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Abstract. Costs and rewards are important tools for analysing quantitative aspects of models like energy con-
sumption and costs of maintenance and repair. Under the assumption of transient costs, this paper considers
the computation of expected cost-bounded rewards and cost-bounded reachability for Markov automata and
Markov games. We provide a fixed point characterization of this class of properties under early schedulers. Addi-
tionally, we give a transformation to expected time-bounded rewards and time-bounded reachability, which can
be computed by available algorithms. We prove the correctness of the transformation and show its effectiveness
on a number of Markov automata case studies.
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1. Introduction

Markov automata (MA) [EHZ10] constitute a compositional modelling formalism for concurrent stochastic
systems. They generalise discrete-time Markov chains (DTMCs), Markov decision processes (MDPs), proba-
bilistic automata (PA) [Seg95], continuous-time Markov chains (CTMCs), and interactive Markov chains (IM-
Cs) [Her02]. Markov automata form the semantic foundation of, among others, dynamic fault trees [BCS10],
stochastic activity networks, and generalised stochastic Petri nets (GSPNs) [EHKZ13]. Compositional modelling
forMA [TKvdPS12] is supported by theMAMA tool set [GHH+13, GHH+14], also providing access to effective
model analysis via the IMCA tool [GHKN12]. That analysis follows the principles of model checking [BK08].
Concretely speaking, algorithms for model checking time-bounded reachability and continuous stochastic logic
(CSL) [HH12] as well as long-run average and expected reachability times [GHH+13, GHH+14] are supported.
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Stochastic games (SGs) [Sha53, NS03] constitute a generalisation of Markov automata. They can be consid-
ered as Markov games with a single player and certain restrictions on the allowed nondeterminism [BFH+15].
SGs are turn-based games and allow, e. g., to model interactive stochastic systems in a hostile environment. Here,
the user is one of the players, choosing actions to execute. The environment is the other player. The two players
can follow independent strategies to reach their goals. For instance, the user can try to maximize the probability
to reach a target state within a given time bound, while the environment is hostile and tries to keep the user away
from the target [BFK+13].

The main reason we study SGs in this paper comes from their application area. First of all, their ability to
model controller-environment games makes them potentially interesting and possibly useful for applications in
control domain. One may then utilise the result of this paper to compute the optimal expected cost-bounded
rewards for SGs using the solution given in [BFH+15]. The current practical limitation is that, in contrary to
MAs, SGs in general are not compositional [GBK16]. Therefore, it is not possible to benefit from compositional
model construction to build highly complex models from their smaller building blocks. This is the main reason
we do not have any SG model in our experiments. Instead, to motivate using SGs and to demonstrate their
modelling capacity we provide the game semantics for the “dynamic power management system”, one of ourMA
case studies which will be discussed in Sect. 4.

Secondly, we have previously exploited the expressive power of SGs in an abstraction refinement framework
for MA [BFH+15]. There, an MA is abstracted into a smaller SG such that analyzing the game allows to deduce
safe bounds on, e. g., (time-bounded) reachability probabilities [BFH+14] and expected rewards [BFH+15] of the
original MA. If the obtained bounds are too far apart, the SG is refined until the requested precision is obtained.
It is thereby the fact that any kinds of analysis technique for SGs can in principle be utilised for MAs via the
abstraction refinement framework. This was for us promising enough to generalise our results fromMAs to SGs.

Apart from timing-related properties, there is an immensely large spectrum of potential applications that ask
for the integration of cost-related modelling and analysis. Costs, or dually rewards, are especially convenient
to reflect economical implications, power consumption, wear and abrasion, or other quantitative information.
Therefore MA have lately been extended to MRA, Markov reward automata. In MRA, states and transitions
can be equipped with rewards or costs, which are accumulated as time advances and as transitions are taken.
Algorithms for computing the long-run average reward, for the expected cumulative reward until reaching a
set of goal states, and for the expected cumulative reward until a certain time bound are known and imple-
mented [GTH+14]. Effective abstraction and refinement strategies forMRAhave also been introduced [BFH+15],
working on stochastic reward game abstractions of MRA.

Contribution In this paper, we turn our attention to properties that relate multiple dimensions of costs or rewards.
In particular, we enable the computation of expected cumulative rewards until exceeding a cost bound, both
for Markov reward automata and stochastic reward games. This can, for instance, answer questions of central
importance for energy-harvesting battery-powered missions:
Under a given initial budget, what is the maximum probability of the battery running dry, or how many tasks can maximally be expected to be
carried out by the battery?

To answer such questions we give a fixed point characterisation of expected cost-bounded rewards and a
transformation for stochastic games from cost- to time-bounded rewards. This transformation supports arbitrary
non-negative transient costs. If the transformation is applied to a Markov automaton, the result is again a
Markov automaton. After the transformation, arbitrary algorithms for expected time-bounded rewards like
[GTH+14, BFH+15] can be applied to compute expected cost-bounded rewards.

In order to develop our contribution, we take inspiration from various sources, especially from the domain
of continuous-time Markov decision processes (CTMDPs). This encompasses works on necessary and sufficient
criteria for optimality with respect to time-bounded rewards [Mil68], and algorithms to compute optimal time-
bounded rewards using uniformisation [BS11, BHHK15]. Instantaneous transition rewards have been added to
the CTMC setting as well [CKKP05].

Our work is strongly influenced by the study of the duality between time and costs in CTMDPs under time-
abstract strategies [BHHK08], built up on the earlier work in the setting of CTMCs [BHHK00]. We extend it in
various dimensions: Our technique supports zero-cost states, where previously only strictly positive costs were
allowed. We optimise over time-dependent strategies, which are a superclass of time-abstract ones. We extend the
setting to expected reward analysis on two-player games with discrete and continuous distributions, which is also
an improvement over [Fu14a, Fu14b]. And finally our analysis technique works for any kind of models, not only
uniform ones.
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Apreliminary version of this paper appeared as [HBW+15]. Compared to that version,we havemade the paper
more self-contained by extending the section on foundations and by adding detailed proofs for all main theorems.
In particular, we elaborate onmeasure-theoretic concepts andmeasurable strategies in SGs.We have furthermore
added results concerning the inclusion of instantaneous costs. This indeed would make the computation of
cost-bounded expected rewards NP-hard, while without instantaneous costs, the algorithms run in polynomial
time.

Structure of the paper In the following section, we introduce the necessary foundations. Section 3 describes the
fixed point characterisation of optimal expected cost-bounded rewards and the transformation from cost to time
bounds. We report on experimental results in Sect. 4 and conclude the paper in Sect. 5. Detailed proofs of the
main propositions are contained in the appendix of this paper.

2. Foundations

The real numbers are denoted by R, R≥0 is the set of non-negative real numbers, and R
∞
≥0 :� R≥0 ∪ {∞}.

Accordingly R>0, R∞
>0 etc. are used.

Let V be a finite (or countably infinite) set. A discrete probability distribution over V is a function μ : V →
[0, 1] such that

∑
v∈V μ(v ) � 1. We denote the set of probability distributions over V by Distr(V ). The support

of a distribution μ ∈ Distr(V ) is the set supp(μ) � {v ∈ V | μ(v ) > 0}. A distribution μ ∈ Distr(V ) such that,
for some v ∈ V , μ(v ) � 1 is called a Dirac distribution and denoted by �v .

Additionally we need continuous probability distributions over R≥0. They can either be specified in terms of
their probability density function or their cumulative distribution function. A function p : R≥0 → R≥0 is a
probability density function on R≥0 if

∫ ∞
0 p(x ) dx � 1. Its cumulative distribution function is then given by

P (t) � ∫ t

0 p(x ) dx . A central role plays the exponential distribution. For a parameter λ ∈ R≥0, its density is given
by expλ(x ) � λ ·e− λ ·x and its cumulative distribution by Expλ(x ) � 1 − e− λ ·x .

Definition 2.1 (Stochastic game) A stochastic (continuous-time two-player) game (SG) is a tuple G � (
V , (V1,V2),

vinit,T
)
such thatV � V1 �V2 is the finite set of states, vinit ∈ V is the initial state, andT ⊆ V ×R

∞
>0 ×Distr(V )

is the transition relation.

V1 and V2 are the states of player 1 and player 2, respectively; we also denote them as V1- and V2-states.
Transitions (v , λ, μ) ∈ T with rate λ < ∞ are called Markovian, transitions with infinite rate probabilistic. We
denote the set of Markovian and probabilistic transitions by TM and TP, respectively. We use TM(v ) and TP(v )
to refer to the set of Markovian and probabilistic transitions available at state v . Then, T (v ) � TM(v )�TP(v ) is
the set of all available transitions of v . We assume that T (v ) 
� ∅ for all v ∈ V .

The game starts in state vinit. If the current state is v ∈ V1, then it is player 1’s turn, otherwise player 2’s.
The current player chooses a transition (v , λ, μ) ∈ T (v ) for leaving state v . The rate θrate

(
(v , λ, μ)

) � λ ∈ R
∞
≥0

determines how long we stay at v , whereas θdistr
(
(v , λ, μ)

) � μ ∈ Distr(V ) gives us the discrete probability
distribution which leads to the successor states. If λ � ∞, the transition is taken instantaneously. Otherwise, λ is
taken as the parameter of an exponential distribution that determines the sojourn time in the current state, i. e.
the probability that the transition tr is taken within time t is given by Expλ(t) � 1 − e− λ ·t . The probability that
the transition is taken within t ≥ 0 time units and leads to state v ′ ∈ V , is accordingly given by μ(v ′) ·Expλ(t) �
μ(v ′) · (1 − e− λ ·t ). For conciseness, we write λtr instead of θrate(tr) and μtr instead of θdistr(tr) for tr ∈ T .

Example 2.1 Figure 1a shows an example of a stochastic game. It consists of two player 1 states (drawn as circles)
and two player 2 states (drawn as diamonds). The exit rates of the transitions tr1, . . . , tr5 are written in red. The
game starts in v0. Player 1 chooses one of the outgoing transitions {tr1, tr2}, say tr1. The probability to stay in
v0 for at most t time units is then given by 1 − e−10·t . When the transition fires, we move to v1 with probability
0.1 and to v2 with probability 0.9; say v1 is the successor state. There it is player 2’s turn. As only one outgoing
transition is available, namely tr3, and its exit rate is ∞, v1 is left immediately, either to v1, again, or to v3, both
with probability 0.5.
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tr1 tr2 tr3 tr4 tr5 v0 v1 v2 v3

c 5 0 0 0 3
ρt 1 3 0 0 1
ρi 4 1 1 5 2
ρf 1 0 2 3

(a) (b)

Fig. 1. An example of a stochastic game with costs and rewards

Markov automata (MA) [EHZ10] are a special type of stochastic games with a single player and without a
nondeterministic choice between different Markovian transitions at one state. The reason for this restriction is
that Markov automata are designed to be a compositional formalism, i. e. the MA for a system consisting of
several components can be constructed from the MA of the individual components.

Definition 2.2 (Markov automaton) A Markov automaton (MA) is a stochastic game M � (
V , (V ,∅), vinit,T

)

such that | TM(v ) |≤ 1 holds for all v ∈ V . We simply writeM � (V , vinit,T ) for a Markov automaton M.

In this paper we only consider closed Markov automata which are not subject to further composition oper-
ations. In this case, it is standard for Markov automata to make an urgency assumption: Since nothing prevents
probabilistic transitions from happening instantaneously and the probability that aMarkovian transition is taken
without delay is zero, probabilistic transitions take precedence over Markovian transitions. Therefore we assume
forMA thatMarkovian transitions have been removed from all states which also exhibit an outgoing probabilistic
transition.

Paths through stochastic games The dynamics of an SG is specified by paths. A path π ∈ (V × R≥0 × T )ω is
an infinite sequence of states, sojourn times, and transitions. A history is such a sequence of finite length, i. e.

h ∈ (V ×R≥0 ×T )� ×V . It ends in a state which we call the terminal state of the history. We usually write v
t,tr−→

instead of (v , t, tr) ∈ (V ×R≥0 ×T ). We useH and� to denote the set of histories and paths, respectively. Given
history h, its length, denoted by | h |, is the of number transitions executed in h. The length is infinite for a path.

We write last(h) for the last, i. e. terminal, state of h. Given history h � v0
t0,tr0−−→ v1

t1,tr1−−→ · · · vn and 0 ≤ i < n, vi
is the (i + 1)-th state of π , denoted by h[i ]; ti is the time of staying at vi , denoted by h〈i〉; and trans(h[i ]) � tri is
the executed transition at vi . Note that vi must be left instantaneously, i. e. h〈i〉 � 0, if trans(h[i ]) has an infinite

rate. For 0 ≤ i ≤ j ≤ n, the sub-history vi
ti ,tri−−→ · · · vj is denoted by h[i ·· j ]. The exact same notations are

carried over into paths.

Measurability A collection of paths, also called an event, describes a specific behaviour pattern of an SG. Such
an event is measurable if, intuitively speaking, we can asses how likely it will happen. In mathematical analysis
and in particular measure theory, a set of measurable events that is closed under countably many set operations
is described by a σ -algebra. Here we briefly explain how we define a σ -algebra over the set of histories and
paths of an SG. They are constructed in a modular way using the concept of a product σ -algebra [ADD99,
Def. 2.6.1], here denoted by the ⊗ operator. Let 2V and 2T be the power sets of V and T , respectively, and
B(R≥0) be the Borel σ -algebra over R≥0. Then, F :� 2V ⊗ B(R≥0) ⊗ 2T denotes the σ -algebra over the set
of path steps, i. e. V × R≥0 × T . Accordingly, the σ -algebra over the set of n-step histories is referred to as
Hn :� (

⊗n
i�1 F)⊗ 2V , for n ∈ N. For the set of infinite paths, the σ -algebra is obtained by applying the cylinder

set construction [ADD99, Def. 2.7.1]. Briefly speaking, let Bn be a subset of Hn , then the cylinder of base Bn
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is described as Cyl(Bn ) :� {π ∈ � | π [0 ·· n] ∈ Bn}. Cylinder Cyl(Bn ) is measurable iff its base is measurable,
that is to say iff Bn ∈ Fn . Then, F�, the σ -algebra over the set of paths, is the smallest σ -algebra generated by
the class of all measurable cylinders, i. e.

⋃∞
n�0{Cyl(Bn ) | Bn ∈ Fn}. Together with the set of infinite paths, it

constitutes a measurable space (�,F�), on which the probability measure will be defined. For more details see,
for instance, [Neu10, Sec. 2.5.4]).

Strategies SGs may exhibit nondeterminism occurring at a state with more than one outgoing transition. In
such a state, it is not clear a priori which transition is taken during the execution of the model. In this case, the
player who controls the state makes a decision on which transition is going to be taken. The decision is made
by a function that is called strategy (or policies or schedulers). Each player follows her own strategy in order to
accomplish her specific goal. Once the players have fixed their strategies, the SG does not exhibit nondeterminism
anymore and its behaviour is purely stochastic. Therefore, a unique probability measure can be defined on the
measurable space (�,F�).

Strategies can make use of many details from what has been visited thus far to resolve the nondeterminism.
It can be, for instance, the states and the transitions that have been observed, or their execution time. The
strategies are classified according to the amount of information they employ to make the decision. The most
general class exploits the complete history to decide between available transitions at any state. The class is
further pruned by considering only the strategies that are measurable which is known as generic measurable
strategies [WJ06, Joh08, Neu10].

Definition 2.3 (Generic measurable strategy) A generic strategy of player i � 1, 2 is a function σi : H → Distr(T )
such that for every h ∈ H it holds that supp(σ (h)) ⊆ T (last(h)). Strategy σ is generic measurable iff {h |∑

tr∈T σ (h)(tr) ∈ B∧ | h |� n} ∈ Hn for every n ∈ N and B ∈ B([0, 1]). We use 
1 and 
2 to denote the set of
all generic measurable strategies of player 1 and 2, respectively.

The support restriction of Definition 2.3 indicates that, for every history h, the strategy can only select the
outgoing transitions from the last state of h. We indeed apply σi to the histories that end in player i ’s states.
Measurability of a strategy intuitively means that it never resolves the nondeterminism for histories such that
in any way they induce non-measurable sets. It provides an essential basis for the unique probability measure
on (�,F�). Although generic measurable strategies are theoretically important, they might be complex and
therefore computationally intractable. However, for most of the objectives it is sufficient and even desirable to
consider simpler classes of strategies.

We briefly introduce some classes of strategies that are important for our purpose. Total-time dependent
positional deterministic (TTPD) strategies are in the form σ : V × R≥0 → T . They use the total time which has
passed since starting in the initial state up to the current state to select an outgoing transition of the current state.
Their decision is always deterministic rather than being randomised. TTPD strategies can be easily extended to
the more general total-cost dependent positional deterministic (TCPD) strategies, where the role of time is taken
by costs that have been accumulated since the start of the system. Both classes are important for the properties
we consider in this paper [Neu10, Fu14a, Fu14b].

There is yet another dimension for strategy classification that leads to the introduction of early vs. late
strategies [NZ10]. Early strategies make their decision upon entering a state. The decision may not be changed
afterwards while residing in the state. On the contrary, late strategies can change their decision at any time while
residing in the state. It is well understood that for time-bounded reachability objectives, late strategies are superior
to early ones.However, early strategies are the ones that naturally emerge from compositionalmodel construction,
e. g. from parallel composition of Markov automata. Hence, we only consider early strategies in this paper. We
propose a transformation in Sect. 3 that preserves the optimal expected cost-bounded rewards under the class of
early strategies. We strongly believe that the transformation preserves the exact same objective under the more
general class of late strategies. The claim is posed as a conjecture.

Probability measure Given strategies σ1, σ2 for both players and a state v ∈ V , it is possible to define a unique
probability measure Prv ,σ1,σ2 on (�,F�). For a measurable event E ∈ F�, Prv ,σ1,σ2 (E ) denotes the probability
of observing paths in E , starting from state v , given that player 1 and player 2 play with strategies σ1 and σ2,
respectively. The main building block is the probability measure on single path steps. The probability measure is
then defined in a recursive manner using the product measure theorem [ADD99, Thm. 2.6.2] and the Ionescu–
Tulcea extension theorem [ADD99, Thm. 2.7.2]. The construction extends the existing techniques used for MAs
and IMCs.The details are highly technical andomitted here; formore information see, e. g. [HH12,Neu10, Joh08].
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Zenoness It may happen that an SG contains an end component [BK08, Def. 10.117] consisting of probabilistic
transitions only. Such an end component leads to the existence of sets of infinite paths π with finite sojourn times
and non-zero probability, i. e. limn→∞

∑n
i�0 π〈i〉 < ∞. This phenomenon is known as Zenoness. Since such

behaviour is unrealistic, we assume that the SGs under consideration are non-Zeno, i. e. that they do not contain
any probabilistic end component. Formally, an SG is non-Zeno iff

Prv ,σ1,σ2

({

π ∈ � : lim
n→∞

n∑

i�0

π〈i〉 < ∞
})

� 0

holds for all states v ∈ V and all strategies σ1 ∈ 
1 and σ2 ∈ 
2.
For more on strategies and on SGs in general we refer to [Sha53, NS03, BFK+13].

Costs and rewards We now extend stochastic games by costs and rewards to analyse properties like “What is the
maximal reward one can earn when the accumulated cost is bounded by b?”

Definition 2.4 (Cost and reward structures) Let G be a stochastic game as in Definition 2.1. A cost function
c : T → R≥0 assigns a non-negative cost rate to each transition. A reward structure ρ is a triple ρ � (ρt, ρi, ρf )
of functions ρt, ρi : T → R≥0, and ρf : V → R≥0; ρt is the transient reward rate, ρi the instantaneous reward,
and ρf the final reward.

For a transition tr � (v , λ, μ) ∈ T , costs and transient rewards are granted per time unit, i. e. residing in v
for t time units before taking transition tr causes a cost of t · c(tr), and a transient reward of t · ρt(tr) is granted.
In contrast, the instantaneous reward ρi(tr) is granted for taking the transition tr. The final reward is granted for
the state reached when the maximal cost has been spent. This allows, e. g. to consider cost-bounded reachability
probabilities as a special case of expected cost-bounded rewards (for more details, see below).

Cost and reward of paths Given a history h � v0
t0,tr0−−→ v1

t1,tr1−−→ · · · vn−1
tn−1,trn−1−−−−−→ vn , its cost is defined as

cost(h) :� ∑n−1
i�0 c(tri ) · ti . The cost can be extended to a path π by cost(π ) :� limn→∞ cost(π [0 ·· n]). The

cumulative reward of a history or a path can be defined in a similar way, i. e. crew(h) :� ∑n−1
i�0

(
ρt(tri )·ti+ρi(tri )

)

and crew(π ) :� limn→∞ crew(π [0 ·· n]). Furthermore we define the cost-bounded reward of π by

cbrGρ,c(π, b) :�

⎧
⎪⎨

⎪⎩

crew(π ), if cost(π ) ≤ b,
crew(π [0 ·· n∗]) + b−cost(π [0··n∗])

c(trn∗ ) · ρt(trn∗ )
+ ρf (π [n∗]), if cost(π ) > b,

where n∗ ∈ N is the index of the state along path π such that cost(π [0 ·· n∗]) ≤ b and cost(π [0 ·· n∗ + 1]) > b.
More precisely, the cost exceeds b after residing b−cost(π [0··n∗])

c(trn∗ ) time units in the n∗-th state of the path, and thereby
the state is subject to the final reward. Note that such an index exists, provided that cost(π ) > b.

Example 2.2 Consider again the stochastic game inFig. 1a.We extend it by the cost function and reward structure

shown in Fig. 1b. Now consider the path π � v0
3,tr1−−→ v1

0,tr3−−→ v3
2,tr5−−→ v2

0,tr4−−→ v0 → · · · and assume the cost
bound b � 20.The cost incurring in v0 before taking tr1 is 5·3 � 15. Since tr3 is probabilistic, no cost incurs in v1. In
v3 we have costs 3·2 � 6. Therefore the cost bound is reachedwhile staying in v3, after 1/3·(20−15) � 5/3 time units.
We then have n∗ � 2. Since v3 is the state in which the cost bound is reached, we additionally get its final reward
ρf (v3) � 3. The cost-bounded reward for this path is accordingly cbrGρ,c(π, 20) � (3·1+4)+(0·0+1)+(5/3·1)+3 �
12 2/3.

Given strategies σ1 ∈ 
1 and σ2 ∈ 
2 we can define the expected cost-bounded reward (ECR) as the expectation
of cbr :

Ecbrσ1,σ2
G,ρ,c(v , b) :�

∫

π∈�

cbrGρ,c(π, b) Prv ,σ1,σ2 (dπ ).
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The two players can independently try to maximise or minimise the reward earned until the cost bound is
reached. Hence, for opt1, opt2 ∈ {inf , sup} we define the optimal expected cost-bounded reward by

Ecbropt1,opt2G,ρ,c (v , b) :� opt1
σ1∈
1

opt2
σ2∈
2

Ecbrσ1,σ2
G,ρ,c(v , b).

Two important classes of properties can be considered as special cases of expected cost-bounded rewards:
For time-bounded rewards, denoted by randomvariable tbr, the time is limited duringwhich reward is collected.

This corresponds to using the constant 1-function as cost. We therefore define Etbrσ1,σ2
G,ρ (v , b) :� Ecbrσ1,σ2

G,ρ,1(v , b).
The second class encompasses cost-bounded reachability probabilities, i. e. questions like “What is themaximal

probability to reach a setVgoal ⊆ V of states with cost≤ b?”.We first make the states inVgoal absorbing and add a
Markovian self-loop trv � (v , λ, {v �→ 1}) with arbitrary finite rate 0 < λ < ∞ to each state v ∈ Vgoal and define
the final reward by ρf (v ) � 1 if v ∈ Vgoal, and ρf (v ) � 0 otherwise. The transient and instantaneous rewards are
constantly 0. Then the expected reward until cost b is reached corresponds to the probability of reaching Vgoal
with costs ≤ b.

Algorithms to compute optimal expected time-bounded rewards are available both for Markov automata
[GTH+14] and stochastic games [BFH+15]. To the best of our knowledge, up to now there are no algorithms
available to compute the optimal expected cost-bounded rewards for MA and SG.

Instantaneous Costs Similar to the definition of a reward structure, we could also define instantaneous costs which
occur when taking a transition. We do not consider instantaneous costs in this paper for two reasons:

First, they would render the transformation in Sect. 3 impossible, since there is no instantaneous time. In
principle, adapting the analysis algorithm for time-bounded rewards [GTH+14, BFH+15] to cost bounds should
be possible. That algorithm is based on discretising the time interval, yielding a discrete-time probabilistic game.
However, analysing cost-bounded properties for discrete-time models is expensive, even more so as we would
have to support non-integer costs [AHK03].

The second reason is that instantaneous costs increase the complexity of the problem.Without instantaneous
costs, computing cost-bounded expected rewards up to a user-defined precision ε > 0 can be done in polynomial
time. We extend for the moment the cost structure given in Definition 2.4 to encompass instantaneous as well as
transient costs. That is to say, each transition imposes a non-negative instantaneous cost via function ci : T →
R≥0. Accordingly, the cost of histories and paths and the cost-bounded reward, computed by cost and cbrGρ,c ,
resp., are extended in a straightforward way. We now study the problem of the optimal expected cost-bounded
rewards under the new cost structure. The following theorem shows the complexity of the problem.

Theorem 2.1 (Complexity of instantaneous costs)Computation of the optimal cost-bounded reward of an SG under
presence of instantaneous cost is NP-hard.

Proof We provide a reduction from the knapsack problem. The goal is to select a subset from n items, each with
value xi and weight wi (i � 1, . . . ,n), such that the weight of the items in the subset is at most equal to a given
boundW and their value is maximal. To solve the problem, we define a stochastic game G � (V , (V1,∅), v1,T )
(which is actually an MA) such that V � V1 � {v1, . . . , vn+1} and T � {tr(0)i , tr(1)i | i � 1, . . . ,n} ∪ {trn+1}.
States v1, . . . , vn correspond to the respective items, whereas vn+1 is just a terminal state. It is equipped with a
Markovian self-loop trn+1 � (vn+1, 1,�vn+1 ) in order to ensure deadlock freedom and to avoid zenoness. Recall
that �vn+1 denotes the Dirac distribution to vn+1.

Executing transitions tr(0)i and tr(1)i is equivalent to ignoring and picking item i , respectively. For i � 1, . . . ,n,
each vi has a pair of those transitions, i. e. tr(0)i � tr(1)i � (vi ,∞,�vi+1 ). The transitions however have different
cost and reward, namely ci(tr

(1)
i ) � wi and ρi(tr

(1)
i ) � xi . All other rewards and costs are zero. It is not hard to

see that knapsack problem can be solved via computing Ecbr sup,sup
G,ρ,c (v1,W ). �
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Theorem 2.1 shows that instantaneous cost consumption substantially increases the hardness of the problem.
It adds one level of combinatorial complexity (from polynomial to NP-hard) into the problem. This is the main
reason why we do not consider it in this paper. From now on we assume as before that the cost consumption is
transient.

3. Transformation of stochastic games

In this section, we first give a fixed point characterisation of expected cost-bounded rewards for stochastic
games and prove its correctness in the Appendix. Similar to time-bounded properties [BFH+15], this fixed point
characterisation is not amenable to an efficient solution. Therefore we transform the stochastic game so that
the optimal expected cost-bounded reward coincides with the optimal expected time-bounded reward in the
transformed game. This allows us to apply arbitrary algorithms like [GTH+14, BFH+15] for expected time-
bounded rewards to compute optimal expected cost-bounded rewards.

Theorem 3.1 (Fixed point characterisation) Let G be a stochastic game with cost function c and reward structure
ρ � (ρt, ρi, ρf ). Let b ∈ R≥0 be a cost bound, opt1, opt2 ∈ {inf , sup}, and opt[v ] � opti if v ∈ Vi . Then,

Ecbropt1,opt2G,ρ,c (v , b) is the least fixedpoint of the higher-order operatoropt1
opt2 : (V×R≥0 → R≥0) → (V×R≥0 → R≥0),

such that


opt1
opt2 (F )(v , b) � opt[v ]

tr∈T (v )

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b/c(tr)∫

0

λtr ·e− λtr ·t ·
∑

v ′∈V
μtr(v

′) · F(
v ′, b − c(tr) · t) dt

+
(

ρt(tr)
λtr

+ ρi(tr)
)

·
(
1 − e

− λtr ·b
c(tr)

)
+ ρf (v ) · e− λtr ·b

c(tr) ,

if tr ∈ TM(v ) ∧ c(tr) > 0,
ρt(tr)
λtr

+ ρi(tr) +
∑

v ′∈V
μtr(v

′) · F (v ′, b), if tr ∈ TM(v ) ∧ c(tr) � 0,

ρi(tr) +
∑

v ′∈V
μtr(v

′) · F (v ′, b), if tr ∈ TP(v ).

The existence of the least fixed point is guaranteed through Tarski’s fixed point theorem [Tar55]. It states
that for a complete lattice 〈A,≤〉, a monotone function f : A → A, and the set F :� {x ∈ A | f (x ) � x } of
all fixed points of f in A, it holds that F 
� ∅ and that 〈F ,≤〉 is a complete lattice as well. In our case, we
have that A :� (V × R≥0 → R≥0) and function f :� 

opt1
opt2 . The partial order “≤” is given as follows: For all

f , g : (V × R≥0 → R≥0) → (V × R≥0 → R≥0) it holds that f ≤ g ⇔ ∀ v ∈ V , b ∈ R≥0 : f (v , b) ≤ g(v , b).
The remaining proof of Theorem 3.1 can be found in Appendix B.
The fixed point characterisation of expected cost-bounded rewards yields a systemof integral equations, which

are typically hard to solve. Instead, the following transformation turns cost-bounded rewards into time-bounded
rewards. For the latter, not only a fixed point characterisation is available [BFH+15], but also a more efficient
algorithm, based on discretisation [GTH+14, BFH+15].

Definition 3.1 (Cost-to-time transformation) Let G � (V , (V1,V2), vinit,T ) be a stochastic game with cost func-
tion c : T → R≥0 and reward structure ρ � (ρt, ρi, ρf ). We define the cost-transformed game Gc � (

V , (V1,V2),
vinit,T c

)
with

T c � {
tr ∈ T

∣
∣ λtr � ∞}

∪{
(v ,∞, μ)

∣
∣ ∃λ ∈ R≥0 : tr � (v , λ, μ) ∈ T ∧ c(tr) � 0

}

∪{
(v , λ/c(tr), μ)

∣
∣ tr � (v , λ, μ) ∈ T ∧ c(tr) 
� 0

}
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Fig. 2. Figure 1 after transformation

and reward structure ρc � (ρc
t , ρc

i , ρc
f ) such that ρc

f � ρf ,

ρc
t (tr) �

{
ρt (tr)/c(tr), if c(tr) 
� 0,
0, if c(tr) � 0, and

ρc
i (tr) �

{
ρi(tr) + ρt (tr)/λtr, if c(tr) � 0 ∧ λtr < ∞,
ρi(tr), otherwise.

The motivation behind this transformation is as follows: Since we want to transform the cost bound b into
a time bound we have to divide b through the cost gained per time unit. This is done by dividing the rate λ of a
Markovian transition tr ∈ TM through its cost c(tr). The same has to be done with the transient reward ρt(tr). If
tr has no cost, i. e. c(tr) � 0, the transition is transformed into a probabilistic transition. The expected transient
reward ρt (tr)/λtr has to be added to the instantaneous reward of the transition in this case.

The transformation does not change the structure or size of the SG, and the transformed system is an SG as
well. Additionally, Markov automata are closed under this transformation, i. e. if the original SG is actually an
MA, so is the transformed system. To see this, we only have to considerMarkovian transitions, since probabilistic
transitions are not affected by the transformation. We have to distinguish between two scenarios: (1) Markovian
transitions with positive costs are transformed into Markovian transitions with new rates and new transient
rewards. (2) Markovian transitions without costs are transformed into probabilistic transitions with infinite rate
and new instantaneous reward. It is easy to see that the transformed transitions still adhere to Definition 2.1.

Example 3.1 Consider again the stochastic game inFig. 1awith the costs and rewards in Fig. 1b.We assume a cost
bound of b � 20. Then the rewards of the five transitions after transformation are shown in Fig. 2b. Transitions
tr3 and tr4 remain unchanged as they are probabilistic. The Markovian transitions tr1, tr2, and tr5 are modified
as follows. The expected residence time before taking tr1 is scaled such that it matches the expected cost in the
original game, i. e. the new exit rate becomes λtr1/c(tr1) � 10/5 � 2. The transient reward rate is adjusted accordingly
and becomes ρt (tr1)/c(tr1) � 1/5. The instantaneous reward does not change. The transition tr5 is modified in the
same way. As the cost of tr2 is zero, tr2 becomes probabilistic and the expected reward ρt (tr2)/λtr2 earned in v1 until
tr2 being taken is added to the instantaneous reward of tr2. The stochastic game after the transformation is shown
in Fig. 2a.

Theorem 3.2 (Measure preservation)Let G be a stochastic game with reward structure ρ, cost function c, cost bound
b ∈ R≥0, v ∈ V , and opt1, opt2 ∈ {inf , sup}. Then we have

Ecbropt1,opt2G,ρ,c (v , b) � Etbropt1,opt2Gc ,ρc (v , b).
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Proof Here we sketch the proof of the theorem. It is done by showing that the original and the transformed
games have indeed the same fixed point characterisation for the respective objectives. For this, on the one hand, we
construct the fixed point characterisation of the transformed game using Theorem 3.1 by assigning the constant
cost of one to all Markovian transitions. On the other hand, we reinterpret the representation of the fixed
point characterisation of the original model by a series of sound variable substitutions, partly inspired by the
transformation. At the end we conclude that both of the fixed point characterisations are the same, and thereby
their least fixed points are exactly equal. For more details, see the complete proof in Appendix C. �

We strongly believe that the result of Theorem 3.2 is valid under the class of late strategies. The claim is posed in
the following conjecture.

Conjecture 3.1 Theorem 3.2 holds also when the optimal measures are computed over the class of late (instead
of early) strategies.

Here we provide the intuition behind the conjecture. The challenge exists in the transformation of Markovian
transitions with zero cost consumption into probabilistic transitions. It must be the case that any strategy in
the original game that chooses those transitions for finite amount of time is sub-optimal. Otherwise the strategy
cannot be simulated in the transformed game, since their corresponding transitions are probabilistic, and thus the
measure preservation fails. However, the sub-optimality of such a strategy can be justified by the fact that those
transitions are cost preserving. Therefore, holding them for finite amount of time cannot be optimal as they can
earn reward for free (with no cost consumption). The optimal case might then happen by either ignoring those
transitions or holding them until firing, both can be imitated by the corresponding probabilistic transitions.

Zero-cost transitions1 in the original game can introduce Zenoness in the transformed game. That happens
if a set of such transitions constitutes an end component in the transformed game. This will be problematic for
the analysis, in particular if the end component contains positive rewards. Therefore the strategy that keeps the
control of the game inside the end component delivers infinite expected rewards, since staying there gains reward
without any cost. Nevertheless the analysis may ignore such a strategy in some cases, for instance in the analysis of
MA against minimal ECR. By any means and for simplicity we exclude such models from our analysis technique.

4. Case studies and experimental results

In this section we report on experimental results of computing the optimal ECR on several case studies. The case
studies are all modelled as MA. However, we explain how to give a game semantics to one of them, namely the
dynamic power management system. The game interpretation is not specific to this model and can in principle
be applied to other systems.
(1) The Dynamic Power Management System (DPMS) [QQP01] describes the following scenario: A service re-
quester generates tasks which are stored within a queue until they are handled by a processor. This processor
(P) can either be “busy” with processing a job, “idle” while the queue is empty, in a “standby” mode, or in a
“sleep” mode. In the latter two modes P is inactive and cannot handle tasks. The change between “busy” and
“idle” occurs automatically, depending on whether there are tasks in the queue or not. If P has been “idle” for
some time, it is switched into “standby” or “sleep” by a power manager. The power manager is also responsible
for switching from these two modes back to “idle”. P consumes the least power in “standby” and “sleep” (0.35W
and 0.13 W, respectively), whereas it consumes more power while “idle” (0.95 W) and the most if it is “busy”
(2.15 W) [QQP01, SBGM00]. We model the DPMS as an MA with the costs representing the power consump-
tion of P. The reward corresponds to the number of served tasks. For our experiments we varied the number of
different task types (T ) and the size of the queue (Q). We explore the expected cost-bounded reward. The model
instances are denoted as “DPMS-T -Q”.

It is possible to give a game interpretation to the DPMS case. For this, we can distinguish two kinds of
nondeterminism in this model. The nondeterminism that is resolved by the power manager is assumed to be
controllable, meaning that the system itself can control it, e. g. the power manager can switch the system into
“idle” or “standby”. The service requester however exhibits a different kind of nondeterminism, by generating
tasks of different types. This nondeterminism is considered non-controllable since the system has no control on
the type of incoming tasks.

1 Note that the cost of probabilistic transitions is implicitly zero as the delay until taking such transitions is zero.
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Table 1. Expected reward in the dynamic power management system

Budget = 10 Budget = 20 Budget = 50

Name #States Min Max Min Max Min Max

DPMS-2-5 508 0.759 0.859 1.557 1.924 3.910 5.150
DPMS-2-10 1588 0.759 0.859 1.557 1.924 3.910 5.150
DPMS-2-20 5548 0.759 0.859 1.557 1.924 3.910 5.150
DPMS-3-5 5190 0.785 0.883 1.617 1.930 4.129 5.088
DPMS-3-10 29,530 0.785 0.883 1.617 1.930 4.129 5.088
DPMS-3-20 195,810 0.785 0.883 1.617 1.930 4.129 5.088
DPMS-4-5 47,528 0.784 0.877 1.617 1.889 4.143 4.936
DPMS-4-10 492,478 0.784 0.877 1.617 1.889 4.143 4.936

Table 2. Expected reward of the queueing system

Budget = 1 Budget = 5 Budget = 10

Name #States Min Max Min Max Min Max

QS-2-2 2314 0.249 0.857 1.294 4.078 2.634 7.975
QS-2-3 10,778 0.249 0.857 1.294 4.078 2.634 7.975
QS-2-4 46,234 0.249 0.857 1.294 4.078 2.634 7.975
QS-2-5 191,258 0.249 0.857 1.294 4.078 2.634 7.975
QS-2-6 777,754 0.249 0.857 1.294 4.078 2.634 7.975
QS-3-2 12,205 0.125 0.857 0.649 4.078 1.332 7.972
QS-3-3 117,532 0.125 0.857 0.649 4.078 1.332 7.972
QS-3-4 1,080,865 0.125 0.857 0.649 4.078 1.332 7.972
QS-4-2 42,616 0.125 1.287 0.649 6.127 1.333 12.075
QS-4-3 708,088 0.125 1.287 0.649 6.127 1.333 12.075
QS-6-2 266,974 0.084 1.713 0.433 8.187 0.892 16.201

Hence a more refined model for this system is a stochastic game. The two kinds of nondeterminism can be
considered as either co-operating with or competing against each other. In the competitive semantics one can
investigate, e. g., situations where the power manager tries to increase the number of processed task within a
certain energy budget while the service requester aims to decrease it. The MA model considered here implicitely
uses a co-operative semantics.
(2) TheQueueing System (QS) [HH12] stores requests ofT different types into two queues of sizeQ each. A server
is attached to each queue, which fetches requests from its corresponding queue, and then processes them. One of
the servers might insert, with probability 0.1, the already served request into the other queue to be reprocessed
by the other server. Power is consumed by both servers when they are processing. We compute the minimum and
the maximum number of processed requests under different energy budgets. The model instances are denoted as
“QS-T -Q”.
(3) The Polling System (PS) [GHH+13, TvdPS13] consists of S stations and one server. Each station comes with
a queue of size Q , and buffers incoming jobs of T different types. The jobs are then polled and processed by the
server. There is a probability of 0.1 for a job to be processed while erroneously remaining in the queue. Each job
brings an instantaneous reward when it is completely processed by the server. Whenever processing, the server
consumes energy. Themodel is subject to two kinds of analysis: First we compute theminimumand themaximum
probability of encountering the error under some energy budget. The second analysis is on the computation of
the minimum and the maximum expected energy-bounded reward of the model. The instances of the polling
system are denoted as “PS-S -T -Q”.
(4) The Stochastic Job Scheduling benchmark (SJS) [BDF81] originally stems from economy. In this setting, a
number of jobswith different service rates are distributed between processors. Each processor consumes resources,
e. g. energy which has to be paid for. The costs in our model represent these expenses. The goal is to have all
jobs processed within a certain cost budget. In our experiments we explore the reachability of this goal with
homogeneous costs (“all processors have the same costs”) and heterogeneous costs (“all processors have different
costs”), while varying the number of jobs (M ) and the number of processors (N ). Since the system degenerates
to a CTMC if the service rates are homogeneous, we do not consider this case. The model instances are denoted
as “SJS-N -M ”.
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Table 3. Results for the polling system

Reachability Reward

Name #States Min Max Min Max

PS-2-2-2 455 0.743 0.773 3.128 3.219
PS-2-2-3 2055 0.483 0.551 3.980 4.117
PS-2-2-4 8421 0.998 0.999 1.045 1.080
PS-2-3-2 2392 0.995 0.996 1.209 1.253
PS-2-3-3 22,480 0.973 0.983 1.730 1.848
PS-2-3-4 137,445 0.990 0.994 1.489 1.583
PS-3-2-2 3577 0.888 0.917 2.549 2.685
PS-3-2-3 34,425 0.665 0.760 3.493 3.732
PS-3-3-2 35,659 1.000 1.000 0.918 0.965
PS-3-4-2 300,793 0.402 0.543 4.180 4.412
PS-4-2-2 27,783 0.955 0.973 2.166 2.307
PS-4-3-2 570,375 0.793 0.879 3.116 3.403
PS-5-2-2 213,689 0.983 0.992 1.908 2.039

Table 4. Reachability in the stochastic job scheduling benchmark

Homogeneous costs Heterogeneous costs

Name #States Min Max Min Max

SJS-2-2 34 0.713 0.713 0.699 0.799
SJS-2-4 464 0.241 0.241 0.186 0.243
SJS-2-6 4144 0.041 0.041 0.021 0.029
SJS-2-8 29,344 0.004 0.004 0.001 0.002
SJS-4-2 104 0.713 0.713 0.542 0.995
SJS-4-4 3168 0.241 0.241 0.120 0.610
SJS-4-6 71,644 0.041 0.041 0.013 0.130
SJS-4-8 1,032,272 0.004 0.004 0.001 0.012
SJS-6-2 214 0.713 0.713 0.424 1.000
SJS-6-4 13,924 0.241 0.241 0.059 0.945
SJS-6-6 685,774 0.041 0.041 0.005 0.374
SJS-8-2 364 0.713 0.713 0.337 1.000
SJS-8-4 41,552 0.241 0.241 0.033 0.999
SJS-10-2 554 0.713 0.713 0.274 1.000
SJS-10-4 98,436 0.241 0.241 0.019 1.000

We used SCOOP [TKvdPS12] to create the model files. The transformation from cost to time was done with
a python script; the computation time for this was negligible. We then employed the tool IMCA [GHKN12,
GHH+13, GTH+14] to determine the minimum and maximum expected cost-bounded reward or the minimum
and maximum cost-bounded reachability probabilities of the models. It would be possible to use any other
analyser for MA, e. g. MeGARA, the prototype from [BFH+15].

All experiments were run on an Intel Xeon quad-core processor with 3.3 GHz per core and 64GB of memory.
We set a time limit of 12 h. The memory consumption was negligible; all experiments needed less than 300 MB.

We will not give detailed time measurements due to space restrictions, nevertheless we want to briefly discuss
the computation times. The shortest computations took only fractions of a second, e. g. the computation of the
minimum reachability for SJS-2-4 with cost budget 5 took 0.06 s, whereas the longer computations needed several
hours, e. g. for DPMS-4-10 the computation of the minimum reachability with cost budget 50 took almost 11 h,
which was the longest computation time of all our experiments. The computation time is also influenced by the
size of the cost budget. For example, for cost budget 10 the computation of the minimum reachability for DPMS-
4-10 took less than 6min. This is due to the fact that IMCA uses discretisation [GHH+13, GHH+14, GTH+14] to
compute the values; for a larger boundmore discretisation steps are needed.There is also an interesting connection
between the costs within the system, its maximum rate, and the computation time: The size of a discretisation
step depends on the maximum rate of the transformed system. The higher the maximum rate is, the smaller
the discretisation step must be chosen in order to satisfy the given accuracy level. For the computation of cost-
bounded rewards, this means that the computation time is strongly influenced by the value of max

{
λtr/c(tr)

∣
∣ tr ∈

TM : c(tr) > 0
}
. For details on the discretisation, see [GTH+14, BFH+15].
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Tables 1, 2, 3 and 4 show the results of our experiments. The first two columns of each table contain the name
of the respective model instance and its number of states.

In case of DPMS (Table 1) and QS (Table 2) we explore the minimum and maximum expected reward under
different cost budgets. For DPMS we used cost budgets of 10, 20, and 50, whereas for QS we used cost budgets
of 1, 5, and 10 (see the respective blocks in Tables 1, 2). It holds for both DPMS and QS that the expected
reward grows with the budget, as does the difference between minimum and maximum reward, as to be expected.
Another interesting fact is that the size of the queues in the models – while having a big influence on the size
of the system – has practically no impact on the expected reward. It is completely determined by the number of
different task types. This observation can be explained as follows: For the processing unit of DPMS (or of QS)
it is not important how many jobs exactly can be stored in the queue(s), as long as there are jobs in the queue(s).

For PS (Table 3) we studied bothminimum andmaximum reachability andminimum andmaximum expected
reward (see the respective blocks in the table) under a cost budget of 5. If we increase the queue size, the minimum
and maximum probability for encountering the error decreases, while the expected minimum and maximum
reward increases. At the same time we can observe that the reachability increases with the number of stations, e. g.
for PS-2-2-2, containing two stations, the maximum probability is 0.773, whereas for PS-5-2-2, containing five
stations, it is 0.992. This makes sense, since the error is caused by the stations and the probability to encounter
the error therefore increases with having more stations.

For SJS (Table 4) we also used a cost budget of 5. Here we studied the minimum and maximum reachability
while assuming homogeneous or heterogeneous costs for the different processors of the system (see the respective
blocks in Table 4). For homogeneous costs we can observe a similar effect as for DPMS and PS: The number
of processors influences the number of states in the system, but has a negligible impact on the reachability. The
latter is completely determined by the number of jobs. What’s more, the minimum and the maximum reachability
are the same in this case. These effects vanish if we assume heterogeneous costs. In this case, the distance between
minimum and maximum reachability increases, especially the maximum reachability becomes higher. These
observations make sense: in case of a homogeneous system it does not matter, which processor handles which
job. However, in a heterogeneous system there is a choice between more and less expensive processors which can
handle the jobs, which in turn leads to a higher (lower) maximum (minimum) reachability.

5. Conclusion

Westudied the computationofMarkovautomataand stochastic gamesagainst cost-bounded rewardobjectives. In
this regard, we provided a fixed point characterisation for the optimal expected cost-bounded reward. Moreover,
we proposed an efficient measure-preserving transformation from cost-bounded to time-bounded objectives.
For the latter, an analysis technique based on discretisation with strict error bound exists. Our experiments
demonstrate the effectiveness of the approach.

In the future, we want to prove Theorem 3.2 for the larger class of late schedulers. We plan to improve the
efficiency of the analysis, e. g. via uniformization-based techniques and abstraction refinement on very large games
and automata.

A. Fixed point characterisation for expected time-bounded reward

We recall that the optimal expected time-bounded reward (ETR) is the special case of the optimal expected cost-
bounded reward (ECR) when the costs of all transitions are one. We recap the fixed point characterisation of the
optimal ETR for stochastic games as described in [BFH+15, Lemma 1]. The characterisation is slightly extended
for reward structures with final rewards and adapted to our notations.

Theorem A.1 (Fixed point characterisation for the optimal ETR) Let G be a stochastic game with reward structure
ρ � (ρt, ρi, ρf ). Let b ∈ R≥0 be a time bound and opti ∈ {inf , sup}, and opt[v ] � opti if v ∈ Vi for i ∈ {1, 2}. Then,
Etbropt1,opt2G,ρ (v , b) is the least fixedpoint of the higher-order operatoropt1

opt2 : (V×R≥0 → R≥0) → (V×R≥0 → R≥0),
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such that


opt1
opt2 (F )(v , b) � opt[v ]

tr∈T (v )

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

b∫

0
λtr ·e− λtr ·t · ∑

v ′∈V
μtr(v

′) · F (v ′, b − t) dt

+
(

ρt(tr)
λtr

+ ρi(tr)
)

·
(
1 − e− λtr b

)
+ ρf (v )e− λtr ·b, if tr ∈ TM(v ),

ρi(tr) +
∑

v ′∈V
μtr(v

′) · F (v ′, b), if tr ∈ TP(v ).

Proof The proof is the direct result of Theorem 3.1 by choosing a constant cost of one for each transition. �

B. Proof of Theorem 3.1

We recall Theorem 3.1:

Theorem 3.1 (Fixed point characterisation) Let G be a stochastic game with cost function c and reward structure
ρ � (ρt, ρi, ρf ). Let b ∈ R≥0 be a cost bound, opt1, opt2 ∈ {inf , sup}, and opt[v ] � opti if v ∈ Vi . Then,

Ecbropt1,opt2G,ρ,c (v , b) is the least fixedpoint of the higher-order operatoropt1
opt2 : (V×R≥0 → R≥0) → (V×R≥0 → R≥0),

such that


opt1
opt2 (F )(v , b) � opt[v ]

tr∈T (v )

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b/c(tr)∫

0

λtr ·e− λtr ·t ·
∑

v ′∈V
μtr(v

′) · F(
v ′, b − c(tr) · t) dt

+
(

ρt(tr)
λtr

+ ρi(tr)
)

·
(
1 − e

− λtr ·b
c(tr)

)
+ ρf (v ) · e− λtr ·b

c(tr) ,

if tr ∈ TM(v ) ∧ c(tr) > 0,
ρt(tr)
λtr

+ ρi(tr) +
∑

v ′∈V
μtr(v

′) · F (v ′, b), if tr ∈ TM(v ) ∧ c(tr) � 0,

ρi(tr) +
∑

v ′∈V
μtr(v

′) · F (v ′, b), if tr ∈ TP(v).

Proof The proof is done in two steps. First we show that Ecbropt1,opt2G,ρ,c is a fixed point of the operator  described
in the theorem. Then we show that it is indeed the least fixed point. Since G , ρ and c are clear from the context,
we will drop the respective subscripts from now on and write Ecbropt1,opt2 only.

We recall the definition of the optimal expected cost-bounded reward. Given a stochastic game G, a cost
bound b ≥ 0, and v ∈ V , the maximum time-bounded expected reward is defined as:

Ecbropt1opt2 (v , b) :� opt1
σ1∈
1

opt2
σ2∈
2

∫

π∈�(v )

cbr (π, b) dPrv ,σ1,σ2 (π ). (1)

Let v be a state and further assume w. l. o. g. that v ∈ V1. Since the initial state is v , all the paths starting not
from v have measure zero and are out of the computation. Therefore the optimal early strategy at state v tries
to pick the best combination of transitions available at v . Obviously it selects the transition that optimises the
objective rather than any convex combination of available transitions since the latter gives anyway an inferior
value than or atmost the same value as the optimal one. Consequently we can only optimise over the deterministic
strategies, that select one of the available transitions of v with probability one.
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Therefore we have

Ecbropt1opt2 (v , b) � opt1
tr∈T (v )

opt1
σ1∈
tr

1

opt2
σ2∈
2

Rσ1,σ2 (v ,tr,b)
︷ ︸︸ ︷∫

π

cbr (π, b) dPrv ,σ1,σ2 (π )

︸ ︷︷ ︸
�

R
opt1

opt2
(v ,tr,b)

, (2)

where 
tr
1 is the set of strategies that select transition tr ∈ T (v ) for path v , i. e. a path containing only state v .

Now we consider different cases of transition tr:

(a) tr ∈ TM(v ), c(tr) > 0 and b � 0: For this case the final reward is applied, then

�

R
opt1

opt2
(v , tr, b) � ρf (v ). (3)

(b) tr ∈ TM(v ), c(tr) > 0 and b > 0: We split each path starting from v at the point it takes transition tr, and

write it as π � v
t,tr−→ π ′. We can therefore split the reward of such paths accordingly:

cbr (π, b) �
{

ρt(tr) · t + ρi(tr) + cbr (π ′, b − c(tr) · t), t ≤ b
c(tr) ,

ρt(tr) · b
c(tr) + ρf (v ), t > b

c(tr) .
(4)

The probability measure of such paths can be split in a similar way. To do that we first need to construct a new
strategy from a given arbitrary strategy σi , i � {1, 2}. Its aim is to mimic the decision of σi on path π when it
takes the suffix of π after the splitting point t . It is required to guarantee that the splitting of the probability
measure is sound. Formally strategy σ

t,tr
i resolves nondeterminism for the suffix π ′ of path π after splitting

point t as σi does it for π , i. e. for π � v
t,tr−→ π ′, σ t,tr

i (π ′) � σi (π ). Whenever clear from the context, we drop
tr from σ

t,tr
i and write σ t

i (π
′). We can subsequently split the probability measure of path π :

dPrv ,σ1,σ2 (π ) � λtr ·e− λtr ·t dt ·
∑

v ′∈V
μtr(v

′) dPrv ′,σ t
1 ,σ t

2
(π ′). (5)

We proceed with the simplification ofRσ1,σ2 (v , tr, b) according to Eqs. (4) and (5):

Rσ1,σ2 (v , tr, b)

�
∫

π

cbr (π, b) dPrv ,σ1,σ2 (π )

�
b/c(tr)∫

0

∫

π ′

((
ρt(tr) · t + ρi(tr) + cbr (π ′, b − c(tr) · t)) λtr e

− λtr ·t ·
∑
v ′∈V

μtr(v
′) dPrv ′,σ t

1 ,σ t
2
(π ′)

)
dt

+

∞∫

b/c(tr)

∫

π ′

((
ρt(tr) · b

c(tr) + ρf (v )
)
λtr e

− λtr ·t ·
∑
v ′∈V

μtr(v
′) dPrv ′,σ t

1 ,σ t
2
(π ′)

)
dt

�
b/c(tr)∫

0

∫

π ′

(
ρt(tr) · t + ρi(tr)

)
λtr e

− λtr ·t ∑
v ′∈V

μtr(v
′) dPrv ′,σ t

1 ,σ t
2
(π ′) dt

+

b/c(tr)∫

0

∫

π ′
cbr (π ′, b − c(tr) · t) λtr e− λtr ·t ∑

v ′∈V
μtr(v

′) dPrv ′,σ t
1 ,σ t

2
(π ′) dt

+

∞∫

b/c(tr)

∫

π ′

(
ρt(tr) · b

c(tr) + ρf (v )
)

λtr e
− λtr ·t ∑

v ′∈V
μtr(v

′) dPrv ′,σ t
1 ,σ t

2
(π ′) dt
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�
b/c(tr)∫

0

(
ρt(tr) · t + ρi(tr)

)
λtr e

− λtr ·t ∑
v ′∈V

μtr(v
′)

∫

π ′
dPrv ′,σ t

1 ,σ t
2
(π ′) dt

+

b/c(tr)∫

0

λtr e
− λtr ·t

∫

π ′
cbr (π ′, b − c(tr) · t)

∑
v ′∈V

μtr(v
′) dPrv ′,σ t

1 ,σ t
2
(π ′) dt

+

∞∫

b/c(tr)

(
ρt(tr) · b

c(tr) + ρf (v )
)

λtr e
− λtr ·t ∑

v ′∈V
μtr(v

′)
∫

π ′
dPrv ′,σ t

1 ,σ t
2
(π ′) dt

(∗)�
b/c(tr)∫

0

(
ρt(tr) · t + ρi(tr)

)
λtr e

− λtr ·t dt +
∞∫

b/c(tr)

(
ρt(tr) · b

c(tr) + ρf (v )
)

λtr e
− λtr ·t dt

+

b/c(tr)∫

0

λtr e
− λtr ·t

∫

π ′
cbr (π ′, b − c(tr) · t)

∑
v ′∈V

μtr(v
′) dPrv ′,σ t

1 ,σ t
2
(π ′) dt

�
(

ρt(tr)
λtr

+ ρi(tr)
)(

1 − e
− λtr ·b

c(tr)

)
+ ρf (v ) · e− λtr ·b

c(tr)

+

b/c(tr)∫

0

λtr e
− λtr ·t

∫

π ′
cbr (π ′, b − c(tr) · t)

∑
v ′∈V

μtr(v
′) dPrv ′,σ t

1 ,σ t
2
(π ′) dt, (6)

where (∗) holds since ∫
π ′ dPrv ′,σ t

1 ,σ t
2
(π ′) � 1 and

∑
v ′∈V μtr(v

′) � 1.

With Eq. (6) one can determine
�

R
opt1

opt2
(v , tr, b):

�

R
opt1

opt2
(v , tr, b)

� opt1
σ1∈
tr

1

opt2
σ2∈
2

Rσ1,σ2 (v , tr, b) (∗ by Eq. (2) ∗)

�
(

ρt(tr)
λtr

+ ρi(tr)
)(

1 − e
− λtr ·b

c(tr)

)
+ ρf (v ) · e− λtr ·b

c(tr)

+ opt1
σ1∈
tr

1

opt2
σ2∈
2

b/c(tr)∫
0

(
λtr e

− λtr ·t
∫
π ′

(
cbr (π ′, b − c(tr) · t) ·

∑
v ′∈V

μtr(v
′)
)
dPrv ′,σ t1 ,σ t2

(π ′)
)
dt (∗ by Eq. (6) ∗)

�
(

ρt(tr)
λtr

+ ρi(tr)
)(

1 − e
− λtr ·b

c(tr)

)
+ ρf (v ) · e− λtr ·b

c(tr)

+ opt1
σ1∈
tr

1

opt2
σ2∈
2

b/c(tr)∫
0

(
λtr e

− λtr ·t ∑
v ′∈V

μtr(v
′) ·

∫
π ′

cbr (π ′, b − c(tr) · t) dPrv ′,σ t1 ,σ t2
(π ′)

)
dt

(∗)�
(

ρt(tr)
λtr

+ ρi(tr)
)(

1 − e
− λtr ·b

c(tr)

)
+ ρf (v ) · e− λtr ·b

c(tr)

+

b/c(tr)∫
0

(
λtr e

− λtr ·t ∑
v ′∈V

μtr(v
′) · opt1

σ1∈
tr
1

opt2
σ2∈
2

∫
π ′

cbr (π ′, b − c(tr) · t) dPrv ′,σ t1 ,σ t2
(π ′)

)
dt

(†)�
(

ρt(tr)
λtr

+ ρi(tr)
)(

1 − e
− λtr ·b

c(tr)

)
+ ρf (v ) · e− λtr ·b

c(tr)

+

b/c(tr)∫
0

(
λtr e

− λtr ·t ∑
v ′∈V

μtr(v
′) · opt1

σ1∈
1

opt2
σ2∈
2

∫
π ′

cbr (π ′, b − c(tr) · t) dPrv ′,σ1,σ2 (π
′)
)
dt

(‡)�
(

ρt(tr)
λtr

+ ρi(tr)
)(

1 − e
− λtr ·b

c(tr)

)
+ ρf (v ) · e− λtr ·b

c(tr)

+

b/c(tr)∫
0

λtr e
− λtr ·t ∑

v ′∈V
μtr(v

′) · Ecbropt1
opt2

(v ′, b − c(tr) · t) dt, (7)
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where the role of the integral and opt operators can be changed in (∗) as the integral is over variable t and both
σ t
1 and σ t

2 are function of t . Moreover, (†) holds since σ t
1 and σ t

2 are now optimising paths from v ′, leaving
no chance for tr to be selected. Hence they function like general strategies. Lastly (‡) follows from Eq. (1).

(c) tr ∈ TM(v ), c(tr) � 0: Here we again split the paths as it is done for case (b). A path π starting from v is then

represented by π � v
t,tr−→ π ′. The splitting of the probability measure follows Eq. (5) accordingly. However

the reward splitting in this case is different since staying at state v has no cost. Therefore we can write:

cbr (π, b) � ρt(tr) · t + ρi(tr) + cbr (π ′, b). (8)

We proceed with the simplification ofRσ1,σ2 (v , tr, b) according to Eqs. (5) and (8).

Rσ1,σ2 (v , tr, b)

�
∫

π

cbr (π, b) dPrv ,σ1,σ2 (π )

�
∞∫

0

∫

π ′

(
ρt(tr) · t + ρi(tr) + cbr (π ′, b)

)
λtr e

− λtr ·t ∑
v ′∈V

μtr(v
′) dPrv ′,σ t

1 ,σ t
2
(π ′) dt

�
∞∫

0

∫

π ′

(
ρt(tr) · t + ρi(tr)

)
λtr e

− λtr ·t ∑
v ′∈V

μtr(v
′) dPrv ′,σ t

1 ,σ t
2
(π ′) dt

+

∞∫

0

∫

π ′
cbr (π ′, b) λtr e− λtr ·t ∑

v ′∈V
μtr(v

′) dPrv ′,σ t
1 ,σ t

2
(π ′) dt

�
∞∫

0

(ρt(tr) · t + ρi(tr)) λtr e
− λtr ·t ∑

v ′∈V
μtr(v

′)
∫

π ′
dPrv ′,σ t

1 ,σ t
2
(π ′) dt

+

∞∫

0

λtr e
− λtr ·t ∑

v ′∈V
μtr(v

′)
∫

π ′
cbr (π ′, b) dPrv ′,σ t

1 ,σ t
2
(π ′) dt

(∗)�
∞∫

0

(
ρt(tr) · t + ρi(tr)

)
λtr e

− λtr ·t dt

+

∞∫

0

λtr e
− λtr ·t ∑

v ′∈V
μtr(v

′)
∫

π ′
cbr (π ′, b) dPrv ′,σ t

1 ,σ t
2
(π ′) dt

� ρt(tr)
λtr

+ ρi(tr) +

∞∫

0

λtr e
− λtr ·t ∑

v ′∈V
μtr(v

′)
∫

π ′
cbr (π ′, b) dPrv ′,σ t

1 ,σ t
2
(π ′) dt, (9)

where (∗) follows from ∫
π ′ dPrv ′,σ t

1 ,σ t
2
(π ′) � 1 and

∑
v ′∈V μtr(v

′) � 1.

With Eq. (9) one can determine
�

R
opt1

opt2
(v , tr, b):

�

R
opt1

opt2
(v , tr, b) � opt1

σ1∈
tr
1

opt2
σ2∈
2

Rσ1,σ2 (v , tr, b) (∗ by Eq. (2) ∗)

� opt1
σ1∈
tr

1

opt2
σ2∈
2

∞∫

0

λtr e
− λtr ·t ∑

v ′∈V
μtr(v

′)
∫

π ′
cbr (π ′, b) dPrv ′,σ t

1 ,σ t
2
(π ′) dt +

ρt(tr)
λtr

+ ρi(tr) (∗ by Eq. (9) ∗)

(∗)�
∞∫

0

λtr e
− λtr ·t ∑

v ′∈V
μtr(v

′) · opt1
σ1∈
tr

1

opt2
σ2∈
2

∫

π ′
cbr (π ′, b) dPrv ′,σ t

1 ,σ t
2
(π ′) dt +

ρt(tr)
λtr

+ ρi(tr)

(†)�
∞∫

0

λtr e
− λtr ·t ∑

v ′∈V
μtr(v

′) · opt1
σ1∈
1

opt2
σ2∈
2

∫

π ′
cbr (π ′, b) dPrv ′,σ1,σ2 (π

′) dt +
ρt(tr)
λtr

+ ρi(tr)
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�
∞∫

0

λtr e
− λtr ·t ∑

v ′∈V
μtr(v

′) · Ecbropt1opt2
(v ′, b) dt +

ρt(tr)
λtr

+ ρi(tr) (∗ by Eq. (1) ∗)

�
∞∫

0

λtr e
− λtr ·t dt ·

∑
v ′∈V

μtr(v
′) · Ecbropt1opt2

(v ′, b) +
ρt(tr)
λtr

+ ρi(tr)

�
∑
v ′∈V

μtr(v
′) · Ecbropt1opt2

(v ′, b) +
ρt(tr)
λtr

+ ρi(tr), (10)

where, similar to case (b), the role of the integral and opt operators can be changed in (∗) as the integral
is over the variable t and both σ t

1 and σ t
2 are functions of t . Moreover, (†) holds, since σ t

1 and σ t
2 are now

optimising paths from v ′, leaving no chance for tr to be selected. Hence they function like general strategies.
(d) tr ∈ TP(v ): We split each path starting from v at the point where transition tr is taken. In contrast to the

cases (b) and (c), the transition is taken at time zero as it is probabilistic and therefore immediate. Hence, no

cost is imposed, and also no transient reward is gained by tr. We can thus write π � v
0,tr−→ π ′ and then:

cbr (π, b) � ρi(tr) + cbr (π ′, b). (11)

The probability measure can be split in the same way. Similar to cases (b) and (c) we first need to construct
a new strategy from a given arbitrary schedule σi , i � {1, 2}. Its aim is to mimic the decision of σi on path
π when it takes the suffix of π after tr is taken. Formally strategy σ tr

i resolves the nondeterminism for the

suffix π ′ of path π after the splitting point as σi does it for π , i. e. for π � v
0,tr−→ π ′, σ tr

i (π
′) � σi (π ). We can

subsequently split the probability measure of path π :

dPrv ,σ1,σ2 (π ) �
∑

v ′∈V
μtr(v

′) dPrv ′,σ tr
1 ,σ tr

2
(π ′). (12)

We proceed with the simplification ofRσa ,σ2 (v , tr, b) according to Eqs. (11) and (12):

Rσ1,σ2 (v , tr, b) �
∫

π

cbr (π, b) dPrv ,σ1,σ2 (π )

�
∫

π ′

(
ρi(tr) + cbr (π ′, b)

) ∑
v ′∈V

μtr(v
′) dPrv ′,σ tr

1 ,σ tr
2
(π ′)

� ρi(tr) ·
∫

π ′

∑
v ′∈V

μtr(v
′) dPrv ′,σ tr

1 ,σ tr
2
(π ′) +

∫
π ′
cbr (π ′, b)

∑
v ′∈V

μtr(v
′) dPrv ′,σ tr

1 ,σ tr
2
(π ′)

(∗)� ρi(tr) +
∑
v ′∈V

μtr(v
′) ·

∫
π ′
cbr (π ′, b) dPrv ′,σ tr

1 ,σ tr
2
(π ′), (13)

where (∗) follows from ∫
π ′ dPrv ′,σ t

1 ,σ t
2
(π ′) � 1 and

∑
v ′∈V μtr(v

′) � 1.

With Eq. (13) one can determine
�

R
opt1

opt2
(v , tr, b):

�

R
opt1

opt2
(v , tr, b) � opt1

σ1∈
tr
1

opt2
σ2∈
2

Rσ1,σ2 (v , tr, b) (∗ by Eq. (2) ∗)

� ρi(tr) + opt1
σ1∈
tr

1

opt2
σ2∈
2

∑
v ′∈V

μtr(v
′) ·

∫
π ′
cbr (π ′, b) dPrv ′,σ tr

1 ,σ tr
2
(π ′) (∗ by Eq. (13) ∗)

� ρi(tr) +
∑
v ′∈V

μtr(v
′) · opt1

σ1∈
tr
1

opt2
σ2∈
2

∫
π ′
cbr (π ′, b) dPrv ′,σ tr

1 ,σ tr
2
(π ′)

(∗)� ρi(tr) +
∑
v ′∈V

μtr(v
′) · opt1

σ1∈
1

opt2
σ2∈
2

∫
π ′
cbr (π ′, b) dPrv ′,σ1,σ2 (π

′)

(†)� ρi(tr) +
∑
v ′∈V

μtr(v
′) · Ecbropt1opt2

(v ′, b), (14)
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where (∗) holds since σ tr
1 and σ tr

2 are now optimising paths from v ′, leaving no chance for tr to be selected.
Hence they function like general strategies. Furthermore, (†) follows from Eq. (1).

Plugging Eqs. (3), (7), (10) and (14) into Eq. (2) directly indicates that Ecbropt1opt2 is a fixed point of operator


opt1
opt2 . The next part of the proof shows that Ecbr

opt1
opt2 is indeed the least fixed point of 

opt1
opt2 .

Let F be any fixed point of operator 
opt1
opt2 , we show that Ecbropt1opt2 (v , b) ≤ F (v , b) for all v ∈ V and b ≥ 0. We

show by 
opt1
opt2 [n] (n > 0) the n-level recursive composition of operator 

opt1
opt2 and write F [n] � 

opt1
opt2 [n](F [0]),

whereF [0] is the starting bottom function. For the optimal ECR,Ecbropt1opt2 [n](v , b) intuitively refers to the optimal
expected cost-bounded reward from v gained by taking up to n transitions. Its bottom function is thus defined
as

Ecbropt1opt2 [0](v , b) �
{

ρf (v ), if tr ∈ TM(v ) ∧ c(tr) > 0 ∧ b � 0,
0, otherwise.

(15)

Now we consider an arbitrary fixed point of operator 
opt1
opt2 . Obviously it holds that Ecbropt1opt2 [0](v , b) ≤ F (v , b)

for all v ∈ V and b ∈ R≥0. It is not hard to prove, by induction on n, that ∀n. Ecbropt1opt2 [n](v , b) ≤ F (v , b). It
is enough to inductively show for each case of the fixed point characterisation, discussed in the first part of the
proof, that the inequality holds. Finally it holds for v ∈ V and b ∈ R≥0 that

Ecbropt1opt2 (v , b) � lim
n→∞Ecbropt1opt2 [n](v , b) ≤ F (v , b).

The proof that sequence {Ecbropt1opt2 [n](v , b)}n∈N converges to Ecbropt1opt2 (v , b) can be done via a slight adaptation
of [Neu10, Theorem 5.1]. �

C. Proof of Theorem 3.2

We recall the theorem here:

Theorem 3.2 (Measure preservation)Let G be a stochastic game with reward structure ρ, cost function c, cost bound
b ∈ R≥0, v ∈ V , and opt1, opt2 ∈ {inf , sup}. Then we have

Ecbropt1,opt2G,ρ,c (v , b) � Etbropt1,opt2Gc ,ρc (v , b).

Proof The proof is done by showing that the original and the transformed games have indeed the same fixed
point characterisation for the optimal ECR. We start with the fixed point characterisation of the original game,
described in Theorem 3.1, and consider an arbitrary state v and its transitions case by case.

We first look at the case when tr ∈ TM(v ), c(tr) > 0, and b > 0. We change then the variables in this
case according to the transformation given in Definition 3.1. It is done by introducing a transition trc of the
transformed model with the following quantities: λtrc :� λtr

c(tr) and ρc
t (tr

c) :� ρt(tr)
c(tr) . Other quantities of trc are

inherited by tr as suggested by the transformation, i. e. μtrc :� μtr and ρc
i (tr

c) :� ρi(tr). Furthermore we change
the integration in this case by substitution of t with τ :� c(tr) · t , and thereby dτ � c(tr) dt . With this we rewrite
the case:

b/c(tr)∫

0

λtr ·e− λtr ·t ·
∑
v ′∈V

μtr(v
′) · F (v ′, b − c(tr) · t) dt +

(
ρt(tr)
λtr

+ ρi(tr)
)

·
(
1 − e

− λtr b
c(tr)

)

�
b∫

0

λtr ·e− λtr
c(tr) ·τ ·

∑
v ′∈V

μtr(v
′) · F (v ′, b − τ ) 1

c(tr) dτ +
(

ρt(tr)
λtr

+ ρi(tr)
)

·
(
1 − e

− λtr b
c(tr)

)

�
b∫

0

λtrc ·e− λtrc ·τ ·
∑
v ′∈V

μtrc (v
′) · F (v ′, b − τ ) dτ +

(
ρc
t (tr

c)
λtrc

+ ρc
i (tr)

)
·
(
1 − e− λtrc ·b)

. (16)
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Nowwe consider the case that tr ∈ TM(v ) and c(tr) � 0 and apply the transformation therein.We therefore turn it
into a probabilistic transition trc of the transformed game by λtrc :� ∞,μtrc :� μ(tr) and ρc

i (tr
c) :� ρt(tr)

λtr
+ρi(tr).

With this we get:

ρt(v )
λtr

+ ρi(tr) +
∑

v ′∈V
μtr(v

′) · F (v ′, b) � ρc
i (tr

c) +
∑

v ′∈V
μtrc (v

′) · F (v ′, b). (17)

There are still two cases left: (1) The case when tr ∈ TP(v ), and (2) the complement of all other cases. For
both of them we just take the transition as it is and do not change anything. Putting this with Eqs. (16) and (17)
all together gives:


opt1
opt2 (F )(v , b) � opt[v ]

tr∈T (v )

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

b∫

0
λtrc ·e− λtrc ·τ · ∑

v ′∈V
μtrc (v

′) · F (v ′, b − τ ) dτ

+
(

ρc
t (tr

c )
λtrc

+ ρc
i (tr)

)
·
(
1 − e− λtrc ·b

)
, if tr ∈ TM(v ) ∧ b > 0,

ρc
i (tr

c) +
∑

v ′∈V
μtrc (v

′) · F (v ′, b), if trc ∈ TP(v ),

ρf (v ), otherwise.

(18)

Note that two cases, when the transition is Markovian with zero cost, and when it is probabilistic, are now
merged, since we turn Markovian transitions with zero cost into probabilistic transitions. Moreover, after the
transformation being Markovian implies having nonzero cost; as a consequence, cost checking is omitted from
the cases.

It is not hard to see that the fixed point characterisation offered by Eq. (18) coincides with that of the
transformed game for expected time-bounded reward, similar to the one in [BFH+15, Lemma 1], which is adapted
in our notations and recalled in Appendix A. It means that even though the operators characterise different
objectives and their representations are different, they can be derived from each other and therefore their least
fixed point is the same. �
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