
DOI 10.1007/s00165-016-0387-x
BCS © 2016
Formal Aspects of Computing (2016) 28: 725–765

Formal Aspects
of Computing

Modelling timed reactive systems from
natural-language requirements
Gustavo Carvalho1, Ana Cavalcanti2 and Augusto Sampaio1

1 Centro de Informática, Universidade Federal de Pernambuco, 50740-560, Recife, Brazil
2 Department of Computer Science, University of York, York, YO10 5GH, UK

Abstract. At the very beginning of system development, typically only natural-language requirements are docu-
mented. As an informal source of information, however, natural-language specifications may be ambiguous and
incomplete; this can be hard to detect by means of manual inspection. In this work, we present a formal model,
named data-flow reactive system (DFRS), which can be automatically obtained from natural-language require-
ments that describe functional, reactive and temporal properties. A DFRS can also be used to assess whether
the requirements are consistent and complete. We define two variations of DFRS: a symbolic and an expanded
version. A symbolic DFRS (s-DFRS) is a concise representation that inherently avoids an explicit representation
of (possibly infinite) sets of states and, thus, the state space-explosion problem. We use s-DFRS as part of a
technique for test-case generation from natural-language requirements. In our approach, an expanded DFRS
(e-DFRS) is built dynamically from a symbolic one, possibly limited to some bound; in this way, bounded analy-
sis (e.g., reachability, determinism, completeness) can be performed. We adopt the s-DFRS as an intermediary
representation from which models, for instance, SCR and CSP, are obtained for the purpose of test generation.
An e-DFRS can also be viewed as the semantics of the s-DFRS from which it is generated. In order to connect
such a semantic representation to established ones in the literature, we show that an e-DFRS can be encoded
as a TIOTS: an alternative timed model based on the widely used IOLTS and ioco. To validate our overall ap-
proach, we consider two toy examples and two examples from the aerospace and automotive industry. Test cases
are independently created and we verify that they are all compatible with the corresponding e-DFRS models
generated from symbolic ones. This verification is performed mechanically with the aid of the NAT2TEST tool,
which supports the manipulation of such models.

Keywords: Natural-language, Formal model, Model mapping, TIOTS

Correspondence and offprint requests to: G. Carvalho, E-mail: ghpc@cin.ufpe.br

http://crossmark.crossref.org/dialog/?doi=10.1007/s00165-016-0387-x&domain=pdf

726 G. Carvalho et al.

1. Introduction

According to the federal aviation administration (FAA), which published a report [FAA09] that discusses current
practices concerning requirements engineering management, “... the overwhelming majority of the survey respon-
dents indicated that requirements are being captured as English text...”. This supports the thesis that, at the very
beginning of system development, typically only natural-language requirements are documented. As an informal
source of information, natural-language specifications may be ambiguous and incomplete; this problem can be
difficult to identify by means of manual inspection.

If formal models are derived from the requirements, it is possible to reason about the specification and its
implementation formally. For instance, animation of these models might be a useful tool for validating the system
requirements. Moreover, given a formal definition of ambiguity and incompleteness, a formal model can be used
to check consistency and completeness of the specification to prove something that can be hard to achieve by
means of manual inspection. Generation of test cases is also made possible by the availability of a formal model
via model-based testing (MBT) techniques. To achieve practical impact, however, automation is essential, since
requiring knowledge of formal modelling by practitioners is often not feasible.

The research problem addressed here is the automatic generation of timed state-rich formal models from
natural-language specifications to support test generation using a variety of techniques and tools, besides analy-
sis of the specification. Formal modelling of requirements described using natural languages is not a new re-
search topic. However, previous results do not cover time and state-richness simultaneously [ADS14, BCMW15,
BGMC04, NSM14, ES07, SHG10] or rely on user intervention [AG06, Ili07, LHHR94, MTWH06, Sch09,
SJV12], in which case it is necessary to identify and classify entities.

We define here a timed and state-rich automata-based notation for representation of natural-language require-
ments: data-flow reactive system (DFRS). Besides writing the system requirements according to the grammar of
a controlled natural language (CNL), and defining a dictionary, there is no need of user involvement to generate
the proposed models. They are derived automatically from the requirements.

Moreover, we provide a technique to check properties of the formal models, including whether the natural-
language requirements are consistent and complete. Opposed to other works, we consider here definitions of
consistency and completeness tailored to our domain (reactive embedded systems). Requirements are said to
be inconsistent if, in the natural language description, there are two or more requirements describing different
system reactions for the same condition. In addition, we consider a specification to be complete if it describes
how the system should react (which outputs are produced) for every possible situation (any given inputs). For
instance, our interpretation of consistency contrasts to the one adopted in [BGFT10, FLGS14], where the focus
is detecting the use of ambiguous terms and sentences that might lead to different interpretations, or different
interpretations arising from the background knowledge of the reader, respectively.

The proposed model is part of a broader strategy, NAT2TEST (see Fig. 1), which generates test cases fully
automatically from natural-language requirements based on different internal and hidden formalisms. The first
phase ofNAT2TEST is a syntactic analysis to determine whether the requirements are written in accordance with
the CNL we proposed (SysReq-CNL). For each syntactically correct requirement, we obtain the corresponding
syntax tree.

Although the adoption of this CNL by practitioners is an interesting and still open question, we already
have indication that the NAT2TEST strategy is of practical relevance. We have designed and tested the SysReq-
CNL considering industrial examples (provided by Embraer1). We have later also considered different examples
provided by different companies. These include an example provided byMercedes, discussed in this paper, as well
as others not discussed here: a consolidation function, also in the aerospace domain, and the Ford car-alarm
system reported in [ABJ+15]. In none of these case studies, there has been a need to adapt the CNL to cope with
the new examples. So, we have some evidence that, although the CNL has a controlled structure, it is not limited
to particular examples; rather, it seems flexible enough to express requirements of reactive systemsmore generally.
Another aspect that also contributes to the general application of our CNL is the associated dictionary. While
the CNL defines a writing structure, it does not restrict the vocabulary being used. The dictionary is defined by
the user and it is domain specific.

The second phase of the NAT2TEST strategy is a semantic analysis, which maps the syntax trees into an
informal semantic representation based on the Case Grammar theory [Fil68]. We have previously generated
formal representations of the system requirements directly from this informal semantic representation.

1 http://www.embraer.com.br.

http://www.embraer.com.br

Modelling timed reactive systems from natural-language requirements 727

Fig. 1. The NAT2TEST strategy

Wehave been able to constructmodels usingCSP# [SLDP09] (theCSP [Ros10] dialect processedby the process
analysis toolkit–PAT2), the intermediate model representation (IMR [PVLZ11]–NAT2TESTIMR [CBL+14]) of
theRT-Tester tool,3 and the software cost reduction (SCR [BBF97]–NAT2TESTSCR [CFB+14]) version accepted
by the T-VEC tool.4 This has allowed us to take advantage of a variety of testing tools and techniques.

With those results, we have realised that, in spite of the particularities of each notation (e.g., IMR/RT-Tester
has native support for dealing with time, whereas in T-VEC we need to manually encode the time evolving),
we have used different notations to represent a common abstract behaviour. Based on this observation and
on the experience of generating test cases using different formal representations, and with the perspective of
instantiating our approach to several other target notations, we have proposed the DFRS model from which
the more concrete notations can be generated. Translating the natural-language requirements to an intermediate
formal notation is a promising alternative. Thismakes it easier to generatemodels in several target notations, since
the direct translation from natural-language is a more elaborate task. A new architecture for our strategy that
incorporates this new approach is presented in Fig. 1. Now, the third phase of the NAT2TEST strategy concerns
the generation of DFRSmodels. Afterwards, this model is used to generate more concrete notations. Our account
and implementation of NAT2TEST with CSP [CSM13] already takes advantage of DFRS representations.

Our focus in this paper is exactly the third step of NAT2TEST (DFRS Generation) and the DFRS model
that it generates. A DFRS allows exploring the original requirements from different perspectives, besides being
independent of a specific tool. In [CSM13], where we present a CSP timed input-output conformance relation,
we discuss our preliminary ideas for the DFRS model. In [CCR+14], we formalise the model using Z [ISO02],
besides describing how to use it to represent reactive systems. We also prove that a DFRS can be characterised
as a timed input-output transition system (TIOTS)—a labelled transition system extended with time, which is
widely used to characterise conformance relations for timed reactive systems. Being more abstract than a TIOTS,
a DFRS comprises a more concise representation of timed requirements.

The present paper is an extension of [CCR+14]. Here, we propose a symbolic representation of DFRSs
(s-DFRSs), define algorithms for incrementally generating s-DFRSs from natural-language requirements, and
revise and extend the expandedDFRS (e-DFRS) discussed in [CCR+14]. An s-DFRS inherently avoids an explicit
representation of possibly infinite sets of states and, thus, the state space explosion problem. An e-DFRS is built
dynamically from its symbolic counterpart, possibly limited to some bound, and then used in bounded analyses
such as requirements consistency, completeness, and reachability. To avoid confusion, we consider that, hereafter,
s-DFRS and e-DFRS refer to symbolic and expanded DFRSs, respectively, while DFRS refers to both of them.
In summary, this work enhances our previous efforts by:

2 http://pat.comp.nus.edu.sg/.
3 https://www.verified.de/products/rt-tester/.
4 https://www.t-vec.com/solutions/tvec.php.

http://pat.comp.nus.edu.sg/
https://www.verified.de/products/rt-tester/
https://www.t-vec.com/solutions/tvec.php

728 G. Carvalho et al.

• Proposing a symbolic representation of DFRSs (s-DFRSs);
• Defining six algorithms for incrementally generating s-DFRSs from natural-language requirements;
• Revising and extending the expanded DFRS (e-DFRS) definition;
• Defining a translation function from s-DFRSs to e-DFRSs;
• Showing how to check via e-DFRS whether the requirements are consistent, complete and reachable;
• Presenting our tool support for manipulating DFRS models (s-DFRSs and e-DFRSs).

Regarding relatedwork, the formalmodel proposed here (DFRS) stands out for its richness and for the possibility
of fully automatic generation ofmodels fromnatural-language requirements.ADFRS can represent input-output
variables, besides discrete and continuous time information.

To evaluate the expressiveness of DFRSs, we consider examples from four domains: a vending machine (VM
a-toy example); a control system for safety injection in a nuclear power plant (NPP—toy example); a priority
command (PC) control provided by Embraer; and the turn indicator system (TIS) ofMercedes vehicles. Test cases
are independently generated for each example, and we assess whether they are compatible with the corresponding
DFRS models.

Section 2 provides the formal definition of an s-DFRS. Section 3 describes how an s-DFRS can be auto-
matically obtained from natural-language requirements; this strategy is implemented by the NAT2TEST tool.
Section 4 first revisits the definition of an e-DFRS, then explains how it can be obtained from its symbolic coun-
terpart. Finally, it shows how an e-DFRSmodel can be used to check whether its corresponding natural-language
requirements are consistent and complete. Section 5 presents a theoretical and a practical validation of DFRS
models. Finally, Sections 6 and 7 address related work and present our conclusions.

2. Definition and properties of an s-DFRS

In this section, first, we give an informal overview of the definition of DFRSs, and then we provide a formal
definition for its symbolic representation. It is important to say that all definitions in Z presented here are
syntactically correct and typed checked with the CZT plug-in for Eclipse.5

2.1. Overview of DFRSs

ADFRSmodels an embedded systemwhose inputs and outputs are always available, as signals. The input signals
can be seen as data provided by sensors, whereas the outputs as data provided to actuators. Each signal carries a
binary value that represents boolean and numerical values. Hereafter, we directly refer to boolean (true and false,
represented as 1 and 0, respectively) and numerical values, instead of their binary representation.

It is assumed that aDFRS can also have internal timers, whichmight be used to trigger timed-based behaviour.
An e-DFRS represents a timed system with continuous or discrete behaviour modelled as a state-based machine.
Each state comprises a valuation for each element of the system: its inputs, outputs, and timers, as well as its
global clock.

The states of an e-DFRS are connected by delay and function transitions. A delay transition represents the
observation of the input signals’ values after a given delay, whereas the function transition represents how the
system reacts to the input signals: the observed values of the output signals. The transitions are encoded as
assignments to input and output variables as well as timers.

As a running example, we consider a vending machine (VM), which is an adaptation of the coffee machine
presented in [LMN04]. Despite being a toy example, the vending machine comprises many different operating
situations, which are described by five natural-language requirements.

Initially, the VM is in an idle state. When it receives a coin, it goes to the choice state. After inserting a coin,
when the coffee option is selected, the system goes to the weak or strong coffee state. If coffee is selected within
30 s after inserting the coin, the system goes to the weak coffee state. Otherwise, it goes to the strong coffee state.
The time required to produce a weak coffee is also different from that of a strong coffee: the former is produced
within 10–30 s, whereas the latter within 30–50 s. Three seconds after having produced weak or strong coffee, the
system goes to the reset state, where it resets the type of the produced coffee to undefined, and then returns to the
idle state.

5 http://czt.sourceforge.net/eclipse/.

http://czt.sourceforge.net/eclipse/

Modelling timed reactive systems from natural-language requirements 729

Vending Machine

request timer

sensor

request

mode

output

Fig. 2. The vending machine specification—abstract representation

0

1

2 5 40
time(s)se

ns
or

0

1

12 16 40
time(s)re

qu
es
t

0

1

2

3

4

2 12 32 35 40
time(s)

m
od
e

0

1

2

32 35 40
time(s)

ou
tp
ut

Fig. 3. Example of signals for the vending machine

As shown in Fig. 2, in this example we have two input signals related to the coin sensor (sensor) and the coffee
request button (request). A true value means that a coin was inserted and the coffee request button was pressed.
There are two output signals related to the system mode (mode) and the vending machine output (output). The
values communicated by these signals reflect the system possible states (idle, choice, weak, strong, and reset) and
the possible outputs (undefined, weak, and strong).

The VM has just one timer: the request timer, which is used to register the moments when a coin is inserted,
when the coffee request button is pressed, and when the coffee is produced. Figure 3 illustrates a scenario where
there is continuous observation of the input and output signals. If we had chosen to observe the system discretely,
we would have a similar scenario, but with a discrete number of samples over time.

In Fig. 3, a coin is inserted 2 s after starting the vending machine (the signal sensor changes to 1–true).
Immediately, the system state changes from idle to choice. Here, the system states are encoded as follows: idle �→
1, choice �→ 0, weak �→ 3, strong �→ 2, and reset �→ 4. Therefore, this change is represented by changing the value
of the signal mode from 1 to 0. In this example, the signal sensor remains true for 3 s.

When 10 s have elapsed since the coin was inserted, which happens 2 s after starting the vending machine,
the user requests a coffee (the signal request becomes true when the system global clock is equal to 12). At this
moment, the system state changes to weak coffee (the signalmode becomes 3). In this example, the signal request
remains true for 4 s.

As the coffee request occurs within 30 s of the coin being inserted, the system produces a weak coffee, which is
represented as the value 2 of the signal output, 20 s after receiving the coffee request. We recall that a weak coffee
is produced within 10 and 30 s after the coffee request. Then, as stated by the system description, the system goes
to the reset state (the value of signalmode becomes 4), and 3 s later it goes back to the idle state, besides resetting
the output to undefined (the signal output becomes 1).

As a state-based notation, the example illustrated in Fig. 3 is represented in an e-DFRS as a set of states and
transitions (see Fig. 4). The states are related by delay (D) and function (F) transitions. The former represents time
elapsing along with input stimuli, whereas the latter describes an instant reaction of the system. It is important

730 G. Carvalho et al.

to emphasize that the diagram presented in Fig. 4 is just an illustration of an e-DFRS based on the particular
scenario depicted in Fig. 3.

The first state is the top and left-most one: s, r, m, o, t and gc represent the current value of the coin sensor,
the coffee request button, the system mode, the system output, the request timer and the system global clock,
respectively. The delay transition emanating from this state denotes that after 2 s a coin is inserted and, thus, the
value of s changes to 1.

Afterwards, the system reaction is illustrated by a function transition that changes the system mode to choice
(0), besides resetting the request timer. This reset operation is performed to register the moment when the coin is
inserted, as this information is required when deciding if the system should produce a weak or a strong coffee.

The reset of a timer is represented by assigning 0 to it, but it is encoded as assigning the current value of the
system global clock to the corresponding timer. This is possible as we have a single and global clock source (the
system global clock). Otherwise, we would need to update the value of all timers every time a delay transition is
performed. We provide more details about this design decision when formalising the e-DFRS elements.

We note that the changes produced by the transitions are highlighted in bold in Fig. 4. Moreover, each delay
transition comprises the values of all input signals, whereas each function transition considers a subset of the
output signals, besides the internal request timer, when appropriate.

When the user requests a coffee (third delay transition), as it is requested 10 s after inserting the coin (gc− t �
12− 2 � 10), the system goes to the weak (3) state, and resets again the request timer. Later (20 s), it changes the
system output to 2 to denote the production of weak coffee. Finally, 3 s later it returns to the idle (1) state.

The main difference between an s-DFRS and its expanded version, characterised as just explained and illus-
trated in Fig. 4, is that the characterisation of an s-DFRS defines the initial state and means of calculating the
next states via a set of functions. Differently, an e-DFRS comprises the set of all states and how they are related
by delay and function transitions. Now, after presenting an informal discussion of DFRS models, we define the
s-DFRS precisely.

2.2. Formal model of an s-DFRS

Formally, an s-DFRS is a 6-tuple: (I,O, T, gcvar, s0, F). Inputs (I) and outputs (O) are system variables, whereas
timers (T) are a distinct kind of variable, which can be used to model temporal behaviour. The global clock is
gcvar, a variable whose values are non-negative numbers representing a discrete or a dense (continuous) time.
The initial state is s0, and F is a set of functions. In what follows, we describe in Z the constituent components of
an s-DFRS.

2.2.1. Inputs, outpus and timers

We use a given set NAME to represent the set of all valid variable names, and define gc to be the name of the
system global clock; as specified in the sequel, the component gcvar is a pair that maps gc to its type. Also
VNAME is the set of all system variables except for the global clock.

[NAME]

gc : NAME

VNAME �� NAME\{gc}
Based on these definitions, we define SVARS and STIMERS to represent inputs and outputs as different

mappings of the same type, and timers, respectively, as finite partial functions from VNAME to TYPE. We
assume that the system has a finite number of inputs, outputs and timers; timers only hold non-negative values
(nat or ufloat).

SVARS �� {f : VNAME � �→ TYPE | f �� ∅ ∧ ran f ⊆ {bool , int,float}}
STIMERS �� {f : VNAME � �→ TYPE | ran f � {nat} ∨ ran f � {ufloat}}

Modelling timed reactive systems from natural-language requirements 731

s = 0
r = 0
m = 1
o = 1
t = 0
gc = 0

s = 1
r = 0
m = 1
o = 1
t = 0

gc = 2

s = 1
r = 0
m = 0
o = 1
t = 2
gc = 2

s = 0
r = 0
m = 0
o = 1
t = 2

gc = 5

s = 0
r = 1
m = 0
o = 1
t = 2

gc = 12

s = 0
r = 1
m = 3
o = 1
t = 12
gc = 12

s = 0
r = 0
m = 3
o = 1
t = 12

gc = 16

s = 0
r = 0
m = 3
o = 1
t = 12

gc = 32

s = 0
r = 0
m = 4
o = 2
t = 32
gc = 32

s = 0
r = 0
m = 4
o = 2
t = 32

gc = 35

s = 0
r = 0
m = 1
o = 1
t = 32
gc = 35

s = 0
r = 0
m = 1
o = 1
t = 32

gc = 40

(D) – 2s

s := 1
r := 0

(F)

m := 0
t := 0

(D) – 3s s := 0
r := 0

(D) – 7s

s := 0
r := 1

(F)

m := 3
t := 0

(D) – 4s s := 0
r := 0

(D) – 16s

s := 0
r := 0

(F)

m := 4
o := 2
t := 0

(D) – 3s s := 0
r := 0

(F)

m := 1
o := 1

(D) – 5s

s := 0
r := 0

Fig. 4. The vending machine specification—e-DFRS representation

We consider as valid types boolean, integer and float types (bool, int, nat, float, ufloat). The type ufloat stands
for unsigned float numbers.

TYPE ::� bool | int | nat | float | ufloat
More complex types are not needed since we are dealing with systems whose inputs and outputs are signals.
As float numbers are not part of Standard Z, we provide an axiomatisation that fulfils our needs. For a more
comprehensive axiomatisation, we refer, for instance, to ProofPower-Z.6

The schema DFRS VARIABLES defines the variables of a DFRS as a set of inputs (I), outputs (O), timers
(T) and a global clock (gcvar). In Z, a schema is a named element used to structure and encapsulate definitions
for reuse. As I andO are distinct and non-empty sets, we have that a DFRS has at least one input and one output
variable. Differently, one can have a system with no timers: a DFRS whose behaviour is not dependent on time
elapsing. These three sets (I , O and T) are disjoint.

6 http://www.lemma-one.com/ProofPower/index/index.html.

http://www.lemma-one.com/ProofPower/index/index.html

732 G. Carvalho et al.

DFRS VARIABLES
I ,O : SVARS
T : STIMERS
gcvar : NAME × TYPE

gcvar � (gc,nat) ∨ gcvar � (gc, ufloat)
disjoint〈dom I , domO, domT 〉
ranT ⊆ {gcvar .2}

We note that our model can represent discrete, gcvar � (gc,nat), or continuous time, gcvar � (gc, ufloat),
systems. Besides that, the type of all timers must be the same (ranT ⊆ {gcvar .2}): one can analyse the behaviour
of the system discretely or continuously, but not in both ways simultaneously.

Example 1 Besides the system global clock, five variables are identified in the VM example (see Fig. 4): two
system inputs (the coin sensor—s , the coffee request button—r), two system outputs (the system mode—m,
the coffee machine output—o), and one timer (the request timer—t). The sensor and the button are modelled
by booleans that indicate whether a coin has been inserted or the button has been pressed. The system mode and
the output of the VM are non-negative numbers. The request timer is modelled as a non-negative natural number
since the temporal properties of the VM are defined in terms of discrete values (e.g., “... 30 seconds ...” instead
of “... 30.0 seconds ...”).

2.2.2. Initial state

A state is a relation between names and values, which include boolean and numerical values. The letter R refers
to R, and R+ to the positive elements of R.

BOOL VALUES ::� TRUE | FALSE
VALUE ::� b〈〈BOOL VALUES 〉〉 | i〈〈Z〉〉 | n〈〈N〉〉 | f 〈〈R〉〉 | uf 〈〈R+〉〉

Each name within a state is mapped to two values: the first one represents the previous value, and the second
one the current value. Therefore, Fig. 4 shows a simplified and not the actual representation of states. For
instance, in the first state, s � 0 should be s �→ (b(false), b(false)), and, in the second state, s � 1 should be
s �→ (b(false), b(true)). Note that in Fig. 4 we use numbers to represent boolean values.

STATE �� NAME �→ (VALUE × VALUE)

Keeping the previous value of variables allows us to trigger system reactions to more complex behaviour. For
example, the system goes to the choice state at the exact moment when the coin sensor changes from false to true;
in other words, when the previous value of s is 0 and the current one is 1.

To simplify the access to current and previous values of a state, we consider two projection functions that
yield the set of previous and current values of a given state: previousValues and currentValues, respectively.
Their definition is not provided here as they are straightforward. Here, we concentrate on the most important
definitions, but all omitted ones can be found in [CCS15].7

The initial state of an s-DFRS is then defined as one possible state.

DFRS INITIAL STATE �� [s0 : STATE]

A variable n, whose type is t , is well typed in a state s if, and only if, n belongs to the domain of s , and the
previous and current values associated with n in s belong to the set of possible values of t . This property of well
typedness for variables in the context of a state is captured by the following predicate. Here, we use sets to denote
predicates. The underlying idea is that well typed var is a set composed by all well typed variables. Therefore, we
represent the fact of being well typed as belonging to well typed var .

well typed var : P(STATE × NAME × TYPE)

∀ s : STATE ; n : NAME ; t : TYPE ; v1, v2 : VALUE | n ∈ dom s ∧ (s(n)).1 � v1 ∧ (s(n)).2 � v2 •
(s,n, t) ∈ well typed var ⇐⇒ v1 ∈ values(t) ∧ v2 ∈ values(t)

7 Available for download in http://www.cin.ufpe.br/~ghpc/TR_DFRS.pdf .

http://www.cin.ufpe.br/~ghpc/TR_DFRS.pdf

Modelling timed reactive systems from natural-language requirements 733

The function values yields all possible values of a specific type t . Although we could directly access the range
of a type, we use this auxiliary function to avoid legibility issues on bigger predicates.

Now, we lift the definition of well typedness for a state. Considering a set f of variables (names related to
types), a state s is well typed if, and only if, it provides a value for each variable (that is, its domain is that of the
function f) and those variables are well typed in s .

well typed state : P(STATE × (NAME �→ TYPE))

∀ s : STATE ; f : NAME �→ TYPE • (s, f) ∈ well typed state ⇐⇒
dom s � dom f ∧ (∀n : dom f ; t : TYPE | f (n) � t • (s,n, t) ∈ well typed var)

Example 2 Considering the example shown in Fig. 4, its initial state is:

{(s �→ (b(false), b(false)), r �→ (b(false), b(false)),
(m �→ (n(1),n(1)), o �→ (n(1),n(1)),
(t �→ (n(0),n(0)), gc �→ (n(0),n(0))}

Regarding the variablesm (the system mode) and o (the coffee machine output), as previously said, the natural
numbers represent elements of an enumeration of possible values: {0 �→choice, 1 �→idle, 2 �→preparing strong
coffee, 3 �→preparing weak coffee, 4 �→reset}, and {0 �→strong coffee, 1 �→undefined output, 2 �→weak coffee},
respectively.

2.2.3. Functions

The system behaviour is defined as a non-empty finite set of functions (see schema DFRS FUNCTIONS) that
describe how the system reacts in a given context. There is one function per system component; if the system
comprises parallel components, we are going to have one function describing the behaviour of each component.

DFRS FUNCTIONS �� [F �� F1 FUNCTION]

A function is a set of tuples. Each one models how the system reacts in a given context, which is characterised
by a pair of static (sGuard) and timed (tGuard) guards, each one being a set (conjunction) of boolean expressions.
The system reaction is denoted as a set of assignments (asgmts). Note that one of the guards can be empty, but
not both. As formalised later, the static guards range over input and output variables, whereas timed guards are
restricted to timers.

FUNCTION �� {sGuard , tGuard : EXP ; asgmts : ASGMTS | sGuard ∪ tGuard �� ∅}
When both guards evaluate to true in a given state, the system reacts instantly performing the corresponding

assignments. These reactions are the function transition (F) shown in Fig. 4. An s-DFRS does not capture this
dynamic behaviour (occurrence of reactions explicitly), but only includes the definition of the function that
symbolically characterises the reactions.

The guards are expressions (EXP) whose structure adheres to a Conjunctive Normal Form (CNF): a finite
set of conjunctions (CONJ) of disjunctions (DISJ), where each disjunction has at least one binary expression
(BEXP).

EXP �� CONJ
CONJ �� FDISJ
DISJ �� F1 BEXP

A binary expression relates a variable (VAR) with a literal (VALUE) by means of an operator (OP), which
can be less than or equal to (le), less than (lt), equal to (eq), greater than (gt), and greater than or equal to (ge).

BEXP �� {v : VAR; op : OP ; literal : VALUE }
OP ::� le | lt | eq | ne | gt | ge
The element VAR refers to the current or previous value of the corresponding variable. By previous value

we mean the last value received as input, if it refers to an input variable, or the last value produced as output,
otherwise.

VAR ::� current〈〈VNAME 〉〉 | previous〈〈VNAME 〉〉

734 G. Carvalho et al.

Timers are variables continuously evolving in a discrete or dense fashion, depending on their type and, thus,
the notion of previous value does not necessarily apply. For instance, what would be the previous value of a
timer whose current value is 3.52 s? So, although the model syntactically permits retrieving the previous values
of timers, we prohibit this usage (see the following definition of var consistent be).

A binary expression is said to be consistent with respect to a set of variables (f) and a set of timers (T) if, and
only if, v (the first element of a binary expression) refers to a variable name (n) within f , and the third element
(literal) is consistent with the type of the corresponding variable (it is one of the possible values of this variable).
Moreover, if one of the operators le, lt , gt or ge is used, literal must not be a boolean value. Finally, as explained
in the last paragraph, if n is the name of a timer, then the binary expression must consider the current value of
this variable. This consistency property is formalised by the following predicate.

var consistent be : P(BEXP × (VNAME �→ TYPE) × (VNAME �→ TYPE))

∀ be : BEXP ; f ,T : VNAME �→ TYPE ; n : VNAME | varName(be) � n •
(be, f ,T) ∈ var consistent be ⇐⇒
(n ∈ dom f) ∧ be.3 ∈ values(f (n)) ∧
(be.2 � le ∨ be.2 � lt ∨ be.2 � gt ∨ be.2 � ge ⇒ be.3 �∈ values(bool)) ∧
(n ∈ domT ⇒ be.1 ∈ ran current)

To get the name referenced by a binary expression, we rely on the auxiliary function varName, which projects
the VNAME within the constructors current or previous. This concept of consistency is lifted to guards, which
are said to be consistent if, and only if, all of its binary expressions are consistent.

The last component of a function entry is a finite and non-empty set of assignments (ASGMTS). The right-
hand side of an assignment (ASGMT) is a value (VALUE), and the left-hand side is the name of a variable
(VNAME).

ASGMT �� VNAME × VALUE
ASGMTS ��

{asgmts : F1 ASGMT | (∀ asgmt1, asgmt2 : asgmts | asgmt1.1 � asgmt2.1 • asgmt1 � asgmt2)}
Note that it is not possible to define a set of assignments that considers different values to the same variable

(e.g., {(x ,n(0)), (x ,n(1))}). If such a scenario were allowed, it would not be clear what would be the value of x
after the assignments.

This restriction does not prevent us from dealing with non-deterministic requirements. For example, it is pos-
sible to say that the system can non-deterministically assign 0 or 1 to x in a certain situation. In this case, we would
have two entries within the function, and the set of assignments of one would be {(x ,n(0))}, whereas {(x ,n(1))}
would be the assignment of the other one. Note that the property defined here with respect to assignments can
be statically verified, whereas the verification of non-deterministic requirements demands a dynamic analysis.

As defined for expressions, the names mentioned by assignments should refer to one of the system variables,
and the assigned value should be consistent with the type of this variable. The following predicate (well typed
asgmts) formalises these assumptions.

well typed asgmts : P(ASGMTS × (NAME �→ TYPE))

∀ asgmts : ASGMTS ; f : NAME �→ TYPE • (asgmts, f) ∈ well typed asgmts ⇐⇒
∀ asgmt : asgmts • asgmt .1 ∈ dom f ∧ asgmt .2 ∈ values(f (asgmt .1))

Example 3 Considering the VM, the requirement that states that the system goes to the choice mode, and resets
the request timer, when a coin is inserted while in the state idle, is formalised as follows:

{({ {(current(m), eq,n(1))}, {(current(s), eq, b(true))}, {(previous(s), eq, b(false))} },∅,
{(m,n(0), (r ,n(0))})}

The static condition is a conjunction of three binary expressions. The first denotes that the system mode is 1
(idle), the second that the current value of s is true, and the third that the previous value of s was false (a coin
was inserted). The time guard is empty, and when the static guard evaluates to true, the system shall assign 0 to
m (go to the choice state), and assign 0 to r (reset the request timer).

Modelling timed reactive systems from natural-language requirements 735

2.2.4. Complete definition of an s-DFRS

Considering the schemas DFRS VARIABLES , DFRS INITIAL STATE , and DFRS FUNCTIONS , previ-
ously defined, an s-DFRS is defined as follows.

s DFRS
DFRS VARIABLES
DFRS INITIAL STATE
DFRS FUNCTIONS

(s0, I ∪ O ∪ T ∪ {gcvar}) ∈ well typed state
∀ f : F • ∀ entry : f •

(entry .1, I ∪ O,T) ∈ var consistent exp ∧
(entry .2,T ,T) ∈ var consistent exp ∧
(entry .3,O ∪ T) ∈ well typed asgmts

The schema s DFRS defines a type that comprises the set of all valid s-DFRSs. Two invariants hold for all
valid elements of this type. An invariant is a constraint that must always be satisfied. First, the initial state is
well typed with respect to all system variables. Second, for all entries of all functions defined, the static guard is
defined only in terms of input and output variables, the timed guard only considers timers, and the assignments
can only modify the value of outputs and timers.

3. Formalising natural-language requirements

Before explaining how an s-DFRS can be generated from natural-language requirements, we present information
about the first two phases of theNAT2TEST strategy (see Fig. 1) that is essential for understanding the generation
of s-DFRSs.

3.1. Syntactic and semantic analyses

The syntactic analysis checks whether the system requirements are correct with respect to the SysReq-CNL
grammar, yielding the corresponding syntax trees if they are. Briefly, this Controlled Natural Language (CNL)
allows writing requirements that have the form of action statements guarded by conditions. For example, consider
the REQ001 requirement for the VM, which is correct according to the SysReq-CNL grammar.

• When the system mode is idle, and the coin sensor changes to true, the coffee machine system shall: reset the
request timer, assign choice to the system mode.

The semantic analysis phase receives as input the generated syntax trees, and delivers a requirement semantic
representation. In this work, we adopt the Case Grammar theory [Fil68] to represent meaning. In this theory, a
sentence is analysed in terms of the semantic (Thematic) Roles (TR) played by each word, or group of words in
the sentence. The verb is the main element of the sentence, and it determines the possible semantic relations with
other words in the sentences, that is, the role that each word plays with respect to the action or state described by
the verb.

The verb’s associated TRs are aggregated into a structure named as Case Frame (CF). Each verb in a require-
ment specification gives rise to a different CF. All derived CFs are joined afterwards to compose what we call
a Requirement Frame (RF). In other words, a requirement frame is a structure to encode data such as the one
presented in Table 1: a collection of case frames for conditions and action statements.

In this work, we consider four TRs (the adopted nomenclature is inspired by [All95]) for the verbs used
in action statements: action (ACT)—the action performed if the requirement conditions are satisfied; agent
(AGT)—entity who performs the action; patient (PAT)—entity who is affected by the action; TOV—the patient
value after action completion. Similarly, other five roles are defined for the verbs used in conditions: condition
action (CAC), condition patient (CPT), condition from value (CFV), condition to value (CTV), and condition
modifier (CMD).

736 G. Carvalho et al.

Table 1. Example of requirement frame for REQ001

Condition #1–Main Verb (CAC): is
CPT: The system mode CFV: –
CMD: – CTV: Idle

Condition #2–Main Verb (CAC): changes
CPT: The coin sensor CFV: –
CMD: – CTV: True

Action #1–Main Verb (ACT): reset
AGT: The coffee machine system TOV: –
PAT: The request timer

Action #2–Main Verb (ACT): assign
AGT: The coffee machine system TOV: Choice
PAT: The system mode

Based on the inference rules defined in [CFB+14], each word, or group of words, identified in the syntax
tree is associated to the corresponding TR. For instance, Table 1 shows the requirement frame corresponding
to REQ001. The requirement frames obtained from the system requirements are the input for the generation of
s-DFRSs.

An s-DFRS isderived fromrequirement frames according to three consecutive steps.First, the systemvariables
are identified. Then, the functions that describe the system behaviour are defined. Finally, an s-DFRS is created
from these two pieces of information. The following sections detail each step.

3.2. Identifying variables

We consider inputs as variables provided to the system by the environment; their values cannot bemodified by the
system. Thus, a variable is classified as an input if, and only if, it appears only in conditions. Otherwise, if it also
appears in action statements, it is classified as an output. To distinguish between timers and other variables, we
require the former to have the word “timer” as a suffix. Timers can appear both in conditions and in statements.

Our algorithm for identifying variables (Algorithm 1) receives as input a list of requirement frames and yields
a list of variables.

After initializing the output (Line 1), the algorithm iterates over the list of requirement frames (Line 2)
analysing each condition (Lines 3–4), which comprises a conjunction of disjunctions, and each action (Line 15).
When analysing conditions, we extract variables from the Condition Patient (CPT) role.

For example, Table 1 shows that “the systemmode” is theCPTof the first condition. Thus, if the corresponding
variable has not yet been identified (Lines 6–7), we create a new variable considering the CPT content, replacing
white spaces by an underscore (Lines 8–9), which is done by the “toString” function (Line 5). So, in this case, we
create the variable the system mode. Then, we verify whether the variable has the word “timer” as a suffix; if so,
it is classified as a timer, otherwise it is an input (Lines 10–11). Then we add the created variable to the list of
identified variables (Line 12).

To infer the type of the variable we analyse the value associatedwith it in the case frame, which is the content of
the CTV role. For instance, the variable the system mode is associated with the value “idle” in the first condition
of Table 1. Thus, the algorithm extracts the CTV content (Line 13), and uses it to infer the variable type, which
is done by the inferType function (Line 14) that is later explained (see Algorithm 2).

Lines 15–27 are analogous to those previously explained. The differences are as follows:

• The variables are identified from the Patient (PAT) role;

• If a variable that is initially identified as an input appears in action statements, it is reclassified as an output
(Lines 24–25);

• The variable value is the content of the TOV role, excluding the case (Line 27) when the “reset” verb is used
(see the first action of Table 1). In this case, the TOV is empty and what is assigned to the timer is the system

Modelling timed reactive systems from natural-language requirements 737

Algorithm 1: Identify Variables
input : reqCFList
output : varList

1 varList � new List();
2 for reqCF ∈ reqCFList do
3 for andCond ∈ reqCF do
4 for orCond ∈ andCond do
5 varName � toString(orCond .CPT);
6 var � varList .find(varName);
7 if var �� null then
8 var � new Var (varName);
9 var .type � undefined ;
10 if varName.endsWith(“timer”) then var .kind � timer ;
11 else var .kind � input ;
12 varList .add(var);

13 value � toString(orCond .CTV);
14 inferType(var , value, varList);

15 for action ∈ reqCF do
16 varName � toString(action.PAT);
17 var � varList .find(varName);
18 if var �� null then
19 var � newVar (varName);
20 var .type � undefined ;
21 if varName.endsWith(“timer”) then var .kind � timer ;
22 else var .kind � output ;
23 varList .add(var);

24 else if var .kind � input then
25 var .kind � output ;

26 value � toString(action.TOV);
27 if value �� null then inferType(var , value, varList);

28 for var ∈ varList do
29 if var .type � enum then
30 if var .possibleValuesList .size() � 1 then var .type � boolean;
31 else var .type � integer ;

32 else if var .kind � timer ∧ var .type � undefined then
33 var .type � float

34 gcVar � newVar (gc);
35 allDiscrete � true;
36 allContinuous � true;
37 for var ∈ varList do
38 if var .kind � timer ∧ var .type � integer then allContinuous � false;
39 if var .kind � timer ∧ var .type � float then allDiscrete � false;

40 if allDiscrete then gcVar .type � integer ;
41 else if allContinuous then gcVar .type � float ;
42 else throw Exception(“timers: incompatible types”);
43 varList .add(gcVar);

global clock, which is an integer or a float. In such a situation, we do not try to infer the type of the timer.
If this timer is also mentioned in a condition, its type is determined by the value associated with it in this
condition. If this timer is never mentioned within a condition, its type is left undefined (Lines 32–33), and
then we assume that its type will be float, representing continuous time.

Lines 34–43 create the system global clock (gc), besides inferring its type. If all timers are discrete (integer) or
continuous (float), the type of gc is integer or float, respectively. If there are mixed types, an exception is thrown
(Line 42). Finally, Lines 29–31 are related to the type inference outcome, which is explained in what follows.

Algorithm 2 infers the variable type. First, this function verifies whether the value received as argument is
already listed as a possible value of the corresponding variable (Line 1). If not, this value is added to the list of
possible values of the respective variable (Line 2), and this value is used to infer the variable type.

738 G. Carvalho et al.

Algorithm 2: Infer Type
input : var , value, varList
output : −

1 if value �∈ var .possibleValuesList then
2 outVar .possibleValuesList .add(value);
3 newType � undefined ;
4 var � varList .find(varName);
5 if var .kind � timer then
6 if isFloat(value) then newType � float ;
7 else if isInteger (value) then newType � integer ;
8 else throw Exception(“incompatible type for a timer”);

9 else
10 if isBoolean(value) then newType � boolean;
11 else if isFloat(value) then newType � float ;
12 else if isInteger (value) then newType � integer ;
13 else newType � enum ;

14 if var .type �� undefined ∧ var .type �� newType then throw Exception(“type change is not allowed”);
15 else var .type � newType;

If the variable is a timer, the associated values need to be numbers (float or integer), otherwise an exception is
raised (Lines 5–8). If the variable is an input or an output, its type might be boolean (if the value is the boolean
constants “true” or “false”–Line 10), a float or an integer (Lines 11–12), or an enum (e.g., if the value is a string
such as “idle”—see Table 1). It is worth mentioning that the enum type is not expected within DFRS models.
Therefore, later it is mapped to an integer.

If the type of the variable is undefined, the function assigns the inferred type to the corresponding variable
(Line 15). However, if the variable already has a type, it is verified whether the inferred type from the current value
is the same. If not, an exception is raised, since we expect type coherence between the values used with respect
to the same variable (Line 14). In other words, for instance, a variable cannot be treated as a boolean and as an
integer simultaneously.

Finally, Lines 29–31 of Algorithm 1 map an enum type to a boolean or an integer. It is mapped to a boolean
when the enumerationhasonlyonepossible value (Line30).For instance, for thevariable the coffee request button,
whose possible value is “pressed”, we assume that “pressed” denotes true, whereas “not pressed” means false.
However, if the number of possible values is greater than 1, the variable is classified as an integer (Line 31).
This is the case of the variable the system mode, whose possible values are “choice”, “idle”, “preparing strong
coffee”, “preparing weak coffee”, “reset”. The type of this variable is integer considering the following mapping:
{0 �→choice, 1 �→idle, 2 �→preparing strong coffee, 3 �→preparring weak coffee, 4 �→reset}.

3.3. Identifying functions

Algorithm 3 identifies functions that describe the system behaviour. We identify one function for each different
agent (AGT). We consider an agent as a system component, since this thematic role denotes the entity that
performs an action. This algorithm yields a list of functions indexed by the corresponding agents. As previously
formalised, each function is a list of action statements mapped to the respective static and timed guards.

The algorithm iterates over the list of requirement frames (Line 2) to identify the guards (Lines 3–24) and
the corresponding actions (Lines 25–28). The variables staticGuard and timedGuard are declared to store the
static and timed guards that are extracted from the conditions (conjunctions of disjunctions) of each requirement
(Lines 3–7). Then, for each disjunction, we obtain the corresponding boolean expression bymeans of the function
generateConditionExpression (Line 8). Then, Lines 9–16 find out the type (static or timed) of the expression. If
the expression concerns a timer variable, it represents a timed guard (Line 12), otherwise it is a static one (Line
15).

Modelling timed reactive systems from natural-language requirements 739

Algorithm 3: Identify Functions
input : reqCFList, varList
output : functionMap

1 functionMap � new Map();
2 for reqCF ∈ reqCFList do
3 staticGuard, timedGuard � null ;
4 for andCond ∈ reqCF do
5 guardType � undefined ;
6 newTerm � null ;
7 for orCond ∈ andCond do
8 exp � generateConditionExpression(orCond, varList);
9 varName � toString(orCond .PAT);
10 var � varList .find(varName);
11 if var .kind � timer then
12 if guardType � undefined then guardType � timed ;
13 else if guardType � static then throw Exception(“format error”);

14 else
15 if guardType � undefined then guardType � static;
16 else if guardType � timed then throw Exception(“format error”);

17 if newTerm � null then newTerm � exp;
18 else newTerm � newTerm + “∨” + exp;

19 if guardType � static then
20 if staticGuard � null then staticGuard � (newTerm);
21 else staticGuard � staticGuard + “∧” + (newTerm);

22 else
23 if timedGuard � null then timedGuard � (newTerm);
24 else timedGuard � timedGuard + “∧” + (newTerm);

25 actionList � new List();
26 for action ∈ reqCF do
27 actionStatement � generateStatement(action, varList);
28 actionList .add(actionStatement);

29 componentName � toString(reqCF .actions.get(0).AGT);
30 function � functionMap.find(componentName);
31 if foundFunction � null then
32 function � new Function();
33 functionMap.add(componentName, function);

34 previousActionList � function.find(staticGuard, timedGuard);
35 if previousActionList �� null then
36 previousActionList .add(actionList)

37 else
38 function.add(staticGuard, timedGuard, actionList)

With this information, we check whether each conjunction concerns the same type of guards (static or timed).
If it is not the case, an exception is raised (Lines 13, 16). This is necessary, since we want to divide the conditions
into two disjoint categories (static and timed) without performing boolean algebra manipulation. As examples,
we consider the following abstract cases: c1 : T ∧ (c2 : T ∨ c3 : S)∧ c4 : S and c1 : T ∧ (c2 : S ∨ c3 : S)∧ c4 : S ,
where ci denotes the ith condition, and “:S” and “:T” indicates whether the condition concerns a static or a
timed guard, respectively. The first expression does not comprise two disjoint sets of static and timed guards,
whereas the second one does (timed: c1; static: (c2 ∨ c3) ∧ c4). Lines 17–18 group each disjunction in newTerm,
and Lines 19–24 group the disjunctions in staticGuard or timedGuard depending on the type of the disjunctions.

After identifying the static and timed guards, the algorithm iterates over the list of actions of the requirement
frame and creates a list of action statements using the function generateStatement (Lines 25–28). Then, the
algorithm checks whether a function is already created for the current agent. If not, it creates a new function
and maps it to the current agent (Lines 29–33). Finally, the element staticGuard × timedGuard × actionList is
added to the corresponding function (Lines 37–38). If an entry for the pair staticGuard × timedGuard already
exists, the list of actions is added to this entry (Lines 35–36). In what follows, we explain the auxiliary functions:
generateConditionExpression and generateStatement.

740 G. Carvalho et al.

3.3.1. Generating condition expressions

Algorithm 4 yields a boolean expression from a single case frame, which comprises the condition thematic roles.
The variable name is obtained from the CPT role (Line 1). Initially (Lines 2–7), the algorithm verifies whether
the verb being used, which is obtained from the CAC role, denotes the previous value of a variable. This is the
case when the verbs “was” and “were” are used. In this situation, the boolean expression concerns not the current
value of a variable, but its previous one. As explained in Sect. 2.2.3, we use the predicate previous(v) to denote
the previous value of v , and current(v), to denote its current value.

For instance, the fragment “v was 2”means the condition where the previous value of v is x , previous(v) � 2.
As we do not allow the use of the predicate previous(v) when v is a timer, the algorithm raises an exception if it
happens (Line 5).

The next step is to obtain the value, which is compared to the variable. First, the value is obtained from the
CTV role (Line 8). If the value is a string, we consider as value the index of this string within the list of possible
values of the corresponding variable (Line 9). For a concrete example, see the one shown in the end of Sect. 2.2.2.

Afterwards, the algorithm inspects the content of the CMD role to find out which operator is used in the
expression (Line 10). Lines 11–16 check the content of the CMD role, and set boolean flags accordingly. If “lesser
than” or “greater than” is used with a non-boolean variable, an exception is raised (Line 16). Based on the boolean
flags, Lines 17–25 assign to operator the operator symbol used in the expression.

After that, it creates the expression assembling these three elements: variable, operator, and value (Line 26).
Line 27 negates the expression if the negation flag is true: when “not” is used as a modifier.

Finally, Lines 28–45 deal with a special case that occurs when the verbs “change” or “become” are used.
When “change” is used, as explained in depth in [CFB+14], we expect one of the two following structures: “v
changes from x to y” or “v changes to y”, whose meaning is previous(v) � x ∧ current(v) � y and previous(v) ��
y ∧ current(v) � y , respectively. In the first case, the CFV is not null, whereas in the second case it is null.
It is important to note that the expression current(v) � y is already built by the algorithm (denoted as exp).
Therefore, we just need to create a second condition expression related to the previous value of v . Lines 30–44
create a temporary and auxiliary case frame with the verb “was”, which enforces the use of previous(v), and
then we recursively call the function generateConditionExpression. If CFV is not null (Lines 30–35), e.g., “changes
from x to y”, the CTV in the auxiliary case frame comprises the current CFV (x), otherwise (e.g., “changes to y”)
it is the negation of the current CTV (y). After that, we compose the yielded expression (previousExp) with the
expression previously identified by the algorithm (exp) (Line 45). When the verb “become” is used (e.g., “becomes
y”), the algorithm behaves similarly to the case “changes to y”.

This algorithm is tightly dependent on the verbs used.However, the verbs currently supported by our approach
are sufficient to express requirements from different examples and domains. If more verbs are used, one just needs
to extend this function, informing how to form an expression from its thematic roles. No extra change is needed.

3.3.2. Generating action statements

Algorithm 5 generates an action statement from a case frame that depicts an action. First, Lines 1–3 retrieve
the verb from the ACT role, as well as the name of the variable involved in the action from the PAT role. If the
variable is a timer and the verb is not reset, an exception is raised, since timers can only be reset (Line 4).

The next step concerns the identification of the value being assigned to the involved variable (Lines 5–9). If
the verb is “reset”, the value that is assigned to the timer is 0 or 0.0, depending on its type (integer or float).
As already mentioned, and detailed when describing how an s-DFRS is used to produce an expanded one in
Sect. 4.2, this assignment actually means assigning to the timer the system global clock. If the variable is not
a timer, the value is the content of the TOV role (Line 8). If the content of TOV is not an integer, a float or a
boolean, it is a string. Therefore, we consider as value the index of this string within the list of possible values
of the corresponding variable (Line 9). Finally, the action statement is created assembling the variable and the
assigned value (Lines 10–11).

Modelling timed reactive systems from natural-language requirements 741

Algorithm 4: Generate Condition Expression
input : cond, varList
output : exp

1 varName � toString(cond .CPT);
2 var � varList .find(varName);
3 verb � cond .CAC ;
4 if verb.equals(“was”) ∨ verb.equals(“were”) then
5 if var .kind � timer then throw Exception(“previous cannot be used with timers”);
6 else varName �“previous(” + varName + “)”;

7 else varName �“current(” + varName + “)” ;
8 value � toString(cond .CTV);
9 if ¬ isInteger (value) ∧ ¬ isFloat(value) ∧ ¬ isBoolean(value) then value � var .possibleValuesList .getIndex (value) ;
10 modifier � cond .CMD ;
11 negation, lesserThan, greaterThan, equalTo � false;
12 if modifier .contains(“not”) then negation � true;
13 if modifier .contains(“lesser than”) then lesserThan � true;
14 if modifier .contains(“greater than”) then greaterThan � true;
15 if modifier .contains(“equal to”) then equalTo � true;
16 if (lowerThan ∨ greaterThan) ∧ var .type � boolean then throw Exception(“lt/le/gt/ge cannot be used with booleans”) ;
17 operator � new String();
18 if lesserThan then
19 if equalTo then operator �“le”;
20 else operator �“lt”;

21 else if greaterThan then
22 if equalTo then operator �“ge”;
23 else operator �“gt”;

24 else
25 operator �“eq”;

26 exp � varName + operator + value;
27 if negation then exp �“¬ (” + exp + “)” ;
28 if verb.contains(“change”) ∨ verb.contains(“become”) then
29 prevExp � null ;
30 if cond .CFV �� null then
31 auxiliaryCond � new OrCond();
32 auxiliaryCond .CPT � cond .CPT ;
33 auxiliaryCond .CAC �“was”;
34 auxiliaryCond .CTV � cond .CFV ;
35 previousExp � generateConditionExpression(auxiliaryCond);

36 else
37 auxiliaryCond � new OrCond();
38 auxiliaryCond .CPT � cond .CPT ;
39 auxiliaryCond .CAC �“was”;
40 auxiliaryCond .CTV � cond .CTV ;
41 auxiliaryCond .CMD � cond .CMD ;
42 previousExp � generateConditionExpression(auxiliaryCond);
43 previousExp � ¬ previousExp;
44 previousExp �“¬ (” + previousExp + “)”;

45 exp � prevExp + “∧” + exp;

3.4. Creating an s-DFRS

Based on the algorithms previous described, we create an s-DFRS from a list of requirement frames. This is
done by Algorithm 6. First, the algorithm calls identifyVariables to identify the system variables (Line 1). Then,
it divides this list into inputs, outputs, timers, and the global clock (Lines 2–9).

This algorithm also creates an initial binding considering 0 as the initial default value for integers, 0.0 for
floats, and false for booleans (Lines 10–12). Afterwards, the algorithm calls identifyFunctions to identify the
functions that describe the system behaviour (Line 13). In the end (Lines 14–20), the algorithm creates an s-
DFRS considering the list of inputs, outputs and timers, as well as the initial binding and the functions identified.

742 G. Carvalho et al.

Algorithm 5: Generate Statement
input : action, varList
output : actionStatement

1 verb � action.ACT ;
2 varName � toString(action.PAT);
3 var � varList .find(varName);
4 if var .kind � timer ∧ ¬ verb.equals(“reset”) then throw Exception(“timers can only be reset”) ;
5 value � null ;
6 if verb.equals(“reset”) ∧ var .type � integer then value �“0”;
7 else if verb.equals(“reset”) ∧ var .type � float then value �“0.0”;
8 else value � toString(action.TOV);
9 if ¬ isInteger (value) ∧ ¬ isFloat(value) ∧ ¬ isBoolean(value) then value � var .possibleValuesList .getIndex (value) ;
10 actionStatement � new Statement();
11 actionStatement � varName + “:=” + value;

Algorithm 6: Derive s-DFRS
input : reqCFList
output : dfrs

1 varList � identifyVariables(reqCFList);
2 inputList,outputList, timerList � new List();
3 gc � null ;
4 initialBinding � new Map();
5 for var ∈ varList do
6 if var .kind � input then inputList .add(var);
7 else if var .kind � output then outputList .add(var);
8 else if var .kind � timer then timerList .add(var);
9 else gc � var ;
10 if var .type � integer then initialBinding .add(var .name, 0);
11 else if var .type � float then initialBinding .add(var .name, 0.0);
12 else initialBinding .add(var .name, false);

13 functionMap � identifyFunctions(reqCFList, varList);
14 dfrs � new s DFRS ();
15 dfrs.I � inputList ;
16 dfrs.O � outputList ;
17 dfrs.T � timerList ;
18 dfrs.s0 � initialBinding ;
19 dfrs.gcvar � gc;
20 dfrs.F � functionMap;

3.5. Tool support

The algorithms presented here are implemented in theNAT2TEST tool. It is written in Java (it is multi-platform),
and itsGraphicalUser Interface (GUI) is built using the EclipseRCP8 framework, which providesmeans to create
client-side applications quickly using a collection of plug-ins.

Each phase of theNAT2TEST strategy (see Fig. 1), is realised by a different component. TheDFRS-generator
component is the one that implements the above algorithms. Figure 5 shows the inferred variables, along with
their types for our vending machine. The tool also allows the user to edit the initial values and, thus, the initial
state.

In Fig. 6 one can see part of the function obtained from the VM requirements. It is important to note that the
tool keeps traceability information between the requirements and the function entries. We also note that there are
some syntactic sugars to prevent a verbose representation. For instance, previous is reduced to prev, and current
is simply hidden. Moreover, the format of the timed guard, as well as the assignment of timers, show explicitly
how timers are dealt with by our strategy: the reset of a timer is encoded as assigning the value of gc to the timer,
and comparisons concerning the timer mean comparing the difference between the current value of gc and the
timer. More details are provided in Sect. 4.2, where we explain how to obtain an e-DFRS from a symbolic one.

8 http://wiki.eclipse.org/index.php/Rich_Client_Platform.

http://wiki.eclipse.org/index.php/Rich_Client_Platform

Modelling timed reactive systems from natural-language requirements 743

Fig. 5. NAT2TEST tool—editing initial value of DFRS variables

Fig. 6. NAT2TEST tool—viewing DFRS’ functions and traceability information

The tool also supports validation of the requirements by animating the s-DFRS; in other words, by manually
exploring the state space of the corresponding e-DFRS. In Sect. 4.5 we detail this feature. In [CBC+15] we provide
a comprehensive explanation of other aspects of the NAT2TEST tool. Particularly, we emphasise that, for all
examples considered, the s-DFRS models are generated from the corresponding natural-language requirements
within 1 s. The NAT2TEST tool, as well as the examples that are public, can be downloaded in http://www.cin.
ufpe.br/~ghpc/.

4. Definition and properties of an e-DFRS

Here, we formalise e-DFRSs (Sect. 4.1), and show how they can be obtained from their symbolic counterpart
(Sect. 4.2) via a sound process (Sect. 4.3). Moreover, we describe how an e-DFRS can be used to verify properties
of the system requirements, such as consistency, completeness and reachability (Sect. 4.4). We also describe here
the support provided by the NAT2TEST tool with respect to e-DFRS models (Sect. 4.5).

4.1. Formal model of an e-DFRS

An e-DFRS differs from the symbolic one as it encodes the system behaviour as a state-based machine, whereas
an s-DFRS does that symbolically via definitions of functions. As we detail later, states are obtained from an
s-DFRS by applying its functions to states where the corresponding guards evaluate to true, but also letting the
time evolve.

4.1.1. Transition relation

An e-DFRS has a set of states, which is named S by the schema DFRS STATES below. Besides that, it also has
an initial state (s0), which is an element of S . We note that, by definition, S has at least one state (the initial state),
since it is an element of STATES , which represents the non-empty power set of STATE .

STATES �� P1 STATE
DFRS STATES �� [S : STATES ; s0 : STATE | s0 ∈ S]

A transition relation (an element of TRANSREL defined below) comprises a set of transitions (TRANS). A
transition relates two states by a label (TRANS LABEL). As shown in Fig. 4, this label can be of a delay (del)
or a function (fun) transition.

http://www.cin.ufpe.br/~ghpc/
http://www.cin.ufpe.br/~ghpc/

744 G. Carvalho et al.

TRANS LABEL ::� fun〈〈ASGMTS 〉〉 | del〈〈DELAY × ASGMTS 〉〉
TRANS �� (STATE × TRANS LABEL × STATE)
TRANSREL �� PTRANS

A function transition represents the system instantaneous reaction as a set of assignments (ASGMTS), which
are performed atomically. It is worth noting that, although the function transition describes an instantaneous
reaction, it is possible to model system reactions that occur after some time elapsing. We just need to consider
a timer, which is reset when the event of interest happens, and then use it later to check the elapsed time and to
decide on what event to engage next. For instance, this approach is used in the VM example (see Fig. 4). When
the coffee request button is pressed, the request timer is reset (see the first state on the second row). Afterwards,
when a specific time has elapsed, the system reacts producing coffee (see the last state on the third row).

A delay transition represents model stimuli from the environment (input signals values) that happen immedi-
ately after a delay (DELAY). We note that environment stimuli are modelled as a set of assignments (ASGMTS).
A delay can represent a discrete or dense (continuous) time elapsing. The former delay is characterised by a
positive natural number (N1), whereas the latter by a positive float number (R+

1).

DELAY ::� discrete〈〈N1〉〉 | dense〈〈R+
1 〉〉

The reason for not allowing delays equal to 0 is that the delay transition represents interaction with the
environment and, thus, it is not reasonable to assume that the environment can interact with the system, providing
it with new stimuli, without time elapsing.

Aiming at legibility, we define two auxiliary functions (functionTransition and delayTransition), which
project the elements of a transition. The definition of delayTransition is shown below. It is a partial func-
tion, since it can only be applied to delay transitions; its domain is equal to the set of valid delay transitions
(dom delayTransitions � ran del). To obtain the delay and assignments embedded in a delay transition (denoted
by label below), we use the inverse definition of the constructor del (del ∼), which yields a pair of delay and
assignments (DELAY ×ASGMTS) from a given delay transition (label below). The inverse of del is well defined,
since, by definition in Z, all constructors are defined as injections. Therefore, del ∼ exists, since the inverse of an
injection is also a function. The function functionTransition is defined similarly.

delayTransition : TRANS LABEL �→ DELAY × ASGMTS

dom delayTransition � ran del
∀ label : TRANS LABEL | label ∈ ran del • delayTransition(label) � (del ∼)(label)

All transitions of an e-DFRS are required to be well typed: a function transition must belong to the set
of well typed function transitions (well typed function transition), while a delay transition must belong to the
analogous set (well typed delay transition), besides being compatible with the type of the system global clock
(clock compatible transition).

To be well typed, a function transition must modify only values of outputs and timers. In other words, the
system does not interfere with the environment stimuli, which are modelled by input variables. This property is
formalised by well typed function transition when stating that the domain of functionTransition is a subset of
or equal to the union of the domains of O and T . The outputs and timers that are not changed by the transition
retain the same value.

well typed function transition : P(TRANS LABEL×
(VNAME �→ TYPE) × (VNAME �→ TYPE))

∀ label : TRANS LABEL; O,T : VNAME �→ TYPE |
label ∈ ran fun • (label ,O,T) ∈ well typed function transition ⇐⇒
(dom(functionTransition(label)) ⊆ (domO ∪ domT))

Similarly, a delay transition is well typed if, and only if, its statements modify only values of inputs. Fur-
thermore, there must be one statement concerning each input; on the occurrence of each delay transition, the
system receives the current value of all its inputs. The predicate well typed delay transition formalises these two
requirements when stating that the domain of delayTransition is equal to the domain of I .

Modelling timed reactive systems from natural-language requirements 745

well typed delay transition : P(TRANS LABEL × (VNAME �→ TYPE))

∀ label : TRANS LABEL; I : VNAME �→ TYPE | label ∈ ran del •
(label , I) ∈ well typed delay transition ⇐⇒
dom(delayTransition(label)).2 � dom I

One might find strange that here we expect the assignments to range over all inputs, whereas the function
transition can cover only a subset of its outputs. We could have also assumed here that the inputs that are not
mentioned by the assignments retain the same value.However, thismodelling decisionwouldmake the translation
from s-DFRSs to e-DFRSs more complicated. We return to this topic later, when explaining how e-DFRSs are
obtained from symbolic ones.

The delay transitions also need to be compatiblewith the systemglobal clock in the sense that if the delay is dis-
crete (an elementof ran discrete), the typeof the systemglobal timemust benat ,whereas if thedelay is dense (an el-
ementof ran dense), the typeof the clockmustbeufloat .Asa consequence, all delay transitions share the same type
of delay, meaning that they are all discrete or dense. This is captured by the clock compatible transition property.

clock compatible transition : P(TRANS LABEL × (NAME × TYPE))

∀ label : TRANS LABEL; gcvar : NAME × TYPE •
(label , gcvar) ∈ clock compatible transition ⇐⇒
label ∈ ran del ∧
((delayTransition(label)).1 ∈ ran discrete ⇒ gcvar .2 � nat) ∧
((delayTransition(label)).1 ∈ ran dense ⇒ gcvar .2 � ufloat)

Now, we define in the schema DFRS TRANSITION RELATION the transition relation (TR) of an e-
DFRS as an element of TRANSREL. As previously said, we assume that when the system is ready to react it
does so instantaneously. Therefore, it would not make sense to have both delay and function transitions from the
same state, since the system always reacts (performing the function transition), instead of letting the time evolve
(performing the delay transition). This invariant is formalised in what follows by the first predicate: for every two
transitions (trans1 and trans2) emanating from the same state (trans1.1 � trans2.1), they are either function
(they belong to ran fun) or delay transitions (they belong to ran del).

DFRS TRANSITION RELATION
TR : TRANSREL

∀ trans1, trans2 : TR | trans1.1 � trans2.1 •
{trans1.2, trans2.2} ⊆ ran fun ∨ {trans1.2, trans2.2} ⊆ ran del

∀ trans : TR • ¬ (trans.1 � trans.3)

Another invariant associated with TR is the absence of self-transitions: for all transitions, ¬ (trans .1 �
trans.3) holds. In the case of delay transitions, self-transitions do not make sense as every delay transition
advances the time by some amount greater than 0 and, thus, the global clock of the next state is different from
the previous one. Concerning function transitions, self-transitions are superfluous, since the absence of function
transitions already indicates that the system state has not changed.

For a concrete example, we refer to the second delay transition presented in Fig. 4: after the delay of 3s, there
is no reaction by the system (there is no function transition), and the system state remains the same until the
following delay transition. Moreover, we note that the possibility of adding a function transition to this state (the
last state on the second row) would violate the invariant that requires that only function or delay transitions fire
from the same state.

4.1.2. Complete definition of an e-DFRS

An e-DFRS is an element of the type defined by the following schema: e DFRS . Hereafter, for simplicity, we only
consider discrete delays, since dense delays are analogously defined. For all valid e-DFRSs, three invariants hold.
First, all states are well typed (they range over the same set of variables defined as the system inputs, outputs,
timers and global clock, besides mapping values consistent with the corresponding variable types). Second, all
transitions are well typed. Third, the state reached by any transition is defined by the previous state updated by
the assignments performed by the transition.

746 G. Carvalho et al.

To formalise this last property, we rely on the auxiliary function nextState. Given a source state and a set
of assignments, the function nextState yields a new state updating all system variables, but the global clock,
according to these assignments. When dealing with delay transitions, besides considering the output of the
function nextState, we also update the global clock adding to its value in the source state the delay performed.
This last case is formalised by the last invariant (trans.2 ∈ ran del ⇒ trans.3 � ...). After extracting the value
embedded in the delay transition via the inverse definition of discrete (discrete ∼), and similarly the current value
of the system global clock (value mapped to gc) in the source state ((n ∼) ((trans.1(gc)).2)), we add these two
values and the result is defined as the current value of the system global clock in the target state. The constructor
n indicates that this result is a natural number. We note that the current value of the system global clock in the
source state ((trans.1(gc)).2) becomes the previous value of gc in the target state.

e DFRS
DFRS VARIABLES
DFRS STATES
DFRS TRANSITION RELATION

∀ s : S • (s, I ∪ O ∪ T ∪ {gcvar}) ∈ well typed state
∀ trans : TR • {trans.1, trans.3} ⊆ S ∧

(trans.2, I ,O,T , gcvar) ∈ well typed transition ∧
(trans.2 ∈ ran fun ⇒ trans.3 � nextState(trans.1,T , functionTransition(trans.2))) ∧
(trans.2 ∈ ran del ⇒ trans.3 �

nextState(trans.1,T , (delayTransition(trans.2)).2) ⊕ {(gc, ((trans.1(gc)).2,
n((n ∼) ((trans.1(gc)).2) + (discrete ∼) ((delayTransition(trans.2)).1))))})

The state yielded by the function nextState is obtained by overriding the values of the previous state by the
assignments of a given transition (s⊕ ...). Moreover, it updates accordingly the previous and current values of the
variables: when a variable has its value updated, the current value of the previous state ((n, (v1, v2))) becomes
the previous value of the next state, (n, (v2, asgmts(n))).

nextState : (STATE × (NAME �→ TYPE) × ASGMTS) → STATE

∀ s : STATE ; T : (NAME �→ TYPE); asgmts : ASGMTS • nextState(s,T , asgmts) � s⊕
({n : NAME ; v1, v2 : VALUE | (n, (v1, v2)) ∈ s ∧ n ∈ dom asgmts ∧

n �∈ dom T • (n, (v2, asgmts(n)))}∪
{n : NAME ; v1, v2 : VALUE | (n, (v1, v2)) ∈ s ∧ n ∈ dom asgmts ∧

n ∈ dom T • (n, (v1, (s(gc)).2))})

We note that there is a different definition when dealing with timers (n ∈ domT). In this case, the reset of a
timer, which is represented by assigning 0, is encoded as an assignment of the current value of the global clock,
(s(gc)).2. As the system has a single clock, it is easier to encode time reset by assigning the current value of the
global clock, instead of assigning 0 and updating its value every time a delay transition is performed. Therefore,
when evaluating timed guards such as t < v , where t is a timer and v a value, we actually evaluate the result of
(gc − t) < v , where gc is the current value of the system global clock. Despite this representation, the previous
value of the timer remains unchanged.

4.2. From s-DFRSs to e-DFRSs

The function expandedDFRS defines how an e-DFRS can be obtained from a symbolic one. The inputs (I),
outputs (O), timers (T), the global clock (gcvar), and the initial state (s0) are the same within both repre-
sentations (dfrs.I � symDFRS .I ∧ dfrs.O � symDFRS .O ∧ dfrs.T � symDFRS .T ∧ dfrs.gcvar �
symDFRS .gcvar ∧ dfrs.s0 � symDFRS .s0). The transition relation (TR) is obtained via the auxiliary func-
tion buildTR (dfrs.TR � buildTR({dfrs.s0},∅, dfrs.I , dfrs.O, dfrs.T , symDFRS .F)). The states of an e-DFRS
(S) are defined as the states related by this transition relation (trans.1 and trans.3), besides the initial state.

Modelling timed reactive systems from natural-language requirements 747

expandedDFRS : s DFRS → e DFRS

∀ symDFRS : s DFRS ; dfrs : e DFRS • expandedDFRS (symDFRS) � dfrs ⇐⇒
dfrs.I � symDFRS .I ∧ dfrs.O � symDFRS .O ∧ dfrs.T � symDFRS .T ∧
dfrs.gcvar � symDFRS .gcvar ∧ dfrs.s0 � symDFRS .s0 ∧
dfrs.TR � buildTR({dfrs.s0},∅, dfrs.I , dfrs.O, dfrs.T , symDFRS .F) ∧
dfrs.S � ⋃{trans : dfrs.TR • {trans.1, trans.3}} ∪ {dfrs.s0}

The function buildTR has six parameters: a set of states to visit (toVisit), a set of visited states (visited), the
inputs (I), the outputs (O), the timers (T), and the functions of an s-DFRS (F). We note that in expandedDFRS ,
with respect to the function buildTR, toVisit has a single state to visit ({dfrs.s0}), and visited is an empty set.
Recursively, the function buildTR identifies new states to visit by the application of function and delay transitions
that can emanate from the already visited states.

buildTR : ((PSTATE) × (PSTATE) × (NAME �→ TYPE)×
(NAME �→ TYPE) × (NAME �→ TYPE) × (F1 F1 FUNCTION)) → TRANSREL

∀ toVisit, visited : PSTATE ; I ,O,T : NAME �→ TYPE ; F : F1 F1 FUNCTION •
(toVisit � ∅ ⇒ buildTR(toVisit, visited , I ,O,T ,F) � ∅) ∧
(toVisit �� ∅ ⇒ ∃ s : toVisit ; tr1 : TRANSREL •

genTransitions(s, I ,O,T ,F) � tr1 ∧
buildTR(toVisit, visited , I ,O,T ,F) � tr1∪

buildTR((toVisit ∪ {trans : tr1 • trans.3})\(visited ∪ {s}), visited ∪ {s}, I ,O,T ,F))

As an inductive function, the base case for builtTR happens when toVisit is empty. For this value of toVisit ,
we have that buildTR(toVisit, visited , I ,O,T ,F) is an empty transition relation. In the inductive case, toVisit
is not empty and, thus, there is at least one state s in the states to visit (s : toVisit). The result of buildTR is then
defined as the union of the relation transition (tr1) obtained via genTransitions , which considers the emanating
transitions from s , with the result of the recursive application of buildTR. This recursive application considers
the not yet visited states, and also the new states reached by tr1 (toVisit ∪{trans : tr1 • trans.3})\(visited ∪{s}).
We note that we also need to add s to the set of visited states (visisted ∪ {s}).

The function genTransitions identifies either function or delay transitions from a given state s . Delay transi-
tions are performed from stable states, whereas function transitions occur in non-stable states. A state s is stable,
(s, ...) ∈ is stable, when it does not represent a situation that triggers a system reaction: for all entries of the
functions (entry ∈ f) of an s-DFRS (f ∈ F), their static (entry .1) and timed guards (entry .2) evaluate to false.
The predicates static guards true and timed guards true, which are not presented here, are defined as the set of
all static and timed guards that evaluate to true in a given state.

is stable : P(STATE × (NAME �→ TYPE) × (NAME �→ TYPE) × (F1 F1 FUNCTION))

∀ s : STATE ; IO : (NAME �→ TYPE); T : (NAME �→ TYPE); F : F1 F1 FUNCTION •
(s, IO,T ,F) ∈ is stable ⇐⇒
∀ f : F • ∀ entry : f • (s, entry .1, IO,T) �∈ static guards true ∨

(s, entry .2,T) �∈ timed guards true ∨ s � nextState(s,T , entry .3)

A state is also considered to be stable if the reaction denoted by the assignments associated with these guards
lead toa target state that is equal to the current one (s � nextState(s,T , entry .3)). Inotherwords, the assignments
do not have any effect. If there is no effect, this state is considered stable, since we do not have self transitions.

If a state s is stable, there are delay transitions emanating from s for all possible delays, delay ∈
possibleDelays(...), which is formalised later, and all possible valid assignments, those whose values are con-
sistent with the variable types (asgmts.2 ∈ values(I (asgmts.1))). These assignments also need to range over the
complete set of inputs (dom asgmts � dom I). The reached state is defined by the function nextState, but also
updating the system global clock based on the performed delay (nextState(...)⊕{(gc, ...+ ...)}). These three infor-
mation (the given state–s ; the delay transition considering a delay value and assignments–del ((delay, assigmts));
and the reached state–nextState(...) ⊕ {(gc, ...)}) are used to define the delay transition part of the result of
genTransitions .

748 G. Carvalho et al.

s = 0
r = 0
m = 1
o = 1
t = 0
gc = 0

s = 0
r = 0
m = 1
o = 1
t = 0

gc = 1

s = 1
r = 0
m = 1
o = 1
t = 0

gc = 1

s = 0
r = 1
m = 1
o = 1
t = 0

gc = 1

s = 1
r = 1
m = 1
o = 1
t = 0

gc = 1

(D) – 1s

s := 0
r := 0

(D) – 1s

s := 1
r := 0

(D) – 1s s := 0
r := 1 (D) – 1s s := 1

r := 1

Fig. 7. The vending machine specification—example of delay transitions

genTransitions : (STATE × (NAME �→ TYPE) × (NAME �→ TYPE)×
(NAME �→ TYPE) × (F1 F1 FUNCTION)) → TRANSREL

∀ s : STATE ; I ,O,T : (NAME �→ TYPE); F : F1 F1 FUNCTION •
((s, I ∪ O,T ,F) ∈ is stable ⇒ genTransitions(s, I ,O,T ,F) �

{delay : DELAY ; asgmts : ASGMTS | delay ∈ genPossibleDelays(s, I ∪ O,T ,F) ∧
dom asgmts � dom I ∧ (∀ asgmt : asgmts • asgmt .2 ∈ values(I (asgmt .1))) •

(s, del ((delay, asgmts)),nextState(s,T , asgmts)⊕
{(gc, ((s(gc)).2,n((n ∼) ((s(gc)).2) + (discrete ∼) (delay))))})}) ∧

((s, I ∪ O,T ,F) �∈ is stable ⇒ genTransitions(s, I ,O,T ,F) �
{entry : FUNCTION | (∃ f : F • entry ∈ f) ∧
(s, entry .1, I ∪ O,T) ∈ static guards true ∧ (s, entry .2,T) ∈ timed guards true •

(s, fun(entry .3),nextState(s,T , entry .3))})
Figure 7 shows a concrete example of delay transitions emanating from the initial state of the VM. We note

that we have a transition for each valid combination of input values: the coin sensor and the request button
remain false (first state on first row), only the coin sensor becomes true (third state on first row), only the request
button becomes true (first state on second row), and both signals become true (second state on second row).
Although only the transitions with delay equal to 1 s are shown, there are transitions with greater delays (2 s, 3 s,
...) emanating from the initial state. In this case, all delays are possible and, thus, there is no upper bound. This
leads to an infinite number of delay transitions emanating from the initial state.

To understand howwe define themaximum valid delay, we first need to explain the concept of enabling delays,
which is captured by the following partial function enablingDelays . The domain of this function is the set of states
that are stable, (s, ...) ∈ is stable. Given a stable state s and a single entry (entry) of a function of an s-DFRS,
the function enablingDelays yields a set of delays such that, after advancing the time by this delay ((gc, ...+ ...)),
without changing any input value, the reached state (next) is not stable, (next, ...) �∈ is stable. In other words, if
we just let the time evolve by some amount, we are going to see some reaction of the system.

enablingDelays : (STATE × (NAME �→ TYPE) × (NAME �→ TYPE) × FUNCTION) �→ PDELAY

dom enablingDelays � {s : STATE ; IO : (NAME �→ TYPE); T : (NAME �→ TYPE);
entry : FUNCTION | (s, IO,T , {{entry}}) ∈ is stable • (s, IO,T , entry)}

∀ s : STATE ; IO : (NAME �→ TYPE); T : (NAME �→ TYPE); entry : FUNCTION •
enablingDelays(s, IO,T , entry) � {delay : DELAY ; next : STATE | next � s⊕

{(gc, ((s(gc)).2,n((n ∼) ((s(gc)).2) + (discrete ∼) (delay))))} ∧
(next, IO,T , {{entry}}) �∈ is stable • delay}

Modelling timed reactive systems from natural-language requirements 749

The situation described in the end of the last paragraph (reaching a non-stable state by just letting the time
advance) happens in the VM when the system is producing coffee. After pressing the coffee request button, if a
weak coffee is going to be produced, we observe this system reaction within 10 to 30 s. Therefore, if we are in
the first state on the third row (Fig. 4), for delays greater than or equal to 10 and lower than or equal to 30, we
observe a system reaction leading the system to the reset state, besides changing accordingly the system output.
In such a state, for instance, it would not make sense to have a delay transition, whose delay is 31, since we would
be modelling an input received after elapsing 31 s, but before this input being received we should have observed a
system reaction. This captures the principle of delayable transitions: the time might advance an arbitrary amount
as long as it does not disable an enabled transition.

Considering the situation explained in the last paragraph for the VM example, the function enablingDelays
yields the set 10..30. It is worth noting that the result of enablingDelays can be an infinite set, for example, if a
weak coffee should be produced at least 10 s after its request. In such a case, as we do not have an upper bound,
the result of enablingDelays is 10..∞.

Now, given a stable state s , and considering all functions of an s-DFRS (F), the function maxDelays yields
the upper bound (upperBound) of the set enabling delays (delays � enablingDelays(...)) with respect to each
entry (entry ∈ f) of the s-DFRS functions (f : F). If delays is not empty, discrete(upperBound) ∈ delays , and
there is an upper bound, ∀n : delays • (discrete ∼)(n) ≤ upperBound , delays is not infinite; this upper bound
is considered in the return ofmaxDelays. In other words, its result considers the maximum delay allowed, based
on the delayable principle, for each entry of the functions of an s-DFRS.

maxDelays : (STATE × (NAME �→ TYPE) × (NAME �→ TYPE) × (F1 F1 FUNCTION)) �→ FN1

dommaxDelays � {s : STATE ; IO : (NAME �→ TYPE); T : (NAME �→ TYPE);
F : (F1 F1 FUNCTION) | (s, IO,T ,F) ∈ is stable • (s, IO,T ,F)}

∀ s : STATE ; IO : (NAME �→ TYPE); T : (NAME �→ TYPE); F : F1 F1 FUNCTION •
maxDelays(s, IO,T ,F) � {f : F ; entry : FUNCTION ; delays : PDELAY ; upperBound : N1 |

entry ∈ f ∧ delays � enablingDelays(s, IO,T , entry) ∧ discrete(upperBound) ∈ delays ∧
(∀n : delays • (discrete ∼) (n) ≤ upperBound) • upperBound}

To define the set of possible delays that we need to consider when generating delay transitions, we rely on the
auxiliary function genPossibleDelays. Basically, for a given state s , if the result of the application ofmaxDelays
is empty (maxDelays(...) � ∅), it means that there is no upper bound we need to consider and, thus, all delays are
possible, genPossibleDelays(...) � {delay : DELAY }. Otherwise, we can perform all delays that are lower than
or equal to the lowest upper bound defined bymaxDelays, (discrete ∼)(delay) ≤ miniumDelay(...). The function
mininumDelay yields this lowest upper bound, whose definition is not shown here as it is straightforward.

genPossibleDelays : (STATE × (NAME �→ TYPE) × (NAME �→ TYPE) × (F1 F1 FUNCTION))
�→ PDELAY

dom genPossibleDelays � {s : STATE ; IO : (NAME �→ TYPE); T : (NAME �→ TYPE);
F : (F1 F1 FUNCTION) | (s, IO,T ,F) ∈ is stable • (s, IO,T ,F)}

∀ s : STATE ; IO : (NAME �→ TYPE); T : (NAME �→ TYPE); F : F1 F1 FUNCTION •
(maxDelays(s, IO,T ,F) � ∅ ⇒ genPossibleDelays(s, IO,T ,F) � {delay : DELAY }) ∧
(maxDelays(s, IO,T ,F) �� ∅ ⇒ genPossibleDelays(s, IO,T ,F) � {delay : DELAY |

(discrete ∼) (delay) ≤ minimumDelay(maxDelays(s, IO,T ,F))})

To finish our explanation of how to obtain an e-DFRS from a symbolic one, we need to detail how function
transitions are created. If we refer to the definition of genTransitions , presented at the beginning of this section
and partially reproduced below, we can see that function transitions, (s, fun(...), ...), emanate from states that are
not stable. (s, ...) �∈ is stable.

750 G. Carvalho et al.

genTransitions : (STATE × (NAME �→ TYPE) × (NAME �→ TYPE)×
(NAME �→ TYPE) × (F1 F1 FUNCTION)) → TRANSREL

∀ s : STATE ; I ,O,T : (NAME �→ TYPE); F : F1 F1 FUNCTION •
... ∧
((s, I ∪ O,T ,F) �∈ is stable ⇒ genTransitions(s, I ,O,T ,F) �

{entry : FUNCTION | (∃ f : F • entry ∈ f) ∧
(s, entry .1, I ∪ O,T) ∈ static guards true ∧ (s, entry .2,T) ∈ timed guards true •

(s, fun(entry .3),nextState(s,T , entry .3))})
For every entry (entry ∈ f) of the functions of an s-DFRS (f : F), whose static (entry .1) and timed guards

(entry .2) evaluate to true, we add a function transition with the corresponding assignments, fun(entry .3), leading
to a target state that is the previous one modified by these assignments (nextState(...)). In the VM example, we
have a deterministic system. However, for non-deterministic systems, we would have more than one function
transition emanating from the same source state.

In summary, from the initial state of an s-DFRS, we recursively identify which states are reached by function
and delay transitions. The set of all reachable states, which is defined as the states of an e-DFRS, besides their
transitions, is considered the transition relation of an e-DFRS. The other elements of an e-DFRS are directly
obtained from the corresponding symbolic ones.

4.3. Soundness of generation of an e-DFRS

Besides presenting a function that yields an e-DFRS from a symbolic one, it is important to show that this
function is sound: for all s-DFRSs, all invariants of e DFRS hold in the obtained e-DFRS (Theorem 4.1).

Theorem 4.1 Soundness of expandedDFRS

∀ symDFRS : s DFRS • expandedDFRS (symDFRS) ∈ e DFRS

The complete proof of Theorem 4.1 is available in [CCS15]. Here, we present a proof sketch. The three
invariants of DFRS VARIABLES (reproduced below) trivially hold as the elements I , O , T , and gcvar are the
same of the corresponding s-DFRS, and these properties are also invariants of valid s-DFRSs.

gcvar � (gc,nat) ∨ gcvar � (gc, ufloat)
disjoint〈dom I , domO, domT 〉

ranT ⊆ {gcvar .2}
The invariant ofDFRS STATE (s0 ∈ S) also holds, since expandedDFRS defines S as the union of the states

of TR with s0. The invariants of DFRS TRANSITION RELATION (reproduced below) are also preserved by
the function expandedDFRS .

∀ trans1, trans2 : TR | trans1.1 � trans2.1 •
{trans1.2, trans2.2} ⊆ ran fun ∨ {trans1.2, trans2.2} ⊆ ran del

∀ trans : TR • ¬ (trans.1 � trans.3)

The first one holds because function transitions are only created from non-stable states, whereas delay tran-
sitions are created from stable states. As one state cannot be non-stable and stable simultaneously, all transitions
emanating from a state are function or delay ones. We also do not have self transitions as the delay transitions ad-
vance the timeby a value greater than 0 and, thus, it leads to adifferent state (a different value for global clock). The
function transition is onlyperformed if it has a collateral effect (changes the valueof at least one variable) and, thus,
it also leads to adifferent state.Therefore, the second invariant ofDFRS TRANSITION RELATION alsoholds.

The function expandedDFRS also preserves the invariants of e DFRS . Concerning the first one (reproduced
below), a state is said to be well typed if, and only if, it ranges over the complete set of system variables, and the
values assigned to them are consistent with the variable types.

∀ s : S • (s, I ∪ O ∪ T ∪ {gcvar}) ∈ well typed state

Considering the definition of buildTR, the states of an e-DFRS are reachable from its initial state, which is
well typed based on the definition of s-DFRSs, performing delay and function transitions. Each transition only

Modelling timed reactive systems from natural-language requirements 751

changes the values mapped to the variables, but not the set of variables. Therefore, all states consider the same set
of variables, which are all system variables. Concerning the consistency of values, the assignments performed by
the transitions also need to be consistent with the variable types and, thus, this consistency is respected in all states.

Now, we explain why the invariants related to the transition relation (reproduced below) also hold.

∀ trans : TR • {trans.1, trans.3} ⊆ S ∧
(trans.2, I ,O,T , gcvar) ∈ well typed transition ∧

(trans.2 ∈ ran fun ⇒ trans.3 � nextState(trans.1,T , functionTransition(trans.2))) ∧
(trans.2 ∈ ran del ⇒ trans.3 �

nextState(trans.1,T , (delayTransition(trans.2)).2) ⊕ {(gc, ((trans.1(gc)).2,
n((n ∼) ((trans.1(gc)).2) + (discrete ∼) ((delayTransition(trans.2)).1))))})

The first invariant is clearly preserved, since expandedDFRS defines S as all states related by TR, besides its
initial state. Regarding the second invariant of e DFRS , which states that all transitions are well typed, it is
a consequence of how delay and function transitions are defined by the function genTransitions . As one can
notice from the definition of this function, the delay transition considers all input variables, and the delay value is
consistent with the system global clock. Therefore, the delay transitions are well typed and clock compatible. The
function transitions are defined considering the assignments mapped to static and timed guards of the functions
of an s-DFRS. Considering the definition of s-DFRSs, these assignments are well typed and, thus, consider a
subset of the system outputs and timers. Therefore, the function transitions of an e-DFRS are also well typed.

Finally, the last invariants of e DFRS say that the target state of a delay and a function transition is defined
by the source state updated with the corresponding assignments, besides advancing the system global clock by the
delay value in delay transitions. This is exactly how the next (target) states are defined by the auxiliary function
genTransitions and, thus, this last invariant holds too.

4.4. Verifying properties of requirements via e-DFRSs

By exploring the state space of an e-DFRS, we can verify interesting properties of the system requirements.
Besides checking whether the requirements are ambiguous (hereafter, called inconsistent) or incomplete, we can
also verify the presence of unreachable requirements and time lock.

4.4.1. Consistent requirements

The system requirements are said to be consistent if, and only if, they do not describe different system reactions
for the same context (state). Definition 4.1 formalises this concept.

Definition 4.1 Consistent requirements: let reqs be an arbitrary set of requirements, and symDFRS the corre-
sponding s-DFRS obtained via Algorithm 6; the following predicate defines when these requirements are said to
be consistent:

consistent(reqs) ⇐⇒ ∃dfrs : e DFRS | dfrs � expandedDFRS (symDFRS) •
∀ s : dfrs.S • (s, dfrs.I ∪ dfrs.O, dfrs.T , symDFRS .functions) �∈ is stable ⇒

∀ f 1, f 2 : symDFRS .F • ∀ e1 : f 1; e2 : f 2 •
{(s, e1.1, dfrs.I ∪ dfrs.O, dfrs.T), (s, e2.1, dfrs.I ∪ dfrs.O, dfrs.T)} ⊆ static guards true

∧ {(s, e1.2, dfrs.T), (s, e2.2, dfrs.T)} ⊆ timed guards true ⇒ e1 � e2

According to the algorithms presented in Sect. 3, each requirement is mapped to an entry of a function.
Therefore, if the requirements are consistent, for all states (s) of the e-DFRS (dfrs), if the guards (.1, .2) of
two entries (e1, e2) of two arbitrary functions (f 1, f 2) evaluate to true (... ⊆ static guards true and ... ⊆
timed guards true) in the same non-stable state, (s, ...) �∈ is stable, these entries are the same (e1 � e2). In such
a case, we say that the requirements are consistent. Otherwise, we would have two different system reactions for
the same state.

To give a concrete example of inconsistent requirements, we consider the following ones:

• When input1 is true, the system shall assign 1 to output1.

752 G. Carvalho et al.

• When input1 is true, the system shall assign 2 to output1.

These two requirements are not consistent, since they describe different system reactions (assigning 1 or
assigning 2, respectively) for the same context (when input1 is true).

4.4.2. Complete requirements

The requirements are said to be complete if for every possible system input (after each delay transition), there is
some system reaction (a function transition). This notion of completeness is formalised by Definition 4.2

Definition 4.2 Complete requirements: let reqs be an arbitrary set of requirements, and symDFRS the corre-
sponding s-DFRS obtained via Algorithm 6; the following predicate defines when these requirements are said to
be complete:

complete(reqs) ⇐⇒ ∃dfrs : e DFRS | dfrs � expandedDFRS (symDFRS) •
∀ s1, s2 : dfrs.S | (∃ trans : dfrs.TR | trans.1 � s1 ∧ trans.3 � s2 ∧ trans.2 ∈ ran del) •

∃ s3 : dfrs.S ; trans2 : dfrs.TR • trans2.1 � s2 ∧ trans2.3 � s3 ∧ trans.2 ∈ ran fun

To exemplify complete requirements, we consider a simple system that has a single input (input1) and a single
output (output1). The following requirements are said to be complete:

• When input1 is true, the system shall assign 1 to output1.
• When input1 is false, the system shall assign 2 to output1.

We note that for every possible value of input1 (true or false), the requirements define the expected system
reaction (assigning 1 or assigning 2, respectively). Therefore, after every delay transition, there is a function
transition.

4.4.3. Reachable requirements

A requirement is reachable if there is a state of the e-DFRS where the guards of the function entry obtained
from this requirement evaluate to true. If there is no such a state, we say that this requirement is not reachable,
since it describes a system reaction that will never occur. Definition 4.3 defines formally the notion of reachable
requirements.

Definition 4.3 Reachable requirements: let reqs be an arbitrary set of requirements, and symDFRS the corre-
sponding s-DFRS obtained via Algorithm 6; the following predicate defines when these requirements are said to
be reachable:

reachable(reqs) ⇐⇒ ∃dfrs : e DFRS | dfrs � expandedDFRS (symDFRS) •
∀ f : symDFRS .F • ∀ entry : f • ∃ s : dfrs •
(s, dfrs.I ∪ dfrs.O, dfrs.T , symDFRS .functions) �∈ is stable ∧
(s, entry .1, dfrs.I ∪ dfrs.O, dfrs.T) ∈ static guards true ∧
(s, entry .2, dfrs.T) ∈ timed guards true

To give a concrete example of an unreachable requirement, we consider the following one:

• When input1 is true, and input1 is false, the system shall assign 1 to output1.

This requirement is not reachable (its reaction is never observed), since its condition does not evaluate to true in
any possible state due to the fact that the same boolean variable (input1) cannot be true and false simultaneously.

4.4.4. Absence of time lock

Finally, the last property concerns the absence of time lock (see Definition 4.4). A time lock is characterised by a
state from which it is not possible to perform delay transitions, immediately and not even from states reachable
by this state.

Modelling timed reactive systems from natural-language requirements 753

input1 = 0
out1 = 0
gc = 0

input1 = 1
out1 = 0
gc = 1

input1 = 1
out1 = 1
gc = 1

input1 = 1
out1 = 2
gc = 1

(D) – 1s

input := 1

(F) out1 := 1 (F)
out1 := 2

(F)

out1 := 2

(F)

out1 := 1

Fig. 8. Example of time lock

If such a state exists, we have a time lock, since delay transitions cannot occur and, thus, time cannot elapse.
Another way of expressing this property is to say that time lock happens if there is a state from which it is not
possible to reach stable states (states that have delay transitions).

Definition 4.4 Absence of time lock: let reqs be an arbitrary set of requirements, and symDFRS the corresponding
s-DFRS obtained via Algorithm 6; the following predicate defines when these requirements describe a system
without time lock:

noTimeLock (reqs) ⇐⇒ ∃dfrs : e DFRS | dfrs � expandedDFRS (symDFRS) •
∀ trans : dfrs.TR | trans.2 ∈ ran fun • ∃ trans2 : dfrs.TR •| trans2.2 ∈ ran del •

(trans.3, trans.1, dfrs.TR) ∈ is reachable

To give a concrete example of time lock, we consider the sample example that was given to illustrate Defin-
ition 4.1. Figure 8 shows part of the e-DFRS obtained from these two requirements. We note that when input1
becomes true (equal to 0), the system reaches a state from which is not possible to reach a stable state, since it
can perform indefinitely function transitions. In such a situation, we say that there is a time lock. In this example,
the requirements are also inconsistent, since we can perform more than one function transition from the second
state on the first row.

The properties defined in this section can be verified by exploring the e-DFRS state space. However, as an
e-DFRS possibly comprises an infinite set of states, it is necessary to specify a bound for this check. Then, one
can dynamically create an e-DFRS until this bound is reached, and, while it is created, check whether the desired
properties are met (bounded model checking). Eligible criteria for this bound are the number of delay (function)
transitions performed, and an upper bound for the system global clock, among others. If the specification is
inconsistent or there is an unreachable requirement, we can easily identify the requirements involved as we keep
traceability between the s-DFRS functions and the requirements (see Sect. 3.5).

4.5. Tool support

The NAT2TEST tool implements the function genTransitions , allowing us to create and explore the states of an
e-DFRS dynamically (see Fig. 9).When the animator screen is opened, it automatically creates the e-DFRS initial
state (state 0): the initial state of the corresponding s-DFRS, which is obtained from the system requirements.

754 G. Carvalho et al.

Fig. 9. The NAT2TEST tool—dynamic creation of e-DFRSs

On the top right, the tool shows the possible delay or function transitions that can be performed from the
selected state. A double-click on a transition creates an edge to the target state to represent it. If the transition is a
delay one, a pop-up opens, and the user can inform the amount of (discrete or continuous) time that advances with
the delay transition, and new values for the input signals. On the right, the tool shows the history of performed
transitions. On the bottom, the tool shows the value of the system variables considering the selected state.

Figure 9 illustrates part of the e-DFRS for the example shown in Fig. 4, but it also describes the transition
that leads to the production of strong coffee. We note that from the state 3, if the coffee request button is pressed
12 s after inserting the coin, the system goes to the weak mode (the system mode :� 3), which is represented by
the state 5. Differently, if the request is made 32 s after inserting the coin, the system goes to the strong mode
(the system mode :� 2), which is represented by the state 7.

With the aid of this tool support, as explained in Sect. 5.2, we assess whether test cases, either independently
written by domain specialists from industry or generated by a commercial tool from the same set of requirements,
are compatible with the corresponding DFRS models. We detail this analysis in Sect. 5.2.

5. Theoretical and practical validations

After presenting theDFRSmodels (s-DFRSand e-DFRS), we nowdiscuss a theoretical (Sect. 5.1) and a practical
validation (Sect. 5.2).

5.1. Theoretical validation: mapping e-DFRSs to TIOTSs

While an e-DFRS can be viewed as a semantics for the s-DFRS, from which it is obtained, in order to connect
such a semantic representation to established ones in the literature, we show that an e-DFRS can be encoded as
a timed input-output transition system (TIOTS). This is an alternative timed model based on the widely used
IOLTS and ioco [Tre99]. First, we define TIOTSs in Z (Sect. 5.1.1), and then we show how it can be obtained
from e-DFRSs (Sect. 5.1.2) via a sound process (Sect. 5.1.3).

Modelling timed reactive systems from natural-language requirements 755

5.1.1. Formal model of TIOTS

A TIOTS is a 6-tuple (Q, q0, I, O, D, T), where Q is a (possibly infinite) set of states, q0 is the initial state, I
represents input and O output actions, D is a set of delays, and T is a (possibly infinite) transition relation on
states.

In a TIOTS, the states are related by labelled transitions. A label can be an input or an output action, a delay,
or an internal action. The given set TIOTS ACTION represents all valid actions, and TIOTS ACTIONS a set
of actions. A TIOTS delay (an element of TIOTS DELAY) represents a discrete or a dense time elapsing, but
differently from an e-DFRS delay, a delay in a TIOTS can also be 0. TIOTS DELAYS is a set of delays.

[TIOTS ACTION]
TIOTS ACTIONS �� PTIOTS ACTION
TIOTS DELAY ::� tiots discrete〈〈N〉〉 | tiots dense〈〈R+〉〉
TIOTS DELAYS �� PTIOTS DELAY

The schema TIOTS LABELS formalises the concept of TIOTS labels.

TIOTS LABELS
I ,O : TIOTS ACTIONS
D : TIOTS DELAYS

disjoint〈I ,O〉
D ∈ tiots time compatible

The sets of input and output actions are disjoint, and the delays need to be time compatible, which means that
all delays are of the same type (discrete or dense). The time compatible delays are characterised by the elements
of a set tiots time compatible, whose simple definition is omitted here.

A state of a TIOTS is an element of the given setTIOTS STATE , andTIOTS STATES SET is a non-empty
set of states. The initial state of a TIOTS (q0) is necessarily an element of the set of states of a TIOTS (Q). The
schema TIOTS STATES formalises this invariant.

[TIOTS STATE]
TIOTS STATES SET �� P1 TIOTS STATE
TIOTS STATES �� [Q : TIOTS STATES SET ; q0 : TIOTS STATE | q0 ∈ Q]

The transition relation (T), which is an element of the set of all possible TIOTS transition relations (TIOTS
TRANSREL), relates two states by means of a label, an element ofTIOTS TRANS LABEL. A TIOTS has four
types of transitions: input, output, delay and internal transitions, which are labelled with input actions, output
actions, delay events, and internal actions, represented by the invisible event τ , respectively.

TIOTS TRANS LABEL ::� in〈〈TIOTS ACTION 〉〉 | out〈〈TIOTS ACTION 〉〉 |
tiots del〈〈TIOTS DELAY 〉〉 | tau

TIOTS TRANS �� (TIOTS STATE × TIOTS TRANS LABEL × TIOTS STATE)
TIOTS TRANSREL �� PTIOTS TRANS

The schema TIOTS TRANSITION RELATION defines the component T .

TIOTS TRANSITION RELATION
T : TIOTS TRANSREL

Finally, a TIOTS is defined by the schema TIOTS , which requires that each transition relates states ofQ and
is well-typed.

TIOTS
TIOTS LABELS
TIOTS STATES
TIOTS TRANSITION RELATION

∀ entry : T • {entry .1, entry .3} ⊆ Q ∧ (entry .2, I ,O,D) ∈ well typed tiots transition

756 G. Carvalho et al.

2s ?s.1.r.0 !m.0.o.1 3s

?s.0.r.0

!m.0.o.17s?s.0.r.1!m.3.o.1

Fig. 10. The vending machine specification—TIOTS representation

A transition is said to be well typed (as characterised by the elements of well typed tiots transition) if, and
only if, its label is equal to τ , in, out , or del (label � tau, label ∈ ran in, label ∈ ran out , label ∈ ran tiots del ,
respectively).

well typed tiots transition : P(TIOTS TRANS LABEL×
TIOTS ACTIONS × TIOTS ACTIONS × TIOTS DELAYS)

∀ label : TIOTS TRANS LABEL; I ,O : TIOTS ACTIONS ; D : TIOTS DELAYS •
(label , I ,O,D) ∈ well typed tiots transition ⇐⇒
(label � tau) ∨ (label ∈ ran in ∧ (in ∼) label ∈ I) ∨
(label ∈ ran out ∧ (out ∼) label ∈ O) ∨ (label ∈ ran tiots del ∧ (tiots del ∼) label ∈ D)

If the label represents an input action (label ∈ ran in), it comprises elements of I , (in ∼) label ∈ I . Similarly,
the same idea applies to output actions and delays, where O and D are considered, respectively.

5.1.2. From e-DFRSs to TIOTSs

Before formalising the generation of a TIOTS from an e-DFRS, we explain the intuition behind the generation
process. While a function transition is mapped to an output action, a delay transition is mapped to a delay
followed by an input action. When a function transition leads to a non-stable event, this transition is mapped to
an internal hidden event, since only stable communication of outputs can be observed. If a delay transition leads
to a state from which there are other delay transitions (after the first delay no system reaction is observed), we
also consider an output action between these two transitions to show explicitly that the system outputs have not
changed.

Figure 10 shows the TIOTS obtained from the first five transitions presented in Fig. 4. To differentiate input
from output actions, we add “?” as a prefix to the former, and “!” to the latter.We note that the actions performed
are strings that represent the value received for all system inputs or generated for all system outputs, even if the
function transition does not range necessarily over the complete set of system outputs. We note that an output
action is performed between the delay transitions, whose delays are 3 s and 7 s, to show that the system outputs
remain unchanged. In this short example, we do not have τ events, as all states reached by function transitions are
stable. However, considering the example shown in Fig. 8, the corresponding TIOTS does not have any output
action after the delay transition, but a loop of τ events due to the time lock.

The function fromDFRStoTIOTS defines how a TIOTS is obtained from an e-DFRS. The main step is
how to obtain the TIOTS transition relation (tiots.T), which is defined by mapTransitionRelation. The TIOTS
inputs (tiots.I), outputs (tiots.O) and delays (tiots.D) are defined as the result of auxiliary projection functions
(getInputActions , getOutputActions , and getDelays , respectively). Basically, these functions yield the labels of
TIOTS transitions.

Modelling timed reactive systems from natural-language requirements 757

fromDFRStoTIOTS : e DFRS → TIOTS

∀ dfrs : e DFRS ; tiots : TIOTS •
fromDFRStoTIOTS (dfrs) � tiots ⇐⇒
tiots.Q � getStates(tiots.T) ∪ {tiots.q0} ∧ tiots.q0 � mapState(dfrs.s0) ∧
tiots.I � getInputActions(tiots.T) ∧ tiots.O � getOutputActions(tiots.T) ∧
tiots.D � getDelays(tiots.T) ∧ tiots.T � mapTransitionRelation(dfrs.TR, dfrs.I , dfrs.O)

The function mapState is a total injection from DFRS states to TIOTS ones. It is used to define the initial
state (tiots.q0) of the TIOTS; it is the result of this function when applied to the initial state of the e-DFRS. The
states (tiots.Q) of a TIOTS are the ones related by its transition relation (tiots.T), which are characterised by
getStates , besides its initial state.

To obtain the TIOTS transition relation, the function mapTransitionRelation considers two partitions of e-
DFRS transitions: the first one comprises only function transitions, getTransitions(tr , ran fun), whereas the sec-
ond one comprises delay transitions, getTransitions(tr , ran del). The function getTransitions filters function or
delay transitions from a given transition relation (tr). The functionsmapFunTransitions andmapDelTransitions
consider these partitions and yield transition relations (tr1, and tr2), whose union is defined as the result of
mapTransitionRelations (mapTransitionRelation � tr1 ∪ tr2).

mapTransitionRelation : TRANSREL × (NAME �→ TYPE) × (NAME �→ TYPE) →
TIOTS TRANSREL

∀ tr : TRANSREL; I ,O : (NAME �→ TYPE) • ∃ tr1, tr2 : TIOTS TRANSREL •
tr1 � mapFunTransitions(getTransitions(tr , ran fun), tr ,O) ∧
tr2 � mapDelTransitions(getTransitions(tr , ran del), tr , ranmapState, I ,O) ∧
mapTransitionRelation(tr , I ,O) � tr1 ∪ tr2

One important concern is related to the fresh states that are needed during this process. Therefore, we note that
the third argument of mapDelTransitions is ranmapState (all TIOTS states that can be obtained from DFRS
states), which is later used to identify fresh ones. For instance, one can see in Fig. 10 that the first and third states
are obtained from the first and second states in Fig. 4, whereas the second state does not have any correspondence
with a DFRS state.

The recursive functionmapFunTransitions appliesmapFunTransition for each function transition that leads
to a stable state. The latter function yields an output action, out(...), relating the TIOTS states obtained from the
source, mapState(s1) and target, mapState(s2), states of the e-DFRS function transition.

mapFunTransition : (TRANS × (NAME �→ TYPE)) �→ TIOTS TRANSREL

dom(mapFunTransition) � (STATE × ran fun × STATE) × (NAME �→ TYPE)
∀ s1, s2 : STATE ; label : TRANS LABEL; O : (NAME �→ TYPE) | label ∈ ran fun •

mapFunTransition((s1, label , s2),O) � {(mapState(s1),
out(genAction(currentValues(domO � s2))),mapState(s2))}

The output action, out(...), is defined in terms of the current values of the output variables in the target
state (currentValues(domO � s2)). An example of output action is !m.0.o.1 (see Fig. 10). When the func-
tion transition leads to a non-stable state, the application mapFunTransitions yields a transition relation,
whose single element relates the source,mapState(trans.1), and target,mapState(trans.3), states with a τ event,
{(mapState(trans.1), tau,mapState(trans.3))}.

The process of mapping delay transitions is more complicated due to three main reasons. First, as previously
explained, we need to identify fresh states (that do not have correspondence to DFRS states); second, as also
commented before, we need to define an output action between consecutive delay transitions; finally, the delay
transitions that have the same amount of time elapsing are grouped into non-time deterministic partitions, since
they have a particular treatment. To exemplify this last situation, we consider the states presented in Fig. 7. The
TIOTS transition relation obtained from this example is shown in Fig. 11. One can see that first we have a delay
of 1s leading to a state from which there are multiple possible input actions.

5.1.3. Soundness of mapping to TIOTS

Similarly to Theorem 4.1, the function fromDFRStoTIOTS is also proven to be sound: for all e-DFRSs, all
invariants of TIOTS hold in the obtained TIOTS (Theorem 5.1).

758 G. Carvalho et al.

1s

?s.0.r.0 ?s.1.r.0

?s.0.r.1 ?s.1.r.1

Fig. 11. The vending machine specification—TIOTS representation of delay transitions

Theorem 5.1 Soundness of fromDFRStoTIOTS

∀ expDFRS : e DFRS • fromDFRStoTIOTS (expDFRS) ∈ TIOTS

The detailed proof is available in [CCS15]; here we present a proof sketch. Concerning the invariants of
TIOTS LABELS (reproduced below), the sets I and O are disjoint because they are defined by the auxiliary
function genAction, which is an injection, applied to different elements: the value of DFRS input and output
variables, respectively.

disjoint〈I ,O〉
D ∈ tiots time compatible

The TIOTS delays are compatible (all of them are discrete or dense) because the e-DFRS delays are time
compatible, and the TIOTS delays preserve the delay type (discrete and dense delays in an e-DFRS are translated
to discrete and dense delays in a TIOTS, respectively).

The invariant of TIOTS STATES (q0 ∈ Q) also holds, since the states of a TIOTS (Q) are defined by
fromDFRStoTIOTS as the union of the application of getStates with its initial state (q0). Therefore, it is valid
that q0 is an element of Q .

Concerning the invariants of TIOTS (reproduced below), as Q is obtained from all states mentioned by T ,
it is trivial that all states related by T belong to Q .

∀ entry : T • {entry .1, entry .3} ⊆ Q ∧ (entry .2, I ,O,D) ∈ well typed tiots transition

To be well typed, an input transition must be labelled with an element of I , and an output transition with an
element of O . Similarly, a delay transition must be labelled with an element of D . As the sets I , O , and D are
defined in terms of the labels used on the TIOTS transitions, this invariant also holds. Therefore, we conclude
that the function fromDFRStoTIOTS is also sound.

5.2. Practical validation: compatibility between test cases and DFRSs

Here, we provide an empirical argument as to whether the DFRS models are expressive enough to represent
the behaviour of a timed reactive system as defined using natural language. We assess whether test cases, either
independently written by domain specialists from industry or generated by a commercial tool (RT-Tester9) from
the same set of requirements, are compatible with the corresponding DFRS models. Compatibility requires that
there is a sequence of delay and function transitions of the e-DFRS,which is obtained from the s-DFRS generated
from the natural-language requirements, that illustrates the delays, the system inputs and the expected outputs
described in the test case. In other words, in our evaluation, we generate test cases from a set of requirements,
without the aid of DFRS models.

9 http://www.verified.de/products/rt-tester/.

http://www.verified.de/products/rt-tester/

Modelling timed reactive systems from natural-language requirements 759

Table 2. Performance metrics
VM (s) NPP (s) PC (s) TIS (s)

Time to process the requirements 0.11 0.07 0.14 0.35
Time to identify the requirement frames 0.10 0.14 0.10 0.20
Time to generate the s-DFRSs 0.02 0.01 0.01 0.01
Total time 0.23 0.22 0.25 0.56

Later, we use the same requirements to derive s-DFRS models. Finally, we check whether the tests can be
obtained from simulation of the corresponding e-DFRS models. This analysis considers examples from four
different domains.

• Vending machine (toy example): this vending machine (VM) is an adaptation of the coffee machine presented
in [LMN04]. As explained in Sect. 2, this machine dispenses weak and strong coffee depending on the amount
of time elapsed between inserting a coin and requesting the coffee. The system has two input signals (the coin
sensor, and the coffee request button) and two output signals (the system mode, and the coffee machine
output).

• Nuclear power plant (toy example): we consider a simplified version of a control system for safety injection
in a nuclear power plant (NPP) as described in [LH03]. This is a system that controls the injection of coolant
in the reactor. If the water pressure is too low (less than 900 units), the system injects coolant into the reactor,
otherwise there is no need to inject coolant. This system has three input signals: the actual water pressure,
a switch to block the injection of coolant, and a switch that reset the system after blockage. There are three
output signals: the safety injection mode, the current blockage mode, and the pressure mode.

• Priority command (provided by Embraer): the priority command function (PC) decides whether the pilot or
copilot will have priority in controlling the airplane side sticks. The system monitors whether the pilot and
copilot side sticks are in the neutral position, and whether the side stick priority button has been pressed.
Taking into account this information, a control logic is applied to decide who has priority. This system has
four input signals (the stick position and the status of the priority button for both the pilot and the co-pilot)
and one output signal (a priority command).

• Turn indicator system (fromMercedes): we have also considered a simplification of the turn indicator system
(TIS) specification that is currently used by Daimler for automatically deriving test cases, concrete test data
and test procedures. In 2011 Daimler allowed the publication of this specification to serve as a “real-world”
benchmark supporting research on MBT techniques. Our simplification results in a size reduction of the
original model presented in [Pel11], but serves well as a proof of concept, because it still is a safety-critical
system component with real-time and concurrent aspects. The system has three inputs: (1) the turn indicator
lever, which may be in the idle, left or right position; (2) the emergency flashing button; and (3) the battery
voltage. The system outputs are the car flashing lights. The simplified TIS comprises two parallel components:
the flashing mode component, which is responsible for controlling the system flashing state (only left or right
lights flashing, left and right lights flashing, left or right tip flashing, and no lights flashing), and the lights
controller component, which is responsible for turning on and off the flashing lights respecting the flashing
periods: 320 ms on and 240 ms off.

Using the mechanisation of our strategy presented in Sects. 3.5 and 4.5, we have derived DFRS models from
the natural-language requirements of the aforementioned four examples. Table 2 presents the metrics related to
our performance analysis. All time measurements are for experiments using an i3 CPU with 2.27 GHz equipped
with 4 GB of RAM memory running the Ubuntu 14.04 LTS operating system. As can be seen in Table 2, the
time required to process the system requirements and to deliver the corresponding s-DFRSs models is low (less
than 1 s). Furthermore, it is worth noting that the total time required increases linearly according to the size of
the specification. Therefore, we can expect that the proposed approach might scale for larger examples.

760 G. Carvalho et al.

Table 3. Example of test case

Time (ms) Volt Emerg. button Turn indic. L. lights R. lights

0 80 Off Right Off Off
7918 81 Off Left On Off
8258 81 Off Left Off Off
8478 81 Off Left On Off

Table 4.Metrics concerning compatibility analysis

VM NPP PC TIS

of requirements 6 11 8 21
of words 228 268 294 942
of test vectors 5 16 401 83
of compatible test vectors 5 (100 %) 16 (100 %) 401 (100 %) 83 (100 %)
Time for analysis 9 ms 52 ms 184 ms 192 ms

Afterwards, we have assessed whether test cases, either independently written or generated from the same
set of requirements, are compatible with the corresponding DFRS models. To analyse whether the test cases are
compatible with the correspondingDFRSmodels, we have developed a depth-first search algorithm that explores
the state space of an e-DFRS guided by a test case. We provide to the model the inputs described by each test
vector, and check whether the outputs provided by the system are equal to those in the vector. This comparison
is straightforward (that is, the test oracle is trivial) since we are dealing with primitive types.

Table 3 shows a test case comprising four test vectors (one in each line), for the turn indicator system. The
first line tests that no lights are turned on, even if, for instance, the turn indicator is on the right position, when
the car voltage is too low (below 81 V). However, when the voltage is greater than 80 (Line 2), the lights are
turned on based on the turn indicator position (in this case, left), and the light remains on for 340 ms, and off
for 220 ms, periodically. In Table 3, Volt., Emerg. Button, Turn Indic., L. Lights, and R. Lights refer to Voltage,
Emergency Button, Turn Indicator, Left Lights, and Right Lights, respectively. The first line of the test is derived
from the initial state of the obtained s-DFRS. The next three lines are derived from six alternating delay and
function transitions.

1. Delay transition: after 7918 ms, the voltage becomes 81, and the turn indicator changes to the left position;
2. Function transition: the system reacts turning on the left lights;
3. Delay transition: the input signals remain the same for 340 ms;
4. Function transition: the system reacts turning off the left lights;
5. Delay transition: the input signals remain the same for 220 ms;
6. Function transition: the system reacts turning on the left lights.

The selected set of test cases is relevant as discussed in details in [CBL+14]. They are able to detect a significant
number of errors introduced by mutation testing (for instance, roughly 98 % of the mutants generated for the
TIS example). Table 4 presents some metrics concerning our compatibility analysis. The verdict of our testing
experiments have been successful, since all selected test cases are compatible with the corresponding DFRS
models, which gives evidence that these models for the four examples indeed capture the underlying semantics of
the natural-language requirements as suggested in this paper.

6. Related work

A classical notation for modelling timed reactive systems is timed automata. DFRS, however, is specifically
designed to facilitate automatic generation of formal models from natural-language requirements. In particular,
DFRS is tailored for embedded systems whose inputs and outputs are always available, as signals. The advantage
of aDFRSmodel is the fact that, as opposed to classical timed reactive systems notations such as timed automata,
it is a state-rich notation that embeds and enforces a number of properties of the models that are required of
reactive embedded systems.

Modelling timed reactive systems from natural-language requirements 761

Table 5. Analysis of related work

Domain Input Model Data Time Requirement analyses

[LCK98] General Use cases CMPN No No Consistency
Completeness

[LSL+14] General Use cases Activity diagram No No Consistency
Integrity

[Sch02] General NL requirements FOL No No Not reported
[ADS14] General NL requirements CCM Yes No Off-nominal
[BCMW15] Embedded systems NL requirements AADL Yes No Realisability
[BGMC04] General NL requirements FMONA Yes No Consistency
[NSM14] Mobile app. Use cases CSP Yes No Not reported
[ES07] General NL requirements FRL No Yes Not reported
[SHG10] General NL requirements TUM No Yes Consistency

Completeness
[AG06] General NL requirements CNM Yes Yes Consistency

Completeness
Ambiguity

[Ili07] General NL requirements B method Yes Yes Consistency
[LHHR94] Embedded systems NL requirements RSML Yes Yes Consistency

Completeness
[MTWH06] Embedded systems NL requirements RSML−e Yes Yes Consistency

Completeness
Reachability

[Sch09] Automotive systems NL requirements TQE Yes Yes Reachability
[SJV12] General NL requirements Statecharts Yes Yes Not reported
NAT2TEST Embedded systems NL requirements DFRS Yes Yes Consistency

Completeness
Reachability
Time lock

For example, DFRS models enforce the principle of delayable transitions; use delay transitions to represent
environment sitimuli and, thus, they cannot range over the output signals and timers of the system; include no
self-transitions; ensure that there are no delay and function transitions emanating from any state. If we were to use
general purpose notations such as timed automata to capture the natural-language requirements, the translation
would be more complicated and costly.

Previousworkshave already investigatedandproposed formalmodels for describingnatural-language require-
ments. Here, we analyse such works from six distinct perspectives: (1) domain: whether the modelling approach is
tailored for a specific domain; (2) input: how the system requirements are documented; (3) model: the underlying
formal notation used to represent the system behaviour; (4) data: whether this notation can explicitly deal with
variables; (5) time: whether this notation can explicitly deal with temporal behaviour; and (6) requirement analy-
ses: which properties of the requirements can be analysed via this notation. Table 5 summarises our analyses of
related work considering these six perspectives.

Some notations only consider the occurrence of events (e.g., the button has been pressed, the voltage is higher
than 10), as opposed to others that have an explicit model of variables and values. The fundamental difference
between these two approaches is that the second one is easier to connect with generation of automated test cases,
since data (variables and values) are embedded in the model. However, as a drawback, if one considers a large
amount of variables and possible values, the number of possibilities can be a problem to deal with, when symbolic
techniques are not used. As the ultimate goal of our work is the generation of test cases, we consider as more
appropriate for our purposes the second approach, when variables and values are part of the model.

Similarly, as we want to model and test temporal aspects of systems, which can be discrete or continuous, we
also want to incorporate time as an element of the model. Some approaches consider limited temporal analysis,
for instance, when representing and verifying linear temporal logic (LTL) properties. Here, we do not consider
these works as allowing time modelling, since only the sequencing of events is considered.

Considering these remarks, we group similar works into three distinct categories (see Table 5). While the first
group comprises techniques that do not support data and time information on requirements, the second one
supports at least one of these two concepts. The last group, to which our approach belongs, supports both of
them. In what follows, we summarise the previous studies, while comparing them with our own work.

While some approaches are tailored for use cases described in natural-language [LCK98, LSL+14, NSM14],
processing natural-language requirements is more common. In [LCK98], a variant of Petri Nets (constraints-
based modular petri nets–CMPNs) is proposed for modelling use cases. To generate the corresponding CMPN

762 G. Carvalho et al.

model, one needs to fill an action-condition table manually, besides clarifying event names, which represent the
actions described in the use cases. There is no support for data and time. On the other hand, using the CMPN
model, it is possible to perform consistency and completeness analyses automatically.

In [LSL+14] and [NSM14], use cases are used as source for the generation of formal models: the former
uses a restricted and formal version of activity diagrams, and the latter CSP. The CNL considered by [NSM14]
is tailored for mobile applications, whereas the strategy of [LSL+14] is for general purpose. Data is considered
in [NSM14] via annotations in the use cases. Only events are considered by [LSL+14], where it is also shown how
the derived activity diagrams can be used to verify the consistency and integrity of requirements.

[Sch02] proposes a computer-processable CNL for writing unambiguous and precise requirements: PENG.
The specificationwritten in PENGcan be deterministically translated into first-order predicate logic (FOL).Data
and time aspects are not considered, nor is the analysis of properties of the requirements.

In [ADS14], a casual component model (CCM) is used to model the behaviour described by natural-language
requirements. This formal model needs to be manually created from the specification. In CCM, the states can be
used to model valuations of a variable (e.g., s1–switch(off), s2–switch(on)), from which a NuSMV specification
[CCGR99] is automatically derived. Then, temporal logic can be used to seek off-nominal (undesired) behaviour.

The approachof [BCMW15] also considers variables, and it is tailored for embedded systems. It uses as internal
notation AADL (architecture analysis and design language), where assume-guarantee contracts are manually
created. In this work, it is possible to assess whether these contracts and the corresponding requirements are
realisable. Differently from other approaches, the authors show how to perform this analysis in a compositional
way.

The work reported in [BGMC04] presents a requirements analysis tool called RETNA. This tool accepts
natural-language requirements and, with user interaction, it translates the requirements into a logical notation:
FMONA, which is a high-level language for describing weak monadic second-order logic. This model can then
be used to analyse whether the natural-language requirements are consistent.

In [ES07] requirements are written in a limited standardized format. The requirements need to be written
according to a strict if-then sentence template, which, however, can be used to represent time properties. Despite
describing how to translate these templates to the formal requirement language (FRL), the work does not elab-
orate on how this model could be used to check properties of the requirements. In [SHG10] it is also possible to
represent timed-behaviour using timed usage models (TUM), which are Markov chain usage models (MCUM)
with time information. This model is manually created from the system requirements. Consistency and complete-
ness properties can be verified automatically. Differently from other approaches, this model can also take into
account probabilistic properties.

The works analysed so far do not take into account both data and time aspects and, thus, differ from our ap-
proach: theDFRSmodels considerbothof them.Theapproachesproposed in [AG06, Ili07,LHHR94,MTWH06,
Sch09, SJV12] are closer related to our work, since they share the fact that data and time are both supported.

The CIRCE environment, which enables analysis of natural-language requirements, is presented in [AG06].
In this environment, requirements are interpreted according to the CIRCE Native Meta-Model (CNM). Besides
analysing properties of requirements, this environment allows the generation of UMLmodels and code from the
CNM notation. Differently from our strategy, it requires manual effort when modelling the system requirements.
Here, one needs to create by hand designations and definitions. The former establishes equivalences between
different terms that refer to the same entity, and the latter establishes notations for expressing requirements in
a succinct way. While these two elements have a well-defined and formal structure, the requirements description
statements are expected to be free-form text.

In [Ili07], the B method [Abr96] is used to construct formal models for system requirements. In this work, the
requirements need to be translated to predefined templates for describing events, data and time, from which B
specifications are systematically translated. Each template defines the information that is mandatory. Comparing
to our approach, the thematic roles are the counterpart of these templates. As just said, in [Ili07], one needs to
classify manually the requirements according to these templates, besides filling them. Differently, thematic roles
are automatically inferred from the requirements in the NAT2TEST strategy.

In [LHHR94, MTWH06], the requirements state machine language (RSML) is used as formal model for
natural-language requirements. A restricted version of this notation (RSML−e) is adopted by [MTWH06], where
events are not allowed. This notation, which is argued to be tailored for embedded systems, is used to document
the system requirement. In [LHHR94], this internal model is analysed by proposed algorithms to check whether
the requirements are consistent and complete. In [MTWH06], these analyses are automated with the aid of

Modelling timed reactive systems from natural-language requirements 763

NuSMV and PVS [ORS92]. These two studies require user intervention to classify and edit requirements. This is
not a necessity within the NAT2TEST strategy.

In [Sch09], assuming that the system specification is manually represented conforming to a set of templates,
developed for automotive systems, a temporal qualified expression (TQE) is derived. It is also necessary to identify
manually signal names along with its possible values. Differently, in our approach, the signal names, their types,
and possible values are automatically inferred.

In [SJV12], the SOLIMVA methodology is presented. The methodology has tool support to translate auto-
matically natural-language requirements into statechart models. Another tool (GTSC) is used to generate test
cases. In this work, besides writing the requirements, one needs to identify and partition inputs and outputs. This
is not required in our approach. Moreover, this work does not explain how the statechart models can be used to
analyse requirements, but considers this as a possible line for future work.

In summary, the NAT2TEST strategy formally describes system requirements usingDFRSmodels, which are
explained in details here. Similarly to other approaches previously identified, the formal model used to represent
the system behaviour considers both data and time information. It can also be used to check system properties
such as consistency, completeness, reachability, and absence of time lock. Our work stands out from the similar
approaches reported here by the richness of the model generated solely from natural-language requirements
without user intervention.

The absence of user intervention in our strategy is a consequence of the compromise reached by the defined
controlled natural language. As we focus on a specific domain of embedded systems, whose behaviour can be
described as actions guarded by conditions, we can impose some restrictions, while allowing the requirements
to be expressed as a textual specification, and automatically obtain a formal model from these requirements.
However, these restrictions make our approach not suitable for writing requirements that do not adhere to this
format of actions and guards.

7. Conclusions

We have presented a symbolic formalism (s-DFRS) for modelling timed-systems, which is suitable to describe
formal models that can be automatically obtained from natural-language requirements. We have also shown that
an expanded version of a symbolic DFRS model can be dynamically generated and used for checking properties
such as consistency, completeness and reachability of requirements, as well as the absence of time lock. To connect
the proposedmodels to established ones in the literature, we have also presented how e-DFRSs, the notation used
to describe the expanded models is called e-DFRS, can be encoded as Timed Input-Output Transition System
(TIOTS): an alternative timedmodel based on the widely used IOLTS and ioco. All definitions have been formally
described in Z, and checked with the aid of the CZT plug-in for Eclipse.

We have also considered examples from four different domains, and showed that the derived DFRS models
are expressive enough to represent a set of independently written and generated test cases. To support this
analysis, we have developed a tool NAT2TEST that automatically generates s-DFRS models from natural-
language requirements, besides other features such as dynamic exploration of the e-DFRS state space.

DFRSmodels are suitable for modelling embedded systems whose inputs and outputs are always available, as
signals. Moreover, the system reactions are described as assignments guarded by static and timed guards. Further
empirical analysis is a topic for future work.

We also envisage the following tasks as future work.

• Integrate this work with our previous work described in [CFaB+13, CBL+14] to take advantage of the gener-
ality of DFRSs as indicated in Fig. 1;

• Enhance the DFRS models to deal with more complex structures. For instance, currently, only literals are
allowed in assignments;

• Evolve the DFRS models to deal with new classes of timed-systems, namely, hybrid systems. To achieve such
a goal, we plan to incorporate into our models differential equations to describe the continuous evolution of
variables.

Despite the potential for improvement, we believe that the results obtained give some evidence that DFRSs are a
promising modelling notation for describing the behaviour ot timed-systems, in particular, when this behaviour
is defined using natural-language requirements of the form of actions guarded by conditions. A detailed account
of our models, notations, tools, and examples are found in [Car16].

764 G. Carvalho et al.

Acknowledgements

Thisworkwas carriedoutwith the supportof theCNPq(Brazil), INES (www.ines.org.br), and theGrants:FACEPE
573964/2008-4, APQ-1037-1.03/08, CNPq 573964/2008-4 and 476821/2011-8. The research reported in this paper
was also partially funded by the UK EPSRC.

References

[ABJ+15] Aichernig BK, Brandl H, Jöbstl E, Krenn W, Schlick R, Tiran S (2015) Killing strategies for model-based mutation testing.
Softw Test Verif Reliab 25(8):716–748

[Abr96] Abrial J.-R. (1996) The B-book: assigning programs to meanings. Cambridge University Press, New York
[ADS14] Aceituna D, Do H, Srinivasan S (2014) A systematic approach to transforming system requirements into model checking

specifications. In: Companion Proceedings of the 36th International Conference on Software Engineering, ICSE Companion
2014. ACM, New York, pp 165–174

[AG06] Ambriola V, Gervasi V (2006) On the systematic analysis of natural language requirements with CIRCE. Autom Softw Eng
13(1):107–167

[All95] Allen J (1995) Natural language understanding. Benjamin/Cummings, Redwood City
[BBF97] Blackburn M, Busser R, Fontaine J (1997) Automatic Generation of Test Vectors for SCR-style Specifications. In: Annual

conference on computer assurance
[BCMW15] Backes J,CoferD,Miller S,WhalenMW(2015)Requirements analysis of a quad-redundant flight control system. In:Havelund

K, Holzmann G, Joshi R (eds) NASA formal methods, Lecture notes in computer science, vol 9058. Springer International
Publishing, Pasadena, pp 82–96

[BGFT10] Bucchiarone A, Gnesi S, Fantechi A, Trentanni G (2010) An experience in using a tool for evaluating a large set of natural
language requirements. In: Proceedings of the 2010 ACM symposium on applied computing, SAC ’10. ACM, New York, pp
281–286

[BGMC04] Boddu R, Guo L, Mukhopadhyay S, Cukic B (2004) RETNA: from requirements to testing in a natural way. In: IEEE
International requirements engineering conference, pp 262–271

[Car16] Carvalho G (2016) NAT2TEST: generating test cases from natural language requirements based on CSP. PhD thesis, Centro
de Informática, Universidade Federal de Pernambuco (UFPE), Brazil

[CBC+15] Carvalho G, Barros F, Carvalho A, Cavalcanti A, Mota A, Sampaio A (2015) NAT2TEST Tool: from Natural Language
Requirements to Test Cases based onCSP. In: International conference on software engineering and formalmethods. Springer
International Publishing, Cham

[CBL+14] Carvalho G, Barros F, Lapschies F, Schulze U, Peleska J (2014) Model-Based Testing from Controlled Natural Language
Requirements. In: Artho C, Ölveczky PC (eds) Formal techniques for safety-critical systems, Communications in computer
and information science, vol 419. Springer International Publishing, Cham, pp 19–35

[CCGR99] Cimatti A, Clarke EM, Giunchiglia F, Roveri M (1999) NuSMV: a new symbolic model verifier. In: Proceedings of the 11th
international conference on computer aided verification, CAV ’99. Springer-Verlag, London, pp 495–499

[CCR+14] Carvalho G, Carvalho A, Rocha E, Cavalcanti A, Sampaio A (2014) A formal model for natural-language timed requirements
of reactive systems. In: Merz S, Pang J (eds) Formal methods and software engineering, international conference on formal
engineering methods ICFEM, Lecture notes in computer science, vol 8829. Springer International Publishing, Cham, pp
43–58

[CCS15] Carvalho G, Cavalcanti A, Sampaio A (2015) DFRS: definition and proofs. Technical report, Universidade Federal de
Pernambuco

[CFaB+13] Carvalho G, Falcão D, Barros F, Sampaio A, Mota A, Motta L, Blackburn M (2013) Test case generation from natural
language requirements based on SCR specifications. In: Symposium on applied computing, vol 2, pp 1217–1222

[CFB+14] Carvalho G, Falcão D, Barros F, Sampaio A, Mota A, Motta L, Blackburn M (2014) NAT2TESTSCR: test case generation
from natural language requirements based on SCR specifications. Sci Comput Program 95(Part 3(0)):275–297

[CSM13] Carvalho G, Sampaio A, Mota A (2013) A CSP timed input-output relation and a strategy for mechanised conformance
verification. In: Formal methods and software engineering, LNCS, vol 8144. Springer, Berlin, Heidelberg, pp 148–164

[ES07] Esser M, Struss P (2007) Obtaining models for test generation from natural-language like functional specifications. In: Inter-
national workshop on principles of diagnosis, pp 75–82

[FAA09] FAA (2009) Requirements engineering management findings report. Technical report, U.S. Department of Transportation-
Federal Aviation Administration

[Fil68] Fillmore CJ (1968) The case for case. In: Bach, Harms (eds) Universals in linguistic theory. Holt, Rinehart, and Winston,
New York, pp 1–88

[FLGS14] Ferrari A, Lipari G, Gnesi S, Spagnolo GO (2014) Pragmatic ambiguity detection in natural language requirements. In:
Artificial intelligence for requirements engineering (AIRE), 2014 IEEE 1st International Workshop on, pp 1–8

[Ili07] Ilic D (2007) Deriving formal specifications from informal requirements. In: Computer software and applications conference,
2007. COMPSAC 2007. 31st Annual International, vol 1, pp 145–152

[ISO02] ISO (2002) Z formal specification notation (ISO/IEC 13568). Technical report, International Organization for Standardization
[LCK98] LeeWJ, Cha SD, Kwon YR (1998) Integration and analysis of use cases using modular Petri nets in requirements engineering.

Softw Eng IEEE Trans 24(12):1115–1130
[LH03] Leonard E, Heitmeyer C (2003) Program synthesis from formal requirements specifications using APTS. High Order Symbol

Comput 16:63–92

www.ines.org.br

Modelling timed reactive systems from natural-language requirements 765

[LHHR94] Leveson NG, Per Erik Heimdahl M, Hildreth H, Reese JD (1994) Requirements Specification For Process-Control Systems.
IEEE Trans Softw Eng 20(9):684–707

[LMN04] Larsen K, Mikucionis M, Nielsen B (2004) Online testing of real-time systems using uppaal: status and future work. In:
Perspectives of model-based testing—Dagstuhl Seminar, vol 04371

[LSL+14] Liu S, Sun J, Liu Y, Zhang Y, Wadhwa B, Dong JS, Wang X (2014) Automatic early defects detection in use case documents.
In: Proceedings of the 29th ACM/IEEE international conference on automated software engineering, ASE ’14. ACM, New
York, pp 785–790

[MTWH06] Miller SP, TribbleAC,WhalenMW,HeimdahlMPE (2006) Proving the shalls. Int J SoftwTools Technol Transf 8(4–5):303–319
[NSM14] Nogueira S, Sampaio A,Mota A (2014) Test generation from state based use case models. Formal Aspects Comput 26(3):441–

490
[ORS92] Owre S, Rushby JM, Shankar N (1992) PVS: A prototype verification system. In: Kapur D (ed) 11th International Conference

On Automated Deduction (CADE), Lecture notes in artificial intelligence, vol 607. Springer-Verlag, Saratoga, pp 748–752
[Pel11] Peleska J et al (2011) A real-world benchmark model for testing concurrent real-time systems in the automotive domain. In:

Proceedings of the ICTSS, ICTSS’11. Springer-Verlag, Berlin, Heidelberg, pp 146–161
[PVLZ11] Peleska J, Vorobev E, Lapschies F, Zahlten C (2011) Automated model-based testing with RT-Tester. Technical report, Uni-

versität Bremen
[Ros10] Roscoe AW (2010) Understanding concurrent systems. Springer, London
[Sch02] Schwitter R (2002) English as a formal specification language. In: Proceedings of the 13th international workshop on database

and expert systems applications
[Sch09] Schnelte M (2009) Generating test cases for timed systems from controlled natural language specifications. In: International

conference on system integration and reliability improvements, pp 348–353
[SHG10] Siegl S, Hielscher K-S, German R (2010) Model based requirements analysis and testing of automotive systems with timed

usage models. In: Requirements engineering conference (RE), 2010 18th IEEE International, pp 345–350
[SJV12] JuniorVS,VijaykumarNL (2012)Generatingmodel-based test cases fromnatural language requirements for space application

software. Softw Qual J 20:77–143
[SLDP09] Sun J, Liu Y, Dong JS, Pang J Pat: (2009) Towards flexible verification under fairness, Lecture Notes in Computer Science,

vol 5643. Springer, Heidelberg, pp 709–714
[Tre99] Tretmans J (1999) Testing concurrent systems: a formal approach. In: Proceedings of CONCUR. Springer-Verlag, London,

pp 46–65

Received 31 May 2015
Accepted in revised form 1 July 2016 by Stephan Merz, Jun Pang, Jin Song Dong and Cliff Jones
Published online 26 July 2016

	Modelling timed reactive systems from natural-language requirements
	Abstract
	1 Introduction
	2 Definition and properties of an s-DFRS
	2.1 Overview of DFRSs
	2.2 Formal model of an s-DFRS
	2.2.1 Inputs, outpus and timers
	2.2.2 Initial state
	2.2.3 Functions
	2.2.4 Complete definition of an s-DFRS

	3 Formalising natural-language requirements
	3.1 Syntactic and semantic analyses
	3.2 Identifying variables
	3.3 Identifying functions
	3.3.1 Generating condition expressions
	3.3.2 Generating action statements

	3.4 Creating an s-DFRS
	3.5 Tool support

	4 Definition and properties of an e-DFRS
	4.1 Formal model of an e-DFRS
	4.1.1 Transition relation
	4.1.2 Complete definition of an e-DFRS

	4.2 From s-DFRSs to e-DFRSs
	4.3 Soundness of generation of an e-DFRS
	4.4 Verifying properties of requirements via e-DFRSs
	4.4.1 Consistent requirements
	4.4.2 Complete requirements
	4.4.3 Reachable requirements
	4.4.4 Absence of time lock

	4.5 Tool support

	5 Theoretical and practical validations
	5.1 Theoretical validation: mapping e-DFRSs to TIOTSs
	5.1.1 Formal model of TIOTS
	5.1.2 From e-DFRSs to TIOTSs
	5.1.3 Soundness of mapping to TIOTS

	5.2 Practical validation: compatibility between test cases and DFRSs

	6 Related work
	7 Conclusions
	Acknowledgements
	References

