
DOI 10.1007/s00165-017-0417-3
BCS © 2017
Formal Aspects of Computing (2017) 29: 705–750

Formal Aspects
of Computing

An application of temporal projection to
interleaving concurrency
Ben Moszkowski1 and Dimitar P. Guelev2

1 School of Computing Science, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
2 Department of Algebra and Logic, Institute of Mathematics and Informatics, Sofia, Bulgaria

Abstract. We revisit the earliest temporal projection operator� in discrete-time Propositional Interval Temporal
Logic (PITL) and use it to formalise interleaving concurrency. The logical properties of � as a normal modality
and a way to eliminate it in both PITL and conventional point-based Linear-Time Temporal Logic (LTL), which
can be viewed as a PITL subset, are examined, as are stutter-invariant formulas. Striking similarities between the
expressiveness of� and the standard LTL operatorU (‘until’) are briefly illustrated.We also formalise concurrent
imperative programming constructs with and without �, and relate the two approaches. Peterson’s mutual ex-
clusion algorithm is used to illustrate reasoning with � about a concrete programming example. Projection with
fairness and non-fairness assumptions are both discussed. This all illustrates an approach to the analysis of such
concurrent interleaving finite-state systems using temporal logic formulas with projection constructs to reason
about correctness properties. Unlike conventional LTL formulas about concurrency which normally largely fo-
cus on global time, properties expressed in LTL combined with � help to reveal and analyse important differing
viewpoints involving global time and the local projected time seen by each individual process. Links between �
and another standard PITL projection operator, both suitable for reasoning about different time granularities, are
demonstrated by showing the two operators to be interdefinable. We briefly look at other (mostly interval-based)
temporal logics with similar forms of projection, as well as some related applications and industrial standards.

Keywords: Interleaving concurrency · Interval temporal logic · Temporal projection · Time granularities · Stutter
invariance

1. Introduction

Temporal intervals, which are finite and infinite state sequences, offer a compellingly natural and flexible way to
model computational processes involving hardware or software. Interval Temporal Logic (ITL) [Mos83,HMM83,
Mos86] is an established formalism for reasoning about such phenomena. In ITL, satisfaction of formulas is
defined at intervals rather than time points which are used in other temporal logics. The ITL operators chop (‘;’)
and chop-star (‘∗’) for sequentially combining formulasA;B (‘A chop B ’) andA∗ (‘A chop-star’) are related to the
concatenation and Kleene star operators for regular expressions.
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In the early 1980s, we proposed in [Mos83, HMM83, MM84] a simple binary temporal operator � for time
granularities and projection to enhance ITL’s usefulness for formalising digital circuits. Here we revisit�’s logical
properties and use it to formalise interleaving concurrency with and without an assumption of fairness. As later
discussed, stutter invariance is an important consideration in model checking, so we examine classes of PITL
formulas with andwithout�which are stutter-invariant. Some sample concurrent programs, including Peterson’s
mutual exclusion algorithm [Pet81], are presented together with various correctness properties, including stutter-
invariant ones. This all illustrates an approach to the analysis of such concurrent interleaving finite-state systems
using temporal logic formulas with projection constructs to reason about correctness properties.

Unlike properties expressed in conventional point-based Linear-Time Temporal Logic (LTL) which primarily
focus on global time, properties formulated in LTL combined with �, denoted here as LTL+�, can emphasise
important differing viewpoints involving global time and the local projected time seen by each individual process.
Aprojection-based framework for reasoningabout theproperties therefore readilypermits techniques for formally
relating formulas concerning the varied and interesting perspectives. Such techniques even include ways to export
suitable useful formulas from the local time of a process into global time or vice versa. Moreover, formulas in
LTL+� can be easily reduced to equivalent ones in LTL, and the same applies for the reduction of formulas in
PITL+� to equivalents in PITL. Our presentation also briefly points out some intriguing similarities between
the expressiveness of � and the standard LTL operator U (‘until’). In view of all of this, � can be regarded as an
important and convenient notational and mathematical gateway to largely unexplored intriguing and insightful
vistas of reasoning potentially offering practical benefit, and not simply as an extra, mostly dispensable temporal
construct.

Besides investigating the theory and application of projected time using the projection operator �, we also
discuss �’s interdefinability with a related ITL operator for modelling time granularities, and then look at other
research on temporal projection in general. This paper is an extended version of work published in [MG15].
The expanded presentation here incorporates several improvements as well as more discussions, definitions,
examples andproofs concerning�, an operator derived from� for interleaving concurrency, and some imperative
programming constructs for use with and without �. It also includes material on stutter invariance, non-fairness
as well as support for channels formalised using a variant of concurrency permitting synchronized shared steps.

Structure of the paper : Section 2 overviews propositional ITL. Section 3 looks at the projection operator �,
presents various properties of it and shows why its addition to LTL and PITL does not alter their expressive-
ness. This section also addresses some issues involving stutter-invariant formulas. Section 4 uses � to formalise
concurrent programs with an assumption of fairness, and illustrates this with Peterson’s algorithm. Section 5
considers some alternative approaches to reason about interleaving concurrency with PITL, such as without �,
with an assumption of non-fairness and with channels. Section 6 discusses related work. The appendix contains
proofs about the correctness of the version of Peterson’s algorithm presented here.

2. Propositional interval temporal logic

For an in-depth presentation of PITL we refer the reader to [Mos12]; see also [Mos86, KM08] and the ITL web
pages [ITL]. The version of PITL used here has the syntax

A ::� true | p | ¬A | A ∨ A | ©A | A UA | A;A | A∗, (1)

where p denotes a propositional variable. Owing to our purposes here, the Until operator U is included.We define
false, ∧, ⊃ and ≡ as usual.

PITLmodels time using discrete (linear) state sequences. The set of states � is the powerset 2V of the setV of
propositional variables, so each state in � sets every propositional variable p, q, . . . to true or false. Local PITL
is the (standard) version of PITL with such state-based variables (instead of interval-based ones). An interval
σ � σ 0σ 1 . . . is any element of �+ ∪ �ω. If σ is finite, its interval length |σ| is the number of σ ’s states minus 1,
otherwise ω. Given i ≤ j ≤ |σ|, j < ω, σ i ..j denotes σ i . . . σ j , and σ i↑ is the suffix subinterval σ iσ i+1 . . . of σ .
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Table 1. Some useful derived LTL operators
w©A �̂ ¬ © ¬A Weak Next more �̂ © true ≥ 2 states

empty �̂ ¬more One state skip �̂ © empty � 2 states
♦A �̂ true UA Eventually �A �̂ ¬♦¬A Always
inf �̂ �more Infinite interval finite �̂ ¬inf Finite interval

finA �̂ �(empty ⊃ A) Final state (weak) haltw �̂ �(w ≡ empty) Halt upon test

We write σ |� A for interval σ satisfies A. Formula A is valid if all intervals satisfy A. The definition of σ |� A by
induction on the construction of A is as follows, where i , j , k , ki and n are natural numbers:

σ |� true for any σ σ |� p iff p ∈ σ 0 σ |� ¬A iff σ �|� A

σ |� A ∨ B iff σ |� A or σ |� B σ |� ©A iff |σ| ≥ 1 and σ 1↑ |� A

σ |� A UB iff, for some k ≤ |σ|, σ k↑ |� B and for all j < k , σ j↑ |� A

σ |� A;B iff for some k ≤ |σ|, σ 0...k |� A and σ k↑ |� B , or |σ| � ω and σ |� A

σ |� A∗ iff either (1) |σ| � 0,
or (2) there exists a finite sequence k0 � 0 < k1 < . . . < kn ≤ |σ|

such that for all i < n, σ ki ..ki+1 |� A, and σ kn↑ |�A,
or (3) |σ| � ω and there exists an infinite sequence

k0 � 0 < k1 < . . . such that σ ki ..ki+1 |� A for all i < ω.

In the first case for chop, intervals σ 0..k and σ k↑ have overlapping state σ k . Cases (1)-(3) for chop-star concern
zero, nonzero but finite, and infinite (‘chop-omega’ iterations), respectively. Chop here is weak, like the weak
version W of U in LTL, for potentially nonterminating programs which ignore B . Strong chop, which forces the
left subinterval to be finite, is derivable.

Consider a sample 5-state interval σ with the following alternating values for the variable p: p ¬p p ¬p p.
Here are four formulas σ satisfies:

p (© ¬ © true);¬p p ∧ (true;¬p)
(
p ∧ © ©(p ∧ ¬ © true)

)∗
.

For example, (© ¬ © true);¬p is true since σ ’s prefix subinterval σ 0σ 1 satisfies © ¬ © true (which is true exactly
on 2-state intervals) and the adjacent suffix subinterval σ 1 . . . σ 4 satisfies ¬p because p �∈ σ 1. The formula
(p ∧ © © ¬ © true)∗ is true since σ ’s subintervals σ 0σ 1σ 2 and σ 2σ 3σ 4 both satisfy p ∧ © © ¬ © true, but σ does
not satisfy formulas ¬p, (© ¬ © true);p and true;(¬p ∧ ¬(true;p)).

Let w , w1 and w2 denote state formulas, which have no temporal operators. Conventional LTL can be viewed
as the subset of PITL with just the temporal operators © and U. The infinite state sequences that are common
with LTL are just infinite intervals. Here we regard LTL as a sublogic of PITL and routinely use LTL and PITL
with both finite and infinite intervals. Table 1 shows useful derived LTL operators. Unlike in conventional LTL
which exclusively employs infinite intervals (so the formula inf is valid), most of the derived operators presented
in Table 1 can detect whether or not an interval is finite. For example, more is true for any finite interval having
two or more states and likewise true for all infinite intervals. Furthermore, inf and finite are not valid formulas.
See [LPZ85, Eme90] for more on the expressiveness of LTL and QLTL with finite and infinite time. Here are
derived unary PITL constructs chop-plus and chop-omega denoting when the operand is iterated at least once or
using chop-omega, respectively:

A+ �̂ A;A∗ (2)
Aω �̂ inf ∧ (finite ∧ A)∗. (3)

Below are some sample valid PITL formulas:

A ⊃ (A; true) skip∗ inf ≡ true; false (w ∧ A);B ≡ w ∧ (A;B ) A ≡ (empty;A).



708 B. Moszkowski, D. P. Guelev

We note that PITLwithout chop-star has the same expressiveness as LTL.With chop-star, PITL has the same
expressiveness as LTLwith the addition of propositional quantification (explicitly defined later in Sect. 4). That is,
having propositional quantification instead of chop-star gives the same regular expressiveness for finite intervals
andω-regular expressive power (i.e.,MSO(ω,<)) for infinite intervals. The LTLoperatorU is also expressible using
chop, © and quantification. More details about PITL’s expressiveness are found in [Mos83, Mos04, Mos12].

3. Temporal projection

The binary temporal operator � for state projection [Mos83, HMM83, MM84] provides a way to examine
dynamic behaviour at certain points in time and ignore all intermediate states. Given an interval σ and a state
formula w , let σ |w denote the sequence of σ ’s states satisfying w . If σ is infinite, σ |w can be finite or infinite. The
definition of �, whose first argument is supposed to be a state formula, is

σ |� w � A iff σ i |� w , for some i ≤ |σ|, and σ |w |� A.

For example, σ |� p � �q holds if p is true at some state of σ , and q is true whenever p is, i.e., if σ |� ♦p ∧
�(p ⊃ q). We can generalise � to permit arbitrary formulas for selecting projected states by using σ |B � 〈σ i :i ≤
|σ|, σ i↑ |� B〉 to define σ |� B � A. This does not alter �’s meaning when B is a state formula. Section 5.2
employs this kind of projection.

The operator � is said to be existential or strong because it requires its left operand to be true somewhere,
so that there is at least one projected state. The dual ¬(w � ¬A) of w � A is analogously universal, denoted
w �u A, and can also be referred to as being weak. The natural distinction between the two operators is reflected
in the fact that the existential temporal formula♦w and the dual universal temporal formula�w can be expressed
as w � true and ¬w �u false, respectively. Of course, � can alternatively be derived directly from ♦ (i.e., using
the valid equivalence �w ≡ ¬♦¬w ) in the exactly the same manner as is done in LTL (e.g., recall the earlier
definition of � in Table 1). In fact, these observations are not limited to state formulas (but perhaps easiest to
understand for them) and even hold for any temporal formula A:

|� ♦A ≡ A � true |� �A ≡ ¬A �u false |� �A ≡ ¬♦¬A. (4)

We let the notations LTL+� and PITL+� respectively denote LTL and PITL together with the operator �
having arbitrary formulas permitted even on the left-hand side (i.e., not just state formulas).

Section 4 later on shows how� can be used to derive propositional operators for interleaved parallel composi-
tion. We now briefly preview this to help motivate the benefits of � for concurrent reasoning. The three-operand
interleaving construct A |||p B derived in Sect. 4 using � expresses that two formulas A and B operate con-
currently in an interleaved manner with a boolean variable p indicating which is active in any given state. It
is proved there to be commutative and associative, subject to suitable manipulations of the middle operand. A
closely related binary version A ||| B with the middle operand existentially hidden is also discussed. A way
to express in PITL individual concurrent sequential processes to serve as such interleaving constructs’ concrete
operands is presented in Sect. 4.3, thereby enabling interleaving programs to be constructed and formally analysed
in the notation. However, before the interleaving construct A |||p B is formally introduced, various properties of
the underlying primitive projection operator � are first discussed below to give a better idea of �’s nature and
potential.

For a fixed w , w � A is a normal unary modality on A. Its accessibility relation σ �→ σ |w is deterministic.
This entails the validity of the standard modal axioms K and Dc, and the necessitation rule N [HC96, Che80].
These are normally written in terms of the ‘universal’ weak projection operator �u defined above:

(K) w �u (A ⊃ B ) ⊃ (w �u A ⊃ w �u B ) (Dc) w � A ⊃ w �u A (N )
A

w �u A
.

K, Dc and N are sufficient to infer implications and equivalences such as

w � (A ∧ B ) ≡ w � A ∧ w � B (5)
w �u A ∧ w � B ⊃ w � (A ∧ B ) (6)
w �u (A ⊃ B ) ∧ w � A ⊃ w � B . (7)
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The following valid formulas are specific to �:

�(w1 ≡ w2) ⊃ (w1 � A) ≡ (w2 � A) (8)
w1 � (w2 � A) ≡ (w1 ∧ w2) � A (9)
w �u A ≡ �¬w ∨ w � A w � A ≡ ♦w ∧ w �u A (10)
w1 � ♦w2 ⊃ ♦w2 �w2 ⊃ w1 �u �w2 (11)
w � A ≡ (¬w ) U (w � A) (12)
�w ⊃ A ≡ (w � A) (13)
A ≡ true � A. (14)

The two equivalences in (10) give a simpler way to define� and�u in terms of each other because ♦w is available
to indicate whether the reference interval has a nonempty projection. The implications in (11) facilitate importing
and exporting properties into and from the scope of �. Equivalence (12) shows that � in a sense has an implicit
until-operator. Implication (13) reflects the fact that in an interval where the state formula w is true in all states,
the projected interval obtained using w is identical to the original one. Hence, any formula is satisfied by the
original interval iff this formula is satisfied by the projected interval. Equivalence (14) likewise shows that no
formula can distinguish between the original interval and the one projected using true because the two intervals
are identical. This equivalence’s validity can be readily obtained from the validity of the LTL formula �true,
together with the previous valid implication (13) with w taken to be true, and modus ponens.

The valid equivalences (15)–(17) below yield a complete axiomatisation of LTL+� to basic LTL. On the other
hand, the last two equivalences shown for the PITLoperators chop and chop-star are not sound if the left operand
of� is an arbitrary formula, so we instead restrict this operand here to being a state formula w . The equivalences
then indeed provide a way to reduce a formula in this subset of PITL+� to an equivalent one in PITL.

A � true ≡ ♦A A � (B ∨ C ) ≡ A � B ∨ A � C (15)
A � p ≡ (¬A) U (A ∧ p) A � (B UC ) ≡ (A � B ) U (A � C ) (16)
A � ¬B ≡ ♦A ∧ ¬(A � B ) A � ©B ≡ (¬A) U (A ∧ ©(A � B )) (17)
w � (A; B ) ≡ (w � A);(w ∧ w � B ) w � (A∗) ≡ ¬w U (

w ∧ ((w � A) ∧ finw )∗; w©�¬w
)
(18)

Here is a proof for the equivalence in (16) concerning A � (B UC ):

Proof (⊃): Let τ � σ |A. Then σ |� A � (B UC ) means that:

τ �� 〈〉 τ k↑ |� C τ 0↑ |� B , . . . , τ k−1↑ |� B , for some k < |τ |.
Now for some i0, i1, . . . , we have τ � σ i0σ i1 . . . If k > 0 and j ≤ ik−1, then σ j↑|A � σ in↑|A � τn↑, where
in is the nearest member of {i0, . . . , ik−1} on the right of j . Hence, σ j↑ |� A � B for all j ≤ ik−1. Similarly,
σ ik−1+1↑|A � τ k↑, whence σ ik−1+1↑ |� A � C . This entails σ |� (A � B ) U (A � C ), except for k � 0, in which
case σ |A � τ k↑ and the satisfaction of U reduces to σ |� A � C .

(⊂) Suppose σ |� (A � B ) U (A � C ). Let l ≤ |σ| be such that σ l↑ |� A � C and σm↑ |� A � B for all
m < l . Then σ l↑|A |� C and σm↑|A |� B for all m < l . Now σ |A |� B U C follows because all the suffixes τ of
σ |A which have σ l↑|A as their proper suffix have the form σm↑|A, m < l . �

Remark 3.1 Many until-formulas commonly occurring in applications have a state formula as the left operand,
but the associated equivalence in (16) does not preserve this. For example, the rather simple formula p � (q U r )
gets ultimately transformed into the following LTL formula:

(
(¬p) U (p ∧ q)

) U (
(¬p) U (p ∧ r )

)
. (19)

The valid equivalence below can sometimes be used instead of the one in (16) to more succinctly eliminate �
without introducing an until-formula having a non-state formula as its left operand:

w1 � (w2 UA) ≡ (w1 ⊃ w2) U (w1 � A).
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Hence, p � (q U r ) is equivalent to next LTL formula which likewise only has state formulas on the left of
until-formulas and is moreover shorter than (19):

(p ⊃ q) U (
(¬p) U (p ∧ r )

)
.

This in turn is equivalent to the next LTL formula, which is certainly much simpler than (19):
(p ⊃ q) U (p ∧ r ). (20)

Demonstrating the equivalence of until-formulas (19) and (20) is not hard:
• Proof for (19) ⊃ (20): Here is a chain of valid implications:

(p ⊃ q) U (
(¬p) U (p ∧ r )

) ⊃ (p ⊃ q) U (
(¬p ∨ q) U (p ∧ r )

)

⊃ (p ⊃ q) U (
(p ⊃ q) U (p ∧ r )

) ⊃ (p ⊃ q) U (p ∧ r ).

• Proof for (20) ⊃ (19): For any formulas A and B , we have the valid implication A ⊃ (B UA), from which
follows the validity of the next equivalence:

(p ⊃ q) U (p ∧ r ) ⊃ (p ⊃ q) U (
(¬p) U (p ∧ r )

)
.

(End of Remark 3.1)

Below are two interesting alternatives to the valid equivalence in (18) for eliminating chop-star, and also
related valid equivalences which could be optionally used to eliminate the derived PITL constructs chop-plus
[where A+ denotes A;A∗ as defined in (2)] and chop-omega [defined in (3)]:

w � (A∗) ≡ (
(w � (A ∨ empty)) ∧ finw

)+
; w©�¬w w � (A∗) ≡ (w � empty)

∨
(
(w � A) ∧ finw

)+
; w©�¬w

w � (A+) ≡ (
(w � A) ∧ finw

)+
; w©�¬w w � (A+) ≡ (

(w � A) ∧ finw
)∗
;(w � A)

w � (Aω) ≡ (
(w � A) ∧ finw

)ω
.

All of these equivalences omit the until-formula found in (18) and have chop-plus or chop-omega (which can be
viewed as a kind of chop-plus) on the right-hand side. This is so even for the first two equivalences for chop-star
to ensure that w is true at least once.

Later in Sect. 5.2 we discuss how simple variants of the two equivalences in (18) are in fact sound for a useful
class of �-formulas which concern non-fairness and where the left operand is not a state formula.

By (9), A ≡ w � B entails w � A ≡ w � B , so A has an equivalent of the form w � B iff |� A ≡ w � A.
This may be useful for synthesising a controller to be run in parallel with other code from a global requirement
R. The synthesis is possible only if |� R ≡ (w � R), where w marks the controller’s time slices. The latter reduces
to a basic ITL validity after eliminating � from w � R.

The equivalences in (15)–(17) for eliminating � yield the next theorem about LTL+�:

Theorem 3.2 (Expressiveness of LTL+�) The logic LTL+� is no more expressive than LTL.

As noted earlier, the equivalences in (18) for the PITL constructs chop and chop-star do not generalise to
allowing the left-hand operand of � to be an arbitrary formula. However, we can still show that PITL+� is no
more expressive than PITL in a less constructive way:

Theorem 3.3 (Expressiveness of PITL+�) The logic PITL+� is no more expressive than PITL.

Proof SupposeA andB are PITL formulas. Then the�-formulaA � B is equivalent to the following formula
in Quantified PITL (QPITL):

∃ r . (�(r ≡ A) ∧ r � B
)
,

where the propositional variable r does not occur in eitherA orB . Here, for any propositional variable p, formula
C and interval σ , the quantified formula ∃p.C has the following semantics:

σ |� ∃p.C iff σ ′ |� C , for some interval σ ′ identical to σ except possibly for p’s behaviour. (21)

We then use the equivalences in (15)–(18) to obtain a PITL formula C equivalent to r � B . Hence, A � B is
equivalent to the next QPITL formula:

∃ r . (�(r ≡ A) ∧ C
)
.
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This technique can then be inductively used to transformany formula in PITL+�with arbitrarily nested instances
of � into an equivalent QPITL formula. Now QPITL has exactly the same expressiveness for both finite- and
infinite state sequences as Quantified LTL (QLTL) and PITL. Here is a brief summary of how to establish this:

• It is not hard to express inPITLboth regular andomega-regular expressions, soPITL is at least as expressive
as QLTL (see [LPZ85, Eme90] for more on the expressiveness of LTL and QLTL with finite and infinite
time).

• Furthermore, any formula in PITLand evenQPITL canbe readily re-expressed as a semantically equivalent
formula in QLTL by using existentially quantified variables to encode chop and chop-star1.

Hence, PITL+�, which is reducible to PITL, itself has the same expressiveness as PITL, QPITL and QLTL2. �
Weoriginally defined� so thatσ |� w � A vacuouslyholdswhenσ |w hasno states [HMM83,Mos83,MM84].

This holds for�u in our presentation here. Projection is false when no projection interval exists for the projection
operator from [Mos86, Mos95] discussed in Sect. 5.4. However, this is not the case for the real-time projection
operators from [GD02, Gue04b, Gue04a].

3.1. Expressing some until-formulas using projection

We showed earlier that LTL+� is no more expressive than LTL. Perhaps surprisingly, � possesses some aspects
of the LTL until-operator U so can at least to a limited degree be regarded as an alternative to it. For example,
as already pointed out, both can be used to derive the temporal operators ♦ and �. Furthermore, the simple
until-formula p U q is readily expressible using � as demonstrated by the following valid equivalence:

p U q ≡ (¬p ∨ q) � q .

The projection formula here selects states satisfying either ¬p or q and then ensures that the first such state
satisfies q . This valid equivalence generalises to permit some arbitrary formula A in place of p:

A U q ≡ (¬A ∨ q) � q .

The nested until-formula p U (q U r ) can also be expressed using �:

p U (q U r ) ≡ (¬p ∨ (q U r )
)

� (q U r ).

Further right-nesting of U in this manner works similarly. At least some until-formulas with negated until-
formulas in the right-hand side have equivalent formulas expressed using �. For instance, below is a valid
equivalence involving the U-formula p U �q containing the subformula �q (itself equivalent to ¬(true U ¬q)).
This subformula is re-expressible without U by instead just using ♦ and �, both of which were previously shown
in (4) to be derivable from �:

p U �q ≡ ♦�q ∧ �(¬p ⊃ �q).

Below is a valid equivalence for the three-variable example p U ¬(q U r ) containing a negated U-formula and
re-expressible with � using substitution instances of the previous two equivalences for p U (q U r ) and p U �q :

p U ¬(q U r ) ≡ p U �¬r ∨ p U (¬r U (¬q ∧ ¬r )
)
.

1 The techniques involved for both directionswere developedwith J.Halpern and originally described in [Mos83] (and reproduced in [Mos04])
for PITL and QPITL with just finite time and without chop-star, but are easily extended to handle both infinite time and chop-star as well. It
follows that the relationship between PITL and QPITL is quite different from that for the following pairs of logics not sharing expressiveness:
(a) first-order and second-order logic and (b) LTL and QLTL.
2 Here is how to use the quantifier ∃ to express U : |� A U B ≡ ♦B ∧ ∃p.

(

p ∧ �(p ⊃ (B ∨ (A ∧ © p)))
)

(e.g., see [KM08, p. 84]), where
the following straightforward valid equivalences are used: inf ≡ (true;false), finite ≡ ¬inf , ♦C ≡ (finite;C ) (with � still being ♦’s dual:
�C ≡ ¬♦¬C ).
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The justification for this employs the next valid LTL equivalence concerning ¬(q U r ) together with the
distributivity of U over a logical-or in the right-hand operand of U:

¬(q U r ) ≡ �¬r ∨ ¬r U (¬q ∧ ¬r ).

We are inclined at present to rather tentatively conjecture that the two logics LTL and LTL with � instead
of U have the same expressiveness (see [LPZ85, Eme90, DG08] for various alternative characterisations of the
class of formal languages expressible using LTL formulas), but more study is needed. In connection with this,
observe that the operator U permits substitution of arbitrary formulas into the scope of both of a valid formula’s
operands to obtain a valid instance of the overall formula, but � restricts right-hand substitutions. For example,
here is a valid formula involving U, together with a valid substitution instance:

�¬q ⊃ ¬(p U q)
�¬♦r2 ⊃ ¬((�r1) U ♦r2).

In contrast, � only permits substitution of arbitrary formulas into its left-hand operand because the right-hand
operand is evaluated in a projected subinterval, thus complicating substitution except for state formulas, which
do not present any problem whatsoever. Here is a pair of formulas to illustrate the problem with substitution into
a �-formula’s right-hand side:

�¬q ⊃ ¬(p � q)
�¬empty ⊃ ¬(p � empty).

The first implication is valid because if the propositional variable q is always false, then it cannot be true at the
start of some projected subinterval. However, the second implication, which is a substitution instance of the first
one, is not valid because any infinite interval with p true exactly once satisfies the antecedent but falsifies the
consequent. Interestingly, the valid equivalences previously presented in (4) for using � to express the unary
temporal operators ♦ and � (e.g., |� ♦A ≡ A � true and |� �A ≡ ¬A �u false) are not at all affected by this
limitation since the operand A here only occurs in �’s left-hand side.

For PITL formulas, substitutions into the left-hand scope of the operator chop and into the scope of the
operator chop-star’s sole operand raise similar issues, yet this limitation has not precluded obtaining a complete
axiom system even permitting infinite time [Mos12]. Furthermore, chop can be used instead of � to derive a
restricted but quite useful version of the operator U (see [Mos12, Mos13, Mos14]) which permits right-hand
substitutions. For various applications of U , the left-hand operands anyway tend to be fairly simple (i.e., they
only concern the current state and perhaps the next one as well) and avoid any problems with chop’s restrictions
on left-hand substitution. In view of all this, reasoning in PITL+� with U derived using chop could sometimes
be rather unaffected by �’s restrictions on right-hand substitution, but more investigation is needed.

It is also worth noting here a curious interaction exhibited by the following equivalence concerning both U
and �:

(p U q) � (p U q) ≡ ♦(p U q). (22)

This works because if an interval satisfies the formula p U q , then all suffixes of the interval up to and including
the first state satisfying q also satisfy the formula p U q . Therefore, whenever an interval satisfying p U q has its
first state projected by the �-formula here, the starting states of all of these suffixes will likewise be projected,
so included as well in the local projected interval visible the projection operator’s right-hand operand. For
comparison, here is a related valid LTL equivalence illustrating the same kind of phenomenon:

(p U q) U q ≡ p U q .

Note that the projection-based equivalence (22) differs from this one by possibly first skipping the some states of
the global interval before finding a suffix subinterval satisfying the formula p U q . The next variant of (22) avoids
the need for the ♦ operator in (22):

(¬p ∨ (p U q)
)

� (p U q) ≡ p U q .
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3.2. Stutter invariance

Any LTL formula not containing instances of the operator © (i.e., in the sublogic denoted here as LTL−©) is
stutter-invariant [Lam83, Lam02], that is, for any state sequence (interval) σ , the formula is satisfied by σ iff it is
satisfied by any stutter-equivalent variant of σ . (Some use the term stutter-insensitive instead of stutter-invariant.)
To help with understanding the theory of � and also with using � in model checking, we now discuss how to
extend some standard results about stutter-invariant LTL formulas to include both finite and infinite time as well
as � and chop. Some relevant and natural connections with subsets of PITL+� having the same expressiveness
as LTL are discussed as well. The material presented here helps us later establish that some formulas encountered
for describing useful temporal properties are indeed stutter-invariant. Other work on the treatment of stutter
invariance for frameworks which can express regular and omega-regular languages is described in Sect. 6.3.

It seems reasonable to includehere some further justification for our inclusionofmaterial on stutter invariance:
Model checking often involves stutter-invariant safety properties combined with partial order reductions (e.g.,
in SPIN [Hol03]) or other such techniques (e.g., in the model checking tool TLC for TLA+ [Lam02]). Our
presentation does not discuss practical model checking. Nevertheless, stutter invariance has great relevance to
projection and its practical application because, unlikewith standard approaches, certain natural safety properties
use the operator © and therefore are not necessarily stutter-invariant. Consequently, they would in all likelihood
be much less attractive for model checking. However, some of these can in fact be shown with little difficulty to
actually be stutter-invariant. Furthermore, we have found that looking for stutter invariance greatly helps assess
the temporal safety properties. If the projection operator � were to force us to have even simple safety properties
be without stutter invariance, the results would have much less practical relevance, particularly for software
engineers. Fortunately, projection seems compatible with stutter-invariant properties rather than clashing with
them.

Here are some formal definitions of stutter equivalence and stutter invariance adapted from Peled and
Wilke [PW97] for the standard kind of infinite state sequences used with LTL:

Definition 3.4 (Stutter equivalence for infinite state sequences) Two infinite state sequences σ and τ are said to be
stutter-equivalent if there are two infinite sequences 0 � i0 < i1 < i2 < . . . and 0 � j0 < j1 < j2 < . . . such that
for every k ≥ 0, the states σ ik , σ ik+1, . . . , σ ik+1−1 and τ jk , τ jk+1 , . . . , τ jk+1−1 are all identical.

Definition 3.5 (Stutter invariance for sets of infinite state sequences) A set S ⊆ �ω of infinite state sequences is
stutter-invariant if whenever σ, τ ∈ �ω are stutter-equivalent, then σ ∈ S iff τ ∈ S .

It follows from this definition that a stutter-invariant set of state sequences is a union of stutter equivalence
classes.

The conventional notion of stutter-invariant temporal formulas for infinite time naturally follows from stutter-
invariant sets:

Definition 3.6 (Stutter-invariant formulas for infinite time) A formula said to be stutter-invariant if the set of in-
finite state sequences satisfying it is stutter-invariant.

Stutter-invariant formulas are important for model checkers such as SPIN [Hol03] which benefit from Par-
tial Order Reductions independently developed by Godefroid and Wolper [GW91a, GW91b, GW93, God96],
Peled [Pel93, Pel96] and Valmari [Val91, Val92] (see also the textbooks by Clarke et al. [CGP99] and Baier and
Katoen [BK08]).

It does not seem hard to extend the definitions of stutter equivalence and stutter invariance to include finite
state sequences. For our purposes, we prefer to consider finite and infinite state sequences separately, so a finite
one is never stutter-equivalent to an infinite one. We therefore adapt Definitions 3.4 and 3.6 to also deal with finite
state sequences:

Definition 3.7 (Stutter equivalence extended to finite state sequences) Two finite state sequences σ and τ are said
to be stutter-equivalent if for some n ≥ 1, there are two n-element finite sequences 0 � i0 < i1 < i2 < . . . < in−1
and 0 � j0 < j1 < j2 < . . . < jn−1 such that both of the following hold:

• For every k : 0 ≤ k < n − 1, the states σ ik , σ ik+1, . . . , σ ik+l−1 and τ jk , τ jk+1 , . . . , τ jk+1−1 are all identical.
• The states σ in−1 , σ in−1+1, . . . , σ |σ|−1 and τ jn−1 , τ jn−1+1, . . . , τ |τ |−1 are all identical.
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Definition 3.8 (Stutter-invariant formulas for both finite and infinite time) A formula said to be stutter-invariant if
the set of all state sequences (both finite and infinite) satisfying it is stutter-invariant.

Proposition 3.9 (Formulas in LTL−© are stutter-invariant) Every formula A in LTL−© is stutter-invariant for
both finite and infinite time.

Proof We simply generalise the observation noted for just infinite time by, for example, Clarke et al. [CGP99]
that this can be checked by a simple induction on the size of formulas in LTL−©. �

Proposition 3.10 If A and B are formulas in LTL−©, then the disjunction below is stutter-invariant:
(finite ∧ A) ∨ (inf ∧ B ). (23)

Proof Since bothA andB are in LTL−©, the previous Proposition 3.9 ensures that they are stutter-invariant. A
simple check then ensures that the disjunction (23) is indeed stutter-invariant as formalised in
Definition 3.8. �

Theorem 3.11 (Peled and Wilke [PW97]) Every stutter-invariant formula in LTL with just infinite time has an
equivalent formula in LTL−© with just infinite time.

The proof of Peled and Wilke’s Theorem 3.11 does not really depend on whether time is finite or infinite, so a
generalisation of the theorem extends to deal with finite time as well:

Theorem 3.12 (Variant of Peled and Wilke’s Theorem 3.11 for both finite and infinite time) Every stutter-invariant
formula in LTL has an equivalent formula of the following form:

(finite ∧ A) ∨ (inf ∧ B ), (24)

where subformulas A and B are in LTL−©.

Observe that the simple derived LTL constructs finite and inf mentioned in Proposition 3.10 and Theorem 3.12
are themselves defined in Table 1 using the operator ©. The need for © here seems to be unavoidable, but we do
not have a proof. As a consequence of the subformulas finite and inf being in disjunction (24), the disjunction is
not in LTL−©. This is not a problem for our purposes. Of course, if we restrict time to being just finite or just
infinite, such an issue does not arise.

Note that finite, inf, and any formula finw are stutter-invariant, as the following valid equivalences show:

finite ≡ (finite ∧ true) ∨ (inf ∧ false)
inf ≡ (finite ∧ false) ∨ (inf ∧ true)
finw ≡ (finite ∧ ♦�w ) ∨ (inf ∧ true).

If we were to sometimes let a finite state sequence be stutter-equivalent to an infinite one, then none of these three
formulas would be regarded as stutter-invariant. First of all, finite and inf would not be because any finite state
sequence could be stretched to match up with some infinite one. Furthermore, instances of the construct finw
could fail to be stutter-invariant since inf can be expressed as fin false. This seems to us too restrictive because
some contexts in fact only involve finite state sequences or naturally differentiate between the two kinds.

Any formula A in LTL−© is stutter-invariant for both finite and infinite intervals, so can be expressed as the
disjunction (finite ∧ A) ∨ (inf ∧ A). Therefore, the use of such disjunctions to distinguish behaviour in finite and
infinite time does not actually restrict working with formulas already in LTL−©. Rather, these disjunctions help
to broaden the range of behaviour considered stutter-invariant for our purposes.

Proposition 3.13 Every stutter-invariant formula in LTL+� has an equivalent LTL formula of the form (finite ∧
B ) ∨ (inf ∧ C ) for some formulas B and C both in LTL−©.

Proof The proposition follows by immediate application of Theorems 3.2 and 3.12. �
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Furthermore, we have the following proposition:

Proposition 3.14 If formulas A and B in PITL+� are stutter-invariant, then so is the �-formula A � B .

Proof We first consider the case when the left operand of A � B is a state formula w . Now w is in LTL−© so
stutter-invariant. SupposeB is likewise stutter-invariant, but w � B is not. Then there are two stutter-equivalent
state sequences σ and σ ′, both finite or both infinite, with σ |� w � B and σ ′ �|� w � B . It follows that w is
true in some state of σ and hence also in σ ′ because it is stutter-equivalent to σ . Therefore the projected state
sequences σ |w and σ ′|w each have at least one state. Furthermore, they are stutter-equivalent because only the
state formula w , which is stutter-invariant, is used to project out their states from the stutter-equivalent state
sequences σ and σ ′. However, we have from σ |� w � B and σ ′ �|� w � B that σ |w |� B and σ ′|w �|� B both
hold. This contradicts the assumption that the formula B is stutter-invariant.

We nowgeneralise the proof to handle an arbitrary formulaA: SupposeA andB are stutter-invariant, butA �
B is not.Hence, there are stutter-equivalent state sequences σ and σ ′, both finite or both infinite, with σ |� A � B ,
but σ ′ �|� A � B . Let p be some propositional variable not occurring in eitherA orB . The earlier proof of stutter
invariance for any formula w � B ensures that p � B has this property. Construct the state sequence τ from σ
to set p’s value in each state to that of A in the associated suffix state sequence starting from there. Let the state
sequence τ ′ likewise be obtained from σ ′. We then have the following hold for the formula �(p ≡ A) ∧ (p � B ):

τ |� �(p ≡ A) ∧ (p � B ) τ ′ �|� �(p ≡ A) ∧ (p � B ).

If A is stutter-invariant, it readily follows that so is �(p ≡ A) by reasoning similar to that for proving Proposi-
tion 3.9 but with the formulaA treated like a propositional variable. In addition, we already have from the proof’s
first case that p � B is stutter-invariant. These together contradict the formula �(p ≡ A) ∧ (p � B ) being
stutter-invariant. �

Here is a quite different proof of Proposition 3.14 for when A and B are in LTL+�. While not essential, it
is presented here to nicely illustrate some interesting reasoning using equivalences in (15)–(17) for eliminating �
from a formula:

Proof As already established by Theorem 3.2, the operator � does not add expressiveness to LTL. Let us
therefore assume without loss of generality that A and B are themselves stutter-invariant LTL formulas not
containing any instances of �. By Theorem 3.12, we have the following two valid semantic equivalences:

A ≡ (finite ∧ A′
1) ∨ (inf ∧ A′

2)

B ≡ (finite ∧ B ′
1) ∨ (inf ∧ B ′

2),

where subformulas A′
1, A

′
2, B

′
1 and B ′

2 are all in LTL−©. Consequently, the �-formula A � B can be expressed
as follows:

(
(finite ∧ A′

1) ∨ (inf ∧ A′
2)

)
�

(
(finite ∧ B ′

1) ∨ (inf ∧ B ′
2)

)
. (25)

The semantics of � then lets us transform this into a disjunction of three cases distinguishing between when the
global and projected intervals have finite or infinite time:

(
finite ∧ (A′

1 � B ′
1)

)
∨

(
inf ∧ (A′

2 � (finite ∧ B ′
1))

)
∨

(
inf ∧ (A′

2 � (inf ∧ B ′
2))

)
. (26)

There are only three such cases because if the global interval is finite, then the projected one cannot be infinite.
Let us now consider each case in turn:

1. finite ∧ (A′
1 � B ′

1): Both A′
1 and B ′

1 are in LTL−©, so the equivalences in (15)–(17) for eliminating � yield
from the �-formula A′

1 � B ′
1 some equivalent formula C1 in LTL−©.

2. inf ∧ (A′
2 � (finite ∧ B ′

1)): A simple generalisation of valid equivalence (5) for when the left side of � is an
arbitrary formula rather then just a state formula helps us to express A′

2 � (finite ∧ B ′
1) as a conjunction:

|� A′
2 � (finite ∧ B ′

1) ≡ (A′
2 � finite) ∧ (A′

2 � B ′
1).

In infinite state sequences the left conjunct A′
2 � finite is equivalent to a conjunction in LTL−©:

|� inf ⊃ A′
2 � finite ≡ (♦A′

2 ∧ ♦�¬A′
2).
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We then use equivalences in (15)–(17) for eliminating � from the �-formula A′
2 � B ′

1 to obtain a formula
C2 in LTL−©. Therefore we have the following valid equivalence for the second case involving inf ∧ (A′

2 �
(finite ∧ B ′

1)):
(
inf ∧ (A′

2 � (finite ∧ B ′
1))

) ≡ (
inf ∧ ♦A′

2 ∧ ♦�¬A′
2 ∧ C2

)
.

3. inf ∧ (A′
2 � (inf ∧ B ′

2)): This is similar to the second case. We obtain the next equivalent formula:
(
inf ∧ (A′

2 � (inf ∧ B ′
2))

) ≡ (
inf ∧ �♦A′

2 ∧ C3
)
,

where C3 is a �-free formula equivalent to A′
2 � B ′

2 and in LTL−©.

The results of the three cases are now combined to conclude the next equivalence’s validity:

A � B ≡ (finite ∧ C1) ∨
(
inf ∧ ((♦A′

2 ∧ ♦�¬A′
2 ∧ C2) ∨ (�♦A′

2 ∧ C3))
)
.

The right-hand operands in both disjuncts are in LTL−©, so the overall disjunction is stutter-invariant by
Proposition 3.10. Hence, the original formula A � B is as well. �

If two formulas A and B are stutter-invariant, it readily follows that so is their sequential composition A;B .
Hence, formulas built from LTL−© with chop (i.e., LTL−©+chop) are stutter-invariant. The next proposition
concerns stutter invariance, LTL+chop and finite time (and is extendable to infinite time).

Proposition 3.15 In finite time, any stutter-invariant formula in LTL+chop is equivalent to one in LTL−©.

Proof It is known that LTLwith finite time expresses exactly star-free languages [LPZ85, Eme90,DG08], which
are a proper subset of the regular languages with the operations of concatenation, union and complementation
but not Kleene star. Star-free languages, also known as first-order definable languages, readily correspond to the
sublogic of PITLwith just the temporal operators© and chop, so this sublogic has the same expressiveness asLTL.
The addition of the operator U to obtain LTL+chop does not increase expressiveness because for any formula in
LTL+chop, all subformulas with chop can be inductively replaced by equivalent LTL formulas. Therefore, any
formula A in LTL+chop has an equivalent LTL formula A′. If A is stutter-invariant, then so is A′. Hence, our
adaptation for finite time of Peled and Wilke’s theorem in [PW97] about LTL ensures the existence of a formula
A′′ in LTL−© equivalent to A′ and hence also to A. �

On the other hand, a PITL formula without © but with chop-star might not be stutter-invariant. For example,
the formula false∗, which is equivalent to empty, is true exactly on one-state intervals, which can therefore not be
‘stretched’ even though the subformula false is clearly stutter-invariant. However, it is straightforward to show
for any stutter-invariant formula A that the derived unary PITL operator A+ (‘A chop-plus’) previously defined
in (2) is likewise stutter-invariant.

4. Formalisation of imperative concurrent programs

We now look at a way to formalise in ITL imperative concurrent programs in which processes are interleaved
using the operator � as the basis. The availability of sequential composition operators such as chop has long
made ITL well suited for expressing sequential and concurrent programs and executing them in ITL-based
interpreters, as we previously investigated in [Mos86]. Such an interpreter for an ITL programming language
subset called Tempura is available from [ITL]. ITL has also been productively used for symbolic execution for
theorem proving [BBN+10, BSTR11].

Our presentation describes a self-contained decidable logical framework for expressing and reasoning about
both interleaved finite-state programs, abstracted skeletal versions of their control structure, and associated
correctness properties. This enables a demonstration of the framework by means of properties later considered
which concern basic safety and liveness issues. Others relate global and local time in order, for example, to suitably
import a state formula concerning a program variable’s initialisation in the initial global state into the possibly
much later local initial state of an individual process, or to export some properties about the local intervals of
one or more interleaved processes into the common global interval.

The approach described here is specifically meant to correspond to the popular notion of state transi-
tion systems (based on Keller’s work [Kel76] and extensively surveyed by Baier and Katoen [BK08]; see al-
so [CGP99, KM08]), where at any instant only one of the program’s processes is allowed in global time to make
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a transition from the current state to its immediate successor state and possibly make assignments involving
just these two adjacent states. This is a quite widely employed standard assumption for interleaving found in
frameworks including Manna-Pnueli Reactive Systems [MP92] (see also [BA06, KM08]), Jones’ Rely-Guarantee
Conditions [Jon83] (see also [dRdBH+01]), the SPIN model checker [Hol03] and Partial Order Reduction (see
Sect. 3.2 above) used by some model checkers such as SPIN. Furthermore, Lamport’s TLA+ [Lam02] (includ-
ing the TLC model checker) is often used with an assumption of interleaving (but supports non-interleaving as
well). Our intention is to develop a framework that a priori seeks to maximise the use of ITL together with the
operator � for the interleaving model. Projection constructs are not strictly required. This is because interleaving
programming constructs can be defined without them, as discussed later in Sect. 5.1. Nevertheless, we consider
them here because they bring succinctness and clarity and also have interesting mathematical properties. The
projection operator � also helps to formally bridge and compare the different possible notational and semantics
perspectives. Some later research by others on expressing concurrent programs in variants of ITL is discussed in
Sect. 6.

4.1. Interleaved parallel composition

We now define an operator to express that two formulas A and B operate concurrently in an interleaved manner
with a boolean variable p indicating which is active in any given state:

A |||p B �̂ p � A ∧ (¬p) � B . (27)

We refer to this three-operand interleaving operator as |||−. It is commutative and associative, subject to suitable
manipulations of the middle operand:

|� A |||p B ≡ B |||¬p A (28)

|� (A |||p B ) |||q C ≡ A |||p∧q (B |||q C ) (29)

|� A |||p (B |||q C ) ≡ (A |||p B ) |||p∨q C (30)

Commutativity is easily proved, and so is associativity using the validity of

p � (A |||q B ) ≡ (p ∧ q) � A ∧ (p ∧ ¬q) � B . (31)

Proof of (31). Here is a chain of equivalences:
p �

(
q � A ∧ (¬q) � B

)
Def. of p � (A |||q B )

≡ p �
(
q � A) ∧ p �

(
(¬q) � B

)
(5)

≡ (p ∧ q) � A ∧ (p ∧ ¬q) � B (9)
�

Proof of commutativity (28). Here is a chain of equivalences:
p � A ∧ (¬p) � B Def. of A |||p B

≡ (¬p) � B ∧ p � A Prop.
≡ (¬p) � B ∧ (¬¬p) � A Prop.
≡ B |||¬p A Def. of |||−

�

Proofs of associativity for (29) and (30). We first use a chain of equivalences to demonstrate the validity of (29):
q � (p � A ∧ ¬p � B ) ∧ ¬q � C Def. of (A |||p B ) |||q C
≡ (q ∧ p) � A ∧ (q ∧ ¬p) � B ∧ ¬q � C (31)
≡ (p ∧ q) � A ∧ (¬(p ∧ q) ∧ q) � B

∧ (¬(p ∧ q) ∧ ¬q) � C
Prop.

≡ (p ∧ q) � A ∧ ¬(p ∧ q) � (B |||q C ) (31)
≡ A |||p∧q (B |||q C ) Def. of |||−

The validity of (30) can then be established from that of (29):
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A |||p (B |||q C )
≡ (C |||¬q B ) |||¬p A (28)
≡ C |||¬q∧¬p (B |||¬p A) (29)
≡ C |||¬(p∨q) (B |||¬p A) Prop.
≡ (A |||p B ) |||p∨q C (28)

�
When irrelevant, |||−’s middle operand can be quantified away:

A ||| B �̂ ∃p. (A |||p B ). (32)

Recall the semantics of existential quantification given in (21) and that it does not add expressiveness to PITL.
The notation ||| here for interleaving concurrency follows Baier andKatoen’s in [BK08].With themiddle operand
quantified away, ||| is commutative and associative in the usual sense. Both � and |||− are expressible using either
||| or |||−:

|� A |||w B ≡ (�w ∧ A) ||| (�¬w ∧ B ) |� w � A ≡ (A |||w true) ∨ (�w ∧ A).

Hence, at least theoretically, either operator ||| or |||− can be taken as primitive instead of � for applications
where �’s left operand is restricted to being a state formula. The equivalence for expressing w � A needs two
cases because, unlike w � A, the disjunct A |||w true entails that w is sometimes false.

It might at first seem that when one operand is false, the operator |||− can be readily eliminated. However,
closer examination reveals that this is not so. The equivalence below is therefore not valid:

A |||p false ≡ �p ∧ A.

A key reason for this is that |||− always requires each operand to be satisfied:

|� ¬(A |||p false) |� ¬(false |||p B ).

Therefore, an interval in which an instance of |||− is true contains at least two states — one for each operand.
This is expressed by the next two valid implications:

|� A |||p B ⊃ more |� A |||p B ⊃ ♦p ∧ ♦¬p. (33)

Consequently, when an interval σ satisfies the formula A |||p B , the semantic evaluation of operands A and B
is performed in projected subintervals which omit some of σ ’s states. Even an apparently simple formula such as
empty |||p empty requires two states. This behaviour can be confusing because of the formula’s similarity in syntax
to the chop-formula empty;empty, which in contrast only needs one state. Furthermore, unlike the chop-formulas
A;empty and empty;A which are both equivalent to A, the formula A ||| empty requires an extra state to satisfy
the subformula empty! Here are several valid equivalences illustrating differences between the constructs chop,
|||− and |||:

|� empty;empty ≡ empty |� true;true ≡ true
|� empty |||p empty ≡ skip ∧ (p �≡ © p) |� true |||p true ≡ more ∧ ♦p ∧ ♦¬p
|� empty ||| empty ≡ skip |� true ||| true ≡ more.

The three-operand interleaving operator |||− is derived from � without using ©, so all formulas in
LTL−©+chop+�+|||− are stutter-invariant. However, formulas containing the derived binary operator ||| are
not necessarily stutter-invariant. For example, as noted shortly before, true ||| true is equivalent to more and
¬empty, which are not stutter-invariant.

4.2. Multiple processes with process identifiers

When dealing with multiple processes, it can be convenient to associate a numerical index with each one. An
auxiliary variable pid can be readily used for this. For instance, for a formulaA |||p B with two processes, we can
take pid to range over {0, 1} and construct it using the formula �(pid � if p then 0 else 1). For any expression e
and formula A, define e ::A to specify that e is the process id for A:

e ::A �̂ �(pid � e) ∧ A. (34)
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Table 2. Some imperative programming constructs expressed in ITL

a :� e �̂ skip ∧ nval[.a ] � e ∧ ∀ v ∈ (dom(nval) \ {.a}). (nval[v ] � vˆ)
a1, . . . , an :� e1, . . . , en �̂ skip ∧ nval[.a1] � e1 ∧ · · · ∧ nval[.an ] � en

∧ ∀ v ∈ (dom(nval) \ {.a1, . . . , .an }). (nval[v ] � vˆ)
noop �̂ skip ∧ ∀ v ∈ dom(nval). (nval[v ] � vˆ)
li : A �̂ lab � li ∧ A
enoop �̂ empty ∧ ∀ v ∈ dom(nval). (nval[v ] � vˆ)
A; B (Already defined as primitive ITL operator in Sect. 2)
if w then A else B �̂ (w ∧ A) ∨ (¬w ∧ B)
whilew doA �̂ (w ∧ A)∗; (empty ∧ ¬w )
for some times doA �̂ A∗
A � B �̂ A ∨ B (Nondeterministic choice)

Only atomic statements :�, noop and enoop are labelled (but without multiple labels). Also, enoop is normally only used at the end of a process

The existence of a suitable pid then readily ensures the validity of the next formula:

A ||| B ≡ ∃pid . (0 ::A ||| 1 :: B ).

The proof uses the validity of the formula below:

A |||pid�0 B ≡ (0 ::A ||| 1 :: B ).

The techniques easily generalise to any number of processes (e.g., 0 :: A1 ||| 1 :: A2 ||| 2 :: A3). Note that the
projection formula (pid � i ) � (i ::A) is equivalent to the simpler one (pid � i ) � A.

4.3. The rest of the imperative constructs

So far, the presentation has been largely propositional in nature. When formalising programs and processes,
the framework here takes the liberty of assuming that data variables range over finite domains. Besides various
constants such as the bit values 0 and 1, we also employ some finite sets and lists to deal with program variables.
For any given finite set of program variables, this can in principle still be propositionally encoded. Indeed, we
adapted a similar approach in earlier work such as [Mos00] which represents finite domains in PITL to obtain
axiomatic completeness for quantified ITL with finite time and such domains. Therefore, the programs presented
here and the associate formal reasoning concern finite-state systems. The overall framework can be regarded
as being built on propositional logical foundations which can avoid a truly first-order temporal logic, thereby
staying suitable for decision procedures, model checking and complete axiomatisations3. Indeed, our aim to
support the model checking of concurrent algorithms’ correctness properties, with both the algorithms and the
properties expressed within our decidable framework, is the primary motivation and justification for emphasising
formulas with stutter invariance previously in Sect. 3.2. Of course, the framework here could also be employed
in a genuinely first-order way which, when possible, takes maximum advantage of natural holistic connections
to the much simpler propositional variant, as is routinely done in the theory and application of conventional
propositional and first-order logics.

For any expression e, let the temporal construct © e be a term denoting e’s value in the next state if there is
one (e.g., as in the formula e �� © e). Table 2 contains imperative programming constructs which can be viewed
as derived operators in ITL. We let \ denote set difference.

Labels are special constants. For any i �� j , the label constants li and l2 are distinct (i.e., li �� lj ). They
are optional, normally only added to each atomic statement such as assignment and noop, and do not affect
program operation. When specified, lab’s value is the active process’s current label. Labelling just the atomic
statements suffices to fully determine lab’s value in all states but the final one, if the process terminates. Hence,
we adapt the convention that each process normally ends with another labelled formula of the form li : enoop,
where ‘enoop’ stands for ‘empty noop’. This construct also helps with framing at the end of a process and is further
explained later in Sect. 4.5. Even if the labels are omitted, each process should contain enoop at its end for framing.
Only one label constant should be used per atomic statement because multiple distinct label constants as in the
statement l0 : l1 : noop clash since the control variable lab cannot simultaneously equal two different values (e.g.,
|� ¬(lab � l0 ∧ lab � l1)).

3 In contrast, unlike standard first-order logic, which is undecidable but at least has a complete axiomatisation, first-order LTL temporal
logic lacks both of these useful properties (see [KM08] for more details and references).
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It is important to note that the label constants employed here are just intended for reasoning about densely
labelled, relatively abstract concurrent programs. Other researchers such as Manna and Pnueli [MP92] (see also
Ben-Ari [BA06]), Kröger and Merz [KM08] and Taubenfeld [Tau06] likewise extensively label such concurrent
programs when analysing them. On the other hand, our framework is not suited for formalising a semantics of
general-purpose programming languages permitting optional labelling as well as gotos.

As we already noted, interleaving-based transition systems only perform assignments involving two states
adjacent in global time. However, a process within |||− in projected time might not see the next global state even
though the current projected and current global states are identical. For example, suppose the current global
interval is s1s2s3s4 . . . Therefore, assignments from current global state s1 should involve s1 and the next global
state s2. If a process in |||− sees the current projected interval s1s4 . . . without states s2 and s3, then any instance
of :� within |||− that sees the current state s1 cannot see global state s2 and so cannot access s2 with © to assign
program variables. Such an instance of© instead sees the next projected state s4 (although an alternative approach
without projection in Sect. 5.1 can indeed see state s2 by simply employing ©). Exactly the same issue applies to
the remaining program variables which :� needs to frame (i.e., leave unchanged) and likewise for noop.

The assignment construct :� instead uses state formulas and a state variable nval which is a record (i.e., a
finite list indexed by field names and like records in Lamport’s TLA+ [Lam02]). The purpose of nval is to store
in the current projected state the values which are to be assigned to program variables in the next global state
(itself normally only accessible from outside of the scope of |||−). In effect, nval helps tunnel from projected to
global time. For each program variable a, nval has an element nval[.a], where .a is a field-name constant (like a
quoted atom in Lisp) serving as a subscript (TLA+ uses strings such as "a" to index records). The assignment
a :� e does not actually change a or frame the remaining program variables (i.e., it does not explicitly keep them
unchanged). Instead, in the current projected state (which is also the current global state), a :� e treats its first
operand as a kind of reference (i.e., .a) and just sets nval[.a] equal to e, and nval[.b] equal to b’s current value for
every other (unaltered) program variable b. The desired setting of a’s and b’s values in the next global state (to
equal the current values of nval[.a] and nval[.b], respectively) is handled separately outside of |||− in global time,
as discussed later, where the operator © can indeed access the next global state.

We employ the notation a ′ here as an abbreviation for the record element nval[.a]. A program variable’s value
in next global state is not readily accessible in projected time, but this element always is. In contrast to here, TLA+

uses the primed variable a ′ to refer the value of a variable a in the next global state (local states are not used).
The field-name constant .a also serves as a reference to the variable a itself because we let a be accessible via .a
using the dereferencing construct .aˆ (e.g., the equality .aˆ � a is valid).

As in TLA+, we can regard the record nval as a function from field-name constants to values, and let dom(nval)
denote nval’s domain, which is in fact the set of these field name constants. Hence, dom(nval) can serve as a set of
references to the program variables for use in the semantics of atomic statements (described shortly) when framing
variables (e.g., for an assignment a :� e, we need to explicitly formalise in the logic that all program variables
referenced by dom(nval) besides a remain unchanged). For example, one concurrent program Pr′ considered
shortly has just two program variables x and y , so dom(nval) � {.x , .y}, where .x and .y are the field name
constants associated with x and y , respectively. The set dom(nval) especially helps to formalise framing for
programs with several variables, themselves possibly being aggregates such as vectors.

It is important to note that the second version of :� in Table 2 has the form a1, . . . , an :� e1, . . . , en for
simultaneouslymultiple assignments to several variables a1, . . . , an and requires precisely 2 states (just as a simple
assignment a :� e does). This is because the semantics of a1, . . . , an :� e1, . . . , en is defined to operated on all of
the variables a1, . . . , an at once by setting nval [.ai ] � ei in the current state for each i : 1 ≤ i ≤ n. Hence, if n �� 1,
then the multiple assignment is not semantically equivalent to n successive assignments a1 :� e1; . . . ;an :� en
sequentially done one after the other and needing altogether exactly n + 1 states.

The framing construct iframe now defined, when used in global states, ensures that intended assignments of
values recorded in nval in each projected state actually take effect on the program variables themselves in the next
global state:

iframe �̂ �
(
more ⊃ ∀ v ∈ dom(nval). (nval[v ] � © vˆ)

)
. (35)

For example, if dom(nval) � {.a}, then iframe is equivalent the following two formulas:

�(more ⊃ nval[.a] � © .aˆ) �(more ⊃ a ′ � © a).
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Here are sample valid formulas involving iframe (assume dom(nval) � {.a}):
|� iframe ∧ �(more ⊃ a ′ � a) ⊃ �(more ⊃ (© a) � a) (36)
|� iframe ∧ (¬p) �u �(more ⊃ a ′ � a) ⊃ p �u iframe . (37)

According to (36), if iframe controls a, and if also a ′ (i.e., nval[.a]) always equals a (except maybe at the end),
then © a also always equals a (except maybe at the end), so, in other words, a is stable. Implication (37) describes
that if iframe controls a and also in time projected by ¬p that a ′ always equals a (except maybe at the end), then
iframe as well controls a within time projected by p.

The definition of iframe can be extended to permit optional parameters limiting its effect to specific references
when other ones are irrelevant:

iframe(.a1, . . . , .an ) �̂ �
(
more ⊃ ∀ v ∈ {.a1, . . . , .an }. (nval[v ] � © vˆ)

)

iframe(u) �̂ �
(
more ⊃ ∀ v ∈ u). (nval[v ] � © vˆ)

)
,

for any references .a1, . . . , .an ∈ dom(nval) and set u ⊆ dom(nval). For example, both iframe(.a, .b) and
iframe({.a, .b}) only concern the programs variables a and b. Here is a variant of the valid implication (37),
but now only involving the variable a:

|� iframe(.a) ∧ (¬p) �u �(more ⊃ a ′ � a) ⊃ p �u iframe(.a).

4.4. Fair scheduling of atomic statements

The semantics of the programming constructs so far presented assumes that individual assignment and noop
constructs always take a finite amount of time. Scheduling of processes is fair in the sense that a process is
never denied a chance to execute its next atomic statement. The interleaving formulaA |||p B is fair by definition
because for any state sequence σ satisfying it, the projected state sequences σ |p and σ |¬p eachmust accommodate
a complete run of |||p ’s respective operand.

4.5. Justification for the empty noop construct ‘enoop’

As noted above, the construct enoop ensures that nval is defined in the final state of a process if the process
terminates. This helps to frame program variables. Another purpose of enoop is to serve as a placeholder for a
label in the process’s last state.

Let us now consider how enoop helps with framing involving the interleaving operator |||−. As we pointed out
earlier, an instance of |||− requires at least two states (e.g., see the valid implication (33) above). Consequently,
even the simplest two-state interleaved program has to deal with framing variables from its own first state to its
second one, even if no label constants are used. For this reason, such a two-state interleaved program with label
constants should have the form shown below for some i , j with i �� j :

li : enoop |||p lj : enoop.

The necessary framing information provided by enoop between the two projected subintervals’ states is straight-
forward and indeed defined exactly in the same way as the framing done with noop (as can be seen from the
respective definitions in Table 2). If we incorrectly use empty instead enoop, as in the following program, then the
essential framing information for all program variables from the first state to the second one is missing:

li : empty |||p lj : empty.

It also appears to us that the presence of enoop at the end a process has a further significant benefit of helping
to make some temporal properties stutter-invariant. This is because without enoop, the behaviour of nval in the
last state would be unspecified, and so an instance of the operator © (in the form of more) would be required to
ignore that state. Thus, the presence of enoop sometimes helps avoid the need to distinguish in temporal properties
between the last state and earlier ones.
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Process Pr0: Process Pr1:
l0 : x := 1; l2 : x := 1 − x;
l1 : enoop l3 : enoop

A. Let dom(nvalPr ) = {.x}. Initially x = 0.

Process Pr0: Process Pr1:
l0 : x := 1; while y = 0 do
l1 : y := 1; l3 : noop;
l2 : enoop l4 : x := 1 − x;

l5 : enoop

B. Let dom(nvalPr ) = {.x, .y}.
Initially both x = 0 and y = 0.

Fig. 1. Simple concurrent programs Pr and Pr′

Figure 1 shows two simple concurrent programs Pr and Pr′. The next formula for Pr includes initialisation
and framing (as noted in Fig. 1, dom(nvalPr) � {.x }):

x � 0 ∧ iframe ∧ Pr0 |||r Pr1.

The middle operand r of |||− here need not be quantified away because we only use |||− on the left side of ⊃.
The first program can terminate with x equal to 0 or 1, but the second program ensures x ends equal to 0, as
formalised below (as noted in Fig. 1, dom(nvalPr′) � {.x , .y}):

|� x � 0 ∧ y � 0 ∧ iframe ∧ Pr′0 |||r Pr′1 ⊃ fin(x � 0 ∧ y � 1).

The label constants help link conditions on state to control points. Here is an example stating that x will equal 1
when process Pr′1 is at label l

′
4:

|� x � 0 ∧ y � 0 ∧ iframe ∧ Pr′0 |||r Pr′1 ⊃ ¬r � �(lab � l ′4 ⊃ x � 1).

4.6. Sequentially composing two interleaving formulas

The construct enoop is useful at the end of processes for handling label constants and framing. However, if we
want to employ the operator chop to sequentially combine together one existing process terminating with enoop
and a second process, then either skip (not mentioned amongst the programming constructs in Table 2) or noop
can be placed in between to create a small one-state gap which avoids a clash with the label constants and framing
information:

A;skip;B A;noop;B .

This involves the equivalence of the next three formulas:

noop enoop;skip enoop;noop.

Therefore, putting a skip after enoop combines to do exactly the same as noop. A simple alternative is to remove
the instance of enoop in A, but this might not always be practical.

If it is essential to sequentially join program A unchanged to program B without the extra step entailed by
an intervening skip or noop, then the formula (uncapA);B can be used, where the construct uncapA is defined as
follows using auxiliary variables lab1 and nval1:

uncapA �̂ ∃ lab1, nval1. (Alab1,nval1
lab,nval ∧ �(more ⊃ (lab � lab1 ∧ nval � nval1))

)
. (38)

Sequential composition with chop of two interleaving formulas both using enoop for all four processes could
likewise be separated by an instance of skip. As already explained above, this helps ensure that label constants
and framing information do not clash between the last state of the first interleaving formula and the first state of
the second one. Here is an sample illustrative program requiring exactly 4 states:

(l0 : enoop |||p l1 : enoop); skip; (l2 : enoop |||p l3 : enoop).

If the formula skip were not included, then the program’s second state would have to satisfy the contradictory
conjunction lab ∈ {l0, l1} ∧ lab ∈ {l2, l3}. It is possible to use noop instead of skip because even though noop
provides redundant framing information here, it does not cause a logical clash. Another solution not requiring
an added skip or noop involves omitting any instances of enoop in the left-hand interleaving formula, as already
discussed ealier. However, this might sometimes not be feasible if the two interleaving formulas must be used
unchanged, but the solution mentioned above involving the operator uncap defined in (38) is then still an option.
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Process Petersoni, for i ∈ {0, 1}
for some times do (

l0 : noop;
l1 : flag i := 1;
l2 : turn := 1 − i;

while (flag1−i = 1 ∧ turn = 1 − i) do
l3 : noop;
l4 : noop; /* Critical section */
l5 : flag i := 0; /* Leave critical section */
l6 : noop

);
l7 : enoop
Let dom(nvalPeterson) = {.flag0, .flag1, .turn}.
Initially both flag0 = 0 and flag1 = 0, but turn can start as either 0 or 1.

Fig. 2. Peterson’s algorithm with processes Peterson0 and Peterson1

4.7. Peterson’s mutual exclusion algorithm

Figure 2 shows Peterson’s mutual exclusion algorithm [Pet81]. The two processes Peterson0 and Peterson1 do not
simultaneously access their critical sections (label l4). We assume that the control variable pid , which indicates
the currently active process, ranges over {0, 1}. The interleaving compositional of the two processes is expressed
as (0 :: Peterson0) ||| (1 :: Peterson1), which is equivalent here to Peterson0 |||pid�0 Peterson1.

Below are some valid properties, where we let init denote flag0 � 0 ∧ flag1 � 0 (also, as noted in Fig. 2,
dom(nvalPeterson) � {.flag0, .flag1, .turn}). Implications (39)–(41) all concern mutual exclusion:

|� init ∧ iframe ∧ (0 :: Peterson0) ||| (1 :: Peterson1) ⊃ �¬(
lab � l4 ∧ ©(lab � l4)

)
(39)

|� init ∧ iframe ∧ (0 :: Peterson0) ||| (1 :: Peterson1)
⊃ �¬(

pid �� © pid ∧ lab � l4 ∧ ©(lab � l4)
) (40)

|� init ∧ iframe ∧ (0 :: Peterson0) ||| (1 :: Peterson1)
⊃ �¬(

(pid � 0 ∧ lab � l4 ∧ (pid � 0) U (pid � 1 ∧ lab � l5)
)

∧ �¬(
(pid � 1 ∧ lab � l4 ∧ (pid � 1) U (pid � 0 ∧ lab � l5)

)

(41)

Only the second two implications (40) and (41) have consequents which are stutter-invariant, as is explained
shortly. Interestingly, in implication (39) we do not need to mention the value of pid in the consequent because
each process is in its critical section for only one state at a time.

The consequent of implication (39) is not stutter-invariant. Observe that it is a substitution instance of the
formula�¬(p ∧ © p). A one-state interval with a state s having just p true satisfies this formula, and the two-state
interval with both states being s is stutter-equivalent to this one-state interval but falsifies the formula. On the
other hand, implication (40), which is a modified version of implication (39) and indeed a consequent of it, has
a right-hand side �¬(

pid �� © pid ∧ lab � l4 ∧ ©(lab � l4)
)
that is stutter-invariant even though it contains the

operator ©. We now establish that this right-hand side is stutter-invariant:

Proof Using p and q for pid � 0 and lab � l4 for brevity, we can write (40) as

�¬(
(p �≡ © p) ∧ q ∧ © q

)
. (42)

Next we show that (42) has an equivalent in LTL−©. First we re-express it as

�¬(
p ∧ q ∧ ©(¬p ∧ q)

)
∧ �¬(

(¬p ∧ q ∧ ©(p ∧ q)
)
,

which in turn is equivalent to

¬♦
(
p ∧ q ∧ ©(¬p ∧ q)

)
∧ ¬♦

(
(¬p ∧ q ∧ ©(p ∧ q)

)
.
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The operator © in the scope of ♦ can now be supplanted by a use of U:
|� ♦

(
p ∧ q ∧ ©(¬p ∧ q)

) ≡ ♦
(
p ∧ q ∧ (p ∧ q) U (¬p ∧ q)

)

|� ♦
(
(¬p ∧ q ∧ ©(p ∧ q)

) ≡ ♦
(¬p ∧ q ∧ (¬p ∧ q) U (p ∧ q)

)
.

Combining these and the previous equivalences gives an equivalent to (42) in LTL−©. The consequent of impli-
cation (41) is therefore equivalent to a substitution instance of this�-formula (42), where p is replaced by pid � 0
and q by lab � l4, so is stutter-invariant as well. �

The two implications (43) and (44) below deal with liveness:

|� init ∧ iframe ∧ (0 :: Peterson0) ||| (1 :: Peterson1)
⊃ �

(
(pid � 0 ∧ lab � l0) ⊃ ♦(pid � 0 ∧ lab � l4)

)

∧ �
(
(pid � 1 ∧ lab � l0) ⊃ ♦(pid � 1 ∧ lab � l4)

)

(43)

|� init ∧ iframe ∧ (inf ∧ 0 :: Peterson0) ||| (inf ∧ 1 :: Peterson1)
⊃ �♦(pid � 0 ∧ lab � l0) ∧ �♦(pid � 0 ∧ lab � l4)

∧ �♦(pid � 1 ∧ lab � l0) ∧ �♦(pid � 1 ∧ lab � l4).

(44)

The consequents of implications (43) and (44) are clearly stutter-invariant because they are in LTL−©. Both
implications (43) and (44) can alternatively be expressed somewhat more concisely using the projection operator
in the consequents:

|� init ∧ iframe ∧ (0 :: Peterson0) ||| (1 :: Peterson1)
⊃ (pid � 0) � �(lab � l0 ⊃ ♦lab � l4) ∧ (pid � 1) � �(lab � l0 ⊃ ♦lab � l4)

(45)

|� init ∧ iframe ∧ (inf ∧ 0 :: Peterson0) ||| (inf ∧ 1 :: Peterson1)
⊃ (pid � 0) � (�♦lab � l0 ∧ �♦lab � l4) ∧ (pid � 1) � (�♦lab � l0 ∧ �♦lab � l4).

(46)

Our earlier presentation in [MG15] used a different approach with a derived operator used to observe lab
in the course of process execution. However, after some further investigation, we now prefer the one employed
here since it seems more straightforward (e.g., our approach in [MG15] required adding extra instances of noop).
Furthermore, it is also better suited for reasoning about some proofs of mutual exclusion discussed here.

Now that Peterson’s algorithm has been presented here, let us consider three possible approaches to verifying
the correctness of it and other such finite-state programs:

• Decision procedures and model checkers: Perhaps the most immediately appealing method is to simply use
an implemented decision procedure or model-checking tool to mechanically check that the algorithm’s
behaviour complies with the desired correctness properties. No detailed formal proof is required about the
intricacies of how the algorithm’s individual processes interact.

• Reduction using LTL and global time: It is not hard to first transform the individual processes in our version
of Peterson’s algorithm to LTL formulas concerning how each process operates between each adjacent
pair of its local states but as seen from the standpoint of the common global interval. This is routinely
done when representing such algorithms in LTL as low-level transition systems (see for example the detailed
presentation of Peterson’s algorithm byKröger andMerz [KM08]). Such an approach has the advantage of
employing more established notation and techniques without any explicit projection being done. However,
the resulting LTL formulas retain little of the sequential structure of the original processes. Consequently,
exclusively transition-based reasoning might sacrifice some benefits potentially obtained by doing more
reasoning about the structure of each process in its original sequential form and in its own local time, rather
than leaving this to be largely carried out in global time.

• Reasoning about each processing using LTL and local time: One can seek to increase the amount of reasoning
in local time about a process. As with the previous approach, the relevant behaviour of each process in
its local time is reduced to LTL formulas, but these can be obtained more directly by focusing mainly
on the structure of the individual process. Although such formulas primarily pertain to local time, when
the interaction between the processes ultimately needs to be considered, some global reasoning can be
employed. This style of reasoning therefore employs a much less familiar idiom than the previous one
solely involving global reasoning, so certainly requires greater investment. However, this could result in a
powerful reusable infrastructure which in the long run might be more appropriate for some purposes.
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The actual proofs of the correctness of Peterson’s algorithm are presented in the appendix and are based on
the third approach, thereby increasing the amount of reasoning carried out in the local time of each individual
process using the original structure of the process. The appendix then concludes by briefly examining another
variant of Peterson’s algorithm without labels.

5. Some alternative techniques and notations

We now consider some other ways to reason about interleaving concurrency with PITL, such as without �.

5.1. Formalising interleaving without projection

As discussed above, our modelling of interleaving employs � together with the record variable nval and the
iframe construct that ensure each assignment to a program variable is suitably performed between two globally
adjacent states. Two alternative frameworks which can be viewed as mimicking projection without using � are
now discussed:

• The first simply dispenses with � but still uses nval and iframe.
• The second also avoids needing nval and iframe, instead just using a variable pvars which denotes the set

of program variables’ field-name constants and plays a role like that of dom(nval).
The second approach is the closest to the interleaving semantics described by Baier and Katoen [BK08].

In what follows, the two projection-less approaches are presented and shown under some general assumptions
to express the same kind of behaviour as the earlier framework using projection. It seems natural to initially just
prove anotionof equivalence between the previously described frameworkwith projection and the first projection-
less approach, and only then similarly relate the two projection-less approaches. As a result, all three are shown
to indeed capture the same behaviour.

5.1.1. First projection-less approach using nval and iframe

We now present the first globally oriented projection-less approach which retains both nval and iframe. The only
constructs in Table 2 which need to be changed are the assignment operator :�, noop and enoop. The alternatives
:�′, noop′ and enoop′ defined shortly can be viewed as mimicking projection with no need for the operator �
itself. The previously derived construct iframe and the record-variable nval are still used with :�′, noop′ and enoop′
exactly as they were used above with :�, noop and enoop, so do not require variants to be introduced here. Below
is a definition of the alternative construct :�′ for assigning to a single variable, where the locally scoped boolean
variable active indicates when the process is active:

a :�′ e �̂ nval[.a] � e ∧ ∀ v ∈ (dom(nval) \ {.a}). (nval[v ] � vˆ)
∧ active ∧ finite ∧ © �(more ⊃ ¬active).

Each process in effect has its own private instance of active. In the first state of a finite interval satisfying the
assignment formula, the variable active is true, but then false in the finite number of any subsequent intermediate
states (which exclude the interval’s last state), to indicate temporary inactivity of the process. It is important to
note that :�′ does not determine active’s value in the interval’s last state since this is left for a follow-on atomic
statement to do.

The following are definitions for multiple assignments and the alternative construct noop′:

a1, . . . , an :�′ e1, . . . , en �̂ nval[.a1] � e1 ∧ · · · ∧ nval[.an ] � en
∧ ∀ v ∈ (dom(nval) \ {a1, . . . , an }). ((nval[v ]) � vˆ)
∧ active ∧ finite ∧ © �(more ⊃ ¬active)

noop′ �̂ ∀ v ∈ dom(nval). (nval[v ] � vˆ)
∧ active ∧ finite ∧ © �(more ⊃ ¬active).

The variant enoop′ below of enoop includes an addition conjunct ensuring active holds in a process’s final
state:

enoop′ �̂ ∀ v ∈ dom(nval). (nval[v ] � vˆ) ∧ active ∧ empty.
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Consider the following simple adaptation of process Pr′1, which itself was already presented in Fig. 1 in
Sect. 4.5:

while y � 0 do
l ′3 : noop′;
l ′4 : x :�′ 1 − x ;
l ′5 : enoop′

An interval satisfies this formula iff the interval has the next few properties:
• The interval’s first state satisfies active and so does the last state if the interval terminates. Furthermore, the

sequence of states with active true in them starts with a series of zero or more states (possibly an infinite
number) all with y � 0 and lab � l ′3. If the interval is finite, then there are two further states with active
true: The first satisfies y �� 0 and lab � l ′4, and the final one satisfies lab � l ′5. All of this is expressed by the
formula below which satisfies the interval and reflects the behaviour of the control variables active and lab:

active ∧ fin active
∧ active �

(
while y �� 0 do (skip ∧ lab � l ′3);(skip ∧ lab � l ′4);(empty ∧ lab � l ′5)

)
.

(47)

• If a state in the interval has active true and lab ∈ {l ′3, l ′5}, then the state satisfies the conjunction nval[.x ] �
x ∧ nval[.y ] � y .

• If a state in the interval has active true and lab � l ′4, then the state satisfies the conjunction nval[.x ] �
x − 1 ∧ nval[.y ] � y .

Below is a formula which is semantically equivalent to (47) and likewise characterises the behaviour of the label
variable lab but uses the operators © and halt instead of the projection operator �:

(
while y �� 0 do (skipactive ∧ lab � l ′3)

)
; (skipactive ∧ lab � l ′4); (empty ∧ active ∧ lab � l ′5),

where for any state formula w the derived construct skipw denotes the conjunction finite ∧ © haltw . Therefore,
the formula skipactive satisfies an interval iff the interval is finite with at least two states, and has active false in all
states starting from the second one except the final one, where active must be true. The value of active in the first
state is ignored by skipactive.

Any process A constructed by combining the atomic statements :�′ and noop′ together with conditional
statements, chop, chop-star, while-loops, etc. and ending with enoop′ has the next valid implication:

A ⊃ (active ∧ fin active).

This is because the atomic statements :�′ and noop′ require active to be true in the first state of their interval.
Furthermore, the construct enoop′, when placed at the end of the definition of a process, makes active equal true
in a process’s final state if the process terminates. When used with a label constant, enoop′ also determines lab’s
value in that state (just as a labelled enoop does.)

Here is a valid implication relating :� and :�′ and concerning how :�′ canbe regarded asmimicking projection:

(active ∧ fin active) ⊃ a :�′ e ≡ (active � a :� e). (48)

Proof of validity of implication (48). Let σ be an interval satisfying the antecedent of (48). Hence, active is true
in the first state of σ . If σ has finite length, then active is also true in the last state of σ . Now if σ satisfies a :�′ e,
then the following hold by the definition of :�′:

1. σ has finite length and at least two states.
2. The variable active is true in the first state of σ and false in any intermediate states of σ .
3. The first state of σ satisfies the state formula below:

nval[.a] � e ∧ ∀ v ∈ (dom(nval) \ {.a}). (nval[v ] � vˆ). (49)

Let σ ′ denote here the projected interval obtained from σ by selecting just the states in which active is true. It
readily follows that the three properties just enumerated hold for σ iff the following three hold for σ ′:

1. σ ′ has finite length.
2. σ ′ has exactly two states and so satisfies skip.
3. The first state of σ satisfies the state formula (49).



Application of temporal projection to interleaving concurrency 727

Hence, σ satisfies a :�′ e iff σ ′ satisfies a :� e. It then follows from the assumption of σ satisfying the conjunction
active ∧ fin active that σ satisfies a :�′ e iff σ satisfies active � a :� e, so implication (48) is indeed valid. �
The following special case of valid implication (48) shows that for any interval where active is always true (not
just at the beginning and end), the operators :� and :�′ can be viewed as equivalent:

�active ⊃ a :�′ e ≡ a :� e. (50)

Proof of validity of implication (50). Let σ be an interval satisfying the formula �active. Hence, active is true in
every state of σ . The next instance of the simple valid implication �w ⊃ (w ∧ finw ) for any state formula w is
likewise valid:

�active ⊃ active ∧ fin active.

The chaining of this implication with the earlier valid one (48) yields the next valid implication:

�active ⊃ a :�′ e ≡ (active � a :� e). (51)

Now the following is an instance of valid implication (13) concerning when the global interval and a projected
one are identical:

�active ⊃ a :� e ≡ (active � a :� e). (52)

The combination of the two valid implications (51) and (52) together with simple proposition reasoning yields
that implication (50) is indeed valid. �

Here is a variant of the valid implication (48) which further illustrates how to relate :�′ and :� and also how
:�′ can be seen as mimicking projection:

¬active U (
a :�′ e; (active ∧ w©�¬active)

) ≡ (active � a :� e). (53)

Proof of validity of implication (53). This follows because the until-formula’s left operand ¬active causes the
U-operator to skip past any starting portion of the global interval prior to the first state satisfying active. The
chop-formula’s right-handoperand active∧ w©�¬active similarly ignores any tailing portion of the interval beyond
the furthest state satisfying active if active is true only in a finite number of the interval’s states. If the interval has
an infinite number of states satisfying active, then both sides of equivalence (53) are readily shown to be falsified
by the interval. �
Valid implications quite similar to (53) can be readily obtained for relating noop and noop′ and the two versions
of multiple assignments.

We can use induction on syntax to relate an individual process built with the various constructs presented
earlier in Table 2 with a projection-less variant:

Proposition 5.1 Suppose that A is some process built using the constructs in Table 2. Let A′ be obtained from
A by replacing all instances of :�, noop and enoop with :�′, noop′ and enoop′, respectively. Then the following
implications are valid:

(active ∧ fin active) ⊃ A′ ≡ (active � A) (54)

�active ⊃ A′ ≡ A. (55)

Proof The proof of the validity of implication (54) is by straightforward induction on the structure of A’s
syntax using the previous valid implication (48), an analogous one for relating noop and noop′ and then extending
this to handle the various control structures and enoop/enoop′.

The second implication (55) is a special instance of (54) and generalises the earlier valid implication (50).
The proof of the validity of implication (55) likewise generalises the proof of implication (50)’s validity to handle
other atomic statements and also the various constructs such as chop and while-loops for combining statements
together. �
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Below are variants of � and |||− which seem suitable for use for expressing interleaving concurrency without
the projection operator �:

wπA �̂ ¬w U (
(w ∧ Aw

active);(w ∧ w©�¬w )
)

(56)

A |||′w B �̂ (active ∧ w ) π A ∧ (active ∧ ¬w ) π B . (57)

Here the formula Aw
active denotes an instance of A with all free occurrences of active replaced by the state formula

w . This substitution is done so that w selects which states in an interval are in effect regarded as projected when
A’s truth value is evaluated (thus achieving a variant of the technique used above in valid equivalence (53)). The
derived operator w π A is similar to w � A, but instead of examining a projected subinterval of the original
interval, π relies on substituting w into all free occurrences of variable active to just examine states in the interval
where w holds. Therefore, unlike with �, the use of π relies on atomic statements such as :�′ in A, which when
active is replaced in them by w , help to mimic projection by ignoring any states falsifying w . Properties of � such
as (9) can be adapted to π. The role of π in the definition of |||′− is similar to that of � in the definition of |||−.
Here is a way to formally relate πwith �:

Proposition 5.2 Let A and A′ be formulas such that the variable active does not occur freely in A and the next
implication is valid:

(active ∧ fin active) ⊃ A′ ≡ (active � A). (58)

Then the following equivalence is valid as well:

w π A′ ≡ w � A. (59)

Proof of Proposition 5.2. Let σ be some interval. If w is false in all states of σ , then σ does not satisfy either
w π A′ or w � A, so trivially satisfies equivalence (59). Otherwise, w is true somewhere in σ . Let σ ′ be the unique
subinterval of σ with one of the following two properties, depending on whether w occurs finitely or infinitely
often in σ :

• If w occurs finitely often in σ , then σ ′ is the finite infix subinterval of σ starting the first state of σ satisfying
w and terminating with the last such state.

• If w occurs infinitely often in σ , then σ ′ is the infinite suffix subinterval of σ starting with the first state of
σ satisfying w .

Let the interval σ ′′ be obtained from σ ′ by in each state setting the variable active to the formula w ’s value in that
state. The construction of σ ′′ ensures that it satisfies valid implication (58)’s antecedent, so it also satisfies the
implication’s consequentA′ ≡ (active � A). Hence, σ ′′ also satisfies the equivalence (A′)wactive ≡ (w � A) because
active and w are state formulas and equivalent in all the states in σ ′′. The equivalence (A′)wactive ≡ (w � A) has
no free instances of active, so σ ′ satisfies it as well. Furthermore, the construction of σ ′ then ensures that for
any formula B , σ ′ satisfies B iff the original interval σ satisfies ¬w U (

(w ∧ B );(w ∧ w©�¬w )
)
. In addition, as

another result of the formula A having no occurrences of the variable active, the interval σ satisfies w � A iff the
interval σ ′′ satisfies w � A because the projection done here ignores any starting and ending portions of σ before
and after σ ′ and σ ′′. Such portions can only contain states falsifying w . Hence, the original interval σ satisfies
the next equivalence:

¬w U (
(w ∧ (A′)wactive); (w ∧ w©�¬w )

) ≡ w � A.

The equivalence’s left-hand operand is the definition of w π A′, so the equivalence is semantically identical to
equivalence (59), and σ therefore likewise satisfies this. �
Proposition 5.2 helps to formally relate |||− and |||′− in a similar manner, but we omit the details. Variants of the
properties of commutativity (28) and associativity (29)–(30) for |||− can also be shown for |||′−.

5.1.2. Second projection-less approach without nval and iframe

Let us now consider how to dispense with the use of the record-variable nval and iframe. Instead of nval, a set
variable pvars is employed to denote the set of program variables’ field-name constants and play a role like that
of dom(nval). There is no need for nval and primed variables because the assignment statement used here, which
is denoted as a :�′′ e, assigns e to the value of the variable a in the second state of the interval using the temporal
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equality (© a) � e rather than the state formula nval [.a] � e or its equivalent a ′ � e. This dispenses with
any need for iframe to do the actual assignment. However, the treatment of suitable versions of enoop and π,
respectively denoted here as enoop′′ and π′′, is more complicated than before.

Below is a definition of the alternative construct :�′′ which uses the next-operator to assign to a single variable:

a :�′ e �̂ (© a) � e ∧ ∀ v ∈ pvars \ {.a}. ((© vˆ) � vˆ)
∧ active ∧ finite ∧ © �(more ⊃ ¬active).

Here the operator © helps assign to a and frame other program variables over the first two (global) states. As
before in the previous Sect. 5.1.1, we use the boolean variable active to indicate when the process is active. Each
process has its own private instance of active. Here are analogous definitions for multiple assignments and the
alternative construct noop′′:

a1, . . . , an :�′′ e1, . . . , en �̂ (© a1) � e1 ∧ · · · ∧ (© an ) � en
∧ ∀ v ∈ pvars \ {a1, . . . , an}. ((© vˆ) � vˆ)
∧ active ∧ finite ∧ © �(more ⊃ ¬active)

noop′′ �̂ ∀ v ∈ pvars. ((© vˆ) � vˆ)
∧ active ∧ finite ∧ © �(more ⊃ ¬active).

Below is the definition of enoop′′:

enoop′′ �̂ (
more ⊃ ∀ v ∈ pvars. ((© vˆ) � vˆ)

)

∧ active ∧ w©�¬active.

As can be seen from this definition, enoop′′ does not restrict its interval to having just one state. This is because
enoop′′, unlike enoop and enoop′, cannot employ nval to instruct iframe to set the value of each program variable v
in the second state, if there is one, to equal v ’s value in the first state. Instead, enoop′′ itself must set the variables’
values in the second state if the interval has more than one.

Here is a valid implication concerning enoop′′ and active:

enoop′′ ⊃ active ∧ w©�¬active.

This implication shows that enoop′′ can be true in an interval with multiple states, so is quite different from the
corresponding valid implications below for enoop and enoop′ which show that enoop and enoop′ each require an
interval having exactly one state:

enoop ⊃ empty

enoop′ ⊃ empty ∧ active.

If pvars � dom(nval), then the following valid formulas relate enoop′′ to enoop and enoop′, respectively:

enoop′′ ∧ ∀ v ∈ dom(nval). (nval[v ] � vˆ) ≡
active ∧

(
more ⊃ ∀ v ∈ dom(nval). (nval[v ] � © vˆ)

)
∧ (enoop; w©�¬active)

(60)

iframe ⊃ enoop′′ ≡ (enoop′; w©�¬active).

Proof We only consider here the proof for the first formula (60) since the second one’s proof is similar. Let
σ be an interval satisfying the first implication’s antecedent iframe ∧ active. There are two cases, depending on
whether σ has just one state or not:

• Only one state: In a one-state interval, enoop′′ just sets active to true. On the other hand, enoop does not con-
trol the boolean variable active but does set nval’s elements to equal to the values of the associated program
variables. Therefore, equivalence (60) compensates by including the formula ∀ v ∈ dom(nval). (nval[v ] � vˆ)
in the equivalence’s left-hand conjunction containing enoop′′ and likewise having active as a conjunct in
the equivalence’s right-hand conjunction.

• More than one state: In an interval withmultiple states, enoop′′ sets active to true in the first state and to false
in the remaining ones. Furthermore, for each program variable mentioned in pvar, enoop′′ itself frames the
variable between interval σ ’s first and second states by setting explicitly the variable’s value in the second
state to remain equal to the variable’s value in the first one. On the other hand, enoop does not control
active, so activemust be explicitly set to true in equivalence (60)’s right-hand conjunction.Moreover, enoop
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sets nval’s elements equal to the values of the associated program variables. Therefore, equivalence (60)
includes this explicitly in the left-hand conjunction containing enoop′′. Furthermore, enoop is only true in
one-state intervals and so cannot itself preserve the values of program variables from the first state of σ to
the second one. Therefore, an explicit conjunct needs to be included here in equivalence (60)’s right-hand
conjunction and is based on iframe’s definition in (35) but unlike iframe only needs to operate between
interval σ ’s first and second states.

�
Any such process A ending with enoop′′ has the valid implication below which does not require active to be

true in the last state of a finite interval satisfying A:

A ⊃ active ∧ (inf ∨ ♦ w©�¬active). (61)

Proof The program for a process A has the form B ; l : enoop′′, for some subprogram B and label l . Here is a
valid implication with B ; l : enoop′′ serving as the antecedent:

B ; l : enoop′′ ⊃ (inf ∨ ♦enoop′′).

The validity of this follows from it being an instance of the next valid implication concerning chop, where C and
C ′ are arbitrary PITL formulas:

C ;C ′′ ⊃ (inf ∨ ♦C ′′).

The chop operator is weak (as already observed in Sect. 2), so it is does not require the formula C to terminate.
Hence, C ′′ might never take place in an infinite interval. Now the definition of enoop′′ contains w©�¬active as a
conjunct. Hence, ♦enoop′′ implies ♦ w©�¬active, so implication (61) is indeed valid. �
Implication (61) is quite different from the corresponding implication below for programs constructed using the
first approach without � already presented in Sect. 5.1.1:

A ⊃ active ∧ fin active.

Here is a valid implication relating :�′ and :�′′, provided that we take sets dom(nval) and pvars to be equal:

iframe ⊃ a :�′ e ≡ a :�′′ e. (62)

Note that the definition of :�′ uses nval, whereas the definition of :�′ instead uses the operator ©. Therefore, we
need to include iframe in the implication to relate the two approaches.

If A1 is a program constructed using the first approach without projection, and A2 an analogous program
constructed using the second approach without projection (e.g., each :�′ inA1 is replaced by :�′′ inA2), then the
following generalisation of valid implication (62) can proved valid by structural induction on the syntax of A1:

iframe ⊃ A1 ≡ A2. (63)

Proof The proof makes use of valid implication (62), and other similar valid implications for other atomic
statements (e.g., to likewise relate noop′ and noop′′) together with induction on the syntax of program A1. �

Valid implication (62) can be combined with the earlier one (54) to relate programs built using :�, noop and
enoop (and so requiring nval and iframe) to those constructs using the second approach without projection (which
completely dispenses with nval and iframe):

(active ∧ fin active ∧ iframe) ⊃ A2 ≡ (active � A0),

where A0 is a program built using constructs such as :� and noop, and A2 is an corresponding program instead
built using :�′′ and noop′′.
Proof Let A1 be the same program as A0 but with constructs such as :�′ and noop′. Validity can be readily
shown by combining an instance of valid implication (54) for programs A0 and A1 and valid implication (63) for
programs A1 and A2. �
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Here are suitable variants of � and |||− for expressing interleaving concurrency by means of the second
approach without the projection operator �, so without the need for either nval or iframe:

w π′′ A �̂ ¬w U (w ∧ Aw
active) (64)

A |||′′w B �̂ (active ∧ w ) π′′ A ∧ (active ∧ ¬w ) π′′ B . (65)

Definition (64) of π′′ omits the subformula w ∧ w©�¬w found in Definition (56) of π because this aspect of the
behaviour of π in the first projection-less approach is instead the responsibility of enoop′′ to enforce in the second
projection-less approach as explained above regarding the definition of enoop′′.

Remark 5.3 Thevariablepvars usedhere canalsobe employed insteadofnval toobtain avariant of ourprojection-
based framework. Each program variable a has an associated primed variable a ′ as well as a name constant .a.
The set pvars contains all the program variables’ name constants. The value of the variable a can alternatively be
accessed via the name constant .a using the dereferencing operation .aˆ. The operation prime(.a) takes the name
constant .a for a and yields a name constant .a ′ for the corresponding primed variable a ′. Hence, prime(.a )̂ can
be used to access the value of the primed variable a ′. Here is a semantics for :� using this convention:

a :� e �̂ skip ∧ (.a )̂ � e ∧ ∀ v ∈ pvars \ {.a}. (prime(v )̂ � vˆ
)

5.2. Projection and interleaving with non-fairness

In this section we describe two ways to represent non-fair interleaving of processes. The first one is a modification
of the approach in Sect. 5.1 on formalising interleaving without projection. The second involves � and a variant
of |||−.

Recall from Sect. 4.4 that the programming semantics used there provides a form of fairness at the statement
level since a process is never denied the chance to execute an atomic statement such as :� or noop. Sometimes it
is useful to dispense with this and instead allow for the possibility of non-fair scheduling in which a process can
get completely ignored after a certain time point.

We now discuss one way to do this in which assignment statements and noops are the possible starting points
of starvation. First of all, the following non-fair variants of the projection-less constructs :�′, noop′ and enoop′
are introduced:

a :�′
nf e �̂ (inf ∧ �¬active) ∨ a :�′ e

noop′
nf �̂ (inf ∧ �¬active) ∨ noop′

enoop′
nf �̂ (inf ∧ �¬active) ∨ enoop′.

As these definitions show, each of the non-fair atomic statement constructs has two modes of operation in order
for the construct to appropriately determine whether it is scheduled to run or has been timed out from now
on. The behaviour of the control variable active determines which mode is selected. Either active can be false
infinitely long (inf ∧ �¬active) or each corresponding fair atomic statement’s definition requires active to true
in the statement’s initial state. Unlike the earlier constructs such as :� and :�′, the non-fair constructs here can
therefore cause the process to cease functioning normally. It is no longer active, and any further statements get
completely ignored because they can occur only after the precedingweak chop operandwhich does not terminate.

The definition of the non-fair construct for multiple assignments follows naturally:

a1, . . . , an :�′
nf e1, . . . , en �̂ (inf ∧ �¬active) ∨ a1, . . . , an :�′ e1, . . . , en .

The remaining sequential constructs in Table 2 can be used unchanged.
Here is a valid implication relating a :�′ e with a :�′

nf e in a finite interval:

finite ⊃ a :�′
nf e ≡ a :�′ e.
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Earlier in (56) and (57),we introduced variantsπand |||′− of� and |||−, respectively, for expressing concurrency
without the projection operator �. The versions below seem suitable here:

w πnf A �̂ (haltw );
(
(w ∧ Aw

active);(w ∧ w©�¬w )
)

A ||||′w B �̂ (active ∧ w ) πnf A ∧ (active ∧ ¬w ) πnf B .

Unlike its fair counterpart w π A in (56), the formula w πnf A permits w to remain forever false. This happens
when the associated process never gets scheduled to run, and the formula w in haltw is always false. In contrast,
the (strong) until-formula in (56) excludes such behaviour there.

Let us now consider versions of the programming constructs in Table 2 for use with non-fairness and the
projection operator �. Here are non-fair versions of the original projection-based constructs :�, noop and enoop:

a :�nf e �̂ (inf ∧ �¬active) ∨ (active ∧ a :� e)
noopnf �̂ (inf ∧ �¬active) ∨ (active ∧ noop)
enoopnf �̂ (inf ∧ �¬active) ∨ (active ∧ enoop)

The constructs :�, noop and enoop (unlike their counterparts :�′, noop′ and enoop′ defined earlier) do not set
the control variable active to true, so the definitions of the non-fair versions :�nf , noopnf and enoopnf need to
explicitly do this.

Before presenting a suitable non-fair variant of the interleaving operator |||− for use with such constructs,
we need to look at how to use � to express non-fair projected behaviour. Consider the following instance of
projection with �:

(p ∨ (inf ∧ �¬p)) � A. (66)

The left-hand LTL subformula of this � construct is equivalent to the LTL formulas below:

¬p ⊃ (inf ∧ �¬p) p ∨ (¬p ∧ �(¬p ⊃ © ¬p)
)

p ∨ �(¬p ⊃ © ¬p).

The key difference between the �-formula (66) and p � A is as follows: If p eventually becomes continuously
false for an infinite number of states in the global interval, then the projected interval seen in the right-hand
operand of (66) includes all of these global states. This projected interval never includes any other global states
in which p is false. Therefore, the following �-formula is satisfiable:

(p ∨ (inf ∧ �¬p)) � (inf ∧ ♦�¬p).

In contrast, the projected interval for p � A never sees any global states in which p is false. Furthermore, the
following �-formulas are not satisfiable:

p � ♦¬p (p ∨ (inf ∧ �¬p)) � (finite ∧ ♦¬p)
(p ∨ (inf ∧ �¬p)) � (inf ∧ �♦p ∧ ♦¬p).

The first two show the contrast between projection using just p and using p ∨ (inf ∧ �¬p). In the first case, the
projected interval never has any states satisfying ¬p, but in the second one, such states can indeed occur but only
if the projected interval is itself infinite. The third sample formula is unsatisfiable because when the subformula
p ∨ (inf ∧ �¬p) is used for projecting, some projected state can falsify p iff there are an infinite number of such
states which form a suffix of the projected interval (and the global interval as well). Therefore, if p is infinitely
often true in the projected interval, no such infinite suffix of states exists with p false in all of them. Hence, p
cannot be false anywhere in the projected interval if p is true infinitely often in it.

Here is an instance of (66) to help further illustrate its behaviour:

(p ∨ (inf ∧ �¬p)) � �q . (67)

An interval σ satisfying this has all of the following hold:
• If σ is finite, then p is true in σ ’s last state.
• Either p is somewhere true in σ or some suffix subinterval of σ (possibly σ itself) has infinite length with

p being false in all states of the suffix.
• Every state of σ that has p true also has q true.
• If σ has infinite length, then for every suffix in which p is always false, q is true in all of the suffix’s states.
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As indicated above, there are alternative formulaswhich can be used on the left of� instead of p ∨ (inf ∧ �¬p)
to achieve exactly the same non-fair behaviour, while simultaneously giving a somewhat different notational
perspective. For example, the subformula inf ∧ �¬p can be expressed as shown below:

¬p ∧ �
(¬p ⊃ © ¬p

)
.

Therefore, the �-formula (66) is semantically equivalent to the following one which replaces �’s left operand
p ∨ (inf ∧ �¬p) with the semantically equivalent formula ¬p ⊃ (inf ∧ �¬p):

(¬p ⊃ (inf ∧ �¬p)) � A.

The non-fair �-formula (66) has the following simple property:

|� (p ∨ (inf ∧ �¬p)) � ♦¬p ⊃ (p ∨ (inf ∧ �¬p)) � ♦(inf ∧ �¬p). (68)

Implication (68) states that if a projected interval obtained obtained using (p ∨ (inf ∧ �¬p)) � ♦¬p satisfies
¬p in some state, then this projected interval must be infinite and eventually have p false in all states of some
(likewise infinite) suffix subinterval.

Proof of validity of implication (68). Let σ be some interval, and let σ ′ the interval resulting from projecting
from σ using the formula p ∨ (inf ∧ �¬p). Now if σ satisfies implication (68)’s antecedent, then the projected
interval has some state s satisfying ¬p. The left-hand operator of � in implication (68)’s antecedent ensures that
interval σ ’s suffix starting with this state s satisfies the projection formula p ∨ (inf ∧ �¬p). Therefore, s ’s global
suffix in σ is infinite and all the global states in this suffix falsify p. Hence, the interval σ ’s suffix starting at
each of these successor states likewise satisfies the conjunction inf ∧ �¬p, so also satisfies the left-hand operator
p ∨ (inf ∧ �¬p) of � in both of implication (68)’s �-subformulas. It follows from this that all of these states
are included in the projected interval σ ′, so it is infinite and has as an infinite suffix satisfying the conjunction
inf ∧ �¬p. Therefore, σ ′ itself satisfies the LTL formula♦(inf ∧ �¬p), and the global interval σ similarly satisfies
implication (68)’s consequent. Hence, implication (68) is valid. �
The following valid formulas containing the universal projection operator show how the test p ∨ (inf ∧ �¬p)
affects the projected interval:

(p ∨ (inf ∧ �¬p)) �u �(p ∨ (inf ∧ �¬p)) (p ∨ (inf ∧ �¬p)) �u �(¬p ⊃ © ¬p).

A process projected in this way which is non-fairly ignored eventually sees an infinite sequence of states each
with ¬p. Before then, p is true in every projected state. Therefore, within the projected time it is possible that p is
always true or eventually continuously false infinitely long, but, as already noted, there are never finite projected
sequences of states in which p is somewhere false.

As the next proposition indicates, non-fair projection is compatible with stutter invariance:

Proposition 5.4 (Non-fair projection and stutter invariance) If A is a stutter-invariant formula, then so is the �-
formula (p ∨ (inf ∧ �¬p)) � A.

Proof Observe that the left-hand operand of the �-formula can be expressed as an equivalent disjunction
separating between behaviour in finite time and infinite time:

(finite ∧ p) ∨
(
inf ∧ (p ∨ �¬p)

)
. (69)

The two subformulas p and p ∨ �¬p are both in LTL−©, so disjunction (69) is stutter-invariant by Proposi-
tion 3.10.We already assume that the formulaA is stutter-invariant, so by Proposition 3.14 the original�-formula
is as well. �

We already mentioned in Sect. 3 that the valid equivalences in (15)–(17) for eliminating an LTL construct
permit the left-hand operand of � to be an arbitrary formula, but the last two valid equivalences in (18) for
chop and chop-star are not sound if an arbitrary formula is used on the left-hand side of � instead of the state
formula w . The following proposition is a pleasant surprise showing valid elimination equivalences for chop and
chop-star in non-fair �-formulas:

Proposition 5.5 The equivalences below, which are variants of the valid ones in (18) for eliminating � but instead
with the disjunction p ∨ (inf ∧ �¬p) on the left side of �-formulas, are themselves valid:

(p ∨ (inf ∧ �¬p)) � (A;B ) ≡ (
(p ∨ (inf ∧ �¬p)) � A

)
;
(
p ∧ (p ∨ (inf ∧ �¬p)) � B

)
(70)

(p ∨ (inf ∧ �¬p)) � (A∗) ≡ (halt p);
(
p ∧ ((p ∨ (inf ∧ �¬p)) � A ∧ fin p)∗; w©�¬p

)
. (71)



734 B. Moszkowski, D. P. Guelev

Hence, these equivalences can be used with the other such equivalences (15)–(17) to eliminate any non-fair
�-formulas from a PITL+� formula.

Proof Observe that the following implication about finite time is valid for any formula C :

finite ⊃ (p ∨ (inf ∧ �¬p)) � C ≡ p ∧ (p � C ) ∧ fin p. (72)

The formula (p ∨ (inf ∧ �¬p)) � (A;B ) is expressible as a disjunction separating between the two cases when
the subformula A does terminates and when it does not (i.e., (finite ∧ A);B and inf ∧ A):

(
finite ∧ p ∧ (p � A) ∧ fin p

)
;
(
(p ∨ (inf ∧ �¬p)) � B

)
∨

(
inf ∧ (p ∨ (inf ∧ �¬p)) � A

)
. (73)

The first operand of the chop formula in (73) is then equivalent [using (72)] to finite ∧ (p ∨ (inf ∧ �¬p)) � A. The
two disjuncts are then combined using properties of chop for finite and infinite time to obtain the next formula:

(
(p ∨ (inf ∧ �¬p)) � A ∧ fin p);

(
(p ∨ (inf ∧ �¬p)) � B

)
.

This is equivalent the one below which has the effect of fin p in the chop’s left operand moved over to the right
operand:

(
(p ∨ (inf ∧ �¬p)) � A

)
;
(
p ∧ (p ∨ (inf ∧ �¬p)) � B

)
.

Hence, equivalence (70) is indeed valid. The proof for (71) involving chop-star is similar because all but the last
of any iterations are in finite time which permits using valid implication (72). �

We now define a version of |||− for non-fairness using the projection operator �:

A ||||p B �̂ (p ∨ (inf ∧ �¬p)) � Ap
active ∧ (¬p ∨ (inf ∧ �p)) � B¬p

active.

As can be seen here, the interleaving of two processes is quite similar that involving the operator |||− but needs
to employ the variable active to deal with non-fairness.

Here is a valid implication showing the equivalence of fair and non-fair projection in both finite intervals and
in suitable infinite intervals where the fair projection operator’s left operand p is always eventually true in the
global interval:

(inf ⊃ �♦p) ⊃ p � A ≡ (p ∨ (inf ∧ �¬p)) � A. (74)

The implication’s antecedent inf ⊃ �♦p ensures that the process represented by subformulaA is always eventually
scheduled even if its local projected interval is infinite. This is only needed for infinite time because in finite-time
intervals (where the semantics of � guarantee fair scheduling here) the disjunct inf ∧ �¬p is false and hence
ignored, so the left-hand operands of the two �-subformulas in (74) are semantically equivalent.

5.3. Synchronous transitions and communication in terms of �

Binary |||, as defined in (32), only captures interleaved parallel composition of processes which share no steps
and therefore synchronize exclusively through shared variables. A variant |||H of ||| with a set of actionsH which
are shared between the operands as an additional parameter on labelled transitions systems is considered in
[BK08, p. 48]. In this section we first suitably extend the PITL definition of ||| to achieve the expressive power
of |||H .4 Then we illustrate the use of |||H by extending our set of PITL+�-defined imperative constructs to
include CSP-style communication, or, equivalently, communication over channels of capacity 0 as in Promela,
the input language of the SPIN model checker [Hol03]. The implementation follows the readiness model for
communication of Olderog andHoare [OH83, OH86], with synchronous transitions taking place as soon as both
sides are ready to communicate. Interestingly, synchronous transitions are employed in the semantics of the await
construct of RGITL too, which is otherwise based on interleaving. Blocked processes perform (idle) transitions
in parallel with non-blocked ones until eventually they become enabled again [STE+14]. Finite H are sufficient
to model CSP-style communication in case the data transmitted is from a finite domain, or in the degenerate case
of communication for the sake of synchronization only, with no data transmitted.

4 Note that the middle operandH ofA |||H B is the set of synchronous transitions, and should not be confused with the p of |||p as defined
in (27).
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In [BK08], |||H operates on labelled transition systems and H is the set of synchronized transitions. In our
setting, the samemeaning for |||H can be achieved by attaching the action names a of labelled transitions s a−→ s ′

to the respective destination states s ′. This means that a s a−→ s ′ is represented as the set of unlabelled transitions
〈s, b〉 → 〈s ′, a〉, where b can be any action. Furthermore, action names are added to the propositional vocabulary
and 〈s, a〉 |� b is defined to be true iff b � a. Consequently, σ |� © a means that the transition from σ 0 to σ 1 is
labelled by a, and H can be represented by the state formula

∧

a∈H
a, which, by abuse of notation, we call H too.

In this setting we can put

A1 |||H A2 �̂ ∃p. ((H ∨ p) � A1 ∧ (H ∨ ¬p) � A2).

In words, states which are reached by shared actions appear in the projected intervals for both A1 and A2, which
means that both A1 and A2 can impose conditions on such states.

Next we show how |||H can be used to define parallel composition for processes with communication over
channels. Given channel c, c?x and c!e are implemented in terms of two atomic propositions rc and wc , which
indicate readiness to read from and write to c, respectively, and a variable vc for the datum to be transmitted.
Given a process A, we write I(A) and O(A) for the sets of A’s input and output channels, respectively. Channels
used for internal communication between A’s parallel components are excluded from I(A) and O(A), that is,

I(A1 ||| A2) � (I(A1) \ O(A2)) ∪ (I(A2) \ O(A1)), O(A1 ||| A2) � (O(A1) \ I(A2)) ∪ (O(A2) \ I(A1)),

and I(A) ∩ O(A) � ∅ is required for A to be well-formed. Given some sets of channels I and O , we write

notReady(I ,O) �̂
∧

c∈I

(
¬r ′

c ∧ (w ′
c ≡ wc)

)
∧

∧

c∈O

(
¬w ′

c ∧ (r ′
c ≡ rc) ∧ v ′

c � vc

)
.

to express that none of the channels from I and O is ready for input or, respectively, output. Furthermore, we
write

const(X ,C ) �̂
∧

x∈X
x ′ � x ∧

∧

c∈C

(
(w ′

c ≡ wc) ∧ (r ′
c ≡ rc) ∧ v ′

c � vc

)
.

to express that the variables fromX remain unchanged, and so do the atomic propositions and the variables that
implement the channels from C .

Let V and C stand for the set of all process variables and channels in use, respectively. Let Ii � I(Ai ) and
Oi � O(Ai ), i � 1, 2, for the sake of brevity. We define occurrences of c?x and c!e in Ai as follows:

c?x def� (const(V ,C \ (Ii ∪ Oi )) ∧ notReady(Ii \ {c},Oi ) ∧ ¬wc ∧ ¬w ′
c ∧ ¬rc ∧ r ′

c ∧ skip);
(const(V ,C \ (Ii ∪ Oi )) ∧ notReady(Ii \ {c},Oi ) ∧ rc ∧ r ′

c ∧ ¬wc ∧ ¬w ′
c ∧ skip)∗;

(const(V \ {x },C \ (Ii ∪ Oi )) ∧ notReady(Ii \ {c},Oi )
∧ rc ∧ wc ∧ ¬r ′

c ∧ ¬w ′
c ∧ x ′ � vc ∧ skip)

∨
(const(V \ {x },C \ (Ii ∪ Oi )) ∧ notReady(Ii \ {c},Oi )

∧ wc ∧ w ′
c ∧ ¬rc ∧ r ′

c ∧ x ′ � vc ∧ skip);
(const(V ,C \ (Ii ∪ Oi )) ∧ notReady(Ii \ {c},Oi ) ∧ rc ∧ wc ∧ ¬r ′

c ∧ ¬w ′
c ∧ skip)

c!e def� (const(V ,C \ (Ii ∪ Oi )) ∧ notReady(Ii ,Oi \ {c})
∧ ¬rc ∧ ¬r ′

c ∧ ¬wc ∧ w ′
c ∧ v ′

c � e ∧ skip);
(const(V ,C \ (Ii ∪ Oi )) ∧ notReady(Ii ,Oi \ {c}) ∧ wc ∧ w ′

c ∧ ¬rc ∧ ¬r ′
c ∧ v ′

c � e ∧ skip)∗;
(const(V ,C \ (Ii ∪ Oi )) ∧ notReady(Ii ,Oi \ {c}) ∧ wc ∧ rc ∧ ¬w ′

c ∧ ¬r ′
c ∧ skip)

∨
(const(V ,C \ (Ii ∪ Oi )) ∧ notReady(Ii ,Oi \ {c}) ∧ rc ∧ r ′

c ∧ ¬wc ∧ w ′
c ∧ v ′

c � e ∧ skip);
(const(V ,C \ (Ii ∪ Oi )) ∧ notReady(Ii ,Oi \ {c}) ∧ wc ∧ rc ∧ ¬w ′

c ∧ ¬r ′
c ∧ skip).
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Furthermore, to take account of the use of channels, the definitions of assignment and iframe change as follows:

x1, . . . , xn :� e1, . . . , en �̂ notReady(Ii ∪ Oi ) ∧ const(V \ {x1, . . . , xn},C \ (Ii ∪ Oi )) ∧
n∧

i�1
x ′
i � ei

iframe �̂ �(
∧

x∈V
x ′ � © x ∧

∧

c∈I1∪I2∪O1∪O2

w ′
c ≡ ©wc ∧ r ′

c ≡ © rc ∧ v ′
c � © vc).

Informally c?x first indicates readiness for input by setting rc . Then it spins on wc until wc , which indicates
readiness of the partner process for output, is set. As soon as this happens, the datum to be transmitted is copied
form vc to x , and the readiness variables are cleared. The second disjunct is about the possibility thatwc is already
set when c?x starts execution. Then communication proceeds in the same manner without delay. Of course, if
the partner process never becomes ready, spinning on wc continues indefinitely. Complementarily, c!e first copies
the value of e to vc and sets wc . Then it spins on rc until that becomes true indicating that the datum has been
received. Finally readiness variables are cleared. The second disjunct is about communication without delay, in
case rc is set from the beginning or the execution of c!e.

Now parallel composition of processes which communicate along 0-capacity channels can be defined by
putting

A1 ||| A2 �̂ A1 |||H A2, where H �̂
∨

c∈I1∩O2∪I2∩O1

rc ∧ wc .

In words, steps of A1 and A2 in which both processes are ready to communicate through some shared channel
are synchronized. Synchronizing steps at which wc ∧ rc holds between two processes with occurrences of c!e
and c?x , respectively, guarantees that vc has the correct value of the e from c!e at the time it is copied to the x of
c?x . Expectedly A1 |||H A2 boils down to the usual definition (32) for A1 and A2 which do not communicate.

5.4. Comparison of state projection with time-step projection

Somewhat after � was introduced in [HMM83, Mos83, MM84], another binary ITL operator was proposed in
[Mos86] (see also [Mos95, KM08]) for what can be referred to as time-step projection. It is alternatively written
as proj, � or \\. Unlike for �, temporal connectives almost always occur in both operands of proj. For finite σ ,

σ |� A proj B iff there exists n ≥ 0 and i0 � 0 < i1 < . . . < in � |σ| such that
σ ik . . . σ ik+1 |� A, for each k < n, and σ i0 . . . σ in |� B .

Intuitively, A defines time steps and B is interpreted over the interval formed of the endpoints of a sequence of
such steps that links the endpoints of the reference interval. The formula A∗ is expressible as A proj true, so it
expresses the mere possibility to represent the reference interval as a sequence of time steps specified by A. Note
that an interval may admit more than one suitable partitioning. The ability for proj to express chop-star yields
that even if A and B are stutter-invariant formulas (as discussed earlier in Sect. 3.2), A proj B might not have
this property. An example is true proj false, which is equivalent to the formula empty and so not stutter-invariant
(see Sect. 3.2).

The definition of proj generalises to infinite time by allowing an infinite number of adjacent finite subintervals.
The validity of the implication

inf ⊃ A proj true ≡ (finite ∧ A)∗

shows how the operator proj can express chop-omega.
A primary application of proj is to define coarser time granularities, and it is included in the Tempura pro-

gramming language for such purposes [Mos86], whereas � is best fit for interleaving concurrency. A variant of
proj for projecting from real to discrete time has been studied in [He99, Gue04a]. The notation used is slightly
different: a projection formula’s syntax there has the form A \\ B instead of A proj B .

When its left operand is a state formula, the projection operator � and, consequently, parallel composition
|||−, can be expressed using proj:

|� w � A ≡ ¬w U (
w ∧ ((© haltw ) proj A); w©�¬w

)
.
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Conversely, proj can be defined using � and propositional quantification, which, as noted in Sect. 2, does not
add expressiveness to PITL:

|� A proj B ≡ ∃p. (p ∧ (A ∧ finite ∧ © halt p)∗ ∧ p � B ),

where the propositional variable p does not occur in A or B .

6. Related work

6.1. Projection in the duration calculus

Dang [Dan99] proposed for the Duration Calculus (DC) [ZHR91, ZH04, OD08] a real-time version of the
projection operator � written / to reason about interleaving concurrency in hybrid systems. (Note that / reverses
the two operands’s order from that of other projection operators such as �, proj and \\ already discussed, but
the sampling operator @ mentioned shortly in Sect. 6.2 does this as well.) An operator involving global time is
also defined by Dang. The definition does not use projection, although some connections to it are demonstrated.
Guelev and Dang [GD02] further investigated this topic and other aspects of /. However, the approach does
not define a simple nestable propositional three-operand concurrency operator such as |||− and |||′− (and their
two-operand variants) or look at various associated valid properties presented here. A complete axiomatisation
of DC with / is given in [GD04]. In [Gue04b], / is used to specify that pairs of corresponding flexible non-logical
symbols from isomorphic predicate ITL vocabularies have the samemeaning in projected subintervals. It is shown
that this entails the existence of interpolants for implications between formulas written in the two vocabularies as
in Craig’s classical interpolation theorem.

6.2. Other kinds of temporal projection

Several research groups have proposed and studied other forms of temporal projection for use with extensions
of ITL such as Projection Temporal Logic [Dua96, DKH94, DYK08] and RGITL [BBN+10, BSTR11]. RGITL,
which combines Jones’ Rely-Guarantee Conditions [Jon83] with ITL, assumes interleaving with projected time.
It has concurrency operators akin to ||| but defined without using an explicit projection operator. These are, as
the authors acknowledge, much more complicated to handle. RGITL has been used extensively to reason about
interleaved concurrent programs in the KIV proof verifier. Maybe � can help elucidate RGITL’s operators.

The originators of both RGITL and Projection Temporal Logic acknowledge that our book [Mos86] on
representing sequential and concurrent programs directly in ITL has been a source of inspiration. For example,
KIV proof verifier can symbolically execute concurrent programs expressed in RGITL in a manner partially
influenced by the methods suggested in [Mos86] for executing programs suitably expressed in ITL. It is no
surprise that the framework we present here for expressing concurrent programs with and without � likewise
builds on this.

Our new approach aims to avoid as much as possible the need to introduce additional primitive temporal
constructs (such as RGITL’s branching-time constructs) and assumptions about time. For example, reasoning in
RGITL about an individual process involving both its own next step and the system’s (environment’s) next step
uses for each program variable x two additional primed variants x ′ and x ′′ associated with these. Of course, our
purist approach (both with and without a projection operator) will have some limitations (e.g., it might indeed
be incompatible with RGITL’s overall goals), but we would like to thoroughly research and assess the situation
in future case studies and comparisons involving a range of concurrent applications.

Jones et al. [JHC15] observe that RGITL could perhaps be quite attractive (‘seductive’ in their words),
although it might be too expressive, particularly for an unskilled person. On the other hand, recent experience by
Newcombe et al. [NRZ+15] at AmazonWeb Services with successfully specifying and verifying subtle industrial-
strength concurrent algorithms using Lamport’s TLA+ [Lam02] supports the view that logics which can equally
express algorithms and their correctness properties are desirable, and can with care bemade sufficiently accessible
to significantly benefit nonspecialists. More evaluation and comparison will be needed to see whether powerful
and general interval-based frameworks are overkill in relation to other approaches specifically developed for the
required purposes.
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Eisner et al. [EFH+03, EF14] have developed LTL@, which adds a clock operator to LTL to deal with time
granularities in hardware systems. This construct is included in the industrial standards Property Specification
Language (PSL, IEEE Standard 1850 [IEE10]) [EF06] and SystemVerilog Assertions (SVA, in IEEE Standard
1800 [IEE12]) [CDHK15]. The clock operator adds succinctness but not expressiveness and is its own dual. It
requires modifying the semantics of formulas. In particular, the definition of |� in LTL@ includes not just a state
sequence but also a clock formula, which can be any boolean formula. The semantics of a formula A is described
using σ, c |� A instead of σ |� A, where c is such a clock formula. In what follows, we employ three notations
below to clearly distinguish between the different logics LTL, LTL+� and LTL@:

σ |�LTL A σ |�LTL+� A σ, c |�LTL@ A.

Note that for any LTL formula, the first two of these are actually equivalent. Let p and q be two propositional
variables. LTL@ defines σ, p |�LTL@ q to hold iff p is true somewhere in σ and the first such state also satisfies q .
More generally, for any purely LTL formula A (i.e., one without instances of @ or �), the LTL@ formula A@p
acts like p � A in LTL+�:

σ, p |�LTL@ A iff σ |�LTL+� p � A.

However, in LTL@ the original state sequence is still completely accessible within A, as is further explained
shortly. The LTL@ temporal formula A@c1 permits evaluating the subformula A with a clock c1 determining
which states to sample:

σ, c |�LTL@ A@c1 iff σ, c1 |�LTL@ A.

For instance, if A is of the form B@true, then the following chain-reasoning holds if B itself does not contain
any @-constructs:

σ, c |�LTL@ B@true iff σ, true |�LTL@ B iff σ |�LTL B .

Hence, the evaluation of B here ignores the clock c. It follows that the next valid LTL@ equivalence concerning
two clocks c1 and c2 holds for any LTL@ formula A:

(A@c1)@c2 ≡ A@c1.

In contrast, the PITL+� formulas p � A and q � (p � A) have quite distinct semantics. As a consequence, the
next equivalence is not valid in PITL+�:

q � (p � A) ≡ p � A.

The developers of LTL@ point out in [EFH+03, p. 858] that the use of the term ‘projection’ for the clock operator
@ in LTL@ and other standards which have adapted @ is imprecise since states in between the projected ones
are still fully accessible (unlike for �):

Actually, referring to a projection of the path is not precisely correct, as we allow access to states in between
consecutive states of a projection in the event of a clock switch. However, the word ‘projection’ conveys
the intuitive function of the clock operator in the case that the formula is singly-clocked. Use of the word
‘projection’ when describing the clocks of Sugar2.0 and ForSpec . . . is similarly imprecise.

Indeed, their book [EF06] onPSLmakes nomention of the term ‘projection’ and instead uses ‘sampling’, but their
forthcoming book chapter [EF14] does refer to ‘projection’ a few times. A similar construct called the sampling
operator is found in temporal ‘e’ (part of IEEE Standard 1647 [IEE11] and influenced by ITL [Mor99, HMN01]).

The operator |||− is related to the shuffle operator investigated byGischer [Gis81,Gis88] for expressing regular
languages involving interleaving. Such an interleaving operator is available in the markup language Standard
Generalized Markup Language (SGML) [ISO86] as well as in OWL-S, which is used in semantic markup for Web
Services [OWL04]. Gelade [Gel10] and Peng et al. [PCM15, PC15] have recently analysed regular expressions
extended with interleaving.

Katz and Peled introduced Interleaving Set Temporal Logic (ISTL) [KP87, KP90, KP92] to reason about
distributed computations. The logic is related to branching time temporal logic and uses sets of triples to model
events as branching structures capturing all interleavings. However, there is no interleaving operator such as |||−.
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6.3. Work relating stuttering invariance to regular expressions and interval temporal logics

Dax et al. [DKL09] have developed specification languages for stutter-invariant properties naturally associated
with regular and ω-regular languages (LTL only expresses star-free languages, as noted above in Sect. 3.2).
One of the specification languages is intended to be a practical variant of conventional regular expressions.
Another is a variant of the core of the industrial standard Property Specification Language (PSL, IEEE Standard
1850 [IEE10, EF06]), and therefore called Stutter-Invariant PSL. The conventional concatenation and Kleene-
star constructs for regular expressions do not ensure stutter invariance. Alternatives are used which instead fuse
strings. For example, one of these is an analogue of the derived PITL construct chop-plus (A+ denotes A;A∗).

Yang andDuan [YD10] discuss the use of stutter invariance in a propositional version of Projection Temporal
Logic (itself already mentioned above in Sect. 6.2) and present a sublogic called Stutter-invariant Propositional
Projection Temporal Logic (PPTLst). Their notion of stutter invariance permits a finite state sequence and an
infinite state sequence to be stutter-equivalent, so differs from the convention we discuss above in Definition 3.7.
Hence, our convention of regarding the constructs finite and inf as well as formulas of the form finw to all
be stutter-invariant would not apply. Furthermore, Yang and Duan employ PPTLst as a specific syntactic class
of stutter-invariant formulas for specifying properties unlike our approach of relating various naturally arising
LTL formulas with © operators equivalent formulas in LTL−©. No mention is made of Peled and Wilke’s
Theorem 3.11 [PW97] that all stutter-invariant LTL properties can be expressed in LTL−©.

Conclusions

We have explored new uses of the oldest known projection operator � for ITL and also its relationship with
other temporal constructs, in particular briefly examining �’s uncanny resemblance to the standard binary
until-operator U in certain respects concerning expressiveness. This and the natural links to stutter invariance
suggest that the projection operator �, especially in combination with LTL, could have some practical value in
model checking. In future work, we would like to further our understanding of �’s expressiveness, apply our
projection-based approach to larger concurrent applications and investigate the possibility for tool support. This
research could include a more extensive evaluation of the merits of the approaches presented here for formalising
concurrency in either LTL or ITL with or without projection, and also with and without the assumption of
fairness. A systematic evidence-based comparison of the standard transition-based style of reasoning commonly
advocated for LTLand a less familiar idiombased the interaction between global time and the projected local time
in which individual interleaved processes operate seems worthwhile. This requires commitment and investment
but could yield long-range benefits. Our plans furthermore include exploring formal connections with RGITL
as well as clocked-based logics such as LTL@ (all mentioned in Sect. 6).
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A. Proofs of correctness for Peterson’s algorithm

This appendix contains proofs concerning mutual exclusion and liveness for the version of Peterson’s algorithm
already presented in Fig. 2 in Sect. 4.7. The presentation first considers some relevant ways to reason about
assignments to the program variables, then looks at mutual exclusion, and finally deals with liveness. Another
variant of Peterson’s algorithm without labels is then briefly examined.

A.1. Reasoning about assignments to the variables flagi and turn

We later show how to prove the safety (mutual exclusion) and liveness properties (40) and (45). In preparation for
this, it is necessary to establish the following properties regarding the behaviour of the program variables flag0,
flag1 and turn:

• Each process Petersoni never changes the value of the variable flag1−i , that is, the other process Peterson1−i

exercises exclusive control to alter flag1−i .
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• In contrast to the handling of flag0 and flag1, both processes can alter the variable turn. However, each
process Petersoni always restricts itself to either leaving turn unchanged or assigning it the value 1 − i .

The following valid formulas are a first step towards establishing these properties:

|� Petersoni ⊃ �(flag′
1−i � flag1−i ) (75)

|� Petersoni ⊃ �(turn′ ∈ {turn, 1 − i}). (76)

For example, the first of these expresses that process Petersoni maintains flag′
1−i equal to flag1−i , so that when

framing is done in global time using iframe, the value of flag1−i is indeed never changed by Petersoni . The
implication’s validity can be seen by sequentially composing similar valid formulas about the various statements
in Petersoni .

Implications (75) and (76) about each process operating in its local projected time are then readily adapted
to obtain the following valid ones concerning global time:

|� (pid � i ) � Petersoni ⊃ �(pid � i ⊃ flag′
1−i � flag1−i ) (77)

|� (pid � i ) � Petersoni ⊃ �(pid � i ⊃ turn′ ∈ {turn, 1 − i}). (78)

The next two valid implications concern framing achieved by iframe in global time and build on the valid
implications (77) and (78), respectively:

|� iframe ∧ (pid � i ) � Petersoni ⊃ �
(
more ∧ pid � i ⊃ (© flag1−i ) � flag1−i

)
(79)

|� iframe ∧ (pid � i ) � Petersoni ⊃ �
(
more ∧ pid � i ⊃ (© turn) ∈ {turn, 1 − i}). (80)

We now show how to prove the validity of implication (79):
Proof Recall that the valid implication (77) given above concerns how the process Petersoni never alters the
program variable flag1−i in global time, so the equality flag′

1−i � flag1−i holds in all global states where pid � i .
It is not hard to then check the validity of the next implication which relates the values of flag′

1−i and © flag1−i
in global time in states with pid � i when framing is performed:

iframe ∧ �(pid � i ⊃ flag′
1−i � flag1−i ) ⊃ �(more ∧ pid � i ⊃ (©flag1−i ) � flag1−i ).

The combination of implication (77) together with this one using simple propositional reasoning then yields the
validity of implication (79). �

We now consider some general properties expressible in LTL+� as valid implications and relating global and
local framing, initialisation and interference (so by no means limited to Peterson’s algorithm). The properties in-
volve issues such as the following two, which themselves have associated valid implications concerning convenient
sufficient conditions and presented in Propositions A.1 and A.2, respectively:

• Noninterference with a program variable’s initial value: Here we want to ensure that under suitable circum-
stances a program variable’s starting value in the first global state is preserved until the first local state of
the appropriate process which relies on this initialisation. For example, in Peterson’s algorithm the starting
global state initialises the flagi to 0 for each process Petersoni . It is necessary to show that when the first
local projected state of the process Petersoni takes place, which can perhaps occur sometime much later,
that the other process Peterson1−i has not in the meantime interfered with flagi ’s value by altering it.

• Noninterference with a program variable’s value at any time: If a process never attempts to alter a program
variable, then assignments by other processes are not subject to interference by this process. This can help
permit a process to view a variable framed in global interval as also being framed in the local interval of that
process. For example, as already discussed above, each process Petersoni never alters the variable flag1−i ,
so the other process Peterson1−i can regard that variable as being framed in Peterson1−i ’s local interval. It
is then easier to reason in projected time about the interference-free behaviour of Peterson1−i and flag1−i .

For these purposes, it is useful at this stage to define a derived binary operator istable expressing that whenever
the left-hand operand is true, the value of the right-hand operator does not change between the current and next
states:

w1 istable w2 �̂ �
(
(more ∧ w1) ⊃ (©w2) ≡ w2

)
Interleaving Stability

Consequently, when w1 istable w2 holds, any state with w1 true does not interfere with w2’s value and passes it on
to the next state. For example, the formula (pid � i ) istable flag1−i expresses that whenever pid � i , the value of
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flag1−i remains stable between the present state and the one immediately following it. One benefit of istable is that
it can make formulas more concise. Another advantage is that w1 istable w2 is easily shown to be stutter-invariant
by an analysis of its negation.

The next valid implication (81) states the following: Suppose the initial value of a program variable a in the
first global state equals some constant j , and also that a is not altered between each state satisfying the state
formula ¬p and this state’s immediate successor state. Then a’s value is the same in the initial state and all states
up to and including the first projected local state satisfying the state formula p, if the interval contains such a
state.

a � j ∧ (¬p) istable a ⊃ p �u (a � j ). (81)

Proof of validity of implication (81). Here is a version of the antecedent of this implication with istable replaced
by its definition:

a � j ∧ �
(
more ∧ ¬p ⊃ (© a) ≡ a

)
. (82)

It is easy to check that if an interval σ satisfies conjunction (82), then the following is also true about σ : If p is
ever true, then the first time it is true, so is a � j . Here is this expressed in LTL:

♦p ⊃ ¬p U (p ∧ a � j ). (83)

Implication (83) is semantically equivalent to the formula p �u (a � j ) because if p is ever true, then the first
state of the interval obtained by projecting σ ’s states satisfying p itself satisfies a � j as well. Hence, σ satisfies
the consequent of implication (81), so the implication (81) itself is indeed valid. �

The valid implication below states that if a program variable a is framed and it is never assigned to in any of
the states universally projected using the state formula p, then the global interval satisfies p istable a:

iframe(.a) ∧ p �u �(a ′ � a) ⊃ p istable a. (84)

Proof of validity of implication (84). Let σ be an interval satisfying implication (84)’s antecedent. The definition
of iframe(.a) is �(more ⊃ (© a) � a ′), and furthermore the projection formula p �u �(a ′ � a) is semantically
equivalent to the following LTL formula:

�(p ⊃ (a ′ � a)).

The combination of the two LTL formulas �(more ⊃ (© a) � a ′) and �(p ⊃ (a ′ � a)) together with the
transitivity of equality ensures that σ also satisfies the LTL formula �((more ∧ p) ⊃ (© a) � a), which is the
definition of p istable a, so implication (84) is valid. �

Below is valid implication (85) formalising noninterferencewith a program variable a’s initial value by ensuring
that if this variable a initially equals some constant j , is framed and never assigned to when ¬p holds (i.e.,
(¬p) �u �(a ′ � a), or equivalently �(¬p ⊃ a ′ � a)), then this value j is correctly passed on to a in the first
state projected using the state formula p, if such a state exists:

Proposition A.1 (Noninterference with a program variable’s initial value) For any program variable a and propo-
sitional variable p, the next implication is valid:

a � j ∧ iframe(.a) ∧ (¬p) �u �(a ′ � a) ⊃ p �u (a � j ). (85)

Proof The validity of implication (85) readily follows from the combination of the following substitution
instance of valid implication (84) together with valid implication (81) and simple propositional reasoning:

iframe(.a) ∧ (¬p) � �(a ′ � a) ⊃ (¬p) istable a.

�
For example, the following substitution instance (86) of valid implication (85) is needed in the analysis of Peterson’s
algorithm. The antecedent of (86) requires that the program variable flagi is initialised to 0 in the starting global
state, suitably framed and not altered by the process Peterson1−i ’s projected interval consisting of exactly the
states satisfying pid �� i . The consequent of (86) then ensures that the value 0 is correctly passed on to flagi in
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the first state for process Petersoni ’s projected interval, which is the one containing all states satisfying pid � i :

flagi � 0 ∧ iframe(.flagi ) ∧ (pid �� i ) � �(flag′
i � flagi ) ⊃ (pid � i ) �u (flagi � 0). (86)

The next valid implication is needed later on in the proof of Proposition A.2, which concerns noninterference
with a program variable’s value at any time. This implication shows how for a program variable a the operator
istable can help to import iframe(.a) from the global interval into a subinterval projected using the propositional
variable p. It works because istable ensures that any processes operating in states with ¬p do not alter the value
of the variable a.

iframe(.a) ∧ (¬p) istable a ⊃ p �u iframe(.a). (87)

Proof of validity of implication (87). Suppose on the contrary that there is an interval σ with the implication’s
antecedent true and its consequent p �u iframe(.a) false. Our proof shows that σ itself falsifies iframe(.a). Now
if σ falsifies the consequent p �u iframe(.a), then there is an interval σ ′ obtained by projecting from σ using the
propositional variable p and which does not satisfy iframe(.a). It follows from the definition of iframe(.a) that σ ′
satisfies the next formula:

♦
(
more ∧ a ′ � a ∧ (© a) �� a

)
. (88)

Wewill show that the original global interval σ also satisfies (88) (so falsifies iframe(.a) to obtain a contradiction).
Now σ ′, which satisfies the ♦-formula (88), has a suffix subinterval σ ′′ satisfying the formula’s operand more ∧
a ′ � a ∧ (© a) �� a, so with the following properties:

1. σ ′′ has at its start at least two states, denoted here as s1 and s2.
2. The first of these states s1 satisfies the state formula a ′ � a.
3. The values of a in s1 and s2 differ.

Items 1 and 2 readily ensure that the global suffix interval of σ starting from s1 satisfies the formulas more and
a ′ � a. We now show that this global suffix interval of σ also satisfies the formula (© a) �� a. Observe that p
is false in all of the intermediate global states of the interval σ after s1 and before s2 because these two states
were projected using p. Consider the subformula (¬p) istable a in implication (87)’s antecedent which the global
interval σ is assumed to satisfy. This subformula guarantees that a’s value in each of these intermediate global
states (which, if they exist, all satisfy ¬p) equals a’s value in s2 because (¬p) istable a ensures that whenever p is
false, a’s value cannot change between the current state and the next one.Hence, a’s value in all of the intermediate
global states and in s2 are equal. Now a’s values in s1 and s2 differ (recall item 3 above concerning the interval
σ ′′), so a’s value in s1 likewise differs from a’s value in all the intermediate global states. Therefore, the values of
a in s1 and its adjacent global successor state (i.e., either s2 or the first intermediate global state after s1) differ, so
the global suffix subinterval of σ starting from s1 does not satisfy the equality (© a) � a ′. As already noted above,
this global suffix interval of σ readily satisfies the formulas more and a ′ � a. Therefore, this suffix of σ satisfies
the conjunction more ∧ a ′ � a ∧ (© a) �� a. Hence, σ itself satisfies the formula ♦(more ∧ a ′ � a ∧ (© a) �� a)
and consequently falsifies iframe(.a), thus yielding a contradiction. �
An alternative more syntactic proof of the validity of implication (87) could show the validity of the following
implication which splits the consequent’s negation p � ¬ iframe(.a) into two parts p �u ¬ iframe(.a) and ♦p
(e.g., see the relevant valid equivalence in (10) about expressing � using �u and ♦), and then ensures that the
first of these guarantees the second’s negation:

iframe(.a) ∧ (¬p) istable a ∧ p �u ¬ iframe(.a) ⊃ �¬p.

Induction over time could then be used to infer this implication’s consequent �¬p from the antecedent by first
showing the validity of the following two implications:

iframe(.a) ∧ (¬p) istable a ∧ p �u ¬ iframe(.a) ⊃ ¬p
iframe(.a) ∧ (¬p) istable a ∧ p �u ¬ iframe(.a) ∧ more ⊃

©(
iframe(.a) ∧ (¬p) istable a ∧ p �u ¬ iframe(.a)

)
.

The next Proposition A.2 about a valid implication provides a convenient sufficient condition to ensure
noninterference with a program variable a’s value at any time by helping to import framing of a variable a from
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the global interval to an interval projected using the state formula p when the remaining non-projected states
(i.e., those satisfying ¬p) do not attempt to alter a (i.e., the equality a ′ � a is true in all of them):

Proposition A.2 (Noninterference with a program variable’s value at any time) Foranyprogramvariablea andpropo-
sitional variable p, the implication below is valid:

iframe(.a) ∧ p �u �(a ′ � a) ⊃ (¬p) �u iframe(.a). (89)

Proof The validity of implication (89) readily follows by propositional reasoning combining valid implica-
tions (84) and (87). �

For example, the following instance of valid implication (89) helps import the global framing of each program
variable flagi into the corresponding process Petersoni ’s local interval because the other process never assigns to
flagi (i.e., (pid �� i ) �u �(flag′

i � flagi ), or equivalently �(pid �� i ⊃ flag′
i � flagi )):

iframe(.flagi ) ∧ (pid �� i ) �u �(flag′
i � flagi ) ⊃ (pid � i ) �u iframe(.flagi ).

The valid property below illustrates employing the operator istable as an alterative, somewhat more concise
way to describe the global-time framing achieved by iframe in the previous implications (79) and (80). Here,
istable helps express that when framing is done, each process Petersoni indeed does not at all alter the value of
the variable flag1−i and preserves the value of turn whenever it equals 1 − i :

iframe ∧ (pid � i ) � Petersoni ⊃
(pid � i ) istable flag1−i ∧ (pid � i ∧ turn � 1 − i ) istable turn.

(90)

A.2. Proof of mutual exclusion for Peterson’s algorithm

The proof here of mutual exclusion ultimately shows in Theorem A.3 the validity of the earlier implication (40),
and requires an analysis of the behaviour of the program variables when a process is in its critical section with
lab � l4. The next two valid implications deal with this and are easy to check by an examination of the definition
of each process Petersoni :

|� Petersoni ⊃ �
(
lab � l4 ⊃ (flag1−i � 0 ∨ turn � i )

)
(91)

|� Petersoni ⊃ �
(
lab � l4 ⊃ flag′

0 � flag0 ∧ flag′
1 � flag1 ∧ turn′ � turn

)
. (92)

Proof of validity of implications (91) and (92). The first implication (91)’s validity follows from the fact that the
state with label l4 is always immediately preceded by the successful termination of the while-loop when its test
flag1−i � 1 ∧ turn � 1 − i is false. The second implication (92)’s validity is a direct consequence of the noop at
label l4 not attempting to alter the value of any of the three program variables. �
The next valid implication requires the assumption that process Petersoni can regard the variable flagi as being
framed not just globally but also in the local projected interval in which the process operates:

|� iframe(.flagi ) ∧ Petersoni ⊃ �(lab � l4 ⊃ flagi � 1). (93)

Proof of validity of implication (93). This can be checked by observing that whenever the assignment flagi :� 1 at
label l1 is executed, the equality flag′

i � 1 holds and the statements between labels l1 and l4 all ensure the equality
flag′

i � flagi is true. Therefore, if framing of flagi is performed using iframe(.flagi ), then the value of flagi remains
unchanged until label l4, where it still equals 1. �
The three valid implications below relating the local perspective ofPetersoni when at label l4 to global time readily
follow from (91) to (93):

|� (pid � i ) � Petersoni ⊃ �
(
pid � i ∧ lab � l4 ⊃ (flag1−i � 0 ∨ turn � i )

)
(94)

|� (pid � i ) � Petersoni ⊃ �
(
pid � i ∧ lab � l4 ⊃ flag′

0 � flag0 ∧ flag′
1 � flag1 ∧ turn′ � turn

)

(95)

|� (pid � i ) �
(
iframe(.flagi ) ∧ Petersoni

) ⊃ �(pid � i ∧ lab � l4 ⊃ flagi � 1). (96)
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For example, the validity of implication (94), which transfers information about the while-loop’s test from process
Petersoni ’s local time to global time, can be obtained from the validity of implication (91) by first projecting the
antecedent and consequent of (91) using strong and weak versions of �, respectively:

(pid � i ) � Petersoni ⊃ (pid � i ) �u �
(
lab � l4 ⊃ (flag1−i � 0 ∨ turn � i )

)

The consequent can then be re-expressed by eliminating the operator �u to obtain the semantically equivalent
LTL formula which serves as the consequent of implication (94). Hence, this implication is indeed valid.

Theorem A.3 (Mutual exclusion for Peterson’s algorithm) Implication (40) concerning mutual exclusion for Pe-
terson’s algorithm is valid.

Proof Let σ be an interval satisfying implication (40)’s antecedent, and let s1 and s2 be two adjacent states in
σ with lab � l4 in s1. By symmetry, we only need to consider the case where pid � 0 in s1 and pid � 1 in s2 and
show that lab �� l4 in s2. Valid implications (94)–(96), which concern when lab � l4 holds, respectively ensure
that state s1 satisfies all of the following three formulas:

flag1 � 0 ∨ turn � 0 (97)

flag′
0 � flag0 ∧ flag′

1 � flag1 ∧ turn′ � turn (98)
flag0 � 1 (99)

The global framing of the three program variables flag0, flag1 and turn together with the conjunction (98) guar-
antees that these variables do not change their values from state s1 to state s2. Hence, by disjunction (97), in state
s2 either flag1 � 0 or turn � 0. Furthermore, by (99), state s2 also has flag0 � 1. Here is an analysis of each of
the two possibilities in disjunction (97) which forces state s1 to satisfy either flag1 � 0 or turn � 0:

• State s1 satisfies flag1 � 0: It follows by framing using (98) being true in state s1 that the equality flag1 � 0
also holds in the successor state s2, and hence so does flag1 �� 1. Now we have assumed pid � 1 in state
s2, so valid implication (96) yields from flag1 �� 1 that lab �� l4 holds in s2, so mutual exclusion is indeed
observed in this case.

• State s1 satisfies turn � 0: Framing using (98) being true in state s1 results in the successor state s2 satisfying
the equality turn � 0. Likewise, framing using (99) being true in state s1 results in the successor state s2 also
satisfying flag0 � 1. Therefore, s2 fails to satisfy the disjunction flag0 � 0 ∨ turn � 1. Now pid=1 holds
in s2, so the valid implication (94) ensures in s2 that lab cannot equal l4. As a result, mutual exclusion is
guaranteed for this case.

Hence, both of the two cases are inconsistent with state s2 satisfying lab � l4, so implication (40) is indeed valid,
and mutual exclusion is ensured. �

A.3. Proof of liveness for Peterson’s algorithm

Wenowpresent a proof of validity for implication (45) concerning liveness by adapting Peterson’s original liveness
proof [Pet81]. Here is a theorem regarding this:

Theorem A.4 (Liveness for Peterson’s algorithm) Implication (45) concerning liveness for Peterson’s algorithm is
valid.

Much of the analysis involves formulas in the logic LTL+�. Let σ be an interval satisfying implication (45)’s
antecedent:

init ∧ iframe ∧ (0 :: Peterson0) ||| (1 :: Peterson1).
Therefore, this global interval σ includes the states of both processes. By symmetry, we only need to ensure liveness
for process Peterson0 and show that σ satisfies the first conjunct in implication (45)’s consequent:

(pid � 0) � �(lab � l0 ⊃ ♦lab � l4).

Assume on the contrary that σ fails to satisfy this. The main loop of each process Petersoni can behave in one of
three modes. Here is an informal summary of these, which are considered shortly in more detail:

1. Mode a—finite iterations, each having finite length: Process Petersoni eventually terminates at label l7.
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2. Mode b—finite iterations but with the last one having infinite length: The process eventually gets stuck infinitely
long at label l3 waiting in vain to enter its critical section.

3. Mode c—infinite iterations and infinite length (chop-omega): The process infinitely often enters and exits its
critical section, each time executing along the way the assignment statement turn :� 1 − i at label l2. As in
the previous Mode b, Petersoni does not terminate, but in Mode c the process visits each of its labels l0, l1,
. . . , l6 infinitely often (although perhaps sometimes skipping label l3).

The definition of each process Petersoni in Fig. 2 ensures that whenever the process is at label l0, it eventually
reaches label l4 or gets stuck infinitely long at label l3 executing the statement noop. Therefore, if processPeterson0
ever gets stuck waiting to enter its critical section, the global interval σ satisfies the next formula:

(pid � 0) �
(
inf ∧ ♦�(lab � l3)

)
.

The rest of the proof shows that this behaviour is inconsistent with each of the three ways the second process
Peterson1 can execute its own main loop. Here is a summary of why for each mode:

1. For Mode a: If the second process Peterson1 terminates in finite time, then the value of the variable flag1
equals 0 from then on because Peterson1 ensures flag1 � 0 before terminating and the other process Peterson0
never alters flag1. Therefore, if Peterson0 tries later on to enter its critical section, it succeeds because its own
while-loop’s test flag1 � 1 ∧ turn � 1 is false.

2. For Mode b: If both processes eventually get stuck waiting infinitely long at label l3 to enter their respective
critical sections, then the while-loop’s test flag0 � 1 ∧ turn � 0 for the second process Peterson1 is true
infinitely long. Furthermore, flag1 � 1 holds at this label. The two processes when simultaneously at their
respective noop statements at label l3 combine to leave the value of the variable turn unchanged from then
on since the equality turn′ � turn persists in being true in all of the processes’ projected local states, so in
all global ones as well. Therefore, global framing of turn ensures that its subsequent value is stable, so either
always 0 or always 1 from then on. Hence, one of the processes must succeed in entering its critical section.
This contradicts the assumption of both processes getting stuck in this mode, so such a situation cannot in
fact occur.

3. For Mode c: Suppose the second process Peterson1 successfully iterates through its main loop infinitely often
in and out of its critical section. Then each time an iteration is performed, the assignment statement turn :� 0
at label l2 is executed prior to entering the critical section. It follows that when this process, after leaving its
critical section, tries the next time to enter it, the while-loop’s test flag0 � 1 ∧ turn � 0 is true because the
first process Peterson0 is stuck with flag0 � 1 and cannot alter turn’s value to instead be 1. Hence, the second
process likewise gets stuck in vain waiting. Therefore, this situation, like the previous one, cannot happen.

The next valid implication describes how every execution of a process Petersoni conforms to the behaviour
of one of the three modes already discussed:

Petersoni ⊃ (finite ∧ fin lab � l7) ∨ (inf ∧ ♦�lab � l3) ∨ (inf ∧ �♦lab � l2). (100)

Proof of validity of implication (100). This can be easily shown by analysing the three ways the main loop of either
process Petersoni is executed. We start with the valid implication below having a consequent which summarises
the process flow-of-control just concerning lab’s relevant behaviour when it equals one of the labels l2, l3 or l7:

Petersoni ⊃ (
(finite ∧ ♦lab � l2) ∨ (inf ∧ ♦�lab � l3)

)∗
; (empty ∧ lab � l7). (101)

This can be demonstrated to be valid by simply analysing the sequential parts of the definition of an individual
process Petersoni .

It follows that an individual iteration of the skeletal loop for a process Petersoni in implication (101)’s conse-
quent satisfies the next disjunction:

(finite ∧ ♦lab � l2) ∨ (inf ∧ ♦�lab � l3). (102)

It is not hard to check that if this is sequentially repeated some finite or infinite number of times in an interval,
then the interval must either (a) have finite length, (b) be infinitely long with lab � l3 eventually true in all states
of some suffix subinterval, or (c) be infinitely long and have lab � l2 true infinitely often. Hence, the interval must
satisfy the next disjunction:

finite ∨ (inf ∧ ♦�lab � l3) ∨ (inf ∧ �♦lab � l2). (103)
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Here is a valid implication expressing that an interval exhibiting the looping with iterations described by the
disjunction (102) satisfies the second disjunction (103):

(
(finite ∧ ♦lab � l2) ∨ (inf ∧ ♦�lab � l3)

)∗ ⊃
finite ∨ (inf ∧ ♦�lab � l3) ∨ (inf ∧ �♦lab � l2).

(104)

The following valid implication is a modification of the previous one (104) to take into account that in finite
intervals the last state of process Petersoni has lab � l7:

(
(finite ∧ ♦lab � l2) ∨ (inf ∧ ♦�lab � l3)

)∗
;(empty ∧ lab � l7) ⊃

(finite ∧ fin lab � l7) ∨ (inf ∧ ♦�lab � l3) ∨ (inf ∧ �♦lab � l2).
(105)

Only the leftmost disjunct is changed to now include that lab � l7 is true in the final state. The other two
disjunctions concern infinite intervals, so never involve a state where lab � l7 is true.

The chain of the two valid implications (101) and (105) then yields the validity of implication (100). �
The consequent of implication (100) is stutter-invariant because its first disjunct can be equivalently expressed

as finite ∧ ♦�(lab � l7) and the remaining two disjuncts can together be propositional rearranged into the
equivalent conjunction inf ∧ (♦�lab � l3 ∨ �♦lab � l2).

The next property Invi is defined to be a state formula expressing an invariant which process Petersoni is
shown to maintain in all local states:

Invi �̂ flag′
1−i � flag1−i

∧ (lab � l2 ⊃ turn′ � 1 − i )
∧ (lab � l3 ⊃ flag1−i � 1 ∧ turn � 1 − i ∧ turn′ � turn)
∧ (lab � l7 ⊃ flagi � 0 ∧ flag′

i � 0).

The first conjunct states that the program variable flag1−i is never altered in a state in which process Petersoni
is active. The remaining conjuncts concern relevant behaviour of specific program variables just when lab ∈
{l2, l3, l7}.

In order to prove that a process Petersoni implies its invariant Invi in each local state, it is first necessary
to check that the process never attempts to alter the program variable flag1−i . The next easily checked valid
implication expresses this [and was already presented and justified above as (75)]:

Petersoni ⊃ �(flag′
1−i � flag1−i ).

Here is a valid implication concerning how a process Petersoni with suitable initialisation and framing of the
program variable flagi ensures its invariant holds in all local states:

flagi � 0 ∧ iframe(.flagi ) ∧ Petersoni ⊃ �Invi (106)

We need to show for each process Petersoni that the initialised value of the program variable flagi in the first
global state is correctly passed on to the first local state. Here is a valid implication concerning this:

flagi � 0 ∧ iframe(.flagi ) ∧ (pid �� i ) �u �(flag′
i � flagi ) ⊃

(pid � i ) �u (flagi � 0 ∧ iframe(.flagi )).
(107)

This can be obtained adapting instances of the two earlier valid implications (85) and (89) for any framed program
variable a initialised to some constant value j and not altered in any global states with ¬p. We reproduce these
implications below for the convenience of readers:

a � j ∧ iframe(.a) ∧ p �u �(a ′ � a) ⊃ (¬p) �u (a � j )
iframe(.a) ∧ p �u �(a ′ � a) ⊃ (¬p) �u iframe(.a).

Concluding proof of Theorem A.4 concerning liveness. Valid properties discussed above are now combined to
obtain the following proof of Theorem A.4:
Proof We will obtain a contradiction by examining how the second process Peterson1, when operating in any
of its three possible modes, influences the first process Peterson0, which itself is assumed here to operate solely in
Mode b. The analysis below only considers Mode a, which occurs when the main loop of Peterson1 terminates
with lab � l7, but the analysis for the other two modes is similar. As before, let σ be the global interval in which
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both processes concurrently execute within their respective local projected intervals. Assume that σ satisfies
implication (45)’s antecedent, which is as follows:

init ∧ iframe ∧ (0 :: Peterson0) ||| (1 :: Peterson1). (108)

If Peterson1 operates in Mode a, then the global interval σ satisfies all of the formulas below of particular
relevance to the analysis of Peterson1:

iframe

(pid � 0) �
(
inf ∧ �(flag′

1 � flag1)
)

(pid � 1) �
(
finite ∧ �Inv1 ∧ fin lab � l7

)
.

Here are justifications for the global interval σ satisfying these three formulas:

1. The first one iframe holds because implication (45)’s antecedent (108) explicitly includes global framing of
the program variables.

2. The second holds because, first of all, implication (45)’s antecedent (108) includes the formula (0::Peterson0) |||
(1 :: Peterson1), which is itself semantically equivalent to the conjunction

(pid � 0) � Peterson0 ∧ (pid � 1) � Peterson1.

Hence, the global interval σ satisfies the formula (pid � 0) � Peterson0. Also process Peterson0 is assumed
to be operating in Mode b, so runs infinitely long in its projected interval. Furthermore, the process never
assigns to the program variable flag1 in the course of this [see valid implication (77) above].

3. The third formulaholdsbecause intervalσ satisfies the formula (pid � 1) � Peterson1 (by reasoninganalogous
to that above for the second formula about process Peterson0), and when process Peterson1 operates in Mode
a, then its local projected interval is finite and it terminates at label l7. We already ensured earlier that the
global initialisation and framing of flag1 can be imported into Peterson1’s local projected time [see valid
implication (107) above]. Furthermore, when the program variable flag1 equals 0 in the first local state and
is also locally framed, the invariant Inv1 is true in every one of process Peterson1’s local states [see valid
implication (106) above].

Now the invariant Inv1 and lab � l7 are both true in the last state ofPeterson1’s projected interval. Therefore, so is
the conjunction flag1 � 0 ∧ flag′

1 � flag1. The global interval consequently satisfies the next projection formula:

(pid � 1) �
(
finite ∧ fin(flag1 � 0 ∧ flag′

1 � flag1)
)
.

Therefore, this and the projection formula (pid � 0) �
(
inf ∧ �(flag′

1 � flag1)
)
guarantee that both Peterson0’s

projected interval and the global interval are in contrast infinite. Furthermore, it follows that flag′
1 � flag1 in all

the infinite number of global states after the last state for Peterson1. Here is a valid implication about this:

(pid � 0) �
(
inf ∧ �(flag′

1 � flag1)
)

∧ (pid � 1) �
(
finite ∧ fin(flag1 � 0 ∧ flag′

1 � flag1)
) ⊃

inf ∧ ♦
(
flag1 � 0 ∧ �(flag′

1 � flag1)
)
.

(109)

This is a substitution instance of the following valid implication:

p � (inf ∧ �r ) ∧ (¬p) �
(
finite ∧ fin(q ∧ r )

) ⊃ inf ∧ ♦(q ∧ �r ).

The combination of implication (109)’s consequent together assumption that iframe holds in the global interval
then yields that the global interval has an infinite suffix satisfying �(flag1 � 0). Therefore, process Peterson0
cannot get stuck because the test of its while-loop will eventually fail, and so the process will enter its critical
section. The valid implication below encapsulates the reasoning just discussed regarding how when the second
process Peterson1 operates inMode a, the first process Peterson0 cannot get stuck infinitely long waiting because
it will eventually detect flag1 � 0.

iframe ∧ (pid � 1) �
(
finite ∧ fin(flag1 � 0 ∧ flag′

1 � flag1)
) ⊃

(pid � 0) �u
(
(inf ∧ �(flag′

1 � flag1)) ⊃ ♦�(flag1 � 0)
)
.

�
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Process Petersoni, for i ∈ {0, 1}
for some times do (

l0 : noop;
l1 : flag i := 1;
l2 : turn := 1 − i;

while (flag1−i = 1 ∧ turn = 1 − i) do
l3 : noop;
l4 : csi := true; /* Critical section */
l5 : flag i, csi := 0, false; /* Leave critical section */
l6 : noop

);
l7 : enoop
Let dom(nvalPeterson ) = {.flag0, .flag1, .turn, .cs0, .cs1}.
Initially flag0 = flag1 = 0, ¬cs0 and ¬cs1, but turn can start as either 0 or 1.

Fig. 3. Alternative version of Peterson’s algorithm with processes Peterson′
0 and Peterson′

1

Consider now the alternative version of Peterson’s algorithm in Fig. 3. This differs only by the inclusion of
auxiliary program variables cs0 and cs1. Each such variable csi is set to true when process Peterson′

i enters its
critical section. There is in fact a delay of one local step required for this to happen. We present the two versions
of the algorithm because they vary regarding how the safety and liveness properties are specified and analysed.
The alternative version uses a more conventional and straightforward safety property of the form �w that is
clearly stutter-invariant but requires the auxiliary variables cs0 and cs1. In principle, this version can be verified
even without program labels (as is done with our compositional analysis in [Mos14]). The reasoning concerning
the first version works directly with a different variant of the safety property which seems closer to the essence
of interleaving with projection. For example, the first version’s key safety property (40), which is expressed using
label constants and was already discussed above, relates the two processes at adjacent projected states. It includes
©-formulas, but we showed above that it is nevertheless stutter-invariant.

Here are some temporal properties for this second version of the algorithm:

|� init ∧ iframe ∧ (0 :: Peterson′
0) ||| (1 :: Peterson′

1) ⊃ �¬(cs0 ∧ cs1) (110)
|� init ∧ iframe ∧ (0 :: Peterson′

0) ||| (1 :: Peterson′
1)⊃ �

(
(flag0 � 1 ∧ ¬cs0) ⊃ ♦cs0

)
∧ �

(
(flag1 � 1 ∧ ¬cs1) ⊃ ♦cs1

) (111)

|� init ∧ iframe ∧ (inf ∧ 0 :: Peterson′
0) ||| (inf ∧ 1 :: Peterson′

1)⊃ �♦(flag0 � 0 ∧ ¬cs0) ∧ �♦(flag0 � 1 ∧ cs0)
∧ �♦(flag1 � 0 ∧ ¬cs1) ∧ �♦(flag1 � 1 ∧ cs1).

(112)

Implication (110) expresses the safety property for mutual exclusion. We already mentioned its consequent
�¬(cs0 ∧ cs1) does not have any©-operators so is clearly stutter-invariant. This is in contrastwith the consequents
of the initial two safety properties (39)–(40) for mutual exclusion in the first version of Peterson’s algorithm,
where (39) is not stutter-invariant and (40) is but requires a proof showing equivalence to a formula in LTL−©.
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