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Abstract. In Model Driven Software Engineering, models and model transformations are the primary artifacts
when developing a software system. In such a workflow, model transformations are used to incrementally trans-
form initial abstract models into concrete models containing all relevant system details. Over the years, various
formal methods have been proposed and further developed to determine the functional correctness of models
of concurrent systems. However, the formal verification of model transformations has so far not received as
much attention. In this article, we propose a formal verification technique to determine that formalisations of
such transformations in the form of rule systems are guaranteed to preserve functional properties, regardless of
the models they are applied on. This work extends our earlier work in various ways. Compared to our earlier
approaches, the current technique involves only up to n individual checks, with n the number of rules in the
rule system, whereas previously, up to 2n − 1 checks were required. Furthermore, a full correctness proof for the
technique is presented, based on a formal proof conducted with the Coq proof assistant. Finally, we report on
two sets of conducted experiments. In the first set, we compared traditional model checking with transforma-
tion verification, and in the second set, we compared the verification technique presented in this article with the
previous version.
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1. Introduction

It is a well-known fact that concurrent systems are very hard to develop correctly. In order to support the
development process, over the years, a whole range of formal methods have been constructed to determine the
functional correctness of system models [BH04]. Over time, these techniques have greatly improved, but the
analysis of complex models is still time-consuming, and often beyond what is currently possible.

To get a stronger grip on the development process, model-driven development has been proposed [KWB05].
In this approach, models are constructed iteratively, by defining model transformations that can be viewed as
functions applicable on models: they are applied on models, producing new models. Using such transformations,
an abstract initial model can be gradually transformed into a very detailed model describing all aspects of the
system. If one can determine that the transformations are correct, then it is guaranteed that a correct initial model
will be transformed into a correct final model.
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Fig. 1. LTS transformation verification with Refiner

Most model transformation verification techniques are focussed on determining that a given transformation
applied on a given model produces a correct new model, but in order to show that a transformation is correct in
general, one would have to determine this for all possible input models. There are some techniques that can do
this [ACL+15, RW13], but it is often far from trivial to show that these are correct.

Thiswork is an extensionof [PW16],wherewe formally proved the correctness of such a formal transformation
verification technique proposed in [WE13, Wij13] and implemented in the tool Refiner [WE14]. It is applicable
on models with a semantics that can be captured by Labelled Transition Systems (LTSs). Transformations are
formally defined as LTS transformation rules. Correctness of transformations is interpreted as the preservation of
properties. Given a property ϕ written in a fragment of the μ-calculus [MW14], and a system of transformation
rules �, Refiner checks whether � preserves ϕ for all possible inputs. This is done by first hiding all behaviour
irrelevant for ϕ [MW14] and then checking whether the rules replace parts of the input LTSs by new parts that
are branching bisimilar to the old ones. Branching bisimilarity preserves safety properties and a subset of liveness
properties involving inevitable reachability [vGW96].

Figure 1 provides an overview of the transformation verification workflow in Refiner. Given as input is a rule
system consisting of n LTS transformation rules, where each rule ri consists of a left pattern Li , describing which
component behaviour is subject to transformation, and a right pattern Ri , defining the behaviour produced by
a transformation of the corresponding left pattern behaviour. If such a rule system were to be applied on an
input model, Refiner would identify the possible matches of the left patterns of the rules on the behaviour of
the components in the model, and subsequently, apply transformation on those matches, thereby replacing the
existing behaviour with copies of the corresponding right patterns.

In order to verify that a rule systemwill preserve a property ϕ for anymodel it is applied on,Refiner combines
the left patterns on the one hand, and the right patterns on the other hand, and produces the state spaces of
both these combinations, as these can be interpreted as models themselves. In practice, Refiner actually checks
whether patterns are dependent on each other, in the sense that their behaviour needs to synchronise at some
point, and groups the rules together into sets of dependent rules. In this example, there is only one such group.

Next, property-based hiding [MW14] is performed, given a property ϕ to check. Finally, the resulting abstract
state spaces are compared using a branching bisimulation checking algorithm. Only if the combinations of both
the left and the right patterns satisfy ϕ will the outcome of this check be positive.When no property is considered,
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the technique checks for full semantics preservation, i.e., it does not apply property-based hiding. This is useful,
for instance, when refactoring models.

The technique has been successfully applied to reason very efficiently about model transformations; speedups
of five orders of magnitude have been measured w.r.t. traditional model checking of the models produced by
a transformation [Wij13]. However, as the technique is theoretically very involved, its absolute correctness, i.e.,
whether it returns true iff a given rule system is property preserving for all possible inputmodels, has been an open
question since it was constructed. In [PW16] we first addressed the correctness of the transformation verification
technique. After finding and fixing two issues the verification technique was proven correct.

Contributions. This work is an extension of [PW16] in which the formal correctness of the transformation verifi-
cation technique from [Wij13] is addressed. In the current article, first of all, we have extended the expressiveness
of transformation rules by distinguishing between glue-states that allow incoming and/or outgoing transitions
entering or leaving the LTS patterns, respectively. By doing so, the verification technique is able to handle more
cases.

Second of all, we present a new proof that shows that the required number of bisimulation checks when
verifying an LTS transformation rule system can be reduced from 2n − 1 per set of dependent transformation
rules (where n is the upper bound of the number of rules in such a sets) to only one per set of dependent rules. This
proof is presented in greater detail than the one given previously [PW16]. The proof is based on a formal proof
conductedwith theCoqproof assistant 1 version 8.6 (December 2016). TheCoq formalisation is available online. 2

Structure of the article. Related work is discussed in Sect. 2. Section 3 presents the notions for and analysis of
the application of a rule system consisting of only a single transformation rule. A correctness proof is presented.
This section can be viewed as a first step towards discussing the complete technique, applicable on rule systems
consisting of multiple rules. Next, in Sect. 4, the complete technique is presented; the discussion is continued by
considering networks of concurrent process LTSs, and systems of transformation rules. Again, we give a proof
of correctness.

After that, we present experimental results in Sect. 5, by which we demonstrate the effectiveness of the analysis
technique, compared to, more traditional, model checking the models again once they have been altered by a
model transformation. Finally, Sect. 6 contains our conclusions and pointers to future work.

2. Related work

Papers on incremental model checking (IMC) propose how to reuse model checking results of safety properties
for a given input model after it has been altered [SS94, Swa96]. We also consider verifying models that are subject
to changes. However, we focus on analysing transformation specifications, i.e., the changes themselves, allowing
us to determine whether a change always preserves correctness, independent of the input model. Furthermore,
our technique can also check the preservation of (a subset of) liveness properties.

In the context of Dynamic graph algorithms [EGI97], reachability is an unbounded problem [RR96, SS94],
i.e., it cannot be determined solely based on the changes. Thanks to our criteria, this is not an issue in our context.

In [Sah07], an incremental algorithm is presented for updating bisimulation relations based on changes applied
on a graph. Their goal is to efficientlymaintain a bisimulation, whereas our goal is to assess whether bisimulations
are guaranteed to remain after a transformation has been applied without considering the whole relation. As
is the case for the IMC techniques, this algorithm works only for a given input graph, while we aim to prove
correctness of the transformation specification itself regardless of the input.

In refinement checking [AL91, KLG07], supported by tools such as Rodin [ABH+10], Fdr33 and Csp- Casl-
Prover [KR08], it is usually checked that one model refines another. This is very similar to our approach, but
refinements are defined in terms of what the newmodel will be, as opposed to how the newmodel can be obtained
from the old one, i.e., model transformations are not represented as artifacts independent of the models they can
be applied on. This makes the technique not directly suitable to investigate the feasibility to verify definitions of
model transformations, as opposed to the models they produce.

The Bart tool4 allows automatically refiningB components toB0 implementations. Similar to our setting, it
treats refinement rules as user-definable artifacts and performs pattern matching to do the refining. Constraints

1 http://coq.inria.fr
2 http://www.win.tue.nl/mdse/property_preservation/FAC2017_LTS_Network_transformation_verification.zip
3 http://www.fsel.com/fdr3.html.
4 http://www.tools.clearsy.com/tools/bart.

http://coq.inria.fr
http://www.win.tue.nl/mdse/property_preservation/FAC2017_LTS_Network_transformation_verification.zip
http://www.fsel.com/fdr3.html
http://www.tools.clearsy.com/tools/bart
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are checked to ensure that the resulting systemwill be correct. Other work related toB , e.g., [Lan96], is on strictly
refining existing functionalities. Approaches described in, e.g., [BGL05, CCGT09, GL12, HKR+10] prove that
a transformation preserves the semantics of any input model, by showing that the transformed model will be
strong or weak bisimilar to the original. Contrary to our work, in all these approaches, no cases can be handled
where transformations alter the semantics in a way that does not invalidate the functional property of interest.
Furthermore, by using branching bisimilarity as opposed to strong or weak bisimilarity, our technique also
supports a subset of liveness properties.

Similarly, Combemale et al. [CCGT09], Hülsbusch et al. [HKR+10], and Karsai and Narayanan [KN07,
NK08] check semantics preservation of model transformations using either strong or weak bisimilarity.

Several techniques, such as those described in [KN07, NK08, VP03], perform individual checks for each
concrete model. As such, the transformation itself is not verified, but verification is done each time the transfor-
mation is applied in a concrete situation. Our technique verifies the transformation definition once, after which
the verification result is relevant for each application of that transformation.

Monotonically adding functionality, as opposed to refining, is addressed in, e.g., [BE04]. The focus is on
updating property formulae; it could be interesting to see if this is applicable in our setting to update properties.

In some works, e.g., [SMR11, GGL+06], theorem proving is used to verify the preservation of behavioural
semantics. The use of theorem provers requires expert knowledge and high effort[SMR11]. In contrast, our
equivalence checking approach is more lightweight, automated, and allows the construction of counter examples
which help developers identify issues with the transformations.

In [BCE+07], transformation rules for Open Nets are verified on the preservation of dynamic semantics.
Open Nets are a reactive extension of Petri Nets. The technique is comparable to our technique with two main
exceptions. First, they consider weak bisimilarity for the comparison of rule patterns, which preserves a strictly
smaller fragment of the μ-calculus than branching bisimilarity [MW14]. Second, their technique does not allow
transforming the communication interfaces between components. Our approach allows this, and checks whether
the components remain ‘compatible’.

Finally, in [SLC+14], transformations expressed in the DSLTrans language are checked for correspondence
between sourceand targetmodels.DSLTransuses a symbolicmodel checker toverifyproperties that canbederived
from the meta-models. The state space captures the evolution of the input model. In contrast, our approach
considers the state spaces of combinations of transformation rules, which represent the potential behaviour
described by those rules. An interesting pointer for future work is whether those two approaches can be combined.

3. Verifying single LTS transformations

This section introduces the main concepts related to the transformation of Labelled Transition Systems (LTSs),
and explains how a single transformation rule can be analysed to guarantee that it preserves the branching
structure of all LTSs it can be applied on.

3.1. LTS transformation and LTS equivalence

We use LTSs as in Definition 3.1 to reason about the potential behaviour of processes.

Definition 3.1 (Labelled transition system) An LTS G is a tuple (SG,AG, TG, IG), with

• SG a finite set of states;
• AG a set of action labels;
• TG ⊆ SG × AG × SG a transition relation;
• IG ⊆ SG a (non-empty) set of initial states.

Action labels in AG are denoted by a, b, c, etc. In addition, there is the special action label τ to represent
internal, or hidden, system steps. A transition (s, a, s ′) ∈ TG , or s

a−→G s ′ for short, denotes that LTS G can move
from state s to state s ′ by performing the a-action. For the reflexive transitive closure of a−→G , we use

a−→∗
G . Note

that transitions are uniquely identifiable by the combination of their source state, action label, and target state.
This property is sometimes called the extensionality of LTSs [Win90]. This does not limit the applicability of our
technique, as a system that is not extensional can be rewritten into an extensional system by introducing separate
target states for each transition with an equivalent label.
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Fig. 2. A transformation rule

Finally, we only consider LTSs that are weakly connected, meaning that the undirected version of an LTS is
a single connected component (from each state, there is path to each other state). This implies that each state in
an LTS is reachable from at least one initial state. It would be irrelevant to consider states that are unreachable,
since a system could never end up in such a state, starting from an initial state.

We allow LTSs to be transformed by means of formally defined transformation rules. Transformation rules
are defined as follows.

Definition 3.2 (Transformation rule) A transformation rule r � (L,R) consists of a left pattern LTS L �
(SL,AL, TL, IL) and a right pattern LTS R � (SR,AR, TR, IR), with IL � IR. The two pattern LTSs are
annotated with a (possibly empty) set of exit-states EL ⊆ SL and ER ⊆ SR, respectively, with EL � ER. Finally,
we must have that SL ∩ SR � IL ∪ EL � IR ∪ ER.

The states in SL ∩ SR are called the glue-states. The initial (glue-)states of a pattern LTS, also called the
in-states, represent the states at which the pattern may be entered. The exit-states are glue-states that represent
the states from which the pattern may be left. It is possible for a glue-state to be both an in-state and an exit-state.

Figure 2 shows an example of a transformation rule r � (L,R) transforming a sequence of two a-transitions
to a τ -transition followed by two a ′-transitions. The initial states, i.e., the in-states of L and R, are indicated
by an incoming arrow. The exit-states are represented by a square. Furthermore, all glue-states (i.e., the in- and
exit-states) are coloured grey.

These LTS patterns expect only ingoing transitions at state 〈1̃〉 as this is an in-state. At exit-state 〈3̃〉, only
outgoing transitions are expected. Our previous formalisation [PW16] cannot express these subtleties as it did
not distinguish between in-states and out-states. In Sect. 3.2, we show that, due to the in-states and out-states, the
formalisation presented in this article is able to tell that, when the a ′-transitions are relabelled to a-transitions,
this transformation rule is correct while the previous formalisation cannot.

When applying a transformation rule to an LTS, the changes are applied relative to the glue-states. To reason
about the application of a transformation rule, we first define the notion of an LTS morphism.

Definition 3.3 (LTS morphism) An LTS morphism f : G0 → G1 between two LTSs G0 � (SG0,AG0 , TG0 , IG0 ) and
G1 � (SG1,AG1 , TG1 , IG1 ) is a pair of functions f � (fS : SG0 → SG1 , fT : TG0 → TG1 ) which preserve source states,
target states, and transition labels, i.e., for all s a−→G0 s

′, it holds that fT (s
a−→G0 s

′) � fS (s)
a−→G1 fS (s

′).

It should be noted that for extensional LTSs, there is never a need to explicitly indicate how transitions aremapped
by an LTSmorphism f . In extensional LTSs, no two transitions have the same source state, label, and target state.
This ensures that given a function fS : SG0 → SG1 , an LTS morphism f is implied by it, since no two transitions
in G0 can be mapped to the same transition in G1, i.e., a function fT : TG0 → TG1 is implied. Because of that,
with slight abuse of notation, we directly reason about LTS morphisms f as mappings between LTS states, in the
remainder of this article.

A transformation rule r � (L,R) is applicable on an LTS G iff a match m : L → G exists according to
Definition 3.4. Given a state s ∈ SG of an input LTS and a state p ∈ SP , we write m(p) � s to indicate that
state s is matched on by state p via match m. The set m(S ) � {m(s) ∈ SG | s ∈ S } is the image of a set of states
S ⊆ SP through match m on an LTS G.
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Fig. 3. Application of a transformation rule

Definition 3.4 (Match) A pattern LTS P � (SP ,AP , TP , IP ) with a set of exit-states EP has a matchm : P → G
on an LTS G � (SG,AG, TG, IG) iff m is an injective LTS morphism and for all p ∈ SP , s ∈ SG :

• m(p) � s ∧ s ∈ IG ⇒ p ∈ EP .
• s a−→G m(p) ∧ (¬∃p ′ ∈ SP . p ′ a−→P p ∧ m(p ′) � s) ⇒ p ∈ IP ;
• m(p) a−→G s ∧ (¬∃p ′ ∈ SP . p a−→P p ′ ∧ m(p ′) � s) ⇒ p ∈ EP ;
A match is a behaviour preserving morphism of a pattern LTS P in an LTS G defined via a category of

LTSs [Win90]. The first match condition expresses that an initial state may only be matched on by exit-states.
This is a reasonable assumption as all reachable behaviour starts at initial states. A consequence of the condition
is that initial states may not be removed by a transformation.

The remaining two conditions make sure that a match may not cause removal of transitions that are not
explicitly present in P . The first condition ensures that if a match of the pattern LTS is entered at some state
s ∈ SG , then the state matching s must be an in-state. Similarly, the second condition states that if a match of the
pattern LTS is left at some state s ∈ SG , then the state matching s must be an exit-state.

An LTS G is transformed to an LTS T (G) according to Definition 3.5. For clarity, we refer with p, p ′, . . . to
states in a left pattern LTS, with q, q ′, . . . to states in a right pattern LTS, with s, s ′, . . . to states in an input LTS,
and with t, t ′, . . . to states in an output LTS.

Definition 3.5 (LTS transformation) Let G � (SG,AG, TG, IG) be an LTS and let r � (L,R) be a transformation
rule with match m : L → G. Moreover, consider match m̂ : R → T (G), with ∀ q ∈ SL ∩ SR. m̂(q) � m(q)
and ∀ q ∈ SR \ SL. m̂(q) �∈ SG , by which m̂ defines the new states being introduced by the transformation. The
transformation of LTS G, via rule r with matches m, m̂, is defined as T (G) � (ST (G),AT (G), TT (G), IG) where
• ST (G) � SG \ m(SL) ∪ m̂(SR);

• TT (G) � (TG \ {m(p) a−→ m(p ′) | p a−→L p ′}) ∪ {m̂(q) a−→ m̂(q ′) | q a−→R q ′}
• AT (G) � {a | ∃ t a−→ t ′ ∈ TT (G)}
Given a match, an LTS transformation replaces states and transitions matched by L by a copy ofR yielding

LTS T (G). An application of a transformation rule is shown in Fig. 3. Again, the initial states are indicated by
an incoming arrow. In the middle of Fig. 3, the transformation rule r � (L,R) is shown (presented earlier in
Fig. 2) which is applied on LTS G resulting in LTS T (G). The states are numbered such that matches can be
identified by the state label, i.e., a state ĩ is matched onto state i . Note that such a match satisfies the conditions of
Definition 3.4: State 〈1̃〉 is not an exit-state, but state 〈1〉 does not have unmatched outgoing transitions, state 〈3̃〉 is
not an in-state, but there are no unmatched incoming transitions to state 〈3〉, and finally, state 〈3〉 has unmatched
outgoing transitions, but this is allowed, since 〈3̃〉 is an exit-state.

On the other hand, states 〈1̃〉, 〈2̃〉 and 〈3̃〉 of L do not match on states 〈2〉, 〈3〉, and 〈4〉, respectively, as this
violates condition 2 of Definition 3.4. Namely, transition 〈3〉 b−→G 〈5〉 is unmatched, since state 〈5〉 is unmatched,
but state 〈2〉 is not an exit-state.
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Since in general, L may have several matches on G, we assume that transformations are confluent, i.e., that
they are guaranteed to terminate and lead to a unique T (G). Confluence of LTS transformations can be checked
efficiently [Wij15]. By assuming confluence, we can focus on having a single match when verifying transformation
rules, since the transformations of individual matches do not influence each other.

To compare LTSs, we use the branching bisimulation equivalence relation [vGW96] as presented in Defi-
nition 3.6. Branching bisimulation supports abstraction from actions and is sensitive to internal actions and
the branching structure of an LTS. We require abstraction from actions for the verification of abstraction and
refinement transformations such that input and output models can be compared on the same abstraction level.

Definition 3.6 (Branching bisimulation)Abinary relationB between twoLTSsG1 andG2 is abranching bisimulation
iff s B t implies

1. s a−→G1 s
′⇒(a � τ ∧ s ′ B t) ∨ (t τ−→∗

G2
t̂ a−→G2 t

′ ∧ s B t̂ ∧ s ′ B t ′),

2. t a−→G2 t
′⇒(a � τ ∧ s B t ′) ∨ (s τ−→∗

G1
ŝ a−→G1 s

′ ∧ ŝ B t ∧ s ′ B t ′)

Two states s, t ∈ S are branching bisimilar, denoted s ↔b t , iff there is a branching bisimulation B such
that s B t . Two sets of states S1 and S2 are called branching bisimilar, denoted S1 ↔b S2, iff ∀ s1 ∈ S1. ∃ s2 ∈
S2.s1 ↔b s2 and vice versa. We say that two LTSs G1 and G2 are branching bisimilar, denoted G1 ↔b G2, iff
IG1 ↔b IG2 .

3.2. Analysing a transformation rule

The basis of the transformation verification procedure is to check whether the two patterns making up a transfor-
mation rule are equivalent, while respecting that these patterns represent embeddings in larger systems. We want
to be able to verify the transformation’s side effects on both the matched states and the states connected to these
matched states. To make this explicit, we extend the left- and right-patterns of a transformation rule r � (L,R)
according to Definition 3.7. The resulting so-called κ-extended transformation rule is defined as r κ � (Lκ ,Rκ ),
and is specifically used for the purpose of analysing r , it does not replace r .

In the κ-extended version of a pattern LTS P , a new state named κ is introduced, which is connected to the
original states by new transitions labeled σp for p ∈ EP , and εp ′ for p ′ ∈ IP . Furthermore, for all p ∈ EP and p ′ ∈
IP a γp,p ′ -transition is introduced. The set initial states of the κ-extendedLTS consists of the states in {κ}∪EP . The
in-states p ∈ IP do not need to be added to the set of initial states as they are always reachable via a σ -transition.

Definition 3.7 (κ-extension of a pattern LTS) The pattern LTS P extended with a κ-state, and σ -, ε- and γ -
transitions is defined as:

Pκ � (SP ∪ {κ},AP ∪ {σp | p ∈ IP} ∪ {εp | p ∈ EP} ∪ {γp,p ′ | p ∈ EP ∧ p ′ ∈ IP},
TP ∪ {κ σp−→ p | p ∈ IP} ∪ {p εp−→ κ | p ∈ EP} ∪ {p γp,p′−−→ p ′ | p ∈ EP ∧ p ′ ∈ IP}, {κ} ∪ EP )

with EPκ � EP and where σp , εp and γp,p ′ are unique labels that are not the silent τ -label.

The κ-extension of anLTS patternP can be see as an abstraction of LTSs it ismatched on, inwhichwe indicate
how the behaviour described by P can be embedded in a larger LTS G. The introduced κ-state represents the
unmatched (and thus unaffected) states in G. The σ -transitions go from the κ-state to the in-states and represent
transitions that enter the part of G matched on by P . The ε-transitions go from exit-states to the κ-state. They
represent transitions in G that leave the part matched on by P . The γ -transitions go from exit-states to in-states
representing transitions connected to states that are matched on P , while the transition itself is not matched on.
The σ -, ε-, and γ -transitions are uniquely identified by their corresponding glue-states. This ensures that side
effects on unmatched states become visible.

If the original L and R are branching bisimilar, then one cannot in general conclude that input and output
LTSs on which the rule r � (L,R) is applicable are branching bisimilar as well. For instance, consider the
transformation rule in Fig. 4 which swaps a and b transitions. Without the κ-extensions, the LTS patterns are
branching bisimilar. However, this would not capture the fact that patterns should be interpreted as possible
embeddings in larger LTSs. These larger LTSs may not be branching bisimilar, because glue-states 〈2̃〉 and
〈3̃〉 could be mapped to states with different outgoing transitions, apart from the behaviour described in the
LTS patterns (states 〈2̃〉 and 〈3̃〉 are exit-states). However, due to the introduced κ-state and in particular the
ε-transitions, a comparison of the κ-extended networks is able to determine that the rule does not guarantee
branching bisimilarity between input and output LTSs.
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Figure 5 shows that the verification approach discussed in this article is able to perform a more fine grained
analysis compared to the approach in previous work [PW16]. The κ-extension of the transformation rule in Fig. 2,
but nowwith a ′ replaced by a, is shown in Fig. 5a, b using the approach presented in this article and the approach
in previous work, respectively. In the latter case, the notions of in-state and exit-state are not used, instead both
types of states are treated in the same way, as glue-states.

The approach discussed in this article determines that the left and right κ-extended patternLTSs are branching
bisimilar as shown in Fig. 5b. The branching bisimulation relation between the left and right κ-extended pattern
LTSs is indicated with dashed lines. The introduction of the τ -transition does not break branching bisimilarity
since no behaviour is lost.

However, the approach in [PW16] reports a counter-example as shown inFig. 5b. Since the approach in [PW16]
does not distinguish between in-states and exit-states, the semantics of the transformation rule is slightly different;
each glue-state is allowed to be matched on states with ingoing transitions, outgoing transitions, and both in-
and outgoing transitions. Therefore, any correct verification technique would have to consider the possibility
that the glue-states are matched on states that have additional in- and/or outgoing transitions, and therefore, the
extra τ -transition in Rκ could mean that unmatched outgoing transitions are disabled when the τ -transition is
followed. By adding the notions of in-state and exit-state, we can restrict the applicability of transformation rules
and thereby provide more information to the verification technique.

The analysis. In the verification of a transformation rule r � (L,R) the aim is to determine whether r is sound
for any LTS G on which r is applicable. The verification proceeds as follows:

1. Construct the κ-extended pattern LTSs Lκ and Rκ according to Definition 3.7.
2. Determine whether Lκ and Rκ are branching bisimilar.

If Lκ and Rκ are branching bisimilar, then r is branching-structure preserving for all inputs it is applicable
on. Otherwise, r may preserve the branching-structure of some LTSs, but it is definitely not branching-structure
preserving for all possible inputs it is applicable on.

Time complexity of the analysis. Consider a transformation rule r . Let g be the number of glue-states defined in
the pattern LTSs of r . Furthermore, let s , t and a be the largest number of states, transitions and action labels,
respectively in the pattern LTSs of r .

In the first step of the verification of a rule r , a κ-state is added and for each glue state one σ -, ε, and/or
γ -transition is added. The number of states added is constant, the number of transitions added is O(g), and the
number of action labels added is O(g). Hence, the running time of step 1 is O(g).

In the second step, it is checked whether Lκ andRκ are branching bisimilar. Branching bisimilarity checking
can be performed in O(t · log(s + a)) [GW16]. Therefore, the time complexity of the final step of the analysis is
O((t + g) · log((s + 1) + (a + g))).

3.3. Correctness of the verification

In this section we prove the correctness of the analysis algorithm presented in the previous section. First, we
introduce two lemmas that express properties of left and right κ-extended pattern LTSs that are branching
bisimilar. Next, we prove the soundness of the approach in Proposition 3.1. Finally, the completeness of the
approach is proven in Proposition 3.2.
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Fig. 5. The approach presented in this article (Fig. 5a) is able to determine from that the transformation rule shown in Fig. 2 (where
a ′ has been relabelled to a) guarantees that the input and output LTSs are branching bisimilar; this is an improvement over our previous
formalisation [PW16] (Fig. 5b) which reports a counter-example shown as it does not distinguish between in- and exit-states. aThe κ-extension
of the transformation rule shown in Fig. 2, relabelled with a ′ :� a , using the formalisation in this article; the left and right κ-extended pattern
LTSs are branching bisimilar. b The κ-extension of the transformation rule shown in Fig. 2, relabelled with a ′ :� a , where in-states and
exit-states are not distinguished from each other; the left and right κ-extended pattern LTSs are not branching bisimilar since in Rκ , the
possibility of performing a ε1-transition is lost once the τ -transition from state 〈1̃〉 to state 〈6̃〉 is taken

Recall that glue-states are not removedby transformationand that the κ-state represents unmatched states, and
therefore also represents states that are not removed. When comparing LTS patterns by checking for branching
bisimilarity, it is desirable that these states are related to themselves, as illustrated in the previous example.
Lemma 3.1 shows that it is indeed the case that κ-extension achieves this: if two κ-extended pattern LTSs Lκ ,Rκ

are branching bisimilar, then the κ-state, the in-states, and the exit-states, i.e., the initial states of the κ-extended
LTS patterns, are related to themselves.

Lemma 3.1 Consider a transformation rule r � (L,R) such that Lκ ↔b Rκ . Then, ∀ p ∈ {κ} ∪IL ∪EL, p ↔b p.

Proof The proof follows from the fact that the σ - and ε-transitions are uniquely constructed for a specific glue-
state. Consider a state p ∈ {κ} ∪ IL ∪ EL. By Definition 3.7, we have p ∈ ILκ . Since Lκ and Rκ are branching
bisimilar, there is a state q ∈ SRκ such that p ↔b q . We perform a case distinction on p ∈ {κ} ∪ IL ∪ EL. In each
case we show that there is a transition labelled with a σ or ε between p and p ′ ∈ SLκ such that the action label
uniquely identifies the states p and p ′. For convenience, let us refer to this unique label as α and say we have a
transition p α−→κ

L p ′. As p ↔b q we can apply Definition 3.6 to show that q simulates p. As the unique labels are
not allowed to be the silent action τ , the only remaining case indicates that there are states q̂ ∈ SRκ and q ′ ∈ SRκ

such that q τ−→∗
Rκ q̂

α−→Rκ q ′ with p ↔b q̂ and p ′ ↔b q ′. There is only one transition labeled α in both Lκ and Rκ

and it occurs as p α−→ p ′. It follows that q̂ � p and q ′ � p ′. Consequently, we have p ↔b p and p ′ ↔b p ′.
We now discuss the case distinction in full detail:

• p � κ. By Definition 3.1, IL �� ∅, so there is a state p ′ ∈ IL. This means that there is a transition κ
σp′−→Lκ p ′

where σp ′ �� τ and σp ′ uniquely occurs on κ
σp′−→ p ′ in both Lκ and Rκ (Definition 3.7). Hence, since σp ′ �� τ ,

by Definition 3.6, there are states q̂ ∈ SRκ and q ′ ∈ SRκ such that q τ−→∗
Rq̂

σq ′−→R q ′ with κ ↔b q̂ . The σp ′-

transition in both Lκ and Rκ is strictly present as κ
σp′−→ p ′. It follows that p̂ � κ, therefore we have p ↔b p.

• p ∈ IL. Then there is a transition κ
σp−→Lκ p where σp �� τ and σp uniquely occurs from κ to p in both Lκ and

Rκ (Definition 3.7). In the previous case we established that κ ↔b κ. Because σp �� τ , by Definition 3.6, we

have states q̂ ∈ SRκ and q ′ ∈ SRκ such that κ
τ−→∗

Rκ q̂
σp−→Rκ q ′ with p ↔b q ′. The σp-transition in Lκ and Rκ

only goes from κ to p. It follows that q ′ � p and thus p ↔b p.
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• p ∈ EL. By Definition 3.7, there is a state p ∈ ELκ with an observable action εp that uniquely occurs on a tran-
sition from p to κ in both Lκ andRκ . Moreover, since Lκ ↔b Rκ , there is a state q ∈ IRκ such that p ↔b q .
Therefore, by εp �� τ and Definition 3.6, there are states q̂ ∈ SRκ and q ′ ∈ SRκ such that q τ−→∗

Rκ q̂
εp−→R q ′

with p ↔b q̂ and κ ↔b q ′. By Definition 3.7, there is only one transition labeled εp in Lκ andRκ , which goes
from p to κ. It follows that q̂ � p and hence p ↔b p. �
Exit-states are the states where the embedding of an LTS pattern may be left. A transition leaving the embed-

ding is represented in the κ-extended pattern by a ε-transition. Should an arbitrary state q ∈ SR be related to an
exit-state p ∈ EL, then there must exist a τ -path from q to p, otherwise state q cannot simulate the ε-transitions
from p. Lemma 3.2 shows that, indeed, such a τ -path from q to p exists.

Lemma 3.2 Consider a transformation rule (L,R) such that Lκ ↔b Rκ , then

∀ p ∈ ELκ , q ∈ SRκ : p ↔b q ⇒ (q τ−→∗
Rp)

Proof Intuitively, the proof follows from the fact that action εp uniquely occurs on a transition from p to κ.
Since in Lκ , any state q branching bisimilar to p must be able to perform this transition directly or be able to
reach such a transition via a τ -path, we must either have that q � p or that from q , p can be reached via a τ -path.
Next, we discuss the proof in full detail.

Let state p ∈ EL and state q ∈ SRκ such that q ↔b p. By Definition 3.7 we have p
εp−→L κ with εp �� τ . Since

p ↔b q and εp �� τ there are q̂, q ′ ∈ SRκ such that q τ−→∗
Rκ q̂

εp−→Rκ q ′ with p ↔b q̂ and κ ↔b q ′. The εp action

only occurs on p
εp−→ κ in both Lκ andRκ , therefore, we must have q̂ � p and q ′ � κ. It follows that q τ−→∗

Rκp and
by structural induction q τ−→∗

Rp. �
Definition 3.8 introduces a mapping that formally defines how a κ-extended LTS pattern is related to the LTS

that is matched on. The fact that κ-states represent all states that are not matched on is made explicit by this
mapping.

Definition 3.8 (Mapping of κ-extended LTS) Consider an LTS G and a pattern LTS P with corresponding match
m : P → G. We say that a p ∈ SPκ is mapped to a state s ∈ SG , denoted by mκ (p) � s , iff either p �� κ and
m(p) � s or p � κ and there is no state in SL matching on s (i.e., ¬∃x ∈ SP ,m(x ) � s).

Soundness of the analysis. A transformation rule r preserves the branching structure of all LTSs it is applicable
on if the κ-extended patterns of r are branching bisimilar. This is expressed in Proposition 3.1.

Proposition 3.1 is a special case of Proposition 4.1, discussed in the next section, which considers trans-
formation of concurrent systems. This proof is derived from the Coq proof of Proposition 4.1 to explain the
transformation verification technique in a more simple and intuitive setting. Lemmas 3.1 and 3.2 have been
formalised in Coq.

Proposition 3.1 Let G be an LTS, let r be a transformation rule with matches m : L → G and m̂ : R → T (G)
such that Definition 3.5 is satisfied. Then,

Lκ ↔b Rκ ⇒ G ↔b T (G)
Intuition. A match of pattern L is replaced with an instance of pattern R. If Lκ ↔b Rκ , then these two patterns
exhibit branching bisimilar behaviour, even when they are embedded into a larger LTS. Therefore, the behaviour
of the original and transformed system (G and T (G), respectively) are branching bisimilar.

Proof By definition, we have G ↔b T (G) iff IG ↔b IT (G), which means that there must exist a branching bisim-
ulation relation C relating the states in IG and IT (G). Let B be a branching bisimulation relation demonstrating
that Lκ ↔b Rκ . Relation C is constructed as follows:

C � {(s, t) | ∃p ∈ SLκ , q ∈ SRκ . p B q ∧ mκ (p) � s ∧ m̂κ (q) � t ∧ ((p � κ ∨ q � κ) ⇒ s � t)}
States that are touched by the transformation are related via the corresponding matches m and m̂, and

branching bisimulation relation B . States that are left untouched by the transformation are represented by the
κ-state for which it holds that κ B κ (Lemma 4.4). The mappings mκ and m̂κ map the κ-state on all states that
are not matched on. To ensure that untouched states are related to themselves we require s � t whenever either
s or t is mapped on by a κ-state.
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We now prove that C is a branching bisimulation relation by showing that the initial states of G and T (G) are
related, and that Definition 3.6 holds for C . For the latter we only discuss one of the two symmetric cases.

• C relates the initial states of G and T (G). Since we have IG � IT (G) we only have to show ∀ s ∈ IG . ∃ t ∈
IG . s C t . Take s again for t , we have to show that s C s . State s is either matched on or not matched on:

– s is matched on by m, i.e., ∃p ∈ SL. m(p) � s . We have p ∈ EL since initial states may only be matched
on by exit-states (first condition of Definition 3.4). By Lemma 3.1 it follows that p B p. Hence, we have
s C s .

– s is not matched on by m, ¬∃p ∈ SL. m(p) � s . By definition we have mκ (κ) � s . By Lemma 3.1 it
follows that κ B κ. Therefore, we have s C s .

In both cases it holds that s C s .
• If s C t and s a−→G s ′ then either a � τ ∧s ′ C t , or t τ−→∗

T (G)t̂
a−→T (G) t ′ ∧s C t̂∧s ′ C t ′. By definition of s C t ,

there are states p ∈ SLκ and q ∈ SRκ such that p B q , mκ (p) � s , m̂κ (q) � t , and (p � κ ∨ q � κ) ⇒ s � t
(1) . Furthermore, by definition ofmκ , there is a state p ′ ∈ SLκ such thatmκ (p ′) � s ′. The transition s a−→G s ′

is either matched on by a transition p a−→L p ′ or not match on:

1. There exists a transition p a−→L p ′ matching on s a−→G s ′ in L. Since p B q , by Definition 3.6, we have the
following two cases:

– a � τ with p ′ B q . Since mκ (p ′) � s ′ and m̂κ (q) � t , we have s ′ C t .

– q τ−→∗
Rq̂ a−→R q ′ with p B q̂ and p ′ B q ′. Transitions from and to κ-states are not matched on by m

and m̂, i.e., only transitions in TL (TR) match on transitions in TG (TT (G)). Hence, states p, p ′, q, q̂ and
q ′ cannot be κ-states. It follows that s C m̂κ (q̂) and s ′ C m̂κ (q ′), since the matching states are not κ,
mκ (p) � s , and mκ (p ′) � s ′. Finally, as m̂κ (q) � t , we have t τ−→∗

T (G)m̂
κ (q̂) a−→T (G) m̂κ (q ′).

2. There is no transition matching s a−→G s ′ in L, i.e., ¬p a−→L p ′. Thus, both s and s ′ are not removed by the
transformation. We distinguish two cases:

– State s is not matched on bym. Therefore, we must havemκ (p) � s with p � κ. It now follows from (1)
that s � t . Hence, t a−→T (G) s ′, and by reflexivity of

τ−→∗, t τ−→∗
T (G)t

a−→T (G) s ′.
We have s C t , thus, what remains to be shown is s ′ C s ′. Since s is not matched on, it follows from
Definition 3.4 that state s ′ is either not matched on or matched on by an in-state. In the former case we
have p ′ � κ, and in the latter case we have p ′ ∈ IL. In both cases we can apply Lemma 3.1 to obtain
p ′ B p ′. It follows that s ′ C s ′.

– State s is matched on by a state p, i.e., m(p) � s . We must have p �� κ. Since there is no transition
matching s a−→TG s ′, it follows from the second matching condition (Definition 3.4) that p ∈ EL. Now
it follows from p B q and Lemma 3.2 that q τ−→∗

Rp. Moreover, since m̂ is an embedding the transition
is preserved in T (G) and we have t τ−→∗

T (G)s
a−→T (G) s ′.

What is left to show is that s C s and s ′ C s ′. As p ∈ EL and there is no transition in L matching
s a−→G s ′ the state q ′ must be either a κ-state or an in-state, i.e., p ′ ∈ IL ∪ {κ}. For p ∈ EL and
p ′ ∈ IL ∪ {κ} it follows from Lemma 3.1 that p B p and p ′ B p ′, respectively. Hence, we have s C t
and s ′ C s ′.

• If s C t and t a−→T (G) t ′ then either a � τ ∧ s C t ′, or s τ−→∗
G ŝ

a−→G s ′ ∧ŝ C t ∧ s ′ C t ′. This case is symmetric
to the previous case. �

Completeness of the analysis. Completeness is an important factor in verification. A complete analysis technique
will not report false negatives. The next proposition expresses that our analysis technique is complete. In the
context of this work, completeness means that the analysis will always report that the left and right κ-extended
pattern LTSs of a transformation rule r are branching bisimilar if the input LTS G and output LTST (G) produced
by applying r on G are branching bisimilar for any given input LTS G and any given matching. The proof for
Proposition 3.2 is derived from the Coq proof of Proposition 4.2 to explain the transformation verification
technique in a more simple and intuitive setting.

We want to stress that the analysis considers all possible input LTSs. Because of this, it may be that the
analysis reports that a transformation rule does not preserve a given property in general, while the property may
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still hold after transformation of some specific input LTS. Consider, for instance, a transformation rule r that is
not property preserving according to the analysis. There may still be an input LTS G1 with a matchm1 such that
G1 ↔b T (G1). However, it is guaranteed that there also exists an LTS G2 for r with a corresponding matchm2 for
which G2 ↔b/ T (G2).

Proposition 3.2 Consider a transformation rule r � (L,R). Let G be the set of all LTSs. Let rG be the set of
all possible match pairs corresponding to a transformation of an LTS G where rG consists of tuples of the form
(m : L → G, m̂ : R → T (G)). The following holds

(∀G ∈ G, (m, m̂) ∈ rG . G ↔b T (G)) ⇒ Lκ ↔b Rκ

Proof Assume that for all G ∈ G and (m, m̂) ∈ rG it holds that G ↔b T (G). Trivially, we have Lκ ∈ G and
trivial matches m : L → Lκ , m̂ : R → T (Lκ ). It follows from the assumption that Lκ ↔b T (Lκ ). Moreover, by
Definition 3.5, T (Lκ ) � Rκ . It follows that Lκ ↔b Rκ . �

4. Verifying sets of dependent LTS transformations

In this section, we extend the setting by considering sets of interacting process LTSs in so-called networks of
LTSs [Lan06] or LTS networks. Transformations can now affect multiple LTSs in an input network, and the
analysis of transformations is more involved, since changes to process-local behaviour may affect system-global
properties. Finally, we prove the correctness of the technique based on the complete Coq proof. From the proof it
follows that per set of related transformation rules, only a single bisimulation check is required in order to verify
a system of transformation rules.

4.1. LTS networks and their transformation

An LTS network (Definition 4.1) describes a system consisting of a finite number of concurrent process LTSs and
a set of synchronisation laws which define the possible interaction between the processes. The explicit behaviour
of an LTS network is defined by its system LTS (Definition 4.2). We write 1..n for the set of integers ranging
from 1 to n. A vector v̄ of size n contains n elements indexed from 1 to n. For all i ∈ 1..n, v̄i represents the i th
element of vector v̄ .

Definition 4.1 (LTS network) An LTS network N of size n is a pair (
,V), where
• 
 is a vector of n concurrent LTSs. For each i ∈ 1..n, we write
i � (Si ,Ai , Ti , Ii ) and s

a−→i s ′ as shorthand
for s a−→
i

s ′.
• V is a finite set of synchronisation laws. A synchronisation law is a tuple (v̄ , a), where v̄ is a vector of size n,
called the synchronisation vector, describing synchronising action labels, and a is an action label representing
the result of successful synchronisation.We have ∀ i ∈ 1..n. v̄i ∈ Ai ∪{•}, where • is a special symbol denoting
that 
i performs no action.

Definition 4.2 (SystemLTS)GivenanLTSnetworkN � (
,V), its systemLTS is definedbyGN � (SN ,AN , TN ,
IN ), with

• AN � {a | (v̄ , a) ∈ V};
• IN � {〈s1, . . . , sn 〉 | si ∈ Ii }, and
• TN and SN are the smallest relation and set, respectively, satisfying IN ⊆ SN and for all s̄ ∈ SN , (v̄ , a) ∈ V :

(∀ i ∈ 1..n.v̄i �� • ⇒ s̄i
v̄i−→i s̄ ′

i ) ⇒ s̄ a−→N s̄ ′ ∧ s̄ ′ ∈ SN ,

where s̄ ′
i � s̄i for all i with v̄i � •.

The system LTS is obtained by combining the transitions of the processes in 
 according to the synchronisation
laws in V . Whenever we want to make explicit that a transition s̄ a−→N s̄ ′ is enabled by a synchronisation law

(v̄ , a), we write s̄
v̄ ,a−−→N s̄ ′. We refer to s̄ a−→N s̄ ′ and s̄

v̄ ,a−−→N s̄ ′ transitions as global transitions and we refer

to transitions s̄
v̄i−→i s̄ ′ (i ∈ Ac(v̄ )) as the (process-)local transitions. If it is clear from the context whether a

transition is global or local, then “global” or “local” is omitted.
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Fig. 6. An LTS networkN � (
,V) (left) and its system LTS GN (right)

TheLTSnetworkmodel subsumesmost hiding, renaming, cutting, andparallel composition operators present
in process algebras, but alsomore expressive operators such asm among n synchronisation [LM13]. For instance,
hiding can be applied by replacing the a component in a law by τ . A transition of a process LTS is cut if it is
blocked with respect to the behaviour of the whole system (system LTS), i.e., there is no synchronisation law
involving the transition’s action label at the position of the process LTS.

Figure 6 shows an LTS network N � (
,V) with two processes and three synchronisation laws (left) and its
system LTS GN (right). To construct the system LTS, first, the initial states of 
1 and 
2 are combined to form
the initial state of GN . Then, the outgoing transitions of the initial states of 
1 and 
2 are combined using the
synchronisation laws, leading to new states in GN , and so on.

Law (〈a, a〉, a) specifies that the process LTSs can synchronise on their a-transitions, resulting in a-transitions
in the system LTS. The other laws specify that b- and d -transitions can synchronise, resulting in e-transitions,
and that c-transitions can be fired independently. Note that in fact, b- and d -transitions in 
1 and 
2 are never
able to synchronise.

The set of indices of processes participating in a synchronisation law (v̄ , a) is defined as Ac(v̄ ) � {i | i ∈
1..n ∧ v̄i �� •}; e.g., Ac(〈c, b, •〉) � {1, 2}.

Branching bisimilarity is a congruence for construction of the system LTS of LTS networks if the synchroni-
sation laws do not synchronise, rename, or cut τ -transitions [Lan06]. Given an LTS network N � (
,V), these
properties are formalised as follows:

1. ∀(v̄ , a) ∈ V, i ∈ 1..n. v̄i � τ ⇒ Ac(v̄ ) � {i} (no synchronisation of τ ’s);
2. ∀(v̄ , a) ∈ V, i ∈ 1..n. v̄i � τ ⇒ a � τ (no renaming of τ ’s);
3. ∀ i ∈ 1..n. τ ∈ Ai ⇒ ∃(v̄ , a) ∈ V. v̄i � τ (no cutting of τ ’s).

In this article, we only consider LTS networks satisfying these properties.

Transformation of an LTS network. A system of transformation rules, or a rule system for short, allows the trans-
formation of LTS networks. A rule system transforms multiple processes andmay introduce new synchronisation
laws. The rule system is defined as follows.

Definition 4.3 (Rule system) A rule system � � (R,V ′, V̂) consists of a vector of transformation rules R, a set of
synchronisation laws V ′ that must be present in the networks that � is applied on, and a set of synchronisation
laws V̂ introduced in the network resulting from a transformation. The i th left and right pattern LTSs of R are
denoted by Li and Ri , respectively.

Intuitively, a rule system describes how a concurrent system is modified to create a transformed concurrent
system. A rule system is designed with a specific result in mind. Therefore, it is desirable that a rule system
is confluent such that transformation rules can be applied in any order eventually leading to the same result.
Checking confluence can be done efficiently [Wij15]. In the remainder of this article, we only consider confluent
rule systems.
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The transformation of an LTS network N � (
,V) of size n given a rule system � � (R,V ′, V̂) is achieved
via a set m of pairs of matches. Each element (m, m̂) ∈ m corresponds to the application of some rule in R to a
process in 
. The match m : Lj → 
i matches the left pattern LTS (Lj ) of the j th transformation rule in R on
to the i th process LTS (
i ) of LTS networkN . Similarly, match m̂ : Ri → T (
i ) matches the right process LTS
(Ri ) of rule Ri in R on to the transformed process LTS (T (
i )) of the transformation of network N .

One transformation rule can match on many processes and one process can be matched on by many transfor-
mation rules. However, for the sake of simplicity, the transformation of N is separated in several transformation
steps. Since we assume that rule systems are confluent the order of transformation steps is irrelevant for the final
result.

A transformation step transforms a network N of size n given a vector M̄ consisting of n match pairs taken
from m ∪ {δ} where δ is a dummy match pair corresponding to a dummy transformation rule � that leaves the
target process unchanged (i.e., T (
i ) � 
i for some process LTS 
i ). The dummy transformation rule consists
of a single state and no transitions in both its left and right patterns. The left and right matches of the i th match
pair M̄i are referred to asmi and m̂i , respectively. For each index i ∈ 1..n the matches of a match pair M̄i match
on process LTS 
i , i.e., we have mi : Li → 
i and m̂i : Ri → T (
i ).

Each match pair in (mi , m̂i ) ∈ M̄ corresponds to a rule r ∈ R ∪ {�}. Hence, the match pair vector M̄ defines
a partial mapping between processes in 
 and rules in R. With abuse of notation, we shall use M̄ as a partial
mapping to project the synchronisation laws of � on 
 according to the matches in M̄ . We write M̄ (i ) � j to
indicate that mi and m̂i are matches for the j th transformation rule of R. If M̄i � δ, then we write M̄ (i ) � ∗ to
indicate that i is not mapped to a rule in R. This mapping describes a projection from synchronisation vectors
of rule system � on to synchronisation vectors of network N on which the transformation step is applied. This
projection of synchronisation vectors is formally defined as follows.

Definition 4.4 (Projection of synchronisation vectors) Let f : 1..n � 1..m with n,m ∈ N be a partial mapping.
For i ∈ 1..n we write f (i ) � ∗ to indicate that i is not mapped by f . A synchronisation vector v̄ of size m can
be projected iff for all j ∈ Ac(v̄ ) there exists an i ∈ 1..n such that f (i ) � j . This condition ensures that all active
indices of v̄ are represented in the projected vector. The projected synchronisation vector, denoted v̄ f , is a vector
of size n with elements i ∈ 1..n defined as:

v̄ f
i �

{
• if f (i ) � ∗
v̄f (i) otherwise

Let f be a partial mapping. Given a synchronisation law (v̄ , a) the projected synchronisation law is written as
(v̄ f , a). The projection of a set of synchronisation laws V is defined as V f � {(v̄ f , a) | (v̄ , a) ∈ V}.

For a vector of matches M̄ , the transformation step is formalised in Definition 4.5. The transformed LTS
networkTM̄ (N ) consists of the transformed process LTSs and the original set of synchronisation laws V updated
with the projection of V̂ .

Before the transformation step defined by M̄ can be applied it must be ensured that the input network
N � (
,V) contains the corresponding projection of the set of synchronisation laws V ′ of the applied rule
system �, i.e., we must check V ′M̄ ⊆ V . If this is the case, then � is applicable, and the transformed network
TM̄ (N ) receives the set of synchronisation laws V ∪ V̂M̄ . That is, the projected laws of the set of synchronisation
laws V̂ are introduced to the network in the transformation step.

Each process LTS 
i (i ∈ 1..n) is transformed to an LTS T (
i ) by applying the matches mi : SLi
→ S
i

and m̂i : SRi
→ ST (
i ). Note that every process LTS is matched on, since � matches on every state.

Definition 4.5 (LTS network transformation step) Let N � (
,V) be an LTS network of size n and let � �
(R,V ′, V̂) be a rule system. Let M̄ be a vector of size n of match pairs (mi , m̂i ) such that V ′M̄ ⊆ V . For
all i ∈ 1..n let Tmi

denote the LTS transformation of 
i using application matches mi and m̂i according to
Definition 3.5.

The application of a transformation step defined by M̄ on LTS network N is defined as follows:

TM̄ (N ) � (〈Tm1 (
1), . . . ,Tmn
(
n )〉,V ∪ V̂M̄ )

The exhaustive application of a rule system � on a network N is denoted by T�(N ). In most of our examples
M̄ is trivial and there is only a single transformation step. In these examples the definition of M̄ is omitted and
the transformed network is referred to as T�(N ).
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Fig. 7. Exhaustive application of � on a network N � (
,V) where M̄ 1 contains the left matches m1
1 : L1 → 
1 and m1

2 : L2 → 
2 with
m1

1 � {1̃ �→ 2, 2̃ �→ 3, 3̃ �→ 4} and m1
2 � {4̃ �→ 9, 5̃ �→ 10, 6̃ �→ 7}, and M̄ 2 contains the left matches m2

1 : L2 → 
1 and m2
2 : L2 → 
2

with m2
1 � {4̃ �→ 2, 5̃ �→ 5, 6̃ �→ 6} and m2

2 � {4̃ �→ 7, 5̃ �→ 8, 6̃ �→ 9}. a A transformation sequence resulting from the application of
� on N � (
,V) with match pair vectors M̄ 1 and M̄ 2 b Rule system � � (R,V ′, V̂) removes the a-, b-transition sequence, and the d-,
c-transition sequence; the system LTS of networks � is applied on remain unchanged as the a- and d-transitions can both never synchronise
and the b- and c-transitions are therefore unreachable c The system LTSs of the networks in the transformation sequence; since the a- and
c-transitions and the b- and d-transitions can never synchronise and the d- and c- transitions in 
1 are cut the h-transitions are the only
reachable behaviour
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Figure 7 presents a transformation sequence that is the result of the application of a rule system� (see Fig. 7b)
on a network N . The system LTSs of the input and output networks are exactly the same, this LTS is shown
in Fig. 7c. The a- and c-transitions and the b- and d -transitions can never synchronise. Furthermore, the d -
and c- transitions in 
1 are cut. The synchronisation of the e-transitions, resulting in h-transitions, are the only
reachable behaviour in the system LTS.

Rule system � removes the a-, b-transition sequence, and the d -, c-transition sequence. The system LTS of
the network � is applied on remains unchanged because in the described situation synchronisation of both the
a- and d -transitions is impossible and the b- and c-transitions are otherwise unreachable. Transformations like
this are useful to gain insights in the reachable behaviour of local process LTSs.

Figure 7a shows the exhaustive application of � on a network N � (
,V). The first transformation step ap-
plies thematch pair vector M̄ 1 which contains the leftmatchesm1

1 : L1 → 
1 andm1
2 : L2 → 
2 withm1

1 � {1̃ �→
2, 2̃ �→ 3, 3̃ �→ 4} andm1

2 � {4̃ �→ 9, 5̃ �→ 10, 6̃ �→ 7}. The projected set of synchronisation lawsV ′M̄ 1
is equivalent

to V ′, i.e., V ′M̄ 1 � V ′. The resulting network is TM̄ 1 (N ) � (〈Tm1
1
(
1),Tm1

2
(
2)〉,V ∪ V ′M̄ 1 ∪ V̂M̄ 1

). The second

transformation step applies the match pair vector M̄ 2 which contains the left matches m2
1 : L2 → 
1 and m2

2 :
L2 → 
2 with m2

1 � {4̃ �→ 2, 5̃ �→ 5, 6̃ �→ 6} and m2
2 � {4̃ �→ 7, 5̃ �→ 8, 6̃ �→ 9}. The projected set of synchroni-

sation laws V ′M̄ 2
is empty as for each (v̄ , a) ∈ V ′ we have 1 ∈ Ac(v̄ ) and there is no i ∈ {1, 2} such that M̄ (i ) � 1.

This final transformed network is T�(N ) � (〈Tm2
1
(Tm1

1
(
1)),Tm2

2
(Tm1

2
(
2))〉,V ∪ V ′M̄ 1 ∪ V̂M̄ 1 ∪ V ′M̄ 2 ∪ V̂M̄ 2

).

4.2. Analysing transformations of an LTS network

In a rule system, transformation rules can be dependent on each other regarding the behaviour they affect.
In particular, the rules may refer to actions that require synchronisation according to some law, either in the
network being transformed, or the network resulting from the transformation. Since in general, it is not known a
priori whether or not those synchronisations can actually happen (see Fig. 6, the a-transitions versus the b- and
d -transitions), full analysis of such rules must consider both successful and unsuccessful synchronisation.

To achieve this, dependent rules must be analysed together as combinations of LTS patterns, as shown in
Fig. 1. To this end, LTS patterns are combined into an LTS network, called a pattern network P � (
̄,W), with

̄ a vector of pattern LTSs, andW a set of synchronisation laws. In particular, the left and right pattern networks
of a rule system � � (R,V ′, V̂) are defined as L̄ � (〈L1, . . . ,L|R|〉,V ′) and R̄ � (〈R1, . . . ,R|R|〉,V ′ ∪ V̂). For the
analysis of these pattern networks, we define in Definition 4.6 the κ-extended pattern network consisting of the
combination of the κ-extended LTS patterns and an extension of the synchronisation laws with κ-synchronisation
lawsVκ . The left and right κ-extendedpattern networks are denoted L̄κ and R̄κ and, for the purpose of equivalence
checking, must use the same set of κ-synchronisation laws Vκ .

Definition 4.6 (κ-Extended Pattern Network) Given a pattern network P � (
̄,W) of size n, its κ-extended
pattern network is defined as Pκ , where

Pκ �(〈
̄κ
1 , . . . , 
̄

κ
n 〉,W ∪ Wκ ), and

Wκ �{(v̄ , μ) | Ac(v̄ ) �� ∅ ∧ ∀ i ∈ Ac(v̄ ).
((∃p ∈ I
̄i

. v̄i � σp) ∨ (∃p ∈ E
̄i
. v̄i � εp) ∨ (∃p ∈ E
̄i

, p ′ ∈ I
̄i
. v̄i � γp,p ′ ))}

with μ an action that is unique w.r.t. rule system � � (R,V ′, V̂), i.e., μ �� τ ∧ ∀(v̄ ′, a) ∈ V ′ ∪ V̂. μ �� a).

Verifying a rule system must account for all possible ways of entering or leaving the pattern networks. There-
fore, the set of κ-synchronisation laws Wκ describes all possible combinations of synchronisations between σ -,
ε-, and γ -actions.

Figure 8 shows a rule system �, in which the two rules are dependent. Again, the states are numbered such
that matches can be identified by the state label, i.e., a state ĩ is matched onto state i . The two transformation rules
depicted in Fig. 8a introduce a new dependency between two (possibly) independent systems. The corresponding
κ-extended pattern networks are given in Fig. 8b. The κ-synchronisation laws allow σ -, ε-, and γ -actions to
be performed both independently and synchronised. The synchronisations of σ1- and σ2-transitions, σ1- and
ε2-transitions, and σ1- and γ2,2-transitions are displayed as the σσ -transition, the σε-transition, and the σγ -
transition, respectively. Figure 8c presents the branching bisimulation check performed on the two κ-extended
pattern networks.
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Fig. 8. A rule system and its κ-extended pattern networks and bisimulation checks. a A rule system � � (R,V ′, V̂) b The corresponding
κ-extended pattern networks c Bisimulation check; the ε2-transition ensures that L̄κ ↔b/ R̄κ

Thecheck concludes that the twonetworks arenotbranchingbisimilar. Inparticular,when the secondprocess (Rκ
2)

leaves the pattern LTS at state 〈4̃, 2̃〉 via the ε2-transition, the a-transition can no longer be mimicked. The same
would occur in any application of � at any state matched by 〈4̃, 2̃〉 that has a transition to an unmatched state. 5

A rule system may consist of multiple classes of dependent rules where synchronisation is contained within a
class. There is no synchronisation defined between the classes, i.e., the classes are independent of each other in
terms of synchronising behaviour. These independent classes can be analysed separately.

5 In our previous work [PW16], this type of rule system was called a non-cascading rule system. In this work, we no longer need to verify
whether a rule system is cascading since the κ-state makes the effect of the transformation on the unmatched states explicit. Furthermore, the
correctness proof of the technique presented in this article does not distinguish between cascading and non-cascading rule systems. Hence,
the verification technique as described here will correctly reject non-cascading rule systems.
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Given a rule system � � (R,V ′, V̂), the potential synchronisation between the behaviour in transformation
rules in R is characterised by the direct dependency relation D :

D � {(i , j ) | ∃ (v̄ , a) ∈ V ′ ∪ V̂. {i , j } ⊆ Ac(v̄ )}
Transformation rule Ri is related via D to the rule Rj iff both rules participate in a synchronisation law (v̄ , a) ∈
V ′ ∪ V̂ . The relation considering directly and indirectly dependent rules, called the dependency relation, is defined
by the transitive closure of D , i.e., D+. The D+ relation can be used to construct a partition D of transformation
rule indices into classes of indices referring to dependent rules. Each class can be analysed independently. We call
these classes dependency sets.

To define the projection of a rule system� � (R,V ′, V̂) along a dependency setP ∈ Dwe use (P ,<) to obtain
a vector mapping the domain 1..|P | to the rules in R; we write P (i ) � j iff the i th element of P (with i ∈ 1..|P |)
refers to the transformation rule Rj (with j ∈ 1..|R|). The projection of a rule system along dependency set P is
defined as follows.

Definition 4.7 (Projection of a rule system) Let � � (R,V ′, V̂) be a rule system with a partition D of dependency
sets. The projection of � along a dependency set P ∈ D is a rule system �P � (RP ,V ′P , V̂P ) with RP a vector
of size |P | such that for all i ∈ |P | we have RP

i � RP (i).

The left and right pattern networks of a projected rule system are denoted as L̄P and R̄P .
An analysis of the pattern networks is only sufficient if all relevant behaviour is described in those networks.

Furthermore, the effect of the matches (i.e., the application of the rule system) must be taken into consideration
with respect to both the projection of the sets of synchronisation laws V ′ and V̂ , and completeness of transfor-
mation of synchronising transitions. To ensure the soundness of the transformation verification approach one
analysis condition and four application conditions must be satisfied.

In Sections 4.2.1 and 4.2.2 the analysis of a rule system and application of a rule system, respectively, is
discussed further. The analysis of a rule system consists of the verification of the pattern networks and the
analysis condition. The analysis of the application of a rule system constitutes the verification of the application
conditions. Both sections present an analysis algorithm and a time complexity analysis.

4.2.1. Analysis of a rule system

In the analysis of a rule system the left and right pattern networks are checked for branching bisimilarity. To
guarantee the soundness of this check, an analysis condition must apply. We first describe the analysis condition.
Then, the algorithm for the analysis of a rule system is presented. Finally, this section is concluded with a run
time analysis.

Consider a rule system � � (R,V ′, V̂). The analysis condition requires that � is complete with respect to the
synchronisation laws in V ′. That is, all the action labels described by the laws in V ′ must be transformed by the
associated transformation rule. This ensures that any behaviour described in V ′, and affected by the rule system,
is explicitly visible in the pattern networks. The symmetric condition involving the Ri and V̂ applies as well.

∀ i ∈ 1.. | R | . (∀(v̄ , a) ∈ V ′. v̄i ∈ ALi
∪ {•}) ∧ (∀(v̄ , a) ∈ V̂. v̄i ∈ ARi

∪ {•}) (ANC1)

Figure 9 shows how the application of a rule system that does not satisfy ANC1 affects the transforma-
tion verification. The rule system �, shown in Fig. 9a, has a synchronisation law (〈a, a〉, a) ∈ V ′. However,
transformation rule R2 does not contain any a-transitions, i.e., ANC1 is not satsfied. As a result the effects of
the transformation of the a-transition by rule R1 is not visible in the κ-extended pattern networks presented in
Fig. 9b. Figure 9d shows that an input network N exists (Fig. 9c) such that the input network N and output
network T�(N ) are not branching bisimilar. If rule R2 would contain the a-loop, then the a-transition would
not have been cut and L̄κ and R̄κ would not be bisimilar any longer. Hence, it is vital that labels considered by
synchronisation laws in V ′ is also present in the transformation rules, i.e., rule systems must adhere to ANC1.

The analysis. In the verification of a rule system � the aim is to determine whether � is sound for any network
N on which � is applicable. Before analysing the transformation rules with branching bisimulation checks, it
is checked whether � is confluent and satisfies ANC1. Verification of a rule system � � (R,V ′, V̂) proceeds as
follows:
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Fig. 9. Rule system � does not satisfy ANC1; although L̄κ ↔b R̄κ , a network N exists such that GN ↔b/ GT� (N ). a A rule system
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1. Check whether in �, no τ -transitions can be synchronised, renamed, or cut, and whether ANC1 is satisfied.
If not, report which check failed and stop.

2. Check whether the rules in � are confluent. If not, report that � is not confluent and stop.
3. For each rule in R the κ-extended pattern LTSs are constructed according to Definition 3.7.
4. Construct the set of dependency sets D.
5. For each class (dependency set) P ∈ D determine whether L̄κ,P ↔b R̄κ,P holds, i.e., whether the κ-extended

pattern networks projected along P are branching bisimilar.

If all steps produce positive results, then � is branching-structure preserving for all inputs it is applicable
on. Otherwise, � may preserve the branching-structure of some LTS networks, but it certainly is not branching-
structure preserving for all possible inputs it is applicable on.

Time complexity of the analysis. In the first step of the verification of a rule system �, each check requires the
verification of a condition on each synchronisation law in V ′, V̂ , or both. Each condition can be checked in linear
time. Hence, the running time of step 1 is O(|V ′ ∪ V̂|).

In the second step, it is checked whether � is confluent. Confluence checking of transformations of LTSs has
O(

(|R|
2

) · s2 · t · log(s)) time complexity [Wij15], with s and t the largest number of states and transitions in an
LTS pattern of a rule in �, respectively.

In the third step, for each transformation ruleRi , the left and right κ-extended pattern LTSs are built, resulting
in Lκ

i and Rκ
i , respectively. The pattern LTSs must only be extended once. Therefore, the running time of step 3

has time complexity O(|R| · g), with g the largest number of glue-states appearing in an LTS pattern of a rule in
�.

The fourth step constructs the dependency sets by analysing the synchronisation laws in V ′ ∪ V̂ . This can be
done in O(|V ′ ∪ V̂|) time.

In the fifth and last step, for each dependency set P ∈ D the pattern networks L̄κ,P and R̄κ,P are constructed
and it is verified whether L̄κ,P and R̄κ,P are branching bisimilar. Hence, |D| bisimulation checks are performed.
Let s , t and a be the largest number of states, transitions and action labels, respectively, appearing in the κ-
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extended pattern networks of �. Branching bisimilarity checking can be performed in O(t · log(s + a)) [GW16].
Therefore, the time complexity of the final step of the analysis is O(|D| · (t · log(s + a))).

The running time of steps 3-5 together therefore amounts to O(|D| · (t · log(s + a)) + |V ′ ∪ V̂| + |R| · g). In
contrast with previous work, the analysis presented here only requires a single bisimulation check per dependency
set P ∈ D (versus 2|P | − 1 in previous work [WE13]). This improvement is made possible by the new correctness
proof presented in Sect. 4.3.

4.2.2. Analysis of the application of a rule system

The analysis presented in the previous section is not enough to guarantee the soundness of the transformation
verification technique. There are four more conditions that need to be taken into account when the rule system
is applied on an input LTS network. We first describe these four application conditions. Then, the algorithm for
the analysis of the application of a rule system is presented. Finally, this section is concluded with a run time
analysis.

Consider a rule system � � (R,V ′, V̂) and an LTS network N � (
,V) of size n on which � is applied
subject to a set of match pairs m.

The first condition concerns the completeness of transformation of synchronising transitions when applying
rule system� on networkN . To prevent breaking branching bisimilarity due to amixture of old and new synchro-
nising behaviour, we require that old synchronising behaviour is completely transformed. A rule transforming
synchronising transitions (with a minimum of two synchronising parties) must be applicable on all equivalent
synchronising transitions. More precisely, for each active action label v̄j (j ∈ |R|) of a law (v̄ , a) ∈ V ′ that syn-
chronises with another action label (i.e., {j } ⊂ Ac(v̄ )), we must have that if a process 
i (i ∈ 1..n) is matched on
by Lj , all v̄j -transitions in 
i are transformed, i.e., for all v̄j -transitions in 
i , there exists a match pair (m, m̂)
such that m:Lj → 
i matches a v̄j -transition in Lj on that v̄j -transition in 
i .

∀ j ∈ 1..|R|, (v̄ , a) ∈ V ′. {j } ⊂ Ac(v̄ ) ∧ v̄j ∈ ALj
⇒

∀ i ∈ 1..n, (s, v̄j , s ′)∈Ti . ∃(m:Lj → 
i , _) ∈ m, (p, v̄j , p ′)∈TLj
. m(p) � s ∧ m(p ′)�s ′ (APC1)

We write “_” to indicate that the second element of the match pair is not relevant. The symmetric condition
involving the Rj and V ′ ∪ V̂ applies as well. Together with ANC1, APC1 ensures that synchronising transitions
with a particular label in the input network are either all transformed, or none are transformed. This is shown in
Sect. 4.3 in Lemma 4.9.

Figure 10 shows a transformation that satisfies ANC1, but does not adhere to APC1. The rule system �,
presented in Fig. 10a, transforms a-transitions to c-transitions. The first transformation rule transforms an a-
transition to a c-transition iff there is a b-loop at the state from which the a-transition is performed. The second
transformation rule transforms a-loops to c-loops. If � is applied on networkN , presented in Fig. 10c, then the
transition 〈1〉 a−→
1 〈2〉 is not transformed. Therefore, the transformation does not satisfy APC1.

The laws of the rule system describe that the synchronisation of two a-transitions results in an a-transition
(i.e., (〈a, a〉, a) ∈ V ′), and that the b-loop is performed independently of other processes (i.e., (〈b, •〉, b) ∈ V ′).
A new synchronisation law (〈c, c〉, a) is added such that the synchronisation of two c-transitions results in an
a-transition again. This makes old and new synchronising behaviour comparable. As shown in Fig. 10b, the
branching bisimulation check cannot distinguish between the left and right κ-extended pattern networks.

However, if� is applied on the LTS networkN given in Fig. 10c, then it turns out that GN and GT� (N ) are not
branching bisimilar (see Fig. 10d). The transformed network can no longer perform the 〈2, 3〉 a−→ 〈1, 3〉 transition.
Transition 〈2〉 a−→ 〈1〉 in process 
1 has not been transformed while the a-loop in 
2 has been transformed to a
c-loop in T (
2). Hence, there is no a-transition available anymore with which the 〈2〉 a−→T (
2) 〈1〉 transition can
synchronise.

The second condition prevents that projections of new synchronisation laws in V̂ are defined over actions
already present in the processes of an input network. Otherwise, an LTS network could be altered without
actually defining any transformation rules. Formally, if the left LTS pattern Lj (j ∈| R |) of the j th rule in R is
matched on the i th process (i ∈ 1..n) in 
, then the v̄j may not be defined over actions in Ai .

∀ i ∈ 1..n, j ∈ 1.. | R |, (m:Lj → 
i , _) ∈ m, (v̄ , a) ∈ V̂, . v̄j �∈ Ai (APC2)



A formal verification technique for behavioural model-to-model transformations 23

1̃ 3̃1̃ 3̃

V̂ = {(〈c, c〉, a)}

V′ =
⎧⎨
⎩

(〈a, a〉, a)
(〈b, •〉, b)

⎫⎬
⎭

R1L1 R2L2

a

2̃ 2̃
a cc

b b

(a)

GL̄κ = GR̄κ

1̃ 3̃

κ κ 1̃ κ

κ 3̃

σ3

σ1

σ1

σ3

2̃ 3̃

2̃ κ

σ3

σ2

σ2

σ2σ3 σ1σ3

a

b

b

1

V =
⎧⎨
⎩

(〈a, a〉, a)
(〈b, •〉, b)

⎫⎬
⎭

Π1

3

Π2

2

aaa

b

(c)

(b)

(d)

1 3

2 3

GN

1 3

2 3

GTΣ(N )

b

↔b/

aa a

b

Fig. 10. Rule system � and input network N with matches m(ĩ) � i and m̂(i) � i that do not satisfy APC1; although L̄κ ↔b R̄κ , the
system LTS of the input network GN is not bisimilar to system LTS of the output network GT� (N ). aRule system � � (R,V ′, V̂) transforms
a-transitions to c-transitions, synchronisation of c-transitions results in an a-transition. b L̄κ and R̄κ are equivalent since the synchronisation
of two c-transitions result in an a-transition again. c An input network N � (
,V). d The system LTSs before (GN ) and after (GT� (N ))
transformation are not branching bisimilar; the transformed model is no longer able to synchronise the a-transition performed at state 〈2〉
that was not transformed, since the loop at state 〈3〉 has been transformed to a c-loop

As an example, consider a rule system � � (R,V ′, V̂) with V ′ � ∅, and V̂ � {〈a〉, b}. Say R contains a single
transformation rule that transforms an a-loop with L1 � R1. Note that rule R1 does not change the LTSs it is
applied on, and thus L̄κ � R̄κ . Furthermore, APC1 and ANC1 are satisfied for both V ′ and V̂ . If � is applied
on a network N � (
, {(〈a〉, a)}) with 
 � 〈L1〉, then we obtain the network T�(N ) � (
, {(〈a〉, a), (〈a〉, b)).
Clearly, the system LTSs of N and T�(N ) are not branching bisimilar; T�(N ) can perform both an a-loop and
a b-loop whereasN can only perform the a-loop. Condition APC2 does not allow the application of � onN as
(〈a〉, b) ∈ V̂ involves label a which is present in A1.

The third and fourth condition concern how the set of laws V (of the network N on which � is applied) is
related to the set of laws V ′ (that � expects). Consider a set of match pairsm describing the transformation ofN
as defined by �. The application of the matches in m is distributed over a sequence of transformation steps. Let
M̄ be a vector of match pairs defining a single transformation step in the sequence. For each transformation step
M̄ it is required that APC3 and APC4 hold.

The third condition expresses that the set of synchronisation laws V of network N must contain all the
synchronisation laws in V ′ that � expects.

V ′M̄ ⊆ V (APC3)

An application of a rule system � on an LTS network N for which APC3 does not hold is given in Fig. 11.
The corresponding match pair vector is M̄ � (m : L1 → 
1, m̂ : R1 → T (
1)). Condition APC3 does not hold
since the law (〈a〉, c) ∈ V ′ of rule system �, presented in Fig. 11a is not included in the set of laws of the input
networkN , shown in Fig. 11c. The analysis condition ANC1 and application conditions APC1 and APC2 hold.

The rule system transforms a-transition to d -transitions. The local a-transitions result in global c-transitions
due to law (〈a〉, c) ∈ V ′. To ensure that the behaviour remains equivalent a new synchronisation law (〈d〉, c) ∈ V̂
is introduced such that, like the a-transitions, the d -transitions result in global c-transitions. As shown in Fig. 11b
the left and right κ-extended pattern networks are branching bisimilar, as expected.
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Fig. 11. Rule system � and input network N with matches m(ĩ) � i and m̂(i) � i that do not satisfy APC3; although L̄κ ↔b R̄κ , the
system LTSs of the input network GN is not bisimilar to system LTS of the output network GT� (N ). aRule system� � (R,V ′, V̂) transforms
a-transitions to d-transitions, the synchronisation laws specify that both the local a- and the d-transitions result in a global c-transition. b
L̄κ and R̄κ are equivalent since for both the left and right patterns the process-local transitions results in a c-transition. c Input network
N � (
,V). d The system LTSs before (GN ) and after (GT� (N )) transformation are not branching bisimilar; since (〈a〉, c) ∈ V ′ \ V (i.e.,
APC3 is violated) the a-transition is cut in 
1 while the d-transition is not cut in T (
1) due to introduction of (〈d〉, c)

However, when � is applied on input network N the transformation of the a-transition in process 
1 (now
a d -transition) is not cut due to introduction of the law (〈d〉, c) ∈ V̂ . The system LTSs before (GN ) and after
(GT� (N )) transformation are given in Fig. 11d. Since V ′M̄ �⊆ V , an analysis of � does not take into account that
in 
1 the a-transition is cut. Therefore, the analysis cannot give any guarantees for the input network N .

If application conditionAPC3 is satisfiedbyanetwork, then eithernetworkN must include the law (〈a〉, c) ∈ V
or the law must be removed from V ′ in rule system �. In the former case, the a-transition in 
1 is not cut and the
system LTS GN and GT� (N ) are branching bisimilar. In the latter case, the a-transition in L1 is cut as well and it
follows that L̄κ and R̄κ are not branching bisimilar. Condition APC3 ensures that, with respect to the transitions
described in the transformation rules, both the rules system and the input network cut the same transitions.

The fourth condition ensures that � is aware of all the synchronisation laws in V that affect the rules in R.
That is, besides the projection of synchronisation laws in V ′, no other synchronisation laws in V may involve
behaviour described by the rules in R.

∀(v̄ , a) ∈ V \ V ′M̄ , i ∈ Ac(v̄ ). v̄i �∈ ALM̄ (i)
(APC4)

The symmetric condition involving the V \ V̂ and ARM̄ (i)
applies as well.

A transformation that does not satisfy APC4 is presented in Fig. 12. Condition APC4 is not satisfied because
the law (〈a, c〉, e) ∈ V \ V ′ of input network N , shown in Fig. 12c, contains behaviour that influences the
transformation rules of rule system �, shown in Fig. 12a. The transformation satisfies conditions ANC1, APC1,
APC2, and APC3.
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Fig. 12.Rule system� and input networkN with matchesm(ĩ) � i and m̂(i) � i that do not satisfy APC4; although L̄κ ↔b R̄κ , the system
LTSs of the input networkGN is not bisimilar to systemLTS of the output networkGT� (N ). aRule system� � (R,V ′, V̂) transforms a-loops
to f -loops and b-loops to g-loops, like synchronisation of a and b labels, the synchronisation of f and g labels results in an d-transition. b
L̄κ and R̄κ are equivalent since the transformed loops synchronisation to a d-loop again. c Input network N � (
,V). d The system LTSs
before (GN ) and after (GT� (N )) transformation are not branching bisimilar; the transformed model is unable to synchronise the b-transition
of 
2 that was not transformed because the a-loop in 
1 has been transformed to an f -loop.

Rule system � transforms a-loops to f -loops and b-loops to g-loops. In an attempt to preserve the semantics
the f - and g-actions, like the a- and b-actions, they are forced to synchronise, resulting in d -actions. As a result
the left and right κ-extended pattern networks, presented in Fig. 12b, are branching bisimilar.

However, if � is applied on network N , then the possibility of synchronising the a- and c-loops is lost. It
follows that GN can perform an e-loop while GT� (N ) cannot (see Fig. 12d). Hence, the two system LTSs are not
branching bisimilar.

If APC4 is satisfied, then rule system � must contain the synchronisation law (〈a, c〉, e) ∈ V ′. Additionally,
due toANC1, the b-transitionmust then be present inL2. It then becomes visible when comparing the κ-extended
pattern networks L̄κ and R̄κ that the possibility of performing an e-loop is lost in R̄κ .

Note that for a confluent rule system all transformation sequences have the same end result. Therefore, it
is sufficient that these conditions hold for a single transformation sequence from the input network to the final
output network.

The analysis. For the application of a rule system � the aim is to determine whether a verified � is sound for a
network N on which � is applied. Before transformation of a network N , it is checked whether the application
conditions APC1, APC2, APC3, APC4 are satisfied. Checking applicability of a rule system � � (R,V ′, V̂) on
an input network N � (
,V) is performed as follows:

1. Calculate the maximum set of match pairs m.
2. Check whether APC1 and APC2 hold for all (m, m̂) ∈ m.
3. Distribute the match pairs inm over a sequence of transformation steps defined by M̄ 1, . . . , M̄ k with k ∈ N.
4. Check whether APC3 and APC4 are satisfied with respect to each M̄ i (i ∈ 1..k ).

If the steps return positive results, then � is applicable on N .

Time complexity of the analysis. To check for the applicability of a rule system �, a set of matches is required.
Say that n is the size of the input network, m is the size of the set of matches, and t is the largest number of
transitions in an LTS pattern of a rule in �.
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In the first step, the maximum set of matches is calculated. In general, the graph matching problem [DP06] is
NP-complete. However, it has been shown in [DP06] that if the graphs have a root, all states are reachable from
that root, and each state has a bounded number b of outgoing transitions, then the complexity is independent of
the size of the input graph, instead only depending on b and the number of transitions n in the left pattern of the
transformation rule. The complexity is then O(�n

i�0bi ). Since our LTSs are weakly connected, they meet these
requirements.

In the second analysis step, application conditions APC1 and APC2 are verified. When APC1 is checked, for
each law (v̄ , a) ∈ V ′ with |v̄ | > 1, it is checked whether all v̄i -transitions (i ∈ 1..n) are matched. At worst this
takes O(n ·m · t · |V ′|). When APC2 is checked, for each match and each law (v̄ , a) ∈ V̂ it is checked whether for
all i ∈ 1..n it holds that v̄i is not an action of the corresponding matched process. This takes O(n ·m · |V̂|) time.
Hence, the running time of the second step is O(n · m · (|V̂| + t · |V ′|)).

The third step distributes the matches in m over a sequence of match pairs. The set is traversed as a vector of
match pairs of size n that contains as many pairs from m as possible. The time complexity is O(m2).

The fourth and final step verifies whether APC3 and APC4 hold. The check for both APC3 and APC4 needs
to iterate over vectors of match pairs N i (i ∈ 1..k ) and indices of all synchronisation laws in V and V ′. The
number of matches in the match vector is limited to the number of matches in the set m. Therefore, this step has
a running time of O(n · m · |V| · |V ′|).

The running time of steps 2-4 together therefore amounts toO(n ·m · (|V| · |V ′|+ |V̂|+ t · |V ′|)). If we assume
that |V̂| ≤ |V| and |V ′| ≤ |V|, then the running time simplifies to O(n · m · |V| · (|V| + t)).

4.3. Correctness of the verification

In this section, we prove the correctness of the rule system verification as described in the previous section.
We prove the soundness of the rule system verification in Proposition 4.1. The completeness of the verification
approach is shown in Proposition 4.2.

To simplify the proofs, we strengthen condition APC1 such that the correctness proof can be formulated on a
single transformation step instead of a sequence. Application conditionAPC1 is formulated over a set of matches.
However, since rule systems are confluent there is always a single result LTS after a series of applications of a
rule system. Therefore, we may consider a ‘merged’ match without influencing the correctness of the verification
technique over confluent sequences.

In line with this simplification, we assume that � has n rules, and that a rule Ri (i ∈ 1..n) matches on 
i in
the LTS network that � is applied on. For a single transformation step, the rules inR can be reordered according
to this assumption with an appropriate projection of the rule system. For confluent rule systems, the result can be
lifted to confluent sequences of transformations steps and the strengthenedAPC1canbeweakened again toAPC1.

In this case, where Ri matches on 
i , we do not have to consider the projection of synchronisation laws since
V � VM̄ for a set of synchronisation laws V and vector of match pairs M̄ . Hence, we simplywrite V instead of VM̄ .

To prove soundness of the technique, we show that from a bisimulation relation B between L̄κ and R̄κ , a
bisimulation relationC can be constructed between an arbitraryN and correspondingT�(N ). For this purpose,
we first need to prove some lemmas. For clarity, we refer with p, p̂, p ′, . . . to states in a left pattern network, with
q, q̂, q ′, . . . to states in a right pattern network, with s, ŝ, s ′, . . . to states in an input network, and with t, t̂, t ′, . . .
to states in an output network.

The κ-extended pattern networks can be seen as an abstraction from the input networks. In a κ-extended
pattern network, individual processes can only leave the κ-state via σ -transitions and only enter the κ-state via
ε-transitions. Hence, for all transitions enabled by laws in the original (non-κ-extended) pattern network, the
processes that are in the κ-state before such a transition is executed are still in the κ-state after the transition has
been followed. This property is formalised in Lemmas 4.1 and 4.2.

Lemma 4.1 Consider a pattern network P � (
̄,W) of size n. Then,

∀ v̄ ′ ∈ W, p̄, p̄ ′ ∈ SPκ . p̄
v̄ ,a−−→Pκ p̄ ′ ⇒ ∀ i ∈ 1..n. p̄i � κ ⇐⇒ p̄ ′

i � κ

Proof Let (v̄ , a) ∈ W and p̄, p̄ ′ ∈ SPκ such that p̄
v̄ ,a−−→Pκ p̄ ′. Let i ∈ 1..n. We distinguish two cases: p̄i � κ or

p̄ ′
i � κ. We only discuss the first case, the proof for the other case is symmetric.
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Say p̄i � κ. By Definition 3.7, σ -transitions can only be performed from a κ-state. Similarly, a process can
only enter a κ-state by performing an ε-transition. Hence, since (v̄ , a) ∈ W and p̄i � κ, we must have v̄i � •. It
follows from Definition 4.2 that p̄i � p̄ ′

i . Hence, we have p̄ ′
i � κ.

Since the proof for case p̄ ′
i � κ is symmetric, it follows that p̄i � κ ⇐⇒ p̄ ′

i � κ. �
Lemma 4.1 can be applied inductively to obtain a similar result for τ -paths. Synchronisation laws with τ as

a result action are, by Definition 4.6, never κ-synchronisation laws. Therefore, every process that is in a κ-state
before a sequence of τ -transitions is still in the κ-state after the sequence of τ -transitions as shown by Lemma 4.2.

Lemma 4.2 Consider a pattern network P � (
̄,W) of size n. Then,

∀ p̄, p̄ ′ ∈ SPκ . p̄ τ−→∗
Pκ p̄ ′ ⇒ ∀ i ∈ 1..n. p̄i � κ ⇐⇒ p̄ ′

i � κ

Proof Consider states p̄, p̄ ′ ∈ SPκ such that p̄ τ−→∗
Pκ p̄ ′. The use of τ -actions is not allowed in laws inWκ , hence it

follows that (v̄ , a) ∈ W . Therefore, we have p̄ τ−→∗
P p̄

′. The remainder of the proof follows directly fromLemma 4.1
and structural induction on p̄ τ−→∗

P p̄
′. �

Due to the κ-laws, branching bisimulation relations between L̄κ and R̄κ preserve κ-states, i.e., when two state
vectors are related, any κ-states present in one vector are also present in the other vector at the same positions,
and vice versa. This is expressed in Lemma 4.3.

Lemma 4.3 Consider two pattern networks L̄ and R̄ of size n. Then,

∀ p̄ ∈ SL̄κ , q̄ ∈ SR̄κ . p̄ ↔b q̄ ⇒ ∀ i ∈ 1..n. p̄i � κ ⇐⇒ q̄i � κ

Proof Consider states p̄ ∈ SL̄κ and q̄ ∈ SR̄κ . For each i ∈ 1..n, we can distinguish two symmetric cases: p̄i � κ
or q̄i � κ. We only discuss the first case, the proof for the other case is symmetric.

Say p̄i � κ. By Definition 3.1, there is at least one state p̂ ∈ ILi
, and furthermore, according to Definition 3.7,

there is a transition κ
σp̂−→Li

p̂. Hence, there is a law (v̄ , μ) ∈ Vκ , with v̄i � σp̂ and ∀ j ∈ 1..n. j �� i ⇒ v̄j � •,
enabling transition p̄

μ−→L̄κ p̄ ′ for some p̄ ′ with p̄ ′
i � p̂ (by Definition 4.6). Since p̄ ↔b q̄ and μ �� τ , we have

q̄ τ−→∗ ˆ̄q
μ−→ q̄ ′. It follows that ˆ̄qi

σp̂−→ q̄ ′
i . Since σ -transitions can only be performed from κ-states, we have ˆ̄qi � κ.

Finally, from Lemma 4.2 it follows that q̄i � κ.
Since the proof for case q̄i � κ is symmetric, we have ∀ i ∈ 1..n. p̄i � κ ⇐⇒ q̄i � κ. �
As κ-extended pattern networks form an abstraction from thematched input network, it is desirable that those

states representing states not removed by the transformation are related to themselves. In the κ-extended left and
right pattern networks the glue-states and the κ-states represent the states that are kept. As shown in Lemma 4.4,
this can be directly lifted to the network-global level when state vectors only contain exit- and κ-states. However,
this cannot be guaranteed for state vectors that also contain in-states due to the lack of a unique transition (such
as the σ -, ε, and γ -transitions) leaving those in-states. If a state vector p̄ consists of in-, out- and κ-states, then
p̄ may be related to a different state vector q̄ via a τ -path originating from an in-state p̄i contained in p̄. When
matches on initial states are restricted to exit-states, Lemma 4.4 is sufficient to show that initial states of the input
and output networks of a transformation are related.

Lemma 4.4 Consider a rule system � � (R,V ′, V̂) such that L̄κ ↔b R̄κ . Then, ∀ p̄ ∈ IL̄κ . p̄ ↔b p̄.

Proof Consider a state p̄ ∈ IL̄κ . We will construct a state p̄ ′ and synchronisation law (v̄ κ , μ) ∈ Vκ such that

p̄
v̄ κ ,μ−−→ p̄ ′. We construct v̄ κ and p̄ ′ with for all i ∈ 1..|R|:

(v̄ κ
i , p̄ ′

i ) �
{
(εp̄i

, κ) if p̄i ∈ E
̄i

(σx , x ) if p̄i � κ. By Definition 3.1, there exists an x ∈ IL̄i

Let μ be the unique result action corresponding to v̄ κ . Since for all i ∈ 1..|R| either p̄i � κ or p̄i ∈ EL̄i
, there is a

transition p̄i
v̄ κ
i−→ p̄ ′

i . It follows that there is a transition p̄
v̄ κ ,μ−−→ p̄ ′.

By Definition 3.6, there is a state q̄ ∈ SR̄κ such that p̄ ↔b q̄ . Furthermore, since (v̄ κ , μ) ∈ Vκ , we have

μ �� τ . Hence, there is a q̄ τ−→∗ ˆ̄q
μ−→ q̄ ′ such that p̄ ↔b

ˆ̄q and p̄ ′ ↔b q̄ ′. We show that p̄ � ˆ̄q from which it
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follows that p̄ ↔b p̄. Consider an i ∈ 1..n. The σ -transitions only leave from κ-states (in which case p̄i � κ

and the εp̄i
-transitions only leave from the state p̄i , i.e., each of the p̄i

v̄ κ
i−→ p̄ ′

i transitions carries a unique label

identifying the states connected by the transition. Both p̄i and ˆ̄qi can perform the
v̄ κ
i−→ directly. It follows that

p̄i � ˆ̄qi . Therefore, p̄ � ˆ̄q and p̄ ↔b
ˆ̄q can be rewritten to p̄ ↔b p̄. �

To formally define how a κ-extended network relates to an input network, we introduce the mapping of state
vectors as presented in Definition 4.8. Similar to matches for a single rule, the mapping of a state vector of a
κ-extendedpattern networkdefines howa state vector of the pattern ismapped to a state vector of anLTSnetwork.

Definition 4.8 (State vector mapping) Consider an LTS networkN � (
,V) and a pattern network P � (
̄,W)
of size n with corresponding matches mi : 
̄i → 
i for all i ∈ 1..n. We say a state vector p̄ ∈ SPκ is mapped to
a state vector s̄ ∈ SN , denoted by p̄ � s̄ , iff

∀ i ∈ 1..n.

(
(p̄i �� κ ⇒ mi (p̄i ) � s̄i )

∧ (p̄i � κ ⇒ ¬∃x ∈ S
̄i
,mi (x ) � s̄i )

)

By referring to matches of the individual vector elements, a state vector is mapped on to another state vector.
Since the κ-state represents unmatched states, the mapping relates the κ-state to all unmatched states. Hence, for
every state s̄ ∈ SN there is a state p̄ ∈ Pκ that maps on state s̄ (Lemma 4.5).

Since κ-states represent all unmatched states, we need to construct states that specify explicitly which un-
matched state is represented at the moment. The state s̄ ′ :� s̄ [p̄i | P (i )] denotes the state s̄ ′ constructed from
states s̄ and p̄ such that for all i ∈ 1..n, if predicate P (i ) holds, we have s̄ ′

i � p̄i , and if not, we have s̄ ′
i � s̄i . For

example, the state s̄ ′ :� s̄ [mi (p̄i ) | p̄i �� κ] is produced from matches of p̄, where for all i ∈ 1..n, s̄ ′
i � mi (p̄i ) if

p̄i �� κ, and s̄ ′
i � s̄i if p̄i � κ.

With the exception of transitions enabled by Wκ , the input network is able to simulate the behaviour of the
κ-extended network. The transitions enabled by κ-laws form an abstraction from all transitions that may possibly
enter or leave states of the input network matched by the glue-states of the pattern network. That is, for laws
(v̄ , a) ∈ W , the mapping preserves the branching structure of the pattern network. Following, we formalise this
in a number of lemmas.

The state vector mapping preserves the branching structure of the pattern network. Similar to a match, the state
vector mapping (Definition 4.8) preserves the branching structure of the pattern network for the set of matching
laws. Before proving this claim, we first show that the state vector mapping is complete, i.e., the mapping relation
maps to all states of any input network. More precisely, for each (vector) state s̄ in the input network there is a
(vector) state in the κ-extended pattern network that is mapped on s̄ . This is formally proven in Lemma 4.5.

Lemma 4.5 Consider an LTS network N � (
,V) and a pattern network P � (
̄,W) of size n with W ⊆ V
and corresponding matches mi : 
̄i → 
i for all i ∈ 1..n. Then, ∀ s̄ ∈ SN . ∃ p̄ ∈ SPκ . p̄ � s̄ .

Proof Let s̄ be a state in SN . From the definition of state vector mapping (Definition 4.8) it follows that there
is a p̄ ∈ SPκ with p̄ � s̄ . We shall construct p̄ such that p̄ � s̄ . Consider an i ∈ 1..n. If ∃x ∈ S
̄i

. mi (x ) � s̄i ,
then we take p̄i � x . Otherwise, we take p̄i � κ. By construction, it holds that p̄ � s̄ . Finally, by Definition 3.7,
x , κ ∈ S
̄κ

i
, and thus, p̄ ∈ SPκ . �

Lemmas 4.6 and 4.7 express that the state vector mapping preserves the branching structure of the pattern
network. Lemma 4.6 states that for each transition in the pattern network there is a corresponding transition
in the mapped network. Lemma 4.7 extends this to sequences of τ -transitions. In Lemma 4.6 and Lemma 4.7,
the end state of the transition and the sequence of transitions in the input network, respectively, is identified. In
short, for vector states p̄ and s̄ , if p̄ � s̄ , then for each index i , firstly, transitions taken in pattern 
̄i can be
mimicked by transitions in process 
i from the mapped state leading to a state mapped by the target state in 
̄i ,
and secondly, if the state p̄i is a κ-state, then no transitions from the corresponding state s̄i are taken.

Lemma 4.6 Consider an LTS network N � (
,V) and a pattern network P � (
̄,W) of size n with W ⊆ V
(APC3) and corresponding matches mi : 
̄i → 
i for all i ∈ 1..n. Then,

∀(v̄ , a) ∈ W, p̄, p̄ ′ ∈ SPκ . p̄
v̄ ,a−−→Pκ p̄ ′ ⇒

∀ s̄ ∈ SN . p̄ � s̄ ⇒ ∃ s̄ ′ ∈ SN . p̄ ′ � s̄ ′ ∧ s̄
v̄ ,a−−→N s̄ ′ ∧ ∀ i ∈ 1..n. p̄ ′

i � κ ⇒ s̄ ′
i � s̄i
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Proof Consider synchronisation law (v̄ , a) ∈ W and states p̄, p̄ ′ ∈ SPκ such that p̄
v̄ ,a−−→Pκ p̄ ′, and s̄ ∈ SN with

p̄ � s̄ . Take s̄ ′ :� s̄ [mi (p̄ ′
i ) | p̄ ′

i �� κ]. By construction, we have s̄ ′ ∈ SN and ∀ i ∈ 1..n. p̄ ′
i � κ ⇒ s̄ ′

i � s̄i .
Furthermore, Lemma 4.1 ensures that p̄i � κ ⇐⇒ p̄ ′

i � κ for all i ∈ 1..n. Therefore, for all i ∈ 1..n, it holds
that (¬∃x .mi (x ) � s̄i ) ⇐⇒ (¬∃x .mi (x ) � s̄ ′

i ). It follows that p̄
′ � s̄ ′.

What is left to show is (v̄ , a) ∈ V and ∀ i ∈ 1..n. (v̄i � • ⇒ s̄i � s̄ ′
i ∧ s̄i ∈ Si ) ∧ (v̄i �� • ⇒ s̄i

v̄i−→i s̄ ′
i ) (by

Definition 4.2). Since W ⊆ V (by APC3) and (v̄ , a) ∈ W , we must have (v̄ , a) ∈ V . Consider an i ∈ 1..n. We
distinguish two cases:

• v̄i � •. As s̄ ∈ SN , it holds that s̄i ∈ Si . Moreover, by Definition 4.2, we have p̄i � p̄ ′
i and p̄i ∈ S
̄κ

i
. If p̄i � κ,

then by construction of s̄ ′ we have s̄i � s̄ ′
i . If p̄i �� κ, thenmi (p̄i ) � s̄i andmi (p̄ ′

i ) � s̄ ′
i . Finally, since p̄i � p̄ ′

i
and mi is injective (Definition 3.4), mi (p̄i ) � mi (p̄ ′

i ) � s̄i � s̄ ′
i .

• v̄i �� •. By Definition 4.2 and (v̄ , a) ∈ W , we have p̄i
v̄i−→
̄i

p̄ ′
i . Hence, it follows that mi (p̄i ) � s̄i and

mi (p̄ ′
i ) � s̄ ′

i . Finally, since a match (Definition 3.4) is an embedding, we conclude that s̄i
v̄i−→i s̄ ′

i .

In conclusion, we have (v̄ , a) ∈ V and ∀ i ∈ 1..n. (v̄i � • ⇒ s̄i � s̄ ′
i ∧ s̄i ∈ Si )∧ (v̄i �� • ⇒ s̄i

v̄i−→i s̄ ′
i ). Therefore,

it holds that s̄
v̄ ,a−−→N s̄ ′. �

Lemma 4.7 Consider an LTS network N � (
,V) and a pattern network P � (
̄,W) of size n with W ⊆ V
(APC3) and corresponding matches mi : 
̄i → 
i for all i ∈ 1..n. Then,

∀ p̄, p̄ ′ ∈ SPκ . p̄ τ−→∗
Pκ p̄ ′ ⇒

∀ s̄ ∈ SN . p̄ � s̄ ⇒ (∃ s̄ ′ ∈ SN . p̄ ′ � s̄ ′ ∧ s̄ τ−→∗
N s̄ ′ ∧ ∀ i ∈ 1..n. p̄ ′

i � κ ⇒ s̄ ′
i � s̄i )

Proof Let p̄, p̄ ′ ∈ SPκ and s̄, s̄ ′ ∈ SN such that p̄ τ−→∗
Pκ p̄ ′, p̄ � s̄ , and p̄ ′ � s̄ ′. Since τ result actions are not

allowed inWκ , any law (v̄ , τ ) in the sequence of τ ’s must be a member ofW . The proof now follows directly from
Lemma 4.6 and structural induction on p̄ τ−→∗

Pκ p̄ ′. �

When two states s̄ and t̄ from the input and transformed network, respectively, are related by a branching
bisimulation relation, and from s̄ a certain transition is enabled, then from t̄ it must be possible to simulate this
behaviour (and vice versa). Even when this transition is not matched by the transformation rule system, it may
still be the case that t̄ is matched by a state that is not a glue-state. In this case, t̄ cannot simulate s̄ directly, thus,
there must be a τ -path to some other state that is able to directly simulate s̄ . The existence of such a state is proven
in Lemma 4.8.

In Lemma 4.8, we show that in the presence of a state vector mapping and a witness showing that there is
a transition leaving the pattern, all active glue-states (all glue-states involved in that transition) or κ-states are
reachable by related states. More precisely, when a state p̄ – mapped to a state from which the pattern is left –
is related to a state q̄ , then there is a τ -path from q̄ to ˆ̄q such that p̄ ↔b

ˆ̄q and there is a state q̄ ′ which is the
corresponding entry-point of a given unmatched transition that leaves q̄ . This follows from two facts. First, the
κ-synchronisation laws have sychronisation vectors uniquely identifying the active states within q̄ . Second, due to
the matching conditions (Definition 3.4), a matched state must be a glue-state when there is a transition leaving
or entering the corresponding matched state.

Lemma 4.8 LetN � (
,V) be an LTS network of size n and let � � (R,V ′, V̂) be a rule system applicable onN
such that L̄κ ↔b R̄κ . Let M̄ be a vector of match pairs of size n such that mi : Li → 
i and m̂i : Ri → T (
i )
for all i ∈ 1..n. Then,

∀(v̄ , a) ∈ V, s̄, s̄ ′ ∈ SN . s̄
v̄ ,a−−→N s̄ ′ ⇒

∀ p̄, p̄ ′ ∈ SL̄κ , q̄ ∈ SR̄κ . p̄ ↔b q̄ ∧ p̄ � s̄ ∧ p̄ ′ � s̄ ′ ∧ (∀ i ∈ Ac(v̄ ). ¬p̄i
v̄i−→Li

p̄ ′
i ) ⇒

∃ ˆ̄q, q̄ ′ ∈ SR̄κ . q̄
τ−→∗̄

Rκ
ˆ̄q ∧ p̄ ↔b

ˆ̄q ∧ p̄ ′ ↔b q̄ ′∧
(∀ i ∈ Ac(v̄ ). ˆ̄qi � p̄i ∧ q̄ ′

i � p̄ ′
i ) ∧ (∀ i ∈ 1..n \ Ac(v̄ ). ˆ̄qi � q̄ ′

i )
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Proof Consider a synchronisation law (v̄ , a) ∈ V and states s̄, s̄ ′ ∈ SN such that s̄
v̄ ,a−−→ s̄ ′. Let p̄ ∈ SL̄κ and

q̄ ∈ SR̄κ be states such that p̄ ↔b q̄ , p̄ � s̄ , and ∀ i ∈ Ac(v̄ ). ¬p̄i
v̄i−→Li

p̄ ′
i (there is no transition in TL̄ matching

s̄
v̄ ,a−−→N s̄ ′).
A κ-extended pattern network explicitly models transitions that enter and leave the embedding of the pattern

network. However, it does not model the situation where the matched network moves between two unmatched
states. Therefore, we have to perform a case distinction: either the transition of the input-networkN is represented
by one of the κ-synchronisations, or the transition of the input network has no representation in L̄κ . In the former
case, we build the corresponding κ-synchronisation law (v̄ κ , μ) and obtain the required states by applying the

branching bisimulation definition on p̄ ↔b q̄ and p̄
v̄ κ ,μ−−→ p̄ ′. In the latter case, we show that p̄ � p̄ ′ and take q̄

for both ˆ̄q and q̄ ′ from which the proof will follow.
We distinguish the two aforementioned cases:

C1 There exists an i ∈ Ac(v̄ ) such that (p̄i ∈ EL̄i
∧ p̄ ′

i ∈ IL̄i
), (p̄i ∈ EL̄i

∧ p̄ ′
i � κ), or (p̄i � κ ∧ p̄ ′

i ∈ IL̄i
).

The three cases correspond to the situations where the γ -, ε-, and σ -transitions, respectively, are introduced
in κ-extended pattern networks. We will construct a synchronisation law (v̄ κ , μ) ∈ Vκ enabling a transition

p̄
μ−→L̄κ p̄ ′ that represents the LTS pattern network abstraction for s̄

v̄ ,a−−→N s̄ ′. We construct v̄ κ with for all
i ∈ 1..n:

v̄ κ
i �

⎧⎪⎪⎨
⎪⎪⎩

γp̄i ,p̄
′
i

if i ∈ Ac(v̄ ) ∧ p̄i ∈ EL̄i
∧ p̄ ′

i ∈ IL̄i

εp̄i
if i ∈ Ac(v̄ ) ∧ p̄i ∈ EL̄i

∧ p̄ ′
i � κ

σp̄ ′
i

if i ∈ Ac(v̄ ) ∧ p̄i � κ ∧ p̄ ′
i ∈ IL̄i

• otherwise

Let μ be the unique result action corresponding to v̄ κ . Since there are no matching transitions (∀ i ∈
Ac(v̄ ). ¬p̄i

v̄i−→Li
p̄ ′
i ), byDefinition 3.4, for all i ∈ Ac(v̄ ) wemust have p̄i ∈ EL̄i

∨ p̄i � κ and p̄ ′
i ∈ IL̄i

∨ p̄ ′
i � κ.

It follows that (v̄ κ , μ) indeed enables the transition p̄
μ−→L̄κ p̄ ′. Furthermore, by Definition 4.6, we haveμ �� τ .

Since p̄ ↔b q̄ and μ �� τ , by Definition 3.6, we have q̄ τ−→∗̄
Rκ

ˆ̄q
μ−→R̄κ q̄ ′ with p̄ ↔b

ˆ̄q and p̄ ′ ↔b q̄ ′. What

remains to be shown is 1) ∀ i ∈ Ac(v̄ ). ˆ̄qi � p̄i ∧ q̄ ′
i � p̄ ′

i and 2) ∀ i ∈ 1..n \ Ac(v̄ ). ˆ̄qi � q̄ ′
i :

1) Consider an i ∈ Ac(v̄ ). We distinguish two cases:

◦ i ∈ Ac(v̄ κ ). Because μ is unique in Vκ and does not occur in V ′ ∪ V̂ , the transition ˆ̄q
μ−→R̄κ q̄ ′ is

enabled by (v̄ κ , μ) ∈ Vκ . Recall that p̄i ∈ EL̄i
∨ p̄i � κ and p̄ ′

i ∈ IL̄i
∨ p̄ ′

i � κ (since i ∈ Ac(v̄ )). The
v̄ κ
i -transition is only present between p̄i and p̄ ′

i in both L̄κ and R̄κ , and (by Definition 3.7). Therefore,
we must have ˆ̄qi � p̄i and q̄ ′

i � p̄ ′
i .

◦ i �∈ Ac(v̄ κ ). It follows that p̄i � p̄ ′
i and ˆ̄qi � q̄ ′

i (Definition 4.2). Recall that p̄i ∈ EL̄i
∨ p̄i � κ and

p̄ ′
i ∈ IL̄i

∨ p̄ ′
i � κ (since i ∈ Ac(v̄ )). However, since i �∈ Ac(v̄ κ ) only the case where both p̄i and p̄ ′

i are
κ-states remains. By applying Lemma 4.3 on p̄ ↔b

ˆ̄q and p̄ ′ ↔b q̄ ′, it follows that ˆ̄qi � κ and q̄ ′
i � κ.

Hence, p̄i � p̄ ′
i and ˆ̄qi � q̄ ′

i .

2) Consider an i ∈ 1..n \Ac(v̄ ). Since i �∈ Ac(v̄ ), we must have i �∈ Ac(v̄ κ ) (by construction of v̄ κ ). It follows
from Definition 4.2 that ˆ̄qi � q̄ ′

i .

C2 For all i ∈ Ac(v̄ ) it holds that ¬(p̄i ∈ EL̄i
∧ p̄ ′

i ∈ IL̄i
), ¬(p̄i ∈ EL̄i

∧ p̄ ′
i � κ), and ¬(p̄i � κ ∧ p̄ ′

i ∈ IL̄i
).

We take q̄ for both ˆ̄q and q̄ ′ which leads to p̄ ↔b
ˆ̄q . We first show that p̄ � p̄ ′ from which it follows

that p̄ ′ ↔b q̄ ′. The proof is then completed by showing ∀ i ∈ Ac(v̄ ). q̄i � p̄i , the remainder follows from
ˆ̄q � q̄ ′ � q̄ .
We show that p̄ � p̄ ′. Consider an i ∈ 1..n. If both p̄i � κ and p̄ ′

i � κ, we trivially have p̄i � p̄ ′
i . Now consider

the opposite case: p̄i �� κ or p̄ ′
i �� κ. Assume for a contradiction that i ∈ Ac(v̄ ). Then by Definition 3.4, we

must have p̄i ∈ EL̄i
∨ p̄i � κ and p̄ ′

i ∈ IL̄i
∨ p̄ ′

i � κ. Since p̄i �� κ or p̄ ′
i �� κ, only the following three cases

remain: (p̄i ∈ EL̄i
∧ p̄ ′

i ∈ IL̄i
), (p̄i ∈ EL̄i

∧ p̄ ′
i � κ), and (p̄i � κ ∧ p̄ ′

i ∈ IL̄i
). These three cases contradict the
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assumptions of case C2. Hence, we must have i �∈ Ac(v̄ ). It now follows that s̄i � s̄ ′
i . Finally, we have p̄i � p̄ ′

i
because m is an injection. In conclusion, we have p̄ � p̄ ′.
What remains to be shown is ∀ i ∈ Ac(v̄ ). q̄i � p̄i . Consider an i ∈ Ac(v̄ ). Again, by Definition 3.4, we
must have p̄i ∈ EL̄i

∨ p̄i � κ and p̄ ′
i ∈ IL̄i

∨ p̄ ′
i � κ. Based on this we distinguish three cases: p̄i � κ,

p̄i ∈ EL̄i
∧ p̄ ′

i � κ, and p̄i ∈ EL̄i
∧ p̄ ′

i ∈ IL̄i
. In the first case it follows from p̄ ↔b q̄ and Lemma 4.3 that

p̄i � κ � q̄i . The latter two cases contradict one of the three assumptions of case C2 and the proof follows
by contradiction.

In both C1 and C2 there exist ˆ̄q, q̄ ′ ∈ SR̄κ such that q̄ τ−→∗̄
Rκ

ˆ̄q with p̄ ↔b
ˆ̄q , p̄ ′ ↔b q̄ ′, ∀ i ∈ Ac(v̄ ). ˆ̄qi �

p̄i ∧ q̄ ′
i � p̄ ′

i , and ∀ i ∈ 1..n \ Ac(v̄ ). ˆ̄qi � q̄ ′
i . �

Completeness of transition transformation. Due to the application conditions either all process-local transitions
participating in a synchronising global transition are transformed or no process-local transitions are transformed
at all. For confluent rule systems, the order of applying rules is irrelevant and application of the transformation
rules can lead to only one output network. This fact allows us to simplify the correctness proof of the verification
technique by strengthening condition APC1 such that the correctness proof (Proposition 3.1) can be formulated
on a single transformation step instead of a sequence.

Recall that APC1 requires that a rule transforming synchronising transitions labeled with some action a must
be applicable on all a-transitions within the corresponding LTS. Since confluent rule systems have only a single
possible output network, we may consider a ‘merged’ match consisting of all the matches in the sequence that
produces the output network in a single transformation step. A transformation sequence resulting in the final
output network cannot be distinguished from the application of the ‘merged’ match. Therefore, for proving the
correctness of the technique, APC1 may be strengthened as follows:

∀ 
i ∈ 
, rj ∈ R, (v̄ , a) ∈ V ′. {j } ⊂ Ac(v̄ ) ∧ v̄j ∈ ALj
⇒

∀m:Lj → 
i , (s, v̄j , s ′)∈Ti . ∃(p, v̄j , p ′)∈TLj
. m(p) � s ∧ m(p ′)�s ′ (APC1’)

In contrast with APC1, requiring existence of amatch that transforms synchronising transitions for all equivalent
transitions, the strengthened conditionAPC1’ requires that a singlematch transforms all equivalent synchronising
transitions. Indeed, this means that APC1’ requires a ‘merged’ match transforming all synchronising transitions
in one step.

Conditions APC1’ andANC1 ensure that global transitions in the input network are always fully transformed
or not transformed at all. This leads to Lemma 4.9 that states the following: if a transition in a network enabled by
(v̄ , a) ∈ V has a match on a local transition (say v̄i for some i ∈ 1..n), then for all j ∈ 1..n, the participating local
v̄j -transitions must be matched, i.e., all local transition participating in the global transition must be matched.
From this it follows that a global transition is either fully transformed or not transformed at all.

Lemma 4.9 Consider an LTS network N � (
,V) of size n and a rule system � � (R,V ′, V̂) such that APC1’
and ANC1 are satisfied. Consider the pattern network �, let P � (
̄,W) as representative for the left and right
pattern network. Let the mi : 
̄i → 
i (i ∈ 1..n) be the matches specifying the embedding of P in N . Then,

∀(v̄ , a) ∈ W, s̄, s̄ ′ ∈ SN , p̄, p̄ ′ ∈ SPκ . s̄
v̄ ,a−−→N s̄ ′ ∧ p̄ � s̄ ∧ p̄ ′ � s̄ ′∧

(∃ j ∈ Ac(v̄ ). mj (p̄j ) � s̄j ∧ mj (p̄ ′
j ) � s̄ ′

j ∧ p̄j
v̄j−→
̄j

p̄ ′
j ) ⇒ p̄

v̄ ,a−−→Pκ p̄ ′

Proof Consider a synchronisation law (v̄ , a) ∈ W and states s̄, s̄ ′ ∈ SN such that s̄
v̄ ,a−−→N s̄ ′. Let p̄, p̄ ′ ∈ SPκ

with p̄ � s̄ and p̄ ′ � s̄ ′. Finally, let there be an j ∈ Ac(v̄ ) such that mj (p̄j ) � s̄j , mj (p̄ ′
j ) � s̄ ′

j , and p̄j
v̄j−→
̄j

p̄ ′
j

matches transition s̄j
v̄j−→j s̄ ′

j . We shall show that p̄
v̄ ,a−−→Pκ p̄ ′ by showing that for all i ∈ 1..n there is a transition

p̄i
v̄i−→
̄κ

i
p̄ ′
i if v̄i �� •, and p̄i � p̄ ′

i with p̄i ∈ S
̄κ
i
if v̄i � • (Definition 4.2). Consider an i ∈ 1..n. We distinguish

three cases:

• v̄i �� • ∧Ac(v̄ ) � {i}. Law (v̄ , a) constitutes independent behaviour and the proof follows from the premises.
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• v̄i �� • ∧ {i} ⊂ Ac(v̄ ). Law (v̄ , a) constitutes synchronising behaviour. Next we show that v̄i ∈ A
̄i
, after

which we can apply APC1’ and show that p̄i
v̄i−→
̄κ

i
p̄ ′
i . Since ANC1 is not symmetrical with respect L̄ and R̄

we need to distinguish these two cases showing v̄i ∈ ALi
and v̄i ∈ ARi

respectively.

– P � L̄. The left pattern network has the lawsW � V ′. Because (v̄ , a) ∈ V ′ , by ANC1, we have v̄i ∈ ALi
.

– P � R̄. The right pattern network has the lawsW � V ′∪V̂ , hence, (v̄ , a) ∈ V ′∪V̂ . In the trivial case, where
v̄ ∈ V̂ , it directly follows fromANC1 that v̄i ∈ ARi

. In the other case, where v̄ ∈ V ′, Since i ∈ Ac(v̄ ), there

is a transition s̄i
v̄i−→i s̄ ′

i in the transformed network. This transition either originates from the network �
is applied on or is introduced by the transformation as specified in Definition 3.5. In the former case, we
arrive at a contradiction: by the left variant of APC1’ and ANC1, it follows that the original transition is
matched on, while the transition is not matched on according to Definition 3.5. In the latter case, there

exists x , x ′ ∈ SRi
with x

v̄i−→Ri
x ′. Therefore, we have v̄i ∈ ARi

.

In all cases we have v̄i ∈ A
̄i
. We can now apply APC1’ to obtain states p, p ′ ∈ S
̄i

such that p
v̄i−→
̄i

p ′. Since

mi is injective, we have p̄i � p and p̄ ′
i � p ′. Hence, there is a transition p̄i

v̄i−→
̄κ
i
p̄ ′
i .

• v̄i � •. By Definition 4.2, s̄i � s̄ ′
i . Hence, since matches are injective it follows from p̄ � s̄ and p̄ ′ � s̄ ′ that

p̄i � p̄ ′
i . Furthermore, since p̄ ∈ SPκ , we have p̄i ∈ S
̄κ

i
.

In conclusion, we have ∀ i ∈ 1..n. (v̄i � • ⇒ p̄i � p̄ ′
i ∧ p̄i ∈ S
̄κ

i
) ∧ (v̄i �� • ⇒ p̄i

v̄i−→
̄κ
i
p̄ ′
i ). Hence, it holds that

p̄
v̄ ,a−−→Pκ p̄ ′. �

Soundness of the analysis. Proposition 4.1 formally describes the analysis technique. To show the soundness
of Proposition 4.1, we have to prove that a branching bisimulation relation B between the κ-extended pattern
networks of a transformation rule system implies, via state vector mappings, a branching bisimulation relation
C between arbitrary original and transformed LTS networks.

As the κ-extended pattern networks represent abstractions from the networks they aremapped on, the relation
B canbe seen as an abstract relation between states ofN andT�(N ). For thematched local states, i.e., thematched
states in the local process LTSs of the network, the relation is explicitly defined. In addition to this, the κ-state
represents all unmatched local states.

A consequence of Lemma 4.9 is that two cases can be distinguished. If all process-local transitions are
transformed, it follows that the state vector mapping preserves the branching structure of transitions enabled by
non-κ-synchronisation laws. If no process-local transitions are transformed, it is still possible that a state s̄ is
related viaC to a state t̄ that is matched by at least one non-glue state; e.g., ∃ i ∈ 1..n, q̄i ∈ SR \SL.m̂i (q̄i ) � t̄i . If
s̄ is able to perform an a-transition enabled by a (v̄ , a) ∈ V , then t̄ must be able to simulate this transition. Some
local states t̄i (i ∈ Ac(v̄ )) of t̄ may be matched on by non-glue states. In this case, t̄ is not able to perform the
a-transition itself. Therefore, there must be a τ -path from t̄ to a state ˆ̄t such that ˆ̄t can perform this a-transition
as is shown in Lemma 4.8.

Recall that we assume that � has n rules, and that a ruleRi (i ∈ 1..n) matches on 
i in the LTS network that
� is applied on. For a single transformation step, the rules in R can be reordered according to this assumption
with an appropriate projection of the rule system. For confluent rule systems, the result can be lifted to confluent
sequences of transformations steps and APC1’ can be weakened again to APC1.

Proposition 4.1 Let N � (
,V) be an LTS network of size n and let � � (R,V ′, V̂) be a rule system satisfying
ANC1, APC1’, APC2, APC3, and APC4. Let M̄ be a vector of match pairs of size n such that mi : Li → 
i

and m̂i : Ri → T (
i ) for all i ∈ 1..n. Then,

(∀P ∈ D. L̄κ,P ↔b R̄κ,P ) ⇒ N ↔b TM̄ (N )

Proof Bydefinition,wehaveN ↔b TM̄ (N ) iff there exists abranchingbisimulation relationC withIN ↔b ITM̄ (N ).
Branching bisimilarity is a congruence for the construction of system LTSs from LTS networks. Therefore, since
∀P ∈ D. L̄κ,P ↔b R̄κ,P , by congruence, there is a relation B such that L̄κ ↔b R̄κ . We define C as follows:

C � {(s̄, t̄) | ∃ p̄ ∈ SL̄κ , q̄ ∈ SR̄κ . p̄ B q̄ ∧ p̄ � s̄ ∧ q̄ � t̄ ∧ ∀ i ∈ 1..n. (p̄i � κ ∨ q̄i � κ) ⇒ s̄i � t̄i }
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To prove the proposition we have to show that C is a bisimulation relation. This requires proving that C
relates the initial states of N and TM̄ (N ) and that C satisfies Definition 3.6.

• C relates the initial states ofN andTM̄ (N ).Wehave IN � ITM̄ (N ). Hence, it suffices to show ∀ s̄ ∈ IN . s̄ C s̄ .
Take an arbitrary state s̄ ∈ IN , then by Lemma 4.5, there is a state p̄ ∈ SL̄κ with p̄ � s̄ . Since s̄ ∈ IN , it
follows from Definition 3.4 that ∀ i ∈ 1..n. p̄i ∈ ELi

∨ p̄i � κ, i.e., p̄ ∈ IL̄κ . By Lemma 4.4, we have p̄ B p̄. It
follows that s̄ C s̄ .

• If s̄ C t̄ and s̄ a−→N s̄ ′ then either a � τ ∧ s̄ ′ C t̄ , or t̄ τ−→∗
TM̄ (N )

ˆ̄t a−→TM̄ (N ) t̄ ′ ∧ s̄ C ˆ̄t ∧ s̄ ′ C t̄ ′. Consider
synchronisation law (v̄ , a) ∈ V enabling the transition s̄ a−→N s̄ ′. Since s̄ C t̄ , there exist p̄ ∈ SL̄κ and q̄ ∈ SR̄κ

such that p̄ B q̄ , p̄ � s̄ , and q̄ � t̄ , and ∀ i ∈ 1..n. (p̄i � κ ∨ q̄i � κ) ⇒ s̄i � t̄i (2) . Furthermore, by
Lemma 4.5, there is a state p̄ ′ ∈ SL̄κ with p̄ ′ � s̄ ′. We distinguish two cases:

1. ∃ i ∈ Ac(v̄ ). mi (p̄i ) � s̄i ∧ mi (p̄ ′
i ) � s̄ ′

i ∧ p̄i
v̄i−→Lκ

i
p̄ ′
i . We shall first establish that (v̄ , a) ∈ V ′, after which

we can apply Lemma 4.9 to obtain a the corresponding a-transition in TL̄κ . Assume for a contradiction

that (v̄ , a) �∈ V ′. Since there is an i ∈ Ac(v̄ ) with p̄i
v̄i−→Lκ

i
p̄ ′
i , the v̄i action must be a member of the

actions of Li , i.e., v̄i ∈ ALi
. However, since i ∈ Ac(v̄ ) and (v̄ , a) ∈ V \ V ′, by APC4, it must hold that

v̄i �∈ ALi
Hence, by contradiction, we have (v̄ , a) ∈ V ′.

Now, by Lemma 4.9, there is a transition p̄ a−→L̄κ p̄ ′ enabled by (v̄ , a). Since p̄ B q̄ , by Definition 3.6, we
have the following two cases:

◦ a � τ and p̄ ′ B q̄ . To show s̄ C t̄ , all ingredients but one are there. In particular, we still need to
show that ∀ i ∈ 1..n. p̄ ′

i � κ ∨ q̄i � κ ⇒ s̄ ′
i � t̄i .

Consider an i ∈ 1..n with p̄ ′
i � κ ∨ q̄i � κ. Since Vκ and V ′ are disjoint, we must have (v̄ , a) �∈ Vκ . If

q̄i � κ, then by Lemma 4.3, p̄i � κ. Since p̄i � κ or p̄ ′
i � κ and (v̄ , a) �∈ Vκ , it follows that i �∈ Ac(v̄ ).

Hence, by Definition 4.2, s̄ ′
i � s̄i . Finally by (2), s̄i � t̄i .

◦ q̄ τ−→∗̄
Rκ

ˆ̄q a−→R̄κ q̄ ′ with p̄ B ˆ̄q and p̄ ′ B q̄ ′. From Lemma 4.7, it follows that there is a state ˆ̄t ∈ STM̄ (N )

with ˆ̄q � ˆ̄t , a τ -path t̄ τ−→∗
TM̄ (N )

ˆ̄t , and ∀ i ∈ 1..n. ˆ̄qi � κ ⇒ ˆ̄ti � t̄i (3) . Furthermore, by Lemma 4.6,

we have a state t̄ ′ ∈ STM̄ (N ) with q̄ ′ � t̄ ′, a transition ˆ̄t a−→TM̄ (N ) t̄ ′, and ∀ i ∈ 1..n. q̄ ′
i � κ ⇒ t̄ ′

i � ˆ̄ti
(4) . What remains to be shown is that s̄ C ˆ̄t and s̄ ′ C t̄ ′.

· For s̄ C ˆ̄t , all that is left to show is ∀ i ∈ 1..n. p̄i � κ ∨ ˆ̄qi � κ ⇒ s̄i � ˆ̄ti . Consider an i ∈ 1..n
with p̄i � κ ∨ ˆ̄qi � κ. By Lemma 4.2, ˆ̄qi � κ iff q̄i � κ. Hence, p̄i � κ ∨ q̄i � κ. From (2), it
follows that s̄i � t̄i . Finally, by Lemma 4.3, p̄i � κ iff ˆ̄qi � κ and it follows from (3) that ˆ̄ti � t̄i .
Therefore, s̄i � t̄i � ˆ̄ti . In conclusion, s̄ C ˆ̄t .

· Similarly, for s̄ ′ C t̄ ′, all that is left to show is ∀ i ∈ 1..n. p̄ ′
i � κ ∨ q̄ ′

i � κ ⇒ s̄ ′
i � t̄ ′

i . Consider an
i ∈ 1..n with p̄ ′

i � κ ∨ q̄ ′
i � κ. By Lemma 4.1, ˆ̄qi � κ iff q̄ ′

i � κ. Hence, p̄ ′
i � κ ∨ ˆ̄qi � κ. From

s̄ C ˆ̄t , it follows that s̄i � ˆ̄ti . Finally, by Lemma 4.3, p̄ ′
i � κ iff q̄ ′

i � κ and it follows from (4) that
t̄ ′
i � ˆ̄ti . Therefore, s̄ ′

i � ˆ̄ti � t̄ ′
i . In conclusion, s̄ ′ C t̄ ′.

2. ¬1. Because ¬1, we have ¬∃ i ∈ Ac(v̄ ). mi (p̄i ) � s̄i ∧mi (p̄ ′
i ) � s̄ ′

i ∧ p̄i
v̄i−→Lκ

i
p̄ ′
i . That is, for all i ∈ Ac(v̄ )

there is no transition inTLi
matchingon s̄i

v̄i−→i s̄ ′
i , ormore formally,¬(mi (p̄i ) � s̄i∧mi (p̄ ′

i ) � s̄ ′
i∧p̄i

v̄i−→Lκ
i

p̄ ′
i ). Therefore, for all states p̄, p̄ ′ ∈ SL̄κ with p̄ � s̄ and p̄ ′ � s̄ ′, there is no transition p̄ a−→L̄κ p̄ ′. Moreover,

by Definitions 3.7 and 3.4, for each i ∈ 1..n state p̄i is either a κ-state or an exit-state (in ELi
), and state

p̄ ′
i is either a κ-state or an in-state (in ILi

), i.e., ∀ i ∈ Ac(v̄ ). (p̄i ∈ ILi
∨ p̄i ∈ ELi

) ∧ (p̄ ′
i ∈ ILi

∨ p̄ ′
i � κ)

(5) . By applying Lemma 4.8, we get states ˆ̄q, q̄ ′ ∈ SR̄κ such that there is a τ -path q̄ τ−→∗̄
Rκ

ˆ̄q with related

states p̄ B ˆ̄q and p̄ ′ B q̄ ′, and the states have the following two properties: ∀ i ∈ Ac(v̄ ). ˆ̄qi � p̄i ∧ q̄ ′
i � p̄ ′

i

(6) , and ∀ i ∈ 1..n \ Ac(v̄ ). ˆ̄qi � q̄ ′
i (7) .

From Lemma 4.7 it follows that there is a state ˆ̄t ∈ STM̄ (N ) with ˆ̄q � ˆ̄t , a τ -path t̄ τ−→ ∗
TM̄ (N )

ˆ̄t , and

∀ i ∈ 1..n. ˆ̄qi � κ ⇒ ˆ̄ti � t̄i (8) . We construct a state t̄ ′ :� ˆ̄t [s̄ ′
i | i ∈ Ac(v̄ )]. By construction of t̄ ′ we



34 S. Putter and A. Wijs

have ∀ i ∈ Ac(v̄ ). t̄ ′
i � s̄ ′

i and ∀ i ∈ 1..n \ Ac(v̄ ). t̄ ′
i � ˆ̄ti . To prove that ˆ̄t a−→TM̄ (N ) t̄ ′, what remains to

be shown is ∀ i ∈ Ac(v̄ ). ˆ̄ti � s̄i : consider an i ∈ Ac(v̄ ). By (6), ˆ̄qi � p̄i . If ˆ̄qi � κ, then also p̄i � κ

(Lemma 4.3). Therefore, by (8) and (2), ˆ̄ti � t̄i � s̄i . If ˆ̄qi �� κ, then also p̄i �� κ (Lemma 4.3). It follows
that mi (p̄i ) � s̄i and m̂i ( ˆ̄qi ) � ˆ̄ti . By (5) and p̄i �� κ, it holds that p̄i ∈ ELi

. Thus, m̂i (p̄i ) � s̄i (by
Definition 3.5). Finally, by injectivity of m̂ we have ˆ̄ti � s̄i .
Hence, t̄ τ−→∗

TM̄ (N )
ˆ̄t a−→TM̄ (N ) t̄ ′. What is left to show is q̄ ′ � t̄ ′, s̄ C ˆ̄t and s̄ ′ C t̄ ′.

◦ For q̄ ′ � t̄ ′, we have to show that ∀ i ∈ 1..n. t̄ ′
i ∈ ST (
i ) (i.e., t̄

′ ∈ STM̄ (N )) and ∀ i ∈ 1..n. (q̄ ′
i �� κ ⇒

m̂i (q̄ ′
i ) � t̄ ′

i ) ∧ (q̄ ′
i � κ ⇒ ¬∃x ∈ SRi

. m̂i (x ) � t̄ ′
i ). Consider an i ∈ 1..n. Based on the construction

of t̄ ′ we distinguish the following cases:

· i ∈ Ac(v̄ ). We have t̄ ′
i � s̄ ′

i (by construction of t̄ ′) and q̄ ′
i � p̄ ′

i (by (6)). By (5) and q̄ ′
i � p̄ ′

i , either
q̄ ′
i ∈ ILi

or q̄ ′
i � κ.

If q̄ ′
i ∈ ILi

, then also p̄ ′
i ∈ ILi

and we have mi (p̄ ′
i ) � s̄ ′

i which we may rewrite to m̂i (p̄ ′
i ) � s̄ ′

i (by
Definition 3.5). Finally, by q̄ ′

i � p̄ ′
i and t̄ ′

i � s̄ ′
i , we have m̂i (q̄ ′

i ) � s̄ ′
i � t̄ ′

i . Furthermore, since
m̂i (q̄ ′

i ) � t̄ ′
i , it follows that t̄

′
i ∈ ST (
i ).

If q̄ ′
i � κ, then we have to show ¬∃x ∈ SRi

. m̂i (x ) � t̄ ′
i . Assume for a contradiction that there

is a state x ∈ SRi
such that m̂i (x ) � t̄ ′

i . Since s̄i
v̄i−→i s̄ ′

i is not matched on, by Definition 3.4, we
must have x ∈ ILi

. By x ∈ ILi
and t̄ ′

i � s̄ ′
i (by construction of t̄ ′), we have mi (x ) � ˆ̄ti . However,

since q̄ ′
i � p̄ ′

i (by (6)), we have p̄ ′
i � κ. Thus, by Definition 4.8, there is no such x withmi (x ) � ˆ̄ti .

Furthermore, since s̄ ′ is not matched on by mi , the state remains present in T (
i ). Hence, since
t̄ ′
i � s̄ ′

i , it holds that t̄
′
i ∈ ST (
i ).

· i �∈ Ac(v̄ ). We have t̄ ′
i � ˆ̄ti (by construction of t̄ ′) and ˆ̄qi � q̄ ′

i (by (7)). The proof now follows
directly by substituting t̄ ′

i for
ˆ̄ti and substituting ˆ̄qi for q̄ ′

i in ˆ̄q � ˆ̄t .

◦ For s̄ C ˆ̄t , we still have to show that ∀ i ∈ 1..n. p̄i � κ ∨ ˆ̄qi � κ ⇒ s̄i � ˆ̄ti . Consider an i ∈ 1..n
with p̄i � κ ∨ ˆ̄qi � κ. By Lemma 4.3, ˆ̄qi � κ iff p̄i � κ. Hence, by (8), we have ˆ̄ti � t̄i . Finally, by (2)
s̄i � t̄i , thus we have ˆ̄ti � t̄i � s̄i . In conclusion, s̄ C ˆ̄t .

◦ Similarly, for s̄ ′ C t̄ ′, all that is left to show is that ∀ i ∈ 1..n. p̄ ′
i � κ ∨ q̄ ′

i � κ ⇒ s̄ ′
i � t̄ ′

i . Consider an
i ∈ 1..n with p̄ ′

i � κ ∨ q̄ ′
i � κ. If i ∈ Ac(v̄ ), then by construction of t̄ ′, we have s̄ ′

i � t̄ ′
i . Conversely, if

i �∈ Ac(v̄ ), then t̄ ′
i � ˆ̄ti and s̄ ′

i � s̄i . Hence, also q̄ ′
i � ˆ̄qi and p̄ ′

i � p̄i . Since p̄ ′
i � κ ∨ q̄ ′

i � κ, it now
follows that p̄i � κ ∨ ˆ̄qi � κ. By s̄ C ˆ̄t , we have s̄i � ˆ̄ti , thus s̄ ′

i � s̄i � ˆ̄ti � t̄ ′
i . In conclusion, s̄ ′ C t̄ ′.

• The symmetric case: if s̄ C t̄ and t̄ a−→TM̄ (N ) t̄ ′ then eithera � τ∧s̄ C t̄ ′, or s̄ τ−→∗
N ˆ̄s a−→N s̄ ′∧ ˆ̄s C t̄∧s̄ ′ C t̄ ′.This

case is symmetric to the previous case, with the exception that t̄ a−→TM̄ (N )
ˆ̄t is enabled by some (v̄ , a) ∈ V ∪ V̂ .

Therefore, when transition t̄ a−→TM̄ (N ) t̄ ′ is notmatched on, we have to show that (v̄ , a) ∈ V . Let t̄, t̄ ′ ∈ STM̄ (N )
such that t̄ a−→TM̄ (N ) t̄ ′ is enabled by some (v̄ , a) ∈ V ∪ V̂ . Furthermore, transition t̄ a−→TM̄ (N ) t̄ ′ is notmatched
on.Assume for a contradiction that (v̄ , a) ∈ V̂ . Since (v̄ , a) ∈ V̂ is introduced by the transformation, byAPC2,
for all i ∈ Ac(v̄ ) the action v̄i does not occur in the original process 
i , i.e., for all i ∈ 1..n, we have v̄i �∈ Ai .
Hence, these actions v̄i must be introduced by Ri , i.e., v̄i ∈ ARi

\ ALi
. It follows that there is a transition

matching t̄ a−→TM̄ (N ) t̄ ′, contradicting our earlier assumption. Hence, we must have (v̄ , a) ∈ V .
�

Completeness of the analysis. In the next proposition, it is expressed that our analysis technique is complete. This
means that the analysis will always report that the left and right κ-extended pattern networks of a rule system �
are branching bisimilar if for any input networkN on which � is applicable and any given matching it holds that
N ↔b TM̄ (N ).

Similarly to the analysis of a single transformation rule this analysis considers all input LTS networks that
satisfy the analysis and application conditions. Hence, even when a rule system does not preserve a given property
it may still be the case that the property is preserved for some instances of the transformation. For instance, given
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a rule system � that is not property preserving there may be an input network N ′ with a vector of matches M̄ ′
such that N ′ ↔b T�(N ′). However, it is guaranteed for � that there also exists an LTS network N ′′ and vector
of matches M̄ ′′ such that N ′′ ↔b/ T�(N ′′).

Proposition 4.2 Consider a rule system � � (R,V). Let M be the set of all LTS networks and �N be the set of all
possible vectors M̄ of n match pairs defining a transformation step using� for an LTS networkN � (
,V) ∈ M

of size n. Such a vector M̄ consists of tuples (mi , m̂i ), with mi : Li → 
i and m̂i : Ri → T (
i ), respectively.
The following holds:

(∀N ∈ M, M̄ ∈ �N . N ↔b TM̄ (N )) ⇒ L̄κ ↔b R̄κ

Proof Assume that for all N ∈ M and M̄ ∈ �N it holds that N ↔b TM̄ (N ). Trivially, we have L̄κ ∈ M

and trivial matches (mi : L̄i → L̄κ
i , m̂i : R̄i → T (L̄κ

i )) (for each i ∈ 1..n) constituting a vector of matches
M̄ . It follows from the assumption that L̄κ ↔b T�(L̄κ ). By Definition 4.6, L̄κ � (〈Lκ

1 , . . . ,Lκ
n 〉,V ′ ∪ V ′κ ) and

R̄κ � (〈Rκ
1 , . . . ,Rκ

n 〉,V ′∪V̂∪V ′κ∪V̂κ ). ByDefinition 4.5,wehaveT�(L̄κ ) � (〈Rκ
1 . . .Rκ

n 〉,V ′∪V ′κ∪V̂∪V̂κ ) � R̄κ .
It follows that L̄κ ↔b R̄κ . �

5. Experiments

Refiner is implemented inPython3andcanbe run fromthe command-line. It is platform-independent, andallows
performing behavioural transformations of LTS networks, and checking semantics and property preservation. It
integrates with the action-based, explicit-state model checking toolsets Cadp [GLMS11] and mCRL2 [CGK+13].
These tools can be used to specify and verify concurrent systems. Refiner uses the mCRL2 tool LtsCompare to
perform bisimilarity comparisons with an implementation of the Groote-Wijs algorithm [GW16].

For the experiments presented in this section Refiner was compiled using Nuitka to get a free performance
improvement.6 We ran Refiner on the standard machines of the DAS-5 cluster [BEdL+16], which have an Intel
Haswell E5-2630-v3 2.4 GHz processor, 64 GB memory, running CentOS Linux 7.2. Each experiment was
conducted no longer than 80 hours and aborted in case the machine ran out of memory.

We have performed two types of experiments. The first setup compares traditional model checking with the
transformation verification approach presented in this work. The results are reported in Sect. 5.1. The second
setup aims to compare the previous transformation verification algorithm (Refiner v1) with the algorithm in
presented in this paper (Refiner v2). Those results are discussed in Sect. 5.2. 7

5.1. Comparing traditional model checking and transformation verification

The goal of this experimental setup is to compare the running time of transformation verification with tradi-
tional model checking. For model checking we have selected the explicit-state model checker Cadp. For the
transformation verification we use Refiner with the algorithms presented in this article.

We have selected a set of base models for verification and transformation. Each base model, say N 1, was
transformed usingRefiner resulting in a newmodelN 2. For two cases we have applied two different rule systems
on the base model, the models are then calledN 2A andN 2B. Another two cases were transformed even further
resulting in a model N 3.

Each of the models is verified for the absence of deadlocks. Likewise, the rule systems are verified for the
preservation of absence of deadlocks, i.e., the rule systems may not introduce new deadlocks.

Each base model was verified using Cadp and the verification time was measured. The rule systems were
applied and verified by Refiner and both the transformation and verification time were measured. After each
transformation the resulting model was verified again using Cadp.

ForCadp only the execution time of the tool can bemeasured.Hence, tomake a fair comparison, wemeasured
the execution time of the Refiner v1 tool in the same way. For both tools we have measured the wall clock time
(i.e., the real elapsed time) using the Unix time command:

6 http://nuitka.net
7 All models used in the experiments are available at http://www.win.tue.nl/mdse/property_preservation/FAC2017_experiments.zip.

http://nuitka.net
http://www.win.tue.nl/mdse/property_preservation/FAC2017_experiments.zip
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/usr/bin/time -f "%e" <tool>

The argument -f "%e" specifies that the time written as output should follow format "%e" where %e indicates
the wall clock time. The time is measured for <tool>, the command used to invoke the given tool.

Invocation of the tools. For traditional model checking, the Cadp 2016-k tool Evaluator was used. All models
(before andafter transformation)were verifiedusing theCadp toolkit. The rule systemapplication andverification
was performed using Refiner. To enable replication of the experiment, we record and explain the commands
performed to conduct the experiments.

The command used to verify a network using Cadp is:

exp.open <network>.exp evaluator <property>.mcl

The exp.open tool reads the input model and the evaluator tool subsequently checks on-the-fly whether
the given μ-calculus formula described in <property>.mcl is satisfied.

We have verified a rule system <rule system> with respect to a property <property> with Refiner using
the following command:

refiner -q -c2 -c <rule_system> -p <property> -f

The argument -q indicates that Refiner should run in quiet mode, i.e., no messages are sent to the standard
output. The -c2 argument tells Refiner to use the verification algorithm presented in this article. Next, -c
<rule system> indicates that Refinerwill verify the rule system <rule system>. Finally, -p <property> spec-
ifies the property that Refiner verifies to be preserved, and -f indicates that τ -loops should be ignored. Without
the latter argument,Refiner checks for branching bisimularitywith explicit divergence [vGW96,WE13] of the rule
networks to determine whether liveness properties are preserved. For safety properties and inevitable reachability
properties, this check is not required, and instead, branching bisimulation checking suffices.

A network <network> was transformed using a rule system <rule system> with Refiner as follows:

refiner -n <network> -r <rule_system>

The argument -n <network> specifies the network <network> used as input for the transformation. To apply
the rule system <rule system> on the network the argument -r <rule system> is used.

The set of test cases. As test input, we selected nine case studies, two newly created ones, three from the set of
mCRL2 models distributed with its toolset, and four from the set of Cadp models.

The newly created ones are the following:

1. ABP is amodel consisting of six independent subsystems, each involving two processes communicating using
the Alternating Bit Protocol.

2. Broadcast consists of ten independent subsystems, each containing three processes that together synchronise
in a three-party synchronisation.

The models stemming from the mCRL2 toolset distribution are the following:

1. The 1394-fin model describes the 1394 or firewire protocol. It has been created by Luttik [Lut97].
2. The ACSmodel describes a part of the software of the Alma project of the European Southern Observatory,

which involves controlling a large collection of radio telescopes. It consists of amanager and some containers
and components. The model was created by Ploeger [Plo09].

3. Wafer stepper is a model of a wafer stepper.

Finally, the Cadp models are the following:

1. ODP is a model of an open distributed processing trader [GS99].
2. The DES model describes an implementation of the data encryption standard, which allows to cipher and

decipher 64-bit vectors using a 64-bit key vector [Nat99].
3. HAVi-LE describes the asynchronous Leader Election protocol used in the HAVi (Home Audio-Video)

standard, involving three device control managers. The model is fully described by Romijn [Rom99].
4. Erat. Sieve is a specification of a distributed Eratothenes sieve. It consists of a number generator and a chain

of 17 units, each unit i filtering out the i th prime number.



A formal verification technique for behavioural model-to-model transformations 37

Table 1. Experimental results: verification of various models using Cadp and Refiner
On-the-fly verification (Cadp) Transformation and verification (Refiner)

Name # States Running time (s) Transformation time (s) Verif. time (s) Verif. result

ACS 1 3,484 0.98 n.a. n.a. ✓
ACS 2 21,936 4.95 0.50 0.18 ✓
1394-fin 1 198,692 6.93 n.a. n.a. ✓
1394-fin 2 6,679,222 152.43 3.63 0.18 ✓
Wafer stepper 1 78,919 7.82 n.a. n.a. ✓
Wafer stepper 2 474,457 51.38 0.15 0.18 ✓
ODP 1 91,394 13.85 n.a. n.a. ✓
ODP 2 7,699,456 62.16 0.31 0.18 ✓
DES 1 64,498,297 739.54 n.a. n.a. ✓
DES 2 64,498,317 795.21 1137.21 0.17 ✓
Broadcast 1 1,024 43.67 n.a. n.a. ✓
Broadcast 2A 30,654,053 982.53 0.01 0.17 ✗
Broadcast 2B 60,466,176 2,130.53 0.06 0.17 ✓
ABP 1 759,375 15.90 n.a. n.a. ✓
ABP 2A 380,204,032 13,256.61 0.09 0.18 ✗
ABP 2B 656,356,768 28,182.56 0.10 0.18 ✓
HAVi-LE 1 15,688,570 292.50 n.a. n.a. ✓
HAVi-LE 2 190,208,728 3,675.75 0.71 0.58 ✓
HAVi-LE 3 3,048,589,069 167,070.35 0.67 0.18 ✓
Erat. Sieve 1 6,539,813 2,003.78 n.a. n.a. ✓
Erat. Sieve 2 19,434,968 6,056.11 23.76 0.17 ✓
Erat. Sieve 3 135,159,971 42,449.26 23.97 0.17 ✓

Each model was subjected to one or two transformations, of the following types: (1) adding internal compu-
tations, (2) adding support for lossy channels by introducing the Alternating Bit Protocol (the ABP case), and (3)
breaking down broadcast, i.e., synchronisations involving more than two parties to combinations of two-party
synchronisations (the broadcast and the HAVi leader election case).

Discussion of results. Table 1 presents the experimental results. Thefirst column indicates the nameof a testmodel.
For each model, the number at the end of each name reflects the order in which the models were obtained, i.e.,
originalmodels are indexedby ‘1’.Models resulting from the applicationof a transformationon the corresponding
original model are indexed by ‘2’, ‘2A, or ‘2B’. The ‘2A’- and ‘2B’-models are independently obtained via two
different transformations from the corresponding ‘1’-model. Models indexed by ‘3’ are likewise the result of
transforming the corresponding ‘2’-model.

In the second and third columns metrics obtained from verifying the test model using Cadp are displayed.
We report the number of states each state space consists of (second column), and the running time (in seconds)
to generate and verify these using Cadp (third column).

The fourth and fifth column show the running time (in seconds) of applying and verifying the rule system
using Refiner, respectively. The running time of the transformation is the required time to obtain a particular
model by applying a rule system. Because the base models are not the results of the application of a rule system
there is no transformation and verification time. Therefore, the time measurements are not applicable, indicated
with “n.a.”, for base models. Note that Refiner does not actually check the state spaces of the models indexed
by ‘2’ and ‘3’, but instead can reason about their correctness by verifying the applied transformation rules.

Finally, the fifth column provides the outcome of the verification for each case, where ✓ indicates that the
system satisfies the property and ✗ indicates that it does not.

One notable result is the time needed to obtain DES 2. The network of DES 1 contains one particularly large
LTS, consisting of more than four million states, making transformation at least as costly as verifying DES 1. In
fact, it is even slower, but this is due to the fact that Cadp reads compressed LTS files, while Refiner does not,
hence the latter requires more time to read the input network.

The experiments demonstrate that preservation checking with Refiner is many orders of magnitude faster
compared to verifying the property again, if the state space is of reasonable size. This is not surprising, as the
check only focuses on the applied change, not the resulting state space. In our benchmark set of examples, the
changes can be verified practically instantaneously, resulting in most verification tasks being ready in 0.17 or 0.18
seconds on our test machines. If one would compare Refiner’s running times with those of other model checkers,
the conclusion would be the same.
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The usual workflow of verifying a model and verifying and applying the corresponding transformations is as
follows. First, the initial model (version 1 in Table 1) is verified, using amodel checker such asCadp. Then, instead
of applying a transformation and then verifying the resulting model again, one can verify the transformation
itself. If the transformation does not preserve the desired property, both its application and the verification of
the resulting model (version 2A in Table 1) can be avoided. In case verification of the transformation produces
a positive result, it can be safely applied without having to verify the resulting model (versions 2, 2B and 3 in
Table 1).

5.2. Refiner v1 Versus Refiner v2

The goal of this experiment is to compare the running times of the previous version of the algorithm (Refiner v1)
and the algorithm presented in this article (Refiner v2). For this we have generated a scalable set of rule systems
that model the transformation of a token-ring.

We measured the time both Refiner versions spent building and verifying the state space. The state space
construction and verification algorithms are the only difference between Refiner v1 and v2. Therefore, the
elements that are equivalent for both versions are eliminated from the measurements. Although the state space
generation and verification dominate the running time, for the small models, incorporating tasks such as reading
the input may introduce unnecessary noise. By removing this noise we are able to observe the direct impact the
new algorithm has on the performance of the tool.

For time measurement we used the Python method time.time(). This is sufficiently accurate, even for the
smaller models, as it can measure differences of even less than a hundredth of a second between the Refiner
versions.

We ran both Refiner v1 and v2 in quiet mode to limit the time spent writing messages to the standard output.
Refiner v1 needs to check all κ-extended pattern networks of subsets of the set of transformation rules. Refiner
v1 can distribute the checks over several cores to increase the performance. For completeness sake, for Refiner
v1 the experiments were run with both a single thread andmultiple threads (eight in the case of a standardDAS-5
machine). The former allows a better comparison of the theoretical performance improvements as Refiner v2
only uses a single thread. The latter allows a more practical comparison showing the typical performance of
Refiner v1 in its common use.

The largest check performed by Refiner v1 considers the entire set of transformation rules when the left and
right κ-extended pattern networks are checked for branching bisimilarity. This largest check is equivalent to the
check proposed in this work and performed by Refiner v2. This is the result of improved theoretical results, as
presented in the current article, that proved that only this largest check is required. Hence, the expectation is that
Refiner v1 will never perform better than Refiner v2.

Invocation of tools. All generated rule systems were verified for full semantic preservation using single-threaded
Refiner v1, multi-threaded Refiner v1, and Refiner v2. For reproducibility of the experiment, we explain the
commands used for this experiment below.

For Refiner v1 using a single thread the following command was used:

refiner -q -t 1 -c <rule_system>

The argument -q indicates that Refiner should run in quiet mode, i.e., no messages are sent to the standard
output. The maximum number of threads is set using the -t argument. Here, -t 1 expresses that only a single
thread is used. Argument -c <rule system> tells Refiner to verify the rule system <rule system>. In this
experimental setup, the models are named gen i with i ∈ 2..n.

For Refiner v1 using multiple threads we used the command:

refiner -q -c <rule_system>

Without the -t argument Refiner creates a thread for each core of the machine and distributes the checks over
these threads. In the case of a standard DAS-5 machine eight threads are used. The remaining arguments are the
same as the ones for the single threaded variant.

Refiner v2 is invoked using the following command:

refiner -q -c2 -c <rule_system>
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Fig. 13. Rule system transforming a token ring of size n

Table 2. Experimental results: verification of token ring rule systems of size n using Refiner v1 and Refiner v2
State space of R̄κ Transformation verification running (Refiner)

n # States # Transitions v1 1 thread (sec.) v1 8 threads (sec.) v2 (sec.)

2 24 67 0.06 0.04 0.03
3 124 486 0.14 0.06 0.06
4 624 3,173 0.35 0.16 0.15
5 3,124 19,608 1.46 0.61 0.54
6 15,624 116,967 6.97 2.69 2.47
7 78,124 680,298 36.77 18.49 14.45
8 390,624 3,881,545 227.83 148.81 85.35
9 1,953,124 21,816,540 1,467.08 1,111.45 517.14
10 9,765,624 121,162,769 10,287.18 8,138.29 3,522.03

The -c2 argument sets a flag telling Refiner to use the Refiner v2 algorithm. The remainder of the arguments
is the same as for the Refiner v1 experiments.

Generation of rule systems. We have generated rule systems consisting of a specified number of rules n. The
smallest rule system generated contains two transformation rules. The number of rules is incremented by one
until a rule system is generated for which the verification exceeds the maximum time of 80 hours or the machine
runs out of memory (64 GB).

The rule systems considered for this experimentmodel the transformationof token rings of sizen. The network
topology of a token ring ensures that the rule system consists of one dependency set. A generic representation
of these rule systems is shown in Fig. 13. For a generated rule system of size n there are n transformation rules
and n synchronisation laws. The action-labels sndi and rcvi indicate that the i th rule or node performs a send and
receive action, respectively.

The transformation rules introduce an extra τ -transition directly after the sndi and rcvi transitions. These
τ -transitions represent internal computation; for instance, when the token is received a node may need to process
the data before sending it to the next node.

The synchronisation laws describe the passing of the token from the current node (sndi ) to the next node
(rcvi+1), represented by a pass i to (i + 1)-action (where i ∈ 1..(n − 1)). The last synchronisation law specifies
that the last node passes the token (sndn ) back to the first node (rcv1). Hence, the rule system describes the
transformation of a token ring consisting of n nodes.

Discussion of results. The results of this experiment are presented in Table 2. The size n of the rule system model
is indicated by the first column. Each row shows the results of the verification for the rule system model of size
n. The second and third columns describe the size of the right κ-extended pattern network in terms of number
of states and transitions, respectively. The right κ-extended pattern network is the larger of the two networks,
therefore, it gives a good indication of the size of the state space. The fourth, fifth, and sixth columns present
the averaged running time per model in seconds for single-threaded Refiner v1, multi-threaded Refiner v1, and
Refiner v2, respectively. Each experiment was conducted ten times.

For the rule system with n � 11 the machines ran out of memory (64 GB). The memory consumption is
dominated by the state space of the κ-extended pattern networks. The number of states of the system LTS of this
model is 48,828,124.

The results show that for all Refiner versions the running time increases exponentially, as does the state space
of the considered checks. This is due to the exponential blow up of the state spaces of L̄κ and R̄κ . Of these two
state spaces R̄κ is significantly larger because of the two τ -transitions.
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Fig. 14. Ratios between the Refiner versions when analysing the transformation of a token ring of size n

The results clearly show that the algorithm presented in this article (Refiner v2) outperforms both the single-
and multi-threaded variant of the previous version of the algorithm (Refiner v1). As mentioned before, this is no
surprise as the largest check performed byRefiner v1 is the same as the check performed byRefiner v2. The extra
checks that Refiner v1 performs consider the projected rule systems of all subsets of dependent transformation
rules. These projected rule systems become exponentially smaller as the size of the subset decreases, thereby also
decreasing the size of the state space analysed in the check that is performed. The decreasing size of these extra
checks explains why the running time of Refiner v1 is only a few factors larger than the running time of Refiner
v2.

A last observation we can make based on Table 2 is that the running time ratio of Refiner v1 to v2 seems to
increase. To investigate whether this is a trend we have plotted the ratios between the different Refiner versions in
Fig. 14. The horizontal axis depicts the number of rules in the generated rule system, the vertical axis indicates the
ratio. Although the number of data points is limited, the graph gives us some insights into the practical running
time improvements.

The ratio of Refiner v1 with a single thread to Refiner v1 with eight threads is shown as the continuous line
where the diamonds indicate the data points. The ratio shows a general decline towards 1 as n grows, i.e., for
large n the benefit of the extra threads becomes negligible. This is unexpected as more cores should be able to
verify more checks in the dependency set simultaneously. Upon further inspection we found that the utilisation
of the cores was not efficient. Refiner performs smaller checks before larger checks. Hence, the largest check is
performed last. Thus, in the worst case, the remaining cores are not utilised when this final check is performed.

For the same reason there is a sudden decline in the ratio from a token ring transformation with three rules
to one with four rules. At three rules, there are exactly eight checks, thus the eight cores are utilised optimally.
Whereas at four rules, sixteen checks need to be performed, but cores are poorly utilised as the larger checks are
performed last. Finally, at two rules, there are only four checks while there are eight cores available. As not all the
cores can be put to use only a small performance gain is obtained . We choose not to optimise the distribution of
checks over the available cores for Refiner v1 as Refiner v2 is by definition more efficient.

The dashed line shows the ratio of the single threaded Refiner v1 to Refiner v2 where the data points are
indicated with squares. The ratio increases as n grows. Due to the limited number of data points we cannot
estimate the trend function. The running time analysis predicts an exponential trend, however, but this is not
visible in the data.

The dotted line shows the ratio of Refiner v1 running 8 threads to Refiner v2 where the data points are
indicated with triangles. This ratio shows an increase as n grows similar to the ratio between the single threaded
Refiner v1 andRefiner v2.As n grows the data pointsmove towards the dashed line (the single threadedRefiner
v1 to Refiner v2 ratio). This is expected as the difference between the single threaded Refiner v1 and multi-
threaded Refiner v1 decreases as n grows as indicated by the continuous line. At three rules, there are exactly
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as many cores as there are checks for Refiner v1. Hence, at this point the performance of the multi-threaded
Refiner v1 is equivalent to that of Refiner v2. However, at two rules, there are more cores than checks, but
Refiner v2 performs better than Refiner v1. As the checks are extremely small for rule systems consisting of 2
rules it is likely that the overhead of the threads have a visible impact on the performance of Refiner v1.

6. Conclusions

Wediscussed the correctness of anLTS transformation verification technique. The aimof the technique is to verify
whether a given LTS transformation system � preserves a property ϕ, written in a fragment of the μ-calculus,
for all possible input models formalised as LTS networks. It does this by determining whether � is guaranteed
to transform an input network into one that is branching bisimilar, ignoring the behaviour not relevant for ϕ.

We demonstrated the efficiency of the verification technique compared to model checking the entire model
again after it has been transformed. Many orders of magnitude speedup can be achieved through model trans-
formation verification.

We improved upon our previous work by reducing the number of required bisimulation checks from 2n − 1
per set of dependent transformation rules to one per set of dependent rules. Experimentally, we demonstrated
that our new verification algorithm outperforms the previous one, even if the latter uses eight threads and the
new one only a single thread.

Furthermore, the expressiveness of transformation rules was extended by distinguishing between glue-states
that allow incoming or outgoing transition that enter or leave the LTS pattern, respectively. This work presents
a proof for these results. The proof has been verified in Coq.

The property preservation check is limited to rule systems that adhere to the applicability and admissibility
conditions. Input networks must be admissible as well. Furthermore, application of a rule system on an input
network must satisfy application conditions APC1 to APC4.

Even when a transformation does not preserve a given property, it may still be possible that said property
holds for the output model of a specific instance of the transformation. Nevertheless, transformations that are
property-preserving can be reused without the need for additional verification.

Future work. In earlier work, we used branching bisimulation with explicit divergence [vGW96, WE13], which
preserves τ -loops and therefore liveness properties. In future work, we would like to prove that for this flavour of
bisimulation the technique is also correct. Moreover, we would like to investigate what the practical limitations
of the pre-conditions of the technique are in industrial sized transformation systems.

In [Wij13], the technique from [WE13] has been extended to explicitly consider the communication interfaces
between components, thereby removing the completeness condition ANC1 regarding synchronising behaviour
being transformed (see Sect. 4.1). We wish to prove that also this extension is correct.

Finally, our framework can be extended in a number of ways, to reason about additional aspects of concur-
rent systems. For instance, in line with the encoding proposed in [Wij07], timing information could be included
in the LTSs to design timed systems and express transformations of timed behaviour. This would also intro-
duce the possibility to analyse the impact a transformation will have on the performance of a system under
transformation [WF05], by means of timed branching bisimulation checking [FPW05]. The capability to reason
about system performance could be further strengthened by also introducing probabilities on the LTS transi-
tions [BK08]. Existing tools, such as PRISM [KNP11] and extensions [BESW10], could then be employed to
conduct the analysis of the systems. An interesting challenge is then how to involve these probabilities in the
verification of transformations as well.
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[HKR+10] Hülsbusch M, König B, Rensink A,Semenyak M, Soltenborn C, Wehrheim H (2010) Showing full semantics preservation
in model transformations: a comparison of techniques. In: Proceeding of 8th international conference on integrated formal
methods (iFM 2010), volume 6396 of LNCS, pp 183–198. Springer.

[KLG07] KunduS,Lerner S,GuptaR (2007)Automated refinement checking of concurrent systems. In: Proceeding of 26th international
conference on computer-aided design (ICCAD 2007). IEEE, pp 318–325

[KN07] Karsai G, Narayanan A (2007) On the correctness of model transformations in the development of embedded systems. In:
Proceeding of 13th monterey workshop 2006, volume 4888 of LNCS. Springer, pp 1–18

[KNP11] Kwiatkowska M, Norman G, Parker D (2011) PRISM 4.0: verification of probabilistic real-time systems. In: Proceeding of
23rd international conference on computer aided verification (CAV 2011), volume 6806 of LNCS. Springer, pp 585–591

[KR08] Kahsai T, RoggenbachM (2008) Property preserving refinement for Csp- Casl. In: Proceeding of 19th international workshop
on algebraic development techniques (WADT 2008), volume 5486 of LNCS. Springer, pp 206–220

[KWB05] Kleppe A, Warmer J, Bast W (2005) MDA Explained: The Model Driven Architecture(TM): Practice and Promise. Addison-
Wesley Professional

[Lan96] Lano K (1996) The B language and method, a guide to practical formal development. Springer, New York
[Lan06] Lang F (2006) Refined interfaces for compositional verification. In: Proceeding of 26th international conference on formal

methods for networked and distributed systems (FORTE 2006), volume 4229 of LNCS. Springer, pp 159–174
[LM13] LangF,MateescuR (2013) Partialmodel checking using networks of labelled transition systems and boolean equation systems.

Log Methods Comput Sci 9(4):1–32.
[Lut97] Luttik SP (1997) Description and formal specification of the link layer of P1394. Technical Report SEN-R9706, CWI



A formal verification technique for behavioural model-to-model transformations 43

[MW14] Mateescu R, Wijs AJ (2014) Property-dependent reductions adequate with divergence-sensitive branching bisimilarity. Sci
Comput Program 96(3):354–376.

[Nat99] National Institute of Standards and Technology (1999) Data encryption standard (DES). Federal information processing
standards pp 46–3

[NK08] Narayanan A, Karsai G (2008) Towards verifying model transformations. In: Proceeding of 7th international workshop on
graph transformation and visual modeling techniques (GT-VMT 2008), volume 211 of ENTCS. Elsevier, pp 191–200

[Plo09] Ploeger B (2009) Analysis of ACS using mCRL2. Technical Report 09-11, Eindhoven University of Technology
[PW16] de Putter S, Wijs AJ (2016) Verifying a verifier: on the formal correctness of an LTS transformation verification technique. In:

Proceeding of 19th international conference on fundamental approaches to software engineering (FASE 2016), volume 9633
of LNCS. Springer, pp 383–400

[Rom99] Romijn J (1999) Model checking a HAVi leader election protocol. Technical Report SEN-R9915, CWI
[RR96] RamalingamG,Reps T (1996) On the computational complexity of dynamic graph problems. Theor Comput Sci 158:233–277.
[RW13] Rahim LA, Whittle J (2013) A survey of approaches for verifying model transformations. Softw Syst Model pp 1–26.
[Sah07] Saha D (2007) An incremental bisimulation algorithm. In: Proceeding of 27th iarcs annual conference on foundations of

software technology and theoretical computer science (FSTTCS 2007), volume 4855 of LNCS. Springer, pp 204–215
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