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Abstract. In this paper, we propose a general compositional approach formodelling and verification of stochastic
hybrid systems (SHSs). We extend Hybrid CSP (HCSP), a very expressive process algebra-like formal modeling
language for hybrid systems, by introducing probability and stochasticity tomodel SHSs, which we call stochastic
HCSP (SHCSP). Especially, non-deterministic choice is replaced by probabilistic choice, ordinary differential
equations are replaced by stochastic differential equations (SDEs), and communication interrupts are generalized
by communication interrupts with weights. We extend Hybrid Hoare Logic to specify and reason about SHCSP
processes: On the one hand, we introduce the probabilistic formulas for describing probabilistic states, and on
the other hand, we propose the notions of local stochastic differential invariants for characterizing SDEs and
global loop invariants for repetition. Throughout the paper, we demonstrate our approach by an aircraft running
example.
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1. Introduction

Probabilistic and stochastic behavior are omnipresent in computer controlled systems, such as safety-critical
hybrid systems, because of uncertain environments, or simplifications to overcome complexity. For example, the
movement of aircrafts could be influenced by wind; in networked control systems, message loss and other random
effects (e.g., node placement, node failure, battery drain, measurement imprecision) may happen.

Stochastic hybrid systems are the systems in which discrete, continuous and stochastic dynamics tightly in-
tertwine. For safety-critical stochastic hybrid systems, validation and verification can enhance the quality of
them and, in particular, to fulfill the quality criteria mandated by the relevant standards. However, modeling,
analysis and verification of stochastic hybrid systems is a challenging task. One research line is to extend hy-
brid automata [Hen96], which is the most popular model for traditional hybrid systems, by adding probability
and stochasticity. Along this line, several different notions of stochastic hybrid automata have been proposed
[APLS08, AG97, Buj04, Spr00, HHWZ10, ZSR+10, FHH+11], with the difference on where the randomness is
introduced. One option is to replace deterministic jumps by probability distribution over deterministic jumps.
Another option is to generalize differential equations by stochastic differential equations (SDEs), which have been
investigated in [HLS02, BLB05, APLS08, HHHK13]. More general models can be obtained by mixing the above
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two approaches, and by combining them with memoryless timed probabilistic jumps [BL06], or with a random
reset function for each discrete jump [FHH+11].As in classical setting, the verification of automata-based stochas-
tic hybrid systems are normally achieved through reachability analysis, either by probabilistic model-checking
[APLS08, AG97, Buj04, Spr00, HHWZ10, ZSR+10, FHH+11], or by simulation, i.e., statistical model-checking
[MS06, ZPC13]. An overview of this line can be found in [BL06]. However, probabilistic model-checking of
stochastic hybrid systems does not scale, in particular, taking SDEs into account. For example, it is not clear
how to approximate the reachable sets of a simple linear SDEs with more than two variables. Therefore, existing
verification techniques based on reachability analysis for stochastic hybrid systems have limitations. On the other
hand, the statistical model-checking approach based on simulation may lead to possible unsoundness of analysis
results due to numerical error and incomplete coverage.

In contrast, deductive methods increasingly attract more attention in the verification of stochastic hybrid
systems as it can scale up to complex systems. The differential invariant generation for SDEs is at the core of
deductive verification of stochastic hybrid systems. For pure hybrid systems, the invariant generation problem has
been investigated extensively [CH93, SSM04, San10, GT08, YLW15, RMM12, GJPS14, LZZZ15]. In [PJP07],
Prajna et al. extend differential invariant generation approach based on barrier certificates for traditional hybrid
systems to stochastic hybrid systems. Based on the differential invariants, the deductive verification method can
be extended to hybrid systems and stochastic hybrid systems. A differential-algebraic dynamic logic for hybrid
programs [Pla10] was proposed by extending dynamic logic with continuous statements. Then in [Pla11], the
author presents a compositional stochastic differential dynamic logic for stochastic hybrid systems, and for the
first time, proposes a special form of probabilistic differential invariants for SDEs. In [BBQ+15], Hybrid Event-B
is proposed by extending Event-B with continuous behaviors, and furthermore, a suite of proof obligations is
defined for semantics and verification of Hybrid Event-B. However, stochasticity is not considered in the work.

Hybrid CSP (HCSP) [He94, ZWR96] is an extension of CSP [Hoa85] by introducing differential equations to
model continuous evolution and communication interruptions in hybrid systems. In [LLQ+10, ZWZ13,WZG12],
the Hoare logic is extended to hybrid systems modeled by Hybrid CSP [He94, ZWR96] for deductive verifica-
tion. In this paper, we extend HCSP by introducing probability and stochasticity and define stochastic HCSP
(SHCSP), to model stochastic hybrid systems. In SHCSP, ordinary differential equations (ODEs) are general-
ized to stochastic differential equations (SDEs), and non-deterministic choice is replaced by probabilistic choice,
and communication interrupts are generalized to communication interrupts with weights. Compared to other
approaches, SHCSP is compositional, and provides more expressive constructs for describing hybrid systems,
including communication, parallelism, interruption, and so on. For specifying and reasoning about SHCSP pro-
cesses, we extendHybrid Hoare Logic [LLQ+10], which is an extension of Hoare logic [Hoa69] to hybrid systems,
to stochastic hybrid systems.

This paper substantially extends the conference paper [PWZZ15] in the following aspects:
• A more expressive form for SDEs is given, by using probabilistic formulas to define the domain of the

SDEs instead of the deterministic formulas. Furthermore, in order to characterize the behavior of SDEs, we
introduce the notion of (local) stochastic differential invariants that hold for all reachable states of SDEs.
Based on the stochastic differential invariants, we define a new inference rule for reasoning about SDEs,
which generalizes the one in [PWZZ15].

• We propose the notion of (global) loop invariants for characterizing the repetition of SHCSP.
• To handle the probabilistic constructs such as probabilistic choice and communication interrupt withweights,

we propose new operations on probabilistic states: conditional test and addition. In correspondence, we
define new probabilistic formulas for describing such states. Based on the new formulas, the inference rule
for conditional statement can be defined in a more generalized and elegant way.

• Because of the weights attached for communications in communication interrupts, a communicationmay oc-
cur with a probability. In [PWZZ15], we restrict in the inference system that when any communication is ready
to occur, then it occurs with probability 1. In this paper, we loose this restriction and allow any probability
for a communication. This can be seen from the improved inference rules of the input and output events.

Related work

Part of the related work on modelling and verification of stochastic hybrid system has been given above. Here
we present some related work on deductive verification of programs with probability, which is the first step to
face in the deductive verification of stochastic hybrid systems. The extension of CSP to probabilistic setting has
been investigated by Morgan et al. [MMSS96]. In [MMS96], a probabilistic predicate transformer is proposed
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for programs containing probabilistic choice for the first time. In [Har99], the author defines a Hoare-like logic
for programs with probabilistic choice, based on a set of new probabilistic predicates such as conditional test,
scaling, and so on. In [KNPQ10], a compositional verification technique is presented for systems that exhibits
both probabilistic and nondeterministic behaviour based on the assume-guarantee approach, and by reducing to
the problem of multi-objective probabilistic model checking, the compositional verification is fully automated.
In [GKM14], a weakest pre-expectation semantics is proposed for a simple probabilistic guarded command lan-
guage. There are two forms of assertions for specifying the probabilistic states: one is based on probabilistic
formulas, that intuitively expresses the probability with which a formula holds in syntactic level [Har99]; and
the other is based on traditional formulas, that is evaluated to the expectations of the formulas in the seman-
tics [MMS96, GKM14]. In our work, we adopt the first approach, and different from other work, focus on the
continuous-time world.

Organization

The rest of the paper is organized as follows: Sect. 2 presents some basic notions and results on probability
and stochasticity. Section 3 introduces the stochastic Hybrid CSP for modelling stochastic hybrid systems, and
in Sect. 4, the operational semantics of this modelling language is defined. Section 5 defines the assertions and
specifications for specifying stochastic hybrid CSP, and Sect. 6 presents the main inference system. Section 7
addresses some future work and concludes the paper.

2. Background and notations

Let � represent a non-empty sample set. A σ -algebra on set � is a set F ⊆ 2� such that: (i) ∅,� ∈ F ; (ii) if

A ∈ F , then its complement Ac ∈ F ; and (iii) if A1,A2, · · · ∈ F , then
∞∪
i�1

Ai ∈ F . A probability measure P on

the pair (�,F) is a function P : F → [0, 1] such that P (∅) � 0, P (�) � 1, and if A1,A2, · · · ∈ F are mutually
disjoint, then P (∪∞i�1 Ai ) � ∑∞

i�1 P (Ai ). For any set A ∈ F , A is called an event. In the rest of the paper, we will
use A,A1, . . . to represent events. If P (F ) � 1, we say the event F occurs with probability 1, or almost surely.
The triple (�,F ,P ) is called a probability space. It is called a complete probability space, if for all A ∈ F with
P (A) � 0, B ⊂ A implies B ∈ F . In the following, we assume (�,F ,P ) is a complete probability space, if not
otherwise stated.

Given any family U of subsets of �, there is a smallest σ -algebra containing U , and we call it the σ -algebra
generated by U . For instance, the σ -algebra on R

n that is generated by all open subsets of Rn is called Borel
σ -algebra, denoted by B. Given any function X : � → R

n , the σ -algebra generated by X is the smallest σ -
algebra on � containing all the sets X−1(B ), that is defined as {ω ∈ � | X (ω) ∈ B}, for any B ∈ B. A function
Y : � → R

n is called F-measurable, if for any B ∈ B, Y −1(B ) ∈ F . A R
n -valued random variable is a F-

measurable function Y : � → R
n . A collection of families {Hi }i∈I of measurable sets of F is independent, if

for any Hij ∈ Hij with 1 ≤ j ≤ k and ij ∈ I , P (Hi1 ∩ · · ·Hik ) � P (Hi1 ) · · ·P (Hik ). A collection of random
variables {Xi }i∈I is independent if the collection of the σ -algebras generated by them is independent. We will use
U ,U1, · · · to represent a collection of independent random variables which distribute uniformly in [0, 1], which
will be used in the definition of the semantics later.

Let TS ⊆ R represent a time set. A stochastic process X is a function X : TS × � → R
n such that for

each t ∈ TS, X (t, ·) : � → R
n is a random variable, and for each ω ∈ �, X (·, ω) : TS → R

n corresponds
to a sample path. We will use Xt and Xω to represent them respectively. In this paper, TS is a time interval, e.g.
[0,∞), or [a, b] for some a, b ∈ R

n . A filtration on (�,F) is a family of σ -algebras {Mt }t≥0 that are increasing
with Mt1 ⊂ Mt2 for all 0 ≤ t1 < t2. A Markov time (or stopping time) with respect to a filtration {Mt }t≥0 is a
random variable τ : � → [0,∞) such that for any t ≥ 0, {ω : τ (ω) ≤ t} ∈ Mt , i.e. the event {ω : τ (ω) ≤ t} is
determined by (at most) the information up to time t . A stochastic processX is adapted to a filtration {Mt }t≥0 if
Xt isMt -measurable. A function defined on R is càdl àg iff it is right continuous and has left limit. A stochastic
process X is càdl àg iff all of its paths t → Xt (ω) (for each ω ∈ �) are càdl àg .

A d -dimensional Brownian motion W is a stochastic process with W0 � 0 that is continuous almost surely
everywhere andhas independent incrementswith time, i.e.Wt−Ws ∼ N (0, t−s) (for 0 ≤ s < t),whereN (0, t−s)
denotes the normal distribution with mean 0 and variance t − s . Brownian motionW can be understood as the
limit of a random walk. It is is almost surely continuous everywhere but differentiable nowhere.
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We use stochastic differential equation (SDE) to model stochastic continuous evolution, which is of the form
dXt � b(Xt )dt + σ (Xt )dWt , whereWt is a Brownian motion1. Intuitively, the drift coefficient b(Xt ) : Rn → R

n

determines how the deterministic part of Xt changes with respect to time and the diffusion coefficient σ (Xt ) :
R

n → R
n×m determines the stochastic influence to Xt with respect to the Brownian motion Wt . A solution to

an SDE is a stochastic process. The existence and uniqueness of solution to SDEs is guaranteed by the following
theorem [Øks07].

Theorem 2.1 Let T > 0, and b(x ) and σ (x ) be measurable functions. If the following two conditions are satisfied:
(a) there exists some constant C such that for any x , | b(x ) | + | σ (x ) |≤ C (1+ | x |);
(b) there exists some constant D such that for any x , y , | b(x )− b(y) | + | σ (x )− σ (y) |≤ D | x − y |.
Let Z be a random variable satisfying E [| Z |2] < ∞, then the SDE

dXt � b(Xt )dt + σ (Xt )dWt , 0 ≤ t ≤ T ,X0 � Z

has a unique continuous solution Xt with the property that, Xt is adapted to the filtration FZ
t generated by Z and

(Ws )s≤t , and E [
∫ T

0 | Xt |2 dt ] ≤ ∞.

In the following parts, we always assume that the SDEs satisfy the conditions (a) and (b).

3. Stochastic HCSP

A system in Stochastic HCSP (SHCSP) consists of a finite set of sequential processes in parallel which commu-
nicate via channels synchronously. Each sequential process is represented as a collection of stochastic processes,
each of which arises from the interaction of discrete computation and stochastic continuous dynamics modeled
by SDEs. Let Proc represent the set of SHCSP processes, � the set of channel names. The syntax of SHCSP is
given as follows:

P ,Q ::� skip | x :� e | ch?x | ch!e | P ; Q | B → P | P∗ |
P �p Q | 〈ds � bdt + σdW&PB〉 | 〈ds � bdt + σdW&PB〉� �i∈I (ωi · chi∗ → Qi )

S ::� P | P1‖P2‖ · · · ‖Pn

Here ch, chi ∈ �, chi∗ stands for a communication event, e.g. ch?x or ch!e, x for a discrete variable, B and PB
for boolean and probabilistic boolean expressions, e for an arithmetic expression, P ,Q,Qi ∈ Proc for sequential
processes,p ∈ [0, 1] stands for theprobability of the choice betweenP andQ , s for a vector of continuous variables,
b and σ for functions of s , W for the Brownian motion process, ωi ∈ Q

+ for the weight, and I for a non-empty
finite set of indices, n for a natural number with n > 1. At the end, S stands for a SHCSP process, which is either
a sequential process, or a parallel composition of multiple sequential processes. The sharing of variables between
parallel processes is not allowed in (S)HCSP, and instead, the exchangeofmessagesbetween them is achieved solely
via synchronized communications along the common channels of them. Furthermore, to simplify the semantics
of SHCSP, we assume that each input or output channel can only be possessed by one sequential process.

As defined in the syntax of P , the processes in the first line are original from HCSP, while the second line is
new for SHCSP. The individual constructs can be understood intuitively as follows:

• skip, the assignment x :� e, the sequential composition P ; Q , and the conditional statement B → P are
defined as usual.

• ch?x receives a value along channel ch and assigns it to x , while ch!e sends the value of e along channel
ch. A communication takes place when both the sending and the receiving parties are ready, and may cause
one side to wait. Note that the waiting time could be different at different samples in � due to the stochastic
behaviour of the partner.

• The repetition P∗ executes P for some finite number of times.
• P �p Q denotes probabilistic choice. It behaves as P with probability p and as Q with probability 1− p.
• 〈ds � bdt + σdW&PB〉 specifies that the system evolves according to the stochastic process defined by the

SDE ds � bdt + σdW . PB defines the domain of s . It is a probabilistic boolean expression, corresponding
to the quantifier-free probabilistic state formula defined in Sect. 5. As soon as PB turns false, the stochastic
process terminates. Thus we call 〈ds � bdt + σdW&PB〉 the boundary interrupt to the stochastic continuous

1 Here we only consider time homogenous SDEs, as any general SDE can be reduced to this case by introducing additional variables [Øks07].
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evolution. For example, suppose PB is P (s < sm ) > 99%, it means that within the domain, s < sm holds
with probability greater than 99%. Whenever the probability that s < sm holds is equal to or less than 99%,
the process terminates. For future use, we will denote by dim(s) the dimension of s .

• 〈ds � bdt + σdW&PB〉 � �i∈I (ωi · chi∗ → Qi ) denotes the probabilistic communication interrupt, where
ωi ∈ Q

+ represents the weight of chi∗. It behaves like 〈ds � bdt + σdW&PB〉, except that the stochastic
process is preempted as soon as one of the communications chi∗ takes place, after that the respective Qi is
executed.However, if there aremultiple communications along {chij }1≤j≤n with ij ∈ I and n > 1 that become
ready simultaneously, then for each chij , the communication action chij ∗ occurs with probability

wij∑n
k�1 wik

.

The stochastic behavior of SHCSP originates from the stochastic continuous evolution, the probabilistic
choice �p , and the choice in probabilistic communication interrupt. Later we will see that, the semantics of
the stochastic continuous evolution is defined by the solution of the SDE, and the semantics of the last two
are defined by a family of independent random variables. As a result, the event that a communication action
occurs, is independent from the event that its partner action occurs. If a communication action occurs with
probability p, and its partner action occurs with probability q , then the corresponding communication will
occur with probability p ∗ q . The semantics of parallel composition indicates this result.

• P1‖P2 behaves as ifP1 andP2 run independently except that all communications along the common channels
connecting P1 and P2 are to be synchronized.

Let S be a SHCSP process. We denote Var(S ) as the set of state variables, including both discrete and
continuous variables, that occur in S . For any channel ch ∈ � occurring in S , if both the input and output ends
of ch, i.e. ch? and ch!, occur in S , then ch is called an internal channel of S , otherwise an external channel of S .We
denote�(S ) as the set of external channels ofS . Foraparallel processS1‖S2 of SHCSP,wehave the following facts:

Var(S1) ∩ Var(S2) � ∅ Var(S1‖S2) � Var(S1) ∪ Var(S2)
�(S1‖S2) � (�(S1) ∪�(S2)) \ (�(S1) ∩�(S2))

Anexample Consider the classic plant-controller example in the stochastic setting:Aplant is sensedbya computer
periodically (say every d time units), and receives a control (u) from the digit controller immediately after the
sensing. Thus, it can be modelled by the following SHCSP process:

((〈ds � b(s, u)dt + σ (s, u)dW&True〉� (cp2c !s → skip)); cc2p?u)∗ ‖ (wait d ; cp2c?x ; cc2p !e(x ))∗
where ds � b(s, u)dt + σ (s, u)dW describes the behaviour of the plant with stochastic influence, and e(x )
computes the control value based on the state x of the plant.

Remark 3.1 SHCSP provides two kinds of interrupts to stochastic continuous evolution modelled by SDEs:
boundary interrupt and communication interrupt.When an interrupt occurs, the SDE stops and another process
executes. But as we know, a physical plant that is undergoing evolution according to a (S)DE is not going to
suddenly stop obeying its physical law and freeze its state for a positive duration of time. To avoid such design
errors, when wemodel a (stochastic) hybrid system using (S)HCSP, a continuous plant should be only interrupted
by a piece of discrete activity, whose execution time is negligible compared to continuous evolution, and thus is
considered as zero in our semantics. The discrete computation acts as a controller sensing the state of the plant
and calculating a new control value based on the state, and then the interrupted continuous evolution continues
again by following the new control value in the next period. This is very consistent with designing a hybrid system
in reality. Obviously the above plant-controller example indicates this point.

Not surprisingly, as amodeling language, SHCSP itself cannot guarantee the correctness of amodel built with
it. This is quite similar to most of programming languages, which cannot guarantee the correctness of programs
coded with them. For example, the normal movement of a train follows a SDE ds � vdt, dv � adt + σdW
subject to the constraint that the proportion of the velocity larger than the emergence brake intervention (Vebi)
is less than 0.1%, i.e., P (v ≤ Vebi) > 99.9%, where s stands for the distance, v for the velocity, and σdW for
the noise from the environment, like friction, wind and so on. Whenever the condition is violated, an emergence
brake should take place, which is modeled by 〈dv � −Bdt〉, where B stands for the full brake deceleration. But

〈ds � vdt, dv � adt + σdW&P (v > Vebi) > 99.9%〉; 〈dv � −Bdt + σdW&v ≥ 0〉
is not a correct design of the train, as the continuous evolution of s stops in case the first SDE terminates, but
it still continuously evolves obeying ds � vdt during the second SDE being executed in reality. There are two
possible ways to avoid such design errors: to refine the modelling language to a small safe subset, or to develop
more expressive verification techniques. We consider this as our future work.
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3.1. A running example

Weuse SHCSP tomodel the aircraft position during the flight, which is adapted from [PH08]. Consider an aircraft
that is following a flight path consisting of a sequence of line segments at a fixed altitude. Ideally, the aircraft
should fly at a constant velocity v along the nominal path, but due to the wind or cloud disturbance, the deviation
of the aircraft from the path may occur. For safety, the aircraft should follow a correction heading to get back
to the nominal path as quickly as possible. On the one hand, the correction heading should be orthogonal to the
nominal path for the shortest way back, but on the other hand, it should also go ahead to meet the destination.
Considering these two objectives, we assume the correction heading is always an acute angle with the nominal
path.

Here we model the behavior of the aircraft along one line segment. Without loss of generality, we assume
the segment is along x -axis, with (xs , 0) as the starting point and (xe , 0) as the ending point. When the aircraft
deviates from the segment with a vertical distance greater than λ, we consider it enters a dangerous state. Let
(xs , y0) be the initial position of the aircraft in this segment, then the future position of the aircraft (x (t), y(t)) is
governed by the following SDE:

(
dx (t)
dy(t)

)

� v
(
cos(θ (t))
sin(θ (t))

)

dt + dW (t)

where θ (t) is the correction heading and is defined with a constant degree π
4 when the aircraft deviates from the

nominal path:

θ (t) �
⎧
⎨

⎩

−π
4 if y(t) > 0

0 if y(t) � 0
π
4 if y(t) < 0

LetPB beP (xs ≤ x ≤ xe ) � 1, themovement of the aircraft described above can bemodelled by the following
SHCSP process PAir :

x :� xs ; y :� y0; 〈[dx , dy ]T � v [cos(θ (t)), sin(θ (t))]Tdt + dW (t)&PB〉
which states that, at the beginning, the position of the aircraft is initialized to (xs , y0), then the variables x , y
standing for the position of the aircraft will evolve by conforming to the given SDE, till the violation of PB.

We will apply our approach to specify and verify this example later in the paper.

4. Operational semantics

Before giving operational semantics, we introduce several auxiliary variables, states, and the operations and
functions manipulating states.

Auxiliary variables In order to define the semantics of SHCSP processes, we need to introduce several auxiliary
variables. First of all, we use non-negative reals R

+ to model time, and introduce a global clock now to record
the time in the execution of a process.

Secondly, we introduce a variable tr to represent the timed trace accumulated till the current time (recorded
by now ) of a process. We define a timed communication as 〈ch, b〉, where ch ∈ � and b ∈ R

+, representing that
a communication along channel ch occurs at time b. The set � × R

+ of all timed communications is denoted
by T�. The set of all timed traces is

T�∗
≤ � {γ ∈ T�∗ | if 〈ch1, b1〉 precedes 〈ch2, b2〉 in γ, then b1 ≤ b2}.

If C ⊆ �, γ �C is the projection of γ onto C such that only the timed communications along channels in C
of γ are preserved. Given two timed traces γ1, γ2, a channel set C ⊆ �, the alphabetized parallel of γ1 and γ2
over C , denoted by γ1 ‖

C
γ2, results in the following set of timed traces

{γ | γ ��−(�(γ1)∪�(γ2))� ε, γ ��(γ1)� γ1, γ ��(γ2)� γ2 and γ �C� γ1 �C� γ2 �C },
where �(γ ) stands for the set of channels that occur in γ . In this paper, the set C is usually �(γ1) ∩�(γ2).

Finally, we introduce a variable rdy to represent the ready set of communication events at current time of a
process. Tomodel synchronization of communication events, we need to describe the readiness of them.We define
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two forms of readiness: ch?, representing that the input event along ch? becomes ready, and ch!c, representing
that the output event along ch! becomes ready and furthermore as a sender, it will send a value c to the receiver.
When both parties along ch become ready, a communication along ch occurs, taking zero time to complete. At
a time point, multiple communications may occur. In order to record the execution order of communications
occurring at the same time point, we prefix each communication readiness occurrence, with a timed trace that
happened before the communication event being ready. So, each communication readiness has the form of γ.ch?
or γ.ch!c, where γ ∈ T�∗≤. We denote by RDY the set of communication readinesses in the sequel.

In the operational semantics, we will define the values of now , tr , and rdy during the process execution.
Furthermore, the variables now and tr will be used in defining the proof system, of SHCSP respectively. In
what follows, we use Var(S )+ to represent the set of state variables of S , i.e. Var(S ), plus the auxiliary variables
{rdy, tr, now} introduced above. For a parallel process S1‖S2, we have the result that Var(S1)+ ∩ Var(S2)+ �
{rdy, tr, now}. The variables in Var(S ) will have values in R, rdy in RDY, tr in T�∗≤, and now in R

+, respectively.
We denote the set of all values by Val.

Remark 4.1 Notice that the auxiliary variables rdy, tr, now are all at the meta level, which are only used in the
definitions of the execution semantics and proof system of a SHCSP process, and never occur in the syntax of
any SHCSP process.

States To interpret a process S ∈ Proc, we first define a deterministic state sd as a mapping from Var(S )+ to
Val, and denote by D the set of such states. Because of stochasticity, we introduce a random variable ρ : � → D
to describe a probabilistic state, i.e. a distribution of all possible states. Notice that the random variable for
representing probabilistic states is different from the standard Rn -valued random variables, however, it can be
transformed to the standard one by abstracting away the variablesVar(S )+ inD and instead assume each variable
has a unique number. This approach was adopted in [Pla11]. In addition,we introduce a stochastic process
H : Intv×� → D, called flow, to represent the continuous flow of process S over the time interval Intv, i.e., state
distributions on the interval.

To handle conditional and probabilistic choice, we allow the existence of sub-probabilistic states, which are
mappings from a subset of� toD. It can be seen that they will only occur as intermediate states in the operational
semantics of SHCSP. In what follows, we will also call the sub-probabilistic states as (probabilistic) states if not
stated otherwise.

State operations In order to define the semantics of probabilistic choice and conditional choice, we need to define
the following operations on probabilistic states correspondingly.

Definition 4.1 Assume ρ, ρ1, ρ2 are probabilistic states, the conditional B?ρ and the addition ρ1 + ρ2 are defined
as follows (The semantics of formulas B will be given in Sect. 5):

B?ρ(ω) �
{

ρ(ω) if B is true under ρ(ω)
⊥ otherwise

When dom(ρ1) and dom(ρ2) are disjoint,

ρ1 + ρ2(ω) �
{

ρ1(ω) if ω ∈ dom(ρ1)
ρ2(ω) if ω ∈ dom(ρ2)
⊥ otherwise

The state B?ρ is obtained from ρ by removing the samples whose corresponding states do not satisfy B , thus it
is partial. The addition ρ1 + ρ2 is used for the case that the sample domains of ρ1 and ρ2 are disjoint, and in such
case, it is the union of ρ1 and ρ2.

Below we introduce some more functions for manipulating states. Given two states ρ1 and ρ2, let Ai be the
sample set dom(ρi ) for i � 1, 2, then we say ρ1 and ρ2 are parallelable iff for each ω ∈ A1 ∩ A2, dom(ρ1(ω)) ∩
dom(ρ2(ω)) � {rdy, tr ,now}, i.e. the state variables of ρ1 and ρ1 are disjoint, and ρ1(ω)(now ) � ρ2(ω)(now ),
i.e. the execution time of ρ1 and ρ1 is equal. Given two parallelable states ρ1 and ρ2, paralleling them over
C ⊆ � results in a set of new states, denoted by ρ1 � ρ2. For any ω ∈ dom(ρ1)∩ dom(ρ2), any v ∈ dom(ρ1(ω))∪
dom(ρ2(ω)), each of ρ in ρ1 � ρ2 satisfies:

ρ(ω)(v ) def�

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρ1(ω)(v ) if v ∈ dom(ρ1(ω)) \ dom(ρ2(ω)),
ρ2(ω)(v ) if v ∈ dom(ρ2(ω)) \ dom(ρ1(ω)),
ρ1(ω)(now ) if v � now ,
γ, where γ ∈ ρ1(ω)(tr ) ‖

C
ρ2(ω)(tr ) if v � tr ,

ρ1(ω)(rdy) ∪ ρ2(ω)(rdy) if v � rdy.
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It makes no sense to distinguish any two states in ρ1 � ρ2, so hereafter we will use ρ1 � ρ2 to represent any of its
elements. In the operational semantics, ρ1 � ρ2 will be used to represent the states of parallel processes.

Given a probabilistic state ρ, the update ρ[v → e] represents a new probabilistic state such that for any ω ∈ �
and x ∈ Var, ρ[v → e](ω)(x ) is defined as the value of e under state ρ(ω) if x is v , and ρ(ω)(x ) otherwise.
For simple use, we will write ρ[tr + τ ] as an abbreviation of ρ[tr �→ tr · 〈τ,now〉]. Given a stochastic process
X : [0, d ) × � → R

dim(s), where d ∈ R
+, then for any t in the domain, ρ[s → Xt ] is a new probabilistic state

such that for any ω ∈ � and x ∈ Var, ρ[s → Xt ](ω)(x ) is defined as X (t,w ) if x is s , and ρ(ω)(x ) otherwise.
Given a stochastic process H over interval [a, b], where a ≤ b and a, b ∈ R

+, H [v �→ e] is the stochastic process
defined over the same interval such that for any t ∈ [a, b], for any ω, for any variable x ∈ Var, H [v �→ e](t, ω)(x )
is defined as H (t, ω)(x ) if x is not v , otherwise the value of e under the starting state H (a, ω).

Other functions In the semanticswewill use a family of randomvariables {Ui}1≤i≤N that are distributeduniformly
in [0, 1], and assume that for each Ui , it is independent of other Uj s and other random variables occurring in
the semantics. Moreover, given an arbitrary setG , we define IG to represent the characteristic function ofG , i.e.
IG (x ) � 1 if x ∈ G and IG (x ) � 0 otherwise.

4.1. Operational semantics

Each transition relation has the form of (P , ρ)
α−→ (P ′, ρ ′,H ), where P and P ′ are SHCSP processes, α is an

event, ρ, ρ ′ are probabilistic states,H is a stochastic process (and we will callH a flow). It expresses that, starting
from initial state ρ, by performing event α, P evolves into P ′, ends in state ρ ′, and produces the execution flow
H . When the transition is discrete and thus produces a flow on a point interval (i.e. current time now ), we will
write (P , ρ)

α−→ (P ′, ρ ′) instead of (P , ρ)
α−→ (P ′, ρ ′, {ρ(now ) �→ ρ ′}), without losing any substantial information.

The label α represents events, which can be a discrete non-communication event, e.g. skip, assignment, or the
evaluation of boolean expressions, uniformly denoted by τ , or an external communication event ch!c or ch?c,
or an internal communication ch.c, or a time delay d , where c ∈ R, d ∈ R

+. When both ch!c and ch?c occur, a
communication ch.c occurs. We call the events other than the time delay discrete events, and will use β to range
over them.We define the dual of ch?c (denoted by ch?c) as ch!c, and vice versa, and define comm(ch!c, ch?c) or
comm(ch?c, ch!c) as the communication ch.c. In the operational semantics, besides the timed communications,
we will also record the τ events that have occurred till now in tr .

Because of probabilistic and conditional choices, a transition may only occur for some event, i.e. a subset of
�. We will write (P , ρ)

α−→ (P ′, ρ ′,H ) on event A, where A ⊆ dom(ρ), to mean that (P , ρ)
α−→ (P ′, ρ ′ |A,H |A),

i.e. the sample set is reduced to A after the transition is performed. As a consequence, for any transition, the
states before and after its execution can be sub-probabilistic states.

The semantics for SHCSP is presented in Tables 1 and 2. The semantics of skip and x :� e are defined as
usual, except that for each, a τ event occurs. The process ε can stay idle for an arbitrarily long time, and then
evolves to itself. The rules for input ch?x indicate the following three cases:

• at the very beginning of execution, the input event has to be put in the ready set, and thereafter,
• it may wait for its parter for some time d during which it remains ready. Notice that for different ωs, the

waiting time might be different, thus in the second rule, the initial state ρ might be a sub-probabilistic state.
The waiting process produces an execution history H ρ

d , which is a stochastic process such that for any ω, for
any t ∈ [ρ(ω)(now ), ρ(ω)(now ) + d ], H ρ

d (t, ω) � ρ[now �→ t ](ω).
• as soon as its parter becomes ready, a communication occurs immediately and takes zero time to complete,

with x being assigned with the value received and tr extended by the timed communication.

The semantics of output ch!e is similarly defined by three rules.
For stochastic continuous evolution 〈ds � bdt +σdW&PB〉, supposeX : [0,∞)×� → R

dim(s) is the solution
of ds � bdt +σdW with the initial valueX0 � ρ(s), then for any t ∈ [0,∞),Xt is a random variable that records
the value distribution of s at time t . For any d > 0, the stochastic process is able to evolve for d time, if PB holds
within the period [0, d ). In particular, at any time t ∈ [0, d ), the state becomes ρ[now �→ now + t, s �→ Xt ], where
now is increased by t and the continuous variable s replaced by the solution Xt , and PB holds at time now + t if
�PB�

ρ[now �→now+t,s �→Xt ]
L is true.



A Compositional Modelling and Verification Framework for Stochastic Hybrid Systems 759

Table 1. The operational semantics for atomic constructs of HCSP

(Skip) (skip, ρ)
τ−→ (ε, ρ[tr + τ ])

(Idle) (ε, ρ)
d−→ (ε, ρ[now �→ now + d ])

(Assign) (x :� e, ρ)
τ−→ (ε, ρ[x �→ e, tr �→ tr · 〈τ,now〉])

(Input-1)
ρ(tr ).ch? �∈ ρ(rdy)

(ch?x , ρ)
τ−→ (ch?x , ρ[rdy �→ rdy ∪ {tr .ch?}])

(Input-2) For any d > 0,
ρ(tr ).ch? ∈ ρ(rdy)

(ch?x , ρ)
d−→ (

ch?x , ρ[now �→ now + d ],H ρ

d

)

(Input-3)
ρ(tr ).ch? ∈ ρ(rdy)

(ch?x , ρ)
ch?b−−→ (

ε, ρ[x �→ b, tr �→ tr · 〈ch,now〉] )
(Output-1)

ρ(tr ).ch ! �∈ ρ(rdy)
(ch !e, ρ)

τ−→ (ch !e, ρ[rdy �→ rdy ∪ {tr .ch !e}])
(Output-2) For any d > 0,

ρ(tr ).ch ! ∈ ρ(rdy)

(ch !e, ρ)
d−→ (

ch !e, ρ[now �→ now + d ],H ρ

d

)

(Output-3)
ρ(tr ).ch ! ∈ ρ(rdy)

(ch !e, ρ)
ch !e−−→ (

ε, ρ[tr �→ tr · 〈ch,now〉] )

(SDE-1)
X : [0,∞)×� → R

d(s) is the solution of ds � bdt + σdW

with X0 � ρ(s) ∧ ∀d > 0. ∀ t ∈ [0,d), �PB�
ρ[now �→now+t,s �→Xt ]
L � True

(〈ds � bdt + σdW&PB〉, ρ) d−→
( 〈ds � bdt + σdW&PB〉,

ρ[now �→ now + d, s �→ Xd ],H
ρ,s,X
d

)

(SDE-2)
�cl(¬PB)�ρ

L � True

(〈ds � bdt + σdW&PB〉, ρ) τ−→ (ε, ρ[tr + τ ])

In the following, denote 〈ds � bdt + σdW&PB〉� �i∈I (ωi · chi∗ → Qi ) by CI .

(ProbInterrupt-1)
∀ i ∈ I .ρ(tr ).chi∗ �∈ ρ(rdy)

(CI , ρ)
τ−→ (CI , ρ[rdy �→ rdy ∪i∈I {tr .chi∗})]

(ProbInterrupt-2)
∀ i ∈ I .ρ(tr ).chi∗ ∈ ρ(rdy),

{chik
∗}1≤k≤n become ready simultaneously while others not, i .e.

∀ k ∈ {1, · · · ,n}.(chik
∗, ρ)

chik
∗

−−−→ (ε, ρik
,Hik

),
U : � → [0, 1] is a random variable distributed uniformly in [0, 1]

(CI , ρ)
chij

∗
−−−→ (Qij , ρij ,Hij ) on event

{(∑j−1
k�1 ωik

/
∑n

k�1 ωik
) ≤ U < (

∑j
k�1 ωik

/
∑n

k�1 ωik
)} for j ∈ {1, · · · ,n}

(ProbInterrupt-3)
∀ i ∈ I .ρ(tr ).chi∗ ∈ ρ(rdy),

¬∃ i ∈ I .(chi∗, ρ) chi ∗−−→ (ε, ρi ,Hi ),

(〈ds � bdt + σdW&PB〉, ρ) d−→ (〈ds � bdt + σdW&PB〉, ρs ,Hs )

(CI , ρ)
d−→ (CI , ρs ,Hs )

(ProbInterrupt-4)
∀ i ∈ I .ρ(tr ).chi∗ ∈ ρ(rdy),

¬∃ i ∈ I .(chi∗, ρ) chi ∗−−→ (ε, ρi ,Hi ),
(〈ds � bdt + σdW&PB〉, ρ) τ−→ (ε, ρ ′)

(CI , ρ)
τ−→ (ε, ρ ′[rdy �→ rdy \ (∪i∈I {tr .chi∗})])
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Table 2. The operational semantics for compound constructs of HCSP

(ProbChoice)
U : � → [0, 1] is a random variable distributed uniformly in [0, 1]

(P �p Q, ρ) −→
{
(P , ρ) on event {U ≤ p}
(Q, ρ) on event {U > p}

Assume the initial states ρ1 and ρ2 are parallelable,

(Parallel-1)

(P1, ρ1)
ch∗−−→ (P ′

1, ρ
′
1), and (P2, ρ2)

ch∗−−→ (P ′
2, ρ

′
2),

(P1 ‖ P2, ρ1 � ρ2)
comm(ch∗,ch∗)−−−−−−−−−→ (P ′

1 ‖ P ′
2, ρ

′
1 � ρ′2)

(Parallel-2)

(P1, ρ1)
β−→ (P ′

1, ρ
′
1), �(β) �∈ �(P1) ∩�(P2)

(P1 ‖ P2, ρ1 � ρ2)
β−→ (P ′

1 ‖ P2, ρ
′
1 � ρ2)

(Parallel-3)

(Pi , ρi )
d−→ (P ′

i , ρ
′
i ,Hi ), for i � 1, 2

(P1 ‖ P2, ρ1 � ρ2)
d−→ (P ′

1 ‖ P ′
2, (ρ

′
1 � ρ′2),H1 �H2)

(Parallel-4) (ε ‖ ε, ρ1 � ρ2)
τ−→ (ε, ρ1 � ρ2)

(Sequential-1)
(P , ρ)

α−→ (P ′, ρ′,H ) P ′ �� ε

(P ; Q, ρ)
α−→ (P ′; Q, ρ′,H )

(Sequential-2)
(P , ρ)

α−→ (ε, ρ′,H )
(P ; Q, ρ)

α−→ (Q, ρ′,H )
(Conditional)

�B�
ρ
L : � → {0, 1} is a random variable

(B → P , ρ)
τ−→

{
(P , ρ[tr + τ ]) on event {�B�

ρ
L � 1}

(ε, ρ[tr + τ ]) on event {�B�
ρ
L � 0}

(Reptition-1)
(P , ρ)

α−→ (P ′, ρ′,H ) P ′ �� ε

(P∗, ρ) α−→ (P ′; P∗, ρ′,H )
(Reptition-2)

(P , ρ)
α−→ (ε, ρ′,H )

(P∗, ρ) α−→ (P∗, ρ′,H )

(Reptition-3) (P∗, ρ) −→ (ε, ρ)

Here L is a random variable for interpreting logical variables in the semantics of SHCSP, but actually, it is
not used for the evaluation of PB. The semantics of probability formulas is given in next section. Let cl(¬PB)
denote the closure of¬PB that includes the boundary of¬PB. For example, if PB is P (s > 1) ≤ 0.3, then¬PB is
P (s > 1) > 0.3, and cl(¬PB) isP (s > 1) ≥ 0.3.Whenever cl(¬PB) becomes true, the stochastic continuous evolu-
tion terminates. The stochastic continuous evolution produces an execution historyH ρ,s,X

d , which is a stochastic
process such that for any ω, for any t ∈ [ρ(ω)(now ), ρ(ω)(now ) + d ], H ρ,s,X

d (t, ω) � ρ[now �→ t, s �→ Xt ](ω).

Remark 4.2 Notice that for theoretical simplicity, we assume that the change between different physical principles
takes no time, therefore once a stochastic flow breaches the terms of its boundary condition, the process just
stops immediately. Similar assumption is normally adopted in dynamical and hybrid systems without noise. But
in practice, we have to consider the delay from one physical principle changing to another one, as it may prompt
oscillations in otherwise convergently stable feedback loops or vice versa, they can destabilize otherwise stable
orbits [TZ08], can stretch dwell times,may induce residual error that never settles, or can cause transient overshoot
into unsafe operational regimes, to name just a few of the various possible effects fundamentally altering system
dynamics.Unmodeleddelays in a control loop thus have the potential to invalidate any stability or safety certificate
obtained on the delay-free model, as delays may significantly deteriorate control performance. In our previous
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work, some approaches on modelling and verifying delay dynamical and hybrid systems without noise have been
proposed [ZFZM15, CFL+16]. We believe that our previous approaches can be extended to stochastic settings,
that will be discussed in another paper.

For probabilistic communication interrupt, there are four cases:
• at the very beginning, all the communication events {chi∗}i∈I are put into the ready set;
• if there are n communications along {chik }1≤k≤n ready to occur, then the j -th communication over channel

chij followed by Qij is chosen to execute, for the samples ω satisfying
∑j−1

k�1 ωik∑n
k�1 ωik

≤ U (ω) ≤
∑j

k�1 ωik∑n
k�1 ωik

;

• if there is no communication event ready to occur, the process evolves for d time units according to the SDE;
• if there is no communication event ready to occur, as soon as the stochastic continuous evolution terminates,

the whole process also terminates by taking a τ event.

The semantics for probabilistic choice is defined by two cases, depending on the value of U (ω) for each ω : if
U (ω) ≤ p, then P is taken, otherwise, Q is taken. For P1‖P2, we always assume that the initial states ρ1 and ρ2
are parallelable. There are four rules:

• P1 and P2 together perform a synchronized communication. Especially, for the case of synchronization, the
state ρ ′1 � ρ ′2 produced after the communication is taken, guarantees that it is well defined for the common
sample set of ρ ′1 and ρ ′2.

• P1 may progress separately on internal events or external communication events, and the symmetric case can
be defined similarly (omitted here);

• both P1 and P2 evolve for d time units in case they can progress for d time units respectively;
• P1‖P2 terminates when both P1 and P2 terminate. The rules of parallel composition obey the priority

property.

At last, the semantics for sequential, internal choice, and repetition is defined as usual. For conditional choice
B → P , for samples ω, if B holds, then P will execute, otherwise it terminates.

Flow of a process Given two flowsH1 andH2 defined on [r1, r2] and [r2, r3] (or [r2,∞)) respectively, we define the
concatenationH�

1 H2 as the flow defined on [r1, r3] (or [r1,∞)) such thatH�
1 H2(t) is equal toH1(t) if t ∈ [r1, r2),

otherwise H2(t). Given a process P and an initial state ρ, if we have the following sequence of transitions:

(P , ρ)
α0−→ (P1, ρ1,H1) (P1, ρ1)

α1−→ (P2, ρ2,H2) . . . (Pn−1, ρn−1)
αn−1−−→ (Pn , ρn ,Hn )

then we define H�
1 . . .� Hn as the flow from P to Pn with respect to the initial state ρ, and furthermore, write

(P , ρ)
α0···αn−1−−−−→ (Pn , ρn ,H�

1 . . .� Hn ) to represent the whole transition sequence (and for simplicity, the label
sequence can be omitted sometimes). When Pn is ε, we call H�

1 . . .� Hn a complete flow of P with respect to ρ.
The following theorem indicates that the semantics of SHCSP is well defined.

Theorem 4.1 If we have (P , ρ) −→ (ε, ρ ′,H ), thenH is an almost surely càdl àg process and adapted to the filtration
(Ft )t≥0 generated by ρ, the Brownian motion (Ws )s≤t , and uniform U processes, and furthermore, the execution
time of P , denoted by �(P ), is a Markov time with the filtration (Ft )t≥0 .

Proof We will prove the càdl àg , adaptedness and Markov time properties by induction on the structure of
SHCSP P .

• Cases skip, ε and x :� e: Deterministic times �(skip) � �(x � e) � 0, and �(ε) � d are trivial Markov
times. For all of them,H is adapted to the filtration generated by ρ. For skip and x :� e,H is trivially càdl àg
as the time domain is {0}. For ε, all variables are preserved the same but now is progressing with derivative
1, H is obviously càdl àg .

• Case ch?x : According to the semantics, for eachω ∈ �, theremust exist some d > 0 such that�(ch?x )(ω) � d
for the ω. For any t ≥ 0, consider the set {ω : �(ch?x )(ω) ≤ t}, denoted by �t . Intuitively, �t includes the
samples for which the communications have occurred by time t , and does not include the samples for which
the communications occur after time t in the future. Obviously, �t ∈ Ft , thus, �(ch?x ) is a Markov time. H
combines the waiting stage and the communication at the termination, obviously it is càdl àg and adapted
to the filtration generated by ρ.

• The case for output can be proved similarly.
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• Case 〈ds � bdt + σdW&PB〉: By Theorem 2.1, H is adapted to the filtration generated by (Ws )s≤t and ρ,
and it is continuous. By Theorem 5.1, PB is well defined, and there exists some d such that PB turns 0 for the
first time and �(〈ds � bdt + σdW&PB〉) � d , which is a Markov time.

• Case B → P : If B is true, B → P executes P , otherwise, terminates immediately. By induction hypothesis,
�(P ) is aMarkov time andHP is càdl àg and adapted. According to the semantics,�(B → P ) � B?�(P )+
¬B?0, for which B? is 1 for the samples that make B true, and ¬B? is 1 for the samples that make B false.
Thus, the sum is a Markov time. Moreover, we also have H � B?HP + ¬B?Hρ , where Hρ stands for the
singleton process with ρ. By induction hypothesis, H is càdl àg , and H is also adapted, where B generates
the filtration.

• Case P �p Q : By induction hypothesis, �(P ) and �(Q) are both Markov times. According to the semantics,
�(P �p Q) � IU≤p�(P ) + IU>p�(Q). The characteristic functions IU≤p and IU>p both have two values
0 and 1, thus IU≤p�(P ) and IU>p�(Q) are Markov times. The sum of two Markov times, �(P �p Q), is
also a Markov time. By induction hypothesis, HP for P and HQ for Q are both càdl àg . Because càdl àg
functions form an algebra, H � IU≤pHP + IU>p�(Q)HQ is also càdl àg . H is adapted, because HP and
HQ are adapted and the choice �p generates the filtration.

• Case P ; Q : Suppose (P ; Q, ρ)
α−→ (Q, ρ ′,H ′) and (Q, ρ ′) α−→ (ε, ρ ′′,H ′′). By induction hypothesis, �(P ) is a

Markov time andH ′ is càdl àg and adapted to (F ′
t )t≥0 generated by ρ and the constituent Brownian motion

and uniform processes during P , and especially ρ ′ is a random variable. By induction hypothesis, �(Q) is a
Markov time andH ′′ is càdl àg andadapted to (F ′′

t−�(P ))t≥�(P ) generatedbyρ ′ and the constituentBrownian
motion and uniformprocesses duringQ . Obviously,�(P ; Q) � �(P )+�(Q) is aMarkov time.H � H ′�H ′′
is adapted to (Ft )t≥0, which includes the two parts (F ′

t )t≥0 and (F ′′
t−�(P ))t≥�(P ), since the two parts H ′,

H ′′ are adapted respectively. By induction hypothesis, H is càdl àg on [0,�(P )) and on (�(P ),�(P ; Q)),
because the constituent fragments are, and at �(P ), H is càdl àg by construction.

• Case 〈ds � bdt + σdW&PB〉� �i∈I (ωi · chi∗ → Qi ): If the evolution of 〈ds � bdt + σdW&PB〉 terminates
before any communicationoccurs, this case is sameas 〈ds � bdt+σdW&B〉.Otherwise, some communication
is chosen to occur and the correspondingQi is executed. By induction hypothesis and the case for sequential
composition, the results can be proved obviously. Here we omit the details.

• Case P‖Q : Suppose (P1 ‖ P2, ρ1 � ρ2) −→ (ε ‖ ε, ρ ′1 � ρ ′2,H1 � H2). Because the processes P and Q don’t
share variables, by induction hypothesis, H � H1 � H2 is càdl àg and adapted to the filtration generated by
ρ1 � ρ2, (Ws )s≤t and uniform processes during P and Q . �(P‖Q) � max(�(P ),�(Q)) is a Markov time.

�

5. Assertions and specifications

In this section, we define a specification logic for reasoning about SHCSP programs. We will first present the
assertions including syntax and semantics, and then the specifications based on Hoare triples. The proof system
will be given in next section.

5.1. Assertion language

The assertion language is essentially defined by a first-order logic with emphasis on the notion of explicit time
and the addition of several specific predicates on occurrence of communication traces and events. Before giving
the syntax of assertions, we introduce three kinds of expression first.

Ce ::� h | ε | 〈ch,T 〉 | Ce · Ce | Ce∗ | tr
Ve ::� v | b | x | f k (E1, ...,Ek )
Te ::� o | d | now | u l (T1, ...,Tl )

Ce defines trace expressions, including a logical trace variable h, an empty trace ε, a communication pair 〈ch,T 〉
representing that a communication along channel ch has occurred at time T , a concatenation of two traces
Ce1 · Ce2, and the system variable tr for representing the communication trace of the system. Ve defines value
expressions, including a logical value variable v , a value constant b, a variable x , or an arithmetic function
application.Te defines time expressions, including a time logical variable o, a time constant d , the system variable
now , or arithmetic time expressions.
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The categories of the assertion language include terms, denoted by θ, θ1 etc., state formulas, denoted by S ,S1
etc., probabilistic state formulas, denoted by PS,PS1, and probabilistic formulas, denoted by PF,PF1 etc., which
are given by the following syntax:

θ ::� Ve | Te | Ce
S ::� ⊥ | Rn (θ1, ..., θn ) | h.ch? | h.ch!G(·) | ¬S | S1 ∨ S2 | ∀ v .S
PS ::� ⊥ | P (S ) � p | ¬PS | PS ∨ PS | ∀ v .PS | B?PS | PS + PS
PF ::� ⊥ | PS at T | ¬PF | PF ∨ PF | ∀ v .PF | ∀ t .PF

The terms θ include value, time and trace expressions. The state expressions S include false (denoted by⊥), truth-
valued relationRn on terms, readiness, and logical combinations of state formulas. Notice that the connectives∧,
→, ∃ can be derived from the existing ones. In particular, the readiness h.ch? represents that the communication
event over ch? is enabled, and prior to it, the sequence of communications recorded in h has occurred; and
h.ch!G(·) has similar meaning, except that the communication event over ch! will send a value satisfying property
G(·). For the property G(·), when it is instantiated with an arbitrary variable x , G(x ) is a first-order logical
formula. Both the terms θ and S are defined for characterizing deterministic states in set D.

The probabilistic state formulas are defined for characterizing the probabilistic states in� → D. The intuitive
explanation of the probabilistic state formulas are given below:

• P (S ) � p, where �∈ {<,�,>} and p ∈ [0, 1], asserts that S holds at the considered state with probability
satisfying � p;

• The traditional logical combinations ¬, ∨, ∀ can be understood as usual;
• B?PS performs conditional test. It holds for a state if it is a conditional version of some state satisfying PS;
• PS + PS′ performs addition. It holds for a state if it can be split into two parts satisfying PS and PS′

respectively;

The probabilistic formulas PF add real time to the probabilistic state formulas. It include false, a primitive
PS at T representing that PS holds at time T , and logical combinations of formulas (v , t represent logical
variables for values and time resp.). For time primitive, we have the following two new axioms:

(PS1 at T ∧ PS2 at T )⇔ (PS1 ∧ PS2) at T
(PS1 at T ∨ PS2 at T )⇔ (PS1 ∨ PS2) at T

In the sequel, we use the logical abbreviationPS dr [T1,T2] to represent thatPS holds during the time interval
[T1,T2], with the following definition:

PS dr [T1,T2]
def� ∀ t .(T1≤ t≤ T2)⇒PS at t

Interpretation In the following, we will use a random variable Z : � → (Var→ Val) to describe the current state
and a stochastic process H : [0,+∞)×� → (Var → Val) to represent the whole evolution. Moreover, let LVar
denote the set of all logical variables introduced in the formulas, we use an interpretation L : � → (LVar→ Val)
to record the assignment of the logical variables.

The semantics of terms θ , denoted by �θ�ZL , returns a value of type � → Val. We define the semantics for the
three kinds of expressions respectively. The semantics of value expressions �Ve�ZL is defined as follows:

�v�ZL � X where X (ω) � L(ω)(v ) for ω ∈ �

�b�ZL � b

�x�ZL � Y where Y (ω) � Z (ω)(x ) for ω ∈ �

�f k (E1, ...,Ek )�ZL � f k (�E1�
Z
L , ..., �Ek �ZL )

The semantics of time expressions �Te�ZL is defined as follows:

�o�ZL � X where X (ω) � L(ω)(o) for ω ∈ �

�d�ZL � d

�now�ZL � Y where Y (ω) � Z (ω)(now ) for ω ∈ �

�u l (T1, ...,Tl )�ZL � u l (�T1�
Z
L , ..., �Tl�

Z
L )
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The semantics of trace expressions �Ce�ZL is defined as follows:

�h�ZL � X where X (ω) � L(ω)(h) for ω ∈ �

�ε�ZL � ε

�〈ch,T 〉�ZL � 〈ch, �T �ZL 〉
�Ce1 · Ce2�ZL � �Ce1�ZL · �Ce2�ZL
�Ce∗�ZL � (�Ce�ZL )

∗

�tr�ZL � Y where Y (ω) � Z (ω)(tr ) for ω ∈ �

The semantics of state formulas S , denoted by �S�ZL , returns a value of type � → {0, 1}. The definition is given
as follows:

�⊥�ZL � 0

�Rn (θ1, . . . , θn )�ZL � Rn (�θ1�ZL , . . . , �θn�ZL )

where Rn (�θ1�ZL , . . . , �θn�ZL )(ω) � Rn (�θ1�ZL (ω), . . . , �θn�ZL (ω))

�h.ch?�ZL � I{ω∈�|�h�ZL (ω).ch?|ch∈Z (ω)(rdy)|ch }
�h.ch!G(·)�ZL � ∃c.G(c) ∧ I{ω∈�|�h�ZL (ω).ch !c|ch∈Z (ω)(rdy)|ch }
�¬S�ZL � 1− �S�ZL

�S1 ∨ S2�ZL � �S1�ZL + �S2�ZL − �S1�ZL ∗ �S2�ZL
�∀ v .S�ZL � ∀ c : R.�S [c/v ]�ZL

In particular, �h.ch?�ZL (ω) � 1 denotes that, there exists a sequence in the rdy set of ω such that it has the same
projection to ch as h.ch?, and �h.ch!G(·)�ZL (ω) � 1 denotes that, there exists a sequence in the rdy set of ω, say
h ′.ch!c, such that it has the same projection to ch as h.ch!G(), and furthermoreG(c) holds, i.e.G(·) is the property
of the value received from the sender. Notice that we use the projection to ch instead of the history trace h itself,
because we only care about the history of the communications that have occurred over channel ch in the past.

The semantics of probabilistic state formulas PS, denoted by �PS�ZL , returns a boolean value, defined as
follows:

�P (S ) � p�ZL � (P (�S�ZL � 1) � p) � (P ({ω ∈ � : �S�ZL (ω) � 1}) � p)

�B?PS�ZL � ∃Z1.Z � B?Z1 ∧ �PS�Z1
L

�PS + PS′�ZL � ∃Z1,Z2.Z � Z1 + Z2 ∧ �PS�Z1
L ∧ �PS′�Z2

L

where Z � B?Z1 means that Z (ω) � Z1(ω) iff �B�Z1
L (ω) � 1. The connectives ¬, ∨ and ∀ can be defined as usual.

The semantics of formula PF, denoted by �PF�H,Z
L , is interpreted over a stochastic process, an initial random

variable and the logical interpretation, and it returns a boolean value. The definition of the time primitive formula
is given below:

�PS at T �H,Z
L � �PS�H(�T�ZL )

The others can be defined as usual.
We have proved that the terms and state formulas of the assertion language are measurable, stated by the

following theorem:

Theorem 5.1 (Measurability) For any random variable Z and any stochastic process H, the semantics of �θ�ZL and
�S�ZL are random variables (i.e. measurable).

Proof We will prove this fact by induction on the structure of θ and S .
We list several cases for the proof of �θ�ZL in the following, and the rest can be proved similarly.

• �c�ZL � c is a random variable trivially.
• �x�ZL � Y is a random variable, because Y (ω) � Z (ω)(x ) for each ω ∈ � and Z is measurable.
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• �f k (E1, ...,Ek )�ZL � f k (�E1�
Z
L , ..., �Ek �ZL ) is a random variable, because �E1�

Z
L , ..., �Ek �ZL are measurable

and f k is Borel-measurable. Thus, the composition f k (�E1�
Z
L , ..., �Ek �ZL ) is measurable (the σ -algebras in the

composition are compatible).
• �h1 · h2�ZL � �h1�ZL · �h2�ZL is a product. It is also measurable by induction hypothesis (measurable functions

form an algebra).

We list several cases for the proof of �S�ZL in the following, and the rest can be proved similarly.

• �h.ch!G(·)�ZL � ∃c.G(c) ∧ I{ω∈�|�h�ZL (ω).ch !c|ch∈Z (ω)(rdy)|ch } is measurable, because it is defined by a quantified
formula, which is a conjunction of first-order formula G and a characteristic function. Both of them are
measurable.

• �¬S�ZL � 1− �S�ZL is measurable, because �S�ZL is measurable by induction hypothesis.
�Rn (θ1, . . . , θn )�ZL , �h.ch!�ZL and �S1 ∨ S2�ZL can be proved similarly.

�
As a consequence of Theorem 5.1, the probabilistic state formulas PS are well defined, i.e. the probability

with which some state formula S holds or not is definable. By Theorem 4.1, the flow of a process is adapted and
càdl àg , thus the probabilistic formulas PF are also well defined.

5.2. Specifications

Based on the assertion language, the specification for an SHCSP processP is defined as aHoare triple of the form
{A; E }P {R; C }, where A,E ,R,C are probability formulas. A and R are precondition and postcondition, which
specify the initial state and the terminating state of P respectively. For both of them, the formulas PF occurring
in them have the special form PS at now , and we will always write PS for short. E is called an assumption of
P , which expresses the timed occurrence of the dual of communication events provided by the environment. C
is called a commitment of P , which expresses the timed occurrence of communication events, and the real-time
properties of P .

Definition 5.1 (Validity) We say a Hoare triple {A; E }P {R; C } is valid, denoted by |� {A; E }P {R; C }, iff for
any process Q, any initial states ρ1 and ρ2, if P terminates, i.e. (P‖Q, ρ1 � ρ2)

α∗−→ (ε‖Q ′, ρ ′1 � ρ ′2,H) then �A�ρ1

and �E�H,ρ2 imply �R�ρ ′1 and �C �H,ρ ′1 , where H is the stochastic process of the evolution.

In this paper, we only consider partial correctness of a SHCSP process. As most stochastic hybrid systems are
reactive, the termination of the systems is less important compared to safety. Some hybrid systems even do not
terminate at all.

6. Proof system

Before giving the proof system, we introduce the notion of local and global invariants, for handing the SDEs and
loop repetition respectively.

6.1. Local and global invariants

Definition 6.1 (Local differential invariant) The probabilistic formula Invsde is a local differential invariant of
〈ds � bdt + σdW&PB〉 with respect to the precondition Init, iff the following formulas hold:

• Init ∧ PB→ Invsde, representing that the initial states satisfy the invariant;
• Invsde → [〈ds � bdt + σdW&PB〉]Invsde, representing that starting from a state satisfying the invariant, the

execution of the SDE preserves the invariant.

Definition 6.2 (Global loop invariant) The probabilistic formula Invloop is a global differential invariant of P∗ with
respect to the precondition Init and the environment assumption Env, iff the following formulas hold:

• Init→ Invloop, representing that the initial states satisfy the invariant;
• Invloop → [P ,Env]Invloop, representing that starting from a state satisfying the invariant, the execution of the

loop body under the given environment Env preserves the invariant.
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6.2. Axioms and inference rules of SHCSP

We present a proof system for reasoning about all valid Hoare triples for SHCSP processes. First we axiomatize
SHCSP language by defining the axioms and inference rules for all the primitive and compound constructs, and
then the general rules and axioms that are applicable to all processes.

Skip The rule for skip is very simple. Indicated by�, the skip process as an internal action requires nothing from
the environment; and it takes no time to complete, thus guarantees nothing to the history. The execution of skip
produces a τ event. For simplicity, we abbreviate h · 〈τ,now〉 as h + τ in the rest of this paper.

{A ∧ tr � h; �} skip {A[h/tr ] ∧ tr � h + τ ; �}

Assignment The assignment x :� e changes nothing but assigns x to e and extends the trace by τ in the final
state.

{A ∧ x � v ∧ tr � h; �} x :� e {A[x , h/v , tr ] ∧ x � e ∧ tr � h + τ ; �}

Input For input ch?x , we use logical variables o to denote the starting time,h the initial trace, and v the initial value
of x respectively, in the precondition. The assumption indicates that no compatible output event is ready during
[o, o1), and at time o1, with probability p, a compatible output event with a value satisfying F (·) transmitted
becomes ready. As a consequence of the assumption, during the whole interval [o, o1], the input event keeps
waiting and ready, as indicated by the commitment. At time o1, the communication occurs and terminates
immediately. As indicated by the postcondition, with probability equal or greater than p, now is increased to o1
(this is because, there may exist a compatible ch! event occurring at o1 while not satisfying F (·), but it can still
make the communication over ch complete at o1), and furthermore, with probability p, F (x ) holds and the trace
is augmented by the new pair 〈ch, o1〉. Assume o1 is finite (and this assumption will be adopted for the rest of the
paper). The rule is presented as follows:

{A ∧ now � o ∧ tr � h ∧ x � v ; ¬h.ch! dr [o, o1) ∧ P (h.ch!F (·)) � p at o1}ch?x
{A[o, h, v/now , tr , x ] ∧ P (now � o1) ≥ p ∧ P (F (x ) ∧ tr � h · 〈ch, o1〉) � p; h.ch? dr [o, o1]}

If such finite o1 does not exist, i.e., the compatible output event will never become available. As a consequence,
the input event will keep waiting forever, as shown by the following rule:

{A ∧ now � o ∧ tr � h; ¬h.ch! dr [o,∞)} ch?x {{A[o/now ] ∧ now � ∞; h.ch? dr [o,∞)}}

Output Similarly, for output ch!e, we have one rule for the case when the compatible input event becomes ready

in finite time. Thus the communication occurs successfully. Let G(v ) def� (v � e) for all v .

{A ∧ now � o ∧ tr � h; ¬h.ch? dr [o, o1) ∧ P (h.ch?) � p at o1}ch!e
{A[o, h/now , tr ] ∧ P (now � o1) ≥ p ∧ P (tr � h · 〈ch, o1〉) � p, h.ch!G(·) dr [o, o1]}

We also have another rule for the case when the compatible input event will never become ready.

{A ∧ now � o ∧ tr � h; (¬h.ch?) dr [o,∞)} ch!e {{A[o/now ] ∧ now � ∞; h.ch! dr [o,∞)}}

Stochastic continuous evolution Based on the notion of stochastic differential invariant, we have the following
rule for 〈ds � bdt + σdW&PB〉.

Invsde is a stochastic differential invariant of 〈ds � bdt + σdW&PB〉 with respect to A
{A ∧ s � s0 ∧ now � o ∧ tr � h; �}〈ds � bdt + σdW&PB〉

{A[s0, o, h/s,now , tr ] ∧ tr � h + τ ∧ cl(¬PB) ∧ Invsde; (PB ∧ Invsde) dr [o,now )}
where o, s0 are logical variables denoting the starting time and the initial value of s resp., and cl() returns the

closure of a formula, e.g. cl(P (x < 2) � p) def� P (x ≤ 2) � p. The rule states that, throughout the whole evolution
except for the escaping point, the domain PB and the invariant Invsde hold almost surely, and furthermore, at the
termination, the closure of ¬PB holds almost surely.
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Sequential composition For P ; Q , we use o to denote the starting time, and o1 the termination time of P , if P
terminates, which is also the starting time of Q . The first rule is for the case when P terminates.

{A ∧ now � o; E }P {R1 ∧ now � o1; C1} {R1 ∧ now � o1; E [o/now ]}Q {R; C }
{A; E }P ; Q {R; C1[o1/now ] ∧ C }

On the other hand, if P does not terminate, the effect of executing P ; Q is same to that of executing P itself.

{A ∧ now � o; E }P {R ∧ now � ∞; C }
{A ∧ now � o; E }P ; Q {R ∧ now � ∞; C }

Conditional There are two cases depending on whether B holds or not. For both cases, the evaluation of B
produces a τ event, as indicated by the following rule.

{B?A[h/tr ] ∧ tr � h + τ ; E }P {R; C }
{A ∧ now � o ∧ tr � h; E }B → P {R + (¬B?A[h/tr ] ∧ tr � h + τ ); C + (now � o at now )}

Probabilistic choice The rule for P �p Q is defined as follows:

{A; E }P {P (S ) �1 p1; P (S ′) �2 p2 at T }
{A; E }Q {P (S ) �1 q1; P (S ′) �2 q2 at T }

{A; E } P �p Q {P (S ) �1 pp1 + (1− p)q1; P (S ′) �2 pp2 + (1− p)q2 at T }
where �1,�2 are two relational operators. The final postcondition indicates that, if after P terminates S holds
with probability �1 p1, and after Q terminates S holds with probability �1 q1, then after P �p Q terminates, S
holds with probability �1 pp1 + (1− p)q1; The history formula can be understood similarly.

Communication interrupt We use a logical variable oF to denote the execution time of the SDE. The premise of
the first rule indicates that the compatible events of {chi∗}i∈I are not ready after the continuous terminates. For
this case, the effect of executing the whole process is thus equivalent to that of executing the SDE.

{A ∧ now � o; E }〈ds � bdt + σdW&PB〉{R ∧ now � o + oF ; C }
∀ i ∈ I .A ∧ now � o ∧ tr � h ∧ E ⇒ (¬h.chi∗ dr [o, o + oF ])

{A ∧ now � o ∧ tr � h; E } 〈ds � bdt + σdW&PB〉� �i∈I (ωi · chi∗ → Qi ) {R ∧ now � o + oF ; C }
By contrast, when some compatible events become ready before the continuous evolution terminates, the contin-
uous evolution will be interrupted by one of the communications with the corresponding probability indicated
by the weight of it.

{A ∧ now � o; E }〈ds � bdt + σdW&PB〉{R ∧ now � o + oF ; C }
(A ∧ now � o ∧ tr � h ∧ E )⇒ (∧1≤j≤nh.chij ∗ at (o + o1) ∧ o1 ≤ oF )

∀ 1 ≤ j ≤ n.{now � o ∧ tr � h; E } chij ∗; Qij {P (S ) �1 pij ; P (S ′) �2 qij at T }
{A ∧ now � o ∧ s � s0 ∧ tr � h; E } 〈ds � bdt + σdW&PB〉� �i∈I (ωi · chi∗ → Qi )
{P (S ) �1

⊕
1≤j≤n

ωij∑n
j�1 ωij

· pij ; (PB ∧ Invsde) dr [o, o + o1) ∧ AfterC}

where AfterC is defined as P (S ′) �2
∑

1≤j≤n (
ωij∑n
j�1 ωij

· qij ) at T if T ≥ o + o1, and (
⊕

1≤j≤n P (S ′) �2 qij ) at T if

T < o + o1.
⊕

1≤k≤n Fk is defined as F1 if n is 1, otherwise
⊕

1≤k≤(n−1) Fk +Fn if n is greater than 1. In the first
o1 time, the domain PB and the differential invariant Invsde of the SDE hold.

Parallel composition For P‖Q , let X be X1 ∩X2 where X1 � �(P ) and X2 � �(Q). For each parallel process,
we assume it starts from time 0 and an empty trace. Suppose A defines the initial values of state variables of P
and Q , then
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A⇒ A1 ∧A2, {A1 ∧ now � 0 ∧ tr � ε; E1}P {R1 ∧ now � o1; C1}
{A2 ∧ now � 0 ∧ tr � ε; E2}Q {R2 ∧ now � o2; C2}

∀ ch ∈ X .(C1[o1/now ]�ch⇒ E2 �ch ) ∧ (C2[o2/now ]�ch⇒ E1 �ch )
∀ dh ∈ X1 \X .E �dh⇒ E1 �dh ∀ dh ′ ∈ X2 \X .E �dh ′⇒ E2 �dh ′

{A ∧ now � 0 ∧ tr � ε; E }P‖Q {R; C ′
1 ∧ C ′

2}

R def� R1[γ1/tr , o1/now ] ∧ R2[γ2/tr , o2/now ] ∧ now � om ∧ γ1 �X� γ2 �X ∧tr � (γ1 ‖
C

γ2)

C ′
i
def� Ci [oi/now ] ∧ R′

i [oi/now ] dr [oi ,now ) for i � 1, 2

where A1 is a probabilistic formula of P (i.e., it only contains state variables of P ), A2 a probabilistic formula
of Q , o1 and o2, γ1 and γ2 logical variables representing the termination time and the accumulated traces of
P and Q respectively, om the max{o1, o2}, for i � 1, 2, Ri ⇒ R′

i but tr �∈ R′
i .

The compatibility check is performed between P andQ : the environmental assumption of P (resp.Q), i.e. E1
(resp.E2), is guaranteed by the commitment ofQ (resp.P ) and the overall environmentE ofP‖Q . At termination
of P‖Q , the time will be the maximum of the termination time of P and Q , thus it is the maximum of o1 and
o2; and the trace is the alphabetized parallel of the traces after P and Q , which is (γ1 ‖

C
γ2). In C ′

1 and C ′
2, we

specify that none of variables of P and Q except for now and tr will change after their termination.

Repetition For P∗, let Invloop be the global loop invariant of P , then

A⇒ Invloop {Invloop ∧ now � ol ; E [o/now ]} P {Invloop; Invloop dr [ol ,now )}
{A ∧ now � o; E }P∗ {A[vo/v] ∧ Invloop; Invloop dr [o,now )}

where the logical variable o denotes the starting time of P∗, ol the starting time of each iteration of P , and the
variable list v represents the set of modified variables in Var+(P ) and vo their initial values.

The general rules that are applicable to all processes, such as Monotonicity, Case Analysis, and so on, are
similar to the classical Hoare Logic.

An example

Wepresent a SHCSP example below and showhow to apply the inference system to specify and verify its property.
First, given a time T ∈ R

+, define wait T to be an abbreviation for t :� 0; 〈ṫ � 1&t < T 〉, i.e. time makes
progress for T time units. We then define the processes P1, P2 and P3 as follows:

P1
def� 〈ds � b(s, a)dt + σ (s, a)dW 〉� �i∈{1,2}(ωi · chi?a → skip)

P2
def� wait T1; ch1!1

P3
def� wait T2; ch2!(−1)

where s is a continuous variable, a is a discrete variable, ω1 � 2, ω2 � 3, T1,T2 ∈ R
+, and ch1, ch2 are channels.

Consider the parallel process P1‖P2‖P3. The SDE in P1 receives a value from P2 and P3 with different
weights 2 and 3 respectively, and then assigns it to the control variable a, if both P2 and P3 are available to
communicate with P1. Otherwise, P1 receives a value from P2 or P3 depending on which is ready first. Below we
denote the precondition, assumption, postcondition, and commitment of process S in {P1,P2,P3,P1‖P2‖P3}
by S .Pre,S .Env,S .Post and S .Comt respectively. First of all, assume we have the following preconditions and
environment assumptions for the processes:

(P1‖P2‖P3).Pre
def� s � s0 ∧ now � 0 ∧ tr � ε, for i � 1, 2, 3

P1.Env
def� ¬ch1! dr [0,T1) ∧ ch1!1 at T1 ∧ ¬ch2! dr [0,T2) ∧ ch2!(−1) at T2

Pj .Env
def� P (chj−1?) � ωj−1

5 at Tj−1, for j � 2, 3

The precondition indicates that, at the beginning of the execution of P1‖P2‖P3, s is initialized as s0, now as 0,
and the trace tr as empty. The environmental assumption of P1 indicates that the partner communication event
ch1! is not ready until T1, and ch2! is not ready until T2. The environmental assumption of P2 indicates that the
partner communication event ch1? is ready at time T1 with probability 2

5 . The environmental assumption of P3
can be explained similarly. Secondly, suppose for the SDE, we have the following specification:
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{P1.Pre; P1.Env} 〈ds � b(s, a)dt + σ (s, a)dW 〉 {RF ∧ now � oF ; CF }
and meanwhile, we assume oF > max(T1,T2). As a result, according to the semantics of the communication
interrupt, the SDE will be interrupted by the communication along channel ch1 or channel ch2, depending on
the values of T1 and T2. In the following deduction, we will omit the details of the specification of the SDE, and
focus onmainly the communication interaction between the processes and especially the effect of the probabilistic
aspects brought by the communication interrupt.

By applying the rules for output and sequential composition, we can obtain the postconditions and commit-
ments for P2 and P3 as follows:

P2.Post � P (now � T1) ≥ 2
5 ∧ P (tr � 〈ch1,T1〉) � 2

5
P2.Comt � ch1!1 at T1

P3.Post � P (now � T2) ≥ 3
5 ∧ P (tr � 〈ch2,T2〉) � 3

5
P3.Comt � ch2!(−1) at T2

By applying the rule for input, we prove the following specifications:

{now � 0 ∧ tr � ε; P1.Env} ch1?a; skip {now � T1 ∧ a � 1 ∧ tr � 〈ch1,T1〉; ch1? dr [0,T1]}
{now � 0 ∧ tr � ε; P1.Env} ch2?a; skip {now � T2 ∧ a � −1 ∧ tr � 〈ch2,T2〉; ch2? dr [0,T2]}

For further use, denote the above two postconditions by R1 and R2 respectively. If T1 � T2 holds, then P1

will communicate with both P2 and P3 with probabilities 2
5 and 3

5 respectively. By applying the second rule for
communication interrupt, we have the following results:

P1.Post � now � T1 ∧ P (a � 1) � 2
5 ∧ P (a � −1) � 3

5∧P (tr � 〈ch1,T1〉) � 2
5 ∧ P (tr � 〈ch1,T1〉) � 3

5
P1.Comt � ch1? dr [0,T1) ∧ P (ch1?) � 2

5 at T1 ∧ ch2? dr [0,T2) ∧ P (ch2?) � 3
5 at T2

Finally, consider the parallel composition P1‖P2‖P3. We check the compatibility between the processes and
prove the following facts:

P1.Comt�ch1⇒ P2.Env�ch1 ,P1.Comt�ch2⇒ P3.Env�ch2 ,P2.Comt�ch1⇒ P1.Env�ch1 ,P3.Comt�ch2⇒ P1.Env�ch2

By applying the rule for parallel composition, we have

{P1.Pre; �}P1‖P2‖P3{now � T1 ∧ P (a � 1) � 2
5 ∧ P (a � −1) � 3

5∧P (γ1 � 〈ch1,T1〉) � 2
5 ∧ P (γ1 � 〈ch1,T1〉) � 3

5 ; P1.Comt ∧ P2.Comt ∧ P3.Comt}
which indicates that, afterP1‖P2‖P3 terminates, the execution time isT1 (which is alsoT2), and for processP1, the
control variable a and the trace are 1 and 〈ch1,T1〉 with probability 2

5 , and are -1 and 〈ch2,T2〉 with probability
3
5 respectively.

For this example, we can also consider the cases when T1 and T2 are not equal, for each of which, P1 will
only communicate with one of them respectively.

6.3. Properties

Definition 6.3 (Theorem) If {A; E }P {R; C } is derivable from the inference system of SHCSP defined above, then
it is called a theorem, denoted by  {A; E }P {R; C }.

We have proved the following theorem for the soundness of the inference system.

Theorem 6.1 (Soundness) If  {A; E }P {R; C }, then |� {A; E }P {R; C }, i.e. every theorem of the proof system
is valid.

Proof To prove soundness, we need to show that the axioms are valid, and that every inference rule in the proof
systempreserves validity. That is, if every premise of the rule is valid, then the conclusion is also valid.Wewill prove
the soundness theorem by induction on the structure of Stochastic HCSP processes P . In the following proof,

we always assume P executes in parallel with its environment PE , and (P‖PE , ρ1 � ρ2)
α∗−→ (ε‖PE ′, ρ ′1 � ρ ′2,H),
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H is the stochastic process of the evolution. Then what we need to prove is that, �A�
ρ1
L and �E�

ρ2,H
L imply �R�

ρ ′1
L

and �C �
ρ ′1,H
L .

Assume T0 � ρ1(now ) for simplicity. Notice that T0 introduced here is a random variable of type � → R.
Throughout the proof, we will introduce some random variables for assistance, and when there is no confusion,
we will not explain them specially.

• Case skip: ρ ′1 � ρ1[tr + τ ]. We need to prove �A ∧ tr � h�
ρ1
L ⇒ �A[h/tr ] ∧ tr � h + τ�

ρ ′1
L , which holds

obviously.
• Case Assignment x :� e: From the operational semantics, we have ρ ′1 � ρ1[x �→ e, tr �→ tr · 〈τ,now )〉].

Assume �A ∧ tr � h ∧ x � v�
ρ1
L , we need to prove �A[v , h/x , tr ] ∧ x � e ∧ tr � h + τ�

ρ ′1
L . Obviously this

holds.
• Case Input ch?x : From the operational semantics, we have ρ ′1 � ρ1[now �→ T0 + d , x �→ b, tr �→ tr ·

〈ch,T0 + d〉] for some random variables d and b; and for any ω ∈ � and any t ∈ [T0(ω),T0(ω) + d (ω)),
ρ1(ω)(tr ).ch! �ch �∈ H(t, ω)(rdy) �ch , and ρ1(ω)(tr ).ch!b(ω) �ch∈ H(T0(ω) + d (ω), ω)(rdy) �ch ; and for any
t ∈ [T0(ω),T0(ω) + d (ω)], ρ1(ω)(tr ).ch? ∈ H(t, ω)(rdy). Assume �A ∧ now � o ∧ tr � h ∧ x � v�

ρ1
L and

�¬h.ch! dr [o, o1) ∧ P (h.ch!F (·)) � p at o1�
ρ2,H
L , we need to prove that �A[o, h, v/now , tr , x ] ∧ P (now �

o1) ≥ p ∧ P (F (x ) ∧ tr � h · 〈ch, o1〉) � p�
ρ ′1
L and �h.ch? dr [o, o1)�

ρ ′1,H
L .

First from �A∧ tr � h ∧ now � o ∧ x � v�
ρ1
L , we have �A[o, h, v/now , tr , x ]�ρ1

L . Compare ρ ′1 with ρ1, we

can find that only variables tr , now , and x are changed. We obtain �A[o, h, v/now , tr , x ]�ρ ′1
L .

From the assumption ρ2,H |� ¬h.ch! dr [o, o1) ∧ P (h.ch!F (·)) � p at o1, we can get the facts that

P ({ω : ∀ t ∈ [L(ω)(o),L(ω)(o1)).L(ω)(h).ch! �ch �∈ H(t, ω)(rdy)�ch}) � 1
P ({ω : ∃c.F (c) ∧ L(ω)(h).ch!c �ch∈ H(L(ω)(o1), ω)(rdy)�ch}) � p

For simplicity, we denote the second sample set above as �1. From ρ1 |� tr � h ∧ now � o, then for
all ω, ρ1(ω)(tr ) � L(ω)(h) and ρ1(ω)(now ) � L(ω)(o) � T0(ω). Moreover, we have that, for any ω ∈ �′,
�now�

ρ ′1
L (ω) � T0(ω) + d (ω) � L(ω)(o1). Thus, P ({ω : �now � o1�

ρ ′1
L (ω)}) ≥ p, P (now � o1) ≥ p is proved.

For any ω ∈ �′, we have �F (x )∧ tr � h · 〈ch, o1〉�ρ ′1
L (ω). Thus, P (F (x )∧ tr � h · 〈ch, o1〉) ≥ p is proved. On

the other hand, for any ω satisfying �F (x )∧ tr � h · 〈ch, o1〉�ρ ′1
L (ω), we have ω ∈ �′ by letting c be b(ω), thus

P (F (x ) ∧ tr � h · 〈ch, o1〉) � p is proved.
Finally, from the assumptions, o1 is less or equal thanT0+d almost surely.As a result, �h.ch? dr [o, o1)�

ρ ′1,H
L

is proved.
• Case Output ch!e: The fact can be proved similarly to ch?x .
• CaseContinuous 〈ds � bdt+σdW&PB〉: From the operational semantics, theremust exist a randomvariable

d : � → R such that ρ ′1 � ρ1[now �→ now + d , s �→ Xd ][tr �→ tr · 〈τ,now〉] and H � H ρ1,s,X
d , where

X : [0, d )×� → R
d(s) is the solution of ds � bdt + σdW and ∀ t ∈ [0, d ), �PB�

ρ1[now �→now+t,s �→Xt ]
L � True,

and �cl(¬PB)�ρ ′1
L � False.Assume �A∧s � s0∧now � o∧tr � h�

ρ1
L , weneed toprove �A[s0, o, h/s,now , tr ]∧

tr � h + τ ∧ cl(¬PB)∧ Invsde�
ρ ′1
L and �(PB∧ Invsde) dr [o,now )�

ρ ′1,H
L . From �A∧ s � s0∧now � o∧ tr � h�

ρ1
L ,

we have �A[s0, o, h/s,now , tr ]�ρ1
L . Since only now , s, tr are changed in ρ ′1, thus �A[s0, o, h/s,now , tr ]�ρ ′1

L .

�tr � h + τ ∧ cl(¬PB)�ρ ′1
L and �PB dr [o,now )�

ρ ′1,H
L hold obviously. From the definition of local differential

invariant Invsde in Def. 6.1, �Invsde�
ρ ′1
L and �Invsde dr [o,now )�

ρ ′1,H
L can be proved directly.

• Case Sequential Composition P ; Q : We assume the intermediate state at termination of P is ρ ′′1 (thusQ will
start from ρ ′′1 ), and the behaviors of P and Q are H1 and H2 respectively, whose concatenation is exactly

H. Assume we have �A ∧ now � o�
ρ1
L and �E�

ρ2,H
L , we need to prove that �R�

ρ ′1
L and �C1[o1/now ] ∧ C �

ρ ′1,H
L ,

where {A ∧ now � o; E }P {R1 ∧ now � o1; C1} and {R1 ∧ now � o1; E [o/now ]}Q {R; C } as in the rule
for sequential composition.

According to the inference rules, from {A ∧ now � o; E }P {R1 ∧ now � o1 ∧ tr � h1; C1}, we can get
{A∧now � o; E �≤o1}P {R1∧now � o1; C1},whereE �≤o1 onlyaddresses thebehaviorof environmentbefore
or equal time o1. Then the proof is given as follows: First, from �E�ρ2,H

L , we have �E �≤o1�
ρ2,H1
L ρ1,H1 |� E �≤o1 ,

then by induction hypothesis, for P , we have �R1 ∧ now � o1�
ρ ′′1
L and �C1�

ρ ′′1 ,H1

L . Similarly, by induction
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hypothesis again forQ , we have �R�
ρ ′1
L and �C �

ρ ′1,H2

L , then �C �
ρ ′1,H
L . From �C1�

ρ ′′1 ,H1

L , we have �C1[o1/now ]�
ρ ′1,H
L .

The result is proved finally.
• Case Conditional B → P : Starting from B?ρ1[tr + τ ], under the same environment, assume the termi-

nating state of P is ρP and the flow of P is HP respectively. Then according to the operational seman-
tics, we have ρ ′1 � ρP + ¬B?ρ1[tr + τ ], and moreover H � HP + ¬B?{ρ1(now ) �→ ρ1[tr + τ ]}. Assume

�A∧now � o∧ tr � h�ρ1
L and �E�ρ2,H

L , then we need to prove �R+¬B?A�
ρ ′1
L and �C +(now � o at now )�

ρ ′1,H
L .

From �A∧ tr � h�
ρ1
L , we can get �B?A[h/tr ]∧ tr � h+τ�

B?ρ1[tr+τ ]
L . By induction hypothesis, we obtain the

following results: �R�
ρP

L and �C �
ρP ,HP

L .On theotherhand, fromthedefinitionsof probabilistic states andasser-
tions, we can prove �¬B?A[h/tr ]∧tr � h+τ�

¬B?ρ1[tr+τ ]
L and �now � o at now�

¬B?ρ1[tr+τ ],¬B?{ρ1(now )�→ρ1[tr+τ ]}
L .

The final result is proved by combining the above facts.
• Case Probabilistic Choice P �p Q : Starting from ρ1, under the same environment, assume the terminating

states of P and Q are ρP and ρQ , and the flow of P and Q are HP and HQ , respectively. Then from the
operational semantics,wehaveρ ′1 � IU≤p?ρP+IU>p?ρQ , andmoreoverH � IU≤p?HP+IU>p?HQ .Assume

�A�ρ1
L and �E�ρ2,H

L , then we need to prove �P (S ) �1 pp1 +(1−p)q1�
ρ ′1
L and �P (S ′) �2 pp2 +(1−p)q2 at T �

ρ ′1,H
L .

Below for simplicity, denote the postconditions and commitments of P and Q by Ri and Ci , where i � 1, 2,
respectively.

Consider the sample subset �P �{ω : U (ω) ≤ p}. For all ω ∈ �P , the execution of P �p Q turns into the
execution of P , and it will result in the state IU≤p?ρP and flow IU≤p?HP . From {A; E }P {R1; C1}, we can
prove easily {IU≤p?A; IU≤p?E }P {IU≤p?R1; IU≤p?C1}. From the assumption �A�

ρ1
L and �E�

ρ2,H
L , we can

get the facts that �IU≤p?A�
IU≤p?ρ1

L and �IU≤p?E�
IU≤p?ρ2,IU≤p?H
L , the second is exactly �IU≤p?E�

IU≤p?ρ2,IU≤p?HP

L .

By induction hypothesis, we obtain the facts �IU≤p?R1�
IU≤p?ρP

L and �IU≤p?C1�
IU≤p?ρP ,IU≤p?HP

L . Similarly,

we can prove for Q that �IU>p?R2�
IU>p?ρQ

L and �IU>p?C2�
IU>p?ρQ ,IU>p?HQ

L . Combining the two results, we

have �IU≤p?R1 + IU>p?R2�
ρ ′1
L and �IU≤p?C1 + IU>p?C2�

ρ ′1,H
L . From the fact that the uniformly distributed

random variableU is independent from all the other random variables, thus �P (S ) �1 pp1 + (1− p)q1�
ρ ′1
L and

�P (S ′) �2 pp2 + (1− p)q2 at T �
ρ ′1,H
L are easily proved.

• Case Communication Interrupt: Assume �A∧now � o�
ρ1
L , and �E�

ρ2,H
L . For the first rule, from the hypothesis

of the second line, the continuous evolution terminates without any communication occurring. Thus, we have
the fact that ρ ′1 and H are also the terminating state and the flow of 〈ds � bdt + σdW&B〉 (except that the
ready set of ρ is larger by including the chi∗s). By induction hypothesis, we obtain �R∧o+oF �

ρ ′1
L and �C �

ρ ′1,H
L

easily.
For the second case, the SDE is executing from the beginning, and meanwhile, all the {chi∗}s become

ready and start to wait. At some time, here o + o1, some communication occurs with the probability decided
by wis. We record the state and the flow till time o +o1 by ρm andHm respectively. From the semantics of the
SDE, we have �(PB∧ Invsde) dr [o, o + o1)�

ρm ,Hm

L , thus �(PB∧ Invsde) dr [o, o + o1)�
ρ ′1,Hm

L . On the other hand,
for the ready events {chij ∗}1≤j≤n , during the waiting time, A[o, s0/now , s ] ∧ PB always holds. Thus, similar
to the probabilistic choice, we can prove the final facts.

• Case Parallel CompositionP‖Q : From the operational semantics, theremust exist ρ11 and ρ ′11 , ρ12 and ρ ′12 for
initial states and terminating states of P andQ respectively, which satisfy: ρ1 � ρ11 � ρ12 and ρ ′1 � ρ ′11 � ρ ′12;
ρ ′11(·)(tr ) �X� ρ ′12 �X (assuming P and Q terminate at the same time here, which will be generalized in the

following proof). Assume we have �A ∧ now � 0 ∧ tr � ε�ρ1
L , and �E�ρ2,H

L , we need to prove �R�
ρ ′1
L and

�C ′
1 ∧ C ′

2�
ρ ′1,H
L . The proof is given by the following steps.

First of all, we prove that �C1�
ρ ′11,H
L and �C2�

ρ ′12,H
L . In the following proof, we always consider a specific

sample ω when this is not pointed out specially. If the two do not hold, assume C1 fails to hold not later than
C2, and the first time for which C1 does not hold is t1 (when it exists), then for all t < t1, C2 holds. There are
three kinds of formulas at time t1 in C1: if the formula is for internal variables or internal communication
(betweenP andQ) non-readiness, then it will not depend onQ orE , according to the fact thatC1 holds before
time t1, it must hold at t1; if the formula is for external communication readiness, first from compatibility
check, for any channel dh ∈ X1 \X , it does not occur inC2, then we haveE �dh⇒ E1 �dh , whereE �dh extracts
formulas related to communications along dh from E . Then from �E�

ρ2,H
L , we have �E1 �dh�

ρ2,H
L , and thus
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�E1 �dh�
ρ12�ρ2,H
L . By induction hypothesis, the formula considered must hold at t1; if the formula is for internal

communication readiness, then there must exist an open interval (t0, t1) during which it is not satisfied. From
the assumption, C2 holds in the interval (t0, t1), thus E1 �X holds in the interval (t0, t1). By induction, the
internal communication readiness assertions in C1 hold in the interval (t0, t1). We thus get a contradiction.
Therefore, we can get the fact that, both �C1�

ρ ′11,H
L and �C2�

ρ ′12,H
L hold. On the other hand, if such t1 does not

exist, there must exist an open interval (t2, t3) such that for all t ≤ t2, C1 and C2 hold, while C1 does not hold
in (t2, t3). The proof is very similar to the above case. We omit it here for avoiding repetition.

Based on the above facts, from �A1 ∧ now � 0∧ tr � ε�
ρ1
L and �E�

ρ1,H
L , and compatibility check, we have

therefore �E1�
ρ12�ρ2,H
L . Similarly, we can get for another process Q that �A2 ∧ now � 0 ∧ tr � ε�

ρ12
L , and

�E2�
ρ11�ρ2,H
L . Then, by induction on P and Q , we have �R1 ∧ now � o1�

ρ ′11
L and �C1�

ρ ′11,H
L , �R2 ∧ now � o2�

ρ ′12
L

and �C2�
ρ ′12,H
L respectively.

Notice thatρ ′11�ρ ′12, i.e.ρ
′
1, only redefines the values of tr andnow ,where the communications are arranged

in the order according to their occurring time, and variable now takes the greater value between ρ ′11(ω)(now )

and ρ ′12(ω)(now ) for all ω. Obviously, we have �R1[γ1/tr , o1/now ]∧R2[γ2/tr , o2/now ]∧now � om�
ρ ′1
L . And,

�γ1 �X� γ2 �X �
ρ ′1
L holds because of synchronization. From the definition of�, ρ ′1(tr )(t) ∈ ρ ′11(tr )(t)‖ρ ′12(tr )(t),

we can easily get the fact �tr � (γ1 ‖
C

γ2))�
ρ ′1
L . Thus the postcondition of P || Q holds for the final state.

From �C1�
ρ ′11,H
L and �C2�

ρ ′12,H
L , considering that only now changes and matters, we have �C1[o1/now ] ∧

C2[o2/now ]�
ρ ′1,H
L . After P or Q terminates, only rdy , tr and now may change, plus the fact that R1 and R2

do not contain readiness, R1 ⇒ R′
1, R2 ⇒ R′

2, and the assumption that R′
1,R

′
2 do not contain tr , we have

�R′
1[o1/now ] dr [o1,now )�

ρ ′1,H
L and �R′

2[o2/now ] dr [o2,now )�
ρ ′1,H
L . Thus the history formula of P || Q holds

for the final flow.

• Case Repetition P∗: From the operational semantics, there must exist a finite integer n ≥ 0, and ρ11, ..., ρ1n
such that P executes for n times iteratively, and (P‖PE0, ρ10 � ρ20) −→ (ε‖PE1, ρ11 � ρ21,H1) . . . (P‖PEn−1,
ρ1n−1 � ρ2n−1) −→ (ε‖PEn , ρ1n � ρ2n ,Hn ) where ρ10 � ρ1, ρ20 � ρ2,PE0 � PE , ρ1n � ρ ′1, ρ2n � ρ ′2 and
H � H�

1 · · ·�Hn . Assume �A ∧ now � o�ρ1
L and �E�ρ2,H

L , we need to prove that �A[vo/v] ∧ Invloop�
ρ ′1
L and

�Invloop dr [o,now )�
ρ ′1,H
L .

If n � 0, then we have ρ1 � ρ ′1. From �A�
ρ1
L and A ⇒ Invloop, �Invloop�

ρ1
L holds. The fact is proved

directly. Suppose the fact holds for the case n � k > 1, then we prove the case for n � k + 1. From
�A ∧ now � o�

ρ1
L , A ⇒ Invloop, and �E�

ρ2,H
L , then by induction hypothesis, we have �Invloop�

ρ1k
L , and

�Invloop dr [o,now )�
ρ1k ,H�

1 ···�Hk

L . Let ol denote the starting time of the k + 1-th iteration, �now � ol�
ρ1k
L .

On the other hand, from �E�
ρ2,H
L , we have �E [o/now ]�ρ2k ,H

L . By induction hypothesis, the facts �Invloop�
ρ1k+1
L ,

and �Invloop dr [ol ,now )�ρ1k+1,Hk+1
L hold. �Invloop�

ρ1n
L , and �Invloop dr [o,now )�ρ1n ,H

L are proved finally.

�

6.4. Discovery of differential invariants for SDE

The most challenging problem for the deductive verification of stochastic hybrid systems is to discover the local
differential invariants of SDE. In [PJP07], Prajna et al. extended differential invariant generation approach based
on barrier certificates for traditional hybrid systems to stochastic hybrid systems. Their approach requires all
expressions occurring in a template of invariant to be a super-martingale w.r.t the considered SDE, and then
exploits semi-definite programming to solve the constraints on the parameters in the template. Their approach
is very restrictive, as only very few invariants can be synthesized. In [Pla11], Platzer proposes a special form of
differential invariants for a SDE under some given conditions, which is represented by the following theorem.

Theorem 6.2 (Differential Invariant of SDE [Pla11]) Assume the SDE is 〈ds � bdt + σdW&PB〉, where PB
is a boolean formula (that holds almost surely), and the precondition is A. Let λ > 0, p ≥ 0 be real values. If
f (s) ∈ C 2(Rn ,R) has compact support on PB, and if the following conditions hold:
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A→ PB→ f ≤ λ p B → f ≥ 0 ∧ Lf ≤ 0

where Lf represents the Lie derivative of f , then the probabilistic formula P (f (s) ≥ λ) ≤ p is a differential invariant
of the SDE 〈ds � bdt + σdW&PB〉.
The theorem states that, if the initial state of the SDE satisfies f ≤ λ p, and inside the domain PB, f is always
non-negative and Lf is non-positive, then during the whole evolution of the SDE, the probability of f (s) ≥ λ is
less than or equal to p. By applying the result, the safety property of the aircraft example can be proved.

Example 6.1 For the aircraft example, define f (x , y) as | y |, assume f (xs , y0) �| y0 |≤ λ p, where p ∈ [0, 1].
Obviously, B → (f ≥ 0) ∧ (Lf ≤ 0) holds. By applying the inference rule of SDE and Theorem 6.2, we obtain
the following result:

{now � o; True}PAir {(x ≤ xs ∨ x ≥ xe ) ∧ P (f (s) ≥ λ) ≤ p; (PB ∧ P (f (s) ≥ λ) ≤ p) dr [o,now ) }
which shows that, the probability of the aircraft entering the dangerous state is always less than or equal to p
during the flight. Thus, to guarantee the safety of the aircraft, p should be as little as possible. For instance, if
the safety factor of the aircraft is required to be 99.98%, then p should be less than or equal to 0.0002, and in
correspondence, | y0 |≤ λ

5000 should be satisfied.

However, because of the restrictive conditions, Theorem 6.2 has some limitations for solving SDEs. In our
recent work, we present a method for reachability analysis for SDE using the existing partial differential equation
(PDE) solvers. The differential invariant problem of SDE is one of our future work.

The global loop invariants for stochastic hybrid systems can be computed according to the traditional
approach. In particular, the problem on computing global invariants of hybrid systems has been investigated
in [PC08, ZWZ13].

7. Conclusion

This paper presents stochastic HCSP (SHCSP) for modelling hybrid systems with probability and stochasticity.
SHCSP is expressive by combining interacting discrete, continuous and stochastic dynamics. We have defined the
operational semantics of stochastic HCSP based on probabilistic states and related operations, and proved that
the semantics is well-defined with respect to stochasticity. We propose an assertion language for specifying time-
related and probability-related properties based on (timed) probabilistic formulas, and have proved the assertions
are well-defined with respect to stochasticity. For handling SDEs and repetition, we propose the notions of local
stochastic differential invariants and global loop invariants. To the end, we define a compositional Hoare Logic
for specifying and verifying SHCSP processes, which is able to reason about how the probability of a property
changes with respect to the execution of a process. To illustrate our approach, wemodel and verify a case study on
a flight planing problem throughout the paper. Our future work includes the investigation of the local stochastic
differential invariant for SDEs, and the application of our framework to more interesting case studies.
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