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Abstract. This paper discusses the formalization of Alternative Shaper, a Spatial Grammar supplemented with
procedural knowledge for supporting design generation. The nondeterministic process style perspective supports
an exploratory and flexible specification of designs and the use of predicates relating shapes allow the confirmation
of shape spatial restrictions on design processes. Although simple at this stage, Alternative Shaper actually offers
interesting potentialities on design generation that may be improved soon with convenient abstractions.
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1. Introduction

We are particularly interested in the automatic generation of designs based on spatial grammars as a descriptive
method for shapes [StG72].We have been developing computational tools for shape computing andworking on its
application in the generation of urban and architecture designs [ATS16, KSA16, PRS11, PRL12, SaR13, SaE15].

One of the main challenges we face in our project is to find out convenient generic concepts for providing easy
design specification and fully automatic design generation. These objectives compelled us to propose an extension
of traditional spatial and shape grammars [SaR13, SaE15] that we called Alternative Shaper. Alternative Shaper
differs from conventional shape grammars in the following aspects: i. emphasis ismade on symbols, not on shapes;
and ii. there is a detachment of procedural knowledge from shape knowledge. The first characteristic allows for
an exhaustive use of identifiers for representing shapes and easily supports shape properties by using predicates
relating those symbols. We use the term spatial grammar instead of shape grammar because Alternative Shaper
does not operate directly with shapes but with images (fixed shapes) that act as a symbol during the operation
as in set grammars [Sti82, KrS93, MCS12]. The second is important since detaching procedural knowledge from
shape knowledge facilitates convenient abstraction andmodularization for algorithmic development, one ofmost
desirable properties in computer science.
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This paper proceeds by clarifying the formal model of Alternative Shaper. An overview of the rest of the paper
follows. We start by presenting the conventional shape grammar formalism followed by our approach based on
symbols and supplemented with procedural primitives for describing design processes. The approach is further
extended with conditional grammar rules. Next we explore an example of design specification and sketch its
formalization. Finally, we conclude by mentioning immediate research directions.

2. Spatial and shape grammars

Shape grammar formalism was originally proposed by Stiny and Gips [StG72] for creating and understanding
designs through computations with shapes, rather than through computations with text or symbols. Stiny and
Gips have proposed that the computation of shapes should be carried out in two steps: the recognition of a
particular shape and its possible replacement by another shape.

A shape grammar consists of:

- a vocabulary of primitive shapes;
- shape rules of the form A → B , where A and B are shapes;
- an initial shape.

Two shapes s and u may be combined and form a new shape s + u (shapes in s or in u) or s - u (shapes in s
not in u). Given an appropriate vocabulary of shapes we may form an algebra where both operations are closed
on the space of all possible shape combinations. Given a shape combination u, the recognition of a particular
shape s in u can be supported by a sub-shape operation, s < u denoting s is a sub-shape of u. Application of a
Euclidean transformation (translation, rotation, reflection and scale) t to a shape A provides the production of
a new shape t(A).

Shapes replacement is obtained through application of shape grammar rules. A shape grammar rule A → B
applies to a shape s whenever there is an Euclidean transformation t such that t(A) < s . The result of the rule
application is s-t(A) + t(B ), the shape obtained by replacing the sub-shape t(A) of s by the shape t(B ).

Given a shape grammar, shapes may be generated (derived) starting from the initial shape and sequentially
applying shape rules to the obtained shapes, i.e., a sequence of shapes s0, s1, . . ., sn , where s0 is the initial shape
and si+1 is the shape obtained from si (i=0, . . . , n) by applying a rule of the shape grammar. Each possible
generated shape forms the shape language defined by the shape grammar.

The sub-shape operation is crucial for supporting shape grammar rules application to shapes and mainly
depends on the primitive vocabulary of shapes. For 2D shapes, Stiny proposed a canonical representation of
shapes [Sti80a]—the maximal lines form—based on lines. In this representation, a line is determined by a set of
two distinct end points and a shape is a finite set of lines. The maximal line representation of a shape is the unique
smallest set of lines that represent the shape.

While shape grammars operate directly in spatial forms, the term spatial grammars is a wider term used to
describe computation design systems that, beside shapes represented by maximal lines, can also operate with
strings, sets and graphs [Sti82, KrS93, MCS12].

During past decades research in Shape Grammars has been focused in conceptual and theoretical aspects
namely by authors like Stiny, Knight, Stouffs and others [StG72, Sti80a, Sti90, Sti92, Sti01, Kni93, Sto16], in
design analysis both in architecture and art related areas [StG77], [StM78, StM80, Kni89, KoE81, DRS07] and
in design generation of industrial products and buildings [AgC98, McC04, Dua05, ElD12]. Work has been done
developing computer representations and algorithms for shape manipulation in the rule application processes
[Kri80, Kri81, Kri92, KrE92, KrS97, KuK12] and in computer implementation of interfaces and specific and
generic interpreters of shape grammars, either 2D or 3D, either with straight lines and planar surfaces or curved
lines and curved surfaces and even parametric grammars [Fle87, Tap99, Li02, Lie04, McK04, Dua05, Jow06,
DRS07, LCW09, BDS10, GrE13]. Extensions of the original model have also been proposed for dealing with
material descriptions of shapes using formalisms as weights [Sti90, Sti92, Kni89]. Spatial grammar computer
design systems can be divided into general shape grammar interpreters (e.g. Grape [GrE11] and SG development
system [Li02]) and the ones which goal is to act has specific design domain interpreters.
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Fig. 1. A shape grammar with lines and circles. a shape rule, b initial shape

Fig. 2. A derivation using the grammar of squares

Researchondeveloping computer generative design systemshave beendone although encountering difficulties
both related to technical considerations and to the ways grammatical rules are presented to designers. These
difficulties have been already communicated by several authors asKrishnamurti&Stouffs [KrS93], Tapia [Tap99],
Gips [Gip99], Mckay et al. [MCS12] and Grasl & Economou [GrE11]. Among the difficulties these authors refer
to enabling emergence, including semantics rather than just geometry in shape rules, providing an evaluation
system for automated selection of designs and creating an intuitive and user-friendly system for users.

For a panoramic perspective on shape grammars’ implementation see [Gips99], [Cha04, Cha10, MCS12].
Let us consider the following example of a shape grammar with lines and circles as a vocabulary of shapes.

The shape grammar of Fig. 1 yields the derivation shown in Fig. 2.
Each shape generated by the application of this grammar is obtained starting from the initial shape and

repeatedly applying the shape grammar rule to the square with a circle in the left bottom corner. Each of the
applications uses a different Euclidean transformation combining translation and rotation applied to the left side
of the shape rule.

Note that the circle in theprevious shapegrammarprevents the achievementof crossed squares in all directions.
It also blocks the application of the shape rule to the reached emergent smaller squares.

Within shape grammars emergence is a foundational feature mentioned and discussed by many researchers
[Mit93, Sti94, Kni03]. Emergent shapes may be seen as shapes that are not added by shape rule applications, i.e.
any shape that is not a shape t(B ) added by a previous application of a shape rule A → B .

The conventional shape grammar formalism employs labeled points as a way of controlling the application
of shape rules during the design process. This control may avoid the application of particular Euclidean transfor-
mations or even completely block the application of one or more shape rules.Moreover, by using labeled points, a
sequential programming style can be used to describe the design process. Shape rules with labeled points on their
right hand sidemust be usedbefore other shape ruleswith the same labeledpoints on their left hand side.This strat-
egy has been used within shape grammars to generate a variety of designs [AgC98, Dua05, Hei94, Sti80a, Sti80b].
However, shape knowledge within these specific design applications is represented in a procedural and ad hoc
way and is therefore too rigid for generic automation.
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Fig. 3. Image identified by Tile

We believe that shape knowledge and procedural knowledge should be detached from each other if we want
to obtain a framework for flexible design generation and quick design specification. Detaching this knowledge
would facilitate convenient abstraction andmodularization for algorithmic development. An approach for design
generation should thus provide convenient abstractions for representing shape knowledge, procedural knowledge
and also the definition of other relevant application concepts.

As pointed out in [RBB14], design models and tools need to support expert knowledge specification in the
form of design requirements that can be used to evaluate solutions or to guide the exploration or generation of
designs. A designer should express design specifications not only by visual knowledge in the form of shape rules
but also by logic requirements. A tool allowing such a design specification should then support evaluation of the
requirements during the generation process.

The main feature of Alternative Shaper is to explicitly detach shape knowledge from procedural knowledge.
This, together with the use of a nondeterministic process style perspective supports an exploratory and flexible
specification of designs that may be generated according to design requirements.

3. Alternative shaper

In Alternative Shaper [SaR13, SaE15] the emphasis is made on symbols, not on shapes. Each symbol may identify
a different shape, starting from a set of basic shapes, whether they are dots, lines, geometric or solid shapes or even
images, i.e. a square 2D image. In this paper we explore this last possibility. We foresee that the other possibilities
may be explored in the same fashion. For instance, the identifier Tile may be associated with a square image of
Fig. 3 of a tile designed by the artist Maria Keil defined in the respective coordinate system xOy. This image can
assume a fixed size as in the grammar defined in Sect. 5 when it represents a modular part of a house.

Positioning a shape within a different coordinate system x ′O ′y ′ (Fig. 4) is represented by a pair (shape,
transformation) specifying the transformation (translation, rotation, scale, etc.) required for positioning the
coordinate system xOy associated to the defined shape into the new coordinate system x ′O ′y ′. Note that each
shape is represented by the identity transformation Id when the shape is defined and, in this case, the identity
transformation may be omitted within the representation. Note also that, given a shape s and an Euclidean
transformation t , (s, t) and t(s) represent the same shape. However, the first representation emphasizes the need
for registering the Euclidean transformation applied to the original shape definition. Both notations will be used
below.

For instance, in Fig. 4 Tile is positioned into the coordinate system x ′O ′y ′ by a scaling S (c, d ) and rotation
R(θ ) followed by a translation T (a, b) and thus represented by (Tile, T(a,b)R(θ )S(c,d)).

Formally, the set Transf of 2D Euclidean transformations is defined by:

Definition 1 The set Transf of all 2D Euclidean transformations is inductively defined by

1. Id ∈ Transf , the identity transformation;
2. R (θ ) ∈ Transf , ∀ θ ∈ [0◦, 360◦] , a rotation of θo ;
3. T (v ) ∈ Transf , ∀ v ∈ R2, a translation on v ;
4. S (v ) ∈ Transf , ∀ v ∈ R2, a scale on v .
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Fig. 4. Positioning Tile into a new coordinate system x ′O ′y ′

Fig. 5. A shape composition of two units Tile

Using a matrix representation within a 2D homogeneous coordinate system, we have,

T (a, b) �
[
1 0 a
0 1 b
0 0 1

]
R (θ ) �

[ cos θ −sen θ 0
sen θ cos θ 0
0 0 1

]
S (c, d ) �

[ c 0 0
0 d 0
0 0 1

]

Shape compositions may be represented by sets of shapes positioned in the same coordinate system. For in-
stance, for a 1× 1 unitTile, the shape composition of two unitsTile in Fig. 5 is represented by {(Tile,S (1/2, 1/2)),

(Tile,T
(
1/2 − √

2/4, 1/2 +
√
2/4

)
R (315◦)S (1/2, 1/2)}.

Formally, given a vocabulary of identified basic shapes V 	� Ø, the set Shape of shape compositions can be
defined as:

Definition 2 The set Shape of all shape compositions is inductively defined by

1. {t (S )} ∈ Shape,∀S ∈ V ,∀ t ∈ Transf ;
2. If SH 1,SH 2 ∈ Shape then SH 1 ∪ SH 2 ∈ Shape.

The same shapes positioned differently yields different shape compositions, as can be easily seen by shape
{(Tile,S (1/2, 1/2)) , (Tile,T (1/2, 1/2)R (45◦)S (1/2, 1/2)} of Fig. 6 when compared to shape of Fig. 5. How-
ever, different shapes may look similar given a suitable symmetry of the used image.
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Fig. 6. A diffent shape composition of two units Tile

Fig. 7. A shape grammar rule

Using this representation and given two shape compositions A and B , A is a sub-shape of B if and only if
(iff) all the shapes in A are also in B .

Definition 3 The subshape operation <: Shape × Shape → boolean is defined by A < B iff A ⊆ B .

The formal model is easily extended with shape definitions such as S � {t1 (S1) , . . . , tk (Sk )} for identify-
ing elaborated shape compositions, e.g.First2Tiles � {(Tile,S (1/2, 1/2)) , (Tile,T

(
1/2 − √

2/4, 1/2 +
√
2/4

)
R (315◦)S (1/2, 1/2)} and Second2Tiles � {(Tile,S (1/2, 1/2)) , (Tile,T (1/2, 1/2)R (45◦)S (1/2, 1/2)}.

To obtain a shape according to Definition 2, when such defined shapes are positioned, the Euclidean trans-
formations applied to the identifiers should be composed with the Euclidean transformations applied to the
components, i.e t (S ) � {t ◦ t1 (S1) , . . . , t ◦ tk (Sk )}.

With this extension, the representation of shape compositions turns out to be a set of sets of positioned shapes.
However, this representation could easily be flattened for comparing shape compositions using just the basic
shapes. In this case, sub-shape operation of Definition 3 should be adapt to A < B iff flatten (A) ⊆ flatten (B ),
for an more adequate defined operation flatten : Shape → Shape.

In this approach, Shape Grammar Rules are represented by pairs of shape compositions. For instance, for a
1× 1 unit Tile, the shape grammar rule of Fig. 7 is represented by {(Tile,S (1/2, 1/2))} → {(Tile,S (1/2, 1/2)),
(Tile,T (1/2 − √

2/4, 1/2 +
√
2/4)R(315◦)S (1/2, 1/2))} or {(Tile,S (1/2, 1/2))} → First2Tiles .



Alternative shaper: a model for automatic design generation 339

Fig. 8. t � t2t
−1
1 transforms shape t1(Tile) into shape t2(Tile)

Discovering a Euclidean transformation t such that t(A) < s for the application of a shape grammar rule
A → B is simply finding a transformation able to transform every shape of A into shapes within s . A Euclidean
transformation t able to transform shape t1 (i ) into shape t2 (i ) is easily obtained by t � t2t−1

1 (see Fig. 8, for
i=Tile).

One main advantage of our approach is that it easily supports shape composition properties. Note that these
properties may be used to define design objectives and characterize the control of design processes. Although
it may be generalized in the usual way, in this paper we just use quantifications over identified basic shapes.
The quantification allows the confirmation that some or all the shapes identified by A (A ∈ V ) verify a specific
property.

Definition 4 The set LF of all predicate formulas on shapes is inductively defined by

1. True ∈ LF ;
2. P (A1, . . . ,Ak ) ∈ LF for every k-ary (k ≥ 0) atomic predicate P and every (A1, . . . ,Ak ) ∈ Shapek ;
3. If ϕ ∈ LF then ¬ϕ ∈ LF ;
4. If ϕ1, ϕ2 ∈ LF then (ϕ1 ∧ ϕ2) ∈ LF ;
5. If ϕ1, ϕ2 ∈ LF then (ϕ1 ∨ ϕ2) ∈ LF ;
6. If ϕ ∈ LF ,A ∈ V then all (A, ϕ) ∈ LF ;
7. If ϕ ∈ LF ,A ∈ V then some (A, ϕ) ∈ LF .

The interpretation of these formulas [End72] is based on the interpretation I (P , s) of each atomic predicate
P within a shape composition s, that characterizes property P depending on number and the relative positions
of shapes in s . For instance, the unary predicate eight, representing 8 occurrences of a given identified shape
identifier within a shape composition, is interpreted by I(eight, s) � {i | #{(i , t) | ∃ t ∈ Tranf (i , t) ∈ s} � 8}.

Note that certain interpretations are universal and do not depend on a specific shape composition. For
instance the binary predicate next, representing the adjacency of a a1 ×b1 shape s1, positioned by transformation
t1, with a a2 × b2 shape s2 positioned by transformation t2, is interpreted by I (next, s) � {(s1, t1), (s2, t2) | ∃ l1 ∈
{line(t1(0, 0), t1(a1, 0)), line(t1(a1, 0), t1(a1, b1)), line(t1(a1, b1), t1(0, b1)), line(t1(0, b1), t1(0, 0)),
∃ l2 ∈ {line(t2(0, 0), t2(a2, 0)), line(t2(a2, 0), t2(a2, b2)) line(t2(a2, b2), t2(0, b2)), line(t2(0, b2), t2(0, 0)), l1 and l2 are
collinear and share two points}} see Fig. 9 with an additional tile from Maria Keil).
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Fig. 9. Two adjacent shapes

Given an interpretation I of each atomic predicate P within a shape composition s , a Boolean valuation
represents the truth value of each formula for a shape composition.

Definition 5 The Boolean valuation v : LF × Shape → boolean is recursively defined by

1. v (True, s) � true;
2. v (P (A1, . . . ,Ak), s) � true iff (A1, . . . ,Ak) ∈ I (P , s);
3. v (⇁ ϕ, s) � true iff v (ϕ, s) � false;
4. v ((ϕ1 ∧ ϕ2), s) � true iff v (ϕ1, s) � true and v (ϕ2, s) � true;
5. v ((ϕ1 ∨ ϕ2), s) � true iff v (ϕ1, s) � true or v (ϕ2, s) � true;
6. v (all (A, ϕ) , s) � true iff v (ϕ [A → t (A)]) , s) � true,∀ t ∈ Transf t (A) < s ;
7. v (some (A, ϕ) , s) � true iff v (ϕ [A → t (A)] , s) � true, ∃ t ∈ Transf t (A) < s ;

In the previous definition, ϕ [A ← t (A)] is the formula obtained from ϕ by uniform substitution of each free
occurrence ofA in ϕ by t(A). For instance, next(Tile, (Tile, i )) [Tile ← (Tile,T (1/2, 1/2)R(45◦))] is next((Tile,
T (1/2, 1/2)R(45◦)), (Tile, i )).

Note that, given a formula ϕ referring a shape A, the truth value within a shape s of the formulas some (A, ϕ)
and all (A, ϕ) depends on all sub-shapes t(A)of s . More precisely, some (A, ϕ) (resp. all (A, ϕ)) is true if and only
if there is a (resp. for all) sub-shapes t(A) of s the formula ϕ is true for t(A) in s , i.e., ϕ [A ← t (A)] is true in s .

As previously mentioned, our approach detaches procedural knowledge from shape knowledge using pro-
cedural notions that capture sequences, alternatives and tests for the application of shape grammar rules to the
initial shape during design process. Thus we define the set of processes—-Proc—using Definition 6.

Definition 6 The set Proc is inductively define by

1. nothing ∈ Proc (empty rule process);
2. If p1, p2 ∈ Proc then (p1orp2) ∈ Proc (alternative rule process);
3. If p1, p2 ∈ Proc then (p1; p2) ∈ Proc (sequential rule process);
4. Verify(ϕ) ∈ Proc,∀ ϕ ∈ LF (test rule process);
5. A → B ∈ Proc, ∀A,B ∈ Shape (general shape rule).

We may also extend the previous definition by using additional identifiers to represent elaborated processes
composed by other processes, e.g. sr1 � {(Tile,S (1/2, 1/2))}First2Tiles , sr2 � {(Tile,S (1/2, 1/2))}Second2
Tiles and rotateTiles1 � (sr1; (sr1; (sr1; (sr1; (sr1; (sr1; sr1)))))).

Shapes generated by the application of shape rule processes are characterized by the following function
exec:Proc × Shape → 2Shape .
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Fig. 10. Designs generated by process rotateTiles1 applied to shape composition
{
(Tile,T (− (3 +

√
2) /4, 1/4)S (1/2, 1/2))

}

Definition 7 The function exec: Proc × Shape −→ 2Shape is recursively defined by

1. exec(nothing, s) � {s};
2. exec ((p1orp2) , s) � exec (p1, s) ∪ exec (p2, s) ;
3. exec ((p1; p2) , s) � ⋃

u∈exec(p1,s) exec (p2, u) ;
4. exec (Verify (ϕ) , s) � {s | v (ϕ, s) � true};
5. exec (A → B , s) � {s − {t (A)} ∪ {t (B )} | ∃ t ∈ Transf t (A) < s}.
Processes apply shape rules repeatedly to the intermediate shapes so far obtained, according to the order

sequentially established in the process. The test process checks if certain conditions are met. The shape grammar
rules and the alternative compositions of the processes offer the possibility to generate a shape composition
among different alternatives. This means that we follow a non-deterministic perspective in the characterization
of design processes.

The following examples exemplify how the process primitives may be used to generate designs. The pro-

cess nothing applied to shape composition
{(

Tile,T
(
−

(
3 +

√
2
)

/4,−1/4
)

S (1/2, 1/2)
)}

(Fig. 10a) would

generate the same shape composition, that is, does not change the shape.
The rule sr1, {(Tile,S (1/2, 1/2))} → First2Tiles , applied to shape composition depicted in Fig. 10a gener-

ates the shape composition seen in Fig. 10b:

{(
Tile,T

(
−

(
3 +

√
2
)

/4, −1/4
)
S (1/2, 1/2)

)
,
(
Tile,T

(
−

(
1 + 2

√
2
)

/4,
(
1 +

√
2
)

/4
)
R (315◦)S (1/2, 1/2)

)}
.
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The same rule - sr1 - applied to this last shape composition, i.e. (sr1; sr1), applied to the initial shape

would generate again the same compositions if applied to shape composition
{(

Tile,T
(
−

(
3 +

√
2
)

/4,−1/4
)

S (1/2, 1/2)
)}

or would generate
{ (

Tile,T
(
−

(
3 +

√
2
)

/4,−1/4
)

S (1/2, 1/2)
)
,
(
Tile,T

(
−

(
1 + 2

√
2
)

/4,(
1 +

√
2
)

/4
)
R (315◦)S (1/2, 1/2)

)
,

(
Tile,T

(
−1/4,

(
3 +

√
2
)

/4
)

R (270◦)S (1/2, 1/2)
)}

(Fig. 10c) if ap-

plied to shape composition
{(

Tile,T
(
−

(
1 +

√
2
)

/4,
(
1 +

√
2
)

/4
)

R (315◦)S (1/2, 1/2)
)}

. The possibility

to generate one shape composition among different alternatives gives an idea of the non-deterministic perspec-
tive considered in the Alternative Shaper model.

Not surprisingly, the process rotateTiles1 applied to shape composition
{(

Tile,T
(
−

(
3 +

√
2
)

/4,−1/4
)

S (1/2, 1/2)
)}

would generate one of the designs of Fig. 10 (with the exception of the first one). However,

(rotateTiles1; Verify (eight (Tile))) applied to shape composition
{(

Tile,T
(
−

(
3 +

√
2
)

/4,−1/4
)

S (1/2, 1/2)
)}

would just generate the design Fig. 10h. This gives an idea of the use of the test process for

selecting specific designs. This control of design generation could also be made using conditional shape rules to
be discussed in the next section. Moreover, repetitions of previous obtained designs could also be avoided using
strategies like the last one or using conditional shape rules.

Finally, the alternative process (sr1orsr2) applied to shape composition {(Tile,S (1/2, 1/2)} would generate
one of the designs First2Tiles or Second2Tiles , once again in a non-deterministic way.

Processes are considered equal if they generate the same shapes, i.e.,

Definition 8 Given processes p1, p2 ∈ Proc, p1 � p2iff exec (p1, s) � exec (p2, s) for every s ∈ Shape.

On the other hand, some of the usual conventional commands can be written using the previous ones and we
may consider the following abbreviations:

1. if (ϕ, p1, p2) � ((verify (ϕ) ; p1) or (verify (⇁ ϕ) ; p2))
2. while (ϕ, p) � if (ϕ, (p; while (ϕ, p)) ,nothing)

We may now define formally a spatial grammar in the context of Alternative Shaper with the previous
introduced concepts.

Definition 9 A spatial grammar is a 3 tuple G � (V , s0, p) where:

1. V 	� Ø is the vocabulary of identified basic shapes;
2. s0 ∈ Shape is the initial shape;
3. p ∈ Proc is the rule process.

Given a spatial grammar G = (V, s0, p), the language L(G) of all designs generated by G is the set of the
shapes that may be obtained starting from the initial shape s0 and applying shape rules to the obtained shapes
according to the process p.

Definition 10 Given a spatial grammar G � (V , s0, p) ,L (G) � {s | s ∈ exec (p, s0)}.
For instance, the G1 = ({Tile},{(Tile,T(-(3+√

2)/4,-1/4) S(1/2,1/2))},(nothing or ((sr1;(sr1;(sr1;(sr1;(sr1;
(sr1;sr1))))))); Verify(eight(Tile))), would generate the language L(G1) = {{(Tile,T(-(3+√

2)/4,-1/4)S(1/2, 1/2))},
{(Tile,T(-(3+√

2)/4,-1/4)S(1/2,1/2)), (Tile,T(-(1+2
√
2)/4,(1+

√
2)/4)R(315◦)S(1/2,1/2)), (Tile,T(-1/4, (3+

√
2)/4)

R(270◦)S(1/2,1/2)), (Tile,T((1+2
√
2)/4,(1+

√
2)/4)R(225◦)S(1/2,1/2)), (Tile,T((3+2

√
2) /4,1/4)R(180◦)S(1/2,1/2)),

(Tile,T((1+2
√
2)/4,-(1+

√
2)/4) R(135◦)S(1/2,1/2)), (Tile,T(1/4,-(3+

√
2)/4) R(90◦) S(1/2,1/2)), (Tile,T(-(1+2

√
2)/4,-

(1+
√
2)/4)R(45◦)S(1/2,1/2))}} (Fig. 10a, h).
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Given a spatial grammar G � (V , s0, p), the language L(G) of all designs generated by G may be produced
by a computer program by forward chaining using some operational preference in the choice of the alternatives.
Each time a test process Verify fails or a shape grammar rule fails to apply, the system backtracks trying to build
a different solution.

4. Conditional shape rules

As in many other applications of shape grammars for the characterization of designs [Dua05, ElD12, GAK08],
we also find out the need to use conditional shape rules, i.e. shape rules with a logical pre-condition restricting
the rule application. However, these types of rules are informal extensions of the original concept of Shape Rule
characterized by Stiny and Gips [StG72] and thus need further formal clarification.

A general shape grammar rule A → B applies to a shape s whenever there is an Euclidean transformation
t such that t(A) < s . For each such Euclidean transformation t , the result of the rule application is the shape
obtained by replacing the sub-shape t(A) of s by the shape t(B ). Since there may be many instances of A on
s , in order to restrict the application of the rule A → B to each instance t(A) satisfying a certain condition, a
conditional shape rule is needed as well as a way to refer to a shape t(C ) on the condition of the rule during a
specific application of the shape spatial rule.

On the one hand, for dealing with conditional shape rules, consider the additional inductive rule in the
definition of the set Proc of Definition 6:

6. A → B if ϕ ∈ Proc,∀A,B ∈ Shape ∀ ϕ ∈ LF+ (conditional shape rule) .

On the other hand, the use of the relative positioning shapes matched(C) in such conditions (∀C ∈Shape)
supports this important additional expressivity. Thus, in the previous definition, LF+ differs from LF proposed
in Definition 4 with respect to the possible use of the relative positioning shapesmatched(A) (∀A ∈Shape) in the
first inductive rule:

1. P (A1, . . . ,Ak ) ∈ LF , for every k-ary (k ≥ 0) atomic predicate P and every (A1, . . . ,Ak ) ∈ (Shape ∪
{matched (A) | A ∈ Shape})k
Let us consider the additional inductive rule in the recursive definition of the function exec of Definition 7:

6. exec (A → B if ϕ, s) � {s − {t (A)} ∪ {t (B )} | ∃ t ∈ Transf t (A) < s ∧ v (t (ϕ) , s) � true}
In the new definition, t(ϕ) represents the formula obtained from ϕ by the previous substitution of each relative

positioning shapes. Formally:

Definition 11 The function ( ): Transf LF+ → LF is recursively defined by

1. t (True) � true;
2. t (P (A)) � P (A) ;
3. t (P (matched (A))) � P (t (A)) ;
4. t (⇁ ϕ) �⇁ t (ϕ) ;
5. t ((ϕ1 ∧ ϕ2)) � (t (ϕ1) ∧ t (ϕ2)) ;
6. t ((ϕ1 ∨ ϕ2)) � (t (ϕ1) ∨ t (ϕ2)) ;
7. t (all (A, ϕ)) � all (A, t (ϕ)) ;
8. t (some (A, ϕ)) � some (A, t (ϕ)) .

Let us consider the following example of a conditional shape rule in Fig. 11 that may be applied to a Tile if
it is not adjacent to a Tile2, i.e. {(Tile,S(1/2,1/2))} → {(Tile2,S(1/2,1/2)) if ¬ some(Tile2, next(matched((Tile,
S(1/2,1/2))),Tile2)).

Whenapplied to shape composition s �
{
(Tile2,S (1/2, 1/2)) , (Tile,T (1/2, 0)S (1/2, 1/2)) ,

(
Tile,T (1, 0)

S (1/2, 1/2)
)}

(Fig. 12a), there are two Euclidean transformations t such that t({(Tile,S(1/2,1/2))})<s: t1 =

T(1/2,0) and t2 = T(1,0).
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Fig. 11. A conditional shape grammar rule

Fig. 12. Application of the conditional shape grammar rule

However, for transformation t1 matched((Tile,S(1/2,1/2))) = (Tile,T(1/2,0)S(1/2,1/2)) and v(next((Tile,T(1/2,0)
S(1/2,1/2)),(Tile2,S(1/2,1/2)),s)= true and thus the shape rule condition fails.For transformation t2,matched((Tile,
S(1/2,1/2))) = (Tile,T(1,0) S(1/2,1/2)) and v(next((Tile,T(1,0) S(1/2,1/2)), (Tile2,S(1/2, 1/2)),s) = false and thus the
shape rule may be applied to s obtaining {(Tile2,S(1/2,1/2)),(Tile, T(1/2,0)S(1/2,1/2)),(Tile2,T(1,0)S(1/2,1/2))}
(Fig. 12b).

Note that general shape rules are conditional shape rules with conditions always true, i.e.A → B � A → B if
True. Note also that in general A → B if ϕ 	� Verify (ϕ); A → B only due to the fact that shape rule conditions
use logic formulas with relative positioning shapes that are absent within logic formulas used in test processes.
However, the equality holds for conditions belonging to LF.

Theorem 1 A → B if ϕ � Verify (ϕ) ; A → B ,∀ ϕ ∈ LF .

Proof straightforward, since ϕ � t(ϕ) for ϕ ∈ LF .

Turning back to the designFig. 10h generated by the process (rotateTiles1;Verify(eight(Tile))) applied to shape

composition
{(

Tile,T
(
−

(
3 +

√
2
)

/4,−1/4
)

S (1/2, 1/2)
)}

, it could be obtained by the process rotateTiles2
� (sr3; (sr3; (sr3; (sr3; (sr3; (sr3; sr3)))))) applied to the same shape composition, but using now the condi-
tional shape rule sr3 � {(Tile,S (1/2, 1/2))} −→ {(Tile,S (1/2, 1/2)) , (Tile,T (1/2, 1/2)R (45◦)S (1/2, 1/2)}if
⇁ exists(matched ((Tile,T (1/2, 1/2)R (45o)S (1/2, 1/2))) and considering the unary predicate exists, repre-
senting that a given shape w occurs within a shape composition, interpreted by I (exists, s) � {w | w ∈ s}. Note
that sr3 is sr2 with the application of an additional condition avoids the production of already obtained designs.

Operationally, there is a big advantage in considering the last alternative since it avoids repetitions of previous
obtained designs during the generation process.

These examples illustrate the level of additional control available in Alternative Shaper model, detaching
shape knowledge from procedural knowledge.

5. Example of design

Aworkbench automating the Alternative Shaper model has been implemented in SWI-prolog to explore a depth
first search strategy of the design solution space.
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Fig. 13. Basic shapes in the example

Fig. 14. Some shape compositions in the example

This first tool has been used for producing house layouts in a constructive modular system with wooden
modules [SaR13, SaE15] and producing house layouts ofmass-customizedwooden single family houses [KSA16].

House layouts are guided by a set of design principles representing the spatial relations that should be fulfilled
according to correct housing standards, the designer’s language of design and specific customers’ needs. The
following rules represent an attempt to explicitly characterize one floor plan design principles that may be used
in the context of the design system proposed in [KSA16]:

1. Privacy Rules—there are 3 main areas: entrance, semi-public and private;
2. Area Constitution Rules—the entrance area comprises a vestibule, a technical room, a garage, a toilet and

a storage; the semi-public area comprises a home office, a kitchen, a dining room and a living room; the
private area comprises a double bedroom, one or two single bedrooms and a bathroom;

3. Area Positioning Rules—areas should be placed from the entrance into deeper in the house; the public area
should be placed in the front corner; the private area should be placed in the back corner;

4. Room Positioning Rules—the rooms are placed freely respecting the following principles:

(a) one of the rooms, home office, kitchen, dining room should be placed at the front corner;
(b) the vestibule should be placed next to the garage;
(c) the toilet and the technical room should be placed next to the garage;
(d) the kitchen should be placed at the front corner, or next to dining room, or next to the home office;
(e) the dining room should be placed in the front corner or next to the kitchen;
(f) the living room should be placed in the front corner, or next to the kitchen, or next to the dining room;
(g) the home office should be placed in the front corner or next to the living room;
(h) the bathroom should be placed next to the double bedroom or next to a single bedroom;
(i) one double bedroom and one single bedroom are placed in the back corner.

Below is a sketch of the application of the Alternative Shaper approach in the representation of this design
system. The identifier explained in Sect. 3 was here used as a color square that represents a part of the house
layout. Depending on the type and size of room different color and number of squares are used, e.g. a Vestibule
is composed by nine blue squares (Fig. 14). Each square represents a module of 0.6× 0.6m size.

Using the basic shapes of Fig. 13 to represent front and back markers (fron and back), empty space and house
ridge (cell and wrid) and 0.6× 0.6m cells for different room occupation—vestibule, garage, technical room, home
office, hall, living room,dining room,kitchen, toilet, bathroom, single bedroomanddouble bedroom (respectively,
cves, cgar, ctec, coff, chal, cliv, cdin, ckit, ctoi, cbat, csbe and cdbe), the following shape compositions of Fig. 14
are represented respectively by

basement3x3 � {(cell,Id), (cell,T(0.6, 0)), (cell,T(1.2, 0)), (cell,T(0, 0.6)), (cell,T(0.6, 0.6)),
(cell,T(1.2, 0.6)), (cell,T(0, 1.2)), (cell,T(0.6, 1.2)), (cell, T(1.2, 1.2))}
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Fig. 15. A conditional shape grammar rule

and

vestibule3x3 � {(cves,Id), (cves,T(0.6, 0)), (cves,T(1.2, 0)), (cves,T(0, 0.6)), (cves,T(0.6, 0.6)),
(cves, T(1.2, 0.6)), (cves,T(0, 1.2)), (cves,T(0.6, 1.2)), (cves, T(1.2, 1.2))}.

Given the dimensions of the house and respective rooms, shape rules are considered for occupying an initial grid
of empty cells.

For instance, for a 3× 3 vestibule, the following conditional shape grammar rule of Figure 15 is represented
by

placeVestibule � basement3x3 → vestibule3x3
if some(fron, next(matched(basement3x3), fron))

which condition characterizes that vestibule should be placed on the front of the house.
The following process describes steps for producing house layout solutions according to the design principles

rules:

home = placeBasement; placeEntrance; placeSemipublic; placePrivate ; verify(home
Restrictions).

placeEntrance = placeVestibule; placeGarage; placeTechRoomandToilet.
placeSemipublic = placeHomeOffice and placeKitchen and placeDiningRoom and placeLivingRoom.

placePrivate = placeDoubleBedroom and placeSingleBedrooms and placeBathroom.
placeSingleBedRooms = placeSingleBedRoom or placeSingleBedRoomwithHall.

The main process home characterizes the mentioned one floor plan design sequence. PlaceGarage, place-
HomeOffice, placeTechRoomandToilet, placeKitchen, placeDiningRoom, placeLivingRoom, placeBathroom,
placeDoubleBedroom, placeSingleBedroom and placeSingleBedRoomwithHall are shape grammar rules similar
to the previous one.

Note that, for economy of space, in the previous formalization we use processes of the form (p1 and p2) for
denoting all the alternative sequential processes with shape rules of p1 and shape rules of p2, i.e. an interleaving
between p1 and p2.

The mentioned one floor plan design principles are characterized by the following logical formula identified
by homeRestrictions.

homeRestrictions � (next(vestibule, garage) ∧ next(toilet, garage) ∧ next(technicalRoom, garage) ∧ (next(dining
Room, fron) ∨ next(dinningRoom, kitchen) ∧ (next( homeOfice, fron) ∨ next(homeOfice, livingRoom)) ∧ (next(bathRoom, dou-
bleBedroom) ∨ next(bathRoom, singleBedroom)) ∧ some(doubleBedroom, next(doubleBedroom, back)) ∧ some(singleBedroom,
next(singleBedroom,back))∧ (next( kitchen, fron)∨next(kitchen,dinningRoom)∨next(kitchen,homeOfice))∧ (next(livingRoom,fron)
∨ next(livingRoom, kitchen) ∨ next(livingRoom, dinningRoom)).

Note that, within the formalization of the previous restriction, vestibule, technicalRoom, garage, homeOfice,
toilet, kitchen, diningRoom, livingRoom, doubleBedroom, singleBedroom, and bathroom identify the exact
positioned shapes of the respective rooms. Without such identifiers, the exact positioned shapes must be identi-
fied by existential quantifiers, e.g., instead of next(vestibule,garage) we must write some(vestibule, some(garage,
next(vestibule, garage))).

For a 17× 14 house, the generation starts using the initial shape composition basement17× 14 of 17× 14
empty cells with front and back markers. The solutions of Fig. 14 exemplify the generation process of house
layouts fulfilling the design rules present so far for a 17× 14 house with the following rooms and dimensions:
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Fig. 16. Example of generated designs of a 17× 14 house

3× 3vestibule, 3× 3 technical room,9× 6garage, 3× 2 toilet, 3× 3 storage, 2× 7kitchen, 4× 7dining room,5× 7
living room, 4× 7 double bedroom, 4× 7 single bedroom, 4× 7 single bedroom with hall and 3× 5 bathroom.

The last process Verify(homeRestrictions) of the main process home select among all the designs those who
verify the design principles. In such a layout only those three possibilities exist. Operationally, the searching
process could be optimized if those design principles where adopted within conditions of conditional shape
grammar rules.

6. Conclusions

The formalmodel of Alternative Shaper was presented, amodel especially conceived with the intention of provid-
ing easy design specification and fully automatic design generation. Alternative Shaper differs from conventional
shape grammars with respect to emphasis beingmade on symbols instead of on shapes. This allows for an exhaus-
tive use of identifiers for representing shapes and easily supports shape properties by using predicates relating
those symbols. Alternative Shaper differs also on the detachment of procedural knowledge and shape knowledge
and facilitates convenient abstraction and modularization for algorithmic development.

Themodel herein presented is further extendedwith conditional shape rules to increase additional expressivity
and additional control for operationalizing the searching of design solutions within an exponential search space.

However, there are other issues that need further research, namely: 1. a complete development of a case study
in order to find out approach limitations and propose other convenient abstractions; 2. study of an appropriate
representation of parametric shapes; 3. study of appropriate computational forms for the representation of shapes
and processes in order to avoid employing intractable algorithms.

For the purpose of the designs wewant to generate, emergence is not themain issue in this model.Without any
further mathematical machinery, the formalization of the sub-shape operation proposed in definition 3 does not
allow the detection of emergent sub-shapes. However, we believe that the introduction of a shape hierarchy as well
as an equality operation on shape compositions allows this approach to surpass this limitation in the same fashion
that the maximal line form does by presenting an alternative representation of the same shapes. There are various
possibilities for defining sub-shape operation in this approach. For instance, given two shape compositions A
and B: A<B iff ∃A’=A ∃B’=B such that A’⊆B’. This possibility proposes finding a common representation for
shapes to which the sub-shape operation may apply, in the same fashion of maximal line representation proposed
by Stiny [Sti80a], but not necessarily a canonical form in the bottom of the hierarchy of shapes. A. This is also a
topic for further research.
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