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Abstract. This work presents an executable model-based testing framework for probabilistic systems with non-
determinism. We provide algorithms to automatically generate, execute and evaluate test cases from a probabilistic
requirements specification. The framework connects input/output conformance-theory with hypothesis testing:
our algorithms handle functional correctness, while statistical methods assess, if the frequencies observed during
the test process correspond to the probabilities specified in the requirements. At the core of our work lies the
conformance relation for probabilistic input/output conformance, enabling us to pin down exactly when an
implementation should pass a test case. We establish the correctness of our framework alongside this relation
as soundness and completeness; Soundness states that a correct implementation indeed passes a test suite, while
completeness states that the framework is powerful enough to discover each deviation from a specification up
to arbitrary precision for a sufficiently large sample size. The underlying models are probabilistic automata that
allow invisible internal progress. We incorporate divergent systems into our framework by phrasing four rules
that each well-formed system needs to adhere to. This enables us to treat divergence as the absence of output, or
quiescence, which is a well-studied formalism in model-based testing. Lastly, we illustrate the application of our
framework on three case studies.
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1. Introduction

Probability. Probability plays a crucial role in a vast number of computer applications. A large body of commu-
nication protocols and computation methods use randomized algorithms to achieve their goals. For instance,
random walks are utilized in sensor networks [AK04], control policies in robotics lead to the emerging field of
probabilistic robotics [TBFO05], speech recognition makes use of hidden Markov models [RMS85] and security
protocols use random bits in their encryption methods [CDSMWO09]. Such applications can be implemented in
one of the many probabilistic programming languages, such as Probabilistic-C [PW14] or Figaro [Pfell]. On a
higher level, service level agreements are formulated in a stochastic fashions, for instance specifying that a certain
up-time should be at least 99%.
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Fig. 1. Dice program based on Knuth and Yao [KY76]. A 6-sided die is simulated by repeated tosses of a fair coin

The key question is whether such probabilistic systems are correct: is bandwidth distributed fairly among
all parties? Is the up-time and packet delay according to specification? Are security measures safe enough to
withstand random attacks?

To investigate such questions, probabilistic verification has become a mature research field, putting forward
models like probabilistic automata (PAs) [Seg95, Sto02], Markov decision processes [Put14], (generalized) stochas-
tic Petri nets [MBC*94], and interactive Markov chains [Her02], with verification techniques like stochastic model
checking [RS14], and supporting tools like Prism [KNP02], or Plasma [JLS12].

Testing. In practice however, testing is the most common validation technique. Testing of information and
communication technology (ICT) systems is a vital process to establish their correctness. The system is subjected
to many well-designed test cases that compare the outcome to a requirements specification. At the same time it
is time consuming and costly, often taking up to 50% of all project resources [JS07]. Testing based on a model is
a way to counteract this swiftly increasing demand.

Our work presents a model-based testing framework for probabilistic systems. Model-based testing (MBT)
is an innovative method to automatically generate, execute, and evaluate test cases from a system specification.
It gained rapid popularity in industry by providing faster and more thorough means for the testing process,
therefore lowering the overall costs in software development [JSO7].

A wide variety of MBT frameworks exist, capable of handling different system aspects such as functional
properties [Tre96], real-time [BB05, BB04, HLM™*08], quantitative aspects [BDH™"12], and continuous [PKB*14]
and hybrid properties [vO06]. Surprisingly, there is only little work in the scientific community that focuses
on executable testing frameworks for probabilistic systems, with notable exceptions being [HN10, HC10]'. The
presented work aims at filling this gap.

Probabilistic modelling. Our underlying models are a slight generalisations of the probabilistic automaton model
[Seg95]. Figure 1 shows the dice simulation by Knuth and Yao [KY76]. In this application a fair 6-sided die is
simulated by repeated coin tosses of a fair coin. Instead of moving from state to state, a transition moves from a
state to a distribution over states. In this example, in the state f the model can go to the distribution over {fy, fr}
representing the outcomes of a coin toss fead and tail with probability 0.5 each.

The PA model additionally facilitates non-deterministic choices. To illustrate, there might be a user dependent
choice over whether to use a fair or unfair die in the simulation, as shown in Fig. 7. As argued in [Seg95] non-
determinism is essential to model implementation freedom, interleaving and user behaviour. Probabilistic choices,
on the other hand, model random choices made by the system, such as coin tosses, or by nature, such as degradation
rates or failure probabilities. Having non-determinism in a model makes statistical analysis challenging, since an
external observer does not know it is resolved.

! Note that the popular research branch of statistical testing, e.g., [BD05, WRT00], is concerned with choosing the test inputs probabilistically;
it does not test for the correctness of the random choices made by the system itself.
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One of the main challenges of our work consists of combining probabilistic choices and non-determinism in
one test framework. As frequently done in literature [Seg935, Sto02], we resolve non-determinism via adversaries
(a.k.a. policies or schedulers). In every step of the computation, an adversary decides for the system how to
proceed. The resulting system can then be treated entirely probabilistically, since all non-deterministic choices
were resolved. This enables us to do statistical analysis of the observable behaviour of the system under test
(SUT).

Our contribution. The key results of our work are the soundness and completeness proofs of our framework.
At their core lies a conformance relation, pinning down precisely what it means for an implementation to be
considered correct. We choose the input/output conformance (ioco) relation known from the literature [Tre96,
TBS11], since it is tailored to deal with non-determinism, and extend it with probabilities. The resulting relation is
baptised probabilistic input-output conformance or pioco. Soundness states that a pioco correct implementation
indeed passes a test suite. Albeit inherently a theoretical concept, completeness states that the framework is
powerful enough to detect every faulty implementation.

We provide algorithms to automatically generate test cases from a requirements specification and execute
them on the system under test (SUT). The verdicts, as part of the test case evaluation, can automatically be given
after a sampling process and frequency analysis of observed traces.

The validity of our framework is illustrated with three case studies known from the literature exhibiting
probabilistic behaviour: (1) the aforementioned dice application by Knuth and Yao [KY76], (2) the binary expo-
nential backoff protocol [JDL02] and (3) the FireWire root contention protocol [SV99]. Our experimental set-up
illustrates the use of possible tools and techniques to come to a conclusion about pass or fail verdicts of an
implementation.

We show that, under certain constraints on the model, divergent behaviour, i.e. infinite invisible progress, can
be treated as a special case of quiescence. Quiescence describes the indefinite absence of outputs in a system.
Hence, an external observer can treat quiescence and divergence equivalently. We call a model adhering to these
constraints well-formed and show that well-formedness is preserved under parallel composition. We provide means
to transform a model into a well-formed one, thereby increasing the usage for practical modelling purposes. Thus,
composing several subcomponents together still lets us apply our model-based testing methods.

The current version of this work presents an extension of [GS16]. We summarize the main novelties:

e fully fledged proofs of our results,

e additional examples and illustrations of our methods,

e support of invisible internal progress and divergent behaviour and
e anew case study.

Related work. Probabilistic testing preorders and equivalences are well studied [BBOS, BNL13, CDSY99,
DHvGMO08, DLT08, HN17, Seg96], defining when two probabilistic transition systems are equivalent, or one
subsumes the other. In particular, early and influential work is given by [LS89] and introduces the fundamen-
tal concepts of probabilistic bisimulation via hypothesis testing. Also, [CSV07] shows how to observe trace
probabilities via hypothesis testing. Executable test frameworks for probabilistic systems have been defined for
probabilistic finite state machines [HMO09], dealing with mutations and stochastic timing, Petri nets [Boh11] and
CSL [SVA04, SVA05].

The important research line of statistical testing [BD05, WPT95, WRTO00] is concerned with choosing the
inputs for the SUT in a probabilistic way in order to optimize a certain test metric, such as (weighted) coverage.
The question of when to stop statistical testing is tackled in [Pro03].

An approach eminently similar to ours is by Hierons and Nuniez [HN10, HN12]. However, our models can be
considered as an extension of [HN10], reconciling probabilistic and non-deterministic choices in a fully fledged
way. Being more restrictive enables [HN10, HN12] to focus on individual traces, whereas our approach uses trace
distributions.

The current paper extends earlier work [GS15] that first introduced the pioco conformance relation and roughly
sketched the test process. Extensions made later in [GS16] were (1) the more generic pIOTS model that includes
invisible progress (a.k.a. internal actions), (2) the soundness and completeness results, (3) solid definitions of
test cases, test execution, and verdicts, (4) the treatment of the absence of outputs (a.k.a. quiescence) and (5) the
handling of probabilistic test cases. A later version [GS17] includes the aspect of stochastic time and extends our
framework to the more general Markov automata.
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Overview over the paper. > In Sect. 2 we establish the mathematical basics for our framework. Section 3 presents
the automatic test generation and evaluation process alongside two algorithms. We experimentally validate our
framework on three small case studies in Sect. 4. We present proofs that our method is sound and complete in
Sect. 5. The inclusion of internal actions and possible resulting divergence in our systems is discussed in Sect. 6.
Lastly, the paper ends with concluding remarks in Sect. 7.

2. Preliminaries
2.1. Probabilistic input/output systems

Probability theory. We assume the reader is acquainted with the basics of probability theory, but do recall integral
definitions. In particular, we borrow the definition of probability spaces and their individual components rooted
in measure theory. The interested reader is referred to [Coh80] for an excellent overview and further reading.

A discrete probability distribution over a set X is a function u : X — [0, 1] such that Y __, u(z) = 1. The
set of all distributions over X is denoted by Distr (X). The probability distribution that assigns probability 1 to
a single element z € X is called the Dirac distribution over z and is denoted Dirac (z).

A probability space is a triple (2, F, P), such that Q is a set called the sample space, F is a o -field of Q called the
event set, and lastly PP : 7 — [0, 1] is a probability measure such that P(Q) = 1 and P (U;2, 4;) = Yooy P(4;)
for A, e F,i=1,2,... pairwise disjoint.

Example 1 An intuitive illustration of a probability space is the one induced by a fair coin. If the coin is tossed,
there is a 50% chance that it shows heads and 50% that it shows tails.

The sample space 2 = {H, T} contains these two outcomes. The event set F = {0, {H},{T},{H, T}}
describes the possible events that may occur upon tossing the coin, i.e. (1) neither heads nor tails, (2) heads, (3)
tails or (4) heads and tails. The probability measure that describes the intuitive understanding of a fair coin is
then givenas P (@) = 0,P({H}) =0.5,P({T}) =0.5and P({H, T}) = 0.

Hence, the triple (2, F, P) is a probability space.

Probabilistic input/output systems. We introduce probabilistic input/output transition systems (pIOTSs) as an
extension of labelled transition systems (LTSs) [TBS11, Tre08]. An LTS is a mathematical structure that models
the behaviour of a system. It consists of states and edges between two states (a.k.a. transitions) labelled with
action names. The states model the states the system can be in, whereas the labelled transitions model the actions
that it can perform. Hence, we use ’label’ and ’action’ interchangeably.

Labelled transition systems are frequently modified to input/output systems by separating the action labels
into distinct sets of input actions and output actions. Input actions are used to model the ways in which a user or
the environment may interact with the system. The set of output actions represents the responses that a system
can give. Occasionally, the system may advance internally without visibly making progress. This gives rise to the
notion of internal or hidden actions.

In testing, a verdict must also be given if the implementation does not give any output at all [STS13]. To
illustrate: If no input is provided to an ATM, it is certainly correct that no money is disbursed. However, having
no money be output after a credit card and credentials are provided would be considered erroneous. We capture
the absence of outputs (a.k.a. quiescence) with the special output action §. This distinct label can be used to model
that no output is desired in certain states.

We extend input/output transition systems with probabilities by having the target of transitions be distributions
over states rather than a single state. Hence, if an action is executed in a state of the system, there is a probabilistic
choice of which next state to go to next, cf. Fig. 2.

Following [GSST90], pIOTSs are defined as input-reactive and output-generative. Upon receiving an input, the
pIOTS decides probabilistically which next state to move to. Upon producing an output, the pIOTS chooses both
the output action and the state probabilistically. Mathematically, this means that each transition either involves
one input action, or possibly several outputs, quiescence or internal actions. Note that a state can enable input
and output transitions albeit not in the same distribution.

2 Elaborate proofs of our results can be found in “appendix”. We did not include them in the main text to maintain readability.
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Fig. 2. Example models to illustrate input-reactive and output-generative transitions in pIOTSs. We use “?” to denote labels of the set of inputs
and “!” to denote labels of the set of outputs. a Valid pIOTS, b valid plOTS, ¢ not a valid pIOTS

Definition 2 A probabilistic inputloutput transition system is a sixtuple A = (S, sy, L7, Lo, Ly, A), where

e S is a finite set of states,

e 5 is the unique starting state,

e L;, Lo, and Ly aredisjoint sets of input, output and internal/hidden labels respectively, containing the distinct
quiescence label § € Lp. We write L = L; U Lo U Ly for the set of all labels.

e A C § x Distr (L x S) is a finite transition relation such that for all input actions a € L; and distributions
w € Distr (L x S): u(a, s") > 01implies u (b, s”) = 0 for all b # a and some s, s” € S.

Example 3 Figure 2 presents two example pIOTSs and an invalid one. As by common convention we use “?” to
suffix input and “!” to suffix output actions. By default, we let ¢ be an internal action. The target distribution of
a transition is represented by a densely dotted arc between the edges belonging to it.

In Fig. 2a there is a non-deterministic choice between two inputs a? and b? modelling the choice that a user
has in this state. If a? is chosen, the automaton moves to state s;. In case, the user chooses input b?, there is a 50%
chance that the automaton moves to state s, and a 50% chance it moves to s;. Note that the latter distribution is
an example of an input-reactive distribution according to clause 4 in Definition 2.

On the contrary, state # of Fig. 2b illustrates output-generative distributions. Output actions are not under
the control of a user or the environment. Hence, in # the system itself makes two choices: (1) it chooses one
of the two outgoing distributions non-deterministically and (2) it chooses an output or internal action and the
target state according to the chosen distribution. Note that both distributions are examples of output-generative
distributions according to clause 4 in Definition 2.

Lastly, the rightmost model is not a valid pIOTS according to Definition 2 for two reasons: (1) There are two
distinct input actions in one distribution and (2) input and output actions may not share one distribution, as
both would violate clause 4 of Definition 2.

Notation. We make use of the following notations and concepts:

e Elements of the set of input actions are suffixed by “?” and elements of the set of output actions are suffixed
by “!”. By convention, we let T represent an element of the set of internal actions.

o s 125 ¢ if (s, n) € A and u(a, s’) > 0 for some s’ € S,
e An action a is called enabled in a state s € S, if there is an outgoing transition containing the label a. We

write s — a if there are u € Distr (L x S)and s’ € S such that s BY g (s # aifnot). The set of all enabled
actions in a state s € S is denoted enabled (s).

o We write s =5 4 §', etc. to clarify that a transition belongs to a pIOTS A if ambiguities arise.

e We call a pIOTS A input enabled, if all input actions are enabled in all states, i.e. for all a € L; we have s — «a
forall s € S.

Quiescence. In testing, a verdict must also be given if the system-under-test is quiescent, i.e. if it does not produce
any output at all. Hence, the requirements model must explicitly indicate when quiescence is allowed and when
not. This is expressed by a special output label 8, as required in clause 3. For more details on the treatment of
quiescence we refer to Sect. 6 and for further reading to [STS13, Tre08].
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Fig. 3. Specification and two implementation pIOTSs of a shuffle music player. Some actions are separated by commas for readability
indicating that two transitions with different labels are enabled from the same source to the same target states. a Specification, b unfair
Implementation, ¢ alternating Implementation

Example 4 Figure 3 shows three models of a simple shuffle mp3 player with two songs. The pIOTS in (3a) models
the requirements: pressing the shuffle button enables the two songs with probability 0.5 each. The self-loop in s,
indicates that after a song is chosen, both are enabled with probability 0.5 each again. Pressing the stop button
returns the automaton to the initial state. Note that the system is required to be quiescent in the initial state until
the shuffle button is pressed. This is denoted by the § self-loop in state sp.

The implementation pIOTS (3b) is subject to a small probabilistic deviation in the distribution over songs.
Contrary to the requirements, this implementation chooses song/ with a probability of 40% and gives a higher
probability to song?2.

In implementation (3c) the same song cannot be played twice in a row without intervention of the user or the
environment. After the shuffle button is pressed, the implementation plays one song and moves to state s or s3
respectively. In these states only the respective other song is available.

Assuming that both incorrect models are hidden in a black box, the model-based testing framework presented
in this paper is capable of detecting both flaws.

Parallel composition. The popularization of component based development demands an equivalent part on the
modelling level. Individual components are designed and integrated later on. This notion is captured by the
parallel composition of individual models.

Parallel composition is defined in the standard fashion [BKLO08] by synchronizing on shared actions, and
evolving independently on others. Since the transitions in the component pIOTSs are stochastically independent,
we multiply the probabilities when taking shared actions, denoted by the operator p xv. To avoid name clashes,
we only compose compatible plIOTSs.

Note that parallel composition of two input-enabled pIOTSs yields a pIOTS.

Definition 5 Two plOTSs A = (S, s, L1, Lo, Ly, A) and A" = (5, s, L', L'y, L'y, A'), are compatible if Lo N
'o =18}, Ly N L' =@ and L N Ly = @. Their parallel composition is the tuple

ANl A = (5", (s0. &) . Ly, L, Ly, A”), where

S =5x9,
"= (LrULY)\ (Lo ULp),
o L)y =LoULy,

e L}, = Ly U L), and finally the transition relation

V2, a

v; x vy if 3a € LN I/ such that s =5 At 2%
A =1{((s,t),n) € S” x Distr (L’ x S") | u=< vy x 1 if Vae Lwiths —5 wehave t=ra },
1xv, ifVael witht-=% wehave s=ra

where (s, v1) € A,(t, v2) € A’ respectively, and vy x 1 ((s, t), a) = v (s, a)-1and 1 x v, ((s, t), a) = 1-v2 (¢, a).
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2.2. Paths and traces
We define the usual language concepts for LTSs. Let A = (S, sy, Ly, Lo, Ly, A) be a plOTS.

Paths. A path 7 of Ais a (possibly) infinite sequence of the following form

T =S8 Wy G S Ky G2 S3 K3 (3 S4 ...,

where s; € S, a; € Land u,; € Distr (L x S), such that each finite path ends in a state and s; Loty s;+1 for

each non-final 7. We use /ast (7r) to denote the last state of a finite path. We write 7’ C 7 to denote 7’ as a prefix
of i, i.e. ' is finite and coincides with 7 on the first symbols of the sequence. The set of all finite paths of A is
denoted by Paths=“ (A) and all paths by Paths (A).

Traces. The associated trace of a path 7 is obtained by omitting states, distributions and internal actions, i.e.
trace () = ay ay as . ... Conversely, trace™" (o) gives the set of all paths, which have trace o. The length of a path
is the number of actions on its associated trace. All finite traces of A are summarized in Traces=® (A). The set
of complete traces, cTraces (A), contains every trace based on paths ending in deadlock states, i.e. states that do
not enable any more actions. We write out 4 (o) for the set of output actions enabled in the states after trace o.

2.3. Adversaries and trace distributions

Very much like traces are obtained by first selecting a path and by then removing all states and internal actions, we
do the same in the probabilistic case. First, we resolve all non-deterministic choices in the pIOTS via an adversary
and then we remove all states to get the trace distribution.

The resolution of the non-determinism via an adversary leads to a purely probabilistic system, in which we
can assign a probability to each finite path. A classical result in measure theory [Coh80] shows that it is impossible
to assign a probability to all sets of traces, hence we use o -fields consisting of cones. To illustrate the use of cones:
the probability of always rolling a 6 with a die is 0, but the probability of rolling a 6 within the first 100 tries is
positive.

Adversaries. Following the standard theory for probabilistic automata [Seg95], we define the behaviour of a
plOTS via adversaries (a.k.a. policies or schedulers) to resolve the non-deterministic choices; in each state of the
plOTS, the adversary may choose which transition to take or it may also halt the execution.

Given any finite history leading to a state, an adversary returns a discrete probability distribution over the set
of next transitions. In order to model termination, we define schedulers such that they can continue paths with a
halting extension, after which only quiescence is observed.

Definition 6 An adversary E of a pIOTS A = (S, sy, L1, Lo, Ly, A) is a function
E : Paths~” (A) —> Distr (Distr (L x S)U{L}),

such that for each finite path 7, if F (;r) () > 0, then (last (), u) € A or u =.L. We say that E is deterministic,
if F (7) assigns the Dirac distribution to every distribution for all # € Paths™® (A). The value F () (L) is
considered as interruption/halting. An adversary E halts on a path 7, if F () (L) = 1. We say that an adversary
halts after k£ € N steps, if it halts for every path of length greater or equal to k. We denote all such finite adversaries
by Adv (A, k). The set of all adversaries of A is denoted Adv (A).

Path probability. Intuitively an adversary tosses a multi-faced and biased die at every step of the computation,
thus resulting in a purely probabilistic computation tree. The probability assigned to a path 7 is obtained by the
probability of its cone C; = {n’ € Path(A) | = E ' }. We use the inductively defined path probability function

Q" ie QP (so) =1 and

QF (rpas) = QF (1) - E(m) (1) - u(a, 5).

Note that an adversary F thus defines a unique probability measure Pz on the set of paths. Hence, the path
probability function enables us to assign a unique probability space (g, Fg, Pg) associated to an adversary F.
Therefore, the probability of 7 is Py (1) := Pr (Cy) = QF ().
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Trace distributions. A trace distribution is obtained from (the probability space of) an adversary by removing all
states. Thus, the probability assigned to a set of traces X is the probability of all paths whose trace is an element
of X.

Definition 7 The trace distribution D of an adversary F € Adv(A), denoted D = trd (F) is the probability space
(2p, Fp, Pp), where

1 Qp = Lo,
2. Fp is the smallest o -field containing the set { Cs C Qp | B € L”},
3. Pp is the unique probability measure on Fp such that Pp (X) = Pg (trace™ (X)) for X € Fp.

We write Trd (A) for the set of all trace distributions of A and Trd (A, k) for those halting after £ € N. Lastly we
write A Crp Bif Trd(A) C Trd(B) and A Ck,, Bif Trd (A, k) C Trd(B, k) for k € N.

The fact that (g, Fg, Pg) and (Qp, Fp, Pp) define probability spaces, follows from standard measure
theory arguments, cf. [Coh80].

Example 8 Consider (c) in Fig. 3 and an adversary F starting from the beginning state s, scheduling probability
1 to shuf?, 1 to the distribution consisting of songl! and song2! and % to both shuffle? transitions in s,. Then
choose the paths

7 =5 u; shuf? s; p, songl! s, pusy shuf? s, and n’ = sy p, shuf? s; wu, songl! s, w, shuf? s.

We see that o = trace(r) = trace(n’) and Pg(r) = QF(x) =  and Py(x) = QF(x) = 1, but
Pracs) (0) = Pg (trace™ (o)) = Pg ({7, 7'}) = %

3. Testing with probabilistic systems

Model-based testing entails the automatic test case generation, execution and evaluation based on a requirements
model. We provide two algorithms for automated test case generation: an offline or batch algorithm, and an online
or on-the-fly algorithm generating test cases during the execution. The first is used to generate batches of test
cases before their execution, whereas the latter tests during the runtime of the system and evaluates on-the-fly.

Our goal is to test probabilistic systems based on a requirements specification. Therefore, the test procedure
is split into two components; Functional testing and statistical hypothesis testing. The first assesses the func-
tional correctness of the system under test, while the latter focuses on determining whether probabilities were
implemented correctly.

The functional evaluation procedure is comparable to ones known from literature [NH84, TBS11]. Infor-
mally, we require all outputs produced by the implementation to be predictable by the requirements model. This
condition is met by the input/output conformance (ioco) framework [Tre96], which we utilize in out theory.

Moreover, we present the evaluation procedure for the separate statistical verdict, assessing if probabilities
were implemented correctly. Obviously, one test execution is not competent enough for that purpose and a large
sample must be collected. Statistical methods and frequency analysis are then utilized on the gathered sample to
give a verdict based on a chosen level of confidence.

3.1. Test generation and execution

Test cases. We formalize the notion of a (offline) test case over an action signature (L;, Lo). Formally, a test case
is a collection of traces that represent possible behaviour of a tester. These are summarized as a pIOTS in tree
structure. The action signature describes the potential interaction of the test case with the SUT. In each state of
a test, the tester can either provide some stimulus a? € L;, wait for a response b! € Lo of the system, or stop
the overall testing process. When a test is waiting for a system response, it has to take into account all potential
outputs including the situation that the system provides no response at all, modelled by &, cf. Definition 2. 3

3 Note that in more recent version of ioco theory [Tre08], test cases are input-enabled. This enables them to catch possible outputs of the
SUT before the test was able to supply the input. It can easily be incorporated into our framework.
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Each of these possibilities can be chosen with a certain probability, leading to probabilistic test cases. We
model this as a probabilistic choice between the internal actions Typs, Tyop and ty,. Note that, even in the non-
probabilistic case, the test cases are often generated probabilistically in practice [Gog00], but this is not supported
in theory. Thus, our definition fills a small gap here.

Since the continuation of a test depends on the history, offline test cases are formalized as trees. For technical
reasons, we swap the input and output label sets of a test case. This is to allow for synchronization/parallel
composition in the context of input-reactive and output-generative transitions. We refer to Fig. 4 as an example.

Definition 9 A fest or test case over an action signature (L, L) is a pIOTS of the form
t= (St, 5(1):, L > L s L} s At) = (57 50, LO\ {5} , Lr U {8} ’ {Tobm Tstim» Tsmp} s A)
such that

e tisinternally deterministic and does not contain an infinite path;
e tis acyclic and connected;

e For every state s € S, we either have

enabled(s) = @, or

enabled(s) = {tabxv Tstim Tst()p}a or

— enabled (s) = Lt U {8}, or
enabled (s) C L)\ {8},

A test suite T is a set of test cases. A test case (suite resp.) for a plIOTS S = (S, s, Ly, Lo, Ly, A), is a test case
(suite resp.) over its action signature (L;, Lo).

Test annotation. The next step is annotating the traces of a test with pass or fail verdicts determined by the
requirements specification. Thus, annotating a trace pins down the behaviour, which we deem as acceptable or
correct. This allows for automated evaluation of the functional behaviour. The classic ioco test case annotation
suffices in that regard [TBS11]; Informally, a trace of a test case is labelled as pass, if it is present in the system
specification and fail otherwise.

Definition 10 For a given test ¢ a test annotation is a function
a : cTraces (t) —> {pass, fail} .

A pair t = (¢, a) consisting of a test and a test annotation is called an annotated test. The set of all such , denoted

by T' = {(t;, a;);c7 } for some index set Z, is called an annotated test suite. If ¢ is a test case for a specification S
with signature (L, Lo), we define the test annotation as ; : cTraces (t) —> {pass, fail} by

_ [fail if 3o € Traces™ (S),a € Lo: 0 a!To Ag al & Traces™ (S)
5.t = pass otherwise.

Example 11 Figure 4 shows two simple derived tests for the specification of a shuffle music player in Fig. 3.

Note that the action signature is mirrored. This is to allow for synchronisation on shared actions according to

Definition 5. Outputs of the test case are considered inputs for the SUT and vice versa. Since tests are pIOTSs, if

a!is an output action in the specification, there can only be a?-labelled input actions in one distribution in a test

case due to the underlying input-reactive transitions.

The left side of Fig. 4 presents an annotated test case #;, that is a classic test case according to the ioco test
derivation algorithm [Tre96]. After the shuffle button is pressed, the test waits for a system response. Catching
either songl! or song?2! lets the test pass, while the absence of outputs yields the fail verdict.

The right side shows a probabilistic annotated test case . We apply stimuli, observe, or stop with proba-
bilities % each. This is denoted by the probabilistic arc joining the three elements Tyin, Tobs, Tsiop. Moreover, the
probabilistic choice over these three symbols illustrates how probabilities may help in steering the test process.

After stimulating, we apply stop! and shuf! with probability % each.
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(b)

Tobs Tstim

songl? shuf!

pass  fgi] Dass pass  fgil Pass pass  fg;l  Pass pass pass

Fig. 4. Two annotated test cases derived from the specification of the shuffle mp3 player in Fig. 3. a Annotated test 71, b annotated test %

Algorithm 2: On-the-fly test derivation for pioco.

Input: Specification plOTS S, an implementation Z and an upper
bound for the test length n € N.
Output: Verdict pass if Impl. was ioco conform in the first n steps

Algorithm 1: Batch test generation for pioco.

Input: Specification plOTS S and history o € traces(S).
Output: A test case ¢ for S.
1 Procedure batch(S, o)

2 Po,1-[true] — and fail if not.

3 return {7y, } 1 0:=¢

4 Po,2-[true] — 2 while [o| < n do:

5 result := {t,ps} 3 Do.1-[true] —

6 forall b! € Lo do: 4 observe next output b! (possibly §) of T
7 if ob! € traces(S) : 5 o :=ob!

8 result := result U { blo’ | o’ € batch(S,ab!)} 6 if o & traces(S):

9 else: 7 return fail

10 result := result U {b!} 8 Po,2 - [0a? € traces (S)] —

11 end 9 try: .

12 end 10 atomic

13 return result 1n stimulate I with a?

14 Po3[0a? € traces(S)] — 12 o:=oa?

15 result := {zyim) U { a2’ | o’ € batch(S, o a?)} 13 end ' ‘
16 forall b! € Lo do: 14 catch output b! occurs before a? could be applied
17 if o b! € traces(S): 15 0= ob!

18 result := result U { blo” | o’ € batch(S,ab!)} 16 if o ¢ traces(S):

1 else: 17 return fail

20 result := result U {b!} 18 end

21 end 19 end

2 end 20 return pass

23 return result

Algorithms. The recursive procedure batch in Algorithm 1 generates test cases, given a specification pIOTS S
and a history o, which is initially the empty history €. Each step a probabilistic choice is made to return an empty
test (line 2), to observe (line 4) or to stimulate (line 14), denoted with probabilities p, 1, ps2 OF ps 3 respectively.
Note that we require p; , + p2.» + p3» = 1. This corresponds to clause 3 in Definition 9. A generated test case is
concatenated with the result of batch. Thus, the procedure returns a pIOTS in tree shape. Recursively returning
the empty test case in line 3 terminates a branch.

Lines 413 describe the step of observing the system; If a particular output is foreseen in the specification, it is
added to the branch and the procedure batch is called again. If not, it is simply added to the branch. In the latter
case, the branch of the tree stops and is to be labelled fail. Lines 14-23 refer to the stimulation of the system.
An input action a? present in the specification S is chosen. The algorithm adds additional branches, in case the
system under test gives an output before stimulation takes place, i.e. lines 16-22.

Thus, Algorithm 1 continuously assembles a tree that terminates, depending on p; ..
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Algorithm 2 shows a sound way to generate and evaluate tests on-the-fly. It requires a specification S, an
implementation Z and a test length n € N as inputs. Initially, it starts with the empty history and concatenates
an action label after each step. It terminates after n steps were executed (line 2).

Observing the system under test for outputs is reflected in lines 3—7. In case output or quiescence are observed,
the algorithm checks whether this is allowed in the specification. If so, it proceeds with the next iteration and
returns the fail verdict otherwise. Lines 8—18 describe the stimulation process. The algorithm tries to apply an
input specified in the requirements. Should an output occur before this is possible, the algorithm evaluates the
output like before.

The algorithm returns a verdict of whether or not the implementation is ioco correct in the first n steps. If
erroneous output was detected, the verdict will be fail and pass otherwise. Note that the choice of observing and
stimulating depends on probabilities p, 1 and p, 2, where we require p, | + py2 = 1.

Theorem 12 All test cases generated by Algorithm 1 are test cases according to Definition 9. All test cases generated
by Algorithm 2 assign the correct verdict according to Definition 10.

3.2. Test evaluation

In our framework, we assess functional correctness by the test verdict as : of Definition 10 and probabilistic
correctness via further statistical analysis. While the first is straight forward, we elaborate on the latter in the
following.

Statistical verdict. In order to reason about probabilistic correctness, a single test execution is insufficient. Rather,
we collect a sample via multiple test runs. The sampling process consists of a push-button experiment in the sense
of [Mil80]. Assume a black-box trace machine is given with input buttons, an action window and a reset button
as illustrated in Fig. 5. An external observer records each individual execution before the reset button is pressed
and the machine starts again. After a sample of sufficient size was collected, we compare the collected frequencies
of traces to their expected frequencies according to the requirements specification. If the empiric observations
are close to the expectations, we accept the probabilistic behaviour of the implementation.

Sampling. We set the parameters for sample length £ € N, sample width m € N and a level of significance
a € (0, 1). That is, we choose the length of individual runs, how many runs should be observed and a limit for
the statistical error of first kind, i.e. the probability of rejecting a correct implementation.

Then, we check if the frequencies of the traces contained in this sample match the probabilities in the specifi-
cation via statistical hypothesis testing. However, statistical methods can only be directly applied for purely prob-
abilistic systems without non-determinism. Rather, we check if the observed trace frequencies can be explained,
if we resolve non-determinism in the specification according to some scheduler. In other words, we hypothesize
there is a scheduler that makes the occurrence of the sample likely.

Thus, during each run the black-box implementation 7 is governed by an unknown trace distribution D €
Trd (Z). In order for any statistical reasoning to work, we assume that D is the same in every run. Thus, the SUT
chooses a trace distribution D and D chooses a trace o to execute.

Frequencies and expectations. Our goal is to evaluate the deviation of a collected sample to the expected distri-
bution. The function assessing the frequencies of traces within a sample O = {01, ..., 0,,} is given as a mapping
freq : (L*)™ — Distr (L¥), such that

freq(o) (O_) — |{i:1 ..... mA(T:(T,}l.

m
Hence, the function gives the relative frequency of a trace within a sample of size m.

To calculate the expected distribution according to a specification, we need to resolve all non-deterministic
choices to get a purely probabilistic execution tree. Therefore, assume that a trace distribution D is given and
k and m are fixed. We treat each run of the black-box as a Bernoulli trial. Recall that a Bernoulli trial has two
outcomes: success with probability p and failure with probability 1 — p. For each trace o, we say that success
occurred at position i if 0 = o;, where o; is the i-th trace of the sample. Therefore, let X; ~ Ber (Pp (c)) be
Bernoulli distributed random variables for i = 1, ..., m. Let Z = % >, X; be the empiric mean with which
we observe o in a sample. Note that the expected probability under D then calculates as

EP(Z)=EP (LY X;)= L™ EP(X;) = Pp (o).
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ID Recorded Trace o #o

Reset o1 shuf? songl! songl! 15
g g
sampling o2 shuf? songl! song2! 24
LY
Input Action o3 shuf? song2! songl! 26
@ L. @ o4 shuf? song2! song2! 35
Fig. 5. Black box trace machine with input alphabet a¢?, ..., a,?, reset button and action window. Running the machine m times and

observing traces of length k yields a sample. The ID together with the trace and the respective number of occurrences are noted down

Hence, the expected probability for each trace o, is the probability that o has, if the specification is governed
by the trace distribution D.

Example 13 The right hand side of Fig. 5 shows a potential sample O that was collected from the shuffle music
player of Fig. 3. The sample consists of m = 100 traces of length & = 3. In total there are 4 different traces
with varying frequencies. For instance, the trace o1 = shuf? songl! song2! has a frequency of freq (0)(o1) = %.
Similarly, we calculate freq (O) (07) = %, freq(0)(o3) = % and freq (0) (o4) = %. Together, these frequencies
form the empiric sample distribution.

Conversely, assume there is an adversary, that schedules s/uf? with probability 1 and the distribution consisting
of song1! and song2! with probability 1 in Fig. 3a. This adversary then induces a trace distribution D on the pIOTS
of the shuffle-player. The expected probability of the observed traces under this trace distribution then calculates
asEP (o0;)=1-1-05-05=0.25fori=1,...,4.

The question we want to answer is, whether there exists a scheduler, such that the empiric sample distribution
is sufficiently similar to the expected distribution.

Acceptable outcomes. The intuitive idea is to compare the sample frequency function to the expected distribution.
If the observed frequencies do not deviate significantly from our expectations, we accept the sample. How much
deviation is allowed depends on an a priori chosen level of significance @ € (0, 1).

We accept a sample O if freq (O) lies within some distance r, of the expected distribution E”. Recall the
definition of a ball centred at z € X with radius r as B, (z) = {y € X | dist(x, y) < r}. All distributions deviating
at most by r, from the expected distribution are contained within the ball B, (E?), where dist (u, v) := sup,x |
u (o) — v (o) | and v and v are distributions. The set of all distributions together with the distance function thus
define a metric space, and distance and deviation can be assessed. To limit the error of accepting an erroneous
sample, we choose the smallest radius, such that the error of rejecting a correct sample is not greater than « by *

Iy 1= inf {ra | Pp (freq_l (BT(ED))> >1- (x} .

Definition 14 For k, m € N and a plOTS A the acceptable outcomes under D € Trd (A, k) of significance level
a € (0, 1) are given by the set

Obs(D, o, k, m) = {O € (Lk)m | dist (freq(O),ED) < 7},,} .
The set of observations of A is given by Obs (A, o, k, m) = UDeTrd(A!k) Obs(D, a, k, m).

The set of acceptable outcomes consists of all possible samples that we are willing to accept as close to our
expectations, if the trace distributions D is given. Note that, due to non-determinism, the latter is required to
make it possible to say what was expected in the first place. Since the choice of trace distributions depends on a
scheduler that was chosen according to an unknown distribution, we sum up all acceptable outcomes as the set
of observations.

The set of observations of a pIOTS A therefore has two properties, reflecting the error of false rejection
and false acceptance respectively. If a sample was generated by a truthful trace distribution of the requirements
specification, we correctly accept it with probability higher than 1 — «. Conversely, if a sample was generated by a
trace distribution not admitted by the system requirements, the chance of erroneously accepting it is smaller than

4 Note that fieq (O) is not a bijection, but used here for ease of notation.
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some f,,. Here « is the predefined level of significance and B,, is unknown but minimal by construction. Note
that B8,, — 0 as m — oo, thus the error of falsely accepting an observation decreases with increasing sample
width.

Goodness of fit. In order to state whether a given sample O is a truthful observation, we need to find a trace
distribution D € Trd(A), such that O € Obs(D, m, k, a). It guarantees that the error of rejecting a truthful
sample is at most «. While the set of observations is crucial for the soundness and completeness proofs of our
framework, they are computationally intractable to gauge for every D, since there are uncountably many.

To find the best fitting trace distribution in practice we resort to x >-hypothesis testing. The empirical x> score
is calculated as

X2 :zm: (n(o;) —m-EP (0,)) )
=1

where n (o) is the number with which o occurred in the sample. The score can be understood as the cumulative sum
of deviations from an expected value. Note that this entails a more general analysis of a sample than individual
confidence intervals for each trace. The empirical x? value is compared to critical values of given degrees of
freedom and levels of significance. These values can be calculated or universally looked up in a x? table.

Since expectations in our construction depend on a trace distribution to explain a possible sample, it is of
interest to find the best fitting one. This turns (1) into an optimisation or constraint solving problem, i.e.

" (n (o) = m-EP (03)
m[i)nz (n(azn.gD (O'i)(a ) ' (2)
i=1

The probability of a trace is given by a scheduler and the corresponding path probability function, cf. Definition 6.
Hence, by construction, we want to optimize the probabilities p used by a scheduler to resolve non-determinism.
This turns (2) into a minimisation of a rational function f (p) /¢ (p) with inequality constraints on the vector p.
As shown in [NDGO08], minimizing rational functions is NP-hard.

Optimization naturally finds the best fitting trace distribution. Hence, it gives an indication on the goodness
of fit, i.e. how close to a critical value the empirical x2 value is. Alternatively, instead of finding the best fitting
trace distribution one could turn (1) into a satisfaction or constraint solving problem in values of p. This answers
if values of p exist such that the empirical x? value lies below the critical threshold.

Example 15 Recall Example 13 and assume we want to find out, if the sample presented on the right in Fig. 5 is
an observation of the specification of the shuffle music player, cf. Fig. 3a. We already established

o, ifi=1 15, ifi=1

24 e if ¢
L as ifi=2 V)24 ifi=2
Jreq(ONe) =9 36 = ey 3 and m@D=056 i3
B ifi=4 35, ifi=4

(=}

If we fix a level of significance at & = 0.1, the critical x? value becomes x2,, = 6.25 for three degrees of freedom.
Note that we have three degrees of freedom, since the probability of the fourth trace is implicitly given, if we
know the rest.

Let E be an adversary, that schedules shuf? with probability p and the distribution consisting of songl! and
song2! with probability ¢ in Fig. 3a. We ignore the other choices the adversary has to make for the sake of this
example. We are trying to find values for p and ¢ such that the empiric x> value is smaller than x2.,, i.e.

37,0 €10, 1]: TR 4 Bibrstas | Geibastas y 0SS _ g5y
Using MATLABs [Gui98] function fsolve() for parameters p and ¢ we quickly find the best empiric value as
x% = 8.08 > 6.25. Hence, the minimal values for p and ¢ provide a x> minimum, which is still greater than the
critical value. Therefore, there is no scheduler of the specification pIOTS that makes O a likely sample and we
reject the potential implementation.

Contrary, assume Fig. 3b were the requirements specification, i.e. we require songl!/ to be chosen with only
40% and song2! with 60%. The satisfaction/optimisation problem for the same scheduler then becomes
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. (15-100-p-q-0.16)*> |, (24—100-p-¢-0.24)> |, (26—100-p-q-0.24)> , (35—100-p-q-0.36)
p, ¢ €0, 1] 50,0006~ © 100p-q028 T 100pq024 T 100p-qo36 < 0-25
because of different specified probabilities. In this scenario MATLABs [Gui98] £solve () gives the best empiric
x? value as x% = 0.257 < 6.25 = x2., for p = 1 and ¢ = 1. Hence, we found a scheduler that makes the sample
O most likely and accept the potential implementation.

Verdict functions. With this framework, the following decision process summarizes if an implementation fails
based on a functional and/or statistical verdict. An overall pass verdict is given to an implementation if and only
if it passes both verdicts.

Definition 16 Given a specification S, an annotated test ¢ for S, k&, m € N where £ is given by the trace length of ¢
and a level of significance « € (0, 1), we define the functional verdict as the function vy, : pIOTS — {pass, fail},
with

Ve (1) = pass if Vo € cTraces(Z||t) N cTraces(t) : a (o) = pass
une 350 = fail - otherwise,

the statistical verdict as the function vy, : pIOTS — {pass, fail}, with

vy (D) = {2958 13D € Trd(S. k) : Pp (Obs (Z11t, 0. k,m)) >1—«a
ST\ fail - otherwise,

and finally the overall verdict as the function V : pIOTS — {pass, fail}, with

_Jpass if e (T) = vy (T) = pass
VD= { fail  otherwise.

An implementation passes a test suite T, if it passes all tests ¢ € T.

The functional verdict is given based on the test case annotations, cf. Definition 10. The execution of a test
case on the system under test is denoted by their parallel composition. Note that all given verdicts are correct,
because the annotation is sound with respect to ioco [Tre08].

The statistical verdict is based on the sampling process. Therefore a test case has to be executed several times
to gather a sufficiently large sample. A pass verdict is given, if the observation is likely enough under the best
fitting trace distribution. If no such trace distribution exists, the observed behaviour cannot be explained by the
requirements specification and the fai/ verdict is given.

Lastly, only if an implementation passes both the functional and statistical test verdicts, it is given the overall
verdict pass.

4. Experimental validation

We show experimental results of our framework applied to three case studies known from the literature: (1) the
Knuth and Yao Dice program [KY76], (2) the binary exponential backoff protocol [JDL02] and (3) the FireWire
root contention protocol [SV99]. Our experimental set up can be seen in Fig. 6. We implemented these application
using Java 7 and connected them to the MBT tool JTorX [Bell10]. JTorX was provided with a specification for
each of the three case studies. It generated test cases of varying length for each of the applications and the
results were saved in log files. For each application we run JTorX from the command line to initialize the random
test generation algorithm with a new seed. In total we saved 10° log files for every application. None of the
executed tests ended in a fail verdict for functional behaviour, i.e. all implementations appear to be functionally
implemented correctly.

The statistical analysis was done using MATLAB [Gui98]. The function fsolve () was used for optimisation
purposes in the parameters p, which represent the choices that the scheduler made. The statistical verdicts were
calculated based on a level of significance @ = 0.1. Note that this gave the best fitting scheduler for each application
to indicate the goodness of fit. We created mutants that implemented probabilistic deviations from the original
protocols. All mutants were correctly given the statistical fai/ verdict and all supposed correct implementations
yielded in statistical pass verdict.
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_— JTorX sampling .
SUT —— | Log files
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Verdict: MATLAB

-
pass or fail | stat. verdict

Fig. 6. Experimental set up entailing the system under test, the MBT tool JTorX [Bel10] and MATLAB [Gui98]

roll? roll?

N =
N |—=

N[

(SIS

[ I

91

o s EE l% Djwmmmw
() (o) @@ (un) (rm) o) (o) o) ) (o) (o)

Fig. 7. Dice program based on Knuth and Yao [KY76]. The starting state enables a non-deterministic choice between a fair and an unfair
die. The unfair die uses an unfair coin to determine its outcomes, i.e. the coin has a probability of 0.9 to yield head

4.1. Dice programs by Knuth and Yao

The dice programs by Knuth and Yao [KY76] aim at simulating a 6-sided die with multiple fair coin tosses. The
uniform distribution on the numbers 1 to 6 is simulated by repeatedly evaluating the uniform distribution of the
numbers 1 and 2 until an output is given. An example specification for a fair coin is given in Fig. 1.

Set up. To incorporate a non-deterministic choice we implemented a program that chooses between a fair die and
an unfair (weighted) one. The unfair die uses an unfair coin to evaluate the outcome of the die roll. The probability
to observe head with the unfair coin was set to 0.9. A model of the choice dice program can be seen in Fig. 7. The
action roll? represents the non-deterministic choice of which die to roll. We implemented the application such
that it chooses either die according to the current system time in milliseconds and added pseudo-random noise
to avoid sampling over a simple probability distribution.

Results. We chose a level of significance o = 0.1 and gathered a sample of 10° traces of length 2. We stored
the logs for further statistical evaluation. The test process never ended due to erroneous functional behaviour.
Consequently we assume that the implementation is functionally correct.

Table 1 presents the statistical results of our simulation and the expected probabilities if (1) the
model KY1 of Fig. 1 is used as specification and (2) the model KY2 of Fig. 7 is used as specifi-
cation. Since there is no non-determinism in KY1, we expect ecach value to have a probability of %.
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Table 1. Observation of Knuth’s and Yao’s non-deterministic die implementation and their respective expected probabilities according to
specification KY1 (cf. Fig. 1) or KY2 (cf. Fig. 7)

Bl .| B B B  §

Observed value 29473 29928 10692 12352 8702 8853
Relative frequency 0.294 0.299 0.106 0.123 0.087 0.088

i 1 1 1 1 1 1
Exp probab%yty v § (1-p)-81 § (1=p)-81 6 (1=p)-9 § (1=p)-81 § (1=p)-9 § (1=p)-9
Exp. probability K'Y2 &+ & &+ T & &+ %0 &+ 50

The parameter p depends on the scheduler that resolves the non-deterministic choice on which die to roll in KY2

In contrast, there is a non-determinisic choice to be resolved in K'Y2. Hence, the expected value is given depending
on the parameter p, i.e. the probability with which the fair or unfair die are chosen respectively. Note that we left
out the roll? action in every trace of Table 1 for readability.

In order to assess if the implementation is correct with respect to a level of significance o = 0.1, we compare
the x? value for the given sample to the critical one given by xZ, = 9.24. The critical value can universally be
calculated or looked up in any x? distribution table. We use the critical value for 5 degrees of freedom, because
the outcome of the sixth trace is determined by the respective other five.

KY1 as specification. The calculated score approximately yields x 2y, = 31120 > 9.24 = x2,. The implementa-
tion is therefore rightfully rejected, because the observation did not match our expectations.

KY?2 as specification. The best fitting parameter p with MATLABs fsolve() yields p = 0.4981, i.e. the imple-
mentation chose the fair dic with a probability of 49.81%. Consequently, a quick calculation showed
Xiy = 5.1443 < 9.24 = x2,. Therefore, the implementation is assumed to be correct, because we found a
scheduler, that chooses the fair and unfair die such that the observation is likely with respect to « = 0.4.

Our results confirm our expectations: The implementation is rejected, if we require a fair die only, cf. Fig. 1.
However, it is accepted if we require a choice between the fair and the unfair die, cf. Fig. 7.

4.2. Binary Exponential Backoff algorithm in the IEEE 802.3.

The Binary Exponential Backoff protocol is a data transmission protocol between N hosts, trying to send infor-
mation via one bus [JDLO02]. If two hosts try to send at the same time, their messages collide and they pick
a waiting time before trying to send their information again. After ¢ collisions, the hosts randomly choose a
new waiting time of the set {0, ...2% — 1} until no further collisions take place. Note that information thus gets
delivered with probability one since the probability of infinitely many collisions is zero.

Set up. We implemented the protocol in Java 7 and gathered a sample of 10° traces of length 5 for two commu-
nicating hosts. Note that the protocol is only executed if a collision between the two hosts arises. Therefore, each
trace we collect starts with the collide! action. This is due to the fact that the two hosts initially try to send at the
same time, i.e. time unit 0. If a host successfully delivers its message it acknowledges this with the send! output
and resets its clock to 0 before trying to send again.

Our specification of this protocol does not contain non-determinism. Thus, calculations in this example were
not subject to optimization or constraint solving to find the best fitting scheduler/trace distribution.

Results. The gathered sample is displayed in Table 2. The values of n show how many times each trace occurred.
For comparison, the value m-E (o) gives the expected number according to our specification of the protocol. Here,
m is the total sample size and E (o) the expected probability. The interval [/ 1, 79.1] was included for illustration
purposes and represents the 90% confidence interval under the assumption that the traces are normally distributed.
It gives a rough estimate on how much values are allowed to deviate for the given level of confidence & = 0.1.
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Table 2. A sample of the binary exponential backoft protocol for two communicating hosts

~ (n=mE(0)

1D Trace o n ~ mkE (o) [lo.1, uo.1] N )
1 collide! send! collide! send! send! 18,656 18,750 [18592, 18907] 0.47
2 collide! send! collide! send! collide! 18,608 18,750 [18592, 18907] 1.08
3 collide! collide! send! collide! send! 16,473 16,408 [16258, 16557] 0.26
4 collide! collide! send! send! collide! 12,665 12,500 [12366, 12633] 2.18
5 collide! send! collide! collide! send! 11,096 10,938 [10811, 11064] 2.28
6 collide! collide! collide! send! send! 8231 8203 [8091, 8314] 0.10
7 collide! collide! send! send! send! 6108 6250 [6152, 6347] 3.23
8 collide! collide! collide! send! collide! 2813 2734 [2667, 2800] 2.28
9 collide! collide! send! collide! collide! 2291 2344 [2282, 2405] 1.20
10 collide! send! collide! collide! collide! 1538 1563 [1512,1613] 0.40
11 collide! collide! collide! collide! send! 1421 1465 [1416, 1513] 1.32
12 collide! collide! collide! collide! collide! 100 98 [85,110] 0.04
x*= 14.84
Verdict: Accept

We collected a total of m = 10° traces of length k = 5. Calculations yield x> = 14.84 < 17.28 = x2,, = x2,. hence we accept the implemen-
tation

However, we are interested in the multinomial deviation, i.e. less deviation of one trace allows higher deviation
for another trace. In order to assess the statistical correctness, we compare the critical value x2,, to the empiric x>
score. The first is given as x2,, = x3, = 17.28 for @ = 0.1 and 11 degrees of freedom. This value can universally
be calculated or looked up in a x? distribution table. The empirical value is given by the sum of the entries of the
last column of Table 2.

A quick calculation shows x2 = 14.84 < 17.28 = X& |- Consequently, we have no statistical evidence that hints
at wrongly implemented probabilities in the backoff protocol. In addition, the test process never ended due to a
functional fail verdict. Therefore, we assume that the implementation is correct.

4.3. IEEE 1394 FireWire Root Contention Protocol

The TEEE 1394 FireWire Root Contention Protocol [SV99] elects a leader between two contesting nodes via
coin flips: If head comes up, node i picks a waiting time fast, € [0.24 s, 0.26 v s], if tail comes up, it waits
slow; € [0.57 u s, 0.60 u s]. After the waiting time has elapsed, the node checks whether a message has arrived:
if so, the node declares itself leader. If not, the node sends out a message itself, asking the other node to be the
leader. Thus, the four possible outcomes of the coin flips are: {fast,, fast, } , {slowy, slow,}, { fast,, slow,} and

{slow,, fast, }.

The protocol contains inherent non-determinism [SV99] as it is not clear, which node flips its coin first.
Further, if different times were picked, e.g., fast; and slow,, the protocol always terminates. However, if equal
times were picked, it may either elect a leader, or retry depending on the resolution of the non-determinism.

Set up. We implemented the root contention protocol in Java 7 and created four probabilistic mutants of it. The
correct implementation C' utilizes fair coins to determine the waiting time before it sends a message. The mutants
My, M,, M3 and M, were subject to probabilistic deviations giving advantage to the second node via:

Mutant 1. P (fast;) = P (slow;) = 0.1,
Mutant 2. P (fast,) = P (slow,) = 0.4,
Mutant 3. P (fast;) = P (slow,) = 0.45 and
Mutant 4. P (fast,) = P (slow,) = 0.49.
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Table 3. A sample of length & = 5 and depth m = 10° of the FireWire root contention protocol. Calculations of x 2 are done after optimization
in the parameter p. It represents which node got to flip its coin first

1D Trace o ~ mEP (o) (p) Ne Ny, N, o N,

1 c1? slowy! ¢p? slows! retry! 6250 - p 3148 1113 3091 3055 3161

2 c1? slowy! ¢2? slow! done! 18,750 - p 9393 3361 9047 9242 9329

3 c1? slowy! ¢? fast,! done! 25,000 - p 12,531 40,507 18,163 15,129 12,982

4 c? fasty! ¢p? fasty! retry! 8333.p 4254 1467 4037 4066 4179

5 c? fast;! ¢p? fasty! done! 16,667 - p 8227 3048 7858 8474 8444

6 c1? fast;! ¢3? slow,! done! 25,000 - p 12,438 504 7918 10,128 11,867

7 c2? slows! ¢? slow! retry! 6250 - (1 —p) 3073 1137 2961 3256 3135

8 2?7 slows! ¢1? slow! done! 18,750 - (1 — p) 9231 3427 9069 9456 9368

9 2?7 slows! ¢? fast; ! done! 25,000 - (1 — p) 12,657 447 8055 9685 11,975

10 c? fasty! ¢)? fast)! retry! 8333.(1 —p) 4211 1466 4008 4131 4199

11 c? fasty! ¢;? fast;! done! 16,667 - (1 — p) 8335 2977 7969 8295 8312

12 c? fasty! ¢1? slow;! done! 25,000 - (1 — p) 12,502 40,546 17,824 15,083 13,049
Dopt X 0.499 0.498 0.502 0.500 0.499
x>~ 9.34 169300 8175 2185 99.22
Verdict Accept Reject Reject Reject Reject

Statistically, the mutants should declare node 1 the leader more frequently. This is due to the fact that node 2
sends a leadership request faster on average.

Results. Table 3 shows the 10° recorded traces of length 5, where ¢;? and ¢,? denote the coins of node 1 and
node 2 respectively. The expected value E” (o) depends on resolving one non-deterministic choice by varying p
(which coin was flipped first). Note that the second non-deterministic choice was not subject to optimization,
but immediately clear by the collected trace frequencies.

The empirical x? score was calculated depending on parameter p and compared to the critical value x2,,. The
latter is given as x2;, = xg, = 17.28 for & = 0.1 and 11 degrees of freedom. We used MATLABs fsolve() to
find the optimal value for p, such that the empirical value x2 is minimal. The resulting verdicts can be found in
the last row of Table 3. We can see that the only accepted implementation was C, because x2 < 17.28, whereas
X3, > 1728fori=1,....4.

5. Soundness and completeness

A key result of our paper is the correctness of our framework, formalized as soundness and completeness.
Soundness states that each test case is assigned the correct verdict. Completeness states that the framework is
powerful enough to discover each deviation from the specification. However, soundness and completeness require
aformal definition of what correctness entails. Hence, we formalize a probabilistic inputl/output conformance (pioco)
relation. The pioco-relation pins down mathematically which system is allowed to subsume the other.

5.1. Probabilistic input/output conformance C pioco
The classical ioco relation [Tre96] states that an implementation conforms to the requirements, if it never provides
any unspecified output or quiescence. Thus, the set of output actions after a trace of an implementation should
be contained in the set of output actions after the same trace of the specification. However, instead of checking
for all possible traces, the ioco-relation only checks traces that were specified in the requirements. As argued in
[Tre96] this is important for implementation freedom.
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(a) (b)

shuf? shuf?

(c)

shuf? shuf?

shuf?

songl!| songl! song2!  songi! song2!

Fig. 8. Yardstick examples of a simplified shuffle player illustrating pioco. The three leftmost models represent regular IOTSs, while the three
rightmost examples are pIOTSs. We refer to Example 19 for more details. a A1, b Ay, ¢ Az, d As4, e As, f Ag

Mathematically for two IOTSs Z and S, with Z input-enabled, we say Z C;,., S, if and only if
Vo € Traces™ (S) : outz (o) C outs (o).
To generalize ioco to plOTSs, we introduce two auxiliary concepts:

1. the prefix relation for trace distributions D =, D’ is the analogue of trace prefixes, i.e. D C;, D' iff Vo e L* :
Pp (o) = Pp (o), and

2. the output continuation trace distributions; these are the probabilistic counterpart of the set out, (A). For
a pIOTSs A and a trace distribution D of length %, the output continuation of D in A contains all trace
distributions, which are equal up to length k& and assign every trace of length & + 1 ending in input probability
0. We set

outcontp (A):={D' € Trd(A, k+1) | DEy, D' AVo € LFL; : Pp (0) =0} .

Intuitively, an implementation should conform to a specification, if the probability of every trace in Z specified
in S, can be matched. Just like in ioco, we neglect unspecified traces ending in input actions. However, if there
is unspecified output in the implementation, there is at least one adversary that schedules positive probability
to this continuation. Hence, the subset relation is violated and the implementation is not pioco conform to the
requirements.

Definition 17 Let 7 and S be two pIOTSs. Furthermore let Z be input-enabled, then we say Z o, S iff
VkeNVDeTrd(S, k) : outconty (D) C outconts (D).

The pioco relation conservatively extends the ioco relation, i.e. both relations coincide for IOTSs. Recall that a
pIOTS essentially is an input output transition system with transitions having distributions over states as target.
Conversely, an IOTS can be treated as plOTS where every distribution is the Dirac distribution, i.e. a distribution
with a unique target.

Theorem 18 Let A and BB be two IOTSs and A be input-enabled, then

A Eioco B = A Epioco B.

Example 19 In Fig. 8 we present six toy examples to illustrate the pioco relation. Note that the three leftmost
examples do not utilize a probabilistic transition other than the Dirac distribution over the target state. They can
therefore be interpreted as regular IOTSs. The three rightmost models utilize probabilistic transitions, e.g., there
is a probabilistic choice between songl! and song2! with probability 0.5 each in Ajy4.

The original ioco relation checks whether the output of an implementation, after a specified trace, was expected.
To illustrate, A is ioco conform to both 4, and Asz. The input shuf? yields the output songl!/, which is a subset of
what was specified by the latter two, i.e. {songl!, song2!}. Note that it is irrelevant if the non-deterministic choice
is over the shuf? actions or the output actions.

The pioco relation combines probabilistic and non-deterministic choices. A4 and As are not pioco for using
different probabilities attached to the output actions. However, it is A4 C oo Asz. The requirements specification
indicates a choice over songl! and song2!. If a system implements this choice with a 0.5 choice over the action,
there is a scheduler in the specification that assigns exactly those probabilities to the actions songl! and song2!.
Note that the opposite direction does not hold, because any implementation would need to assign probabilities
0.5 to each action, while the non-determinism indicates a free choice of probabilities.

For a complete list of the conformances in Fig. 8 we refer to Table 4.
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Table 4. [llustration of the pioco relation with respect to Fig 8

plOTS Ay Ay As Ay As Ag
-Al Epioca Epioco Epioco - - -

-A2 - Epioz?o Epioca - - -

A3 - c pioco c pioco - - -

-A4 - Epiom Epia(‘o Epioca - -

-AS - Epiaz?o Epiura - Epioco -

AG _ c pioco Epi()m _ - c pioco

Note that pioco coincides with ioco for IOTSs, i.e. Figs. 8a—c

A tester must be able to apply every input at any given state of the SUT. This is reflected in classic ioco-theory
by always assuming the implementation to be input enabled, cf. [Tre96]. If the specification is input-enabled too,
then ioco coincides with trace inclusion. We show that pioco coincides with trace distribution inclusion in the
plOTS case. Moreover, our results show that pioco is transitive, just like ioco.

Theorem 20 Let A, B and C be pIOTSs and let A and B be input-enabled, then

o AL, Bifand onlyif A Crp B.
o A Epioco B and B Epioco C then A Epioco C.

5.2. Soundness and completeness

Talking about soundness and completeness when referring to probabilistic systems is not a trivial topic, since one
of the main difficulties of statistical analysis is the possibility of false rejection or false acceptance. This means
that the application of null hypothesis testing inherently includes the possibilities to erroneously reject a true
hypothesis or to falsely accept an invalid one by chance.

The former is of interest when we refer to soundness, i.e. what is the probability that we erroneously assign fail
to a correct implementation. The latter is important when we talk about completeness, i.e. what is the probability
that we assign pass to an erroneous implementation. Thus, a test suite can only fulfil these properties with a
guaranteed (high) probability, as reflected in the verdicts we assign, cf. Definition 16.

Definition 21 Let S be a specification over an action signature (L;, Lo), a € (0, 1) be the level of significance and
T an annotated test suite for S. Then

e T is sound for S with respect to C,joc, if for all input-enabled implementations 7 € p/OTS and sufficiently
large m € N it holds that

7 Epioco S = V (Z) = pass.

o Tis complete for S with respect to ., if for all input-enabled implementations Z € p/OT'S and sufficiently
large m € N it holds that

T Zpico S = V(T) = fail.

Soundness for a given @ € (0, 1) expresses that we have a 1 — « chance that a correct system will pass the
annotated suite for sufficiently large sample width m. This relates to false rejection of a correct hypothesis or
correct implementation respectively.

Theorem 22 (Soundness) Each annotated test for a plOTS S is sound for every level of significance a € (0, 1) with
respect to pioco.

Completeness of a test suite is inherently a theoretic result. Since we allow loops, we require a test suite of
infinite size. Moreover, there is still the chance of falsely accepting an erroneous implementation. However, this
is bound from above by construction, and will decrease for bigger sample sizes, cf. Definition 14.

Theorem 23 (Completeness) The set of all annotated test cases for a specification S is complete for every level of
significance a € (0, 1) with respect to pioco.
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6. Divergence and well-formed systems

Quiescence is a crucial concept in modelling system behaviour, since it explicitly represents the fact that no output
is produced. If an implementation does not provide any output a test evaluation algorithm must decide whether or
not this behaviour is acceptable. To illustrate, imagine a coffee machine does not provide coffee after money was
inserted. On the contrary, it should not supply anything if no one interacts with it. In Definition 2 we explicitly
include the special label § to represent quiescence in a model.

Additionally, we allow internal actions in pIOTSs. This set of action labels is used in the literature to either
model the invisible progress of system components or to hide actions which are not important for the current
analysis. However, with invisible progress comes the possibility of divergent systems. A divergent system entails
the occurrence of infinitely many internal actions, for instance represented by a self-loop labelled with 7 in a state.
Since this action is assumed to be internal and therefore invisible, an external observer might assume the system
to be quiescent, even though it makes progress.

Stokkink et al. [STS13] were first in treating divergent and quiescent states as first class citizens of a model and
introduced properties that a system must satisfy in order to be called well-formed. Under certain circumstances a
well-formed system treats divergent states as quiescent, thus enabling a clean theoretical framework for model-
based testing with quiescence.

We adapt their four rules to account for divergent systems in our probabilistic test theory. This allows to
model systems more naturally, since convergence is not required.

Divergence. We define the language theoretic concepts needed to define divergence of a system. Let 7 be an
infinite path of the form

T =S8 Mo A S1 Ky a1 S2 Uy G2 ...,

then r is called state finite, if it only traverses finitely many states, i.e. if the set {s;};cy C S is finite. We call r fair,
if for any action a € Lo U Ly with infinitely many s; in 7 for which a € enabled (s;) there are infinitely many
a in 7. This means if a (subcomponent of a) system infinitely often wants to execute some of its actions, it will
indeed infinitely often execute them. Note that we call finite paths fair by default. Lastly, an infinite fair path is
called divergent, if all its actions are internal.

Definition 24 Let A = (S5, s, L;, Lo, Ly, A) be a pIJOTS. A state s € S is called quiescent, if it does not enable
output or internal actions. The set of all quiescent states of A is denoted ¢ (5).

A state s € S is called divergent, if there is a state finite and fair, divergent path on which s occurs infinitely
often. The set of all divergent states of A is denoted d (A).

Example 25 Recall Knuth’s and Yao’s dice program in Fig. 1. The state fyy is a divergent state, because there
exists a state finite, fair divergent path of the form 7 = fyy ©, © fu wy T fuu.... States fuyy, funr, - - -, frer
are quiescent states, because they do not enable any more internal or output actions.

Divergent pathsin a plOTS may yield quiescent observations in states that are not necessarily quiescent. Hence,
the §-action might be observed in non-quiescent states. This is due to an external observer not being able to differ
between functional quiescence or infinitely many internal (invisible) actions. Stokkink et al. [STS13] phrase four
rules for well-formed systems to formalise the semantics of quiescence incorporating divergent behaviour. We
adapt them for pIOTSs.

Definition 26 A plOTS A = (S, sy, L1, Lo, Ly, A)is called well-formed, if it satisfies the following four rules for
all s, s’,s" €S-

Rule R1 Quiescence should be observable. We require quiescent or divergent states to have an outgoing § transi-
tion, i.e.

If s e q(A) ors e d(A), then s e enabled(s).

Rule R2 Quiescence ends in a quiescent state. There is no notion of timing in pIOTS, hence a quiescent observation
is not associated with a particular duration. The execution of a §-transition represents the indefinite absence
of outputs. Enabling outputs after a quiescence observation is thus undesired. That is

8
If s &5 ¢, for some ju, then s’ e q(A).
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Rule R3 No new behaviour after a quiescence observation. Since there is no notion of timing involved in pIOTS,
every behaviour that is possible after an observation of quiescence must also be present beforehand. That is

If s 2% s', for some w, then Trd(s") C Trd(s).

Rule R4 Continued quiescence preserves behaviour. Since quiescence represents the absence of output for an
indefinite amount of time and pIOTS have no notion of timing, there should be no difference in observing
quiescence once or multiple times. That is

s 2% ¢ and s 25 ¢ for some w, vimplies Trd(s") = Trd (s")
Here, Trd(s) is the set of trace distributions, if s were the starting state of the pIOTS.

These four rules ensure that divergent behaviour is correctly accounted for in pIOTS with respect to an
external observer. Despite the fact that we impose additional rules for the design of well-formed pIOTSs, the
model becomes more intuitive. The authors of [STS13] provide an algorithm that turns any IOTS into a well-
formed one. The following theorem guarantees the existence of such a well-formed pIOTS using their approach.

Theorem 27 Given a pIOTS A with § ¢ Lo such that all divergent paths are state-finite, there exists a unique,
well-formed pIOTS & (A) corresponding to A.

To allow for a component based design approach of models, we show that the composition of well-formed
system is again well-formed. As such, a bottom-up design process that incorporates quiescent and divergent
behaviour is possible in our framework.

Theorem 28 The parallel composition of input enabled, compatible and well-formed pIOTSs is well-formed.

7. Conclusions

We defined a sound and complete framework to test probabilistic systems. At the core of our work is the con-
formance relation in the ioco tradition baptised pioco. We presented how to automatically derive, execute and
evaluate probabilistic test cases from a requirements model. The evaluation process handles functional and statis-
tical behaviour. While the first can be assessed by means of ioco theory, we utilize frequency statistics in the latter.
Our soundness and completeness results show that the correct verdict can be assigned up to arbitrary precision
by means of a level of significance for a sufficiently large sample.

We illustrated the application of our framework by means of three case studies from the literature: Knuth’s
and Yao’s dice application, the binary exponential backoff protocol and the FireWire leadership protocol. The
test evaluation process found no functional misbehaviour, indicating that the implemented functions were correct.
Additionally, all correct implementations were given the statistical pass verdict, while all mutants were discovered.

Future work focuses on the practical aspects of our theory by providing tool support and larger case studies.
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Appendix
Below, we present the proofs of our theorems numbered according to the occurrence in the paper.
Proofs.

Theorem 12. All test cases generated by Algorithm 1 are test cases according to Definition 9. All test cases generated
by Algorithm 2 assign the correct verdict according to Definition 10.

Proof We refer to [TBS11] the proof of this theorem. The proof carries over directly, since our definitions of tests
coincide, up to the probabilistic choices instead of non-deterministic ones. Moreover, the algorithms use the ioco
test derivation, which is sound with respect to ioco. Since test cases are annotated correctly with respect to ioco
and pioco uses the same annotation function, Algorithm 2 assigns the correct functional verdict. o

Theorem 18. Let A and B be two I0TSs and A be input enabled, then

A Eioco B A Epi()w B.

Proof Let us first assume that the set of internal actions of both systems is empty.
Let A Cpipco B and o € traces(B). Our goal is to show that out 4 (¢') C outp (o).

Assume that there is b! € out4 (o). We want to show that b! € outp (o). For this, let |o| = k € N and
H e trd(B, k) such that Py (o) = 1, which is possible because o € traces (B) and both A and B are IOTSs (i.c.
non-probabilistic). The same argument gives us outcont 4 (H) # @, because o - b! € traces (A).

Consequently there is at least one trace distribution H’' € outcont o (H) such that Py (o - b!) > 0. Let
7 € trace™! (o) N Path(B). We know H' € outconty (H), because A Cpioco B by assumption and thus there must
be at least one E’ € adv (B, k + 1) such that trd (E’) = H' and Q¥ (& - Dirac - b!s’) > 0 for some s’ € Sz. Hence,
b! € enabled (last (;r)) and therefore b! € outp (o).
Let A G0 B, k € Nand H* € trd (B, k). Assume that H € outcont 4 (H*), then we want to show that we
have H € outcontg (H™).

Therefore let £ € Adv(A, k+ 1) such that Trd(F) = H. If we can find £ € Adv(B, k + 1) such that
Trd(E) = Trd (E'), we are done. We will do this constructively in three steps.

1. By construction of H* we know that there must be E’ € Adv (B, k + 1), such that for all ¢ € L* we have
PTrd(E’) (0) = Py (U) = PTrd(E) (O‘) Thus H* Ty, lVd(E/).

2. We did not specify the behaviour of E’ for path of length & + 1. Therefore we choose E’ such that for all traces
o € L¥ and a? € L; we have Priaey (0a?) =0 = Pryg) (0 a?). Note that this is possible because both A and
B are IOTSs, i.e. non-probabilistic.

3. The last property to show is that 7rd (F) = Trd (E’). Therefore let us now set the behaviour of E’ for traces
ending in outputs. Let 0 € traces(A), then assume a! € out4 (o) and because A C;,, B, we know that
al € outp (o).
Now let p := Pryg) (0) = Pre (0) and ¢ := Pryg) (0 a!). By equality of the trace distributions for traces
up to length k we know that ¢ < p < 1 and therefore thereis« € [0, 1]s.t. ¢ = pa. Let Path(B)Ntrace™ (o) =

{m1, ..., .} for n € N. Without loss of generality, we choose £’ such that
E’ (r;) (Dirac) = {0 else

In this way we have constructed E' € Adv(B, k + 1), such that for all o € L**! we have Pry( gy (o) =

Prag) (o) and thus Trd (E) = Trd (E'), which finally yields H € outcontg (H*).

The above proof runs completely analogously if the set of internal actions of both systems is not empty. O
Lemma A. Let A and B be two input-enabled pIOTSs, then

A ErmpB= A Epioco B.

Proof Let A C%, B then for every H € Trd(A, k) we also have H € Trd(B3, k). Pick m € N, let H* € Trd (B, m)
and take H € outcont 4 (H*) C Trd(A, m + 1). We want to show that H € outcontg (H").
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By assumption we know that H € #rd (I3, m + 1). In particular that means there must be at least one adversary
E € adv(BB, m + 1) such that Trd(E) = H. However, for this adversary, we know that H* C,, Trd(F) and for
allo € L™ Ly we have Pryg) (0) = 0 and by trace distribution inclusion 7rd(E) = H. Thus H € outcont (H™)
and therefore A C,;pc0 B. O

Theorem 20. Let A, B and C be pIOTSs and let A and B be input enabled, then

() A Cpipeo B if and only if AT rp B.
(i) A Cpiveo B and B &g, C then A E,jpeo C.

Proof Assume A Cpioco B.Letm € Nand D e Trd (A, m). We need to show that D € Trd (B, m). The
proofis by induction. Let m = 0, then obviously D € Trd (B, 0). Now assume Trd (A, n) C Trd (53, n) was shown
for some n. We show that it holds for m = n + 1. First, choose D’ C,, D and note that D’ € Trd (3, n). Then, by
assumption we know outcont 4 (D’) C outcontg (D’). In particular, we know there exists D" € Trd (B, m), such
that
VoelL" - Lo:Pp(o)= Ppr (o). 3)
Since both 4 and B are input enabled, we also know there exists a trace distribution, say D" € Trd (B, m) for
which (3) holds and additionally
VUEL”-L]IPD(O'):PDH(G). (4)
With both (3) and (4), we know that D € Trd(B, m). This completes the induction and consequently A Cp 5.
See Lemma A for the proof. In particular we do not even require input enabledness for 5 in this case.
Let A Epipc0 B and B Cpigeo C and A and B be input-enabled. As shown earlier we know that A Crp B. So let
ke Nand H* € Trd(A, k). Consequently also H* € Trd (B, k) and thus the following embedding holds
outcont o (H*) C outconts (H*) C outconte (H™).
Consequently A o, C. O
Lemma B. Let A and B be two pIOTSs, o € (0, 1) and k € N. Then

Trd(A, k) C Trd(B, k) &< VYm e N: Obs(A,a, k, m) C Obs(B, o, k, m).

Proof The proof can be found in [CSV07] and is not further discussed here. |

Theorem 22. (Soundness) Each annotated test for an input enabled pIOTS S is sound for every level of significance
a € (0, 1) with respect to pioco.

Proof LetZ beaplOTS and 7 be a test for S. Further assume that 7 © pioco S- Then we want to show V (Z) = pass.
By Definition 16 we have V (Z) = pass if and only if vje (Z) = vy (Z) = pass.

1. In order for v (Z) = pass, we need to show that a5 (o) = pass for all o € exec; (I) = ctraces (I || ) N

ctraces (1). Let o € exec; (I). Furthermore let o € traces(S) and a! € Lo such that oya! E o. If no such o}
and a! exist, we get a3, * (o) = pass, because then o is a trace consisting solely of inputs. Our goal is to show
ora! € traces(S). Let |o1| = [ be the length of o). Obviously o7 € traces (Z) N traces (S) and together with
assumption Z ;000 S, we choose H € Trd (S, ) for which outcont; (H) # #. Without loss of generality, we
choose D’ € outconty (H) such that Pp (o7a!) > 0. Finally, D’ € outconts (H), and thus oya! € traces(S).

pioco

This gives ag, (o) = pass and ultimately vy, (Z) = pass.
2. In order for vy, (Z) = pass we need to show that

3D € Trd(S. k) : Pp (Obs (Z||t, 0. k,m)) > 1 —a.

By assumption 7 £, S and with Theorem 20 also Z Cpp S. Since parallel composing two pIOTSs
does not add transitions or change existing probabilities, we conclude Trd (I II/t\) C Trd(Z). Consequently
Trd (T ||'t) C Trd(S). Lemma B now shows for all m e N, that

Obs (I, k, m) C Obs(S, o, k, m). 5)
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By construction of the set of observations, cf. Definition 14 there is a trace distribution D € Trd (I ||?), such
that

Pp (Obs (ZIIt, o, k,m)) > 1 —a.
We utilize (5) to see

Pp (0Obs(S,a, k, m)) >1—a.
Finally, this yields vy, (Z) = pass.

The functional part and the statistical part give V (Z) = pass. This means that an annotated test for S is sound
with respect to Cpjoco- O

Theorem 23. (Completeness) The set of all annotated test cases for a specification S is complete for every level of
significance a € (0, 1) wrt pioco.

Proof In order to show the completeness of test suite T consisting of all tests, assume that 7 Z ., S. Our goal is
to show that v (Z) = fail or s (S) = fail. Since I Zjoco S, there exists k € N such that thereis D € Trd (S, k)
for which

outconty (D) € outconts (D).

There are two cases to consider: (1) there is at least one trace of length k£ + 1 ending in output, which is not in
traces (S) or (2) all traces of length £ + 1 ending in output are in fraces (S). These cases refer to the functional
and probabilistic verdicts respectively. m]

1. Assume there is at least one trace o of length k£ + 1 ending in output that is in fraces(Z) but not in
traces (S). We need to show v, (Z) = fail, or to be more specific, that as ; (o) = fail. Since 0 € L¥ Lo
and o ¢ traces(S), we can conclude that therE are o) € traces(S) and a! € Lo such that oja! C 0.
Consequently, there is an annotated test # € T with o € traces(t). With o € traces(I) N ctraces (t)
we conclude o € exec; (Z). Moreover o] € traces(S) and oja! E o. Consequently as ; (o) = fail. This
gives Ve (Z) = fail.

2. Assume all traces of length £ + 1 ending in output are also in traces (S). Then obviously v (Z) = pass.
We need to show vy, (Z) = fail, which requires

VD e Trd(S, k+1): Pp (Obs (Z||t, e, k,m)) <1—a
forsome? e T and k, m e N. By assumption, we know that
3DeTrd(Z, k+1)V D'eTrd(S, k+1)Joetraces () N traces(S) N (LF - Lo) : Pp (o) # Ppi (o).
We conclude Trd(Z, k + 1) € Trd (S, k + 1). Moreover, the set of trace distributions is closed [CSV07],
therefore there is ¢ > 0, such that:
VD' eTrd(S,k+1): min ||D-D"||>e. (6)
DeTrd(T, k+1)
By assumption, the probability of at least one o cannot be matched. Hence, there must be a test ¢ € T
containing o. Since Trd (7 II?) C Trd(Z) we estimate (6) further:

min |D—-D'|l> min ||D—-D|>e.
DeTrd(Z|[t,k+1) DeTrd(Z,k+1)

By construction of the set of observations, cf. Definition 14, we know that for all D € Trd (I 7, k) we
have Pp (Obs(D’, o, k, m)) < B(«, &, m), where D’ € Trd(S, k). Now iff & < 1 — B(«, &, m), we get
forall k, m e N:

pomax Pp (Obs (T11t,a, k,m)) < Bla,e,m) <1—a.

However, with @ € (0, 1)) and B («, &, m) 2220 (note that ¢ and « are fixed), this will always hold for

m sufficiently large. Thus, for m’ > m, we have vy, (Z) = fail. O
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Theorem 27. Given a pIOTS A with § ¢ Lo such that all divergent paths are state-finite, there exists a unique,
well-formed pIOTS § (A) corresponding to A.

Proof Let A= (S, sy, L1, Lo, Ly, A)beaplOTS with § ¢ Lo such that all divergent paths in A are state finite.
We define the system & (A) = (S5, so, L1, Lo U {8}, Ly, As) as the system where

Sy =S U {qos, astate | s € d(A)}

with gos, being a newly introduced quiescence observation state of divergent states and

As = A U{(s, 1) € S x Distr ({8} x S) | 18, 5) = 1 A s € q(A)}

U{(s, ) € S x Distr ({8} x S5) | 1 (8, g0s,) =1 A s e d(A)}
U {(qos,. n) € S5 x Distr ({8} x S5) | (8, qos,) =1 A s € d(A)}

U {(qoss,u) e SeDistr(Ly xS)|sed(A)As L s/}.

We show that § (A) is a well-formed A according to Definition 26. In the following, let 7rd (s), be the set of trace
distributions of § (A) had the starting state s € S;. a

1. To prove that § (A) satisfies Rule R1, we must show that for all states s € S;s:
If s e q(8(A)) ors e d(8(A)), then§ € enabled (s).

Since s € Ss N q(A) or s € S5 N d(A) following from the definition of § (A) one of the three cases is
possible: (a) s € SN q(A)(b) s € SNd(A) or(c) s € S5\5 and s € ¢ (A). Note that s € S5\ and
s € d (A) is not possible by construction in § (A).

(a) Assume s € S N q(8(As)) holds. By definition of § (A) no existing output or internal actions
were removed or hidden. Hence, s € ¢ (A). By definition of § (A4) we then have (s, u) € As with
wu (8, s) = 1. Therefore 8 € enabled (s).

(b) Assume s € SNd (A). Thatis to say s occurs infinitely often on a divergent path 7 in § (A). Since
8 (A) did not remove any actions or introduced additional internal actions, the divergent path 7
must also be present in A. Therefore s € d (A). By definition of § (A) we must therefore have
(s, u) € As such that (8, gos,) = 1, where gos, is a newly introduced quiescence observation
state in the set S5. Hence, § € enabled (s).

(c) Assume s € S5\S and s € ¢ (8§ (A)). That means s is a newly introduced quiescence observation
state. By construction of § (A) we have § € enabled (s).

2. To prove that § (A) satisfies Rule R2, we must show that for all states s, s’ € S;:

If s X% ' for some wu, then 8" € ¢ (8 (A)).

Again, there are three cases: (a) s, ' € S(b)s € Sand s’ € S5\S or(c) s, s’ € S5\ S. Note that s € S;\.S
and s’ € § is not possible by construction in § (A).

(a) Assume s, s’ € S and s M—’8>5( 4) §'. By definition of § (A) we have s = s’. Hence s’ is a quiescent
state in 8 (A).

(b) Assume s € S and s’ € S5\ S. By definition of § (A) we know that s’ is a quiescent observation
state and therefore quiescent by construction.

(c) Assume s, s’ € S5\S. From definition of § (A) it follows that s’ is a quiescent observation state
and s = s’. Therefore s’ is quiescent.

3. To prove that § (A) satisfies Rule R3 we must show that for all states s, s’ € S:
If s X% & for some W, then Trd (s') C Trd(s).

Since s, s’ € S5 and s 5 o for some wu it follows from definition 8§ (A) that the three possible cases
are possible: (a) s, s’ € S (b) s € S and s’ € S5\ S or (c) s, s’ € S;5\S. Note that it is not possible that

P
se Ss\Sand s’ € S and s 25 ¢ for some “.
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(a) Assume s, s’ € S. By definition of § (A) we know that s = s'. Therefore Trd(s') C Trd(s).

(b) Assume s € S and s’ € S5\S with s % o for some . By construction of § (A) we know that
s € d(A) and s’ € ¢q(8(A)), where the latter is a newly added quiescent state. Now assume
D € Trd(s"). Then we have two cases to consider: D € Trd(s’,0) or D € Trd(s', k) with k > 1.
In the first case, we trivially have D € Trd(s) by definition. In the latter case, consider that all
traces o originating from s" are of the form 0 = a - ¢/, where ¢« = § or a € Lj N enabled(s).
Hence, by construction of § (A) there exists an adversary in s whose trace distribution yields
the same probabilities as the underlying adversary of D. Therefore D € Trd(s) and we find
Trd(s") C Trd(s).

(c) Assume that s, s € S5. By construction of § (A), we know that s and s’ are quiescent observation
states and s = s’. Hence trivially Trd (s") C Trd(s).

4. To prove that § (A) satisfies Rule R4, we must show that for all states s, s’, s” € Ss:
Ifs 5 ¢ and ¢ 25 ¢ for some w, v, then Trd (s') = Trd (s”) .

. 8 8 . .\
Since s, s, s” € Sy and s =5 s’ aswell as s’ —> s” for some W, v, it follows from the definition of § (A)
that three cases are possible: (a) s, s’,s” € S (b) s € Sand ¢/, s” € S5\S and (¢) s, s/, s” € S5\ S. Note
other cases are not possible by construction.

(a) Assume s, s’, s” € Sand s L as well as ' 25 s for some wu, v. Then, by definition of § (A)
we know that s = s’ = s”. Therefore obviously 7Trd (s") = Trd(s").

(b) Assume s € S and s', s” € S5\ with s ﬁ—(s) s as well as s 25 s for some wu, v. Then by
definition of § (A) we know that s’ is a quiescent observation state. By construction we know that
s’ = s”. Hence, clearly Trd(s') = Trd(s").

(c) Assume s, s, s” € S5\ S. From definition of § (A) we know that s is a quiescent observation state.
Therefore s = s’ = s” and clearly Trd(s") = Trd (s").

This shows that § (A) is a well-formed system for A. O
Theorem 28. The parallel composition of input enabled, compatible and well-formed pIOTSs is well-formed.

Proof” According to Definition 5 we have to prove that A || 55 is well-formed, given two input enabled, well-formed
and compatible pIOTSs of the form A = (S, s, L;, Lo, Ly, A)and B = (S’, s0: Ly L, Ly, A/). That is to say,
we need to prove rules R1 to R4 hold for A|| B.

1. In order to prove A || B satisfies Rule R1, we must show for every state (s, t) € 5”:
If (s,t) e q(A||B) or (s,t) € d(A||B), then § € enabled((s, t)).

Let (s, t) € S”. We look at the cases of (s,t) € ¢(A||B) and (s, t) € d(Al|B) separately. First assume
(s, t) € ¢(A]l B). This means there is no a € L, U L, such that a € enabled((s, t)). Since A and B are both
input enabled, it follows from Definition 5 that there is no output or internal action enabled in s in the system
A and no output or internal action enabled in ¢ in the system B. Hence, s € ¢(A) and ¢t € ¢ (). Because
both A and B are well-formed, we know that § € enabled(s) and § € enabled (t). By Definition 5 we conclude
that § € enabled((s, t)) in A||B. Next assume (s, t) € d (A|| B). That means there is an infinite, state-finite,
fair divergent path 7 on which (s, ¢) occurs infinitely often. By Definition 5 each step of path x is a transition
either by A or B, since synchronisation on internal actions is not allowed. We conclude there are three cases
to consider:

(a) Both A and B carry out an infinite number of internal transitions on path 7

(b) A carries out a finite number of internal transitions and B carries out an infinite amount of internal
transitions or

(c) A carries out a finite number of internal transitions and 4 carries out an infinite amount of internal
transitions.

For each case, we will show that § € enabled (s) and § € enabled (t) from which § € enabled ((s, t)) follows.
O
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e Assume both A and B carry out an infinite amount of internal actions on path 7. Without loss
of generality assume that A is responsible for all even transitions, and B is responsible for all
odd transitions, 1.e.

T=(s1,0) uy b (s1,0) py a1 (82, 12) 3 ba (82, 83)...,

where s; € S, t;, € S, a; € Ly and b; € L'y and some pu, fori =1, 2, .. .. Since (s, ¢) is a state
that occurs infinitely often on 7, there are infinitely many (si, tj) = (s, t). By Definition 5 and
construction of 7, there exist two paths in .4 and B respectively, such that

TA =801 01 2024 53...
7'[3:25] V1 b] tz\)z bz ﬁ3...

Clearly w4 and mp are divergent, since a; € Ly and b; € L'y for i = 1,2, .. .. Since r is a fair
path with respect to A || B it immediately follows that 7 4 is a fair path with respect to A and 73
is a fair path with respect to . Since there are infinitely many (Si, tj) = (s, t) we immediately
know that there are infinitely many s; = s on w4 and infinitely many ¢; = ¢ on wz. However,
this means that s € d (A) and likewise ¢ € d (13). Since both A and B are well-formed, we know
that § € enabled(s) and § € enabled (t). Therefore § € enabled ((s, t)).

e Assume A carries out finitely many internal actions on 7 and B carries out infinitely many
internal actions on 7. Since 7 is infinite and the contribution of A to it is limited, there always
exist 7" and 7”7 such that all internal actions carried out by 4 are on 7’ and all internal actions
carried out by B are on ”. Since .4 and B cannot synchronize on internal actions, it follows
that 7" is of the form

" = (s1, t1) g b1 (81, t2) o ba (s1, B3) g b3 .. -,

where 51 € S, ¢, € S"and b € L’y for some u, for ¢ = 1,2, .. .. Since x is divergent, obviously
7" is also divergent. Moreover if (s, t) occur infinitely often on 7 then they also occur infinitely
often on 7”. We must show that § € enabled(s) and § € enabled(t). We do so by showing
s € ¢(A) and t € d(B). Since both are well-formed systems, the desired result immediately
follows from R1. First we show that s € ¢ (A). Since (s, t) occurs infinitely often on 7 it follows
that without loss of generality sy = s, i.e. the finite progress of .4 can be neglected. Since 7
is a fair path, it follows that 7" is a fair path. Assume enabled(s) N (Lo U Ly) # @. That
would mean that 7" does not execute some of its possible actions even though given the chance
infinitely many times. This yields a contradiction, because 7" and consequently = would not be
fair paths. We conclude s € ¢ (A), because it does not enable output or internal actions. Next
we show that ¢ € d (B). By Definition 5 we have the following infinite path in B:

=t vibthbvybts....

Clearly, 7 is divergent, since b; € L’y fori = 1,2, .... Since 7" is fair and s = sp we know that
7 is fair. Furthermore, as we observed earlier (s, ¢) occurs infinitely often on r. Hence ¢ occurs
infinitely often on 7. Since 73 is divergent, fair and state finite, we conclude that ¢ € d (B).

e This case is symmetric for the proof of the previous case.
2. To prove A || B satisfies Rule R2, we must show that for all pairs (s, t), (s', t') € S”:
If (s, t) LB)AHB (s, ') for some y, then (s, t') € q(A|lB).
From Definition 5 it follows that for this case we have s ﬁ—(s) s’ and ¢ g for some i, v. Because A and
B are well-formed and by Rule R2, we know that both s" and ¢’ are quiescent. Thus, by Definition 5

we know that (s', t') € ¢ (A|| B).
3. To prove that A || B satisfies R3 we must show for all pairs of states (s, t) and (s/, ¢') in §”:

If (s, t) LGN (s, ') for some y, then Trd ((s', t')) C Trd((s, 1)).

Since (s, t) M—8> (s', t') for some wu, we know that s 2 o and t 25 ¢ for some v1, V3. Because A
and B are both well-formed, we know that Trd (s") C Trd(s) and Trd (t') C Trd(t). Note that [STS13]
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show that also Traces=?(s") C Traces~“ (s) and Traces=“ (t') C Traces~“ (t). The proof arises now
as a combination of this and Definition 5.

To prove that A || B satisfies rule R4 we must show that for all pairs of states (s, t), (s, t'), (s", t") €
All B:

If (s, t) u_ﬁ)A”B (s, t')and(s’, t') LBM”B (s”,t") for some w, v, then Trd ((s', ")) =Trd ((s", t")).

Consider any pair of transitions of (s, t) N A (8, t)and (s, t) BN A (8”7, t”). By Definition 5 we

know that then s Mm s and ¢ ﬂ)A s aswell as ¢ 225 ¢ and # 2% ¢ for some s Loy V1, V2.
To prove Trd ((s', t')) = Trd((s”, t”)) we must show both the “C” and the “2” directions. Note that
the latter directly follows from R3 shown earlier. The proof of the first is similar to the techniques
used in R3 only using 7rd(s’) = Trd(s"”) and Trd(t') = Trd(t") instead of Trd(s”) C Trd(s") and
Trd(t") C Trd (t').

ss This article is distributed under the terms of the Creative Commons Attribution 4.0 International

License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-

duction in
link to the

any medium, provided you give appropriate credit to the original author(s) and the source, provide a
Creative Commons license, and indicate if changes were made.
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