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Abstract. The rely-guarantee technique allows one to reason compositionally about concurrent programs. To
handle interference the technique makes use of rely and guarantee conditions, both of which are binary relations
on states. A rely condition is an assumption that the environment performs only atomic steps satisfying the
rely relation and a guarantee is a commitment that every atomic step the program makes satisfies the guarantee
relation. In order to investigate rely-guarantee reasoning more generally, in this paper we allow interference
to be represented by a process rather than a relation and hence derive more general rely-guarantee laws. The
paper makes use of a weak conjunction operator between processes, which generalises a guarantee relation to
a guarantee process, and introduces a rely quotient operator, which generalises a rely relation to a process. The
paper focuses on the algebraic properties of the general rely-guarantee theory. The Jones-style rely-guarantee
theory can be interpreted as a model of the general algebraic theory and hence the general laws presented here
hold for that theory.

Keywords: Concurrent programming, rely-guarantee concurrency, program verification, program algebra, con-
current Kleene algebra.

1. Introduction

Rely and guarantee conditions. The rely-guarantee technique of Jones [Jon81, Jon83, Jon96] provides a compo-
sitional approach to reasoning about concurrent programs. With hindsight, it is obvious that to achieve compo-
sitional handling of concurrency, it is necessary to have some way of recording information about interference.
This paper generalises the way that interference is recorded. To allow reasoning about a process c in isolation,
Jones used a rely condition r , that is a binary relation on states. Every atomic step of the environment of c is
assumed to satisfy the rely condition r between its before and after states. Any process running in parallel with
c also has a rely condition and hence process c will need to ensure every atomic program step it makes satisfies
the rely conditions of all processes in its environment. To represent this Jones uses a guarantee condition g , that
is also a binary relation on states. Every atomic step of c must satisfy g and the relation g should be contained
in the rely condition of every process in the environment of c. Jones records a rely-guarantee specification by
generalising the judgements of Hoare logic [Hoa69] to a quintuple of the form,

{p, r} c {g, q}. (1)
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The process c satisfies the quintuple if, under the assumption that the initial state satisfies p and every atomic
step made by the environment satisfies r between its before and after states, every possible execution of c ensures
that every atomic program step made by c satisfies g , and the initial and final states of the overall execution of c
satisfy the relational postcondition q .

Refinement calculus. This paper uses a refinement calculus approach [Bac81, BvW98, Mor88, Mor94, Mor87]
rather than Hoare logic because it allows for simpler presentation of algebraic laws of programming [HHH+87].
Refinement of one command c by another d is written “c � d” and is read “c is refined (implemented) by d”.
The refinement calculus introduces a postcondition specification command

[
q
]
in which the postcondition q is

a binary relation on states, and a precondition command {p} in which the precondition p is a set of states. The
refinement {p} ; [

q
] � d means d achieves the postcondition q between its before-state and after-state, provided

its before-state satisfies p. As an abbreviation the sequential composition operator “; ” may be elided so that the
above may be written {p} [

q
]
.

Generalised rely-guarantee. The main contribution of this paper is to generalise a rely condition r to a process i
specifying the assumed behaviour of interference from the environment. The actual environment should satisfy
(i.e. refine) the process specification i . Similarly, the guarantee condition g is generalised to a process j to be
“guaranteed” by the implementation. The process that behaves as a process c as well as respecting the guarantee
process j is represented by their weak conjunction j � c, which is the process that behaves as both j and c unless
one of them aborts.1 A Jones-style guarantee condition g on a terminating command c is represented by the
process 〈g〉� � c, where 〈g〉 represents a command that can perform a single atomic program step for which the
before and after states satisfy g and 〈g〉� is the process that iterates the atomic step 〈g〉 any finite number of
times, zero or more. An example of a guarantee process that cannot be expressed as a guarantee condition is the
sequential composition 〈id〉� 〈g〉 〈id〉�, in which id is the identity relation. It guarantees that a step satisfying g
occurs exactly once but allows stuttering steps before and after. The closest guarantee condition is g ∪ id but that
allows any number, zero of more, of steps satisfying g ∪ id. Section 3 explores the weak conjunction operator and
its relationship to Jones-style guarantee conditions [JHC15].

Rely quotients. To specify a process that refines (implements) c, while relying on its environment refining process
i , a rely quotient operator c // i is introduced. The rely quotient c // i when run in parallel with i implements c,

c � (c // i ) ‖ i .

The operator “//” is chosen to be similar in appearance to the division operator, where in this context “‖” takes on
a role similar to multiplication. Taking “x //y” as the ceiling of their integer division �x/y� gives the best analogy:
x ≤ �x/y� × y . A terminating process specification c with a Jones-style rely condition r is represented by the
quotient c // 〈r〉�, where 〈r〉� represents the environment process, all atomic steps of which satisfy r . Section 4
explores the properties of the rely quotient operator. Given the weak conjunction and rely quotient operators,
the Jones quintuple (1) is equivalent to the following refinement.

{p} (〈g〉� � (
[
q
]
// 〈r〉�)) � c (2)

Concurrency. The parallel introduction law of Jones makes use of both rely and guarantee conditions. In the
more general theory presented here, weak conjunction takes on the role of a guarantee and the rely quotient
takes on the role of a rely condition. Both generalised operators are used to give a general version of a law for
introducing a parallel composition, which has a surprisingly simple and elegant proof (see Sect. 5).

Distribution laws. Section 6 examines the distribution properties of the rely quotient operator over the other
operators. In some cases the general distribution laws for weak conjunction and rely quotient require provisos.
However, in the relational rely-guarantee model the provisos are all valid and hence the distribution properties
hold without proviso. In the general theory the provisos are explicit and hence it is possible to explore alternatives
to Jones-style rely-guarantee that allow more expressive rely conditions.

Relationship to relational rely-guarantee. Exploring the theory more generally leads to simpler laws that can be
specialised to the relational model. As an example consider the nesting of two rely processes i and j , i.e. (c // j )// i .

1 Earlier publications referred to weak conjunction as strict conjunction but the new name is preferred because the operator is weaker than
the (strong) conjunction operator that requires both its operands to abort for it to abort.
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Fig. 1. Operators and primitive commands

That corresponds to handling concurrent interference from both i and j and is equivalent to c // (i ‖ j ), i.e.
an effective rely process of i ‖ j . A relational rely condition of r corresponds to a rely process of 〈r〉� and the
nesting of two such processes for rely conditions of r0 and r1 corresponds to the rely process of 〈r0〉� ‖ 〈r1〉�,
however, this process is equivalent to 〈r0 ∨ r1〉�, corresponding to a relational rely of r0 ∨ r1. This shows how
the well known relational rely-guarantee rule, that the effective rely of nested relational rely conditions is their
disjunction, can be derived from the more general view that the effective rely process of nested rely processes is
their parallel composition.

Section 7 explores the relationship of the more general theory to the Jones-style relational guarantee and
rely conditions. The relational rely-guarantee theory of Jones [Jon96] is a model of the general algebraic theory
presented in this paper and hence the laws developed in the general theory are also valid for Jones’ theory.

Section 8 examines fair parallel and its impact on the rely quotient operator.

Contributions. The main contribution of this paper is to generalise rely and guarantee conditions from relations
to arbitrary processes. In order to make our results as widely applicable as possible, we have based our theory
on a relatively small set of definitions and axioms. Any model, such as the relational rely-guarantee model, that
satisfies the axioms can then make use of all the laws proved here.

Our core theory adds two specification operators, weak conjunction and rely quotient, to the operators of a
simple parallel programming language. The weak conjunction operator allows guarantees to be imposed on a
process [HJC14]. The rely quotient operator introduced in this paper allows rely conditions to be generalised to
processes. There are a number of advantages of exploring the more general operators. Both weak conjunction
and rely quotient have simple algebraic properties and this leads to simple and elegant proofs of laws involving
these operators. The approach leads to a nice separation of concerns because properties of weak conjunction
(guarantees) and rely quotient can be developed separately and then combined to give generalised equivalents of
the main laws used for standard rely-guarantee refinements, which are more simply expressed and proven in the
general theory. Further, it is much simpler to devise new rely-guarantee refinement laws because the algebra gives
a rich theory of properties which simplify discovering proofs.

As an example of the way in which the theory generalises rely and guarantee conditions, in the relational
model, as well as being able to express a relational rely condition via the process 〈r〉�, one can express rely
processes, such as the sequence 〈r0〉� 〈r1〉�, which cannot be expressed via a relational rely condition. The closest
rely condition is r0 ∨ r1 but that does not represent the fact that the rely transitions from r0 to r1 just once.

2. Basic commands and refinement

Our presentation separates a core algebraic theory of processes from an instantiation of that theory as a relational
model similar to that used by Jones [CJ07]. Section 2.1 introduces the operators in our language. Section 2.2 covers
the theory of lattices onwhich the theory for the language is built. Section 2.3 gives the algebraic properties of basic
commands. Section 2.4 gives the relational model to provide an intuition for the behaviour of basic commands.

2.1. Operators and primitive commands

Theoperators andprimitive commandsof the core language are given inFig. 1. Typical commands are represented
by c, d , i and j ; sets of commands by C and D ; and monotonic functions from commands to commands by f .
The language includes non-deterministic choice, both binary (c � d ) and over a set of commands (

�
C ), which

form infima with respect to the refinement ordering, and their duals c � d and (
⊔
C ), which form suprema.
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Complete distributive lattice

(19)

Fig. 2. Axioms for lattices and fixed points

Additional binary operators are parallel composition (c ‖ d ), sequential composition (c ;d ), a weak conjunction
operator (c � d ) explained in Sect. 3, and a rely quotient operator (c // d ) explained in Sect. 4. Commands
include least (μ f ) and greatest (νf ) fixed points of monotonic functions over commands. Primitive commands
include: the top element in the refinement lattice 
 (calledmagic in the refinement calculus); the bottom element
⊥ (called abort); the command that terminates immediately, nil, which is the identity of sequential composition;
the command that does nothing but doesn’t constrain its environment, skip, which is the identity of parallel
composition; and the command that can do any non-aborting behaviour, chaos, which is the identity of weak
conjunction.

2.2. Lattices and fixed points

The theory for the language is built on a lattice of commands ordered by refinement. The refinement relation “�”
is defined in terms of the infimum operator “�”; refinement is reflexive, anti-symmetric and transitive (a partial
order).

Definition 1 (refinement) For any c, d , c � d �̂ (c � d ) � c. Equivalently c � d ⇔ (c � d ) � d .

The lattice-theoretic axioms of the language are given in Fig. 2. Com is the set of all commands and lattice
infimum, “�”, corresponds to nondeterministic choice.

• (Com,�,�) forms a lattice with infimum (greatest lower bound) “�” and supremum (least upper bound) “�”,
i.e. axioms (3–10) hold.

• The lattice is complete, i.e. the infimum
�
C and the supremum

⊔
C exist for all sets of commandsC , including

empty or infinite C . The infima and suprema satisfy axioms by (11–14).
• The infimum (i.e. nondeterministic choice) distributes over arbitrary suprema (15).
• The bottom element of the lattice is ⊥. It is the identity of “�” and an annihilator for “�”.

⊥ �̂ ⊔{} � �
Com (20)

c � ⊥ � c � ⊥ � c (21)
c � ⊥ � ⊥ � ⊥ � c (22)

• The top element of the lattice is 
. It is the identity of “�” and an annihilator for “�”.

 �̂ �{} � ⊔

Com (23)
c � 
 � c � 
 � c (24)
c � 
 � 
 � 
 � c (25)

The following law can be used to handle refinement to or from a nondeterministic choice [BvW98]. A common
special case is if C (or D) is a singleton set, i.e.

�{c} � c (or
�{d} � d ).

Lemma 1 (non-deterministic-choice) For any sets C and D over a complete lattice,

(∀ d ∈ D · (∃c ∈ C · c � d )) ⇒ (
�
C ) � (

�
D).

The reverse implication does not hold in general, e.g. for C � {c0, c1} and D � {c0 � c1}.
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Fig. 3. Axioms for core language of commands

Lemma 2 (operator-monotonic) If a binary operator “◦” distributes over non-deterministic choice in both arguments
then, c0 � c1 ∧ d0 � d1 ⇒ c0 ◦ d0 � c1 ◦ d1.

For a monotonic function f on a complete lattice, the least and greatest fixed points of f , μ f and νf ,
respectively, satisfy axioms (16–19). As usual, μ(λ x · f (x )) is abbreviated μ x · f (x ). The following lemma allows
reasoning about fixed points [ABB+95, BvW98].

Lemma 3 (fusion) For any monotonic functions F , G and H on complete lattices with order �,

F (μG) � μH provided F ◦ G � H ◦ F and F distributes over arbitrary suprema (26)
F (μG) � μH provided F ◦ G � H ◦ F and F distributes over arbitrary suprema (27)
F (νG) � νH provided F ◦ G � H ◦ F and F distributes over arbitrary infima (28)
F (νG) � νH provided F ◦ G � H ◦ F and F distributes over arbitrary infima (29)

where F distributes over arbitrary suprema if F (
⊔
C ) � ⊔{c ∈ C · F (c)} for all sets of commands C , and F

distributes over arbitrary infima if F (
�
C ) � �{c ∈ C · F (c)} for all sets of commands C .

2.3. An algebra for concurrency

The properties of the operators in Fig. 1 are given in terms of a set of axioms given in Definition 2. The axioms
have been split into groups which are discussed below. Themain results of the paper depend only on these axioms.
The majority of the axioms are taken from existing algebraic theories of programs (such as [vW04, HMSW11]),
the main exceptions being the axioms for weak conjunction, including the exchange axioms. The axioms hold for
the relational model introduced in Sect. 2.4.

Definition 2 (concurrent-algebra) The set of commands Com satisfies the axioms given in Fig. 3 in addition to the
axioms of lattices from Fig. 2.

• (Com, ; ,nil) forms a monoid with identity nil, i.e. axioms (30–32). Note that the operator “;” is elided, so
that “c ; d” is written “c d”.

• Sequential compositiondistributes overfinite non-deterministic choices on the left (33) andarbitrary infimaon
the right (34) and hence it has a left annihilator of
 (52);⊥ is a left annihilator of sequential composition (35).


 c � 
 (52)
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• (Com, ‖, skip) forms a monoid with identity skip in which “‖” is commutative, i.e. axioms (36–38). Note
that the identity of parallel composition is different to the identity of sequential composition; that allows a
wider range of models, included the relational model introduced in Sect. 2.4.

• Parallel distributes over non-deterministic choice of any set of commands (39), and hence has an annihilator
of 
.


 ‖ c � 
 (53)

• The identity of parallel composition, skip, sequentially composed with itself is equivalent to skip (40) and
is refined by the identity of sequential composition, nil (41).

• (Com,�, chaos) forms a monoid with identity chaos in which “�” is commutative and idempotent, i.e.
axioms (42–45).

• chaos allows any non-aborting behaviour including skip (46) and chaos in parallel with itself doesn’t make
it any more (or less) chaotic (47).

• Weak conjunction distributes over the non-deterministic choice of non-empty sets of commands by axiom
(48) and hence it distributes over binary choices.

c � (d0 � d1) � (c � d0) � (c � d1) (54)

• Weak conjunction distributes over arbitrary suprema axiom (49) and hence it has an annihilator of ⊥.

c � ⊥ � ⊥ � ⊥ � c (55)

• Weak conjunction does not distribute through either parallel or sequential composition, instead it satisfies the
weak exchange axioms (50) and (51). Note that axiom (50) is a refinement rather than an equality because,
on the left, behaviour of c0 may synchronise with behaviour of either d0 or d1, whereas, on the right, it can
only synchronise with behaviour of d0; axiom (51) is similar; see Sect. 3 for more details.

Note that the set of all commands that refine chaos forms a sub-lattice of all non-aborting commands.
The iterationoperators arebasedonvonWright’s refinement algebra [vW04].Kleenealgebraprovides thefinite

iteration operator c�, which iterates c zero or more times but only a finite number of times [Con71, Bli78, Koz97].
A generalisation of this more appropriate for modelling programs is the iteration operator, c◦, that iterates c zero
or more times, including the possibility of an infinite number of iterations [vW04]. For both these operators the
number of iterations they take is non-deterministic.

Definition 3 (iteration) The iteration operators are defined via least (μ) and greatest (ν) fixed point operators.

c� �̂ (νx · nil � c x ) (56) c◦ �̂ (μ x · nil � c x ) (57)

The iteration operators have corresponding induction and folding/unfolding lemmas [BvW98, BvW99, vW04].

Lemma 4 (fold/unfold) The iteration unfolding properties follow from fixed point unfolding (18) and (16).

c� � nil � c c� (58) c◦ � nil � c c◦ (59)

Lemma 5 (induction)The iteration induction properties follow fromLemma3andfixedpoint induction (19)and (17).

x � d � c x ⇒ x � c� d (60) d � c x � x ⇒ c◦ d � x (61)

We use the term “law” for theorems about our new operators and “lemma” for existing theorems from standard
theory. Laws and lemmas share their numbering sequence.

Law 6 (monotonic) If c � d and c0 � d0 and c1 � d1, all of the following hold.

c0 � c1 � d0 � d1 (62)
c0 ‖ c1 � d0 ‖ d1 (63)
c0 c1 � d0 d1 (64)

c0 � c1 � d0 � d1 (65)
c� � d � (66)
c◦ � d◦ (67)

Proof. Property (62) holds because non-deterministic choice is associative, commutative and idempotent. The
proofs of (63–65) follow from Lemma 2 because “;”, “‖” and “�” distribute non-deterministic choice in both
their left and right arguments. Properties (66) and (67) can be shown by induction, respectively, (60) and (61),
using (58) and (59) (see [vW04]). �
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2.4. A relational model

In this paperwe focus on the algebraic laws satisfied by commands but it is useful to have amodel to gain intuitions
and ensure the algebra is consistent. The model used corresponds to the rely-guarantee theory of Jones based on
Aczel traces [Acz83, dBHdR99, dR01, HJC14]. Typical single-state predicates are represented by p and binary
relations on states by g , q and r . The additional commands in the relational model are

π (r ), ε(r ), τ (p), {p}, 〈q〉, [
q
]
.

This set of commands is left open and may be extended with other commands, for example, tests, assignments,
conditionals and loops are added in [HJC14].

States (�) are modelled by amapping from variable names to values. The set of program states�⊥ is extended
to include the undefined state ⊥, which is used to denote that the process has aborted.2 An Aczel trace consists
of an initial state σ ∈ � and a sequence of steps, each of which is either a program step labelled 
(σ ′) or an
environment step labelled E(σ ′), where σ ′ ∈ �⊥ is the program state after the step. In this paper the term “step”
always means an atomic step (either of a program or its environment). A terminating Aczel trace ends with a
step labelled �. The step 
(⊥) is an aborting step of the program and the step E(⊥) allows an aborting step by
the environment. The special steps �, 
(⊥) and E(⊥) can appear only as the last step of a (finite) trace. The set
Trace is the set of all valid Aczel traces. The notation [v1, v2, . . .] stands for the sequence containing v1, v2, . . ..

A set of traces T is prefix closed if (σ, [ ]) ∈ T for all σ ∈ � and whenever (σ, t) ∈ T and t ′ is a prefix
of t , (σ, t ′) ∈ T . A set of traces T is abort closed if whenever (σ, t � [
(⊥)]) ∈ T , then for any valid trace
(σ, t � t ′) ∈ Trace, (σ, t � t ′) ∈ T . The set of all commands, Com, consists of all the prefix and abort closed
subsets of Trace.

The command π (r ) performs a single program step with its before and after states related by r and terminates
(68), ε(r ) is similar but performs an environment step (69), ε⊥(r ) represents an environment step that satisfies r
or allows a parallel process to abort (70), τ (p) terminates from states satisfying p only (71), ⊥ aborts immediately
and hence can do any behaviour whatsoever (72),
 canmake no steps whatsoever (73), and nil terminates imme-
diately from any state (74). Recall that {x ∈ S · e} stands for the set of values of e for all values of x in the set S .

π (r ) � pre f i xes({(σ, σ ′) ∈ r · (σ, [
(σ ′),�]}) (68)
ε(r ) � pre f i xes({(σ, σ ′) ∈ r · (σ, [E(σ ′),�]}) (69)

ε⊥(r ) � ε(r ) ∪ pre f i xes({σ ∈ � · (σ, [E(⊥)])}) (70)
τ (p) � pre f i xes({σ ∈ p · (σ, [�]}) (71)

⊥ � Trace (72)

 � {σ ∈ � · (σ, [ ])} (73)
nil � τ (�) (74)

The set of traces of a non-deterministic choice
�
C is the union

⋃
C and the supremum

⊔
C is the intersection⋂

C . A trace of a sequential composition (c d ) is any unterminated trace of c or a terminating trace t of c (minus
the � step) followed by a trace of d that starts in the final state of t . Note that an unterminated trace may be
infinite or it may be a finite trace that does not end in �.

The traces of c ‖ d are formed by matching traces of c and d . A program step sc of c matches an environment
step sd of d if their states are the same, in which case the program step is the step taken by their parallel
composition. Identical environment steps of both c and d match to give an environment step of their parallel
composition. The following predicate defines matching a step sc of c with a step sd of d to give a step st of c ‖ d .

match step(sc, sd , st) �̂ ∃σ ∈ �⊥ · sc � 
(σ ) ∧ sd � E(σ ) ∧ st � 
(σ ) ∨
sc � E(σ ) ∧ sd � 
(σ ) ∧ st � 
(σ ) ∨
sc � E(σ ) ∧ sd � E(σ ) ∧ st � E(σ ) ∨
sc � � ∧ sd � � ∧ st � �

match trace((σc, tc), (σd , td ), (σ, t)) �̂ σc � σd � σ ∧ dom(tc) � dom(td ) � dom(t) ∧
(∀ i ∈ dom(t) · match step(tc(i ), td (i ), t(i ))

c ‖ d �̂ abort close({t ∈ Trace | ∃ tc ∈ c, td ∈ d · match trace(tc, td , t)})
Two traces match if they have the same initial state and are the same length (including both being infinite) and all
their corresponding steps match. The parallel composition of c and d consists of all their matching traces. The
abort closure ensures aborting traces can be refined by any other behaviour.

2 The symbol ⊥ is overloaded between the undefined state and the bottom of the lattice of commands, which corresponds to the aborted
process. As usual their meaning is resolved by context.
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A weak conjunction c � d represents synchronised step-by-step execution of c and d unless one of them
aborts. Hence if both c and d can make a step 
(σ ) then so can c � d , if both c and d can make a step E(σ ) then
so can c � d , if both c and d can make a step � then so can c � d , but if either c or d can make an aborting step

(⊥) then so can c � d . The properties of weak conjunction in the relational model are discussed in more detail
in Sect. 3.2.

Other commands in the relational model are defined as follows, where univ stands for the universal relation
� × � on states.

skip �̂ (ε⊥(univ))◦ (75)
〈r〉 �̂ skipπ(r ) skip (76)

{p} �̂ τ (p) � (τ (¬ p)⊥) (77)
(env r ) �̂ (π(univ) � ε⊥(r ))◦ (nil � ε(r̄ )⊥) (78)

The command skip does no program steps but allows its environment to do any steps, including abort. The
atomic step command 〈r〉 performs a single program step satisfying r (if possible) and allows its environment to
do any steps. The precondition command {p} characterises an assumption about the initial state — it terminates
immediately if the initial state satisfies p, otherwise it aborts immediately. The command (env r ) characterises
an assumption that all steps of its environment satisfy the relation r ; it aborts if its environment performs a step
that does not satisfy r . The relational commands satisfy the following laws [HJC14].

p0 ⊆ p1 ⇔ {p0} � {p1} (79)
r0 ⊆ r1 ⇔ (env r0) � (env r1) (80)

q1 ⊆ q0 ⇔ 〈q0〉 � 〈q1〉 (81)

Whereas nil terminates immediately allowing no program or environment steps, skip allows any number of
environment steps, including allowing the environment to abort. That ensures that c ‖ skip � c because any
trace tc of program, environment or termination steps of c is matched by a trace of skip to give the same trace
tc. Note that c ‖ nil either terminates immediately if c can, otherwise the trace becomes infeasible. Because nil
terminates immediately with no intervening environment steps, {p}nil {p} � {p}, but if nil is replaced by skip,
environment steps allowed by skip may change the state thus invalidating p and hence {p} skip {p} � {p} does
not hold in general.

3. Weak conjunction

A weak conjunction of commands c � d behaves as both c and d provided neither aborts but aborts as soon as
either c or d aborts. If neither process aborts, c � d is the same as their supremum c � d (which in the relational
model forms the intersection of traces).Weak conjunctionwas introduced as part of a relationalmodel in [HJC14]
but here it is viewed more abstractly via its axioms in Definition 2. In Sect. 3.1 a set of laws based only on the
axioms of weak conjunction are derived.Weak conjunction in the relational model is examined in Sect. 3.2, while
Sect. 3.3 looks at its use for representing relational guarantees and Sect. 3.4 presents a set of laws about relational
guarantees.

3.1. Laws for weak conjunction

This section presents a number of laws about weak conjunction that can be derived from the axioms presented
in Sect. 2.3.

Law 7 (refine-conjunction) If c0 � d and c1 � d , c0 � c1 � d .

Proof. The proof follows by Law 6 (monotonic) part (65) and because weak conjunction is idempotent (44):
c0 � c1 � d � d � d . �

Law 8 (refine-to-conjunction) If c � d0 and c � d1, c � d0 � d1.

Proof. The proof follows because weak conjunction is idempotent (44) and by Law 6 (monotonic) part (65):
c � c � c � d0 � d1. �

It is not the case that c � c � d in general, e.g. take d to be ⊥, however, if d refines the identity of weak
conjunction, chaos, it does hold.
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Law 9 (conjoin-non-aborting) If chaos � d , c � c � d .

Proof. The proof follows because chaos is the identity of weak conjunction (45) and by Law 6 (monotonic) part
(65): c � c � chaos � c � d . �

The following two laws highlight the difference between “�” and “�”. In general, c � d � c � d but they
coincide if both arguments are non-aborting.

Law 10 (conjunction-supremum) c � d � c � d .

Proof. By axiom (13), both c � c � d and d � c � d , and hence by Law 7 (refine-conjunction), c � d � c � d .
�

Law 11 (conjunction-supremum-nonaborting) If chaos � c and chaos � d , c � d � c � d .
Proof. By Law 10 (conjunction-supremum) c � d � c � d . By Law 9 (conjoin-non-aborting) because both c and
d refine chaos, both c � c � d and d � c � d , and hence by axiom (14), c � d � c � d . �
Law 12 (conjunction-distribute)

c � (d0 � d1) � (c � d0) � (c � d1) (82)
c � (d0 ‖ d1) � (c � d0) ‖ (c � d1) if c � c ‖ c (83)
c � (d0 d1) � (c � d0) (c � d1) if c � c c (84)

c� � d � � (c � d )� (85)
c◦ � d◦ � (c � d )◦ (86)

Proof. Property (82) follows because weak conjunction is idempotent (44), commutative (43) and associative (42).
For (83), assuming c � c ‖ c,

c � (d0 ‖ d1)
� by Law 6 (monotonic) part (65) assuming c � c ‖ c

(c ‖ c) � (d0 ‖ d1)
� exchanging weak conjunction and parallel by axiom (50)

(c � d0) ‖ (c � d1)

and for (84), assuming c � c c,

c � (d0 d1)
� by Law 6 (monotonic) part (65) assuming c � c c

(c c) � (d0 d1)
� exchanging weak conjunction and sequential by axiom (51)

(c � d0) (c � d1)

Property (85) holds by Lemma 5 for finite iteration (60), if

c� � d � � nil � (c � d ) (c� � d �),

which can be shown as follows.
c� � d �

� by Lemma 4 part (58)
(nil � c c�) � d �

� as weak conjunction distributes over non-deterministic choice (48)
(nil � d �) � (c c� � d �)

� by Law 7 (refine-conjunction) as by (58) d � � nil � d d � and hence d � � nil and d � � d d �

nil � (c c� � d d �)
� exchanging weak conjunction and sequential by axiom (51)

nil � (c � d ) (c� � d �)

For (86) the proof uses Lemma 3 part (26) with function F � (λ x · c◦ � x ), G � (λ x · nil � d x ) and hence
μG � d◦, andH � (λ x · nil� (c�d ) x ) and henceμH � (c�d )◦. F ,G andH are monotonic because “�”, “;”
and “�” are. Property (86) corresponds to F (μG) � μH , and Lemma 3 states that this holds if F ◦G � H ◦F ,
i.e. for any x ,

c◦ � (nil � d x ) � nil � (c � d ) (c◦ � x ) (87)
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which holds as follows.

c◦ � (nil � d x )
� distributing conjunction over nondeterministic choice (48)

(c◦ � nil) � (c◦ � d x )
� by Law 7 (refine-conjunction) as by (59) c◦ � nil � c c◦ and hence c◦ � nil and c◦ � c c◦

nil � (c c◦ � d x )
� exchanging weak conjunction and sequential by axiom (51)

nil � (c � d ) (c◦ � x )

Lemma 3 also requires that F distributes over arbitrary suprema, which holds because weak conjunction distrib-
utes over arbitrary suprema (49). �

The iterations c� and c◦ iterating zero times, are equivalent to nil, which in the relational model allows no
steps at all, not even environment steps, but for use in guarantees, zero iterations should allow environment steps
and hence the iteration operators c� and c� are introduced.

Definition 4 (guarantee-iteration)

c� �̂ c� skip (88) c� �̂ c◦ skip (89)

Lemma 13 (iteration) The following properties follow from Lemmas 4 and 5.

c� � c� (90)
c� � skip (91)

c� � c� c� if c � skip c (92)
c� � (c�)� if c � skip c (93)

Law 14 (conjunction-distribute-guarantee) If c � skip c,

c� � d◦ � (c� � d )◦ (94)

Proof. The proof can be shown using Lemma 3 part (26) with G � (λ x · nil � d x ) and hence μG � d◦,
H � (λ x · nil � (c� � d ) x ) and hence μH � (c� � d )◦, and F � (λ x · c� � x ) and hence F (μG) � c� � d◦.
Note that F distributes over arbitrary suprema because weak conjunction distributes over arbitrary suprema
(49). The proviso for Lemma 3 part (26) requires c� � (nil � d x ) � nil � (c� � d ) (c� � x ) which holds as
follows.

c� � (nil � d x )
� distributing weak conjunction over non-deterministic choice (48)

(c� � nil) � (c� � d x )
� by Law 7 (refine-conjunction) as c� � skip � nil by (91) and (41) and c� � c� c� by (92) as c � skip c

nil � (c� c� � d x )
� exchanging weak conjunction and sequential composition by axiom (51)

nil � (c� � d ) (c� � x )

�
3.2. Weak conjunction in the relational model

In the relational model weak conjunction corresponds to synchronised execution of atomic steps by both
processes unless either process aborts, i.e. every non-aborting step taken by c � d must be a step allowed
by both c and d . If either process aborts, the conjunction aborts (55). The weak conjunction of two atomic
step commands 〈g〉 and 〈r〉 can perform a program step that satisfies both g and r (95). An atomic step 〈g〉
allows any environment step whatsoever and hence two atomic step commands synchronise trivially on envi-
ronment steps. More generally, the first program steps of conjoined commands synchronise followed by the
weak conjunction of the remainder of both commands (96). If one command in a weak conjunction must
do a program step but the other cannot, their conjunction never terminates and does no program steps (97).

〈g〉 � 〈r〉 � 〈g ∩ r〉 (95)
(〈g〉 c) � (〈r〉 d ) � 〈g ∩ r〉 (c � d ) (96)
skip � (〈g〉 c) � skip
 (97)
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The command chaos performs any sequence of non-aborting program steps and allows any environment
steps, while term allows only a finite sequence of non-aborting program steps and any environment steps. Both
are defined in terms of the iteration operators that allow environment steps for zero iterations.

chaos �̂ 〈univ〉� (98) term �̂ 〈univ〉� (99)

Iterations of atomic steps satisfy the following properties [HJC14].

r1 ⊆ r0 ⇒ 〈r0〉� � 〈r1〉� (100)
r1 ⊆ r0 ⇒ 〈r0〉� � 〈r1〉� (101)

〈r0 ∪ r1〉� � 〈r0〉� ‖ 〈r1〉� (102)
〈r0 ∪ r1〉� � 〈r0〉� ‖ 〈r1〉� (103)

〈r〉� � 〈r〉� ‖ 〈r〉� (104)

Properties (100) and (101) follow using (81) from (66) and (67), respectively.
In the relational model a command c preconditioned by the state predicate p is represented by ({p} c). If p

holds initially, {p} behaves as nil and hence ({p} c) behaves as c but if p does not hold initially, the preconditioned
command aborts. A precondition distributes into both aweak conjunction and into a parallel composition. These
laws follow from the definition of a precondition command (77) and distribution properties in the relational
semantics.

Law 15 (precondition-conjunction) {p} (c � d ) � ({p} c) � ({p} d ).
Law 16 (precondition-parallel) {p} (c ‖ d ) � ({p} c) ‖ ({p} d ).

Morgan’s specification command,
[
q
]
, is refined by any program that terminates with its initial and final states

related by q provided there is no interference from the environment [Mor88].
[
q
] �̂ �{σ ∈ � · τ ({σ }) term τ ({σ ′ | (σ, σ ′) ∈ q})} � (env id) (105)

The behaviour of
[
q
]
consists of terminating traces that start in some state σ and terminate in a state σ ′ such

that (σ, σ ′) ∈ q . It assumes all steps of its environment do not modify the state (i.e. satisfy the identity relation
id). Its behaviour includes finite infeasible traces starting from any state and traces ending in an infinite sequence
of environment steps. Conjoining two specifications achieves the conjunction of their postconditions.

[
q0

]
�

[
q1

] � [
q0 ∩ q1

]
(106)

3.3. Relationship to Jones-style guarantee

Jones introduced the idea of using a guarantee condition g , a binary relation between states, to express the fact
that every atomic program step a process makes is guaranteed to satisfy g between its before-state and after-
state [Jon83]. The relation g is required to be reflexive so that stuttering steps are allowed. A guarantee g on a
terminating command c can be defined in terms of a weak conjunction as 〈g〉� � c. The weak conjunction with
〈g〉� restricts the behaviour of c so that every atomic program step satisfies g . The command 〈g〉� is used rather
than 〈g〉� so that zero iterations corresponds to skip rather than nil and hence does not constrain environment
steps in this case. More generally, if c is not assumed to be terminating, a guarantee is represented by 〈g〉� � c.
Possibly infinite iteration is used rather than finite iteration because weak conjunction with finite iteration forces
termination and hence is too strong [HJC14]. Termination of 〈g〉� � c depends only on whether c terminates if
its traces are restricted to program steps satisfying g . The guarantee component 〈g〉� is non-aborting and hence
any aborting behaviour can only arise from c. Using the supremum operator 〈g〉� � c would be too strong a
guarantee because 〈g〉� has only non-aborting traces and hence would mask any aborting behaviour of c.

A guarantee relation g in the style of Jones is represented here by an iterated atomic step satisfying the relation,
either 〈g〉� or 〈g〉�. By treating guarantees as processes more expressive guarantee conditions can be expressed,
for example, the process 〈g0〉� 〈g1〉� represents a guarantee of g0 initially, followed at some point by a switch to a
guarantee of g1. As another example, the process 〈id〉� 〈g〉 〈id〉� represents a guarantee to perform a single step
satisfying g surrounded by any finite number of steps that don’t modify any variables. Neither of these guarantee
processes can be represented as a single guarantee relation unless additional variables that distinguish the phases
of the guarantees are used. It is possible to encode a sequence such as 〈g0〉� 〈g1〉� via the use of an additional
boolean variable b which is initially false: (¬ b ∧ g0) ∨ (b ∧ g1 ∧ b ′), where it is assumed b is set to true for the
transition from a guarantee of g0 to g1.
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3.4. Laws for guarantees

If g0 ⊆ g1, then a guarantee of g0 is stronger than a guarantee of g1.

Law 17 (guarantee-strengthen) For any command c and relations g0 and g1 such that g0 ⊆ g1,

〈g1〉� � c � 〈g0〉� � c.

Proof. By (101), 〈g1〉� � 〈g0〉�, and hence the law follows by Law 6 (monotonic) part (65). �

Law 18 (guarantee-introduce) c � 〈g〉� � c.

Proof. The proof follows by Law 9 (conjoin-non-aborting) because by (98) chaos � 〈univ〉� � 〈g〉� by (101).
�

Law 19 (conjunction-atomic-iterated) 〈g0〉� � 〈g1〉� � 〈g0 ∩ g1〉�
Proof. The refinement from left to right follows by Law 7 (refine-conjunction) because by (101) both 〈g0〉� and
〈g1〉� are refined by 〈g0 ∩ g1〉�. The refinement from right to left can be proved using Lemma 5 part (61) using
(96) and (97). �

Law 20 (guarantee-nested) 〈g0〉� � 〈g1〉� � c � 〈g0 ∩ g1〉� � c
Proof. By Law 19 (conjunction-atomic-iterated), 〈g0〉� � 〈g1〉� � 〈g0 ∩ g1〉�. �

A guarantee distributes through non-deterministic choice, weak conjunction, parallel and sequential compo-
sition, and finite and infinite iterations.

Law 21 (guarantee-distribute)

〈g〉� � (c � d ) � (〈g〉� � c) � (〈g〉� � d ) (107)
〈g〉� � (c � d ) � (〈g〉� � c) � (〈g〉� � d ) (108)
〈g〉� � (c ‖ d ) � (〈g〉� � c) ‖ (〈g〉� � d ) (109)

〈g〉� � (c d ) � (〈g〉� � c) (〈g〉� � d ) (110)
〈g〉� � c� � (〈g〉� � c)� (111)
〈g〉� � c◦ � (〈g〉� � c)◦ (112)

Proof. Property (107) holds because weak conjunction distributes over non-deterministic choice (48), and (108–
111) hold by the corresponding properties (82–85) of Law 12 (conjunction-distribute). For property (109)
the proviso holds because 〈g〉� � 〈g〉� ‖ 〈g〉� by (104); and for property (110) the proviso holds because
〈g〉� � 〈g〉� 〈g〉� by (92). Property (111) holds by (85) because 〈g〉� � (〈g〉�)� by (93). Both (92) and (93)
require the side condition 〈g〉 � skip 〈g〉, which holds by (76). Property (112) follows from Law 14 (conjunction-
distribute-guarantee). �

4. The rely quotient command

Jones introduced the idea of a rely condition, a reflexive relation assumed to be satisfied by every atomic step of
the interference from the environment of a process [Jon83]. In essence it abstracts the environment by a process
〈r〉� that executes steps satisfying the rely condition r . In the general algebra the environment is represented by
an arbitrary process i . The rules of Jones then become a special case when i � 〈r〉� (see Sect. 7). To handle relies
in the general algebra, a rely quotient operator “//” is introduced. It is defined so that c // i in parallel with i
implements c, i.e.,

c � (c // i ) ‖ i , (113)

and furthermore for any process d , if c � d ‖ i then c // i � d . For example, because 〈r0 ∨ r1〉� � 〈r0〉� ‖ 〈r1〉�
holds in the relational model, one refinement of the quotient 〈r0 ∨ r1〉� // 〈r1〉� is 〈r0〉�.

Themotivation for the rely quotient is similar to that for the weakest pre- and post-specifications ofHoare and
He [HH86], although they deal with residuals of sequential composition rather than parallel composition, and
weakest environment of Zhou andHoare [ZH81, Zho82]. The rely quotient c//i is defined as the non-deterministic
choice over all commands d satisfying the defining property of the rely quotient: c � d ‖ i .
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Definition 5 (rely-quotient) c // i �̂ �{d | (c � d ‖ i )}.
This definition is similar to defining division over the positive integers in terms of multiplication and minimum
(
�
).

�c/i� �̂ �{d | (c ≤ d × i )}
The only command d satisfying c � d ‖ i might be the infeasible command 
, in which case c // i is infeasible.
In particular, taking the interference i to be the aborting process ⊥ gives, c // ⊥ � �{d | (c � d ‖ ⊥)} � 
,
unless c � ⊥, in which case ⊥ // ⊥ � ⊥.

Because the rely quotient operation is defined in terms of nondeterministic choice and parallel composition,
its instantiation in the relational model follows directly from its definition. For completeness, an expansion of
its definition in the relational model is given below, in which //r and ‖r stand for the interpretations of these
operators in the relational model; recall that nondeterministic choice corresponds to set union and refinement to
set containment.

c //r i �
⋃

{d ∈ Com | c ⊇ d ‖r i}
�

⋃
{d ∈ Com | c ⊇ abort close({t ∈ Trace | ∃ td ∈ d , ti ∈ i · match trace(td , ti , t)})}

A full appreciation of the utility of the rely quotient operator flows from its use in introducing a parallel compo-
sition in Sect. 5 but first we examine a set of basic laws that it satisfies.

4.1. Laws for rely quotients

The following law shows that the rely quotient command satisfies its motivating property (113). The law corre-
sponds to c ≤ �c/i� × i for positive integer division.

Law 22 (rely-quotient) c � (c // i ) ‖ i .
Proof. The notation {x | p · e} used below represents the set of values of the expression e for x ranging over
values that satisfy the predicate p.

c � (c // i ) ‖ i
⇔ by Definition 5
c � �{d | (c � d ‖ i )} ‖ i

⇔ distributing parallel over non-deterministic choice (39)
c � �{d | (c � d ‖ i ) · (d ‖ i )}

⇐ by Lemma 1
∀ d ∈ {d | (c � d ‖ i )} · c � (d ‖ i )

�
The following fundamental law shows that the rely quotient is the least command satisfying its defining

property. It provides the basis for the proof of many of the laws that follow and shows the Galois connection
between rely quotient and parallel composition [Aar92, BCG02]. It corresponds to �c/i� ≤ d ⇔ c ≤ d × i for
positive integer division.

Law 23 (rely-refinement) c // i � d ⇔ c � d ‖ i .
Proof. For the proof from right to left assume c � d ‖ i .

c // i � d
⇔ by Definition 5�{d1 | (c � d1 ‖ i )} � d
⇐ by Lemma 1

∃d0 ∈ {d1 | (c � d1 ‖ i )} · d0 � d
⇐ by assumption d ∈ {d1 | (c � d1 ‖ i )}
d � d
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The proof from left to right assumes c // i � d and starts with Law 22 (rely-quotient).

c � (c // i ) ‖ i
⇒ by Law 6 (monotonic) part (63) as c // i � d
c � d ‖ i

�
The property in Law 23 (rely-refinement) could be used as an alternative definition of the rely quotient

operator. From Galois theory, the rely quotient (lower adjoint) is uniquely defined by the Galois connection
provided parallel distributes over non-deterministic choice (39).

Because skip is the identity of parallel composition, it is also the right identity of the rely quotient. This is
similar to 1 being the right identity of integer division (c/1 � c).

Law 24 (rely-identity-right) c // skip � c

Proof. The law holds by indirect equality if for all x , c // skip � x ⇔ c � x , which holds by Law 23 (rely-
refinement) as follows: c // skip � x ⇔ c � x ‖ skip ⇔ c � x . �

The following two laws correspond to c ≤ d ⇒ �c/i� ≤ �d/i� and i ≤ j ⇒ �c/j � ≤ �c/i� for positive
integer division.

Law 25 (rely-monotonic) c � d ⇒ (c // i ) � (d // i ).

Proof. By Law 23 (rely-refinement), (c // i ) � (d // i ) holds if c � (d // i ) ‖ i , which holds by the assumption
c � d and Law 22 (rely-quotient) because c � d � (d // i ) ‖ i . �
Law 26 (rely-weaken) i � j ⇒ (c // j ) � (c // i ).

Proof. By Law 23 (rely-refinement) (c // j ) � (c // i ) holds if c � (c // i ) ‖ j , which holds as follows.

c
� by Law 22 (rely-quotient)

(c // i ) ‖ i
� by Law 6 (monotonic) part (63) as i � j
(c // i ) ‖ j

�

[Italic text between horizontal lines partitions out material that applies only to the relational model.]

For relational rely conditions, if r1 ⊆ r0, then by (100), 〈r0〉� � 〈r1〉�, and applying Law 26 (rely-
weaken) gives (c // 〈r1〉�) � (c // 〈r0〉�), i.e. the relational rely condition can be weakened in a refinement.

A nested rely (c // j ) // i corresponds to implementing c within environment j , all within in environment i , i.e. c
is implemented in environment i ‖ j . The next law corresponds to ��c/i�/j � � �c/(i × j )� for positive integer
division.

Law 27 (rely-nested) (c // j ) // i � c // (i ‖ j ).

Proof. The law follows by indirect equality if for all x , (c // j ) // i � x ⇔ c // (i ‖ j ) � x , which is shown as
follows.

(c // j ) // i � x
⇔ by Law 23 (rely-refinement)
c // j � x ‖ i

⇔ by Law 23 (rely-refinement)
c � x ‖ i ‖ j

⇔ by Law 23 (rely-refinement)
c // (i ‖ j ) � x

�
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Because parallel is commutative, it follows that (c // j ) // i � c // (i ‖ j ) � c // (j ‖ i ) � (c // i ) // j .

For relational rely conditions by property (102), 〈r0〉� ‖ 〈r1〉� � 〈r0 ∪ r1〉�, and hence by Law 27 (rely-nested)
nested relational relies of r0 and r1 give an effective rely of r0 ∪ r1.

(c // 〈r1〉�) // 〈r0〉� � c // (〈r0〉� ‖ 〈r1〉�) � c // 〈r0 ∪ r1〉�. (114)

5. Parallel-introduction law

The prime motivation of Jones [Jon83] for introducing rely and guarantee conditions was to support reasoning
about parallel compositions. In the current paper a guarantee condition is generalised to a weak conjunction with
a process, and a rely condition by a rely quotient by a process. Law 28 (parallel-introduce) provides an general
law for introducing a parallel composition. The guarantee j of the first branch of the parallel corresponds to the
rely of the second branch and vice versa for i .

Law 28 (parallel-introduce) c � d � (j � (c // i )) ‖ (i � (d // j ))

Proof. By Law 22 (rely-quotient) both c � (c // i ) ‖ i and d � (d // j ) ‖ j and hence the proof follows using
these two properties in the first step.

c � d
� by Law 6 (monotonic) part (65) and parallel is commutative (37)
((c // i ) ‖ i ) � (j ‖ (d // j ))

� exchanging weak conjunction and parallel by axiom (50)
((c // i ) � j ) ‖ (i � (d // j ))

�
The simplicity and elegance of the proof of this fundamental law for handling rely-guarantee concurrency is an
indication that weak conjunction and rely quotient are well chosen abstractions. The relationship to the parallel
law of Jones is explored in Sect. 7 but first distribution properties of rely quotients need to be explored.

6. Distribution of rely quotients

Law 28 (parallel-introduce) introduces rely quotients of the form c // i for some specification c. One way of
refining such a quotient is to refine c, for example, c may be refined to a sequential composition c0 c1. Law 25
(rely-monotonic) then gives that c // i � (c0 c1) // i . To further refine this it is useful to have a distribution law that
allows the rely quotient to be distributed over the sequential composition, i.e. (c0 c1) // i � (c0 // i ) (c1 // i ). A
proviso is needed for this refinement to be valid (see Law 32 below). This section investigates laws for distributing
rely quotients over the other operators. A rely quotient distributes straightforwardly over both weak conjunction
and non-deterministic choice.

Law 29 (rely-distribute-conjunction) (c � d ) // i � (c // i ) � (d // i )

Proof. By Law 23 (rely-refinement) the law is equivalent to c � d � ((c // i ) � (d // i )) ‖ i .

c � d
� by Law 22 (rely-quotient) twice

((c // i ) ‖ i ) � ((d // i ) ‖ i )
� exchanging weak conjunction and parallel by axiom (50)

((c // i ) � (d // i )) ‖ (i � i )
� as “�” is idempotent (44)
((c // i ) � (d // i )) ‖ i

�
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Law 30 (rely-distribute-choice) (c � d ) // i � (c // i ) � (d // i )

Proof. By Law 23 (rely-refinement) the law is equivalent to c � d � ((c // i ) � (d // i )) ‖ i .

c � d
� by Law 22 (rely-quotient) twice

((c // i ) ‖ i ) � ((d // i ) ‖ i )
� distributing parallel over non-deterministic choice (39)

((c // i ) � (d // i )) ‖ i

�
Distribution of the rely quotient over parallel requires a proviso on the interference i that i ‖ i � i . That
distribution law follows from a more general law with a parallel in both arguments of the quotient.

Law 31 (rely-distribute-parallel)

(c ‖ d ) // (i ‖ j ) � (c // i ) ‖ (d // j ) (115)
(c ‖ d ) // i � (c // i ) ‖ (d // i ) if i ‖ i � i (116)

Proof. By Law 23 (rely-refinement), (115) holds if c ‖ d � (c // i ) ‖ (d // j ) ‖ i ‖ j , which holds as follows.

c ‖ d
� by Law 22 (rely-quotient) twice

((c // i ) ‖ i ) ‖ ((d // j ) ‖ j )
� by associativity (36) and commutativity (37) of parallel

(c // i ) ‖ (d // j ) ‖ i ‖ j

The proof of (116) uses (115) with j � i as follows.

(c ‖ d ) // i
� by Law 26 (rely-weaken) using assumption i ‖ i � i

(c ‖ d ) // (i ‖ i )
� by part (115) with j � i

(c // i ) ‖ (d // i )

�

For a relational rely condition, if i � 〈r〉� then by (102), 〈r〉� ‖ 〈r〉� � 〈r ∪ r〉� � 〈r〉�, and hence the proviso
for (116) holds in this case. The fact that the proviso for a relational rely condition holds allows rely conditions to
be distributed into any parallel composition.

Distribution of a rely quotient of a process i over a sequential composition requires that separate occurrences
of i running in parallel with each command in the sequence can be refined to a single occurrence of i run in
parallel with the sequence as given by condition (117).

Law 32 (rely-distribute-sequential) If for process i ,

∀ c0, c1 · (c0 ‖ i ) (c1 ‖ i ) � (c0 c1) ‖ i , (117)

then

(c d ) // i � (c // i ) (d // i ). (118)

Proof. By Law 23 (rely-refinement), (118) is equivalent to c d � ((c // i ) (d // i )) ‖ i .

c d
� by Law 22 (rely-quotient) twice

((c // i ) ‖ i ) ((d // i ) ‖ i )
� by assumption (117) with c0 � c // i and c1 � d // i

((c // i ) (d // i )) ‖ i

�
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For a relational rely condition, if i � 〈r〉� then (c ‖ 〈r〉�) (d ‖ 〈r〉�) � (c d ) ‖ 〈r〉� holds for any c, d and r and
hence proviso (117) holds. As with parallel, the use of a relational rely condition allows the rely to be distributed
into any sequential composition. In the general case, if proviso (117) does not hold the question arises as to what
alternative approaches could be used – as with Law 31 (rely-distribute-parallel) these are likely to depend on the
form of the interference.

Distribution of the rely quotient over an iteration requires the same side condition (117) on distribution of the
interference i over a sequential composition as forLaw32. The lawuses themore general form c◦ d � μ x · d�c x .
This allows the law to be applied to a while loop while b do c, which can be defined in the form (bc)◦b̄ where b
stands for the test of the while loop succeeding and b̄ for it failing. Just developing a law for c◦ is problematic for
the zero iterations case because this corresponds to nil // i and nil // i � d holds if and only if nil � d ‖ i , which
only holds if i behaves as either nil or 
.

Law 33 (rely-distribute-iteration) If

∀ c0, c1 · (c0 ‖ i ) (c1 ‖ i ) � (c0 c1) ‖ i , (119)

holds for i , (c◦ d ) // i � (c // i )◦ (d // i ).

Proof. By Law 23 (rely-refinement) the law is equivalent to c◦ d � ((c // i )◦ (d // i )) ‖ i and by Lemma 5 it is
sufficient to show,

d � c (((c // i )◦ (d // i )) ‖ i ) � ((c // i )◦ (d // i )) ‖ i ,

which can be shown as follows.

d � c (((c // i )◦ (d // i )) ‖ i )
� by Law 22 (rely-quotient) applied to each of the first d and c

((d // i ) ‖ i ) � ((c // i ) ‖ i ) (((c // i )◦ (d // i )) ‖ i )
� by assumption (119) with c0 � c // i and c1 � (c // i )◦ (d // i )

((d // i ) ‖ i ) � (((c // i ) (c // i )◦ (d // i )) ‖ i )
� distributing parallel over non-deterministic choice (39)

((d // i ) � (c // i ) (c // i )◦ (d // i )) ‖ i
� factoring out d // i using (34)
((nil � (c // i ) (c // i )◦) (d // i )) ‖ i

� folding using (16)
((c // i )◦ (d // i )) ‖ i

�

The proviso (119) holds for a relational rely i � 〈r〉� and hence Law 33 (rely-distribute-iteration) holds in this case.

The following laws combine distribution properties with the introduction of a parallel composition.

Law 34 (parallel-introduce-with-rely) (c � d ) // i � (j1 � (c // (j0 ‖ i ))) ‖ (j0 � (d // (j1 ‖ i )))

Proof.

(c � d ) // i
� by Law 29 (rely-distribute-conjunction)

(c // i ) � (d // i )
� by Law 28 (parallel-introduce)

(j1 � ((c // i ) // j0)) ‖ (j0 � ((d // i ) // j1))
� by Law 27 (rely-nested) twice

(j1 � (c // (j0 ‖ i ))) ‖ (j0 � (d // (j1 ‖ i )))

�
In the right side of the above law one branch of the parallel guarantees j1 and the other guarantees j0, and hence
their parallel combination guarantees j1 ‖ j0.
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Law 35 (parallel-introduce-with-rely-guarantee)

(j1 ‖ j0) � (c � d ) // i � (j1 � (c // (j0 ‖ i ))) ‖ (j0 � (d // (j1 ‖ i ))).

Proof.

(j1 ‖ j0) � ((c � d ) // i )
� by Law 34 (parallel-introduce-with-rely)

(j1 ‖ j0) � ((j1 � (c // (j0 ‖ i ))) ‖ (j0 � (d // (j1 ‖ i ))))
� exchanging weak conjunction and parallel by axiom (50)

(j1 � j1 � (c // (j0 ‖ i ))) ‖ (j0 � j0 � (d // (j1 ‖ i )))
� as weak conjunction is idempotent (44)

(j1 � (c // (j0 ‖ i ))) ‖ (j0 � (d // (j1 ‖ i )))

�

In the relational model by (103), 〈g ∪ r〉� � 〈g〉� ‖ 〈r〉� and hence if j1 � 〈g〉� and j0 � 〈r〉� the effective
guarantee for Law 35 is g ∪ r .

7. Relationship to relational rely

This section explores the relationship to the Jones-style rely condition. Jones considered total correctness rules
for handling the implementation of a pre-post specification in a context satisfying a rely condition [CJ07]. To
instantiate the general theory presented here for Jones-style rely-guarantee rules, termination needs to be handled.
For a terminating command, such as a specification

[
q
]
, using a rely quotient of

[
q
]
// 〈r〉� leads to an infeasible

specification because by Law 22 (rely-quotient) this requires
[
q
] � (

[
q
]
// 〈r〉�) ‖ 〈r〉�

but
[
q
]
is terminating and 〈r〉� has non-terminating behaviours and hence

[
q
]
// 〈r〉� must rule out such infinite

behaviours of its environment. However, executable code cannot rule out behaviours of its environment and hence
using 〈r〉� for a rely quotient for a terminating command is not a feasible approach. Therefore the terminating
iteration 〈r〉� must be used. Choosing i and j be the processes 〈r〉� and 〈g〉�, respectively, in Law 28 (parallel-
introduce) gives the following.

c � d � (〈g〉� � (c // 〈r〉�)) ‖ (〈r〉� � (d // 〈g〉�)) (120)

Note that due to the use of a weak conjunction to enforce a guarantee, the first branch of the parallel composition
is only required to maintain its guarantee condition g as long as its environment maintains its rely condition r . If
its environment does not maintain r the rely quotient can abort, at which point the whole branch of the parallel
is considered to have aborted and hence the guarantee no longer needs to be maintained.

The parallel introduction rule of Jones [Jon83] takes a postcondition of the form q0 ∩ q1 and introduces a
parallel composition in which the two branches ensure q0 and q1 respectively.

Law 36 (parallel-specification)

{p} [
q0 ∩ q1

] � ({p} (〈g〉� � (
[
q0

]
// 〈r〉�))) ‖ ({p} (〈r〉� � (

[
q1

]
// 〈g〉�)))

Proof. Note that by (106) a specification
[
q0 ∩ q1

]
is equivalent to

[
q0

]
�

[
q1

]
.

{p} [
q0 ∩ q1

]

� by (106)
{p} ([q0

]
�

[
q1

]
)

� by Law 28 (parallel-introduce)
{p} ((〈g〉� � (

[
q0

]
// 〈r〉�)) ‖ (〈r〉� � (

[
q1

]
// 〈g〉�)))

� by Law 16 (precondition-parallel)
({p} (〈g〉� � (

[
q0

]
// 〈r〉�))) ‖ ({p} (〈r〉� � (

[
q1

]
// 〈g〉�)))

�
The above corresponds to the Jones-style proof rule for introducing a parallel composition although phrased in
refinement calculus form rather than as a quintuple.
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8. Fair parallelism

This section highlights the parts of the theory that are influenced by the choice as to whether or not parallelism
is assumed to be fair. The semantics for parallel does not require fairness. A fair semantics would rule out traces
ending in an infinite sequence of program steps of one process, if the other process could make a program step.
Most algebraic properties are independent of whether or not parallel is assumed to be fair. Fair parallel is denoted
by c ‖f d . It refines the parallel operator used so far, which does not assume fairness.

c ‖ d � c ‖f d (121)

If no fairness assumption is made about the parallel operator, the notion of termination of a process is weak as
it means a process terminates provided it is not permanently interrupted by its environment. For the program

x :� 1; ((while x �� 0do skip) ‖ x :� 0)

the while loop will not terminate unless the x :� 0 is given a chance to set x to 0. If parallelism is not assumed to
be fair, the loop is not guaranteed to terminate even if it is not permanently interrupted; in fact the problem comes
if it is never interrupted by x :� 0. However, if parallel is assumed to be fair, the right process will eventually set
x to 0 and the loop will terminate.

Because the definition of the rely quotient operator depends on the parallel operator there is different quotient
operator corresponding to fair parallel.

Definition 6 (fair-quotient) c //f i �̂ �{d | (c � d ‖f i )}
From (121) it follows that c //f i � c // i , that is, any implementation that handles any interference from process
i also handles fair interference from process i .

In the relational model, the property

〈r0 ∪ r1〉� � 〈r0〉� ‖ 〈r1〉� (122)

holds, but if parallel is fair (122) becomes a refinement because the left command allows an infinite sequence of
steps satisfying r0 (that do not satisfy r0 ∩ r1), while the right command does not allow such a sequence if parallel
is fair. In proving the laws in this paper, we have relied on (122) only being a refinement, i.e. property (103), and
hence our laws also apply for fair parallel and fair quotient.

9. Related work

Dingel developed a refinement calculus for rely-guarantee concurrency [Din00, Din02]. Like [HJC14] it is based
on relational rely and guarantee conditions but unlike [HJC14] and here, it makes use of amonolithic specification
which is a four-tuple of pre, rely, guarantee andpost conditions, rather thanour separate commands andoperators.
The approach used here has the benefit of separating the different concepts and providing laws for each operator
as well as combinations of operators. The laws given here can be combined to derive laws similar to those of
Dingel as well as many other laws. The other major advance over Dingel is the generalisation to use processes for
relies and guarantees.

Hoare et al. [HMSW11] have developed a Concurrent Kleene Algebra (CKA) and investigated its extension
to a rely/guarantee CKA. Their algebra includes the axiom (c 
) � 
, which is not satisfied if c is either a non-
terminating process or ⊥ and hence they only consider partial correctness. Their rely/guarantee CKA includes a
sub-algebra of commands called invariants, in which an invariant j satisfies

j � nil (123)
j � j ‖ j (124)
j � j j (125)

because in their algebra c ‖ d � c d and hence (124) implies (125). Properties (124) and (125) match the
properties used in Law 12 (conjunction-distribute) parts (83) and (84). Properties (123) and (125) together ensure
that j � j � and hence that j � d � � j � � d � � (j � d )� matching Law 12 (conjunction-distribute) part (85). In a
rely/guarantee CKA, for any c and d and any invariant j ,

(c ‖ j ) (d ‖ j ) � (c d ) ‖ j ,



1076 Ian J. Hayes

whichmatches our property (117). A rely/guarantee CKAdoes not require our property j ‖ j � j but [HMSW11]
does not consider an equivalent of Law 31 (rely-distribute-parallel) for which this property is required. In a
rely/guarantee CKA a Jones-like rely-guarantee quintuple, written p r{d}c g there, is defined in terms of a Hoare
triple plus guarantee condition, in which r and g are invariants (rather than relations).

p r{d}c g �̂ p{r ‖ d}c ∧ d guar g, (126)

Our “equivalent” of (126) is of the form

g � {p} (c // r ) � d , (127)

although the two differ due to the different approaches taken. Because g is an invariant the requirement d guar g
in (126) reduces to g � d , which is stronger than the requirement in (127). Firstly, in (127) d is only required to
satisfy the guarantee from initial states satisfying the precondition p. Secondly and more subtly, c // r may abort
because its environment does not satisfy r and hence the left side of (127) aborts and so d no longer needs to
maintain the guarantee. This latter condition corresponds to Jones’ requirement that the implementation only
needs to maintain the guarantee condition as long as its environment maintains the rely condition [Jon83]. Our
ability to use the weaker requirement comes from the use of the weak conjunction operator, which is not available
in CKA.

10. Conclusions

The main contribution of this paper is to explore the essence of the rely-guarantee approach to concurrency.
Jones’ guarantee condition is generalised from a relation to a process by making use of a weak conjunction
operator and his rely condition from a relation to a process by introducing a rely quotient operator, which forms
a residual with respect to parallel composition (see Law 23 (rely-refinement)). Both weak conjunction and rely
quotient have simple algebraic properties. The weak conjunction operator and parallel composition satisfy an
exchange property (50) which leads to a simple and elegant proof of Law 28 (parallel-introduce), which is the key
law for introducing a parallel composition in the generalised rely-guarantee theory. Because our theory allows
non-terminating processes, it can handle total correctness properties as well as reasoning about non-terminating
processes.

Generalising rely-guarantee theory so that guarantees and relies are arbitrary processes rather than binary
relations has highlighted the important algebraic properties of rely-guarantee theory. In Law 12 (conjunction-
distribute), for a weak conjunction of a command to distribute over a parallel composition one needs proviso
(128); to distribute over a sequential composition one needs (129); and to distribute over finite iteration one needs
(129) and (130).

c � c ‖ c (128)
c � c c (129)
c � nil (130)

Because all these properties hold if c is of the form 〈g〉� for any relation g , the choice by Jones to represent
interference by an (iterated atomic) relation, rather than a general process, means that Law 21 (guarantee-
distribute) for the relational model does not require any provisos.

Even within the relational model more expressive guarantees are possible, for example, a guarantee of
〈g0〉� 〈g1〉� on c may lead to the following refinement, in which c is refined sequentially to match the guar-
antees.

〈g0〉� 〈g1〉� � c
� assuming c � c0 c1

〈g0〉� 〈g1〉� � c0 c1
� exchanging weak conjunction and sequential composition (51)

(〈g0〉� � c0) (〈g1〉� � c1)
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Law 31 (rely-distribute-parallel) has a proviso of (131), and both Law 32 (rely-distribute-sequential) and Law
33 (rely-distribute-iteration) have a proviso of (132).

i ‖ i � i (131)
∀ c0, c1 · (c0 ‖ i ) (c1 ‖ i ) � (c0 c1) ‖ i (132)

Because both these properties hold for i of the form 〈r〉� for any relation r , the laws do not require any provisos
for relational rely conditions thus simplifying the process of distributing relational rely conditions. Note that
taking c0 and c1 to both be skip in (132) gives i i � i . An interesting question for future research is what other
processes satisfy the provisos required for the distribution properties to hold, or what other distribution properties
can be used in their place.

In this paper we have considered an examplemodel based on relational rely-guarantee. Themodel is similar to
that used by others [CJ07, dBHdR99, Din02, dR01, HJC14] but even within the relational model, guarantees and
relies are treated more generally as processes. Other possible models for future consideration are an event-based
model similar to that used with Concurrent Kleene Algebra [HMSW11] or a model that handles concurrency in
a hybrid setting.
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