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Abstract. Wireless ad hoc networks, in particular mobile ad hoc networks (MANETs), are growing very fast
as they make communication easier and more available. However, their protocols tend to be difficult to design
due to topology dependent behavior of wireless communication, and their distributed and adaptive operations
to topology dynamism. Therefore, it is desirable to have them modeled and verified using formal methods. In
this paper, we present an actor-based modeling language with the aim to model MANETs. We address main
challenges of modeling wireless ad hoc networks such as local broadcast, underlying topology, and its changes,
and discuss how they can be efficiently modeled at the semantic level to make their verification amenable. The
new framework abstracts the data link layer services by providing asynchronous (local) broadcast and unicast
communication, while message delivery is in order and is guaranteed for connected receivers. We illustrate the
applicability of our framework through two routing protocols, namely flooding and AODVv2-11, and show how
efficiently their state spaces can be reduced by the proposed techniques. Furthermore, we demonstrate a loop
formation scenario in AODV, found by our analysis tool.

Keywords: State-space reduction; Mobile ad hoc network; Ad hoc routing protocol; Rebeca; Actor-based lan-
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1. Introduction

Applicability of wireless communications is rapidly growing from home networks to satellite transmissions due
to their high accessibility and low cost. Wireless communication has a broadcasting nature, as messages sent by
each node can be received by all nodes in its transmission range, called local broadcast. Therefore, by paying the
cost of one transmission, several nodes may receive the message, which leads to lower energy consumption for
the sender and throughput improvement [CCH07].

Mobile ad hoc networks (MANETs) consist of several portable hosts with no pre-existing infrastructure, such
as routers in wired networks or access points in managed (infrastructure) wireless networks. In such networks,
nodes can freely change their locations so the network topology is constantly changing. For unicasting a message
to a specific node beyond the transmission range of a node, it is needed to relay the message by some intermediate
nodes to reach the desired destination. Due to lack of any pre-designed infrastructure and global network topol-
ogy information, network functions such as routing protocols are devised in a completely distributed manner
and adaptive to topology changes. Topology dependent behavior of wireless communication, distribution and
adaptation requirements make the design of MANET protocols complicated and more in need of modeling and
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verification so that it can be trusted. For instance, MANET protocols like the Ad hoc On Demand Distance
Vector (AODV) routing protocol [PB99] has been evolved as new failure scenarios were experienced or errors
were found in the protocol design [BOG02, NT15b, FVGH+13].

The actormodel [Agh90,Hew77] has been introduced for the purpose ofmodeling concurrent and distributed
applications. It is an agent-based language introduced by Hewitt [Hew77], extended by Agha to an object-based
concurrent computation model [Agh90]. An actor model consists of a set of actors communicating with each
other through unicasting asynchronous messages. Each computation unit, modeled by an actor, has a unique
address and mailbox. Messages sent to an actor are stored in its mailbox. Each actor is defined through a set
of message handlers, called message servers, to specify the actor behavior upon processing of each message. In
this model, message delivery is guaranteed but is not in-order. This policy implicitly abstracts away from effects
of the network, i.e., delays over different routing paths, message conflicts, etc., and consequently makes it a
suitable modeling framework for concurrent and distributed applications. Rebeca [SMSdB04] is an actor-based
modeling language which aims to bridge the gap between formal verification techniques and the real-world
software engineering of concurrent and distributed applications. It provides an operational interpretation of the
actor model through a Java-like syntax, which makes it easy to learn and use. Rebeca is supported by a robust
model checking tool, named Afra [afra], which takes advantage of various reduction techniques [JSM+10, SS10]
to make efficient verification possible. With the aim of reducing the state space, computations, i.e., executions
of message servers in actors, are assumed to be instantaneous while message delivery is in-order. Consequently,
instructions of message servers are not interleaved and hence, execution of message servers becomes atomic in
semantic model and each actor mailbox is modeled through a FIFO queue.

In [YGK15] we introduced bRebeca as an extension to Rebeca, to support broadcast communication which
abstracts the global broadcast communications [BG92]. To abstract the effect of network, the order of receipts
for two consequent broadcast communications is not necessarily the same as their corresponding sends in an
actor model. Hence, each actor mailbox was modeled by a bag. The resulting framework is suitable for modeling
and efficient verification of broadcasting protocols above the network layer, but not appropriate for modeling
MANETs in two ways: firstly the topology is not defined, and every actor (node) can receive all messages, in other
words all nodes are connected to each other. Secondly, as there is no topology defined, mobility is not considered.

In this paper, we extend the actor-based modeling language bRebeca [YGK15] to address local broadcast,
topology, and its changes. The aim of the current paper is to provide a framework to detect malfunctions of a
MANET protocol caused by conceptual mistakes in the protocol design, rather than by an unreliable communi-
cation. Therefore, the new framework abstracts away from the data link layer services by providing asynchronous
reliable local broadcast, multicast, and unicast communications [Pen08, SL04]. Since only one-hop communica-
tions are considered, the message delivery is in-order and is guaranteed for connected receivers. Consequently,
each actor mailbox is modeled through a queue. The reliable communication services of the data link layer
provide feedback (to its upper layer applications) in case of (un)successful delivery. Therefore, our framework
provides conditional unicast to model protocol behaviors in each scenario (in the semantic model, the status of
the underlying topology defines the behavior of actors).

The resulting framework provides a suitable means to model the behavior of ad hoc networks in a compo-
sitional way without the need to consider asynchronous communications handled by message storages in the
computation model. However, to minimize the effect of message storages on the growth of the state space, we
exploit techniques to reduce it. Since nodes can communicate through broadcast and a limited form of multi-
cast/unicast, it is possible to consider actors that have the same neighbors and local states as identical according
to the counter abstraction technique [BMWK09, PXZ02, ET99]. Therefore, the states whose number of actors
(irrespective of their identifiers) with the same neighbors and local state are the same for each local state value,
will be aggregated, thus the state space is reduced considerably. The reduced semantics is strongly bisimilar to
the original one.

To examine resistance and adaptation ofMANETprotocols to changes of the underlying topology,we address
mobility via arbitrary changes of the topology at the semantic level. Since network protocols have no control
over movement of MANET nodes and mobility is an intrinsic characteristic of such nodes, the topology should
be implicitly manipulated at the semantics. In other words, with the aim of verifying behaviors of MANET
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protocols for any mobility scenario, the underlying topology is arbitrarily changed at each semantic state. We
provide mechanisms to restrict this random changes in the topology through specifying constraints over the
topology. However, these random changes make the state space grow exponentially while the proposed counter
abstraction technique becomes invalid. To this end, each state is instead explored for each possible topology
and meanwhile topology information is removed from the state. Therefore, two next states only different in their
topologies are consolidated together and hence, the state space is reduced considerably. Due to arbitrary changes
of the underlying topology, states with different topologies are reachable from each other (through τ -transitions
denoting topology changes). We establish that such states are branching bisimilar, and consequently a set of
properties such as ACTL-X [DV90] are preserved. The proposed reduction techniques makes our framework
scalable to verify some important properties ofMANET protocol, e.g., loop freedom, in the presence of mobility
in a unified model (cf. generating a model for each mobility scenario).

The contributions of this paper can be summarized as follows:

• We extend the computation model of the actor model, in particular Rebeca, with the concepts of MANETs,
i.e., asynchronous reliable local broadcast/multicast/unicast, topology, and topology changes;

• We apply the counter abstraction in presence of topology as a part of semantic states to reduce state space
substantially: actors with the same neighbors, i.e., topological situations, and local states are counted together
in the counter abstraction technique;

• We show that the soundness of the counter abstraction technique is not preserved in presence of mobility,
and propose another technique to reduce the state space.

• We provide a tool that supports both reduction techniques and examines invariant properties automatically.
We illustrate the scalability of our approach through the specification and verification of two MANET pro-
tocols, namely flooding and AODV.

• We present a complete and accurate model of the core functionalities of a recent version of AODVv2 protocol
(version 11), abstracting from its timing issues, and investigate its loop freedom property. We detect scenarios
over which the property is violated due to maintaining multiple unconfirmed next hops for a route without
checking them to be loop free. We have communicated this scenario to the AODV group and they have
confirmed that it can occur in practice. In response, their route information evaluationwasmodified, published
in version 13 of the draft.1 Furthermore, we verify the monotonic increase of sequence numbers and packet
delivery properties using existing model checkers.

Our framework can also be applied to Wireless Mesh Networks (WMNs). Unlike MANETs, WSNs have a
backbone of dedicated mesh routers along with mesh clients. Hence, they provide flexibility in terms of mobility:
in contrast to MANETs, the clients mobility has limited effect on the overall network configuration, as the mesh
routers are fixed [MKKAR06].

The paper is structured as follows. Section 2 briefly introduces bRebeca, explain the idea behind the counter
abstraction technique and its relation to symmetry reduction technique, and explains equivalence relations that
validate our reduction techniques. Section 3 addresses themainmodeling challenges of wireless networks. Section
4 presents our extension to bRebeca for modeling MANETs. In Sect. 5, we generate the state space compactly
with the aim of efficient model checking. To illustrate the applicability of our approach, we specify the core
functionalities of AODVv2-11 in Sect. 6. Then, in Sect. 7, we discuss the efficiency of our state-space generation
over two case studies: the AODV and the flooding-based routing protocol. We illustrate our tool and possible
analysis over the models through a verification of AODV. Finally, we review some related work in Sect. 8 before
concluding the paper.

2. Preliminaries

2.1. bRebeca

Rebeca [SMSdB04] is an actor-based modeling language proposed for modeling and verification of
concurrent and distributed systems. It has a Java-like syntax familiar to software developers and it is also
supported by a tool via an integrated modeling and verification environment [afra]. Due to its design
principle it is possible to extend the core language based on the desired domain [SJ11].

1 https://tools.ietf.org/html/draft-ietf-manet-aodvv2-13.

https://tools.ietf.org/html/draft-ietf-manet-aodvv2-13
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1 reactiveclass MNode
2 {
3 statevars
4 {
5 int my i;
6 boolean done;
7 }

9 msgsrv initial ( int j , boolean starter)
10 {
11 my i = j;
12 if ( starter ) {
13 done = true;
14 send(my i);
15 } else
16 done = false;
17 }

19 msgsrv send(int i)

20 {
21 if ( i < my i) {
22 if (!done) {
23 done = true;
24 send(my i);
25 }
26 } else {
27 my i = i;
28 done = true;
29 }
30 }
31 }
32 main
33 {
34 MNode n1(1,false);
35 MNode n2(2,false);
36 MNode n3(3,true);
37 MNode n4(4,false);
38 }

Fig. 1. An example in bRebeca: max-algorithm with 4 nodes

For example, different extensions have been introduced in various domains such as probabilistic systems
[VK12], real-time systems [RSA+14], software product lines [SK13], and broadcasting environment [YGK15].
As in this paper we intend to extend bRebeca, we briefly review its syntax and semantics.

In bRebeca as well as in Rebeca, actors are the computation units of the system, called rebecs (short for
reactive objects), which are instances of the defined reactive classes in the model.

Rebecs communicate with each other only through broadcasting message which is asynchronous. Every sent
message eventually will be received and processed by its potential receivers. In Rebeca, the rebecs defined as
the known rebecs of a sender, the sender itself using the “self” keyword, or the sender of the message currently
processed using the keyword “sender” are considered as the potential receivers.However, in bRebeca, it is assumed
the network is fully connected and therefore, all rebecs of amodel constitute the potential receivers. In otherwords,
a broadcast message is received by all the nodes to which a sender has a (one-hop/multi-hop) path. So, unlike
Rebeca, there is no need for declaring the known rebecs in the reactive class definition. Due to unpredictability of
multi-hop communications, the arrival order of messages must be considered arbitrary. Therefore, as the second
difference with Rebeca, received messages are stored in an unordered bag in each node.

Every reactive class has two major parts, first the state variables to maintain the state of the rebec, and second
themessage servers to indicate the reactions of the rebec on received messages. The local state of a rebec is defined
in terms of its state variables together with its message bag. Whenever a rebec receives a message which has no
corresponding message server to respond to, it simply discards the message. Each rebec has at least one message
server called “initial”, which acts like a constructor in object-oriented languages and performs the initialization
tasks.

A rebec is said to be enabled if and only if it has at least one message in its bag. The computation takes place
by removing a message from the bag and executing its corresponding message server atomically, after which the
rebec proceeds to process the other messages in its bag (if any). Processing a message may have the following
consequences:

• it may modify the value of the state variables of the executing rebec, or

• some messages may be broadcast to other rebecs.

Each bRebeca model consists of two parts, the reactive classes part and the main part. In the main part the
instances of the reactive classes are created initially while their local variables are initialized.

As an example, Fig. 1 illustrates a simple max finding algorithm modeled in bRebeca, referred to as “Max-
Algorithm” [DK86]. Every node in a network contains an integer value and they intend to find the maximum
value of all nodes in a distributed manner. The initial message server has a parameter, named starter. The
rebec with the starter value true initiates the algorithm by broadcasting the first message. Whenever a node
receives a value from others, it compares this value with its current value and one of the following scenarios
happens:
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• if it has not broadcast its value yet and its value is greater than the received one, it broadcasts its value to
others;

• if its current value is less than the received one, it gives up broadcasting its value and updates its current value
to the received one;

• if it has already sent its value, it only checks whether it must updates its value.

This protocol does notworkonMANETs as nodes give up to rebroadcast their value after their first broadcast.
The Max-Algorithm should find the maximum value among the connected nodes in MANETs. To this aim, if a
node moves and connects to new nodes, it has to re-send its value as its value may be the maximum value in the
currently connected nodes.

2.2. Counter abstraction

Since model checking is the main approach of verification in Rebeca, we need to overcome state-space explosion,
where the state space of a system grows exponentially as the number of components in the system increases. One
way to tackle this well-known problem is through applying reduction techniques such as symmetry reduction
[CEJS98] and counter abstraction [BMWK09, PXZ02, ET99]. Counter abstraction is indeed a form of symmetry
reduction and, in case of full symmetry, it can be used to avoid the constructive orbit problem, according to
which finding a unique representative of each state is NP-hard [CEJS98]. The idea of using counters and counter
abstraction in model checking was first introduced in [ET99]. However, the term of counter abstraction was first
presented in [PXZ02] for the verification of parameterized systems and further used in different studies such as
[BMWK09, Kat11].

The idea of counter abstraction is to record the global state of a system as a vector of counters, one per local
state. Each counter denotes the number of components currently residing in the corresponding local state. In our
work, by“components" wemean the actors of the system. This technique turns amodel with an exponential size in

n, i.e.mn , into one of a size polynomial in n, i.e.
(
n +m − 1

m

)
, where n andm denote the number of components

and local states, respectively. Two global states S and S ′ are considered identical up to permutation if for every
local state s , the number of components residing in s is the same in the two states S and S ′, as permutation
only changes the order of elements. For example, consider a system which consists of three components that
each have only one variable vi of boolean type. Three global states (true, true, f alse), ( f alse, true, true), and
(true, f alse, true) are equivalent and can be abstracted into one global state represented as (true : 2, f alse : 1).

2.3. Semantic equivalence

Strong bisimilarity [Plo81] is used as a verification tool to validate the counting abstraction reduction technique
on labeled transition systems. A labeled transition system (LTS), is defined by the quadruple 〈S ,→,L, s0〉 where
S is a set of states, →⊆ S × L × S a set of transitions, L a set of labels, and s0 the initial state. Let s

α−→ t denote
(s, α, t) ∈→.

Definition 2.1 (Strong bisimilarity) A binary relationR ⊆ S × S is called a strong bisimilation if and only if, for
any s1, s ′

1, s2, and s ′
2 and α ∈ L, the following transfer conditions hold:

• s1 R s2 ∧ s1
α−→ s ′

1 ⇒ (∃ s ′
2 ∈ S : s2

α−→ s ′
2 ∧ s ′

1 R s ′
2),

• s1 R s2 ∧ s2
α−→ s ′

2 ⇒ (∃ s ′
1 ∈ S : s1

α−→ s ′
1 ∧ s ′

1 R s ′
2).

Two states s and t are called strong bisimilar, denoted by s ∼ t , if and only if there exists a strong bisimulation
relating s and t .

As explained inSect. 1,mobility is addressed through randomchanges of underlying topology at each semantic
state, modeled by τ -transitions.We propose to remove such transitions while the behavior of each semantic state is
explored for all possible topologies. We exploit branching bisimilarity [vGW96] to establish the reduced semantic
is branching bisimilar to the original one. Let

τ−→∗
be reflexive and transitive closure of τ -transitions:
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• t τ−→∗
t ;

• t τ−→∗
s , and s τ−→ r , then t τ−→∗

r .

Definition 2.2 (Branching bisimilarity) A binary relationR ⊆ S ×S is called a branching bisimilation if and only
if, for any s1, s ′

1, s2, and s ′
2 and α ∈ L, the following transfer conditions hold:

• s1 R s2 ∧ s1
α−→ s ′

1 ⇒ ((α  τ ∧ s ′
1 R s2) ∨ (∃ s ′

2, s
′′
2 ∈ S : s2

τ−→∗
s ′′
2

α−→ s ′
2 ∧ s1 R s ′′

2 ∧ s ′
1 R s ′

2)),

• s1 R s2 ∧ s2
α−→ s ′

2 ⇒ ((α  τ ∧ s1 R s ′
2) ∨ (∃ s ′

1, s
′′
1 ∈ S : s1

τ−→∗
s ′′
1

α−→ s ′
1 ∧ s ′′

1 R s2 ∧ s ′
1 R s ′

2)).

Two states s and t are called branching bisimilar, denoted by s �br t , if and only if there exists a branching
bisimulation relating s and t .

3. Modeling topology and mobility

In this section, we discuss issues brought up by extending bRebeca to model and verify MANETs, and our
solutions to overcome these challenges. We assume that the number of nodes is fixed (to make the state space
finite as explained in [DSZ11]).

3.1. Network topology and mobility

Every rebec represents a node in the MANET model. A node can communicate only with those located in its
communication range, so-called connected. bRebeca does not define a “topology" concept as the network graph
is considered to be connected, all nodes are globally connected.

Mobility is the intrinsic characteristic ofMANETnodes.Furthermore, networkprotocols haveno control over
the movement of MANET nodes, and hence, topology changes cannot be specified as a part of the specification.
Additionally, to verify a protocol with respect to any mobility scenario, we need to consider all possible topology
changes while constructing the state space. To this end, we consider the topology as a part of the states and
randomly change the underlying topology at the semantic level. To this aim, a topology is modeled as an n × n
matrix in each (global) state of the semantic model, where n is the number of nodes in the network. Each element
of this matrix, denoted by ei,j , indicates whether nodei is connected to nodej (ei,j  1) or not (ei,j  0). As the
communication ranges of all nodes are assumed to be equal, connectivity is a bidirectional concept, and hence,
the resulting matrix will be symmetric. The main diagonal elements are always 1 to make it possible for nodes
to unicast messages to themselves. (However, in the case of broadcast, our semantic rules prevent a node from
receiving its own message, see Sect. 4.2). Changing the topology is considered an unobservable action, modeled
by a τ transition, which alters the topology matrix. Hence, each τ -transition represents a set of (bidirectional)
link setups/breakdowns in the underlying topology.

To set up the initial topology of the network, the known-rebecs definitions, provided by the Rebeca language,
is extended to address the connectivity of rebecs. Fig. 2a shows the communication range of the nodes in a simple
network. To configure the initial topology of this network, known-rebecs of each rebec should be defined as shown
in Fig. 2b during its instantiation (cf. Fig. 1). The corresponding semantic representation (as a part of the initial
state) is shown in Fig. 2c.

The connectivity matrix has n × n elements which can be either 0 or 1, and since on the main diagonal we
will exclusively have 1s, we have 2((n×n)−n)/2 possible topologies. For example, in a network of 4 nodes, we have
2(16−4)/2  26 possible topologies. Considering all these topologies may lead to a state-space explosion. Hence,
we provide a mechanism to limit the possible topologies by applying some network constraints to characterize the
set of topologies in terms of (dis)connectivity relations to (un)pin a set of the links among the nodes. We use the
notations con(i , j ) or !con(i , j ) to show that two nodes i and j are connected or disconnected, respectively, and
and(C1, C1) to denote both C1 and C2 hold. For example, !con(n1,n2) specifies that n1 (n2) never gets connected
to n2 (n1), in other words, n1 never enters into n2’s communication range, and vice versa. Therefore a topology γ
is called valid for the network constraint C, denoted as γ � C, if:

γ � con(i , j ) ⇔ γi,j  1 γ � and(C1, C2) ⇔ γ � C1 ∧ γ � C2
γ �!con(i , j ) ⇔ γi,j  0 γ � true

where γi,j represents the element ei,j of the corresponding semanticmodel of γ , and true characterizes all possible
topologies.
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n3

n2

n4

n1

(a)

MNode n1 (n2, n3, n4) : (1, false)
MNode n2 (n1, n4) : (2, false)
MNode n3 (n1, n4) : (3, true)
MNode n4 (n2, n3, n1) : (4, false)

(b)

⎛
⎜⎝
1 1 1 1
1 1 0 1
1 0 1 1
1 1 1 1

⎞
⎟⎠

(c)

Fig. 2. A sample of an initial topology and its corresponding syntactic and semantic representations. a The network, b syntactic definition
during instantiation, c semantic representation

If the only valid topology of a network constraint is equal to the initial topology, then the underlying topology
will be static. This case can be useful for modeling WMNs with stable mesh routers with no mesh clients.

3.2. Restricted delivery guarantee

The nature of communications in the wireless networks is based on broadcast. The aim of the current paper
is to provide a framework to detect malfunctions of a MANET protocol caused by conceptual mistakes in the
protocol design, rather than by an unreliable communication. Therefore, we consider thewireless communications
in our framework, namely local broadcast, multicast, and unicast, to be asynchronous and reliable in order to
abstract the data link layer services. In this way, we abstract the issues related to contention management and
collision detection following the approach of [KLN11]. This work abstracts the services of data link layer2 with
the aim to design/analyze MANET protocols irrespective to the network radio model that implements them (its
effect is captured by three delays functions). It provides reliable local broadcast communication, with timing
guarantees on the worst-case amount of time for a message to be delivered to all its recipients, total amount
of time the sender receives its acknowledgment, and the amount of time for a receiver to receive some message
among those currently being transmitted by its neighbors, expressed by delay functions. Therefore, our approach
to specify protocols relying on the abstract data link layer simplifies the study of such protocols, and is valid as
its real implementation with such reliable services exists [Pen08, SL04]. In these implementations, a node can
broadcast/multicast/unicast a message successfully only to the nodes within its communication range. Therefore,
message delivery is guaranteed for the connected nodes to the sender. In the case of unicast, if the sender is
located in the receiver communication range, it will be notified, otherwise it assumes that the transmission was
unsuccessful so it can react appropriately. Therefore, we extended bRebeca with conditional unicast so that it
enables the model to react accordingly based on the status of underlying topology (which defines the delivery
status in reliable communications).

Since we only consider one-hop communications (in contrast to the broadcast in bRebeca), the assumption
about the unpredictability ofmulti-hop communications (with different delays) is not valid anymore, andmessage
storages in wRebeca are modeled by queues instead of bags.

2 Data link layer [the second layer of Open Systems Interconnection (OSI) model] is responsible for transferring data across the physical link.
It consists of two sublayers: Logical Link Control sublayer (LLC) and Media Access Control sublayer (MAC). LLC is mainly responsible
for multiplexing packets to their protocol stacks identified by their IP addresses, while MAC manages accesses to the shared media.
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Model ::= ReactiveClass+ Main

Main ::= main {RebecDecl+ ConstraintPart }
List(X) ::= X, ∗X |

RebecDecl ::= C R (List(R)) : (List(V ));
ConstraintPart ::= constraint {Constraint}

Constraint ::= ConstrainDec | ! ConstrainDec | and(Constraint , Constraint)
ConstrainDec ::= con(R , R) | true
ReactiveClass ::= reactiveclass C { StateVars MsgServer∗ }

StateVars ::= statevars { VarDecl∗ }
MsgServer ::= msgsrv M(List(T V )) { Statement∗ }

VarDecl ::= T V ;
Statement ::= VarDecl | Assign | Conditional | Loop | Broadcast | Multicast | Unicast | break;

Assign ::= V = Expr;
Conditional ::= if (Expr) Block else Block

Block ::= Statement | { Statement∗ }
Loop ::= while(Expr) Block

Broadcast ::= M(List(Expr));
Multicast ::= multicast ( V ,M(List(Expr)));
Unicast ::= unicast ( Rec , M(List(Expr))) succ : Block unsucc : Block

Rec ::= self | V

Fig. 3. wRebeca language syntax: angle brackets (〈 〉) are used as metaparentheses. Superscript ∗ indicates zero or more times repetition. The
symbolsC ,R,T ,M , andV denote the set of classes, rebec names, types, method and variable names, respectively. The symbolExpr denotes
an expression, which can be an arithmetic or a boolean expression

4. wRebeca: syntax and semantics

In this section, we extend the syntax of bRebeca, introduced in Sect. 2.1, with conditional unicast and multicast,
topology constraint, and known rebecs to set up the initial topology. Next, we provide the semantics of wRebeca
models in terms of LTSs.

4.1. Syntax

The grammar of wRebeca is presented in Fig. 3. It consists of two major parts: reactive classes and main part.
The definition of reactive classes is almost similar to the one in bRebeca. However, the main part is augmented
with the ConstraintPart, where constraints are introduced to reduce all possible topologies in the network. The
instances of the declared reactive classes are defined in the main part, before the ConstraintPart, by indicating
the name of a reactive class and an arbitrary rebec name along with two sets of parentheses divided by the
character :. The first couple of parentheses is used to define the neighbors of the rebec in the initial topology.
The second couple of parentheses is used to pass values to the initial message server. Rebecs here communicate
through broadcast, multicast, and unicast. In the broadcast statement, we simply use the message server name
along with its parameters without specifying the receivers of amessage. In contrast, when unicasting/multicasting
a message, we also need to specify the receiver/receivers of the message. However, there is no delivery guarantee,
depending on the location of the receiver. In case of unicasting, the sender can react based on the delivery status.
Let unicast(Rec,M (List(Expr ))) indicate unicast(Rec,M (List(Expr ))) succ :{} unsucc :{}when the delivery status
has no effect on the rebec behavior.
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1 reactiveclass Node
2 {
3 statevars
4 {
5 int IP;
6 }

8 msgsrv initial (boolean source,int ip )
9 {

10 IP=ip ;
11 if (source==true)
12 relay packet (55,0,3) ;
13 }

15 msgsrv relay packet(int data,int hopNum,int
destination)

16 {
17 if (IP==destination)
18 unicast( self , deliver packet (data));
19 else if (hopNum<3)
20 {
21 hopNum++;

22 relay packet(data,hopNum,destination);
23 }
24 }
25 msgsrv deliver packet( int data)
26 {

28 }
29 }

31 main
32 {
33 Node node0 (node1):(true,0);
34 Node node1 (node0,node2,node3):(false,1);
35 Node node2 (node1,node3):(false,2);
36 Node node3 (node1,node2):(false,3);

38 constraint
39 {
40 and(con(node0,node1),!con(node0,node2))
41 }
42 }

Fig. 4. Flooding protocol in a network consisting of four nodes

In addition to communication statements, there are assignment, conditional, and loop statements. The first
one is used to assign a value to a variable. The second is used to branch based on the evaluation of an expression: if
the expression evaluates to true, then the if part, and otherwise the else part will be executed. Let if (Expr ) Block
denote if (Expr ) Block else { }. Finally, the third is used to execute a set of statements iteratively as long as
the loop condition, i.e., the boolean expression Expr , holds. Furthermore, break can be used to terminate its
nearest enclosing loop statement and transfer the control to the next statement. For the sake of readability, we
use for (T x  Expr1; Expr2; Expr3){Statement∗ } to denote T x  Expr1; while (Expr2){Statement∗ Expr3 }.
A variable can be defined in the scope of message servers as a statement similar to programming languages.

A given wRebeca model is called well-formed if no state variable is redefined in the scope of a message server,
no two state variables, message servers or rebec classes have identical names, identifiers of variables, message
servers and classes do not clash, and all rebec instance accesses, message communications and variable accesses
occur over declared/specified ones and the number and type of actual parameters correctly match the formal
ones in their corresponding message server specifications. Each break should occur within a loop statement.
Furthermore, the initial topology should satisfy the network constraint and be symmetric, i.e., if n1 is the known
rebec of n2, then n2 should be the known rebec of n1. By default, the network constraint is true if no network
constraint is defined, and all the nodes are disconnected if no initial topology is defined.

Example The flooding protocol is one of the earliest methods used for routing in wireless networks. The flooding
protocol modeled in wRebeca is presented in Fig. 4. Every node upon receiving a packet checks whether it is
the packet’s destination. If so it processes the message, otherwise it broadcasts the message to its neighbors. To
reduce the number of transferred messages, each message contains a counter, called hopNum, which shows how
many times it has been re-broadcast. If the hopNum is more than the specified bound, it quits re-broadcasting.

4.2. Semantics

The formal semantics of a well-formed wRebeca is expressed as an LTS. In the following, we formally define the
states, transitions, and initial states of the semanticmodel generated for a givenwRebeca specification. To this aim,
the given specification is decomposed into its constituent components, i.e., rebec instances, reactive classes, initial
topology, and network constraint represented by the wRebeca model M. The topology is implicitly changed as
long as the given network constraint is satisfied. As explained in Sect. 1, message server executions are atomic and
their statements are not interleaved. Intuitively, the global state of a wRebeca model is defined by the local states
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of its rebecs and the underlying topology. Consequently, a state transition occurs either upon atomic execution
of a message server (i.e., when a rebec processes its corresponding message in its queue), or at a random change
in the topology (modeled through unobservable τ -transitions).

Let V denote the set of variables ranged over by x , and Val denote the set of all possible values for the
variables, ranged over by e. Furthermore, we assume that the set of types T consists of the integer and boolean
data types, i.e., T  {int, bool}. We consider the default value 0 ∈ Val for the integer and boolean variables
since the boolean values true and f alse can be modeled by 1 and 0 in the semantics, respectively. The variable
assignment in each scope can be modeled by the valuation function V → Val ranged over by θ . An assignment
can be extended by writing θ ∪ {y �→ e}. To monitor value assignments regarding scope management, we specify
the set of all environments as Env  Stack(V → Val), ranged over by υ. Let upd(υ, {y �→ e}) extend the
variable assignments of the current scope, i.e, the top of the stack, by {y �→ e} if the stack is not empty. Assume
Stack() denotes an empty environment. By entering into a scope, the environment υ is updated by push(θ, υ)
where θ is empty if the scope belongs to a block (which will be extended by the declarations in the block). Upon
exiting from the scope, it is updated by pop(υ) which removes the top of the stack. Let eval(expr , υ) denote the
value of the expression expr in the context of environment υ, and υ[x : e] the environment identical to υ except
that x is assigned to e.

Assume Seq(D) denotes the set of all sequences of elements in D ; we use notations 〈d1 . . . dn 〉 and ε for a
non-empty and empty sequence, respectively. Note that the elements in a sequence may be repeated. A FIFO
queue of elements of D can be viewed as a Seq(D). For instance, 〈2 3 2 4〉 ∈ Seq(N) denotes a FIFO queue of
natural numbers where its head is 2. For a given FIFO queue f : Seq(D), assume f � d denotes the sequence
obtained by appending d to the end of f , while d � f denotes the sequence with head d and tail f .

A wRebeca model is defined through a set of reactive classes, rebec instances, an initial topology, and a
network constraint. Let C denote the set of all reactive classes in the model ranged over by c, R the set of rebec
instances ranged over by r , and C the set of network constraints ranged over by C. Assume � is the set of all
possible topologies ranged over by γ . Each reactive class c is described by a tuple c  〈Vc,Mc〉, where Vc is
the set of class state variables and Mc the set of message types ranged over by m that its instances can respond
to. We assume that for each class c, we have the state variable sel f ∈ Vc , and c ∈ Mc which can be seen as its
constructor in object-oriented languages. For the sake of simplicity, we assume that messages are parameterized
with one argument, so Msgc , where Mc  Val → Msgc defines the set of all messages that rebec instances of
the reactive class c can respond to. The formal parameter of a message can be accessed by f m : Mc → V . Let
Statement denote the set of statements ranged over by σ, δ (we use σ ∗, δ∗ to denote a sequence of statements),
and body : Mc → Seq(Statement) specify the sequence of statements executed by a message server. A block,
denoted by β, is either defined by a statement or a sequence of statements surrounded by braces.

A rebec instance r is specified by the tuple 〈c, e0〉 where c ∈ C is its reactive class, and e0 defines the value
passed to themessage c which is initially put in the rebec’s queue.We assume a unique identifier is assigned to each
rebec instance. Let I  {1 . . .n} denote a finite set of all rebec identifiers ranged over by i and j . Furthermore, we
use ri to denote the rebec instance r with the assigned identifier i . As explained in Sect. 2.1, a rebec in wRebeca,
like Rebeca, holds its received messages in a FIFO queue (unlike bRebeca, in which messages are maintained in
a bag).

All rebecs of the model form a closed model, denoted byM  〈‖i∈I ri ,C , γ0, C〉, where ri  〈c, ei0〉 for some
c ∈ C and C ∈ C. By default, C  true and ∀ i , j ≤ n(γ0i,i  1 ∧ (i � j ⇒ γ0i,j  0)) if no network constraint
and initial topology were defined. The (global) state of the M is defined in terms of rebec’s local states and the
underlying topology.

Definition 4.1 The semantics of a wRebeca model M  〈‖i∈I ri ,C , γ0, C〉 is expressed by the LTS 〈S ,L,→, s0〉
where

• S ⊆ S1× . . .×Sn ×� is the set of global states such that (s1, . . . , sn , γ ) ∈ S iff γ � C, and Si  Env×F I FO i

is the set of local states of rebec ri  〈c, ei0〉 where F I FOi  Seq(Msgc) models a FIFO queue of messages
sent to the rebec ri . Therefore, each si can be denoted by the pair (νi , fi ). We use the dot notations si .ν and
si .f to access the environment and FIFO queue of the rebec i , respectively.

• L  Act ∪ {τ } is the set of labels, where Act  ⋃
c∈C Msgc ;

• The transition relation →⊆ S × L × S is the least relation satisfying the semantic rules in Table 1;
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Table 1. wRebeca natural semantic rules
T erm: νi , f1, . . . , fn , ε �γ νi , f1, . . . , fn ,�
Assign: νi , f1, . . . , fn , x : expr ; �γ νi [x : eval(expr , νi )], f1, . . . , fn ,�
V Decl: νi , f1, . . . , fn ,T x ; �γ upd(νi , {x �→ 0}), f1, . . . , fn ,�

Block:
push(∅, νi ), f1, . . . , fn , σ ∗ �γ ν ′

i , f
′
1 , . . . , f

′
n , ζ

νi , f1, . . . , fn , {σ ∗} �γ pop(ν ′
i ), f

′
1 , . . . , f

′
n , ζ

Cond1:
eval(expr , νi )  true νi , f1, . . . , fn , β1 �γ ν ′

i , f
′
1 , . . . , f

′
n , ζ

νi , f1, . . . , fn , i f expr β1 else β2 �γ ν ′
i , f

′
1 , . . . , f

′
n , ζ

Cond2:
eval(expr , νi )  f alse νi , f1, . . . , fn , β2 �γ ν ′

i , f
′
1 , . . . , f

′
n , ζ

νi , f1, . . . , fn , i f expr β1 else β2 �γ ν ′
i , f

′
1 , . . . , f

′
n , ζ

Loop1:

eval(expr , νi )  true
νi , f1, . . . , fn , β �γ ν ′

i , f
′
1 , . . . , f

′
n ,�

ν ′
i , f

′
1 , . . . , f

′
n , while(expr ) β �γ ν ′′

i , f
′′
1 , . . . , f ′′

n ,�
νi , f1, . . . , fn , while(expr ) β �γ ν ′′

i , f
′′
1 , . . . , f ′′

n ,�

Loop2:

eval(expr , νi )  true
νi , f1, . . . , fn , β �γ ν ′

i , f
′
1 , . . . , f

′
n ,⊥

νi , f1, . . . , fn , while(expr ) β �γ ν ′
i , f

′
1 , . . . , f

′
n ,�

Loop3:
eval(expr , νi )  f alse

νi , f1, . . . , fn , while(expr ) β �γ νi , f1, . . . , fn ,�
BCast : νi , f1, . . . , fn ,m(expr ); �γ νi , f ′

1 , . . . , f
′
n ,� , where ∀ k ≤ n(k � i ∧ (γi,k  1) ⇒

[f ′
k  fk � m(eval(expr , vi ))][f ′

k  fk ])

MCast : νi , f1, . . . , fn ,multicast(rcvs, expr ); �γ νi , f ′
1 , . . . , f

′
n ,� , where ∀ k ≤ n(k ∈ rcvs ∧ (γi,k  1) ⇒

[f ′
k  m(eval(expr , vi )) � fk ][f ′

k  fk ])

UCast1:

(γi,j  1)
f ′
j  fj � m(eval(expr , vi )) ∧ ∀ k � j (f ′

k  fk )
νi , f ′

1 , . . . , f
′
n , β1 �γ ν ′

i , f
′′
1 , . . . , f ′′

n , ζ

νi , f1, . . . , fn , unicast(j ,m(expr )) succ : β1 unsucc : β2 �γ ν ′
i , f

′′
1 , . . . , f ′′

n , ζ

UCast2:
(γi,j  0) νi , f1, . . . , fn , β2 �γ ν ′

i , f
′
1 , . . . , f

′
n , ζ

νi , f1, . . . , fn , unicast(j ,m(expr )) succ : β1 unsucc : β2 �γ ν ′
i , f

′
1 , . . . , f

′
n , ζ

Seq1:
νi , f1, . . . , fn , σ1 �γ ν ′

i , f
′
1 , . . . , f

′
n ,� ν ′

i , f
′
1 , . . . , f

′
n , σ ∗

2 �γ ν ′′
i , f

′′
1 , . . . , f ′′

n , ζ

νi , f1, . . . , fn , σ1σ
∗
2 �γ ν ′′

i , f
′′
1 , . . . , f ′′

n , ζ

Seq2: νi , f1, . . . , fn , break; σ ∗ �γ νi , f1, . . . , fn ,⊥

Handle:

si .f  m(e) � fi ∧ ∀ k � i (fk  sk .f )
νi  push({ f m(m) �→ e}, si .ν)

νi , f1, . . . , fn , body(m) �γ ν ′
i , f

′
1 , . . . , f

′
n ,�

(s1, . . . , sn , γ )
m(e)−−→ (s ′

1, . . . , s
′
n , γ )

, where ∀ k � i(s ′
k  (sk .ν, f ′

k )) ∧ s ′
i  (pop(ν′

i ), f
′
i )

Mov (s1, . . . , sn , γ )
τ−→ (s1, . . . , sn , γ ′) , where γ ′ | C
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• s0 is the initial state which is defined by the combination of initial states of rebecs and the initial topology, i.e.,
s0  {(s10 , . . . , sn0 , γ0)}, where for the rebec ri  〈c, ei0〉, s i0  (push(θ0, stack()), 〈c(ei0)〉) which denotes that
the class variables (i.e., Vc) are initialized to the default value, denoted by θ0, and its queue includes only the
message c(ei0), and γ0 � C.
To describe the semantics of transitions in wRebeca in Table 1, we exploit an auxiliary transition relation�γ ⊆

(Env × F I FO1 × . . . × F I FOn × Seq(Statement)) → (Env × F I FO1 × . . . × F I FOn × {�,⊥}) to address
the effect of statement executions on the given environment of the rebec (which executes the statements) and
the queue of all rebecs. Upon execution, the statements are either successfully terminated, denoted by �, or
abnormally terminated, denoted by ⊥. Let ζ range over {�,⊥}. Rule T erm explains that an empty statement
terminates successfully. The effect of an assignment statement, i.e., x : expr ; , is that the value of variable x
is updated by eval(expr , νi ) in νi as explained by the rule Assign. The variable declaration T x ; extends the
variable valuation corresponding to the current scope by the value assignment x �→ 0, where 0 is the default value
for the types ofT , as explained in the rule V Decl. The behavior of a block is expressed by the rule Block, based on
the behavior of the statements (in its scope) on the environment push(∅, νi ), where the empty valuation function
may be extended by the declarations in the scope (by rule V Decl). Thereafter, to find the effect of the block, the
last scope is popped from the environment. Rules Cond1,2 specify the effect of the if statement: If eval(expr , νi )
evaluates to true, its effect is defined by the effect of executing the if part, otherwise the else part. Rules Loop1−3
explain the effect of thewhile statement; If the loop condition evaluates to true, the effect of thewhile statement
is defined in terms of the effect of its body by the rules Loop1,2, otherwise it terminates immediately as specified
by the rule Loop3. If the body of the while statement terminates successfully, the effect of the while statement is
defined in terms of the effect of thewhile statement on the resulting environment and queues of its body execution
as explained by Loop1. Rule Loop2 expresses that if the body of the while statement terminates abnormally (due
to a break statement) while its condition evaluates to true, then it terminates successfully while taking the effect
of its body execution into account. The effect of a sequence of statements is specified by the rules Seq1,2. Upon
successful execution of a statement, the effect of its next statements is considered (rule Seq1). A break statement
makes all its next statements be abandoned (rule Seq2).

The expression b ⇒ [C1][C2] in the post-conditions of rules BCast andMCast abbreviates (b ⇒ C1)∧ (¬b ⇒
C2). The effects of broadcast and multi-cast communications are specified by the rules BCast and MCast ,
respectively: the message m(eval(expr , νi )) is appended to the queue of all connected nodes to the sender in
case of broadcast, and all connected nodes among the specified receivers (i.e., rcvs) in case of multi-cast. Rules
UCast1,2 express the effect of unicast communicationupon its delivery status. If the communicationwas successful
(i.e., the sender was connected to the receiver), the message is appended to the queue of the receiver while the
effect of the succ part is also considered (ruleUCast1), otherwise only the effect of the unsucc part is considered
(rule UCast2).

The rule Handle expresses that the execution of a wRebeca model progresses when a rebec processes the first
message of its queue. In this rule, the message m(e) is processed by the rebec ri as si .f  m(e) � fi . To process
this message, its corresponding message server, i.e. body(m) is executed. The effect of its execution is captured
by the transition relation �γ on the environment of ri , updated by the variable assignment { f m �→ e} for the
scope of the message server of m, and the queue of all rebecs while message m(e) is removed from the queue of
ri . Finally, the rule Mov specifies that the underlying topology is implicitly changed at the semantic level, and
the new topology satisfies C.

ExampleConsider the global state (s0, s1, s2, s3, γ ) such that s0  (({{IP �→ 0}}, 〈relay packet(55, 0, 3)〉), s1  ({{IP �→ 1}}, ε),

s2  ({{IP �→ 2}}, ε), s3  ({{IP �→ 3}}, ε), and γ :

⎛
⎜⎝
1 1 0 0
1 1 1 1
0 1 1 0
0 1 0 1

⎞
⎟⎠) for the wRebeca model in Fig. 4 where {{IP �→ i}} denotes

push({IP �→ i}, Stack()). Regarding our rules, the following transition is derived:

ν2, ε, ε, ε, ε, hopNum + + �γ ν3, ε, ε, ε, ε,� ν3, ε, ε, ε, ε, rel(data, . . .) �γ ν3, ε, 〈rel(55, 1, 3)〉, ε, ε, �
Seq1

ν2, ε, ε, ε, ε, hopNum + +; rel(data, . . .) �γ ν3, ε, 〈rel(55, 1, 3)〉, ε, ε, �
Block

ν1, ε, ε, ε, ε, {hopNum + +; rel(data, . . .)} �γ ν4, ε, 〈rel(55, 1, 3)〉, ε, ε,� : (∗)

The following inference tree uses the result of the first tree, denoted by (∗), as a part of its premise to derive
the transition.
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eval(IP  des, ν1)  f alse

eval(hopNum < 3, ν1)  true (∗)
Cond1

ν1, ε, ε, ε, ε, i f (hopNum < 3) . . . �γ ν4, ε, 〈rel(55, 1, 3)〉, ε, ε,�
Cond2

ν1, ε, ε, ε, ε, if (IP  . . . �γ ν′
1, ε, 〈rel(55, 1, 3)〉, ε, ε, �

Handle

(s0, s1, s2, s3, γ )
rel(55,0,3)−−−−−−−→ (s ′

0, s
′
1, s2, s3, γ )

where ν1  push({data �→ 55, hopNum �→ 0, des �→ 3}, {{IP �→ 0}}), ν2  push(∅, ν1), ν3  ν2[hopNum : 1],
ν4  pop(ν3), ν ′

1  pop(ν4), s ′
0  ({{IP �→ 0}}, ε), and s ′

1  ({{IP �→ 1}}, 〈rel(55, 1, 3)〉). Note that des denotes
destination, and rel refers to relay packet message. By the rule Handle, the message rel(55, 0, 3) in the
queue of node0 is processed. To this aim, the body of its message server, i.e., if (IP  . . . is executed. Since
eval(IP  des, ν1)  f alse, by the rule Cond2, the else part (i.e., if (hopNum < 3) . . .) is executed. Due to
eval(hopNum < 3, ν1)  true, by the rule Cond1, the if part is executed.

5. State-space reduction

We extend application of the counter abstraction technique to wRebeca models when the topology is static. To
this end, the local states of rebecs and their neighborhoods are considered. Later, we inspect the soundness of the
counter abstraction technique in the presence of mobility. As a consequence, we propose a reduction technique
based on removal of τ -transitions. Recall that the topology is static when the only valid topology of the network
constraint is equal to the initial topology.

5.1. Applying counter abstraction

Assume Sc is the set of local states that the instances of the reactive class c can take (i.e., Sc  Envc × F I FOc)
and I is the set of rebec identifiers. To apply counter abstraction, rebecs with an identical local state and neighbors
that are topologically equivalent are counted together. Two nodes i , j ∈ I are said to be topologically equivalent,
denoted by i ≈γ j , iff ∀ k ∈ I \ {i , j }(γik  γjk ). Intuitively, two topologically equivalent nodes have the same
neighbors (except themselves). So if either one broadcasts, the same set of nodes (except themselves) will receive,
and if they are also connected to each other, their counterpart (that is symmetric to the sender) will receive. Nodes
in N ⊆ I are called topologically equivalent iff ∀ i , j ∈ N (i ≈γ j ). This definition implies that all topologically
equivalent nodes should be either all connected to each other, or disconnected, while they should have the same
neighbors (except themselves). Therefore, topologically equivalent nodes will affect the same nodes when either
one broadcasts. Hence, topologically equivalent nodes with an identical local state can be aggregated. To this aim,
nodes of the underlying topology are partitioned into themaximal sets of topologically equivalent nodes, denoted
by N1, . . . ,N�. We define the set of distinct local states as Sd  ⋃

c∈C Sc , and the set of topology equivalence
classes asT  {N1, . . . ,N�}. Consequently, each global state (s1, . . . , sn , γ ) is abstracted into a vector of elements
(sdi ,Ni ) : ci where sdi ∈ Sd , Ni ∈ T, and ci is the number of nodes in the topology equivalence class Ni that
reside in the very local state sdi . The reduced global state, called abstract global state, is presented as follows,
where n and m donate the number of all rebecs and distinct local states (i.e., m  ∣∣Sd

∣∣), respectively:
S  ((sd1 ,N1) : c1, . . . , (sdk ,Nk ) : ck ), ∀ i ≤ k (ci > 0 ∧ Ni ∈ T),

k∑
i1

ci  n, k ≤ n

For instance, nodes n1, n4, and n2, n3 in Fig. 2 have the same neighbors, so if their state variables and queue
contents are the same, then they can be counted together.

Recall that when the underlying topology is static, a global state may only change upon processing a message
by a rebec, since in wRebeca the bodies of message servers execute atomically. Thus, its corresponding abstract
global state may also only change upon processing a message by a rebec.

Counting abstraction is beneficialwhen the reactive classes donot have a variable thatwill be assigneduniquely
to its instances, such as “unique address" as a state variable. (Note that at the semantics, rebecs have identifiers
which are not a part of their local states.) For example, counter abstraction is not effective on the specification of
the flooding protocol given in Fig. 4, since its nodes are identified uniquely by their IP addresses, and hence their
state variables can not be collapsed. Therefore, to take benefit of this abstraction, we revise the example in the
way that nodes are not distinguished by their IP addresses.
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1 reactiveclass Node
2 {
3 statevars
4 {
5 boolean destination;
6 }

8 msgsrv initial (boolean source,boolean dest)
9 {

10 destination=dest;
11 if (source==true)
12 relay packet (55,1) ;
13 }

16 msgsrv relay packet(int data,int hopNum)
17 {
18 if (destination==true)
19 unicast( self , deliver packet (data));
20 else if (hopNum<2)

21 {
22 hopNum++;
23 relay packet(data,hopNum);
24 }
25 }
26 msgsrv deliver packet( int data)
27 {

29 }
30 }

32 main
33 {
34 Node node0 (node1):(true,false);
35 Node node1 (node0,node2,node3):(false,false);
36 Node node2 (node1,node3):(false,false) ;
37 Node node3 (node1,node2):(false,true);

39 }

Fig. 5. The revised version of the flooding protocol to make counter abstraction applicable in a network consisting of four nodes

(

({{i → 1}} ),
({{i → 2}}, msg ),
({{i → 1}} ),
({{i → 0}} ),

⎛
⎜⎝
1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

⎞
⎟⎠)

(a)

(
(({{i → 1}} ), {1, 3}) : {1, 3},
(({{i → 2}}, msg ), {2, 4}) : {2},
(({{i → 0}} ), {2, 4}) : {4}

)

(b)

Fig. 6. An abstract global state and its corresponding transposed global state: assume {{i �→ e}} denotes push({i �→ e}, Stack()).
a Before applying counter abstraction, b after applying counter abstraction

To this aim, the IP variable is replaced by the boolean variable destination which identifies the sink node,
while the last parameter of the relay packetmessage server is removed. The revised version is shown in Fig. 5.

The reduction takes place on-the-fly while constructing the state space. To this end, each global state (s1, . . . ,
sn , γ ) is transformed into the form ((sd1 ,N1) : n1, (sd2 ,N2) : n2, . . . , (sdk ,Nk ) : nk ) such that ni ⊆ Ni is the set
of node identifiers that are topologically equivalent with the local state equal to sdi , where Ni ∈ T. This new
presentation of the global state is called transposed global state. The sets ni are leveraged to update the states of the
potential receivers (known by the underlying topology) when a communication occurs. To generate the abstract
global states, each transposed global state is processed by taking an arbitrary node from the set assigned to a
distinct local state and a topology equivalence class if the distinct local state consists of a non-empty queue. The
next transposed global state is computed by executing the message handler of the headmessage in the queue. This
is repeated for all the pairs of a distinct local state and a topology equivalence class of the transposed global state.
After generating all the next transposed global states of a transposed state, the transposed state is transformed
into its corresponding abstract global state by replacing each ni by |ni |. A transposed global state is processed
only if its corresponding abstract global state has not been previously computed. During state-space generation,
only the abstract global states are stored. Fig. 6 illustrates a global state and its corresponding transposed global
state. It is assumed that the network consists of four nodes of the reactive class with only one state variable i
and message server msg. Each row in Fig. 6a represents a local state, i.e., valuation of the local state variable and
message queue, while each row in Fig. 6b represents a distinct local state and a set of topologically equivalent
identifiers together with those nodes of the set that reside in that distinct local state. As the topology is static,
it can be removed from the abstract/transposed global states. Furthermore, each topology equivalence class of
nodes can be represented by its unique representative, e.g., the one with the minimum identifier.

The following theorem states that applying counter abstraction preserves semantic properties of the model
modulo strong bisimilarity. To this aim, we prove that states that are counted together are strong bisimilar. For
instance, the global state similar to the one in Fig. 6a except that the distinct local states of nodes 2 and 4 are
swapped, is mapped into the same abstract global state that corresponds to Fig. 6b.
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and(con(N1, N2), and(con(N1, N3),
and(con(N3, N4), and(!con(N1, N2),

!con(N2, N3)))))

(c)

Fig. 7. Two possible topologies for the given constraint on the flooding protocol. a Topology 1, b topology 2, c an example of network
topology constraint

Theorem 5.1 (Soundness of counter abstraction) Assume two global states S1 and S2 such that for all pair of
sd ∈ Sd and N ∈ T, the number of topologically equivalent nodes of N that have the distinct local state sd are
the same in S1 and S2. Then they are strongly bisimilar.

Proof Since the topology is static, the only transitions these states have are the result of processing messages

in their rebec queues. Suppose S1
m(e)−−→ S ′

1 since there is a node i with the local state (νi , fi ) in the topology
equivalence class N , where m(e) is the head of fi using the semantic rule Handle in Table 1. Assume that i
belongs to the topologically equivalent nodes N1 ⊆ N , where ((νi , fi ),N ) : N1 is an element of the transposed
global state corresponding to S1. Due to the assumption, there exist topologically equivalent nodes N2 ⊆ N in
S2 with the distinct local state (νi , fi ) where |N1|  |N2|. We choose an arbitrary node j in N2 and prove that it
triggers the same transition as i . We claim that ∀(sdk ,N ′), the number of nodes in the topology equivalence class
N ′ that are a neighbor of i , denoted by nbi , and reside in the local state sdk is the same to the number of the nodes
in the topology equivalence classN ′ that are a neighbor of j , denoted by nbj , with the local state sdk . Assume for
the arbitrary transposed global state element (sdl ,N ′′) this does not hold, and we consider the case where nbi has
more topologically equivalent nodes than nbj in (sdl ,N ′′). As the links are bidirectional, due to the definition of
abstract/transposed global states, i is the neighbor of nodes inN ′′. Furthermore, as the topology is the same for
S1 and S2 and i , j ∈ N , then j is also the neighbor of nodes inN ′′. However, due to the assumption, the number
of topologically equivalent nodes of N ′′ in S1 and S2 that have the distinct local state sdl are the same. So there
are some topologically equivalent nodes of N ′′ with the local state sdl that are not in nbj , which contradicts to
fact that j is the neighbor of nodes in N ′′.

As both i and j handle the same message, they execute the same message server, and consequently the effects

on their own local state and their neighbors will be the same. Therefore, S2
m(e)−−→ S ′

2 while ∀(sdo ,N ∗) the number
of topologically equivalent nodes from the equivalence class N ∗ in S ′

2 that have the distinct local state s
d
o is the

same to S ′
1. A similar argumentation holds when S2

m(e)−−→ S ′
2 while the inequality between nbi and nbj goes the

other way.

As mentioned before, the reduction is only applicable if the network is static. This is due to the fact that if
node neighborhoods may change, then nodes which are in the same equivalence class in some state may no longer
be equivalent in the next state. Consider the flooding protocol (Fig. 5) for the two topologies shown in Fig. 7a, b
(satisfying the network constraint in Fig. 7c). By applying counter abstraction, nodes N2 and N3 are considered
equivalent under topology 1, but not under topology 2.

To illustrate that counter abstraction is not applicable to systems with a dynamic topology, Fig. 8 shows a part
of the state space of the flooding protocol with a change in the underlying topology (fromFig. 7a, b) with/without
applying counter abstraction, where only these two topologies are possible. As predicted, the reduced state space
is not strong bisimilar (see Sect. 2.3 for the definition) to its original state space. During transposed global state
generation, the next state is only generated for node 2 with the distinct local state ({{des �→ F }}, 〈rel〉) from the
equivalence class {2, 3}. Therefore, it is obvious that the next states in the left LTS of Fig. 8 can be matched to the
states with the solid borders in the right LTS. However, the solid bordered states are not strong bisimilar to the
dotted ones in the right LTS. As explained in Sect. 1, the reduced LTS should be strong bisimilar to its original
one to preserve all properties of its original model.
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Fig. 8. Comparing a part of the flooding protocol’s state space with/without applying counter abstraction in a dynamic network. The two
dashed bordered states are not strong bisimilar since in the right figure there is a global state in which only one node has two rel messages
in its queue while in the left figure there are two nodes with queues containing two rel messages. Note that T ,F stand for true, f alse, des
denotes destination, and rel refers to relay packet messages. For simplicity the message parameters are not shown in the figure.

To take a better advantage of the reduction technique, the message storages can be modeled as bags. However,
such an abstraction results in more interleavings of messages which do not necessarily happen in reality, and
hence, an effort to inspect if a given trace (of the semantic model) is a valid scenario in the reality is needed. This
effort is only tolerable if the state space reduces substantially.

5.2. Eliminating τ -transitions

Instead of modifying the underlying topology, modeled by τ -transitions, messages can be processed with respect
to all possible topologies (not only to the current underlying topology). Therefore, all τ -transitions are eliminated
and only those that correspond to processing of messages are kept. The following theorem expresses that removal
of τ -transitions and topology information from the global states preserves properties of the original model
modulo branching bisimulation, such as ACTL-X [DV90]. In fact, by exploiting a result from [DV90] about
the correspondence between the equivalence induced by ACTL-X and branching bisimulation, the ACTL-X
fragments of CACTL [GAFM13], introduced to specify MANET properties, and μ-calculus are also preserved.
We show in Sect. 7.3 that important properties of MANET protocols can be still verified over reduced state
spaces.

Theorem 5.2 (Soundness of τ -transition elimination) For the given LTS T0 ≡ 〈S × �,→,L, (s0, γ0)〉, assume
that (s, γ ) α−→ (t, γ ′) ⇒ (γ  γ ′) ∨ (α  τ ∧ s  t), and ∀ γ, γ ′ ∈ � : (s, γ ) τ−→ (s, γ ′). If T1 ≡ 〈S ,→′,L, s0〉,
where →′ {(s, α, t) | ((s, γ ), α, (t, γ )) ∈→}, then (s0, γ0) �br s0.

Proof ConstructR  {((s, γ ), s) | s ∈ S , γ ∈ �} as shown in Fig. 9.We show thatR is a branching bisimulation.
To this aim, we show that it satisfies the transfer conditions of Definition 2.2. For an arbitrary relation (s, γ )R s ,
assume (s, γ ) α−→ (t, γ ′). If α  τ , then two cases can be distinguished: (1) either γ � γ ′, and hence by defi-

nition ofT0, s  t holds which concludes (t, γ ′)R s , (2) or γ  γ ′ and by definition ofT1, s
α

−→′ t , and (t, γ ′)R t .
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Fig. 10. All possible topologies considered during state-space generation of Fig. 11. a Topology γ1, b topology γ2, c topology γ3

If α � τ , then by definition of T0, γ  γ ′ and hence by definition of T1, s
α

−→′ t , and (t, γ ′) R t . Whenever

s
α

−→′ t , then by definition of T1 there exists γ ′ such that (s, γ ′) α−→ (t, γ ′) and hence, (t, γ ′)R t . ConsequentlyR
is a branching bisimulation relation.

We remark that the labeled transitionsT0 andT1 in the Theorem 5.2 specify the state space of wRebecamodels
before and after elimination of τ -transitions, respectively. As an example, consider a network which consists of
three nodes, which are the instances of a reactive class with no state variable and only one message, msg. The
message server msg has only one statement to broadcast the message msg to its neighbors. We assume that the
set of all possible topologies is restricted by a network constraint to the three topologies depicted in Fig. 10.
Consider the global state in which only N3 has one msg in its queue.

The state space of the above imaginary model before reduction is presented in Fig. 11a, where transitions
take place by processing messages or changing the topology. Fig. 11b illustrates the state space after eliminating
τ -transitions and topology information. Connectivity information is removed from the global states, as in each
state its transitions are derived for all possible topologies. In this approach, transition labels are paired with the
topology to denote the topology-dependent behavior of transitions. The two transitions labeled with γ2 and γ3
can be merged by characterizing the links that make communication from N3 to N1 and N2; i.e., from the sender
to the receivers. Such links can be characterized by the network constraints depicted in Fig. 11c. In this model,
a state is representative of all possible topologies. The resulting semantic model, called Constrained Labeled
Transition System (CLTS), was introduced in [GFM11] as the semantic model to compactly model MANET
protocols. Another advantage of a CLTS is its model checker to verify topology-dependant behavior ofMANETs
[GAFM13]. The properties in wireless networks are usually pre-conditioned to existence of a path between two
nodes. This model checker takes benefit of network constraints over transitions and assures a property holds if
the required paths hold (inferred from the traversed network constraints).
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Fig. 11. State space before and after applying reduction. a State space before reduction, b reduced State space after eliminating τ -transitions
and topology information, c reduced state space with labels characterized by network constraints

6. Modeling the AODVv2 protocol

To illustrate the applicability of the proposed modeling language, the AODVv23 (i.e., version 11) protocol is
modeled. The AODV is a popular routing protocol for wireless ad hoc networks, first introduced in [PB99], and
later revised several times.

In this algorithm, routes are constructed dynamically whenever requested. Every node has its own routing
table to maintain information about the routes of the received packets. When a node receives a packet (whether
it is a route discovery or data packet), it updates its own routing table to keep the shortest and freshest path to
the source or destination of the received packet. Three different tables are used to store information about the
neighbors, routes and received messages:

• neighbor table: keeps the adjacency states of the node’s neighbors. The neighbor state can be one of the
following values:

– Confirmed: indicates that a bidirectional link to that neighbor exists. This state is achieved either through
receiving a rrep message in response to a previously sent rreq message, or a RREP Ackmessage as a response
to a previously sent rrep message (requested an RREP Ack) to that neighbor.

– Unknown: indicates that the link to that neighbor is currently unknown. Initially, the states of the links to the
neighbors are unknown.

– Blacklisted: indicates that the link to that neighbor is unidirectional. When a node has failed to receive
the RREP Ack message in response to its rreq message to that neighbour, the neighbor state is changed to
blacklisted. Hence, it stops forwarding any message to it for an amount of time, ResetTime. After reaching
the ResetTime, the neighbor’s state will be set to unknown.

• route table: contains information about discovered routes and their status: The following information is
maintained for each route:

– SeqNum: destination sequence number
– route state: the state of the route to the destination which can have one of the following values:

3 https://tools.ietf.org/html/draft-ietf-manet-aodvv2-11.

https://tools.ietf.org/html/draft-ietf-manet-aodvv2-11
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· unconfirmed: when the neighbor state of the next hop is unknown;

· active: when the link to the next hop has been confirmed, and the route is currently used;

· idle: when the link to the next hop has been confirmed, but it has not been used in the last ACTIVE
INTERVAL;

· invalid: when the link to the next hop is broken, i.e., the neighbor state of the next hop is blacklisted.

– Metric: indicates the cost or quality of the route, e.g., hop count, the number of hops to the destination
– NextHop: IP address of the next hop to the destination
– Precursors (optional feature): the list of the nodes interested in the route to the destination, i.e., upstream
neighbors.

• route message table, also known as RteMsg Table: contains information about previously received route
messages suchas rreq and rrep, so thatwe candeterminewhether thenewreceivedmessage isworthprocessing
or redundant. Each entry of this table contains the following information:

– MessageType: which can be either rreq or rrep
– OrigAdd: IP address of the originator
– TargAdd: IP address of the destination
– OrigSeqNum: sequence number of the originator
– TargSeqNum: sequence number of the destination
– Metric

When one node, i.e., source, intends to send a package to another, i.e., destination, it looks up its routing table
for a valid route to that destination, i.e., a route of which the route state is not invalid. If there is no such a route,
it initiates a route discovery procedure by broadcasting a rreq message. The freshness of the requested route is
indicated through the sequence number of the destination that the source is aware of. Whenever a node initiates
a route discovery, it increases its own sequence number, with the aim to define the freshness of its route request.
Every node upon receiving this message checks its routing table for finding a route to the requested destination.
If there is such a path or the receiver is in fact the destination, it informs the sender through unicasting a rrep
message. However, an acknowledgment is requested whenever the neighbor state of the next hop is unconfirmed.
Otherwise, it re-broadcasts the rreq message to examine if any of its neighbors has a valid path. Meanwhile, a
reverse forwarding path is constructed to the source over which rrep messages are going to be communicated
later. In case a node receives a rrep message, if it is not the source, it forwards the rrep after updating its routing
table with the received route information.Whenever a node fails to receive a requested RREP Ack, it uses a rerr
message to inform all its neighbors intended to use the broken link to forward their packets.

In our model, each node is represented through a rebec (actor), identified by an IP address, with a routing
table and a sequence number (sn). In addition, every node keeps track of the adjacency status to its neighbors by
means of a neighbor table, through the neigh state array, where neigh state[i ]  true indicates that it is adjacent
to the node with the IP address i , while f alse indicates that its adjacency status is either unknown or blacklisted
(since timing issues are not taken into account, these two statuses are considered the same). As the destinations
of any two arbitrary rows of a routing table are always different, the routing table has at most n rows, where
n is the number of nodes in the model. Therefore, the routing table is modeled by a set of arrays, namely, dsn,
route state, hops, nhops, and pres, to represent the SeqNum, route state, Metric, NextHop, and Precursors
columns of the routing table, respectively. The arrays dsn and route state are of size n, while the arrays hops,
nhops, and pers are of size n × n. For instance, dsn[i ], keeps the sequence number of the destination with IP
address i , while nhops[i ][j ] contains the next hop of the j -th route to the destination with the IP address i .

• dsn: destination sequence number

• route state: an integer that refers to the state of the route to the destination and can have one of the following
values:

– route state[i ]  0: the route is unconfirmed, there may be more than one route to the destination i with
different next hops and hop counts;
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– route state[i ]  1: the route is valid, the link to the next hop has been confirmed, the route state in the
protocol is either active or idle; since we abstract from the timing issues, these two states are depicted as
one;

– route state[i ]  2: the route is invalid, the link to the next hop is broken;

• hops: the number of hops to the destination for different routes

• nhop: IP address of the next hop to the destination for different routes

• pres: an array that indicates which of the nodes are interested in the routes to the destination, for example
pres[i ][j ]  true indicates that the node with the IP address j is interested in the routes to the node with the
IP address i .

Since we have considered a row for each destination in our routing table, to indicate whether the node has
any route to each destination until now, we initially set dsn[i ] to −1 which implies that the node has never known
any route to the node with the IP address i . We refer to the all above mentioned arrays as routing arrays. Initially
all integer cells of arrays are set to −1 and all boolean cells are set to f alse. To model expunging a route, its
corresponding next hop and hop count entries in the arrays nhops and hops are set to −1. Since we have only
considered one node as the destination and one node as the source, the information in rreq and rrep messages
has no conflict and consequently the route message table can be abstracted away. In other words, the routing table
information can be used to identify whether the new received message has been seen before or not, as the stored
routes towards the source represent information about rreqs and the routes towards the destination represent
rreps.

Note that rreq and rrep, i.e., all route messages, carry route information to their source and destination,
respectively. Therefore, a bidirectional path is constructed while these messages travel through the network.
Whenever a node receives a route message, it processes incoming information to determine whether it offers any
improvement to its known existing routes. Then, it updates its routing table accordingly in case of an improvement.
The processes of evaluating and updating the routing table are explained in the following subsections.

6.1. Evaluating route messages

Every received route message contains a route and consequently is evaluated to check for any improvement.
Note that a rreq message contains a route to its source while a rrep message contains a route to its destination.
Therefore, as the routes are identified by their destinations (denoted by des), in the former case, the destination
of the route is the originator of the message (i.e., des  oip ), and in the latter, it is the destination of the message
(i.e., des  dip ). The routing table must be evaluated if one of the following conditions is realized:

1. no route to the destination has existed, i.e., dsn[des]  −1

2. there are some routes to the destination, but all their route states are unconfirmed

3. there is a valid or invalid route to the destination in the routing table and one of following conditions holds:

• the sequence number of the incoming route is greater than the existing one
• the sequence number of the incoming route is equal to the existing one, however the hop count of the
incoming route is less than the existing one (the new route offers a shorter path and also is loop free)

6.2. Updating the routing table

The routing table is updated as follows:

• if no route to the destination has existed, i.e., dsn[des]  −1, the incoming route is added to the routing table.

• if the route states of existing routes to the destination are unconfirmed, the new route is added to the routing
table.
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• the incoming route has a different next hop from the existing one in the routing table, while the next hop’s
neighbor state of the incoming route is unknown and the route state of the existing route is valid. The new route
should be added to the routing table since it may offer an improvement in the future and turn into confirmed.

• if the existing route state is invalid and the neighbor state of the next hop of the incoming route is unknown,
the existing route should be updated with information of the received one.

• if the next hop’s neighbor state of the incoming route is confirmed, the existing route is updated with new
information and all other routes with the route state unconfirmed are expunged from the routing table.

As described earlier, there are three types of route discovery packets: rreq, rrep and rerr . There is a message
server for handling each of these packet types:

• rec rreq is responsible for processing a route discovery request message;
• rec rrep handles a reply request message;
• rec rerr updates the routing table in case an error occurs over a path and informs the interested nodes about
the broken link.

There are also two message servers for receiving and sending a data packet. All these message servers will be
discussed thoroughly in the following subsections.

6.3. rreq message server

This message server processes a received route discovery request and reacts based on its routing table, shown in
Fig. 14. The rreq message has the following parameters: hops andmaxHop as the number of hops and themaxi-
mum number of hops, dsn as the destination sequence number, and oip , osn , dip, and sip respectively refer to
the IP address and sequence number of the originator, and the IP address of the destination, and the IP address of
the sender. Whenever a node receives a route request, i.e., rec rreq(hops , dip , dsn , oip , osn , sip ,maxHop)
message, it checks incoming information with the aim to improve the existing route or introduce a new route to
the destination, and then updates its routing table accordingly (see also Sections 6.1 and 6.2). During processing
an rreq message, a backward route, from the destination to the originator is built by manipulating the routing
arrays with the index oip . Similarly, while processing an rrep message, it constructs a forwarded route to the
destination by addressing the routing arrays with the index dip . Therefore, the procedure of evaluating the new
route and updating the routing table is the same for both rreq and rrep messages, except for different indices
oip and dip , respectively.

Updating the routing table Figure 12 depicts this procedure which includes both evaluating the incoming route
and updating the routing table (the code is the body of if-part in the line 7 of Fig. 14). If no route exists to
the destination, the received information is used to update the routing table and generate discovery packets,
lines (1–10). The route state is set based on the neighbor status of the sender: if its neighbor status is confirmed,
the route state is set to valid, otherwise to unconfirmed. The next hop is set to the sender of the message, i.e.,
nhop[oip ][0]  sip . If a route exists to the destination (i.e., oip ), one of the following conditions happens:

• the route state is unconfirmed, lines (11–36): it either updates the routing table if there is a route with a next
hop equal to the sender, or adds the incoming route to the first empty cells of nhop and hops arrays. If the
neighbor status of the sender is confirmed, then all other routes with the same destination are expunged while
the route state is set to valid, lines (21-30).

• the route state is invalid or it is valid, but the neighbor status of the sender is confirmed, lines (38–48): if the
incoming message contains a greater sequence number, or an equal sequence number with a lower hop count,
then it updates the current route while a new discovery message is generated.

• the route state is valid and the neighbor status of the sender is unknown, lines (50–66): the incoming route is
added to the routing table and a new discovery message is generated if it provides a fresher or shorter path.
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1 if (dsn[oip ]==−1) {
2 dsn[oip ]=osn ;
3 if (neigh state [ sip ]==true)
4 { route state [ oip ]=1; }
5 else
6 { route state [ oip ]=0; }
7 hops[oip ][0]=hops ;
8 nhop[oip ][0]=sip ;
9 gen msg = true;

10 } else {
11 if ( route state [ oip ]==0) {
12 dsn[oip ]=osn ;
13 route num = 0;
14 for( int i=0;i<4;i++)
15 {
16 if (nhop[oip ][ i]==−1 || nhop[oip ][i]==sip ) {
17 route num = i;
18 break;
19 }
20 }
21 if (neigh state [ sip ]==true) {
22 route state [ oip ]=1;
23 for( int i=0;i<4;i++)
24 {
25 hops[oip ][ i]=−1;
26 nhop[oip ][ i]=−1;
27 }
28 hops[oip ][0]=hops ;
29 nhop[oip ][0]=sip ;
30 }
31 else {
32 route state [ oip ]=0;
33 hops[oip ][ route num]=hops ;
34 nhop[oip ][ route num]=sip ;
35 }
36 }
37 else {
38 if ( route state [ oip ]==2 || neigh state [ sip ]==true) {
39 /∗ update the existing route ∗/
40 if ((dsn[oip ]==osn && hops[oip ][0]>hops ) || dsn[oip ]<osn ) {
41 dsn[oip ]=osn ;
42 if (neigh state [ sip ]==true) route state [ oip ]=1;
43 else route state [ oip ]=0;
44 hops[oip ][0]=hops ;
45 nhop[oip ][0]=sip ;
46 gen msg = true;
47 }
48 }
49 else {
50 route num = 0;
51 for( int i=0;i<4;i++)
52 {
53 if (nhop[oip ][ i]==−1 || nhop[oip ][i]==sip )
54 {
55 route num = i;
56 break;
57 }
58 }
59 if ((dsn[oip ]==osn && hops[oip ][0]>hops ) || dsn[oip ]<osn )
60 {
61 dsn[oip ]=osn ;
62 hops[oip ][ route num]=hops ;
63 nhop[oip ][ route num]=sip ;
64 gen msg = true;
65 }
66 }
67 }
68 }

Fig. 12. Updating the routing table
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1 route state [ oip ]=2;
2 dip sqn[oip ]=dsn[oip ];
3 for( int k=0;k<4;k++)
4 {
5 if (pre[oip ][ k]==true)
6 { affected neighbours [k]=true; }
7 }
8 for( int j=0;j<4;j++)
9 {

10 for( int r=0;r<4;r++)
11 {
12 if (nhop[oip ][ r]!=−1 && nhop[j][0]==nhop[oip ][r ])
13 {
14 route state [ j]= 2;
15 dip sqn[ j]=dsn[j ];
16 for( int k=0;k<4;k++)
17 {
18 if (pre[ j ][ k]==true)
19 { affected neighbours [k]=true; }
20 }
21 break;
22 }
23 }
24 }
25 multicast(affected neighbours , rec rerr (dip , ip ,dip sqn)) ;

Fig. 13. The error recovery procedure

In these cases, if a new discovery message should be generated (when the node has no route as fresh as the
route request), the auxiliary boolean variable gen msg is set to true. In Fig. 14, after updating the routing table, if
a new message should be generated, indicated by if (gen msg  true), it rebroadcasts the rreq message with the
increased hop count if the node is not the destination, lines (51–54). Otherwise, it increases its sequence number
and replies to the next hop(s) toward the originator of the route request, oip , based on its routing table. Before
unicasting rrepmessages, next hops toward the destination, dip , and the sender are set as interested nodes to the
route toward the originator, oip , lines (17–22). It unicasts each rrep message to its next hops one by one until
it gets an ack from one, lines (23–43); ack reception is modeled implicitly through successful delivery of unicast,
i.e., the succ part. If it receives an ack, it updates the route state to valid and the neighbor status of the next hop
to confirmed and stops unicasting rrep messages. If it doesn’t receive an RREP Ack message from the next hop
when the route state is valid, it initiates the error recovery procedure.

Error recovery procedure The code for this procedure is illustrated in Fig. 13 (its code is the body of if-part in line
46 of Fig. 14). As explained earlier, this procedure is initiated when a node doesn’t receive an RREP Ack message
from the next hop of the route with state valid. Then, it updates its route state to invalid and adds the sequence
number of the originator to the array of invalidated sequence numbers, denoted by dip sqn. Furthermore, it adds
all the interested nodes in the current route to the list of affected neighbors, denoted by a f f ected neighbours,
lines (3–7). It invalidates other valid routes that use the same broken next hop as their next hops, adds their
sequence numbers to the invalidated array and sets the nodes interested in those routes as affected neighbors,
lines (8–24). Finally, it multicasts an rerr message which contains the destination IP address, the node IP address,
and the invalidated sequence numbers to the affected neighbors, line 25.

6.4. rrep message server

This message server, shown in Fig. 15, processes the received reply messages and also constructs the route for-
ward to the destination. At first, it updates the routing table and decides whether the message is worth pro-
cessing, as previously mentioned for rreq messages, and constructs the route, but this time to the destination
(its code is similar to the one in Fig. 12 except that dip is used instead of oip , and is place at line 6 of
Fig. 15). This message is sent backwards till it reaches the source through the reversed path constructed while
broadcasting the rreq messages. When it reaches the source, it can start forwarding data to the destination.
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1 msgsrv rec rreq(int hops , int dip , int dsn , int oip , int osn , int sip , int maxHop)
2 {
3 int [] dip sqn=new int[4];
4 int route num;
5 boolean[] affected neighbours=new boolean[4];
6 boolean gen msg = false;
7 if (ip!=oip )
8 {
9 //evaluate and update the routing table

10 }
11 if (gen msg==true)
12 {
13 if (ip==dip )
14 {
15 boolean su = false ;
16 pre[dip ][ sip ]=true;
17 for( int i=0;i<4;i++)
18 {
19 int nh = nhop[dip ][i ];
20 if (nh!=−1)
21 { pre[oip ][ nh]=true; }
22 }
23 for( int i=0;i<4;i++)
24 {
25 if (nhop[oip ][ i]!=−1)
26 {
27 int n hop = nhop[oip ][i ];

;1+ns=ns82
29 /∗ unicast a RREP towards oip of the RREQ ∗/

n(tsacinu03 hop,rec rrep(0 , dip , sn , oip , self ))
:ccus13

32 {
etuor33 state [ oip ]=1;
hgien43 state [n hop]=true;

=us53 true;
;kaerb63

37 }
:ccusnu83

39 {
hgien04 state [n hop]=false;

41 }
42 }
43 }
44 if (su==false && route state[oip ]==1)
45 {
46 /∗ error recovery procedure ∗/
47 }
48 }
49 else {
50 hops = hops +1;
51 if (hops <maxHop)
52 { rec rreq (hops ,dip ,dsn ,oip ,osn , self ,maxHop); }
53 }
54 }
55 }

Fig. 14. The rreq message server
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1 msgsrv rec rrep(int hops , int dip , int dsn , int oip , int sip ) {
2 int [] dip sqn=new int[4];
3 boolean[] affected neighbours=new boolean[4];
4 boolean gen msg = false;
5 int n hop,route num;
6 /∗ evaluate and update the routing table ∗/
7 if (gen msg==true)
8 {
9 if (ip==oip )

10 {
11 /∗ this node is the originator of the corresponding RREQ ∗/
12 /∗ a data packet may now be sent ∗/
13 }
14 else {
15 hops = hops +1;
16 boolean su = false ;
17 pre[oip ][ sip ]=true;
18 for( int i=0;i<4;i++)
19 {
20 n hop = nhop[oip ][i ];
21 if (n hop!=−1)
22 { pre[oip ][ n hop]=true; }
23 }
24 for( int i=0;i<4;i++)
25 {
26 if (nhop[oip ][ i]!=−1)
27 {

n82 hop = nhop[oip ][i ];
n(tsacinu92 hop,rec rrep(hops ,dip ,dsn ,oip , self ))

:ccus03
31 {

etuor23 state [ oip ]=1;
hgien33 state [n hop]=true;

=us43 true;
;kaerb53

36 }
:ccusnu73

38 {
hgien93 state [n hop]=false;

40 }
41 }
42 }
43 if (su==false && route state[oip ]==1)
44 {
45 /∗ error recovery procedure ∗/
46 }
47 }
48 }
49 }

Fig. 15. The rrep message server

In case the node is not the originator of the route discovery message, it updates the array of interested nodes,
lines (17–23). Then, it unicasts the message to the next hop(s), on the reverse path to the originator, lines (24–42).
Based on the AODVv2 protocol, if connectivity to the next hop on the route to the originator is not confirmed
yet, the node must request a Route Reply Acknowledgment (RREP Ack) from the intended next hop router. If a
RREP Ack is received, then the neighbor status of the next hop and route state must be updated to confirmed and
valid, respectively, lines (30–36), otherwise the neighbor status of the next hop remains unknown, lines (37–40).
This procedure is modeled through conditional unicast which enables the model to react based on the delivery
status of the unicast message so that succ models the part where theRREP ACK is received while unsucc models
the part where it fails to receive an acknowledgment from the next hop. In case the unicast is unsuccessful and
the route state is valid, the error recovery procedure will be followed, lines (43–46).
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1 msgsrv rec rerr( int source , int sip , int [] rip rsn ) {
2 int [] dip sqn=new int[4];
3 boolean[] affected neighbours=new boolean[4];
4 if (ip!=source )
5 {
6 //regenerate rrer for invalidated routes
7 for( int i=0;i<4;i++)
8 {
9 int rsn=rip rsn[ i ];

10 if ( route state [ i]==1 && nhop[i][0]==sip && dsn[i]<rsn && rsn!=0)
11 {
12 route state [ i]= 2;
13 dip sqn[ i]=dsn[i ];
14 for( int j=0;j<4;j++)
15 {
16 if (pre[ i ][ j]==true)
17 { affected neighbours [ j]=true; }
18 }
19 }
20 }
21 multicast(affected neighbours , rec rerr (source , self ,dip sqn)) ;
22 }
23 }

Fig. 16. The rerr message server

6.5. rerr message server

This message server, shown in Fig. 16, processes the received error messages and informs those nodes that depend
on the broken link.When a node receives an rerr message, it must invalidate those routes using the broken link as
their next hops and sends the rerr message to those nodes interested in the invalidated routes. This message has
only two parameters: sip which indicates the IP address of the sender, and rip rsn, which contains the sequence
number of those destinations which have become unaccessible from the sip .

For all the valid routes to the different destinations, it examines whether the next hop of the route to the
destination is equal to sip and the sequence number of the route is smaller then the received sequence number,
line 10. In case the above conditions are satisfied, the route is invalidated, lines (11–19), and an rerr message is
sent to the affected nodes, line 21.

6.6. newpkt message server

Whenever a node intends to send a data packet, it creates a rec newpkt which has only two parameters, data
and dip . The code for this message server is shown in Fig. 17. If it is the destination of the message, it delivers
the message to itself, lines (4–7). Otherwise, if it has a valid route to the destination, it sends data using that
route, lines (11–15). If it has no valid route, it increases its own sequence number and broadcasts a route request
message, lines (16–25). In addition, if a route to the destination is not found within RREQ W AIT T I ME , the
node retries to send a new rreq message after increasing its own sequence number. Since we abstracted away
from time, we model this procedure through the resend rreq message server which attempts to resend an rreq
message while the node sequence number is smaller than 3 (to make the state space finite).

7. Evaluation

In this section, we will review the results obtained from efficiently constructing the state spaces for the two
introduced wRebeca models, the flooding and AODV protocol. Also, we briefly introduce our tool and its
capabilities. Then, the loop freedom invariant is defined and one possible loop scenario is demonstrated. Finally,
two properties that must hold for the AODVprotocol are expressed that can be checked with regard to the AODV
model.
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1 msgsrv rec newpkt(int data ,int dip ) {
2 int [] dip sqn=new int[4];
3 boolean[] affected neighbours=new boolean[4];
4 if (ip==dip )
5 {
6 /∗ the DATA packet is intended for this node ∗/
7 }
8 else{
9 /∗ the DATA packet is not intended for this node ∗/

10 store [dip ]=data;
11 if ( route state [dip ]==1)
12 {
13 /∗ valid route to dip∗/
14 /∗ forward packet ∗/
15 }
16 else{
17 /∗ no valid route to dip∗/
18 /∗ send a new rout discovery request∗/
19 if (sn<3)
20 {
21 sn++;
22 unicast( self , resend rreq(dip )) ;
23 rec rreq (0,dip ,dsn[dip ], self ,sn, self ,4) ;
24 }
25 }
26 }
27 }
28 msgsrv resend rreq(int dip )
29 {
30 if (sn<3)
31 {
32 sn++;
33 unicast( self , resend rreq(dip )) ;
34 rec rreq (0,dip ,dsn[dip ], self ,sn, self ,4) ;
35 }
36 }

Fig. 17. The rec newpkt message server

7.1. State-space generation

Static network Consider a network with a static topology, in other words the network constraint is defined so
that it leads to only one valid topology. We illustrate the applicability of our counting abstraction technique on
the flooding routing protocol. In contrast to the intermediate nodes on a path (the ones except the source and
destination), the two source and destination nodes cannot be aggregated (due to their local states). However, in
the case of the AODV protocol, no two nodes can be counted together due to the unique variables of IP and
routing table of each node. As the number of intermediate nodes with the same neighbors increases, the more
reduction takes place. We have precisely chosen four fully connected network topologies to show the power of
our reduction technique when the intermediate nodes increase from one to four.

Table 2 illustrates the number of stateswhen running the flooding protocol on different networkswith different
topologies before and after applying counter abstraction reduction. In the first, second, third, and fourth topology,
there are three nodes with one intermediate, four nodes with two, five nodes with three, and six with four
intermediates, respectively. By applying counter abstraction reduction, the intermediate nodes are collapsed
together as they have the same role in the protocol. However, the effectiveness of this technique depends on the
network topology and the modeled protocol.
Dynamic network At these networks, topology is constantly changing, in other words there are more than one
possible topology. The resulting state spaces after and before eliminating τ -transitions are compared for the two
case studies while the topology is constantly changing for a networks of 4 and 5 nodes, as shown in Table 3. Table 4
depicts the constraints used to generate the state spaces and the number of topologies that each constraint results
in. Constraints are chosen randomly here, just to show the effectiveness of our reduction technique.
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Table 2. Comparing the size of state spaces with/without applying counter abstraction reduction

No. of intermi-
date nodes

No. of states be-
fore reduction

No. of states after
reduction

No. of transitions
before reduction

No. of transitions
after reduction

1 24 24 36 36
2 226 133 574 276
3 3689 912 13,197 2441
4 71,263 6649 321,419 21,466

Table 3. Comparing the size of state spaces with/without applying τ -transition elimination reduction

No. of nodes No. of valid
topologies

No. of states be-
fore reduction

No. of transitions
before reduction

No. of states after
reduction

No. of transitions
after reduction

Flooding proto-
col

4 4 2119 11,724 541 1652

4 8 4431 42,224 567 1744
4 16 10,255 179,936 655 2192
4 32 22,255 747,200 710 2765
4 64 44,495 2,917,728 710 3145

AODV protocol 4 4 3007 16,380 763 1969
4 8 12,327 113,480 1554 3804
4 16 35,695 610,816 2245 5549
4 32 93,679 3,097,792 2942 7596
4 64 258,447 16,797,536 4053 10,629
5 16 >655,441 >11,276,879 165,959 598,342

Table 4. Applied network constraints

No. of No. of valid constraint
nodes topologies

4 4 and(and(con(node0,node1), con(node0,node3)),
and(con(node2,node3), con(node1,node3)))

4 8 and(and(con(node0,node1),
con(node0,node3)), con(node2,node3))

4 16 and(con(node0,node1), con(node2,node3))
4 32 con(node0,node1)
5 16 and(and(con(node0,node1), and(con(node0,node3), con(node4,node1))),

and(con(node2,node3), and(con(node1,node3), con(node2,node4))))

To this aim, we have randomly removed a (fixed) link from the network constraints. Nevertheless, constraints
can be chosenwisely to limit the network topologies to thosewhich are prone to lead to an erroneous situation, i.e.,
violationof a correctness property like loop freedom.However, it is alsopossible to check themodel against all pos-
sible topologies by not defining any constraint. In other words, amodeler at first can focus on some suspicious net-
work topologies and after resolving the raised issues it checks the model for all possible topologies. There are also
some networks which have certain constraints about how the topology can change, e.g., node 1 can never get into
the communication range of node 2. These restrictions on topology changes can be reflected through constraints
too. The sizes of state spaces are compared under different network constraints resulting in different number of
valid topologies. Eliminating τ -transitions and topology informationmanifestly reduces the number of states and
transitions even when all possible topologies are not restricted. Therefore, it makesMANET protocol verification
possible in an efficientmanner.Note that in case the size of the networkwas increased from four to five,we couldn’t
generate its state space without applying reduction due to the memory limitation on a computer with 8GBRAM.

7.2. Tool support

The presented modeling language is supported by a tool4, providing a number of options to generate the state
space. A screen-shot of this tool is given in Fig. 18. This tool supports both bRebeca and wRebeca models char-
acterized by different file types. After opening a model, the tool extracts the information of the reactive classes,
such as the state variables and message servers, and also the main part including the rebec declarations and the
network constraint.

4 Available at https://github.com/b-yousefi/wRebeca.

https://github.com/b-yousefi/wRebeca
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Fig. 18. A screen-shot of the wRebca tool with the compilation info window to configure the state-space generator

Then it generates several classes in the Java language based on the obtained information and compiles them
together with some abstract and base classes (common in all models), for example global state and topology, to
build an engine that constructs the model state space upon its execution. Before compiling, a user can decide
about rebecs message processing method, in a FIFO manner (queue) or in an arbitrary way (bag), and if the
reduction should be applied. To take advantage of all hardware capabilities, we have implemented our state-space
generation algorithm in a multi-threaded way to leverage the power of multi-core CPUs.

During state-space generation, information about the state variables and transitions are stored as an LTS in
the Aldebaran format5. This LTS can be evaluated by tools such as the mCRL2 toolset6. For example, one can
express desired properties in μ-calculus [MS03] and verify them. Also, as explained in Sect. 5, labels are extended
with network constraints as defined in [GFM11] so that the reduced LTS can be model checked with respect to
underlying topology [GAFM13].

7.3. Model checking of the AODV protocol properties

There are different ways to check a given property on a wRebeca model. Invariant properties can be evaluated
while generating the state space by checking each reached global state against defined invariants. Furthermore,
the resulting state space can be model checked by tools supporting Aldebaran format such as mCRL2 and CLTS
model checker.

7.3.1. Checking the loop freedom invariant

Loop freedom is one of the well-known property which must hold for all routing protocols such as the AODV
protocol.

5 http://cadp.inria.fr/man/aldebaran.html.
6 http://www.mcrl2.org/.

http://cadp.inria.fr/man/aldebaran.html
http://www.mcrl2.org/
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1 bool loop freedom(des:int , cur: int , visited :Set<int>){
2 for( int i=0; i<n; i++)
3 if (( state .node(cur).nhops[des][ i]!=−1) && (!visited.contains(state .node(cur).nhops[des][ i ]) )

pool&&4 freedom(des,i,visited.add(i)))
5 return true;
6 else
7 return false ;
8 }

Fig. 19. Checking loop freedom property on a global state: we have used a dot notation to access the array nhops of the rebec with the
identifier i , i.e., state.node(i), where state is the newly generated global state

For example, consider the routes to a destination x in the routing tables of all nodes, where node0 has a route
to x with the next hop node1, node1 has a route to x with the next hop node2, and node2 has a route to x with
the next hop node0. The given example constructs a loop which consists of the three nodes, node0, node1, and
node2. A state is considered loop free if the collective routing table entries of all nodes for each pair of a source
and destination do not form a loop. As it was mentioned earlier in AODV-v2-11, each route may have more than
one next hop when the adjacency states of the next hops are unconfirmed. Therefore, while the loop freedom of a
state is checked, one must take into account all next hops stored for each route. Then, for each next hop it must
be checked whether it leads to a loop or not. A routing protocol deployed on a network is called loop free if all
of its reachable states are loop free. In other words, loop freedom property of a protocol is an invariant (which
can be easily specified by the ACTL-X fragment of μ-calculus, and hence, is preserved by the reduced semantic
model). However, We have extended our state-space generator engine to check invariants (specified by functions)
over each newly generated global state on the fly by calling the functions provided by a user, i.e., the invariants. To
this aim, we have specified the loop freedom invariant by a recursive function, to inspect for a given global state
whether the next hops in the routing table entries of nodes collectively lead to a loop-formation scenario, as shown
in Fig. 19. Therefore, whenever the state-space generator reaches to a new state, before proceeding any further,
it checks whether any loop is formed on the forward/backward routes between the source and destination, by
calling loop f reedom(4, 1, new Set〈int〉(1)) and loop f reedom(1, 4, new Set〈int〉(4)), as node4 and node1 are
the destination and source respectively. If the loop freedom condition is violated, the loop f reedom function
returns f alse, and the state generator engine stops while it returns the path which has led to the global state
under consideration as a counter example. The function loop f reedom has three parameters: des refers to the
destination of the route, cur refers to the IP address of the current node which is going to be processed and
visi ted is the list of IP addresses of those nodes which have been processed.

Although keeping more than one next hop for each route may increase the route availability, it compromises
its validity by violating the loop freedom invariant in a network of at least four nodes with a dynamic topology.
Consider the network topology shown in Fig. 2a. The following scenario explains steps that lead to the invariant
violation.

1. node2 initiates a route discovery procedure for destination node3 by broadcasting a rreq message.
2. node1 and node4 upon receiving the rreq message, add a route to their routing tables towards node2 and store

node2 as their next hop. Since it is the first time that these nodes have received a message from node2, the
neighbor state of node2 is set to unconfirmed. Therefore, the route state is unconfirmed.

3. As node1 and node4 are not the intended destination of the route request, they rebroadcast the rreq message.
4. node1 receives the rreq message sent by node4 and since the route to node2 is unconfirmed it adds node4 as a

new next hop to node2.
5. node4 also adds node1 as the new next hop towards node2 after processing the rreq sent by node1. At this point

a loop is formed between node1 and node4.
6. node3 receives the rreq message sent by node1 and since it is the destination, it sends a rrep message towards

node1.
7. node2 moves out of the communication ranges of node1 and node4.
8. node1 receives the rrep message sent by node3 and as the route state towards node2 is unconfirmed it unicasts

the rrep message one by one to the existing next hops, node2 and node4, till it gets an ack.
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Fig. 20. μ-calculus properties verified by mCRL2

Since node2 has moved out of the communication ranges of node1, no ack is received from node2 and node2
gets removed from the routing table as the next hop to node2. Then, another rrep is sent to node4. Since node4
is adjacent to node1, it receives the message and then sends an ack to node1. Therefore, node1 sets the neighbor
state of node4 to confirmed and subsequently the route state towards node2 to valid.

9. node4 by receiving the rrep message from node1 unicasts it to its next hops node1 and node2 similar to node1.
Since it fails to receive an ack from node2 and receives one from node1, it updates its routing table by validating
node1 as its next hop to node2.

We have found the scenario in the wRebeca model with the network constraint resulting four topologies as
indicated in Table 4. However, this scenario was also found for all the network constraints described in the table.
Furthermore, we can generalize the scenario to all networks with the same connectivity when the communications
occur, and the same mobility scenario.

7.3.2. Checking the properties by mCRL2

Sequence numbers are used frequently by the AODV protocol to evaluate the freshness of routes. Therefore, it is
important that each node’s sequence number increases monotonically. To this end, we manually configured the
state generator to add two self-loops to each state with the label src sn(x ) to monitor the sequence number of the
source node, where x is sn of the source node, and the label in f o i dsn(y, z ) to trace the destination sequence
number of routes to the source and destination for each node i (i.e., the backward and forward routes to the
destination of our model), where y and z are dsn[src] and dsn[dst ] of node i , respectively. These properties are
expressed through theACTL-X fragment ofμ-calculus as shown in Fig. 20. The first formula asserts amonotonic
increase of the source sequence number. The second formula assures the destination sequence numbers stored in
the routing table of nodei are increased monotonically, and must hold for the nodes in the model.

7.3.3. Checking packet delivery property by the CLTS model checker

TheCLTSmodel checker can be used to express and verify interesting properties ofMANETprotocols dependent
to the underlying topology specified in Constrained Action Computation Tree Logic (CACTL) [GAFM13], an
extension of Action CTL [DV90]. The path quantifier All in CACTL is parametrized by a multi-hop constrain
over the topology, which specifies the pre-condition required for paths of a state to be inspected. Therefore, a
state satisfiesAμϕ if its paths over which the multi-hop constraint μ holds, also satisfy ϕ. It also contains the two
temporal operators until and weak until to specify the path formulae φ χUχ ′ φ′ and φ χWχ ′ φ′ to denote a path
over which states satisfying φ are met by actions of χ until a state satisfying φ′ is met by actions of χ ′ (in case of
weak until, the state satisfying φ′ can never be met).

The important property of packet delivery in routing or information dissemination protocols in the context
of MANETs becomes: if there exists an end-to-end route (multi-hop communication path) between two nodesA
andC for a sufficiently long period of time, then packets sent byAwill eventually be received byC [FVGH+13]. To
specify such the property, inspired from [FVGH+13] we revised our specification to include data packet handling
(to forward the packet to its next hop towards the destination) in addition to the route discovery packets and
their corresponding handlers. Therefore, whenever a node, source, discovers a route to an intended destination, it
starts forwarding its data packet through the next hop specified in its routing table. The data packet is forwarded
by intermediate nodes to their next hops. When the data packet reaches the intended destination, it delivers the
data to itself by unicasting the deliver message to itself. In case an intermediate node fails to forward themessage,
the error recovery procedure is followed as explained in Sect. 6. Consequently, using the following formula, we
can verify packet delivery property:

A true(true ¬rec newpkt(0,4)Wrec newpkt(0,4) A n1���n4∧n4���n1 (true τUdeliver () true))
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It expresses that as long as there is a stable multi-hop path from n1 to n4 and vice versa (specified by n1 ���
n4 ∧ n4 ��� n1), any rec newpkt(0, 4) message is proceeded by a delivery() message after passing τ -transitions
which abstract away from othermessage communications. Bymodel checking the resulting CLTS of the AODVv2
model, we found a scenario in which the property does not hold. We explain this scenario in a network of three
nodes N1, N2 and N3, where node N3 is always connected to the nodes N1 and N2, while the connection between
the nodes N1 and N2 is transient. Therefore, the mobility of nodes leads to the topologies shown in Fig. 10b and
Fig. 10c. Assume the topology is initially as the one in Fig. 10b:

• Node N1 unicasts a rec newpkt(data,N2) to itself, indicating that it wants to send data to node N2.
• NodeN1 initiates a route discovery procedure by broadcasting an rreqN1,0 message to its neighbors, i.e., nodes
N3 and N2. Note that rreqa,i refers to an rreq message received from node a with the hop count of i . Each
rreq message hasmore parameters but here only these two parameters are of interest and the other parameters
are assumed to be equal for all the rreq messages, i.e., the destination and source sequence numbers, and the
source and destination IP addresses.

• Node N3 processes the rreqN1,0 and since it is not the destination and has no route to N2 in its routing table,
rebroadcasts the rreqN3,1 message to its neighbors, nodes N1 and N2, after increasing the hop count. At this
point, node N2 has two messages in its queue, rreqN1,0 and rreqN3,1.

• NodeN1 moves out of the communication range of nodeN2, resulting the network topology shown inFig. 10c.
• Node N2 takes rreqN1,0 from the head of its queue and updates its routing table by setting N1 as the next hop
in the route towardsN1. As nodeN2 is the intended destination for the route discovery message, it unicasts an
rrep message towards the originator, N1, indicating that the route has been built and it can start forwarding
the data. Therefore, node N2 attempts to unicast an rrep message to node N1, i.e., its next hop towards the
originator.

• Since the connection between the nodes N1 and N2 is broken, it fails to receive an ack from N1 and marks the
route as invalid.

• NodeN2 takes rreqN3,1 from its queue and since the route state towardsN1 is invalid, it evaluates the received
route to determine whether it is loop free. Updating the routing table with the received route is said to be
“loop free", if the received message cost, e.g., the hop count is less than or equal to the existing route cost.
Since the hop count of the received message is greater than the existing one, it does not update the existing
route and the message is discarded.

Although the route through nodeN3 to nodeN1 seems to be valid, the protocol refuses to employ it to prevent
possible loop formation in the future.

8. Related work

A large number of studies has been conducted for modeling and verification ofMANET protocols using different
approaches to tackle its specific challenges. These challenges, as discussed in Sect. 3, are modeling the underlying
topology, mobility and local broadcast.

Some works model and analyze the correctness of MANET protocols using existing formal frameworks such
as SPIN [DRA04, WPP04] and UPPAAL [FvGH+12, MF06, WPP05]. In a SPIN model, node connectivity is
modeled with the help of PROMELA channels, one for each node. Also, mobility is modeled by case selection
instruction provided by PROMELA, for modeling nondeterminism. In the initialization section, possible links
to other neighbors are defined as different cases that all will be checked for a model. Since it does not provide a
specific technique to reduce the state space, its state space grows very fast and it is only feasible to check small
topologies. Therefore, models would be limited to fewer nodes. In UPPAAL, connectivity is modeled through a
set of arrays of booleans, while changing topology is modeled by a separate automaton which manipulates the
arrays. In [WPP04], a case study was carried out to evaluate two model checkers, SPIN and UPPAAL. Due to
state-space explosion, the analysis was limited to some special mobility scenarios (as a part of the specification).
However, our reduction technique makes it possible to verify aMANET for all possible topology changes to find
an error.

As explained in [EM99], from a theoretical point of view, compositionality is not preserved if broadcast is
encoded based on point-to-point communications. Lack of support for compositional modeling and arbitrary
topology changes hasmotivated new approacheswith a primitive for local broadcast and support of arbitrarymo-
bility in an algebraic way. These approaches include CBS# [NH06], CWS [MS06], CMN [Mer09], the ω-calculus



Modeling and efficient verification of wireless ad hoc networks 1083

[SRS10], bAπ [God10], CMAN [God07, God09], RBPT [GFM08] and the bpsi-calculi [BHJ+15, PBPR13].
Each of these proposed frameworks overcome the modeling difficulties such as local broadcast and its message
delivery guarantee property and mobility in different ways. All these approaches, except CBS#, CWS, AWN
and bpsi-calculi, suffer from lack of message delivery guarantee that makes them inappropriate for analyzing
properties such as packet delivery [FVGH+13]. They model broadcast through either an enforced synchronized
or lossy communication. When communications are lossy, a node may not receive a message although it is in the
transmission range of the sender. CBS# and CWS use enforced synchronization for broadcast to make sure that
all ready nodes within the transmission range of a sender will receive the message. Although they guarantee mes-
sage delivery to the ready receivers, it is not possible to define meaningful nodes (which can successfully receive
messages while they are processing another message) in their syntax which are always ready (i.e, input-enabled)
[FVGH+13]. The process algebra AWN is proposed particularly for modeling wireless mesh network (WMN)
routing protocols which uses local broadcast with message delivery guarantee. It defines its own data structures
to model routing tables and other necessary data types to model the AODV protocol. In addition, conditional
unicast is introduced for modeling the procedure to act based on the message delivery acknowledgment. In all
these approaches, while a node is busy processing a message, it fails to receive messages from other nodes. There-
fore, either nodes are defined to be input-enabled at the semantics as in CBS# and CWS or a process with a
queue that concurrently stores new messages should be specified at the syntax as in AWN and bpsi-calculus.
Almost all these languages model mobility of nodes in their semantics through arbitrary changes of the topology
with the exception that it is modeled through different generations of assertions on connectivity information in
[BHJ+15]. In wRebeca, communications are asynchronous and received messages are stored in queues implicitly
at the semantic level (without the need to make nodes explicitly input-enabled). Furthermore, the atomic execu-
tion of message handlers, which avoids unnecessary interleaving of the node behaviors, together with topology
abstraction through τ -elimination technique, where the topology changes are a source of state-space explosion
in the process calculi approaches, make our framework applicable to the verification of real-world yet complex
protocols such as AODV. We remark that unnecessary interleaving of behaviors can be handled in bpsi-calculus
by means of priorities.

There are different approaches [DSTZ12, DSZ11, ADR+11] with the aim to analyze networks with an infinite
number of nodes, where nodes execute an instance of a network process. A network configuration is represented
as a graph in which each individual node represents a state of the process. The behavior of a process is mod-
eled by an automaton. The network configuration transforms due to either the process evolution at a network
node or the topology reconfiguration. Verification of safety properties, reaching to an undesirable configuration
starting from an initial configuration, is parameterized due to any possible number of nodes and connectivity
among them. It is proved that the problem of parameterized safety properties, the so-called control states reach-
ability problem, is undecidable. However, that problem turns out to be decidable for the class of bounded path
graphs [DSZ11, DSTZ12]. Decidability of the problem was also considered when configurations evolve due to
discrete/continuous clocks at processes [ADR+11]. Furthermore, an inductive approach based on reduction to
prove compositional invariants for the dynamic process networks was presented in [NT15a]. This approach re-
duces the calculation of a compositional invariant to a smallest representative network through setting up a
collection of local symmetry relations between nodes, specifically defined for each problem. The computed non-
dynamic compositional invariant on the representative network is generalized for the entire dynamic network
family when the non-dynamic invariant is preserved by any reaction to a dynamic change in the network. Then,
they proved loop freedom of AODVv2-04 for an arbitrary number of nodes in [NT15b] through an inductive and
compositional proof: It provides an inductive invariant and proves that it is held initially and also preserved by
every action, either a protocol action or a change in the network, similar to the approach of [vGHPT16]. They
have reported two loop-formation scenarios due to inappropriate setting of timing constants and accepting any
valid route when the current route is broken without any further evaluation (to ensure loop formation). Another
approach is based on graph transformation systems, where network configurations are hypergraphs and transi-
tions are specified by graph rewriting rules, modeling the dynamic behavior of a protocol. Safety properties are
symbolically specified by graph patterns, a generalized form of hypergraphs with negative conditions, through
a symbolic backward reachability analysis which is not guaranteed to terminate due to the undecidability of the
problem [SWJ08]. To this aim, an over-approximation of the set of configurations preceding a bad configuration
are computed by using a fixed point analysis, and then check that this set contains no initial configuration. While
these approaches are scalable to prove a property for MANETs with a potentially unbounded number of nodes
with an exhaustive effort, our approach is valuable to easily examine confirmation and diagnostics of suspected
errors in the early phase of protocol development for a limited number of nodes. In other words, our efficient
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model checking tool can be used as an initial step before involving to generalize a property for an arbitrary sized
network.

9. Conclusion and future work

In this paper we extended the syntax and semantics of bRebeca, the actor-basedmodeling language for broadcast-
ing environment, to support wireless communication in a dynamic environment.We addressed the key features of
wireless ad hoc networks, namely reliable local broadcast, conditional unicast, and last but not least mobility. The
reliable asynchronous local broadcast/unicast communication, and implicit support of message storages make
our framework suitable to analyzeMANETs with respect to different mobility scenarios. A modeler only focuses
on how to decompose a protocol into a set of communicating actors to cover functionalities of the protocol under
investigation.

To overcome the state-space explosion, we leveraged the counter abstraction technique to analyze ad hoc
networkswith static topologies. Our reduction technique performswell on protocols with no specific state variable
that distinguishes each rebec, and topologies with many topologically equivalent nodes. We demonstrated the
effectiveness of our approach on the flooding protocol in different network settings. However, mobility ruins the
soundness of our counting abstraction. To this end, we eliminated τ -transitions while topology information was
removed from the global states to considerably reduce the size of the state space. We integrated the proposed
reduction techniques into a tool customizable in verifying wRebeca models for different message storage policies
and the topology dynamism. Invariants can be checked during the state-space generation while the resulting
output can be fed into the existing model checking tools such as mCRL2 and CLTS model checker.

We presented a complete and accurate model of the core functionalities of a recent version of AODVv2
protocol (version 11). We abstracted optional features and timing aspects to make our model manageable. We
verified the loop freedom property in AODVv2-11 and found a scenario in which the property is violated.
The scenario was confirmed by the AODV group. Loop freedom has already been proved on various versions
of AODV: AODVv1-02 [BOG02], AODV-rfc3561 [FVGH+13, vGHPT16], and AODVv2-04 [NT15b, SWJ08],
respectively. Among these only [NT15b] considers the timed behavior of the AODV. The new version differs in
the following aspects which distinguish our attempt: in this version multiple next hops are maintained for each
destination and consequently the process to update the routing table is completely different; Different statuses
are considered for a route in the table of a node regarding the neighbor status of its next hop; Sequence numbers
for invalid destinations in intermediate nodes are not increased anymore (like [NT15b, SWJ08], in contrast to
others). Although, these approaches focus on providing a general proof for the property, our model checking-
based approach detects the error and the scenario that leads to it. Our approach, can be adopted to resolve
conceptual/design errors in an iterative way in the early phase of protocol development. The positive result of
verifications constitutes a predicate about the protocol for a limited number of nodes. The combination of model
checking and theorem proving techniques allows to prove a predicate about a MANET protocol for any number
of nodes.

We plan to integrate our state-space generator tool into the verification environment [afra] to take advantage
of its model checker. Furthermore, we aim to run more case studies to extend application of our framework.
To analyze real-time and probabilistic behaviors of wireless network protocols, wRebeca can be extended in the
same way of [KSS+15, VK12]. To this aim, there is a need to examine the soundness of our reduction techniques
when probability and time are introduced.
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