, process 0 passes the turn ({turn � 1} at line 4), and releases the resource ({flag0 � false}
at line 4). The behaviour of process 1 is similar.

Process Dekker specifies the whole behaviour of the algorithm where the initial value of turn is set non-
deterministically, and processes 0 and 1 run concurrently modelled by the interleaving operator |||

∅
. Events

turnRead0, turnRead1, flag0readT , flag0readF , flag1readT , flag1readF are hidden by the hiding operator in the
processDekker as these events only specify the condition checking and they do not add anything to the meaning
of the program. Note that when processesP0 andP1 run interleaving, sequential programs (e.g., flag0 � true and
flag1 � true) in P0 and P1 respectively will not execute simultaneously according to CSP#’s modelling feature.

2.2. UTP theory

The Unifying Theories of Programming (UTP) [HH98] uses relations as a unifying basis to define denotational
semantics for programs across different programming paradigms. For each programming paradigm, programs are
generally interpreted as relations between initial observations and subsequent (intermediate or final) observations
of the behaviours of their execution.Relations are represented as predicates over observational variables to capture
all aspects of program behaviours.

356 L. Shi et al.

Theories of programming paradigms in the UTP framework are differentiated by their alphabet, signature
and healthiness conditions. The alphabet is a set of observational variables recording external observations of
the program behaviour. The signature defines the syntax to represent the elements of a theory. The healthiness
conditions are a selection of laws identifying valid predicates that characterise a theory.

The observational variables in the alphabet of a theory record the observations that are relevant to program
behaviours. Variables of initial observations are undashed, constituting the input alphabet of a relation, and
variables of subsequent observations are dashed, constituting the output alphabet of a relation. For example, in
the imperative paradigm, variables x, y, . . . , z record the initial state of program variables, and x′, y′, . . . , z′ record
the final state of program variables. In a theory of reactive processes, the Boolean variable wait distinguishes the
intermediate observations of a waiting state from the observations of a final state for reactive processes; the
Boolean variable ok records the stability of program, i.e., whether it is in a stable state or in a divergent state;
variable tr records the interaction between a process and its environment; ref records the set of events that could
be refused before the observation.

The signature of a theory is a set of atomic components called primitives and combinators. The primitives in
the signature of relational programming are assignment x � e, empty skip, top for miracle and bottom ⊥ for
abort. The combinators are conditional P � b � Q, composition P ; Q, nondeterminism P � Q and recursion
μX • F (X). Here, x is a variable in the alphabet, e is an expression,P andQ are predicates describing behaviours
of two programs, X is a bound variable standing for a predicate, and F is a monotonic function.

A healthiness condition is associated with observational variables in the alphabet. It is defined by an idem-
potent function φ on predicates. A healthy program represented by predicate P satisfies healthiness condition φ
if it is a fixed point of φ:

P � φ(P).

For example, if a program P has not started, the observation of its behaviour is impossible. This can be captured
by a healthiness condition H(P) � ok ⇒ P requiring that program P satisfies the following equation:

P � H(P) or P � (ok ⇒ P).

In the above example, if Boolean variable ok is true, then program starts and its behaviour is described by predicate
P. If ok is false, then its behaviour is not restricted as predicate ok ⇒ P is true.

2.3. Prototype verification system

Prototype Verification System (PVS) [ORS92, COR+95] is an integrated environment for the development and
analysis of formal specifications. It combines an expressive modelling language with an interactive prover that
has powerful theorem proving capabilities.

The specification language is based on classical typed higher-order logic. Its type system consists of base types
such as Boolean (bool), integer (int), real numbers (real) and type constructors for function types, tuple types,
and record types. A function type is usually of the form [D -> R], where D and R are type expressions, denoting
the domain and range of the function respectively. Tuple types (also called product types) have the form [T1,
..., Tn], where the Ti are type expressions. Projection function ‘i is used to project the ith element of the
tuple. Record types are of the form [# a1:T1, ..., an:Tn #], where the ai are called record accessor or fields
and the Ti are types. For example, a record type R consisting of an integer number x and a Boolean variable
b is specified as R:TYPE = [# x: int, b: bool #], given a record r: VAR R, its x-component is accessed by
r‘x. The type system of the PVS is augmented with predicate subtypes. Subtypes can be specified in two different
ways. Given a type X and predicate P on the elements of X, a subtype of X with respect to P can be specified as
either T: TYPE={x:X|P(x)} or T: TYPE = (P). The type checking of subtypes is undecidable, and may lead to
proof obligations, called type correctness conditions (TCCs). Users are required to discharge these TCCs with the
assistance of the PVS prover. Another important feature of PVS type system is the provision of abstract datatypes.
Familiar data structures of programming languages such as lists and binary trees can be specified in PVS using
the abstract datatypes. For example, the following PVS specification declares a list using abstract datatype.

A UTP semantics for communicating processes with shared variables and its formal encoding in PVS 357

list [T: TYPE]: DATATYPE
BEGIN
null: null?
cons(car: T, cdr: list): cons?

END list

To be specific, list is parametric in type T, and has two constructors null and cons: null takes no arguments
and cons takes two arguments, where the first is of the type T and the second is a list. Two predicates null? and
cons? are recognisers: null? holds for exactly those elements of the list datatype that are identical to null,
and cons? holds for exactly those elements of the list datatype that are constructed using cons. Note that two
accessors, car and cdr, correspond to the two arguments of cons; they can only be applied to lists which satisfy
the cons? predicate.

A PVS specification is given as a collection of parameterised theories. Each theorymay consist of declarations,
definitions and formulas. Declarations are used to define types, variables, constants, and so on. Note that constant
declarations introduce new constants with their associated types and a value optionally, and constants can be
functions, relations or the usual (0-ary) constants. PVS supports recursive definitions, which are total functions.
Hence, it must be ensured that all recursive functions terminate, specified by a measure expression. The measure
expression follows the MEASURE keyword and ends with an optional order relation following a BY keyword. The
recursive definition generates a termination TCC which denotes that the measure function applied to recursive
arguments decreases with respect to a well-formed ordering. A proof obligation must be discharged by users.
A formula can be declared to introduce an axiom using the keyword AXIOM and a theorem using the keyword
LEMMA. Axioms can be referenced by the command lemma during proofs. The body of the formula is a Boolean
expression. Moreover, PVS supports the name overloading which allows the same name from different theories
or within a single theory. The collections of theories are organised by means of importings.

The interactive PVS prover [SORSC01] provides a collection of powerful proof commands to perform in-
duction, propositional and equality reasoning, rewriting, model checking and so on. For example, a frequently
used powerful proof command is grind, which does skolemization, instantiation, simplification, rewriting and
applying decision procedures.

3. The observation-oriented semantics for CSP#

In this section, we first define the semanticmodel including the observational variables and healthiness conditions.
We then define the meanings of arithmetic and Boolean expressions as well as the denotational semantics of
sequential programs. Based on the semantic model and the semantics of expressions and programs, we define the
denotational semantics of CSP# processes.

3.1. Semantic model

The challengeof defining adenotational semantics forCSP# is todesign anappropriatemodelwhich can cover not
only communications but also the shared variable paradigm and satisfy the compositional property. To address
the challenge, we blend communication events with states containing shared variables. Namely, we introduce
mixed traces to record the interactions of processes with the global environment; each trace is a sequence of
communication events or (shared variable) state pairs.

3.1.1. Observational variables

The following variables are introduced in the alphabet of observations of CSP# process behaviours. Some of
them (i.e., ok, ok′, wait, wait′, ref , and ref ′) are similar to those in the UTP theory for CSP [HH98]. The key
difference is that the event-based traces in CSP are changed to mixed traces consisting of state-event pairs.

• ok, ok′: Boolean describe the stability of a process.
ok � true records that the process has started in a stable state, whereas ok � false records that the process
has not started as its predecessor has diverged.
ok′ � true records that the process has reached a stable state, whereas ok′ � false records that the process has
diverged.

358 L. Shi et al.

• wait, wait′: Boolean distinguish the intermediate observations of waiting states from the observations of final
states.
wait � true records that the execution of the previous process has not finished, and the current process starts
in an intermediate state, while wait � false records that the execution of the previous process has finished and
the current process may start.
wait′ � true records that the next observation of the process is in an intermediate state, while wait′ � false
records that the next observation is in a terminated state.

• ref , ref ′: PEvent denote a set of actions and channel inputs/outputs that can be refused before or after the
observation. The set Event denotes all possible actions and channel input/output directions (e.g., ch?, ch!).
An input direction ch? denotes any input through channel ch, and a channel output direction ch! denotes any
output through channel ch. The set Act denotes all possible actions.

• tr, tr′: seq((S×S⊥)∪ (S×E)) record a finite sequence of observations (state pairs or communication events)
on the interaction of the processes with the global environment.

– S is the set of all possible mappings (states), and a state s : VAR → int is a total function which maps
global shared variables names from VAR into values of integer int. Notice that the types of variable values
and channel messages are integer in our proposed semantics.

– E is the set of all possible events, including actions, channel inputs/outputs and synchronous channel
communications.

– S × S⊥ is the set of state pairs, and each pair consists of a pre-state recording the initial variable values
before the observation and a post-state recording the final values after the observation. S⊥ �̂ S ∪ {⊥}
represents all states, where the improper state⊥ indicates non-termination. Note that the state pair is used
to record the observation for the data operation.

– S × E denotes a set of occurring events under the pre-states. The reason of recording the pre-state is that
the value of the expression which may contain shared variables in a channel output shall be evaluated
under this state.

3.1.2. Healthiness conditions

Healthiness conditions are defined as equations in terms of an idempotent function φ on predicates. Every healthy
program represented by predicate P must be a fixed point under the healthiness condition of its respective UTP
theory, i.e., P � φ (P).

In CSP#, a process can never change the past history of the observations; instead, it can only extend the
record, captured by healthiness conditionR1. We use predicate P to represent the semantics of the CSP# process
below. Predicate tr ≤ tr′ states that tr is a prefix of tr′.

R1: R1(P) � P ∧ tr ≤ tr′
The execution of a process is independent of the history before its activation, captured by function R2.
R2: R2(P(tr, tr′)) � �s P(s, s � (tr′ − tr))
Asmentioned earlier, variablewait distinguishes awaiting state from the final state. A process cannot start if its

predecessor has not finished, or otherwise, the values of all observational variables are unchanged, characterised
by function R3.

R3: R3(P) � II � wait � P
where P� b�Q �̂ b∧P∨ ¬b∧Q and II �̂ (¬ok ∧ tr ≤ tr′)∨ (ok′ ∧ tr′ � tr∧wait′ � wait∧ ref ′ � ref). Here
II states that if a process is in a divergent state, then only the trace can be extended, or otherwise, it is in a stable
state, and the values of all observational variables remain unchanged.

When a process is in a divergent state, it can only arbitrarily extend the trace. This feature is captured by
function CSP1.

CSP1: CSP1(P) � (¬ok ∧ tr ≤ tr′) ∨ P
Every process is monotonic in the observational variable ok′. This monotonicity property is modelled by

function CSP2 which states that if an observation of a process is valid when ok′ is false, then the observation
should also be valid when ok′ is true.

CSP2: CSP2(P) � P ; ((ok ⇒ ok′) ∧ tr′ � tr ∧ wait′ � wait ∧ ref ′ � ref)
We below use H to denote all healthiness conditions satisfied by the CSP# process.

H � R1 ◦ R2 ◦ R3 ◦ CSP1 ◦ CSP2

A UTP semantics for communicating processes with shared variables and its formal encoding in PVS 359

From the above definition, we can see that although CSP# satisfies the same healthiness conditions of CSP,
observational variables tr, tr′ in our semantic model record additional information for shared variable states.
We adopt the same names for the idempotent functions used in CSP for consistency. In addition, function H is
idempotent and monotonic [CW06, HH98].

3.2. Semantics of expressions and programs

In this section, we define the semantics of arithmetic expressions, Boolean expressions and programs. The defi-
nitions will be used in Sect. 3.3.

Definition 1 (Arithmetic expression) Let Aexp be the set of arithmetic expressions defined in Sect. 2.1.1 (exp ∈
Aexp), the evaluation of the expression is defined as a function A : Aexp → (S → int).

A[[v]](s) � v
A[[x]](s) � s(x)
A[[exp1 + exp2]](s) � A[[exp1]](s) +A[[exp2]](s)
A[[exp1 − exp2]](s) � A[[exp1]](s) − A[[exp2]](s)
A[[exp1 ∗ exp2]](s) � A[[exp1]](s) ∗ A[[exp2]](s)

Definition 2 (Boolean expression) Let Bexp be the set of Boolean expressions defined in Sect. 2.1.1 (b ∈ Bexp),
given a valuation, function B returns whether a Boolean expression is valid, defined as B : Bexp → (S →
Boolean).

B[[true]](s) � true
B[[false]](s) � false

B[[exp1 op exp2]](s) �
{

true if A[[exp1]](s) op A[[exp2]](s), where op ∈ {��, ! �,<,≤,>,≥}
false otherwise

B[[¬b]](s) � ¬(B[[b]](s))
B[[b1 ∧ b2]](s) � B[[b1]](s) ∧ B[[b2]](s)
B[[b1 ∨ b2]](s) � B[[b1]](s) ∨ B[[b2]](s)

Definition 3 (Sequential program) LetProg be the set of sequential programs defined in Sect. 2.1.1 (prog ∈ Prog),
function C returns the updated valuations after executing the program, defined as C : Prog → (S × S⊥).

C[[skip]] � {(s, s) | s ∈ S}
C[[abort]] � {(s, s′) | s ∈ S, s′ ∈ S⊥}
C[[x � exp]] � {(s, s[A[[exp]](s)/x]) | s ∈ S}
C[[prog1; prog2]] � {(s, s′) | ∃ s0 ∈ S • (s, s0) ∈ C[[prog1]] ∧ (s0, s′) ∈ C[[prog2]]} ∪

{(s,⊥) | (s,⊥) ∈ C[[prog1]]}
C[[if b then prog1 else prog2]] � {(s, s′) | B[[b]](s) ∧ (s, s′) ∈ C[[prog1]]} ∪

{(s, s′) | ¬(B[[b]](s)) ∧ (s, s′) ∈ C[[prog2]]}
C[[while b do prog]] � {(s, s′) | (s, s′) ∈ C[[μX • F (X)]]}

In the above definition, continuous function F (X) �̂ if b then prog; X else skip, and C[[μX • F (X)]] �̂
⋂

n C[[Fn(abort)]].

3.3. Semantics of processes

In this section, we construct an observation-oriented semantics for all CSP# process operators based on our
proposed UTP semantic model for CSP#. We define the semantics in an open environment to achieve the com-
positionality property; namely, a process may be interfered with by the environment. In Sect. 3.1.1, we defined a
mixed trace to record the potential events and state transitions in which a process Pmay engage; for example, the
trace tr′ � 〈(s1, s′1), (s2, a2)〉 describes the transitions of process P. In an open environment, tr′ may contain an
(implicit) transition (s′1, s2) as the result of interference by the environment where states s′1 and s2 can be different.

360 L. Shi et al.

In the following, we illustrate our semantic definitions for the CSP# process operators, and present the
refinement definition.

3.3.1. Primitives

Deadlock process Stop never engages in any event or updates shared variables, and it is always waiting.

Stop �̂ H(ok′ ∧ tr′ � tr ∧ wait′)

The semantics shows that the trace is unchanged and process is in a waiting state (represented by wait′ being
true). In addition, Stop refuses all events, so the final value of the refusal set, ref ′, is left unconstrained.

Process Skip terminates immediately without any event or state change occurring.

Skip �̂ H(∃ ref • II)

Reactive identity II constrains that if a process terminates, then there is no change on the trace. The initial refusal
of Skip is irrelevant to its behaviour, defined by the existential quantifier. After termination, the refusal set ref ′
is arbitrary.

3.3.2. Sequential composition

In process P ; Q, P takes control first and Q starts only when P has finished.

P ; Q �̂ ∃obs0 • (P[obs0/obs′] ∧ Q[obs0/obs])

The semantics of sequential composition shows that if process P diverges, then so does the process P ; Q. If
process P is in a waiting state, then the following process Q cannot start. If P terminates, then process Q starts
immediately and the final observation of process P is the initial observation of processQ. In the above definition,
the term obs represents the set of observational variables ok, wait, tr, and ref , as is the case for obs0 and obs′.

3.3.3. Event prefixing

Process a → P engages in event a first and afterwards behaves as process P. Event a defined here is an action
which occurs instantaneously, and may require simultaneous participation by more than one processes.

a → P �̂ H

⎛

⎝ok′ ∧
⎛

⎝

a �∈ ref ′ ∧ tr′ � tr
�wait′�
∃ s ∈ S • tr′ � tr � 〈(s, a)〉

⎞

⎠

⎞

⎠ ; P

The above semantics shows two possible behaviours: when a process is waiting to engage in action a, it cannot
refuse this action during the waiting period (represented by predicate a �∈ ref ′), and its trace is unchanged; or
a process performs action a and terminates with its trace extended with this observation (by predicate tr′ �
tr� 〈(s, a)〉). Since the environment may interfere with the process behaviour andmake a transition on the shared
variable states, we use state s from the variable state set S to denote the initial state before the observation. Note
that the semantics of sequential composition “; ” is defined in Sect. 3.3.2.

3.3.4. Synchronous channel output/input

In CSP#, messages can be sent/received synchronously through channels. The synchronisation is pairwise, in-
volving two processes. Specifically, a synchronous channel communication ch.exp can take place only if an output
ch!exp is enabled and a corresponding input ch?m is also ready.

ch!exp → P �̂ H

⎛

⎝ok′ ∧
⎛

⎝

ch? �∈ ref ′ ∧ tr′ � tr
�wait′�
∃ s ∈ S • tr′ � tr � 〈(s, ch!A[[exp]](s))〉

⎞

⎠

⎞

⎠ ; P

The above semantics of synchronous channel output depicts two possible behaviours: when a process is waiting to
communicate on channel ch, it cannot refuse any channel input over ch provided by the environment to perform
a channel communication (represented by predicate ch? �∈ ref ′), and its trace is unchanged; or a process performs

A UTP semantics for communicating processes with shared variables and its formal encoding in PVS 361

the output through ch and terminates without divergence. The observation of the trace is recorded as a tuple
(s, ch!A[[exp]](s)), where the value of the outputmessage is evaluated under the pre-state s. Here functionA defines
the semantics of arithmetic expressions, and its definition is in Definition 1. After the output occurs, the process
behaves as P.

ch?m → Proc(m) �̂ ∃ v ∈ int •
⎛

⎝H

⎛

⎝ok′ ∧
⎛

⎝

ch! �∈ ref ′ ∧ tr′ � tr
�wait′�
∃ s ∈ S • tr′ � tr � 〈(s, ch?v)〉

⎞

⎠

⎞

⎠ ; Proc(v)

⎞

⎠

As shown above, the semantics of synchronous channel input is similar to channel output except that when
a process is waiting, it cannot refuse any channel output provided by the environment, and after the process
receiving a message v from channel ch, its trace is appended with a tuple (s, ch?v). In addition, parameter m
cannot be modified in process Proc; namely, it becomes constant-like and its value is replaced by value v.

3.3.5. Data operation prefixing

In process {prog} → P, the sequential program prog, which is executed atomically, is called a data operation. The
observation of the data operation is the updates on shared variables which are observed after the execution of all
programs as illustrated below.

{prog} → P �̂ H

⎛

⎜

⎜

⎝

ok′ ∧ ∃ s ∈ S •

⎛

⎜

⎜

⎝

wait′ ∧ tr′ � tr � 〈(s,⊥)〉
�(s,⊥) ∈ C[[prog]]�
¬wait′ ∧ ∃ s′ ∈ S • (tr′ � tr � 〈(s, s′)〉

∧(s, s′) ∈ C[[prog]])

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

; P

If the evaluation of the programdoes not terminate (represented by predicate (s,⊥) ∈ C[[prog]]), then the process is
in awaiting state, and its trace is extendedwith the record of non-termination.On the other hand, if the evaluation
succeeds and terminates, then the process terminates and the state transition is recorded in the trace. Note that
post-state s′ after the observation is associated with the pre-state s under the semantics of sequential programs
((s, s′) ∈ C[[prog]]). Function C defines the semantics of the sequential programs by inductive definition [Win93],
and its definition is in Definition 3. After the data operation occurs, the process behaves as P.

3.3.6. Choice

Internal choice denotes that process P � Q behaves like either P or Q. The selection is made internally and
non-deterministically, not affected by the environment.

P � Q �̂ P ∨ Q

External choice denotes that for process P � Q, the selection of process P or Q is controlled by the environ-
ment, i.e., the choice is resolved by the occurrence of the first visible event or the first state transition.

P � Q �̂ H((P ∧ Q) � Stop � (P ∨ Q))

The above definition shows that if no observation has been made and termination has not occurred (i.e., process
Stop is true), then the process has both possible behaviours of P andQ. Alternatively, if an observation had been
made (i.e., process Stop is false), then process behaviour will be either that of P or that of Q depending on from
which choice is made.

3.3.7. State guard

Process [b]Pwaits until condition b becomes true and then behaves asP. The checking of condition b is performed
simultaneously with the occurrence of the first event or state transition of process P. But note that in some situa-
tion, the process P behaves like Skip; that is, no state could be observed to judge the truth of condition b. In order
to deal with this issue, we construct process ̂P fromP by adding a stuttering step. Obviously, all possible difference
(tr′ − tr) of ̂P are non-empty traces. Thus we can always judge the truth of b according to the behaviours of ̂P.

[b]P �̂ ̂P � (B(b)(π1(head(tr′ − tr))) ∧ tr < tr′) � Stop
̂P �̂ P ∧ tr < tr′ ∨ P(tr, tr) ∧ ∃ s ∈ S · tr′ − tr � 〈(s, s)〉

362 L. Shi et al.

The semantics states that if the Boolean guard b is satisfied under the state from the initial observation of ̂P,
represented by π1(head(tr′ − tr)), then the observation of whole process is the same as ̂P, or otherwise, process
behaves as process Stop. Function π1 selects the first element of a tuple and head returns the first element of a
sequence. Note that the semantics of traditional conditional choice if (b) {P} else {Q} can be equivalent to the
semantics of [b]P ∨ [¬b]Q.

3.3.8. Parallel composition

The parallel composition P ‖(X1,X2) Q executes P and Q in the following way: (1) common actions of P and Q
require simultaneous participation, (2) synchronous channel output in one process occurs simultaneously with
the corresponding channel input in the other process, and (3) other events of processes occur independently.

In CSP, the semantics of parallel composition is defined in terms of the merge operator ‖M in UTP [HH98],
where the predicateM captures how tomerge two observations. To deal with channel-based communications and
shared variable updates in CSP#, we here define a newmerge predicateM(X1,X2) to model the merge operation.
The set X1 defined in Sect. 2.1.1 contains common actions of both processes and the set X2 all synchronous
channel inputs and outputs. Namely,

P ‖(X1,X2) Q �̂ H

(

∃0.ok, 0.wait, 0.ref , 0.tr,
1.ok, 1.wait, 1.ref , 1.tr •

(

P[0.ok, 0.wait, 0.ref , 0.tr/ok′,wait′, ref ′, tr′] ∧
Q[1.ok, 1.wait, 1.ref , 1.tr/ok′,wait′, ref ′, tr′] ∧
M(X1,X2)

))

where

M(X1,X2) �̂

⎛

⎜

⎜

⎜

⎝

(ok′ � 0.ok ∧ 1.ok) ∧
(wait′ � 0.wait ∨ 1.wait) ∧
(ref ′ � (0.ref ∩ 1.ref ∩ X2) ∪ ((0.ref ∪ 1.ref) ∩ X1)

∪ ((0.ref ∩ 1.ref) − X1 − X2))
(tr′ − tr ∈ (0.tr − tr ‖X1

1.tr − tr))

⎞

⎟

⎟

⎟

⎠

The predicate M(X1,X2) captures four kinds of behaviours of a parallel composition. First, the composition
diverges if either process diverges (represented by predicate ok′ � 0.ok ∧ 1.ok). Second, the composition termi-
nates if both processes terminate (wait′ � 0.wait ∨ 1.wait). Third, the composition refuses synchronous channel
outputs/inputs that are refused by both processes (0.ref ∩1.ref ∩X2), all actions that are in the setX1 and refused
by either process ((0.ref ∪ 1.ref)∩X1), and events that are not in the set X1 and X2 but refused by both processes
((0.ref ∩ 1.ref) − X1 − X2). Last, the trace of the composition is a member of the set of traces produced by the
trace synchronisation function ‖X1

as elaborated below.
Function ‖X1

models how to merge two individual traces into a set of all possible traces; there are five
cases covering both traces are empty, one of the trace is empty and both traces are non-empty. In the following
definitions, s1, s′1, s2, s

′
2 are representative elements of variable states with termination, a, a1, a2 are representative

elements of actions, ch is a representative element of channel names, and v, v1, and v2 are values with integer type.

• Firstly, function ‖X1
is symmetric, i.e., t1 ‖X1

t2 � t2 ‖X1
t1.

• The first case covers two scenarios, (1) if both input traces are empty, the result is a set of an empty sequence;
(2) if only one input trace is empty, the result is determined based on the first observation of that non-empty
trace: if that observation is an action in the set X1 which requires synchronisation, then the result is a set
containing only an empty sequence, or otherwise, the first observation is recorded in the merged trace.
case-1 1◦ 〈 〉 ‖X1

〈 〉 � {〈 〉}

2◦ 〈(s1, h)〉 � t ‖X1
〈 〉 �

{ {〈 〉} if h ∈ X1

{〈(s1, h)〉 � l | l ∈ t ‖X1
〈 〉} otherwise

where h ∈ {a, ch?v, ch!v, ch.v, s′1,⊥}
• When a communication is over a synchronous channel, if the first observations of two input traces match
(see Definition 4 below), then a synchronisation may occur (denoted by the set G1) or at this moment a

A UTP semantics for communicating processes with shared variables and its formal encoding in PVS 363

synchronisation does not occur (denoted by the set G2). Otherwise, a synchronisation cannot occur. Here, two
observations are matched provided that both channel input and output from two processes respectively are
enabled under the same pre-state.

Definition 4 (Match) Given two pairs p1 � (s1, h1) and p2 � (s2, h2), where h1 ∈ {ch?v1, ch!v1, ch.v1}, h2 ∈
{ch?v2, ch!v2, ch.v2}, we say that they are matched if s1 � s2, {h1, h2} � {ch?v1, ch!v1} and v1 � v2 are satisfied,
denoted as match(p1, p2).

case-2 〈(s1, h1)〉 � t1 ‖X1
〈(s2, h2)〉 � t2 �

{G1 ∪ G2 if match((s1, h1), (s2, h2))
G2 otherwise

where h1 ∈ {ch?v1, ch!v1, ch.v1}, h2 ∈ {ch?v2, ch!v2, ch.v2}, G1 �̂ {〈(s1, ch.v)〉 � l | l ∈ t1 ‖X1
t2}, and G2 �̂

{〈(s1, h1)〉 � l | l ∈ t1 ‖X1
〈(s2, h2)〉 � t2} ∪ {〈(s2, h2)〉 � l | l ∈ 〈(s1, h1)〉 � t1 ‖X1

t2}.
• When two actions (a1 and a2) are synchronised, there are four scenarios with respect to the initial states (s1
and s2) and actions from the first observations of two traces: (1) both actions are in the set X1 but different
or actions under different pre-states, (2) actions from X1 are the same and under the same pre-state, (3) one
of the actions is not in X1, and (4) both actions are not in X1. As shown in case-3 below, the result is a set
containing only an empty sequence for scenario (1). A synchronisation occurs under scenario (2), although
it is postponed to occur under scenario (3). Either action can occur for scenario (4).
case-3 〈(s1, a1)〉 � t1 ‖X1

〈(s2, a2)〉 � t2 �
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

{〈 〉} a1, a2 ∈ X1 ∧ (a1 �� a2 ∨ s1 �� s2)
{〈(s1, a1)〉 � l | l ∈ t1 ‖X1

t2} a1, a2 ∈ X1 ∧ a1 � a2 ∧ s1 � s2
{〈(s2, a2)〉 � l | l ∈ 〈(s1, a1)〉 � t1 ‖X1

t2} a1 ∈ X1 ∧ a2 �∈ X1

{〈(s1, a1)〉 � l | l ∈ t1 ‖X1
〈(s2, a2)〉 � t2}

∪
{〈(s2, a2)〉 � l | l ∈ 〈(s1, a1)〉 � t1 ‖X1

t2}
a1 �∈ X1 ∧ a2 �∈ X1

• When the first observation of one input trace is in awaiting state (captured by⊥) which indicates the evaluation
of the sequential program does not terminate, the result depends on the other first observation, (1) if both
observations are in waiting states, the result is a set of either observation, (2) if the other first observation
is an action requiring the synchronisation (h ∈ X1), the result contains the waiting observation only, (3) or
otherwise, either observation from two processes occurs. Note that a process could not perform any further
if its trace ends with a state pair (s,⊥).
case-4 1◦ 〈(s1,⊥)〉 ‖X1

〈(s2,⊥)〉 � {〈(s1,⊥)〉, 〈(s2,⊥)〉}

2◦ 〈(s1,⊥)〉 ‖X1
〈(s2, h)〉 � t �

{ {〈(s1,⊥)〉} if h ∈ X1

{〈(s1,⊥)〉} ∪ {〈(s2, h)〉 � l | l ∈ 〈(s1,⊥)〉 ‖X1
t} otherwise

where h ∈ {a, ch?v, ch!v, ch.v, s′2}
• When the first observation of one trace is an action a or a post-state s′1, and the other is a channel input ch?v,
output ch!v, communication ch.v, or a post-state s′2, the merged observation is different, (1) if a is from the
set X1, then its occurrence is postponed (G3), (2) or otherwise, either observation from two processes occurs
(G3 ∪ G4).

case-5 〈(s1, h1)〉 � t1 ‖X1
〈(s2, h2)〉 � t2 �

{G3 if h1 ∈ X1
G3 ∪ G4 otherwise

where h1 ∈ {a, s′1}, h2 ∈ {ch?v, ch!v, ch.v, s′2}, G3 �̂ {〈(s2, h2)〉 � l | l ∈ 〈(s1, h1)〉 � t1 ‖X1
t2}, and G4 �̂

{〈(s1, h1)〉 � l | l ∈ t1 ‖X1
〈(s2, h2)〉 � t2}.

3.3.9. Interleave

In the open environment, processes P and Q run independently (except communications through synchronous
channels) for P |||X2

Q. The semantics of the interleave operator defined below is based on the definition of
parallel operator where the set X1 is empty.

P |||X2
Q �̂ P ‖(∅,X2) Q

364 L. Shi et al.

3.3.10. Hiding

The hiding operator makes all occurrences of actions in X1 hidden from the environment of the process. Thus
the actions in set X1 are not recorded in the process trace.

P \ X1 �̂ H(∃ t • P[t,X1 ∪ ref ′/tr′, ref ′] ∧ (tr′ − tr) � hide(t − tr,X1)) ; Skip

The definition of hiding is defined by renaming the final trace of P as t, and restricting t to the trace which
contains all the events of process P except those in set X1, captured by the function hide. The refusal set of P is
the union of the final refusal set and set X1. Note that Act denotes a set of actions.

hide : seq((S × E) ∪ (S × S⊥)) × PAct → seq((S × E) ∪ (S × S⊥))
hide(〈 〉,X1) �̂ 〈 〉
hide(〈(s, e)〉 � t,X1) �̂

{

hide(t,X1) if e ∈ X1

〈(s, e)〉 � hide(t,X1) otherwise

3.3.11. Refinement

Refinement calculus is designed to produce correct programs, assisting in the software development. In the UTP
theory, it is expressed as logic implication; an implementation (denoted as predicate P) satisfying a specification
(denoted as predicate S) is formally expressed by universal quantification implication ∀ a, a′, . . . • P ⇒ S,
where a, a′, . . . are all observational variables of the alphabet, which must be the same for the specification
and implementation. The universal quantification implication is usually denoted as [P ⇒ S]. The definition of
refinement in CSP# is given as below.

Definition 5 (Refinement) LetP andQ be predicates for CSP# processes with the same shared variable state space,
the refinement P � Q holds iff [P ⇒ Q].

The refinement ordering in our definition is strong; every observation that satisfies P must also satisfy Q. The
observation includes all process behaviours, i.e., stability, termination, traces, and refusals. Moreover, the record
of the trace considers both variable states and event occurrences. For example, given a process P � [x � 2]b →
Skip � [x ! � 2]c → Skip, and a process Q � [x � 2]b → Skip � [x ! � 2]d → Skip, the refinement P � Q does
not hold although one observation satisfies both processes when x is equal to 2. A counterexample is that when
x is not equal to 2, processes P and Q perform action c and d , respectively.

Notice that we only allow that in the trace sequence of process P, every element shall be the same as its
counterpart inQ. In other words, our refinement prevents atomic program operations updating shared variables
from being refined by non-atomic program operations which make the same effect. For example, given a process
P � {x � x+ 1} → {x � x+ 1} → Skip, and a processQ � {x � x+ 2} → Skip, the refinement P � Q does not
hold.

Definition 6 (Equivalence) For any twoCSP#processesP andQ,P is equivalent toQ if andonly ifP � Q∧Q � P.

3.3.12. Recursion

Let p be a variable standing for a call to a recursive process, F be a monotonic function from CSP# processes
to CSP# processes, we consider the explicit definition (μ p • F (p)) of recursion whose semantics is defined as
the weakest fixed point, which is the greatest lower bound of all the fixed points of P with the bottom element
H(true) and the top element H(false); namely, �{p | p � F (p)}.
3.3.13. Discussion

So far, we have defined the denotational semantics of CSP#. Based on the semantics, CSP# satisfies the following
two properties.

Lemma 1 (Monotonicity) All process combinators defined in the CSP# language are monotonic.2

2 The proofs of Lemma 1 are available online at http://www.comp.nus.edu.sg/~pat/semantics.zip.

http://www.comp.nus.edu.sg/~pat/semantics.zip

A UTP semantics for communicating processes with shared variables and its formal encoding in PVS 365

Theorem 3.1 (Compositionality) The open semantics of CSP# is compositional.

Proof Given a process combinator F and processes P,Q such that P and Q are equivalent with respect to the
open semantics, we haveP � Q andQ � P according toDefinition 6. According to Lemma 1, both F (P) � F (Q)
and F (Q) � F (P) are valid, which indicates F (P) � F (Q), i.e., the open semantics is compositional. �

4. Algebraic laws

In this section, we present a set of algebraic laws concerning the distinct features of CSP#.
State Guard
guard - 1 [b1]([b2]P) � [b1 ∧ b2]P
guard - 2 [b](P1 op P2) � [b]P1 op [b]P2 where op ∈ {‖,�,�}
guard - 3 [false]P � Stop
guard - 1 enables the elimination of nested guards. guard - 2 shows the distribution of the state guard through
parallel composition, external choice and internal choice. guard - 3 shows that process [false]P behaves like Stop
because its guard can never be fired.

Sequential Composition
seq - 1 (P1 ; P2) ; P3 � P1 ; (P2 ; P3)
seq - 2 P1 ; (P2 � P3) � (P1 ; P2) � (P1 ; P3)
seq - 3 (P1 � P2) ; P3 � (P1 ; P3) � (P2 ; P3)
seq - 4 P � Skip ; P
seq - 5 P � P ; Skip
seq - 1 shows that sequential composition is associative. seq - 2, 3 show the distribution of sequential composition
through internal choice. seq - 4, 5 show that process Skip is the left and right unit of sequential composition
respectively, which show that CSP# processes also satisfyCSP3 andCSP4 healthiness conditions of CSP [HH98],
i.e., CSP3(P) � Skip ; P and CSP4(P) � P ; Skip.

Data Operation Prefixing
dat - 1 {while true do prog} → P � {while true do prog} → Q
dat - 2 {prog1} → P ‖(X1,X2) {prog2} → Q � {prog1} → (P ‖(X1,X2) {prog2} → Q) op

{prog2} → ({prog1} → P ‖(X1,X2) Q) where op ∈ {�,�}
dat - 3 {prog1} → P ‖(X1,X2) h → Q � {prog1} → (P ‖(X1,X2) h → Q) �

h → ({prog1} → P ‖(X1,X ′
2)
Q)

where h ∈ {ch?x, ch!exp, ch.v}, and X ′
2 is the set of all synchronous channel outputs and inputs of processes P

and Q.

dat - 4 {prog1} → P ‖(X1,X2) a → Q �
⎧

⎨

⎩

{prog1} → (P ‖(X1,X2) a → Q) if a ∈ X1
{prog1} → (P ‖(X1,X2) a → Q) �

a → ({prog1} → P ‖(X1,X2) Q) if a �∈ X1

dat - 1 indicates that the loop operation would hold the execution of process. dat - 2 indicates that data operations
running in parallel do not need to be synchronised and are executed independently. dat - 3 shows that the data
operation and any type of channel communication running in parallel are executed independently. dat - 4 shows
the data operation should be executed firstly if a is the common action of process P and Q; otherwise, they are
executed independently.

The following non-law shows that the data operation in CSP# is atomic; that is the program prog1; prog2
completes in a single observation.
nla - 1 {prog1} → {prog2} → P �� {prog1; prog2} → P

Parallel Composition
par - 1 P1 ‖(X1,X2) P2 � P2 ‖(X1,X2) P1
par - 2 (P1 ‖(X1,X2) P2) ‖(X1,X2) P3 � P1 ‖(X1,X2) (P2 ‖(X1,X2) P3)
par - 3 Skip ‖(∅,X2) P � P � P ‖(∅,X2) Skip where X2 is the set of all synchronous channel outputs and
inputs of process P.

366 L. Shi et al.

par - 1, 2 show that parallel composition is commutative and associative. Consequently, the order of parallel
composition is irrelevant. par - 3 shows that process Skip is the unit of parallelism.

Interleave
inter - 1 P1 |||X2

P2 � P2 |||X2
P1

inter - 2 (P1 |||X2
P2) |||X2

P3 � P1 |||X2
(P2 |||X2

P3)
inter - 3 Skip |||X2

P � P � P |||X2
Skip where X2 is the set of all synchronous channel outputs and inputs

of process P.
inter - 1, 2 show that interleaving is commutative and associative. Consequently, the order of interleaving is irrel-
evant. inter - 3 shows that process Skip is the unit of interleaving which shows that CSP# processes satisfy CSP5
healthiness condition, i.e., CSP5(P) � P |||X2

Skip.

Hiding
hid - 1 (P\X)\Y � (P\Y)\X
hid - 2 (P\X)\Y � P\(X ∪ Y)
hid - 3 P\∅ � P
hid - 4 Skip\X � Skip

hid - 5 (a → P)\X �
{

P\X if a ∈ X
a → (P\X) if a �∈ X

hid - 6 (μN • (a → N)) \ {a} � CHAOS where CHAOS �̂ H(true)
hid - 1 shows that the hiding operator is commutative and the order is not critical. hid - 2 shows that the nested
hiding can be combined. hid - 3 shows that the hiding is void if the hidden set is empty. hid - 4 shows that nothing
will be hidden for the process Skip. hid - 5 indicates that the behaviours of the hiding operation depends on the
relation between a and X . hid - 6 shows that if the only action in a recursive process is hidden, the behaviour of
the hidden process leads to CHAOS is the worst CSP# process.

All algebraic laws can be established based on our denotational model. That is to say, if the equality of two
syntactically different processes is algebraically provable, then the two processes are also equivalent with respect
to the denotational semantics. Moreover, these algebraic laws can be used as auxiliary reasoning rules to prove
process equivalence during theoremproving. Belowwe use guard - 3 as an example to show that this particular law
can be proved using our proposed denotational semantics. The proofs of the soundness of some other algebraic
laws with respect to the denotational semantics are available online.3

Law guard - 3 [false]P � Stop
Proof:

[false]P [3.3.7]
� ̂P � (B(false)(π1(head(tr′ − tr))) � true ∧ tr < tr′) � Stop [Def . 2]
� ̂P � false � Stop [predicate calculus]
� Stop �

where ̂P �̂ P ∧ tr < tr′ ∨ P(tr, tr) ∧ ∃ s ∈ S · tr′ − tr � 〈(s, s)〉

5. Encoding CSP# denotational semantics in PVS

So far, we have defined the denotational semantics ofCSP#.To validate the consistency of our proposed semantics
and further provide a machine-assisted support for verification, we encode the UTP semantics for CSP# in the
PVS theorem prover [OSRSC01].4

Our encoding includes three parts which are illustrated in the following subsections. First the theory of
semantic model defines observational variables and healthiness conditions. Based on the semantic model theory,
we define the theory of expressions and programs which encodes carefully the syntax and semantics of arithmetic
expressions, Boolean expressions and sequential programs. Further, the semantics of processes and refinement
relationship are formalised in the theory of process. At the end of this section, we discuss machine-assisted proofs
of important algebraic laws and lemmas based on the encoding in PVS.

3 http://www.comp.nus.edu.sg/~pat/semantics.zip.
4 PVS theories and proofs for CSP# semantics are available online at http://www.comp.nus.edu.sg/~pat/semantics.zip.

http://www.comp.nus.edu.sg/~pat/semantics.zip
http://www.comp.nus.edu.sg/~pat/semantics.zip

A UTP semantics for communicating processes with shared variables and its formal encoding in PVS 367

5.1. The theory of semantic model

The first challenge of the semantic model encoding is to develop an appropriate data structure to represent the
observational variables and relations over observational variables. The second challenge is to capture different
types of events dedicated to CSP#. To address these challenges, we adopt PVS abstract datatype constructor to
handle event types and PVS set theory to model relations as illustrated below.

5.1.1. The theory of observational variables

CSP# supports concurrency over communications and shared variables. We first define the shared variable state
and event type in PVS. The following shows the formalised type for variable states (S) and all states (S abort).

Vars: TYPE+
S: TYPE+ = [Vars -> int]
S_abort: DATATYPE
BEGIN
abort: abort?
is_S(left_s: S): is_S?

END S_abort

In the above specification, type S is encoded as a function from variable type Vars to int. We define all states
as a disjoint union by using a PVS abstract datatype: abort and is S are constructors, predicates abort? and
is S? are recognisers of the type [S abort -> bool], which determine whether the argument is constructed
using the corresponding constructor. Note that a similar fashion of applying the PVS abstract datatype is used
throughout the rest of the section to model complex CSP# types.

CSP# supports both event synchronisation and pairwise handshake through synchronous channels. Thus
event E includes actions, synchronous channel inputs, outputs and communications. To represent E, we define a
datatype as follows.

E: DATATYPE WITH SUBTYPES RefE, Channelcom
BEGIN
action(ac:Ta): action?: RefE
input(ci:Ti): input?: RefE
output(co:To): output?: RefE
chancom(cm:Tm): chancom?: Channelcom

END E

Here, Ta is the type of actions, Ti is the type of channel inputs, To is the type of channel outputs, and Tm is the
type of channel communications. Subtypes RefE and Channelcom denote the set of refused events and channel
communications, respectively.

In our semantics, CSP# processes are interpreted as relations between initial observations and subsequent
observations of their execution behaviours. Namely, relations are represented as predicates over observational
variables. In Sect. 3.1.1, we have defined eight variables for the alphabet of CSP# semantics to capture all aspects
of process behaviours. In PVS, we use a record type AB to represent this alphabet of the observations of CSP#
process behaviours, and a set of such records to represent a relation.

AB: TYPE = [# ok:bool, ok1:bool, wait:bool, wait1:bool, ref:set[RefE], ref1:set[RefE],
tr:Trace, tr1:Trace #]

Relation: TYPE = set[AB]

In the above formalisation, a dashed variable is represented by its undashed variable name suffixed with number
1, e.g., ok1 denotes variable ok′. In our semantics for the trace, we use a sequence to record the observations on
the interaction of the process with its environment. We use the PVS predefined datatype list below to represent
the sequence. Thus an empty sequence can be represented by a null list (null), and sequence concatenation can
be formalised by the predefined function append over lists. To simplify the PVS encoding, we define a function
snoc for appending a single element to a list of type SE (the trace) and function <= for checking the trace prefixing
relationship.

368 L. Shi et al.

S_E: DATATYPE
BEGIN

state(s1:S_abort): state?
event(e:E): event?

END S_E
SE: TYPE+ = [S, S_E]

t, t1: VAR Trace
se: VAR SE
snoc(t, se): Trace = append(t, cons(se, null))
<=(t,t1): bool = EXISTS (t2: Trace): t1 = append(t, t2)

Based on the formalisation of the alphabet and relation, we next illustrate how to formalise the detailed
predicates in PVS. In general, a predicate P on the alphabet is encoded as a set {pre:AB|P(pre)}, and logic
operators ¬, ∧, ∨ and ⇒ are formalised as NOT, AND, OR, and IMPLIES respectively in PVS. A summary of the
formalisation is shown in Table 1, where P and Q are predicates, and P and Q are sets in PVS.

Predicate PVS
¬P {pre:AB|NOT P(pre)}
P ∧ Q {pre:AB|P(pre) AND Q(pre)}
P ∨ Q {pre:AB|P(pre) OR Q(pre)}
P ⇒ Q {pre:AB|P(pre) IMPLIES Q(pre)}

Table 1. Predicate formalisation in PVS

5.1.2. The theory of healthiness conditions

CSP# satisfies the healthiness conditions R1 to R3 for reactive processes.
P: VAR Relation
R1(P): Relation = {pre:AB|P(pre) AND pre‘tr <= pre‘tr1}
R2(P): Relation = {pre:AB|EXISTS(s:Trace): (EXISTS(pre0:AB): P(pre0) AND

pre‘tr = s AND pre‘tr1 = append(s, pre0‘tr1-pre0‘tr) AND pre0‘tr <= pre0‘tr1 AND
pre‘ok = pre0‘ok AND pre‘wait = pre0‘wait AND pre‘ref = pre0‘ref AND
pre‘ok1 = pre0‘ok1 AND pre‘wait1 = pre0‘wait1 AND pre‘ref1 = pre0‘ref1)}

II: Relation = {pre:AB|(NOT pre‘ok AND pre‘tr <= pre‘tr1) OR (pre‘ok1 AND
pre‘tr1 = pre‘tr AND pre‘wait1 = pre‘wait AND pre‘ref1 = pre‘ref)}

R3(P): Relation = {pre:AB|IF pre‘wait THEN II(pre) ELSE P(pre) ENDIF}
In our encoding, P is declared as a variable with type Relation, specified by P: VAR Relation. Healthiness
condition R1 is formalised as a function R1. Specifically R1 takes an arbitrary relation P as an input and returns
a relation satisfying a predicate which is modelled as as a set of records; each record is a member of the relation
(denoted as P(pre)) and its final trace extends the initial trace (denoted as pre‘tr <= pre‘tr1). Function R2
specifies that observation of the process is not changed given the value s of pre‘trmade arbitrary. Function R3
specifies that for each element pre, if the value of pre‘wait is true, then pre is a member of the reactive identity
relation II, or otherwise, it is a member of relation P.

In addition, CSP# satisfies two healthiness conditions CSP1 and CSP2 for communicating sequential pro-
cesses, defined as follows.

CSP1(P): Relation = {pre: AB|(NOT pre‘ok AND pre‘tr <= pre‘tr1) OR P(pre)}
CSP2(P): Relation = {pre: AB|EXISTS (p:AB): P(p) AND

(pre‘ok = p‘ok AND pre‘wait = p‘wait AND pre‘ref = p‘ref AND pre‘tr = p‘tr) AND
((p‘ok1 => pre‘ok1) AND pre‘tr1 = p‘tr1 AND pre‘wait1 = p‘wait1 AND pre‘ref1 = p‘ref1)}

Function CSP1 denotes that for each element pre, when the value of pre‘ok is false, its trace shall be extended,
or it remains unchanged. The sequential composition ; in CSP2(P) � P ; ((ok ⇒ ok′) ∧ tr′ � tr ∧ wait′ �
wait∧ ref ′ � ref) is explicitly formalised; namely, for each element pre, its undashed variable value is the same as
the undashed variable value of an element from relation P, e.g., pre‘ok = p‘ok, while its dashed variable value is
the same as the dashed variable value from the second program, e.g., ok′ is represented by pre‘ok1. Meanwhile,
the dashed variable value of an element from relation P is the same as the undashed variable value in the second
program, e.g., ok in the second program is represented by p‘ok1.

Finally, processes in CSP# are defined by satisfying all the healthiness conditions. Our definition of processes
relies onPVS subtyping: process is a subtype of Relation, where function H is the composition of five healthiness
condition functions, and predicate H(P) = P depicts relation P satisfies the condition H.

A UTP semantics for communicating processes with shared variables and its formal encoding in PVS 369

H(P): Relation = CSP2(CSP1(R3(R2(R1(P)))))
process: TYPE = {P| H(P) = P}

5.2. The theories of expressions and programs

We present the encoding of program syntax and semantics as below. For simplicity, we omit the encoding of
expressions here; the detailed encoding is available online at http://www.comp.nus.edu.sg/~pat/semantics.zip.

1 % program syntax
2 Prog: Datatype
3 BEGIN
4 skip: skip?
5 abort_prog: abort_prog?
6 assign(x:Vars, exp:Aexp): assign?
7 seq(prog1,prog2: Prog): seq?
8 if_prog(ifcond:Bexp, thn,els:Prog): if?
9 while(whilecond:Bexp, body:Prog): while?

10 END Prog
11 % state relation
12 S_S_abort: TYPE+ = [S, S_abort]
13 Prog_State: TYPE = set[S_S_abort]
14 % type for arithmetic and Boolean expressions
15 S_int: TYPE+ = [S -> int]
16 S_bool: TYPE+ = [S -> bool]
17 % skip
18 skip_ceval: Prog_State = {state:S_S_abort| state‘2 = is_S(state‘1)}
19 %abort_prog
20 abort_ceval: Prog_State = {state:S_S_abort| true}
21 % update
22 update_ceval (x: Vars, v: S_int): Prog_State = {state:S_S_abort|

state‘2 = is_S(state‘1 WITH [(x) := v(state‘1)])}
23 % sequence
24 seq_ceval(s_prog1, s_prog2: Prog_State): Prog_State = {state:S_S_abort|

IF s_prog1(state‘1, abort) THEN state‘2 = abort
ELSE (EXISTS (mid:S): s_prog1(state‘1, is_S(mid)) AND s_prog2(mid,state‘2) ENDIF}

25 % if
26 if_ceval(s_b:S_bool, s_prog1, s_prog2: Prog_State): Prog_State =

{state:S_S_abort|IF s_b(state‘1) THEN s_prog1(state‘1,state‘2)
ELSE s_prog2(state‘1,state‘2) ENDIF}

27 % while
28 while_ceval(s_b:S_bool, s_prog: Prog_State): Prog_State =

mu (lambda (X:Prog_State): if_ceval(s_b, seq_ceval(s_prog, X), skip_ceval))
29 % sequential program semantics
30 ceval(p:Prog): RECURSIVE Prog_State =
31 (CASES p of
32 skip: skip_ceval,
33 abort_prog: abort_ceval,
34 assign(x,exp): update_ceval (x, aeval(exp)),
35 seq(prog1,prog2): seq_ceval(ceval(prog1),ceval(prog2)),
36 if_prog(ifcond,thn,els): if_ceval(beval(ifcond),ceval(thn),ceval(els))
37 while(wcond,bprog): while_ceval(beval(wcond), ceval(bprog))
38 ENDCASES)
39 MEASURE p BY <<

In the above PVS specifications, we define data type Prog to encode the program syntax, data type Aexp for the
syntax of arithmetic expressions, and data type Bexp for the syntax of Boolean expressions. We further model the
program semantics by a recursive function ceval, which uses PVS case construct to capture different program
types in Prog. For example, the evaluation of sequential composition program (at line 35) is defined by a function
seq ceval which returns a set of all possible state pairs state, if the evaluation of program s prog1 does not
terminate under a pre-state state‘1 (captured by predicate s prog1(state‘1, abort) being true), then the
post-state state‘2 is abort representing nontermination (at line 24), or otherwise, the post-state is the final
state after the execution of two sequential programs (at line 24). Note that the type of mid is S, if it is directly
encoded as the output of s prog1, the typechecking finds an error which is a wrong type of the second argument
to s prog1; namely, it expects type S abort but finds type S, thus we use the constructor to cast the type to be

http://www.comp.nus.edu.sg/~pat/semantics.zip

370 L. Shi et al.

S abort (denoted as is S(mid)). Here, recursive functions aeval(a: Aexp): RECURSIVE S int at line 34 and
beval(b: Bexp): RECURSIVE S bool at line 36 evaluate arithmetic and Boolean expressions respectively. We
encode the semantics of thewhile-loopprogramat line 37 following the existing effort in [PDvHR96].The recursive
function cevalmust terminate, which is specified by themeasure expression at line 39. The expression follows the
MEASURE keyword and ends with an order relation << which specifies an irreflexive subterm function/predicate.
PVS generates four termination type correctness conditions (TCCs) and we have discharged the generated proof
obligations.

Operation CSP# PVS
Stop Stop Stop
Skip Skip Skip
event prefixing a → P a >> P
channel output ch!exp → P ch o exp >> P
channel input ch?m → P(m) ch i m >> Pi
data operation prefixing {prog} → P prog >> P
state guard [b]P [||](b,P)
external choice P � Q P <> Q
internal choice P � Q P \/ Q
sequential composition P ; Q P ++ Q

hiding P \ X1 Hid(P,X1)
parallel P ‖(X1,X2) Q Par(P, Q)(X1, X2)

interleaving P |||X2
Q Inter(P, Q)(X2)

Table 2. CSP# process syntax

5.3. The theory of processes

PVS has a fixed syntax, and users cannot introduce new symbols. Thus we cannot directly use the standard
CSP# process notations. Instead, we use the existing symbols in PVS, and summarize the standard CSP# syntax
(Sect. 2.1) and our PVS encoding in Table 2, where X1 is a set of actions of the type Ta, and process Pi is a
parametric process of the type [int -> process]. Note that recursive processes cannot be directly defined in
PVS. We will apply mucalculus theory in PVS to formalising them, and the detailed formalisation is presented
in Sect. 5.3.12.

5.3.1. Primitives

Following the guideline on how to formalise a relation in PVS (Sect. 5.1.1), it is straightforward to define the
primitive processes Stop and Skip in PVS, shown as follows. Here, pre is a declared as a variable with type AB.

pre: VAR AB
Stop: process = H({pre|pre‘ok1 AND pre‘tr1=pre‘tr AND pre‘wait1});
Skip: process = H({pre|(NOT pre‘ok AND pre‘tr<=pre‘tr1) OR

(pre‘ok1 AND pre‘tr1=pre‘tr AND pre‘wait1=pre‘wait)});

5.3.2. Sequential composition

The semantics of sequential composition P ; Q is defined as the merge of two processes with the value of
dashed observational variables in P being the same as the value of undashed variables in Q. The formalisation
of sequential composition in PVS is defined as follows.

p, q: VAR AB
P, Q: VAR process
equateUndashed(p,q): bool = p‘ok=q‘ok AND p‘wait=q‘wait AND p‘ref=q‘ref AND p‘tr=q‘tr;
equateMiddle(p,q): bool = p‘ok1=q‘ok AND p‘wait1=q‘wait AND p‘ref1=q‘ref AND p‘tr1=q‘tr;
equateDashed(p,q): bool = p‘ok1=q‘ok1 AND p‘wait1=q‘wait1 AND p‘ref1=q‘ref1 AND p‘tr1=q‘tr1;
++(P, Q): process = {pre|EXISTS (p,q: AB): P(p) AND Q(q) AND

equateUndashed(p, pre) AND equateMiddle(p,q) AND equateDashed(q,pre)};

A UTP semantics for communicating processes with shared variables and its formal encoding in PVS 371

We define three auxiliary functions to capture the merging operations. Function equateUndashed (p, q)
equates the undashed observational variable values of p to q’s, function equateMiddle(p,q) equates the dashed
observational variable values of p to the undashed ones of q, and function equateDashed(p,q) equates the
dashed observational variable values of p to q’s. In our encoding for sequential composition, for each element
pre, its undashed variable values are the same as the undashed ones of an element p from process P (captured
by equateUndashed(p, pre)), and its dashed variable values are the same as the dashed ones of an element q
from Q (captured by equateDashed(q,pre)). Meanwhile, the dashed variable values of an element p from P is
the same as the undashed ones of an element q from Q (captured by equateMiddle(p,q)).

5.3.3. Event prefixing

The formalisation of event prefixing a >> P contains two parts: first we define a prefixed action Skip(a), and
then compose the action with process P. Variable a is an action with type Ta.

Ta: TYPE
a: VAR Ta
Skip(a): process = H({pre|pre‘ok1 AND

((pre‘wait1 AND NOT pre‘ref1(action(a)) AND pre‘tr1=pre‘tr) OR
(NOT pre‘wait1 AND EXISTS(s:S): (pre‘tr1=snoc(pre‘tr, (s,event(action(a))))))))});

>>(a, P): process = (Skip(a) ++ P);

Here our predefined function snoc appends a pair (s,event(action(a))) consisting of a pre-state and an event
to the end of the list pre‘tr.

5.3.4. Synchronous channel output/input

We first construct three tuples to respectively represent the type of synchronous channel input, output, and
communication. Each tuple consists of three elements: the first is a string denoting a channel name, the second
is a flag denoting the communication type, and the third is a number indicating the message.

% Type for input, output and communication symbol
T_i: TYPE+ = i
T_o: TYPE+ = o
T_m: TYPE+ = m
% Type for channel input, output and communication
Ti: TYPE = [string, T_i, int]
To: TYPE = [string, T_o, int]
Tm: TYPE = [string, T_m, int]

We next encode the syntax of channel input and output into PVS, similar to the way of defining above,
where type Vars denotes variable names (Sect. 5.1.1) and type Aexp denotes the syntax of arithmetic expressions
(Sect. 5.2).

% Syntax type for channel output/input/communication
Ti_syntax: TYPE = [string, T i, Vars]
To_syntax: TYPE = [string, T o, Aexp]

Based on the above encoding of event type and syntax definitions, the synchronous channel output is defined
as follows.

1 ch_o_exp: VAR To_syntax %("ch", o, exp)
2 OutC(ch_o_exp): process = H({pre|pre‘ok1 AND
3 ((pre‘wait1 AND FORALL (v:int):(NOT pre‘ref1(input((ch_o_exp‘1,i,v)))) AND pre‘tr1=pre‘tr) OR
4 (NOT pre‘wait1 AND EXISTS(s:S): (pre‘tr1=snoc(pre‘tr,

(s,event(output((ch_o_exp‘1,ch_o_exp‘2,aeval(ch_o_exp‘3)(s)))))))))});
5 >>(ch_o_exp, P): process = (OutC(ch_o_exp) ++ P);

In our proposed denotational semantics, predicate ch? �∈ ref ′ denotes a process refuses all inputs. Here, we
constrain explicitly that no input is in the refused set (shown at line 3).

Different from the above encoding of synchronous channel output, the formalisation of synchronous channel
input below takes parametric process Pi into account.Wemodel the input prefixing by a set of observational vari-
able records, where each record is amember of the sequential composition of a channel input process InC(ch i m,
v) and process Pi(v). Value v denotes a possible message. In this way, parametric process Pi can also be applied
to multiple indexed processes, for example, process Pi can be of the type [int,...,int -> process].

372 L. Shi et al.

ch_i_m: VAR Ti_syntax %("ch", i, m)
InC(ch_i_m, v): process = H({pre|pre‘ok1 AND

((pre‘wait1 AND FORALL (v1:int):(NOT pre‘ref1(output((ch i m‘1,o,v1)))) AND pre‘tr1=pre‘tr) OR
(NOT pre‘wait1 AND EXISTS(s:S):(pre‘tr1=snoc(pre‘tr, (s,event(input((ch_i_m‘1,ch_i_m‘2,v))))))))});

>>(ch i m, Pi): process = {pre|EXISTS(v:int):member(pre,(InC(ch i m, v) ++ Pi(v)))};

5.3.5. Data operation prefixing

The formalisation of data operation prefixing process prog >> P contains two parts: first we define a data
operation process Data(prog), and then compose the data operation with process P. In our formalisation, prog
is declared as a variable with the sequential program type Prog, ceval is a function for evaluating the program
(formalised in Sect. 5.2), and ceval(prog)(s,abort) is a predicate capturing that the evaluation of the program
does not terminate (represented by predicate (s,⊥) ∈ C[[prog]] in the denotational semantics of data operation
prefixing).

prog: VAR Prog
Data(prog): process = H({pre|pre‘ok1 AND EXISTS(s:S):

((pre‘wait1 AND ceval(prog)(s,abort) AND
pre‘tr1=snoc(pre‘tr,(s,state(abort)))) OR

(NOT pre‘wait1 AND NOT ceval(prog)(s,abort) AND
EXISTS(s1:S):(ceval(prog)(s,is_S(s1)) AND pre‘tr1=snoc(pre‘tr,(s,state(is_S(s1))))))

)});
>>(prog, P): process = (Data(prog) ++ P);

5.3.6. Choice

The internal choice indicates that process P � Q behaves like either P or Q.

\/(P, Q): process = {pre|P(pre) OR Q(pre)};

Regarding the external choice of two processes P and Q, if no observation has been made and termination
has not occurred (i.e., indicated by Stop(pre)), then it behaves like the conjunction of P and Q, or otherwise, it
behaves as the disjunction. The formalisation of external choice is shown below.

<>(P, Q): process = H({pre|(Stop(pre) AND P(pre) AND Q(pre)) OR
(NOT Stop(pre) AND (P(pre) OR Q(pre)))});

5.3.7. State guard

The behaviour of process [b]P is determined by the evaluation of Boolean condition b. The evaluation is modelled
by function g beval, which first checks whether two input traces fulfill an extension relationship (specified by
an overloading function <(t,t1) for trace prefixing at line 3). If no, g beval returns false (at line 7). Otherwise,
g beval evaluates b (beval(b)) under the pre-state of the first element from the extended trace (specified by
(nth((t1-t),0))‘1 at line 6). In our encoding, the PVS predefined function nth returns the nth element from the
trace. For example, nth((t1-t),0) represents the predicate (head(t1 − t)) describing the initial observation on
the trace of a process.

Further we define a function PSkip(P) at line 9 to formalise the semantics of a variant process ̂P in Sect. 3.3.7
which adds a stuttering step. The state guard process is formalised as function [||](b,P) at line 10which indicates
that the process behaves as the variant process (represented by PSkip(P)(pre)) if the guard is satisfied under
the pre-state of the initial observation (represented by g beval(b,pre‘tr,pre‘tr1)), or otherwise it behaves
as process Stop (represented by Stop(pre)).

A UTP semantics for communicating processes with shared variables and its formal encoding in PVS 373

1 b: VAR Bexp
2 t, t1: VAR Trace
3 <(t,t1): bool = EXISTS (t2: Trace):(t2/=null AND t1=append(t,t2));
4 g_beval(b, t, t1): bool =
5 IF <(t,t1) THEN
6 beval (b)((nth(t1-t,0))‘1)
7 ELSE false
8 ENDIF;
9 PSkip(P): process = {pre|P(pre) AND pre‘tr<pre‘tr1 OR

EXISTS (pre1:AB),(s:S):(pre1‘tr1=pre1‘tr AND P(pre1) AND
pre = pre1 with [‘tr1 :=snoc(pre1‘tr,(s,state(is_S(s))))])};

10 [||](b,P): process = {pre|(g_beval(b,pre‘tr,pre‘tr1) AND pre‘tr<pre‘tr1 AND PSkip(P)(pre))
OR (NOT (g_beval(b,pre‘tr,pre‘tr1) AND pre‘tr<pre‘tr1) AND Stop(pre))};

5.3.8. Parallel composition

As mentioned in Sect. 3.3.8, the semantics of parallel composition captures different types of merge. We model
parallel composition in PVS below. Set X1 denotes the common actions of process P and Q, and set X2 denotes
all synchronous channel inputs and outputs of the two processes.

1 P, Q: VAR process
2 Tio: TYPE ={x:RefE|EXISTS(chi:Ti): x=input(chi) OR EXISTS(cho:To): x=output(cho)}
3 X1: VAR set[Ta]
4 X2: VAR set[Tio]
5 Par(P, Q)(X1, X2): process = H({pre|EXISTS (p,q: AB, X1a: set[RefE]): P(p) AND Q(q) AND
6 equateUndashed(pre,p) AND equateUndashed(pre,q) AND
7 pre‘ok1=(p‘ok1 AND q‘ok1) AND pre‘wait1=(p‘wait1 OR q‘wait1) AND
8 pre‘ref1= union(union(inter(inter(p‘ref1,q‘ref1),X2), inter(union(p‘ref1,q‘ref1), X1a)),

(inter(p‘ref1,q‘ref1)-X1a-X2)) AND
9 X1a={x:RefE|EXISTS(a: Ta): X1(a) AND x=action(a)} AND

10 member(pre‘tr1-pre‘tr, tr_syn(p‘tr1-p‘tr, q‘tr1-q‘tr, X1))})
In the above formalisation, the value of an undashed observational variable of the parallel composition is
the same as the counterpart of processes P and Q, captured by auxiliary functions equateUndashed(pre,p)
and equateUndashed(pre,q) defined in Sect. 5.3.2 at line 6. On the other hand, the dashed variables cap-
ture four kinds of behaviour: 1. the divergence (pre‘ok1=(p‘ok1 AND q‘ok1) at line 7), 2. the termination
(pre‘wait1=(p‘wait1 OR q‘wait1) at line 7), 3. the refusal (at lines 8-9) where we construct a set X1a whose
elements are of the type RefE from the set X1, 4. the trace of the composition is a member of the set of traces
produced by the trace synchronisation function tr syn at line 10.

We remark that the definition of the trace synchronisation function in Sect. 3.3.8 is composed of five cases. In
PVS, we formalise the definition accordingly. The specification below at lines 4-9 and 12-13 covers the scenarios
where one of the traces is an empty trace; we use null to indicate an empty trace. Line 5 models the result
when both traces are empty (case-1 1◦). When one of the trace is not empty, the result is determined by the first
observation of the non-empty trace. For example, lines 7-8 divide the the first case (case-1 2◦) into two branches
depending onwhether the observation is an action (checked by recognisers event? and action?) and the action is
in the set X1 (checked by X1(ac(e(se1‘2)))). Line 8 depicts the remaining scenarios where the first observation
is not in the set X1, or it is a synchronous channel input/output/communication or a state transition. Lines 12-
13 formalise the definition when the second trace is empty. Note that we have to formalise all scenarios of the
definition of the trace synchronisation function although the definition in Sect. 3.3.8 is simplified by imposing
the symmetric property.

The specificationat lines 15–18 formalises case-2, i.e., communicationsareover synchronous channels (checked
by the predicates in the if condition at line 15). If the match condition is valid (line 16), there are two possible
behaviours: whether a synchronous channel communication occurs or not at this moment (line 17). Otherwise,
line 18 handles the case when the condition is invalid. We define a function chanCheck to check whether the
first observations of two traces are channel inputs/outputs/communications, a function match to check whether
the synchronisation is between one synchronous channel input and a corresponding output, and a function
aux chancom to specify the synchronised channel communication. In particular, the match(s1, e1, s2, e2)
function checks the equivalence of three entities: the pre-states of two input traces (s1=s2), the channel names
(e.g., (co(e1))‘1=(ci(e2))‘1), and the messages through the channel (e.g., (co(e1))‘3=(ci(e2))‘3).

374 L. Shi et al.

e1, e2: VAR E
s1, s2: VAR S
se1: VAR SE
chanCheck(e1, e2): bool = (output?(e1) OR input?(e1) OR chancom?(e1))

AND (output?(e2) OR input?(e2) OR chancom?(e2))
match(s1, e1, s2, e2): bool = s1=s2 AND

(output?(e1) AND input?(e2) AND (co(e1))‘1=(ci(e2))‘1 AND (co(e1))‘3=(ci(e2))‘3 OR
input?(e1) AND output?(e2) AND (ci(e1))‘1=(co(e2))‘1 AND (ci(e1))‘3=(co(e2))‘3)

aux_chancom(se1): set[SE] = {se3:SE|EXISTS(chm:Tm): se3‘1=se1‘1 AND event?(se1‘2) AND
event?(se3‘2) AND chancom?(e(se3‘2)) AND e(se3‘2)=chancom(chm) AND chm‘2=m AND
(output?(e(se1‘2)) AND chm‘1=(co(e(se1‘2)))‘1 AND chm‘3=(co(e(se1‘2)))‘3 OR
input?(e(se1‘2)) AND chm‘1=(ci(e(se1‘2)))‘1 AND chm‘3=(ci(e(se1‘2)))‘3)}

1 tr1, tr2: VAR Trace

2 tr_syn(tr1, tr2, X1): RECURSIVE set[Trace] =

3 CASES tr1 OF

4 null: CASES tr2 OF

5 null: {t1: Trace|t1=null},
6 cons(se,t2):

7 IF event?(se‘2) AND action?(e(se‘2)) AND X1(ac(e(se‘2))) THEN {t:Trace|t=null}
8 ELSE {t:Trace|EXISTS(l:Trace):t=cons(se,l) AND member(l, tr_syn(tr1,t2,X1))} ENDIF

9 ENDCASES,

10 cons(se1, t1):

11 CASES tr2 OF

12 null: IF event?(se1‘2) AND action?(e(se1‘2)) AND X1(ac(e(se1‘2))) THEN {t1:Trace|t1=null}
13 ELSE {t:Trace|EXISTS(l:Trace): t=cons(se1,l) AND member(l, tr_syn(t1,tr2,X1))} ENDIF,

14 cons(se2, t2):

15 IF event?(se1‘2) AND event?(se2‘2) AND chanCheck((e(se1‘2)), (e(se2‘2))) THEN

16 IF match(se1‘1, e(se1‘2), se2‘1, e(se2‘2)) THEN

17 {t3:Trace|(EXISTS(se3:SE)(l:Trace):member(se3,aux_chancom(se1)) AND t3=cons(se3,l) AND

member(l, tr_syn(t1,t2,X1))) OR (EXISTS(l: Trace): t3=cons(se1,l) AND

member(l,tr_syn(t1,tr2,X1)) OR t3=cons(se2,l) AND member(l, tr_syn(tr1,t2,X1)))}
18 ELSE {t3:Trace|EXISTS(l: Trace): t3=cons(se1,l) AND member(l,tr_syn(t1,tr2,X1)) OR

t3=cons(se2,l) AND member(l, tr_syn(tr1,t2,X1))} ENDIF

19 ELSIF event?(se1‘2) AND event?(se2‘2) AND action?(e(se1‘2)) AND action?(e(se2‘2)) THEN

20 IF X1(ac(e(se1‘2))) AND X1(ac(e(se2‘2))) AND (se1‘1 /= se2‘1 OR se1‘2 /= se2‘2) THEN

21 {t1: Trace|t1=null}
22 ELSIF X1(ac(e(se1‘2))) AND X1(ac(e(se2‘2))) AND se1‘1=se2‘1 AND se1‘2=se2‘2 THEN

23 {t3:Trace|EXISTS(l:Trace): t3=cons(se1,l) AND member(l,tr_syn(t1,t2,X1))}
24 ELSIF X1(ac(e(se1‘2))) AND NOT X1(ac(e(se2‘2))) THEN

25 {t3:Trace|EXISTS(l:Trace): t3=cons(se2,l) AND member(l,tr_syn(tr1,t2,X1))}
26 ELSIF NOT X1(ac(e(se1‘2))) AND X1(ac(e(se2‘2))) THEN

27 {t3:Trace|EXISTS(l:Trace): t3=cons(se1,l) AND member(l,tr_syn(t1,tr2,X1))}
28 ELSE {t3:Trace|EXISTS(l:Trace): (t3=cons(se1,l) AND member(l,tr_syn(t1,tr2,X1))) OR

(t3=cons(se2,l) AND member(l, tr_syn(tr1,t2,X1)))} ENDIF

29 ELSIF state?(se1‘2) AND abort?(s1(se1‘2)) THEN

30 IF state?(se2‘2) AND abort?(s1(se2‘2)) THEN {t3:Trace|t3=tr1 OR t3=tr2}
31 ELSIF event?(se2‘2) AND action?(e(se2‘2)) AND X1(ac(e(se2‘2))) THEN {t3:Trace|t3=tr1}
32 ELSE {t3:Trace|t3=tr1 OR EXISTS(l:Trace):t3=cons(se2,l) AND member(l,tr_syn(tr1,t2,X1))}
33 ENDIF

34 ELSIF state?(se2‘2) AND abort?(s1(se2‘2)) THEN

35 IF state?(se1‘2) AND abort?(s1(se1‘2)) THEN {t3:Trace|t3=tr1 OR t3=tr2}
36 ELSIF event?(se1‘2) AND action?(e(se1‘2)) AND X1(ac(e(se1‘2))) THEN {t3:Trace|t3=tr2}
37 ELSE {t3:Trace|t3=tr2 OR EXISTS(l:Trace):t3=cons(se1,l) AND member(l,tr_syn(t1,tr2,X1))}
38 ENDIF

39 ELSIF condCheck(se1,se2,X1) THEN

40 {t3:Trace|EXISTS(l:Trace): t3=cons(se2,l) AND member(l,tr_syn(tr1,t2,X1))}
41 ELSIF condCheck(se2,se1,X1) THEN

42 {t3:Trace|EXISTS(l:Trace): t3=cons(se1,l) AND member(l,tr_syn(t1,tr2,X1))}
43 ELSE {t3:Trace|EXISTS(l:Trace): (t3=cons(se1,l) AND member(l,tr_syn(t1,tr2,X1)))

OR (t3=cons(se2,l) AND member(l, tr_syn(tr1,t2,X1)))}
44 ENDIF

45 ENDCASES

46 ENDCASES

47 MEASURE length(tr1)+length(tr2)

A UTP semantics for communicating processes with shared variables and its formal encoding in PVS 375

When encoding case-3, namely, synchronisation between two actions (line 19), there are four scenarios: 1.
both actions are in the set X1 but different or from different pre-states (lines 20–21), 2. actions are the same and
from the same pre-states (lines 22–23), 3. an action is not in X1 (lines 24–27), and 4. both actions are not in X1
(line 28).

The specification at lines 29–38 covers the scenarios (case-4) where the first observation is in a waiting state
(e.g., state?(se1‘2) AND abort?(s1(se1‘2)) at line 29). Line 30models the result when the first observations
of both traces are non-terminations (case-4 1◦). When the first observation of the second trace is not in a waiting
state, the result is determined by the first observation of the second trace (case-4 2◦). If it is an action in X1,
the result only contains the non-termination (line 31), or otherwise, either observation occurs (line 32). The
formalisation of the case where the first observation of the second trace is in a waiting state is similar, specified
at lines 34–38.

When formalising case-5 that a synchronisation is between an action or a state transition and a synchronous
channel input/output/communication or a state transition (specified by the auxiliary function condCheck at lines
39 and 41), two scenarios are considered: if one observation is an action in X1, then its occurrence is postponed
(lines 39–42), or otherwise, either observation occurs (lines 43–44).

se2: VAR SE
condCheck(se1, se2, X1): bool = event?(se1‘2) AND action?(e(se1‘2)) AND X1(ac(e(se1‘2))) AND

(event?(se2‘2) AND (input?(e(se2‘2)) OR output?(e(se2‘2)) OR chancom?(e(se2‘2)))
OR state?(se2‘2) AND is_S?(s1(se2‘2)))

5.3.9. Interleave

The semantics of interleaving process P ||| Q is similar to the semantics of parallel operator, except the set X
which only contains synchronous channel outputs and inputs.

Inter(P, Q)(X2): process = Par(P, Q)(emptyset,X2)

5.3.10. Hiding

In process P \ X1, all the occurrence of actions in set X1 are not observed or controlled by the environment. We
formalise the hiding operator as follows.

1 X1: VAR set[Ta]
2 Hid(P,X1): process = H(pre|EXISTS (s:AB, Xa:set[RefE]): P(s) AND equateUndashed(pre,s) AND
3 pre‘ok1=s‘ok1 AND pre‘wait1=s‘wait1 AND pre‘tr1=snoc(pre‘tr, hide(s‘tr1-s‘tr,X1)) AND
4 s‘ref1=union(pre‘ref1, Xa) AND Xa={refa:RefE|EXISTS (a: Ta): X1(a) AND refa = action(a)}) ++ Skip;

The above definition depicts that the behaviour of hiding process is the same as P except the final value of refusals
and traces. Specifically, the refusals are defined as that from P excluding the hiding actions in X1. Since the refusals
has the type set[RefE] and set X1 is of the type set[Ta], we cannot directly use the set extraction function
in PVS. Instead, we construct a set Xa whose elements are of the type RefE and contains actions in set X1 only
(specified by line 4). Auxiliary function equateUndashed(pre,s) defined in Sect. 5.3.2 returns true if the values
of undashed variables (i.e., ok, wait, trace, and ref) of records pre and s are the same. To model the actions
hiding in a trace, we define a function hide which is a recursive function over the trace structure.

1 hide(t,X1): RECURSIVE Trace =
2 CASES t OF
3 null: null,
4 cons(x1, x2): (IF event?(x1‘2) AND action?(e(x1‘2)) AND X1(ac(e(x1‘2))) THEN
5 hide(x2,X1)
6 ELSE cons(x1,hide(x2,X1))
7 ENDIF)
8 ENDCASES
9 MEASURE length(t)

Here, we use PVS CASES expressions to discuss two patterns of the trace. If the trace contains an action from
set X1 (specified as event?(x1‘2) AND action?(e(x1‘2)) AND X1(ac(e(x1‘2))) at line 4), then we remove
this action from the trace (specified as hide(x2,X1) at line 5). Otherwise, this trace is unchanged (specified as
cons(x1,hide(x2,X1)) at line 6).

376 L. Shi et al.

5.3.11. Refinement

We define symbol |> to represent the refinement operator (�) in the following PVS specifications, where the
PVS predefined function subset? checks whether set P is a subset of set Q. Namely, process P refines Q iff the
formalisation P is a subset of Q in our encoding.

|>(P,Q): bool = subset?(P,Q)

5.3.12. Recursion

In CSP#, the semantics of a recursive process is defined using the weakest fixed point, which is the greatest lower
bound of all the fixed points. PVS provides the formalisation of fixed points for sets, but we cannot directly use
it because the process in our calculus is defined as set of constrained object, i.e, healthy predicate. Following the
mucalculus theory in PVS, we define our own greatest lower bound glb(SX) of any set SX of processes, whereas
monotonic?(F) which checks whether F is a monotonic mapping, and mu(G) which represents the weakest fixed
point given a monotonic mapping G. Nonetheless, the main properties of weakest fixed point are still valid in our
formalisation shown below.

SX: VAR set[process]
X, Y: VAR process
pre: VAR AB

glb(SX): process = H({pre|EXISTS (X: (SX)): X(pre)})
F: VAR [process -> process]
monotonic?(F): bool = FORALL X,Y: X |> Y IMPLIES F(X) |> F(Y)
G: VAR (monotonic?)
mu(G): process = glb({X|X |> G(X)})

closure_mu: LEMMA mu(G) |> G(mu(G))
smallest_closed: LEMMA X |> G(X) IMPLIES X |> mu(G)
fixed_point: LEMMA G(mu(G)) = mu(G)
weakest_fixed_point: LEMMA G(X) = X IMPLIES X |> mu(G)

5.4. Machine-assisted proof of properties

So far, we have formalised our denotational semantic model and process semantics in PVS. In this section, we
apply the PVS type checker to validating the consistency of the denotational semantics and the PVS prover to
proving essential laws of our formalisations so as to check the correctness of our encoding.

The type checker in PVSanalyses the theory for semantic consistency [OSRSC01]. It usually checks the seman-
tic constraints, determines the types of expressions, and resolves names. After typechecking, proof obligations
(TCCs) are generated which are mostly related to predicate subtypes and termination in the recursive defini-
tions. In our work, we have discharged 53 TCCs for the process semantics theory. These TCCs are mainly from
the subtypes requiring that every CSP# process satisfies the healthiness property and terminations of recursive
definitions such as trace synchronisation function.

Based on our semantic formalisation in PVS, we can derive many important properties. We have machine-
assisted proved a set of important laws that are essential in the verification of CSP# programs. Regarding the
properties of healthiness conditions, we have proved that conditions R1, R2, R3, CSP1, and CSP2 are idempotent
and commutative. For example, the following PVS proof script is used to prove the commutativity property of
R1 and CSP1.

A UTP semantics for communicating processes with shared variables and its formal encoding in PVS 377

R1_CSP1_commutative :

|-------
1 FORALL (P: Relation): CSP1(R1(P)) = R1(CSP1(P))

Rule? (skolem!)
Skolemizing,
this simplifies to:
R1_CSP1_commutative :

|-------
1 CSP1(R1(P!1)) = R1(CSP1(P!1))

Rule? (expand* "CSP1" "R1")
Expanding the definition(s) of (CSP1 R1),
this simplifies to:
R1_CSP1_commutative :

|-------
1 ({pre: AB |

(NOT pre‘ok AND pre‘tr <= pre‘tr1) OR P!1(pre) AND pre‘tr <= pre‘tr1})
=
({pre_1: AB |

((NOT pre_1‘ok AND pre_1‘tr <= pre_1‘tr1) OR P!1(pre_1)) AND pre_1‘tr <= pre_1‘tr1})

Rule? (apply-extensionality :hide? t)

Applying extensionality,
this simplifies to:
R1_CSP1_commutative :

|-------
1 ((NOT x!1‘ok AND x!1‘tr <= x!1‘tr1) OR P!1(x!1) AND x!1‘tr <= x!1‘tr1)

=
(((NOT x!1‘ok AND x!1‘tr <= x!1‘tr1) OR P!1(x!1)) AND x!1‘tr <= x!1‘tr1)

Rule? (grind)
Trying repeated skolemization, instantiation, and if-lifting,
Q.E.D.

In the above proof script, command skolem! introduces Skolem constant for the universally quantified variable
P in the lemma, command expand* expands the definitions of CSP1 and R1, command apply- extensionality
:hide? t uses extensionality to prove equality, and command grind installs rewrites and repeatedly applies
simplification.

From these lemmas, we show that our formalisation of condition H is idempotent and every CSP# process
is healthy. We have also proved that some important algebraic laws of CSP# processes: law (guard-3) is valid;
internal choice is commutative and idempotent; etc.

6. Related work

The denotational semantics of CSP has been defined using two approaches. On one hand, Roscoe [Ros97] and
Hoare [Hoa85] provided a tracemodel, a stable-failuresmodel and a failures-divergencesmodel for CSP processes.
In the trace model, every process is mapped to a set of traces which capture sequences of event occurrences during
the process execution. In the stable-failuresmodel, every process is mapped to a set of pairs, and each pair consists
of a trace and a refusal. In the failures-divergencesmodel, every process ismapped to a pair, where one component
is a set of traces that can lead to divergent behaviours, and the other component contains all stable failures which
are all pairs, and each pair is in the form of a trace and a refusal. On the other hand, Hoare and He [HH98]
defined a denotational semantics for CSP processes using the UTP theory. Each process is formalised as a
relation between an initial observation and a subsequent observation; such relations are represented as predicates
over observational variables which record process stability, termination, traces and refusals before or after the
observation. Cavalcanti andWoodcock [CW06] related the UTP theory of CSP to the failures-divergences model
of CSP.

378 L. Shi et al.

The aforementioned denotational semantics for CSP does not deal with data aspects. To solve this problem,
several attempts have been made to provide the denotational semantics for languages which integrate CSP with
state-based notations. For example, Oliveira et al. [OCW09] presented a denotational semantics for Circus based
on a UTP theory. The proposed semantics includes two parts: one is for Circus actions, guarded commands,
etc., and the other is for Circus processes which contain an encapsulated state, a main action, etc. However, this
proposed semantics assumes that the sets of variables in processes shall be disjoint when those processes run
in parallel or interleaving. Qin et al. [QDC03] formalised the denotational semantics of Timed Communicating
Object Z (TCOZ) based on the UTP framework. Their unified semantic model can deal with channel-based
and sensor/actuator-based communications [MD99], although shared variables in TCOZ are restricted to only
sensors/actuators.

There exists some work on shared-variable concurrency. Brooks [Bro96] defined a denotational semantics for
a shared-variable parallel language, where the semantic model considers state transitions only, and thus cannot
be directly applied to communicating processes. Zhu et al. [ZBH01] derived a denotational semantics from the
proposed operational semantics for the hardware description languageVerilog. In addition, they [ZHB08] derived
the denotational semantics from the algebraic semantics for Verilog to explore the equivalence of two semantic
models. Recently, they [ZYH+12] proposed a probabilistic language PTSC which integrates probability, time
and shared-variable concurrency. The operational semantics of PTSC is explored and a set of algebraic laws
are presented via bisimulation. Furthermore, a denotational semantics using the UTP approach [ZQHB09] is
derived from the algebraic laws based on the head normal form of PTSC constructs. These semantic models lack
expressive power to capture more complicated system behaviours like channel-based communications.

Besides the above approaches on defining denotational semantics, considerable effort has been made around
the encoding of various CSP models. Camilleri [Cam90] encoded the trace model of CSP and later a variation of
the failures-divergences model [Cam91] into the HOL system [Gor88]. Dutertre and Schneider [DS97] formalised
the trace model of CSP in PVS, tailored to reason about security protocols; Wei and Heather [WH05] extended
this formalisation to the stable-failuresmodel in order to verify liveness properties. Tej andWolff [TW97] encoded
the failures-divergences model in Isabelle/HOL. Isobe and Roggenbach [IR05, IR08] improved this work with
tool support from CSP-Prover which handles more CSP models including trace model, stable-failures model and
stable-revivals model [SRI09]. However, all the above formalisation of various CSP models lacks the support of
complex data.

There exists other research on encoding denotational semantics of integrated languages with CSP. For exam-
ple, Oliveira et al. [OCW06] presented the encoding of the UTP semantics of Circus in ProofPower-Z [Pro]; the
formalised semantics is defined using a set-based theory. Moreover, the machine-assisted proof of various refine-
ment laws was reported in [OCW09]. Wei et al. [WWB09] encoded the UTP semantics of Timed Circus in PVS,
where the formalisation of time operators Delay, Timeout and Deadline was presented. Our work follows in a
similar way of their encoding, but covers the formalisation of sequential programs such as assignments, sequential
composition on shared variables, while Timed Circus supports assignments on local variables only. Moreover, we
formalise different event types covering both event synchronisation and pairwise handshake through synchronous
channels.

This work is also related to research on formalisation of UTP theories. Feliachi et al. [FGW10] formalised
a part of UTP theory in Isabelle/HOL including theories of alphabetised relations and designs. Recently Foster
and Woodcock [FW13] improved the encoding of UTP theory, by defining a unified type for predicates and
supporting more operators and meta-theoretic proofs; their Isabelle/UTP currently only supports theories of
relations and designs, and it lacks the support of more UTP theories like theories of reactive processes (e.g.,
healthiness conditions R1, R2 and R3). Nonetheless, Isabelle/UTP provides a platform for encoding the UTP
semantics for specification languages like CSP.

7. Conclusion and future work

In this article, we proposed an observation-oriented semantics for the CSP# language based on the UTP frame-
work. The formalised semantics covers different types of concurrency, i.e., communications and shared variable
parallelism. In addition, a set of algebraic laws were proposed based on the denotational model for communicat-
ing processes involving shared variables. Furthermore, we encoded the proposed semantics into the PVS theorem
prover. The consistency of encoded semantics was validated by proving the TCCs generated from typechecking.
Based on the encoding, we also proved properties of healthiness conditions and algebraic laws related to process
definitions in PVS.

A UTP semantics for communicating processes with shared variables and its formal encoding in PVS 379

There are several directions of the future work. One direction is to extend our proposed denotational semantic
model to cover more system behaviours such as timed aspects and probability [SLS+11, DSC+15, SLH+17]; for
example, Stateful Timed CSP [SLD+13] extends CSP# with time process constructs like timeout and deadline.
Another direction is to enhance our verification framework by validating more complex theories (e.g., mono-
tonicity property and algebraic laws in Sect. 4), and further to apply our framework to verifying real-world case
studies, especially systems of infinite states, by leveraging the induction technique which complements model
checking techniques.

Acknowledgements

The authors would like to thank Prof. Jim Woodcock for insightful comments on the denotational semantics of
CSP#. This research is partially supported by the National Research Foundation, Prime Minister’s Office, Sin-
gapore under its National Cybersecurity R&D Program (Award No. NRF2014NCR-NCR001-30) and adminis-
tered by the National Cybersecurity R&DDirectorate, andNational Research Foundation (No. NRF2015NCR-
NCR003-003), Singapore. This work is partially supported by Science and Technology Commission of Shanghai
Municipality Projects (No. 15511104700 and No. 16DZ1100600), Shanghai SHEITC Project (No. 160602), Na-
tional Natural Science Foundation of China (NSFC 61402176 and 61602177).

References

[BBC+96] Barras B, Boutin S, Cornes C, Courant J, Filliâtre J-C, Herbelin H, Huet G, Manoury P, Muñoz C, Murthy C, Parent C,
Paulin-Mohring C, Saı̈bi A, Werner B (1996) The Coq proof assistant reference manual version 6.1. INRIA-Rocquencourt-
CNRS-ENS Lyon

[Bro96] Brookes Stephen D (1996) Full abstraction for a shared-variable parallel language. Inform Comput 127(2):145–163
[Cam90] Camilleri Albert J (1990) Mechanizing CSP trace theory in higher order logic. IEEE Trans Softw Eng 16(9):993–1004,
[Cam91] Camilleri Albert J (1991) A higher order logic mechanization of the CSP failure-divergence semantics. In: IV higher order

workshop, Banff 1990. Springer, London, pp 123–150
[CH09] ColvinR,Hayes IJ (2009)CSPwith hierarchical state. In: 7th international conference on integrated formalmethods (IFM’09),

volume 5423 of lecture notes in computer science, Springer, pp 118–135
[COR+95] Crow J, Owre S, Rushby J, Shankar N, Srivas M (1995) A tutorial introduction to PVS. In: Workshop on industrial-strength

formal specification techniques, Boca Raton, Florida
[CW06] Cavalcanti A, Woodcock J (2006) A tutorial introduction to CSP in unifying theories of programming. In: Refinement

techniques in software engineering, volume 3167 of lecture notes in computer science. Springer, pp 220–268
[Dek] Dekker’s algorithm. https://en.wikipedia.org/wiki/Dekker%27s_algorithm. Accessed 29 Dec 2017
[Dij68] Dijkstra EW (1968)Cooperating sequential processes. In: Programming languages:NATOadvanced study institute.Academic

Press, pp 43–112
[DS97] Dutertre B, Schneider S (1997) Using a PVS embedding of CSP to verify authentication protocols. In: 10th international

conference on theorem proving in higher order logics (TPHOLs’97), volume 1275 of lecture notes in computer science.
Springer, pp 121–136

[DSC+15] Dong JS, Shi L, Nguyen Chuong L V, Jiang K, Sun J (2015) Sports strategy analytics using probabilistic reasoning. In: 20th
international conference on engineering of complex computer systems, (ICECCS), pp 182–185

[FGW10] Feliachi A, Gaudel M-C, Wolff B (2010) Unifying theories in Isabelle/HOL. In: Third international symposium on unifying
theories of programming (UTP’10), volume 6445 of lecture notes in computer science. Springer, pp 188–206

[Fis97] Fischer C (1997) Combining object-Z andCSP. In: FBT.GMD-Forschungszentrum InformationstechnikGmbH, pp 119–128
[FW13] Foster S,Woodcock J (2013)Unifying theories of programming in Isabelle. In: ICTAC training school on software engineering,

volume 8050 of lecture notes in computer science. Springer, pp 109–155
[GM93] Gordon MJC, Melham TF (1993) Introduction to HOL: a theorem proving environment for higher order logic. Cambridge

University Press, Cambridge
[Gor88] Gordon Michael JC (1988) HOL: a proof generating system for higher order logic. In Graham B, Subrahmanyam, PA (eds)

VLSI specification, verification and synthesis. Springer, New York, pp 73–128
[GS97] Galloway A, Stoddart B (1997) An operational semantics for ZCCS. In: 1st international conference on formal engineering

methods (ICFEM’97). IEEE Computer Society, pp 272–282
[HH98] Hoare CAR, He J (1998) Unifying theories of programming. Prentice-Hall
[HHH+87] Hoare CAR, Hayes IJ, He J, Morgan C, Roscoe AW, Sanders JW, Sørensen IH, Michael SJ, Sufrin B (1987) Laws of program-

ming. Commun ACM 30(8):672–686
[Hoa85] Hoare CAR (1985) Communicating sequential processes. Prentice-Hall
[IR05] Isobe Y, Roggenbach M (2005) A generic theorem prover of CSP refinement. In: 11th international conference on tools

and algorithms for the construction and analysis of systems (TACAS’05), volume 3440 of lecture notes in computer science.
Springer, pp 108–123

[IR08] IsobeY, RoggenbachM (2008) Proof principles of CSP-CSP-prover in practice. In: First international conference on dynamics
in logistics (LDIC’07). Springer, Berlin, pp 425–442

https://en.wikipedia.org/wiki/Dekker%27s_algorithm

380 L. Shi et al.

[MD99] Mahony BP, Dong JS (1999) Sensors and actuators in TCOZ. In: World congress on formal methods in the development of
computing systems (FM’99). Springer, Berlin, pp 1166–1185

[MD00] Mahony BP, Dong JS (2000) Timed communicating object Z. IEEE Trans Softw Eng 26(2):150–177
[MD02] MahonyBP,Dong JS (2002)Deep semantic links of TCSP and object-Z: TCOZ approach. FormalAspComput 13(2):142–160
[Mil89] Milner R (1989) Communication and concurrency. Prentice Hall, Upper Saddle River
[OCW06] Oliveira M, Cavalcanti A, Woodcock J (2006) Unifying theories in proofpower-Z. In: First international symposium on

unifying theories of programming (UTP’06), volume 4010 of lecture notes in computer science. Springer, Berlin, pp 123–140
[OCW09] Oliveira M, Cavalcanti A, Woodcock J (2009) A UTP semantics for circus. Formal Asp Comput 21(1-2):3–32
[ORS92] Owre S, Rushby JM, Shankar N (1992) PVS: a prototype verification system. In: 11th international conference on automated

deduction (CADE). Springer, Berlin, pp 748–752
[OSRSC01] Owre S, Shankar N, Rushby J, Stringer-Calvert DWJ (2001) PVS System guide. SRI International
[Pau94] Paulson LC (1994) Isabelle: a generic theorem prover, volume 828 of lecture notes in computer science. Springer, New York
[PDvHR96] Pfeifer H, Dold A, von Henke FW, Rueß H (1996) Mechanized semantics of simple imperative programming constructs.

Technical report 96–11, Universität Ulm, Fakultät für Informatik
[Pro] ProofPower. http://www.lemma-one.com/ProofPower/index/index.html. Accessed 11 Mar 2017
[QDC03] Qin S, Dong JS, Chin W-N (2003) A semantic foundation for TCOZ in unifying theories of programming. In: FME 2003:

formal methods, volume 2805 of lecture notes in computer science. Springer, Berlin, pp 321–340
[Ros97] Roscoe AW (1997) The theory and practice of concurrency. Prentice Hall, Upper Saddle River
[SLD+13] Sun J, Liu Y, Dong JS , Liu Y, Shi L, André É (2013) Modeling and verifying hierarchical real-time systems using stateful

timed CSP. ACM Trans Softw Eng Methodol 22(1):3:1–3:29
[SLDC09] Sun J, Liu Y, Dong JS, Chen C (2009) Integrating specification and programs for system modeling and verification. In: The

3rd IEEE international symposium on theoretical aspects of software engineering (TASE’09). IEEE Computer Society, pp
127–135

[SLDP09] Sun J, Liu Y, Dong JS, Pang J (2009) PAT: towards flexible verification under fairness. In: 21st international conference on
computer aided verification (CAV’09), volume 5643 of lecture notes in computer science. Springer, New York, pp 709–714

[SLH+17] Shi L, Liu S, Hao J, Koh JY, Hou Z, Dong JS (2017) Towards solving decision making problems using probabilistic model
checking. In: 22nd international conference on engineering of complex computer systems, (ICECCS), pp 150–153

[SLS+11] Sun J, Liu Y, Song S, Dong JS, Li X (2011) PRTS: an approach for model checking probabilistic real-time hierarchical
systems. In: 13th international conference on formal engineering methods (ICFEM’11), volume 6991 of lecture notes in
computer science. Springer, Berlin, pp 147–162

[SLS+12] Shi L, Liu Y, Sun J, Dong JS, Carvalho G (2012) An analytical and experimental comparison of CSP extensions and tools. In:
14th international conference on formal engineering methods (ICFEM’12), volume 7635 of lecture notes in computer science.
Springer, Berlin, pp 381–397

[Smi97] SmithG (1997) A semantic integration of object-Z andCSP for the specification of concurrent systems. In: FME’97: industrial
applications and strengthened foundations of formal methods, volume 1313 of lecture notes in computer science. Springer,
Berlin, pp 62–81

[SORSC01] Shankar N, Owre S, Rushby J, Stringer-Calvert DWJ (2001) PVS prover guide. SRI International
[SRI09] Gift Samuel D, Roggenbach M, Isobe Y (2009) The stable revivals model in CSP-Prover. Electron Notes Theor Comput Sci

250(2):119–134
[ST05] Schneider S, Treharne H (2005) CSP theorems for communicating B machines. Formal Asp Comput 17(4):390–422
[SZL+13] Shi L, Zhao Y, Liu Y, Sun J, Dong JS, Qin S (2013) A UTP semantics for communicating processes with shared variables. In:

15th international conference on formal engineering methods (ICFEM’13), volume 8144 of lecture notes in computer science.
Springer, Berlin, pp 215–230

[TA97] Taguchi K, Araki K (1997) The state-based CCS semantics for concurrent Z specification. In: 1st international conference on
formal engineering methods (ICFEM’97). IEEE Computer Society, pp 283–292

[TW97] Tej H, Wolff B (1997) A corrected failure divergence model for CSP in Isabelle/HOL. In: FME’97: industrial applications and
strengthened foundations of formal methods, volume 1313 of lecture notes in computer science. Springer, Berlin, pp 318–337

[WC02] Woodcock J, Cavalcanti A (2002) The semantics of circus. In: ZB 2002: formal specification and development in Z and B,
volume 2272 of lecture notes in computer science. Springer, New York, pp 184–203.

[WH05] Wei K, Heather J (2005) Embedding the stable failures model of CSP in PVS. In: 5th international conference on integrated
formal methods (IFM’05), volume 3771 of lecture notes in computer science. Springer, Berlin, pp 246–265

[Win93] Winskel G (1993) The formal semantics of programming languages: an introduction. MIT Press, London
[WLBF09] Woodcock J, Larsen PG, Bicarregui J, Fitzgerald JS (2009) Formal methods: practice and experience. ACM Comput Surv

41(4):19:1–19:36
[WWB09] Wei K, Woodcock J, Burns A (2009) Embedding the timed circus in PVS. Technical report, University of York
[ZBH01] ZhuH, Bowen JP, He J (2001) From operational semantics to denotational semantics for Verilog. In: Correct hardware design

and verification methods (CHARME), volume 2144 of lecture notes in computer science. Springer, Berlin, pp 449–466
[ZHB08] Zhu H, He J, Bowen JP (2008) From algebraic semantics to denotational semantics for Verilog. ISSE 4(4):341–360
[ZQHB09] Zhu H, Qin S, He J, Bowen JP (2009) PTSC: probability, time and shared-variable concurrency. ISSE 5(4):271–284
[ZYH+12] Zhu H, Yang F, He J, Bowen JP, Sanders JW, Qin S (2012) Linking operational semantics and algebraic semantics for a

probabilistic timed shared-variable language. J Logic Algebraic Program 81(1):2–25

Received 2 December 2014
Accepted in revised form 1 April 2018 by Ian Hayes and Cliff Jones
Published online 25 April 2018

http://www.lemma-one.com/ProofPower/index/index.html

	A UTP semantics for communicating processes with shared variables and its formal encoding in PVS
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 The CSP# language
	2.1.1 Syntax
	2.1.2 Concurrency
	2.1.3 Example

	2.2 UTP theory
	2.3 Prototype verification system

	3 The observation-oriented semantics for CSP#
	3.1 Semantic model
	3.1.1 Observational variables
	3.1.2 Healthiness conditions

	3.2 Semantics of expressions and programs
	3.3 Semantics of processes
	3.3.1 Primitives
	3.3.2 Sequential composition
	3.3.3 Event prefixing
	3.3.4 Synchronous channel output/input
	3.3.5 Data operation prefixing
	3.3.6 Choice
	3.3.7 State guard
	3.3.8 Parallel composition
	3.3.9 Interleave
	3.3.10 Hiding
	3.3.11 Refinement
	3.3.12 Recursion
	3.3.13 Discussion

	4 Algebraic laws
	5 Encoding CSP# denotational semantics in PVS
	5.1 The theory of semantic model
	5.1.1 The theory of observational variables
	5.1.2 The theory of healthiness conditions

	5.2 The theories of expressions and programs
	5.3 The theory of processes
	5.3.1 Primitives
	5.3.2 Sequential composition
	5.3.3 Event prefixing
	5.3.4 Synchronous channel output/input
	5.3.5 Data operation prefixing
	5.3.6 Choice
	5.3.7 State guard
	5.3.8 Parallel composition
	5.3.9 Interleave
	5.3.10 Hiding
	5.3.11 Refinement
	5.3.12 Recursion

	5.4 Machine-assisted proof of properties

	6 Related work
	7 Conclusion and future work
	Acknowledgements
	References

