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Abstract. Obfuscation is the art ofmaking codehard to reverse engineer andunderstand. In this paper,wepropose
a formal model for specifying and understanding the strength of obfuscating transformations with respect to a
given attack model. The idea is to consider the attacker as an abstract interpreter willing to extract information
about the program’s semantics. In this scenario, we show that obfuscating code is making the analysis imprecise,
namely making the corresponding abstract domain incomplete. It is known that completeness is a property of
the abstract domain and the program to analyse. We introduce a framework for transforming abstract domains,
i.e., analyses, towards incompleteness. The family of incomplete abstractions for a given program provides a
characterisation of the potency of obfuscation employed in that program, i.e., its strength against the attack
specified by those abstractions. We show this characterisation for known obfuscating transformations used to
inhibit program slicing and automated disassembly.

Keywords: Abstract interpretation, Static programanalysis, Program semantics, Program transformation, Lattice
theory, Closure operators, Code obfuscation

1. Introduction

Obfuscation is the production of misleading, ambiguous and plausible but confusing information as an act of conceal-
ment or evasion [BN15]. In this scenario, code obfuscation is the art of making programs hard to understand and
to reverse engineer with the purpose of concealing information such as cryptographic keys or critical data/control
structures [CN09].Anobfuscator is a semantics-preserving transformation that,while preserving the input/output
program relation, makes its internal structure and behavior extremely hard to analyse. While a corpus of results
has been obtained on the theoretical foundation of code and circuit obfuscation as cryptographic transforma-
tions (e.g., see the impossibility result in [BGI+12] and recent achievements on indistinguishability obfuscation
in [GGH+13]), little is known from the perspective of programming languages.
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Attacking code means interpreting code, with the intention of extracting and exploiting its extensional prop-
erties from their intentional representation. The idea is that, because of time/space and effectiveness constraints,
when dealing with complex programs, the attack is necessarily approximated. An attack is therefore the combi-
nation of a number of automatic and semi-automatic tools (e.g., see the IDA Pro suite of tools) such as: static
and dynamic analyses, SAT solvers, theorem provers, program monitors, disassemblers, decompilers, program
slicers, code profilers and tracers, emulators etc. All these tools involve approximate automatic interpretation.
Any attack is therefore inherently based on approximated interpretation. In this context, protecting programs
from an attacker means making the approximate interpretation, on which the attacker is based, harmless.

This idea has been studied in [DG09, JGM12, GM12]. As an intuitive example, if the attacker is a finite state
automaton, it is always possible to transform any program P into an equivalent program P ′ which is obscure
for such an attacker. This can be obviously obtained by embedding a push-down automaton in P computing
data beyond the size of the finite state automata modelling the attacker. The Pumping Lemma can therefore be
used as a simple example of what such an attacker cannot observe about the transformed (obscured) program.
By following this simple argument, the notion of approximate obfuscation has been introduced in [Gia08], and it
has been specified mathematically in [JGM12] in terms of abstract interpretation [CC77, CC79b].

An attacker is an abstract interpretations of the program on an abstract domain of approximate data. It is
known (see [CC79b]) that the precision of an abstract interpretation is determined by the chosen abstract domain.
For this reason we identify attackers with abstract domains. In this scenario, obfuscating a program with respect
to an attacker specified as an approximate (abstract) interpreter means making this interpreter imprecise [Gia08].
This is precisely modelled by the notion of incompleteness of an abstract interpretation [GRS00]. An abstract
interpretation is complete for a program P if no error is made by the abstract interpreter with respect to the
abstraction of the concrete interpretation. Given a program P and an abstract domain A we use �P�A to denote
the abstract interpretation of P on the abstract domain A, i.e., its abstract computation, and we use A(�P�) to
denote the abstraction of the concrete semantics of P on the abstract domain A. We have completeness when
A(�P�) � �P�A. Consider, for instance, the simple program P : x � a ∗ b, multiplying a and b, and storing
the result in x. An attacker observing the sign abstraction A � {�,−, 0,+,⊥} is able to catch, with no loss of
precision, the intended sign behavior of P because the sign abstraction A is precise for integer multiplication. If
we replaceP withO(P ): x � 1; if b ≤ 0 then {a �−a; b �−b}; while b �� 0 {x � a+x; b � b−1}; x � x−1;
we obfuscate the observerA because the rule of signs is incomplete for integer addition, in particular we observe
that when a � − and b � +, then x � + (being A(1) � +) and a + x is the sum of a negative number with a
positive one, and therefore we lose the sign information.

In this paper, we are interested in modelling the potency of an obfuscation. This means that, given a program
P , we characterise the family of attackers for which P is maximally obscure, i.e., such that the abstract inter-
pretation of P is maximally incomplete. These attackers represent the potency of the obfuscation employed in
P . We introduce abstract domain transformers that maximize the incompleteness of the corresponding abstract
interpreter. This means that, if A is an abstract domain and �P�A is a complete abstract interpretation of P on
the abstract domain A, i.e., A(�P�) � �P�A, then it is possible to transform A into an abstract domain I(A)
such that �P�I(A) is maximally incomplete, and therefore imprecise. The process of making an abstraction incom-
plete is indeed the inverse of the completeness refinement. This is achieved by considering the adjoint operations
of the completeness refinement transformations introduced in [GRS00]. In particular, we introduce the notion
of incomplete compressor which removes, from a given abstract domain A, those elements that are useful for
improving the precision of an abstract interpretation on A. Although clearly contradictory with respect to the
common practice in program analysis, which is achieving precision, making abstractions incomplete provides
an unexpectedly useful model for understanding code obfuscation, in particular when modelling the potency
or strength of an obfuscation. In this setting, we prove that, the more an attacker A is close to the maximally
incomplete domain I(A) for a given obfuscated code O(P ), the more O is a successful code obfuscation.

Interestingly, the abstract domain compression that computes the maximally incomplete domain I(A) asso-
ciated with an attacker A suggests the design of O, i.e., it identifies precisely the information on which the
obfuscation O has to act in order to successfully obfuscate P with respect to A. We apply this idea to known
obfuscation of code used to prevent known techniques for program analysis and understanding, such as program
slicing and disassembly. In this setting we are able to prove that what these obfuscating transformations do is
precisely inducing the maximal degree of incompleteness in the analysis of the obfuscated code. This paper makes
the following contributions:
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• The definition of domain transformers that make a domain maximally incomplete for the analysis of a given
program (extended and revised version of [GM12])
• The characterisation of the potency of code obfuscation in terms of incomplete abstract domains as obtained
by our transformers:

– We provide a formal characterisation for the potency of an obfuscating transformer with respect to a
program semantics and to an abstract analysis (the attacker) of the considered semantics.

– We validate the proposed characterisation by formally proving the potency of known obfuscating trans-
formations in inhibiting program slicing and automatic disassembly.

– We discuss how our framework can be used for building, in a semi-automatic way, an obfuscator able
to defeat a given attacker. This point relies on the notion of code obfuscation as partial evaluation of
distorted interpreters introduced un [JGM12].

The paper is structured as follows. In Sect. 2, we give the basic mathematical notation, a brief introduction
to abstract interpretation, adjoint closure operators, soundness and completeness and semantics for a simple
imperative language. In Sect. 3, we introduce the incomplete compression of an abstract domain and prove its
basic algebraic properties. We also prove that incompleteness cannot be systematically derived by expanding
abstract domains. In Sect. 4, we apply incomplete compressors to formalize a characterisation of the potency
range of a given obfuscation and then we use this framework for measuring the strength of known obfuscations
preventing program slicing and disassembling. In Sect. 5 we discuss how the theoretical investigation of this paper
can be used to provide insights on how to build an obfuscator that defeats a given attacker.

2. Preliminaries

We consider the standard abstract domain definition as formalized in [CC77] and [CC79b] in terms of Galois
connections. It is well known that this is a restriction for abstract interpretation because relevant abstractions
do not form Galois connections and Galois connections are not expressive enough for modelling dynamic fix-
point approximation, e.g., by fix-point widening [CC92b]. In this section we introduce the basic mathematical
background concerningGalois-connection based abstract interpretation, residuated closures, fix-point soundness
and completeness.

2.1. Basic lattice and fix-point theory

If S and T are sets, then ℘(S ) denotes the powerset of S , | S | the cardinality of S , S�T the set-difference
between S andT , S ⊂ T strict inclusion, S ×T the cartesian product, and for a function f : S → T andX ⊆ S ,
f (X ) def� {f (x ) | x ∈ X }. By g ◦ f we denote the composition of the functions f and g , i.e., g ◦ f def� λ x .g(f (x )).
In the sake of simplicity, in the following we will omit parentheses when composing functions. 〈P ,≤〉 denotes a
poset P with ordering relation≤, while 〈C ,≤,∨,∧,�,⊥〉 denotes a complete lattice on the set C , with ordering
≤, least upper bound (lub) ∨, greatest lower bound (glb) ∧, greatest element (top) �, and least element (bottom)
⊥. In the following, we will often abuse notation by denoting as C the complete lattice. Often, ≤P will be used
to denote the underlying ordering of a poset P , and ∨C , ∧C , �C and ⊥C to denote the basic operations and
elements of a complete lattice C . The notation C ∼� D denotes that C and D are isomorphic ordered structures.
Let P be a poset and S ⊆ P . Then, max(S ) def� {x ∈ S | ∀ y ∈ S . x ≤P y ⇒ x � y} denotes the set of
maximal elements of S in P ; also, the downward closure of S is defined by ↓S def� {x ∈ P | ∃y ∈ S . x ≤P y},
and for x ∈ P , ↓ x is a shorthand for ↓ {x }, while the upward closure ↑ is dually defined. In a complete lattice
〈C ,≤,∨,∧,�,⊥〉 an element x ∈ C is meet-irreducible if x �� � and if x � y ∧ z then x � y or x � z . Namely,
x is meet-irreducible if it cannot be obtained as glb of two other elements. We denote with Mirr(C ) the set of
meet-irreducible elements of lattice C .

We use the symbol � to denote pointwise ordering between functions: If S is any set, P a poset, and f , g :
S → P then f � g if for all x ∈ S , f (x ) ≤P g(x ). An operator f : P−→P is extensive if ∀ x ∈ P . x ≤P f (x ).
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It is reductive if ∀ x ∈ P . x ≥P f (x ). Let C and D be complete lattices. Then, C m−→D and C c−→D denote,
respectively, the set and the type of all monotone and (Scott-)continuous functions from C to D . Recall that
f ∈ C c−→D if and only if f preserves lub’s of (nonempty) chains if and only if f preserves lub’s of directed
subsets. Also, f : C → D is (completely) additive if f preserves lub’s of all subsets of C (emptyset included),
while co-additivity is dually defined. The additive lift of f : C → D is a function f a : ℘(C )→ ℘(D) such that
f a def� λX .

{
f (x )

∣
∣ x ∈ X

}
.

lfp(f ) and gfp(f ) denote respectively the least and greatest fix-point, when they exist, of an operator f on a
poset. The well-known Knaster-Tarski’s theorem states that any monotone operator f : C m−→C on a complete
lattice C admits both least and greatest fix-points, and the following characterisations hold:

lfp(f ) �
∧

C

{x ∈ C | f (x ) ≤C x } and gfp(f ) �
∨

C

{x ∈ C | x ≤C f (x )}.

Let us note that if f , g : C m−→C and f � g then lfp(f ) � lfp(g). It is known that if f : C c−→C is continuous then
lfp(f ) � ∨i∈Nf i (⊥C ), where, for any i ∈ N and x ∈ C , the i -th power of f in x is inductively defined as follows:
f 0(x ) � x ; f i+1(x ) � f (f i (x )). Dually, if f : C → C is co-continuous then gfp(f ) � ∧i∈Nf i (�C ). {f i (⊥C )}i∈N
and {f i (�C )}i∈N are called, respectively, the upper and lower Kleene’s iteration sequences of f . The set of all
finite sequences (traces) over an alphabet � is denoted �+. If σ, σ ′ ∈ �+ then σσ ′ ∈ �+ is the concatenation of
the two sequences.

2.2. Abstract domains individually and collectively

Concrete domains represent collections of computational objects on which the concrete semantics and models
are defined. These include standard data-types (e.g., heap, stack, numerical types), control-flow structures, etc.
Abstract domains are collections of approximate objects, representing properties of concrete objects in a domain-
like structure. The relation between concrete and abstract domains can be specified in terms ofGalois connections,
and this sets up the so called standard adjoint framework of abstract interpretation [CC77]. The adjoint presenta-
tion is a relatively restrictive view of abstract interpretation. Weaker frameworks could involve the weakening of
the relation between concrete and abstract domains, e.g. in [CC92a], or sophisticated fix-point iteration strategies
by fix-point widening on approximate domains [CC92b]. In this paper we consider abstractions in the standard
adjoint framework, which provides the richest mathematical environment for proving properties about abstrac-
tions. More formally, if 〈C ,≤,�,⊥,∨,∧〉 is a complete lattice, a pair of monotone functions α : C m−→A and
γ : A m−→C forms an adjunction or a Galois connection if for any x ∈ C and y ∈ A: α(x ) ≤A y ⇔ x ≤C γ (y).
α [resp. γ ] is the left- [right-]adjoint to γ [α] and it is additive [co-additive], i.e., it preserves lub’s [glb] of all
subsets of the domain (emptyset included). Let us recall that the right adjoint of a function f , when it exists,
is defined as f + def� λ x .

∨ {
y

∣
∣ f (y) ≤ x

}
. Conversely the left adjoint of a function f , when it exists, is defined

as f − def� λ x .
∧ {

y
∣
∣ x ≤ f (y)

}
. In Galois connections γ− � α and α+ � γ . Abstract domains can be also

equivalently formalized as closure operators on the concrete domain [CC79b]. An upper [lower] closure operator
ρ : P−→P on a poset P is monotone, idempotent, and extensive [reductive]. Closures are uniquely determined
by their fix-points ρ(C ). In the following, we will often use closures both as functions and as sets (viz., domains).
Given X ⊆ C , the least abstract domain containing X is the least closure including X as fix-points, which is the
Moore-closure or Moore family of X defined as: M(X ) def� {∧S | S ⊆ X }. Dual Moore-closures and families
are defined by duality. It turns out that 〈ρ(C ),≤〉 is a complete meet subsemilattice of C (i.e., ∧ is its glb), but,
in general, it is not a complete sublattice of C , since the lub in ρ(C ) — defined by λY ⊆ ρ(C ). ρ(∨Y ) —
might be different from that in C . In fact, ρ(C ) is a complete sublattice of C if and only if ρ is additive. The
set of all upper [lower] closure operators on P is denoted by uco(P ) [lco(P )]. The lattice of abstract domains
of C , is isomorphic to uco(C ), (cf. [CC77, Sect. 7] and [CC79b, Sect. 8]). Recall that if C is a complete lattice,
then 〈uco(C ),�,�,�, λ x .�, id〉 is a complete lattice, where id def� λ x .x and for every ρ, η ∈ uco(C ), x ∈ C
and {ρi }i∈I ⊆ uco(C ) (where I is a set of indexes that identify a subset of the closure operators of uco(C )) we
have that: ρ � η if and only if ∀ y ∈ C . ρ(y) ≤ η(y) if and only if η(C ) ⊆ ρ(C ); (�i∈Iρi )(x ) � ∧i∈Iρi (x );
(�i∈Iρi )(x ) � x ⇔ ∀ i ∈ I . ρi (x ) � x ; λ x .� is the top element and λ x .x is the bottom element. Thus, the glb in
uco(C ) is defined pointwise, while the lub of a set of closures {ρi }i∈I ⊆ uco(C ) is the closure whose set of fix-points
is given by the set-intersection ∩i∈Iρi (C ). In the following, we will make use of the following basic properties
for ρ, η ∈ uco(C ) and Y ⊆ C : ρ(∧ρ(Y )) � ∧ρ(Y ); ρ(∨Y ) � ρ(∨ρ(Y )); η � ρ ⇔ ηρ � ρ ⇔ ρ ◦ η � ρ.
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Some of the most important operations on upper closure operators are: Reduced product [CFG+95] and pseudo-
complement [CFG+95]. The reduced product is the glb operator � on uco(C ) and it is typically used to combine
known abstract domains in order to design new abstractions. Pseudo-complement corresponds to the inverse of
reduced product, namely an operator that, given two domains C � D , gives as result the most abstract domain
C � D , whose reduced product with D is exactly C , i.e., (C � D) � D � C . The pseudo-complement of an
abstract domain D is defined as: C � D def� � {

E ∈ uco(C )
∣
∣D � E � C

}
. In the adjoint framework of abstract

interpretation, A1 is more precise (viz. more concrete) than A2 (i.e., A2 is an abstraction of A1) if and only if
A1 � A2 in uco(C ) if and only if A2 ∈ uco(A1).

2.3. Adjoining closure operators

In the following we will make an extensive use of adjunction, in particular of closure operators. Janowitz [Jan67]
characterised the structure of residuated (adjoint on a complete lattice) closure operators by the following basic
result (see also [BJ72]).

Theorem 2.1 [Jan67, Theorem 2.10] Let f : C −→ C be a residuatedmap, i.e., 〈f , f +〉 is a pair of adjoint operators
on the complete lattice C , then

1. f ∈ uco(C ) ⇔ f + ∈ lco(C ) ⇔ f ◦ f + � f + ⇔ f + ◦ f � f

and

2. f ∈ lco(C ) ⇔ f + ∈ uco(C ) ⇔ f ◦ f + � f ⇔ f + ◦ f � f +

Dually, if f : C −→ C is a dual-residuated1 map and f − is its left-adjoint (defined in the previous section),
then [MG15]

3. f ∈ uco(C ) ⇔ f − ∈ lco(C ) ⇔ f ◦ f − � f ⇔ f − ◦ f � f −

and

4. f ∈ lco(C ) ⇔ f − ∈ uco(C ) ⇔ f − ◦ f � f ⇔ f ◦ f − � f −

Let τ ∈ lco(C ). By Theorem 2.1, if τ− exists then τ−(τ (X )) � τ (X ) and τ (τ−(X )) � τ−(X ). This means that τ−
is such that both τ and τ− have the same sets of fix-points, namely τ− extends any object X to the largest object
Y such that τ (Y ) � Y . Conversely, the right adjoint of τ , when it exists, is quite different. By Theorem 2.1, we
have that if τ+ exists then τ+(τ (X )) � τ+(X ) and τ (τ+(X )) � τ (X ). In this case τ+(X ) is not a fix-point of τ .
Instead, it is the least element Y such that τ (X ) � X � τ (Y ). The following result strengthen Theorem 2.1 by
showing the order-theoretic structure of residuated closures.

Proposition 2.2 [MG15] Let τ ∈ lco(C ) and η ∈ uco(C ).

1. If 〈τ−, τ 〉 and 〈η, η+〉 are pairs of adjoint functions then
τ− � λX .

∧
{τ (Y ) | τ (Y ) ≥ X } and η+ � λX .

∨
{η(Y ) | X ≥ η(Y )}.

2. If 〈τ, τ+〉 and 〈η−, η〉 are pairs of adjoint functions then
τ+ � λX .

∨
{Y | τ (Y ) � τ (X )} and η− � λX .

∧
{Y | η(X ) � η(Y )}.

In particular this result leads to the observation that the existence of adjunction is related to the notion of
closure uniformity. Uniform closures have been introduced in [GR98] for specifying the notion of abstract domain
compression, namely the operation for reducing abstract domains to their minimal structure with respect to some
given abstraction refinement η ∈ lco(uco(C )). An upper closure η is meet-uniform [GR98] if η(

∧{Y | η(X ) �
η(Y )}) � η(X ). Join-uniformity is dually defined for lower closures. Well-known non-co-additive upper closures
are meet-uniform, such as the downward closure ↓ of a subset of a partially ordered set [GR98].

1 Defined by duality.
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Fig. 1. Lifted lco(Sign)

It is known that any ρ ∈ uco(C ) is join-uniform and the set of meet-uniform upper closures uco∗(C ) is a
Moore-family of uco(C ). Dually, the same holds for lower closure operators, namely τ ∈ lco(C ) is meet-uniform
and the set of join-uniform lower closures lco∗(C ) is a Moore-family of lco(C ). As observed in [GR98] when
only uniformity holds, the adjoint function may fail monotonicity. In [GR98] the authors proved that the adjoint
function is monotone on a lifted order induced by τ . Given a partial order ≤, its lifted version is ≤τ⊆ C × C ,
defined as: ∀ x , y ∈ C : x ≤τ y ⇔ (τ (x ) ≤ τ (y)) ∧ (τ (x ) � τ (y) ⇒ x ≤ y). ≤τ is such that ≤⇒≤τ . The
following result is immediate by [Jan67] and Proposition 2.2.

Proposition 2.3 [MG15] Let τ ∈ lco(C ) [η ∈ uco(C )]. 〈τ, τ+〉 [〈η−, η〉] is a pair of adjoint closures on the lifted
order if and only if τ is join-uniform [η is meet-uniform].

Example 2.4 Consider the Sign domain in Fig. 1, uco(Sign) is the set of all possible abstractions of Sign, namely
the set of all Moore families over Sign, and it is given by the following domains:

D1 � {�} D2 � {�, 0+} D3 � {�, 0} D4 � {�,⊥}
D5 � {�, 0−} D6 � {�, 0+,⊥} D7 � {�, 0+, 0} D8 � {�, 0,⊥}
D9 � {�, 0−, 0} D10 � {�, 0−,⊥} D11 � {�, 0+, 0,⊥} D12 � {�, 0+, 0−, 0}
D13 � {�, 0−, 0,⊥} D14 � D

Consider the domain transformer τa � λX .X �D7 that, given an abstract domain in uco(Sign) computes its glb
with the domainD7, namely it returns the most abstract domain that expresses the information of both the input
domain X and domain D7. The lco domain with respect to the lifted order �τa of the uco standard order �, is
depicted in Fig. 1a, where the circled domains are the fix points. Note that, the lifted order re-order the uco, by
ordering the elements in terms of their transformations (leaving unchanged the order among elements with the
same transformation). Hence, for instance, D4 �τa D7 (even if they are not comparable with respect to �), since
τa (D4) � D11 � D7, while D6 �τa D4, D8 �τa D4 and D11 �τa D4, precisely as it happens with �, since all these
domains have the same transformation τa .

Figure 1b provides another example of lifted order�τb , where τb � λX .X �D3. It is worth noting that both
the domain transformers are join-uniform, implying additivity on the lifted lco(Sign), namely admitting right
adjoints.

2.4. Soundness and completeness

Let f : C m−→D be a semantic function defined over some concrete domainsC andD . Let an abstract interpreta-
tion be specified byGalois connections with abstract domains ρ(C ) and η(D) corresponding to closure operators
ρ ∈ uco(C ) and η ∈ uco(D) respectively, and by a corresponding abstract semantics f � : ρ(C ) m−→η(D). Then, f �

is sound for (or is a correct approximation of) f if η ◦ f � f � ◦ρ. This holds if and only if η ◦ f ◦ρ � f �. The function
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η ◦ f ◦ ρ is called best correct approximation of f in ρ and η. Whenever f : C m−→C and f � : ρ(C ) m−→ρ(C ), f � is
fix-point sound for f if ρ(lfp(f )) ≤ l f p(f �). A sound over-approximation intuitively means that no error can be
missed by the analysis, i.e., the approximate semantics includes a full coverage of all possible concrete computa-
tions, e.g., the collections of all reachable states. As we recalled in the introduction, a well-known basic result of
abstract interpretation [CC79b, Theorem 7.1.0.4] states that soundness implies fix-point soundness. It is worth
remarking that fix-point soundness is in general a strictly weaker property than soundness.

Precision of an abstract interpretation is typically defined in terms of completeness [CC79b]. Depending on
where we compare the concrete and the abstract computations we obtain two different notions of completeness
[GRS00,GQ01]. If we compare the results in the abstract domain, we obtain what is called backward completeness
(B-completeness), while, if we compare the results in the concrete domain we obtain the so called forward
completeness (F -completeness). Formally, if f : C m−→C and ρ ∈ uco(C ), then ρ is B-complete for f if ρ ◦
f ◦ ρ � ρ ◦ f , while it is F -complete for f if ρ ◦ f ◦ ρ � f ◦ ρ. A complete over-approximation means that
no false alarms are returned by the analysis, i.e., in B-completeness the approximate semantics computed by
manipulating abstract objects corresponds precisely to the abstraction of the concrete semantics, while in F -
completeness the concrete semantics does not lose precision by computing on abstract objects. The problem of
making abstract domains B-complete has been solved in [GRS00] and later extended to F -completeness in
[GQ01]. Let f : C1−→C2 and ρ ∈ uco(C2) and η ∈ uco(C1). 〈ρ, η〉 is a pair of B[F ]-complete abstractions
for f if ρ ◦ f � ρ ◦ f ◦ η [f ◦ η � ρ ◦ f ◦ η]. A pair of domain transformers has been associated with any
completeness problem, which are respectively a domain refinement and simplification [GR97]. In [GRS00] and
[GQ01], a constructive characterisation of the most abstract refinement, called complete shell, and of the most
concrete simplification, called complete core, of any abstract domain, making it F or B-complete for a given
continuous function f , is given as a solution of simple abstract domain equations given by the following basic
operators:

RF
f

def� λX . M(f (X )) RB
f

def� λX . M(
⋃

y∈X max(f −1(↓y)))
CF

f
def� λX .

{
y ∈ L

∣
∣ f (y) ⊆ X

}
CB

f
def� λX .

{
y ∈ L

∣
∣max(f −1(↓y)) ⊆ X

}

Following [GRS00], given a pair of abstract domains 〈ρ, η〉 and a concrete function f , the B-complete shell of
〈ρ, η〉 with respect to f is the most concrete β � ρ such that 〈β, η〉 is B-complete for f , and the B-complete
core that is the most abstract β � η such that 〈ρ, β〉 is B-complete. It is possible to obtain the dual notions
of F -complete shell and F -complete core by refining the output abstraction ρ and by simplifying the input
abstraction η in order to gainF -completeness. It has been proved in [GRS00]thatB[F ]-complete core and shell
can be obtained as follows:

B-complete core: CB,η

f (ρ) def� ρ � CB
f (η) B-complete shell: RB,ρ

f (η) def� η � RB
f (ρ)

F -complete core: CF ,ρ
f (η) def� η � CF

f (ρ) F -complete shell: RF ,η

f (ρ) def� ρ � RF
f (η)

When η � ρ, we need a fix-point iteration on abstract domains. For instanceRF
f (ρ) � gfp(λX . ρ � RF

f (X )) with
RF

f (ρ) ∈ lco(uco(C )) which is called absolute F -complete shell. By construction if f is additive then RB
f � RF

f +

[GQ01]. This means that when we have to solve a problem of B-completeness for an additive function then we
can equivalently solve the corresponding F -completeness problem for its right adjoint. The following example
from [GQ01], exemplifies the duality of forward and backward completeness.

Example 2.5 Assume S be the domain in Fig. 2, which is an obvious abstraction of 〈℘(Z),⊆〉 for the analysis of
integer variables and sq : ℘(Z) → ℘(Z) be the square operation defined as follows: sq(X ) � {

x 2
∣
∣ x ∈ X

}
for

X ∈ ℘(Z). The arrows in Fig. 2a,b show the function sq�. Let ρS ∈ uco(℘(Z)) be the closure operator associated
with S. The best correct approximation of sq in S is sq� : S → S such that sq�(X ) � ρS(sq(X )), with X ∈ S.
It is easy to see that the abstractions ρa � {Z, [0,+∞], [0, 10]} (black dots in Fig. 2a) and ρb � {Z, [0, 2], [0]}
of S (black dots in Fig. 2b), respect the following facts: ρa � {Z, [0,+∞], [0, 10]} is F -complete but not B-
complete on the concrete domain S for sq� (for instance ρa (sq�(ρa ([0]))) � [0,+∞] but ρa (sq�([0])) � [0, 10])
and ρb � {Z, [0, 2], [0]} is B-complete but not F -complete on the concrete domain S for sq� (for instance
ρb(sq�(ρb([0, 2]))) � Z but sq�(ρb([0, 2])) � [0, 10]).
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Fig. 2. The abstract domain S and two abstractions

Table 1. Small-step operational semantics of L

〈σ, skip〉 ⇓ 〈σ, skip〉 (Fix-point) �e�σ � n ∈ Val

〈σ, x :� e〉 ⇓ 〈σ [x "→ n ], skip〉
〈σ, st〉 ⇓ σ ′

〈σ, st ; C 1〉 ⇓ 〈σ ′, C 1〉
�e�σ � true

〈σ, if e then C 0 else C 1 fi〉 ⇓ 〈σ, C 0〉
�e�σ � f alse

〈σ, if e then C 0 else C 1 fi〉 ⇓ 〈σ, C 1〉
�e�σ � true

〈σ,while e do C endw〉 ⇓ 〈σ, C ; while e do C endw〉
�e�σ � f alse

〈σ,while e do C endw〉 ⇓ 〈σ, skip〉

2.5. Programming language and semantics

For abstract interpretation, one needs a fine-grain small-step semantics containing program points or similar
syntactic information to which abstract values can be bound. Consider a simple imperative language L:

C ::� skip | x :� e | C 0; C 1 | while e do C endw | if e then C 0 else C 1 fi

A notational convenience: write case e of v1 : C 1; . . . ; vn : C n to stand for a chain of if − then − else on
mutually exclusive values (the vi are the possible values that e can take, and Ci is the corresponding program
fragment to execute). In Table 1 we consider the standard operational semantics of the language. LetPL be a set of
programs in the language L, Var(P) the set of all the variables in P (analogously Var(e) is the set of variables used
in an expression e), and PLP be a set of program points of P ∈ PL containing a special notation ε for the empty
program point, Val be the set of values, and M

def� Var(P)−→Val be a set of possible program memories. When
a statement st belongs to a program P we write st ∈ P, then we define the auxiliary functions StmP : PLP → PL

be such that StmP(l ) � c if c is the statement in P at program point l (denoted l .c) and PcP � StmP−1 : PL→ PLP

with the simple extension to blocks of instructions PcP(st ; C ) � PcP(st) where st ∈ P. Then, let σ ∈ M, we
define the semantics of L in Table 1, where x are variables, e are (arithmetic and boolean) expressions, �·� is the
evaluation of expressions, and where we write 〈σ, C 〉 ⇓ 〈σ ′, C ′〉 for the execution of C in the memory σ . We can
formally characterise the small-step operational semantics of programs. Let D � M × PL be the set of states,
containing the actual memory and the code to execute, and 〈σ, C 〉 ∈ D. fL : D−→℘(D) is such that:

fL(〈σ, C 〉) � {〈σ ′, C ′〉 ∣∣ 〈σ, C 〉 ⇓ 〈σ ′, C ′〉}

It is worth noting that for deterministic programs, like L, this set contains only one state. We abuse notation
by denoting as fL also its trivial additive lift on ℘(D). We define the small-step program semantics as the fix-point
of the transfer function fL starting from a set of initial states S ∈ ℘(D): �P�(S ) def� lfp

S
fL ∈ ℘(D). In the following,

when we consider the semantics of a program P starting from any possible initial memory state of P we simply
write �P�, denoting the set

{
lfp〈σ, P〉 fL

∣
∣σ ∈M

}
.
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3. Making abstract interpretations incomplete

As proved in [GRS00], completeness is a property concerning uniquely the abstract domain and the (concrete
semantics of the) program to be analysed (see [GLR15] for a recent account on proving abstract interpretations
completeness). Therefore,f make an abstract interpretation complete (respectively incomplete) we may only act
on the abstract domain (e.g., by abstraction refinements) or by code refactoring (see [LL09] for an example of
code transformations that improves the precision of given analyses). Our aim is to model the potency of an
(obfuscated) program P . Therefore the program here is fixed, and understanding the potency of the obfuscations
employed inP means understanding what makes an abstract domain imprecise (viz., incomplete) forP . This cor-
responds precisely to remove all the elements in the abstract domain that may be introduced by the completeness
refinement for P . Following this observation, we introduce the idea of incomplete domain compressor: The most
abstract domain having a given complete refinement, namely the right adjoint of the complete shell refinement
viewed as an abstract domain transformer. In this section we prove that the incomplete compressor exists under
weak hypotheses and that it induces incomplete abstract interpretations for programs in our simple imperative
programming language.

3.1. Simplifying abstractions

In the following, we show that a complete shell always admits a right adjoint. Indeed, by Proposition 2.3 the right
adjoint of an lco exists if and only if the lco is join-uniform. At this point, since complete shells have the form of
pattern completion we show that pattern completion domain transformers are always join-uniform.

Lemma 3.1 Let C be a complete lattice and η ∈ uco(C ) then the pattern completion function fη
def� λ δ.δ � η is

join-uniform.

Proof We have to prove that fη(�
{
δ ∈ uco(C )

∣
∣ fη(δ) � fη(ρ)

}
) � fη(ρ). In other words we have to prove that

�{
δ ∈ uco(C )

∣
∣ fη(δ) � fη(ρ)

} � η � ρ � η.
In the sake of simplicity, let {δi }i∈Z def� {

δ ∈ uco(C )
∣
∣ fη(δ) � fη(ρ)

}
, then we want to prove that if ∀ i , j ∈

Z .δi � η � δj � η then (
⊔

i∈Z δi ) � η � δj � η. Note that, δj � ⊔
i∈Z δi hence the � relation holds. We have to

prove the other inclusion, namely that ∀ x ∈ δj � η then x ∈ (
⊔

i∈Z δi ) � η.
First of all let us note that ifMi

def�Mirr(δi � η) then ∀ j .Mi ⊆ δj � η. This implies that ∀ j . ⋃
i∈Z Mi ⊆ δj � η.

But then ∀ y ∈ ⋃
i∈Z Mi we have y ∈ δj or y ∈ η, being y meet-irreducible, which implies that ∀ y ∈ (

⋃
i∈Z Mi )�η

we have y ∈ ⋂
i∈Z δi . At this point the following implication holds

∀i ∈ Z . x ∈ δi � η⇒ ∃Y ⊆Mirr(δi � η) s.t.
∧
Y � x

⇒ ∃Y ⊆ ⋃
i∈Z Mi s.t.

∧
Y � x

⇒ ∃Y ⊆ ⋃
i∈Z Mi , Y�η ⊆ ⋃

i∈Z Mi�η ⊆ ⋂
i∈Z δi s.t.

∧
Y � x

⇒ ∃Y ⊆ η ∪⋂
i∈Z δi s.t.

∧
Y � x

⇒ x � ∧
Y ∈M

(
η ∪⋂

i∈Z δi
) �M

(
η ∪⊔

i∈Z δi
) � (⊔

i∈Z δi
) � η

�
Note that, the domain transformers defined in Example 2.4 are exactly of this form, and indeed, the fact that

they admit right adjoint on the lifted orders depends precisely on the fact that these transformers are join-uniform
by Lemma 3.1.

3.1.1. Forward incomplete compressor

Consider F -completeness, i.e., ρ ◦ f ◦ η � f ◦ η with ρ, η ∈ uco(C ), C complete lattice, and f : C −→ C ,
denoting also its additive lift to ℘(C ). The complete shell is RF

f ,η which refines the output domain by adding all
the f -images of elements of η to ρ. Hence, by Lemma 3.1, we have the following result.
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Proposition 3.2 RF
f ,η � λ ρ. ρ �M(f (η))2 is join-uniform on uco(C ).

Proof Trivially by Lemma 3.1. �
Being RF

f ,η join-uniform, its right adjoint exists (Proposition 2.3). We show that, under specific hypotheses, the
right adjoint can be characterised as the following transformer:

URF
f ,η

def� λ ρ. M(Mirr(ρ �M(f (η)))�M(f (η)))

This transformation first erases all the elements that we should have to avoid if we want to loose precision for the
computation of function f , and then by the Moore-family completion adds only those necessary for obtaining
a Moore-family, i.e., an abstract domain. We call this transformation incomplete compressor. We first prove a
lemma providing a necessary results for the following proposition. This lemma is a particular case of the result
in [FR96] which allows us to remove the hypothesis of meet-generation necessary in general for characterising
pseudo-complement as set difference.

Lemma 3.3 Let α, β ∈ uco(C ) be abstract domains, thenM(Mirr(α � β)�β) is the most abstract domain such that
M(Mirr(α � β)�β) � β � α � β, i.e.,

M(Mirr(α � β)�β) � (α � β)� β.

Proof Let us first prove that M(Mirr(α � β)�β) � β � α � β. It is clear that one inclusion is trivial, since if
x ∈M(Mirr(α � β)�β) then it must be in Mirr(α � β) ⊆ α � β.

Let us prove the other inclusion. Suppose x ∈ α � β.

• Let x ∈Mirr(α � β) and x ∈ α�β.3 Then x ∈Mirr(α � β)�β, and therefore x ∈M(Mirr(α � β)�β) � β;
• Let x ∈Mirr(α � β) and x ∈ β. Then trivially it is in any set in product with β, i.e., M(Mirr(α � β)�β) � β;
• Let x �∈ Mirr(α � β). Then there exists Z ⊆ Mirr(α � β) such that

∧
Z � x . Let (Z ∩ α)�β � Z1 and

Z ∩ β � Z2.

– If Z2 � ∅ then Z ⊆ α and Z ∩ β � ∅ implying that Z ⊆Mirr(α � β)�β, hence x � ∧
Z ∈M(Mirr(α �

β)�β) � β;
– If Z2 �� ∅, being Z a set of meet-irreducible any of its element can be generated in α � β by meet, hence
all its elements are either in α or in β, i.e., Z � Z1 ∪ Z2.Then Z1 ⊆ M(Mirr(α � β)�β), being a set of
meet-irreducible elements of α, while Z2 ⊆ β, hence Z � Z1 ∪ Z2 ⊆ M(Mirr(α � β)�β) ∪ β. Namely,
x � ∧

Z ∈M(Mirr(α � β)�β) � β.

Let us prove now that it is the most abstract domain with this property. Namely, suppose there exists ρ such that
ρ � β � α � β, we prove that ρ � M(Mirr(α � β)�β). Let us consider x ∈ M(Mirr(α � β)�β), we prove that
x ∈ ρ. The hypothesis on x implies that x ∈ M(Mirr(α � β)�β) � β � α � β � ρ � β, namely x ∈ ρ � β and
x ∈ α � β.

• Suppose x ∈ Mirr(α � β). Then, since x ∈ M(Mirr(α � β)�β), being x meet-irreducible, we have x ∈
Mirr(α � β)�β, namely x �∈ β. At this point, being α � β � ρ � β we have also that x ∈Mirr(ρ � β), namely
x ∈ ρ or x ∈ β, but we have just proved that x �∈ β, hence x ∈ ρ.
• Let x �∈Mirr(α � β), then x �∈Mirr(α � β)�β, but by hypothesis x ∈M(Mirr(α � β)�β), hence there exists
Z ⊆ α, with Z ∩ β � ∅, such that

∧
Z � x . Finally, Z ⊆ α � β � ρ � β with Z set of meet-irreducible that

are not in β. Hence, Z must be subset of ρ, which implies that also x � ∧
Z ∈ ρ.

�
Proposition 3.4 URF

f ,η � (RF
f ,η)

+.

Proof By Proposition 3.2, we have thatR def� RF
f ,η is join-uniform. Hence, by Proposition 2.2, we can characterise

its right adjoint as

R+ � λ ρ.
⊔{

δ
∣
∣R(δ) � R(ρ)

} � λ ρ.
⊔ {

δ
∣
∣ δ �M(f (η)) � ρ �M(f (η))

}

2 f (η) stands for f (η(C ))
3 Note that if x ∈Mirr(α � β), then x is meet-irreducible, therefore it must be in α or in β.
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Fig. 3. Abstract domain and transformation of Example 3.5

By join-uniformity we know that R ◦ R+(ρ) � R(ρ). Hence

R+(ρ) ∈ {
δ
∣
∣ δ �M(f (η)) � ρ �M(f (η))

}

and by definition ofR+ thismeans that it is themost abstract domain such thatR+(ρ)�M(f (η)) � ρ�M(f (η)). At
this point we can observe that this is precisely the pseudo-complement (ρ �M(f (η)))�M(f (η)).4 By Lemma 3.3
we conclude that (ρ �M(f (η)))�M(f (η)) �M(Mirr(ρ �M(f (η)))�M(f (η))). �

Example 3.5 Consider the example in Fig. 3 on the left. The square operation sq(X ) � {
x 2

∣
∣ x ∈ X

}
forX ∈ ℘(Z)

is depictedwith arrows on the lattice of integer intervals Int, which is defined as usual as Int def� {
[a, b]

∣
∣a, b ∈ Z

}∪{
[−∞, b]

∣
∣ b ∈ Z

}∪ {
[a,+∞]

∣
∣a ∈ Z

}
[CC77]. In this case, the best correct approximation of sq in Int is

sq� : Int→ Int such that sq�(X ) � Int(sq(X )), with X ∈ Int. Note that, by definition of sq�, we trivially have
Int ◦ sq� ◦ Int � sq� ◦ Int, i.e.,F -completeness. For instance sq�([3, 4]) � [9, 16] ∈ Int. Let us transform the out-
put Int domain in order to induce incompleteness, namely let us derive the forward incomplete compression of
Int. Note that, Mirr(Int) � {

[−∞, b]
∣
∣ b ∈ Z

} ∪ {
[a,+∞]

∣
∣a ∈ Z

}
[GRS00], in the picture collected in the open

lines, and that

M(sq�(Int)) � {
[a2, b2]

∣
∣a, b ∈ Z

} ∪ {
[a2,+∞]

∣
∣a ∈ Z

} � Int.

are depicted with circled lines.
Hence, we have that Int′ def� URF

sq�,Int
(Int) �M(Mirr(Int)�M(sq�(Int)) namely

Int′ � M
({

[−∞, b]
∣
∣ b ∈ Z

} ∪ {
[a,+∞]

∣
∣a ∈ Z, �c ∈ Z. a � c2

})

� {
[a, b]

∣
∣a, b ∈ Z, �c, d ∈ Z. a � c2 ∨ b � d2

} ∪
{
[−∞, b]

∣
∣ b ∈ Z

} ∪ {
[a,+∞]

∣
∣a ∈ Z, �c ∈ Z. a � c2

}

depicted on the right in Fig. 3. So, for instance, we have that sq�([3, 4]) � [9, 16] �∈ Int′, meaning incompleteness.
Note that, this transformation does not always generate an incomplete domain. The following result provides

the formal conditions that have to hold in order to induce incompleteness, namely in order to guarantee the
existence of incomplete compression. The domains that does not satisfy these conditions are complete and
are complete shells of only themselves, namely we cannot find a unique most concrete simplification which is
incomplete.

Theorem 3.5 Let η, ρ ∈ uco(C ) and f : C −→ C . URF
f ,η(ρ) (here denoted UR) is such that UR(ρ) ◦ f ◦ η �� f ◦ η

if and only if one of the following conditions hold:

1. ρ ◦ f ◦ η �� f ◦ η, i.e., ρ was incomplete before simplification;
2. M(f (η)) ∩Mirr(ρ) �� ∅;

4 If C is a meet-semilattice with bottom, then the pseudo-complement of x ∈ C , when it exists, is the unique element x ∗ ∈ C such that
x ∧ x ∗ � ⊥ and such that ∀ y ∈ C . (x ∧ y � ⊥)⇒ (y ≤ x ∗).
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Proof (⇒) Suppose (∗)Mirr(ρ)∩M(f (η)) � ∅ and suppose (∗∗) ρ ◦ f ◦η � f ◦η. Note that, by [GRS00] we know
that if ρ ◦ f ◦ η � f ◦ η then ρ �M(f (η)). Then we have ρ �M(f (η)) � ρ, henceMirr(ρ �M(f (η))) �Mirr(ρ).
But then, by hypothesis (∗∗) we have thatMirr(ρ�M(f (η)))�M(f (η)) �Mirr(ρ)�M(f (η)) �Mirr(ρ), namely
UR(ρ) � ρ. At this point, we also trivially have that UR(ρ) ◦ f ◦ η � f ◦ η.

(⇐) Suppose UR(ρ) ◦ f ◦ η � f ◦ η, by [GRS00] this means that UR(ρ) �M(f (η)). Hence

M(f (η)) � UR(ρ) �M(Mirr(ρ �M(f (η)))�M(f (η)))
� M(Mirr(ρ)) � ρ

sinceMirr(ρ) ⊆Mirr(ρ�M(f (η)))�M(f (η)), namely (again by [GRS00]) we have that ρ ◦ f ◦η � f ◦η. At this
point, this last condition implies thatUR(ρ) �M(Mirr(ρ)�M(f (η))). Hence, if ∃ x ∈M(f (η))∩Mirr(ρ) �� ∅,
but then we would have that x �∈ UR(ρ) (since being x ∈ Mirr(ρ) cannot be generated by M starting from a
subset of Mirr(ρ)). Moreover, x ∈ f (η) because x is meet irreducible in ρ and M(f (η)) ⊆ ρ, hence x cannot
be generated by M also in f (η). But this would imply that on x ∈ f (η) we have that UR(ρ) is not complete,
which is against the hypothesis. Therefore we also have thatM(f (η)) ∩Mirr(ρ) � ∅.

�
In the following examples, we show the meaning of these conditions.

Example 3.7 Consider the Sign domain in Fig. 1. Consider a complete shell such that M(f (η)) � D7, then the
completeness transformer is R � λX .X � D7. The resulting lco on the corresponding lifted order is in Fig. 1a,
where the circled domains are the complete ones, i.e., {D7,D11,D12,D14}. All of them contain themeet-irreducible
elements of D7 (condition (2) of Theorem 3.5 is satisfied) and therefore we can find the incomplete compression
of any domain, e.g., UR(D12) � D5.

Theorem 3.5 says that some conditions have to hold in order to have a unique incomplete simplification, this
does not mean that we cannot find anyway an incomplete simplification, even if it is not unique. Consider the
following example.

Example 3.8 Consider again the domain in Fig. 1 and suppose the shell now is R � λX .X �D3. The lifted lco
is depicted in Fig. 1b. In this case the complete domains are {D3,D7,D8,D9,D11,D12,D13,D14}. We can observe
that not all of them have meet-irreducibles in common with D3. In particular, D12 and D14 are shell only of
themselves. In this case, we could only choose one of the closest complete domains that contains meet-irreducible
elements of D3, e.g., for D14 we can choose between D11 or D13, and then we can transform one of the chosen
domains for finding one of the closest incomplete domains, i.e., D6 or D10.

Absolute incomplete compressor We can exploit the previous transformation relative to a starting input abstrac-
tion ρ, in order to characterise the abstract domain which is incomplete for a given function, both in input and
in output. This is possible without fix-point iteration since, the domain transformer reaches the fix-point in one
shot. The following lemma provides a property needed for proving the following theorem.

Lemma 3.6 Let α, β ∈ uco(C ), then we have that M(Mirr(α � β)�β) � α iff Mirr(α) ⊆ Mirr(α � β) and
β ∩Mirr(α) � ∅.

Proof Note that, by construction M(Mirr(α � β)�β) � α, we have to prove the other inclusion. Suppose
(1)Mirr(α) ⊆ Mirr(α � β) and (2) β ∩Mirr(α) � ∅. We observe that condition (1) implies that Mirr(α)�β ⊆
Mirr(α �β)�β, but by condition (2) we have thatMirr(α) �Mirr(α)�β. Hence α �M(Mirr(α)) ⊆M(Mirr(α �
β)�β), namely α �M(Mirr(α � β)�β). Therefore, we have that (1) and (2) implies the equality.

We have to prove now the other implication. If condition (2) does not hold then α � M(Mirr(α)) ⊂
M(Mirr(α)�β) ⊆M(Mirr(α � β)�β), if condition (1) does not hold thenM(Mirr(α)�β) ⊂M(Mirr(α � β)�β),
in any case we cannot have the equality. �
Theorem 3.7 Let f : C −→ C be a monotone function, ρ ∈ uco(C ).
Let UR(ρ) def� URF

f ,ρ(ρ) ∈ uco(C ) be an incomplete compression of ρ such that we have UR(ρ) �� �. Then UR(ρ) ◦
f ◦UR(ρ) �� f ◦UR(ρ).

Proof IfUR is an incomplete compression then the conditions of Theorem 3.5 hold andUR(ρ) ◦ f ◦ρ �� f ◦ρ. Let
us prove that UR is idempotent, namely UR(UR(ρ)) � UR(ρ). Let ρ1

def� UR(ρ) �� �, now we want to find the
simplification of ρ1 that makes UR(ρ1) ◦ f ◦ρ1 �� f ◦ρ1 to hold. This corresponds to use the new abstract domain
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ρ1 as the input domain, and compute the abstraction of ρ1 in output inducing incompleteness. Let us prove that
UR(ρ1) � ρ1. Consider Lemma 3.6, where α � ρ1 and β �M(f (ρ1)). Then we have that UR(ρ1)

def�M(Mirr(ρ1 �
M(f (ρ1)))�M(f (ρ1))) � ρ1 iff (1)Mirr(ρ1) ⊆Mirr(ρ1 �M(f (ρ1))) and (2)M(f (ρ1)) ∩Mirr(ρ1) � ∅.

Let us prove (1). Note that, Mirr(ρ1) �Mirr(ρ)�M(f (ρ)), hence we have to prove that Mirr(ρ)�M(f (ρ)) ⊆
Mirr(ρ1�M(f (ρ1))). Suppose, ad absurdum, that there exists x ∈Mirr(ρ)�M(f (ρ)) (then x ∈ ρ1 and x ∈Mirr(ρ),
i.e., �y1, y2 ∈ ρ. x � y1 ∧ y2) such that x �∈ Mirr(ρ1 �M(f (ρ1))). The first condition implies that x �∈ M(f (ρ))
and, by monotonicity x �∈ M(f (ρ1)), since M(f (ρ1)) � M(f (ρ)). Now since x ∈ ρ1 we have x ∈ ρ1 �M(f (ρ1))
but by hypothesis we have also that x �∈ Mirr(ρ1 �M(f (ρ1))), hence there exist y1, y2 ∈ ρ1 �M(f (ρ1)) such that
x � y1∧y2. We cannot have y1, y2 ∈ ρ1 since x ∈Mirr(ρ1), and we cannot have y1, y2 ∈M(f (ρ1)) since otherwise
x ∈ M(f (ρ1)). Hence, y1 ∈ ρ1 and y2 ∈ M(f (ρ1)). These imply that y1 ∈ ρ � ρ1 and y2 ∈ M(f (ρ)) � M(f (ρ1)),
but this imply that x is not meet-irreducible in ρ �M(f (ρ)), hence by construction x cannot be meet-irreducible
in ρ1. Therefore, condition (1) holds. Consider now (2), then for what we observed before x ∈ M(f (ρ1)) implies
x ∈M(f (ρ)), which implies x �∈Mirr(ρ)�M(f (ρ)). On the other hand, if x ∈Mirr(ρ)�M(f (ρ)) then x �∈M(f (ρ))
which implies x �∈M(f (ρ1)).

Note that, if UR(ρ) � � we cannot find the absolute incomplete compressor since � ◦ f ◦ � � � ◦ f always
holds. �

Example 3.11 Consider the situation described in Example 3.5, and compute the absolute incomplete compressor
URF

sq�,Int’
(Int′). We show that, as stated in Theorem 3.7, the fix point is reached at the first step. Recall that:

Mirr(Int′) � {
[−∞, b]

∣
∣ b ∈ Z

} ∪ {
[a,+∞]

∣
∣a ∈ Z, �c ∈ Z. a � c2

}

M(sq�(Int′)) � {
[a2, b2]

∣
∣a, b ∈ Z, �c, d ∈ Z. a � c2 ∨ b � d2

} ∪
{
[−∞, b2]

∣
∣ b ∈ Z

} ∪ {
[a2,+∞]

∣
∣a ∈ Z, �c ∈ Z. a � c2

}

Now we show that Theorem 3.7 holds. Observe thatMirr(Int′) ⊆Mirr(Int′ �M(sq�(Int′)), since by construction
if x ∈ Mirr(Int′) then we also have x ∈ Mirr(Int), on the other hand M(sq�(Int′)) ⊆ Int, therefore x remain
meet-irreducible also in the reduced product. Therefore,

Mirr(Int′) �Mirr(Int′)�M(sq�(Int′)) ⊆Mirr(Int′ �M(sq�(Int′))�M(sq�(Int′))

namely Int′ � URF
sq�,Int’

(Int′), and since by construction we have the other inclusion, we showed the equality, i.e.,
URF

sq�,Int’
(Int′) � Int′.

Example 3.12 Consider the ρb domain in Fig. 2b.
Then Mirr(ρb) � {[0,+∞], [−9, 0], [0, 9]} and M(sqS(ρb)) � {Z, [0,+∞], [0, 99], [0]}.

S′ def� URF
sqS,ρb

(ρb) �M(Mirr(ρb �M(sqS(ρb)))�M(sqS(ρb)))

� M(Mirr(ρb)�M(sqS(ρb))) �M({[0,+∞], [−9, 0], [0, 9]}) � {Z, [−9, 0], [0, 9], [0]}
Finally, we can easily check that S′ ◦ sqS ◦S′ �� sqS ◦S′.

3.1.2. Backward incompleteness compressor

In this section,we show that all the results holding forF -completeness canbe instantiated also toB-completeness.
First of all, by Lemma 3.1 we have that

Proposition 3.8 RB
f ,ρ is join-uniform on uco(C ).

Proof Trivially by Lemma 3.1. �
This result tells us that also the B shell admits right adjoint, and as before, its adjoint can be characterised as a
pseudo-complement in the following way.

Proposition 3.9 Let Rf
def� λ δ. M(

⋃
y∈δ max(f −1(↓ y))) ∈ uco(C ), then we have that

URB
f ,ρ

def� λ η. M(Mirr(η � Rf (ρ))�Rf (ρ)) � (RB
f ,ρ)

+.
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Proof Analogous to Proposition 3.4. �
Finally, also for B-completeness we can prove that the B-incomplete compressor exists iff some conditions

hold, as stated in the following theorem.

Theorem 3.10 Let η, ρ ∈ uco(C ) and f : C −→ C .URB
f ,ρ(η) (here denoted simplyUR) is such that ρ◦f ◦UR(η) ��

ρ ◦ f iff one of the following conditions hold:

1. ρ ◦ f ◦ η �� ρ ◦ f , i.e., η was incomplete before simplification;
2. Rf (ρ) ∩Mirr(η) �� ∅;

Proof Analogous to Theorem 3.5. �
Finally, we can characterise also the absolute B-incomplete compressor.

Theorem 3.11 Let f : C −→ C be a monotone function, η ∈ uco(C ).
Let UR(η) def� (RB

f ,η)
+(η) ∈ uco(C ) be an incomplete compressor such that we have UR(η) �� �. Then UR(η) ◦ f ◦

UR(η) �� UR(η) ◦ f .
Proof Analogous to Theorem 3.7. �

3.2. Refining abstractions: incomplete expanders

If we consider the other direction, when we want to transform the input abstraction, it is well known that,
for inducing F [B] completeness we can simplify the domain by erasing all the η-elements whose f [inverse]
image goes out of ρ. In this case, we are considering the completeness core CF

ρ,f [CB
η,f ]. If we aim at inducing

incompleteness we should add all the elements such that the f [inverse] image is out of ρ, i.e.,
{
x

∣
∣ f (x ) �∈ ρ

}

[
{
y

∣
∣max

{
x

∣
∣ f (x ) ≤ y

} �⊆ η
}
]. We wonder whether this transformation always exists.

Unfortunately, the following result implies, by Proposition 2.3, that we cannot find the most concrete abstrac-
tion that refines ρ and which is incomplete.

Theorem 3.12 The operator CF
ρ,f [C

B
η,f ] is not meet-uniform.

Proof Let us consider the closure η
def� {�, x , y, x ∧ y,⊥} and ρ ∈ uco, suppose {f (�), f (x ∧ y)} ⊆ ρ and suppose

{f (x ), f (y), f (⊥)} ∩ ρ � ∅. Then C(η) � {
z

∣
∣ f (z ) ∈ ρ

} � {�, x ∧ y}. �
Consider now the following abstractions of η: δ1

def� {�, x } and δ2
def� {�, y}, we have that C(δ1) � C(δ2) �

{�} �� C(δ1 � δ2) � C({�, x , y, x ∧ y}) � {�, x ∧ y}.

4. Modelling the potency of code obfuscation

In this section, we show how the theoretical results described in the previous section can be used in the field of
code obfuscation in order to certify the potency of an obfuscator and to provide insights on how to build an
obfuscator that defeats a given attacker. To this end, we consider a program P ∈ PL and its denotational, i.e., I/O,
semantics �P�, computed as fix-point of the language interpreter operation fL, namely �P� � {

lfp〈σ, P〉 fL
∣
∣σ ∈M

}
,

where M is the set of memories (see Sect. 2.5 for the formal details).
Let us recall that the aim of an obfuscator is to modify a program in order to make it more difficult to analyse

while preserving its functionality [CTL98]. In [JGM12], the authors interpret these features, specifying when a
program transformation is an obfuscator, in the semantic setting. Following this view, we obtain the following
characterisation of an obfuscator:

• An obfuscation transformer O has to preserve the denotational semantics of programs, namely the denota-
tional semantics of a program P and of its obfuscated version O(P) have to be the same, i.e., �P� � �O(P)�.
• An obfuscator has to add confusion with respect to some properties that are revealed by the non-obfuscated
program P, thus generating an obfuscated programO(P) from which the same properties cannot be precisely
extracted. Let ρ, η ∈ uco(�) and assume that the pair of abstractions 〈ρ, η〉 is B-complete for �P�. This
means that this pair of properties can be precisely extracted form the non-obfuscated program P, namely
ρ(�P�) � �P�〈ρ,η〉 def� {

lfp〈σ, P〉ρ ◦ fL ◦η
∣
∣ s ∈ �

}
. Obfuscator O obfuscates 〈ρ, η〉 when �P�〈ρ,η〉 � �O(P)�〈ρ,η〉,

which holds if and only if ρ(�O(P)�) � �O(P)�〈ρ,η〉, being �P�〈ρ,η〉 � ρ(�P�) � ρ(�O(P)�) [Gia08]. In other
words, a property is obfuscated if and only if it is incomplete for the obfuscated program.
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In the following, in Sect. 4.1 we present our attackmodel, next in Sect. 4.2 we describe howwe can characterise the
potency range of an obfuscator thanks to the incompleteness results of Sect. 3 and then we conclude by providing
examples of how this charaterization works in the case of obfuscations that aim at obstructing program slicing
(Sect. 4.3) and static disassembly (Sect. 4.4).

4.1. Attack model

Automatic reverse-engineering techniques typically consist in static program analysis (e.g., data flow analysis,
control flow analysis, alias analysis, program slicing) and dynamic program analysis (e.g., dynamic testing, profil-
ing, program tracing). Hence, we have two kinds of attacks: one that executes the program, collects computational
traces, and then analyses these traces looking for invariants, and the other that statically analyses the code. In
other words, dynamic attacks can extract properties of the execution traces, for instance by using data mining
techniques, while static attacks analyse the code looking for dynamic properties without executing the program.
It is well known [CC77, CC79b] that static analysis can be perfectly modelled in the context of abstract inter-
pretation, where a property is extensionally represented as the set of all the data satisfying it and describes the
abstraction of the corresponding data. In particular, static analysis is performed as an abstract execution of pro-
grams, namely as the (fix-point) semantic computation on the approximated/abstract data expressing the property
of interest. Instead, dynamic analysis can be modelled as an approximated observation of the concrete execution
since it describes partial knowledge of the real execution. In the following, we model a property as the function
η mapping data to the minimal property containing it. This implies that η is extensive (i.e., X ⊆ η(X )), namely
it approximates by adding noise, it is idempotent since the whole approximation is added in one shot and finally
it is monotone, preserving the approximation order. Namely, it is an upper closure operator and the framework
beneath is abstract interpretation [CC77, CC79b]. As seen in the previous sections the set ℘(�∗) can be used to
represent the set of possible program semantics, where � denotes the set of possible program states. Thus, we
view attacks, i.e., static program analysers, as properties of program states that model the abstract domain of
computation of program semantics, namely as an analysis over the program semantics.

4.2. Modelling the obfuscation potency range

In [Gia08] and in [JGM12] theobjective is toprovide an incompleteness-driven constructionof apotent obfuscator,
while here we aim to use this incompleteness-based characterisation for “measuring” potency. In fact, we aim at
defining formal domain transformers inducing incompleteness that allow us to systematically characterise a range
of analyses that are made incomplete, and therefore imprecise, by the performed code obfuscation. In particular,
ifA is a closure operator that models an attacker that can succeed in extracting the desired information, then the
incomplete compression UR(A) (defined in the previous section) characterises the most abstract domain such
that any abstract analysis between A (excluded) and UR(A) (included) is obfuscated. We describe in details how
to extract the range of attackers that are defeated by an obfuscationwith respect to a given semantics.We consider
the following general scenario where:

• S
def� PL → D is a program (semantic) observation on the set of denotations D. For instance in [JGM12] we

consider S � �·�CFG as the function modelling programs as control flow graphs;

• O : Progr → Progr is an obfuscation transformer, designed for deceiving observations of S(P), for instance
when dealing with CFG we consider obfuscations obscuring the control structure of a program [JGM12];

• A is the analysis the attacker may perform on the given model, i.e., an abstraction of S(P).

Our goal is to formally characterise the potency rangeof the givenobfuscatorOon the consideredmodelS, namely
we aimat characterising themost precise analysis, namely attacker,Aunable to disclose a precise information from
the abstraction S of the obfuscated program. In order to characterise the potency of an obfuscation technique,
we consider the completeness equation given before, instantiated to the pair of abstractions 〈id,A〉, meaning
that, when completeness holds, the analysis A is able to disclose precisely the same information revealed by the
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considered (concrete) semantics. In the following, we have to consider two different equations of completeness,
depending on the way S is computed. If the abstract program semantics of a program P � O(P) is obtained simply
as a function of the program, then

∀ P ∈ O(PL). S(P) � S ◦A(P)

means precisely that, the attacker A wins, being able to observe of the semantics of the obfuscated program P
exactly what the program semantics itself makes available, at least on the considered model.

While, if S is computed as fix-point of a (semantic) operator ϕL, inductively defined on the language structure
and on the set of states �S, i.e., S

def� λ P ∈ PL.
{
lfp〈σ, P〉ϕL

∣
∣σ ∈ �S

}
, then the attacker analysis has to be included

in the fix-point computation, namely

∀ P ∈ PL.
{
lfp〈σ, P〉ϕL

∣
∣σ ∈ �S

} � {
lfp〈σ, P〉ϕL ◦A

∣
∣σ ∈ �S

}

In this case, the meaning is the same as before, only the way the semantics are computed is changed.
This completeness equation, allows to characterise the potency range for theobfuscatorO since all the attackers

between the most concrete complete shell [GRS00] (excluded) and the most abstract incomplete compression
(Sect. 3) are attackers against which the obfuscator is potent. In our case, the input observation is the identity
and therefore also the completeness shell is the identity, and the semantic function is fS � ϕL (in the case where
S is computed inductively on the language structure) or fS � S (otherwise). Hence, the potency range of O is
modelled as the set of the analyses defeated by O, i.e.,

PotO,S
def� {

A
∣
∣A � URB

fS,id(id)
}

It is clear that, if we have a starting attack analysis A on which focusing the characterisation, then the same set
can be computed parametrically on A:

PotAO,S
def�

{
A

∣
∣
∣RB

fS,id
(A) � A � URB

fS,id(A)
}

This not the first attempt to model potency bymeans of abstract interpretation. In [DG05], the basic idea is to
define potency in terms of the most concrete output observation left unchanged by the obfuscation, i.e., δO such
that δO(�P�) � δO(�O(P)�). The set of all the obfuscated properties, making the obfuscator potent, is determined
by all the analyses

{
A

∣
∣A not more abstract than δO

}
.

At this point, we compute the incomplete compressor for this equation in order to characterise the most
concrete abstractionAmaking completeness fail, namely the maximal (most abstract) observation for which the
obfuscator is potent. In fact, incompleteness means that the attacker A on the obfuscated program discloses an
imprecise approximation of the information concerning the program semantics. The following example uses the
proposed approach in order to identify the range of potency of a data obfuscation techniques with respect to the
computation of the square function.

Example 4.1 Let us consider data obfuscation, and in particular the incompleteness characterisation provided
in [JGM12]. This obfuscation technique is based on the encoding of data [DTM07]. In this case obfuscation is
achieved by data-refinement, namely by exploiting the complexity of more complex data-structures or values in
such a way that actual computations can be viewed as abstractions of the refined (obfuscated) ones.

The idea consists in choosing a pair of statements cα and cγ such that cγ ; cα ≡ skip. This means that both
cα and cγ are statements of the form:

cα ≡ x :� G(x ) and cγ ≡ x :� F (x ),

for some function F and G . A program transformation O(P) def� cγ ; τx (P); cα is a data-type obfuscation for
data-type x if O(P) ≡ P, where τx adjusts the data-type computation for x on the refined type (see [DTM07]).

It is known that data-type obfuscation can be modelled as adjoint functions (Galois connections), where
cγ represents the program concretizing, viz. refining, the datum x and cα represents the program abstracting
the refined datum x back to the original data-type. As proved in [Gia08], this is precisely modelled as a pair
of adjoint functions: α : Val−→Val& and γ : Val&−→Val relating the standard data-type Val for x with its
refined version Val&.
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Fig. 4. The abstract domain i and its abstraction ρa

For instance, consider

P � x :� x + 2; cα ≡ x :� x/2 and cγ ≡ x :� 2x ,

then we have τx (P) � x :� 2(x/2 + 2), namely x :� x + 4, therefore:

O(P) ≡ x :� 2x ; x :� x + 4; x :� x/2.

Consider now a slightly more complex example, for instance the program:

P �
[
x :� 1; s :� 0;
while x < 15 do s :� s + x ; x :� x + 1; endw

Then

τx (P) �
[
x :� 2; s :� 0;
while x < 30 do s :� s + x/2; x :� x + 2; endw

where α, γ , Val, and Val& are the most obvious ones. In [JGM12], given ρ ∈ uco(Val), we showed that this
obfuscation can be modelled as a distorted self interpreter adding dummy uses of a specific syntactic operation
op, for whose semantics the abstraction ρ is incomplete. Let op such a syntactic operation of the language L.
Then we can compute the maximal (most abstract) incomplete observation for this particular operator w.r.t. the
completeness equation

�op� � �op� ◦ρ
where S � �·� and A � ρ. Again, in this case we look for the most concrete observation unable to disclose
precisely the information released, in this case, by the concrete semantics �·�. Let i be the domain in Fig. 4 and
opP � sq∗ def� ρi ◦ sq , then ρa � {Z, [0,+∞], [0, 99], [−9, 0], [0]} (black dots in Fig. 4a) is not B-complete on the
concrete domain i for sq∗.

Then the refined domain

ρ ′ def� RB
�opP�

(ρa ) � {Z, [0,+∞], [0, 99], [0, 9], [−9, 0], [0]}.
is complete for opP by construction, hence it can be used for characterising the potency of the obfuscation
technique consisting in using the operator opP in a program.

At this point, we can compute

UR(ρ ′) � UR(ρa ) �M(Mirr(ρ ′ � R�sq∗�(ρ ′))�R�sq∗�(ρ ′)) �M(Mirr(ρ ′)�R�sq∗�(ρ ′)).

where R�sq∗�(ρ ′) � {Z, [0, 9], [−9, 0], [0]}. Hence, the resulting incomplete compression is the domain UR(ρ ′) �
{Z, [0,+∞], [0, 99]}. In this way, we provide a model of the potency of the obfuscation technique since we know
that all the analyses between ρ ′ (excluded) and UR(ρ ′) (included) are made imprecise by the performed code
transformation.
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4.3. Obfuscating program slicing

In this section, we describe slicing [HRB90, Wei81] as an abstraction of a program semantics constructing the
program dependency graph (PDG for short). In particular, we show that slicing obfuscation [MDT07] against
attackers performing slicing analyses, is potent when there are syntactic dependencies between variables that
do not correspond to semantic dependencies. For instance, in the assignment y � x + 1 there is a semantic
dependency of y on x , while in y � x +5−x there is a syntactic dependency between y and x , such that the value
of y does not depend on x . Let us provide a brief overview on program slicing [Wei81] and on the way slices are
computed in [HRB90].

Definition 4.1 [(Semantic) Program slicing] For a variable v and a statement (program point) s (final use of v ),
the slice S of program P with respect to the slicing criterion 〈s, v〉 is any executable program such that S can be
obtained by deleting zero or more statements from P and if P halts on input I then the value of v at the statement
s , each time s is reached in P, is the same in P and in S . If P fails to terminate then s may be reached more times
in S than in P, but P and S execute the same value for v each time s is executed by P.

The standardapproach for characterising slices is basedonPDG[HRB90].Aprogramdependence graph [GL91]PP

for a program P is a directed graph with vertexes denoting program components and edges denoting dependencies
between components. The vertexes of PP,Nodes(PP), represent the assignment statements and control predicates
that occur in P. In addition Nodes(PP) includes a distinguished vertex called Entry denoting the starting vertex.
An edge represents either a control dependence or a flow dependence. Control dependence edges u −→c v are
such that (1) u is the Entry vertex and v represents a component of P that is not nested within any control
predicate; or (2) u represents a control predicate and v represents a component of P immediately nested within
the control predicate represented by u. Flow dependence edges u −→f v are such that (1) u is a vertex that defines
variable x (an assignment), (2) v is a vertex that uses x , and (3) Control can reach v after u via an execution path
along which there is no intervening definition of x . Finally, on these graphs, a slice for a criterion 〈s, v〉 is the
sub-graph containing all the vertexes that can reach s via flow/control edges. It is worth noting that these slices
are characterised by means of syntax-based dependencies, therefore in general they are not the smallest program
fragments satisfying Definition 4.1 [MZ08].
Example 4.3 Consider the following programs [RT96] and note that P2 is a slice of P1.

P1

⎡

⎣
1.x :� 0;
2.i :� 1; 3.while i > 0 do i :� i + 1;
4.y :� x ;

P2

⎡

⎣
1.x :� 0 ;

4.y :� x ;

Below, we find a representation of the program dependence graph of P1. In this representation, we have only
control and flow dependence edges, without distinction. In this graph we can note that slice P2 (with criterion the
value of y) can be computed by following backwards the edges starting from node y :� x , the final definition of y .

Entry

x := 0 i := 1 while i > 0

i := i + 1

y := x

Before defining formally the construction of the program dependency graph, we can observe that the notion
of slicing given in Definition 4.1 is strongly based on a notion of dependency between statements, and therefore
between variables of the program [MZ08]. For this reason, we first need to formalize the notion of dependence
that we use in the following:

Definition 4.2 (Semantic dependencies) [MZ08]5 Let x ∈ Var, Y ⊆ Var. We say that an expression e depends on
x , written x ∈ Dep(e), if ∃σ1.σ2 ∈M. ∀ y �� x . σ1(y) � σ2(y) ∧ �e�σ1 �� �e�σ2.

5 In [MZ08], this notion of dependency can be tuned depending on the degree of precision we need in the characterisation of the slicing,
moving towards abstract slicing.
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Fig. 5. Original and obfuscated programs

Fig. 6. Slices of the original program

In the following, we extend this notion directly to the statement containing an expression. In particular, we
say that a statement c depends on Y ⊆ Var, written Y ⊆ Dep(c), if for each y ∈ Y there exists an expression e
in the statemet c such that y ∈ Dep(e).

Program slicing obfuscation: introducing fake dependencies

Program slicing obfuscation consists in a program obfuscation deceiving the program slicing transformation
technique [MDT07]. Since, as we have seen above, program slicing is based on the notion of dependency between
variables and expressions, intuitively it is clear that, if we aim at deceiving this analysis technique, we have
to introduce in the program useless (syntactic) dependencies that do not affect the semantics, we call these
dependencies fake dependencies. A fake dependence is precisely a syntactic dependence between variables that do
not correspond to semantic dependence. The introduction of such dependencies could be realized, for instance,
by modifying an assignments x :� e by using some irrelevant variable z in the following way: x :� (z + e)− z . Its
effect would be that a naive program flow analyser would think that all assigned values depended on variable z .

Example 4.5 In order to explain the idea of slicing obfuscation, let us consider the word count program [MDT07]
given in Fig. 5 (where getchar() returns the next char in a file, while out is the procedure output instruction), on
the left. It takes in a block of text and outputs the number of lines (nl ), words (nw ) and characters (nc). Suppose
the slicing criterion is (nl, 8), then the slice is on the left in Fig. 6, while if the criterion is (nw, 8) then the slice is
on the right.

Let us introduce some fake dependencies. In particular, we modify line 7 adding an opaque predicate which
is always true and we add lines 8 and 9 with opaque predicates that are always false. The obfuscated program is
given in Fig. 5, on the right.

In this way semantically we do not change the dependencies but a syntactic analysis would observe that nl,
nw and nc depend one on the others. Hence, the new slices are in Fig. 7.

Semantic PDG as abstraction of program semantics

In this section, we characterise the PDG construction as an abstract interpretation of a program. In other words,
we define the abstract interpreter whose fix point computes the program PDG. Let us first define a semantic
function, similar to graph semantics [JGM12] which, instead of computing the control flow graph, computes the
PDG obtained by including only semantic dependencies among variables.

We consider here an approximation of PDG given in the literature [RY89] as we will show later. A PDG
Pl is defined as a pair 〈Nodes(Pl ),Arcs(Pl )〉. In particular, we have two kinds of edges, the control depen-
dence edges Control(Pl ) and the flow dependence edges Flow(Pl ), hence Arcs(Pl ) � Control(Pl ) ∪ Flow(Pl ).
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Fig. 7. Slices of the obfuscated program

Let us denote by PDG the set of program dependency graphs, ordered by set inclusion on the sets of nodes and
arcs. Formally, PDG � (℘f (N) × ℘f (N × N),≤PDG),6 where P ≤PDG P′ if and only if Nodes(P) ⊆ Nodes(P′) and
Arcs(P) ⊆ Arcs(P′). It is worth noting that PDG is not a complete lattice (see also [Rep91]) since we can find
an infinite ascending chain whose union is an infinite set, not belonging to the domain, for the same reason this
domain has nomeet irreducible elements. Hence, in order to have a complete lattice, we need to fix the program of
interest, and indeed only referring to a particular program we can characterise the potency of slicing obfuscation
on the program. Let us define the PDG PP in the following way

NodesP
def� {

l ∈ N

∣
∣StmP(l ) ∈ P

} ⊆ N as the set of all the locations of P

ControlP
def� {〈l1, l2〉

∣
∣Stm(l1) ∈ {if,while} and Stm(l2) is nested in l1

}

FlowP
def� NodesP ×NodesP

where we recall that StmP : N −→ P is the function s.t. StmP(l ) is the statement in program point l . At
this point, we define the complete lattice 〈PDGP,≤PDG,PP, ∅,∨PDG,∧PDG〉 parametric on the program P, where
PDGP

def� {
P ∈ PDG

∣
∣Nodes(P) ⊆ NodesP,Control(P) ⊆ ControlP,Flow(P) ⊆ FlowP

}
. We can observe that the

top of this lattice is precisely the PDG of the program P where all the possible dependencies are considered in
the flow edges. In other words, they are all the PDGs where all the possible dependencies, but one, are included
in the graph, or the PDGs missing the last executable node.

At this point, we define the program semantics generating the PDG of a program while interpreting the
program. Given a program P, its semantics is defined by means of a transition system 〈�P, p〉 with �P � � ∪ {P}
and transition function p. The states have the form 〈σ, 〈l , l ′〉,Pl ,Dl 〉 ∈ �, where σ ∈ M is the memory, namely
the actual values of program variables, 〈l , l ′〉 ∈ N× N is a pair of program points, l is the executed statement in
P and l ′ is the next statement to execute in P, Pl ∈ PDGP is the PDG of P computed upto program point l , and
Dl is a definition function associating, at the program point l , with each variable, the program point where the
variable has been defined

Dl : Var −→ N s.t. Dl (x ) � n where n is the program point where x is defined

For instance, in Example 4.3,D4(x ) � 1 whileD4(y) � 4. Note that, the characterisation ofDl may be ambiguous
or imprecise in the case when we have more than one definition of the same variable in the program. In general,
we can avoid this ambiguity by supposing the programs translated in their single static assignment (SSA) form
[CFR+91], where each variable is defined precisely once, in one single program point.

Finally, we have to define the transition function generating dependency-based PDG of P. By dependency-
based we mean that the flow edges will be generated by considering semantic dependencies, the ones defined in
Definition 4.2. First of all, for each program point l ∈ N we have to define the following auxiliary maps: Dep(l )
denotes the set of variables the statement in l depends on, while Use(l ) denotes the set of variables used in l , and
it is defined by structural induction in Table 2.

Dep : N −→ ℘(Var) s.t. Dep(l ) �
⋃

e∈StmP(l)
Dep(e) and

Use : N −→ ℘(Var) s.t. Use(l ) �
⋃

e∈StmP(l)
Var(e)

6 By ℘f (X ) we denote the domain of all the finite subsets of X .
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Table 2. The inductive definition of Use
Use(skip) � ∅ Use(x :� e) � Var(e) Use(C 1; C 2) � Use(C 1) ∪ Use(C 2)

Use(while e do C endw) � Var(e) ∪ Use(C ) Use(if e then C 0 else C 1 fi) � Var(e) ∪ Use(C 1) ∪ Use(C 2)

where e ∈ StmP(l ) means that the expression e is syntactically present in the statement StmP(l ), and Dep(e) is
defined in Definition 4.2. In general, Dep(l ) ⊆ Use(l ), if there are no fake dependencies we have the equality.

Another necessary function for characterising the history of computation, is the function determining the
sequence of program points executed: NextP : M× PLP→ PLP

NextP (σ, l ) � l ′ iff fL(〈σ, StmP(l )〉) � 〈σ ′, C 〉 ∧ PcP(C ) � l ′
NextP (σ, l ) � l if l is the last statement of P (in this way we can reach a fix-point.)

The dependency-based transition function is p(〈σ, 〈l1, l2〉,Pl1 ,Dl1〉) � 〈σ ′, 〈l2, NextP(σ ′, l2)〉,Pl2 ,Dl2〉 where σ ′ is
the memory modified by executing statement in l1, NextP computes the following statement to execute, Dl2 �
Dl1 [Dx � l2] if Stm(l2) � x :� e (it is Dl1 otherwise), and Pl2 is computed as follows:

Nodes (Pl2 ) � Nodes(Pl1 ) ∪ {l2} ∪
{
l
∣
∣Stm(l2) ∈ {if,while} and Stm(l ) is nested in l2

}

Control (Pl2 ) � Control(Pl1 ) ∪
{〈l2, l〉

∣
∣Stm(l2) ∈ {if,while} and Stm(l ) is nested in l2

}

Flow (Pl2 ) � Flow(Pl1 ) ∪
{〈Dl1 (x ), l2〉

∣
∣ x ∈ Dep(l2)

}

In other words, 〈n, l ′〉 ∈ Flow(Pl ) if there exists x ∈ Var such that x ∈ Dep(l ′)∩{
x

∣
∣Stm(n) � x :� e

}
. It is worth

noting that, if we reach the end of the program then NextP(σ, l ) � l , and consequently also p reaches the fix
point.

The PDG operational semantics is �P�PDG
def� {

lfp〈σ, P〉 p
∣
∣σ ∈ �

}
. Intuitively, by using this transition function

we compute the PDGwith flow edges considering only those variables an expression depends on. In fact, Flow(Pl2 )
is obtained by adding to Flow(Pl1 ) the flows from the variables in Dep(l2). In general, this is more precise than the
standard construction of the PDG, which is provided in terms of the variables used in an expression. This suggests
us that we can generalize this construction in terms of an abstraction of states given in terms of abstraction of
the flow edges.

In order to be as general as possible, consider a function F : N −→ ℘(Var) such that Dep(l ) ⊆ F(l ), that
approximates the variables a program point depends on, and the corresponding abstractions αF

s : �P −→ ℘(�P)
(denoting also its additive lift), αF

p : PDGP −→ PDGP, and αF

f : ℘(FlowP) −→ ℘(FlowP) defined as follows:

αF

s (〈σ, 〈l , l ′〉,Pl ,Dl 〉) def� 〈σ, 〈l , l ′〉, αF

p(Pl ),Dl 〉
αF

p ∈ uco(PDGP), αF

p(Pl ) � P′l such that Nodes(P′l ) � Nodes(Pl ) and
Control(P′l ) � Control(Pl ) and Flow(P′l ) � αF

f (Flow(Pl ))
def� {〈Dl (x ), l ′〉

∣
∣ l ′ ∈ Nodes(Pl ), x ∈ F(l ′)

}

where αF

f ∈ uco(℘(FlowP)). It is clear that αF

s induces an abstraction on states in the sense that it considers
more abstract PDG in the domain PDGP, since we consider only F such that ∀ l ∈ N. F(l ) ⊇ Dep(l ), namely F
approximating the dependency function used for computingPl . For instance, if Flow(Pl ) is the one above, defined
in terms of Dep, and F � Use, then the resulting function αUse

s is an abstraction of states in this sense.

Potency of slicing obfuscation

The characterisation of the PDG semantics of a program can be exploited in order to provide a formal character-
isation of when a PDG semantics is precise with respect to the slicing analysis and, on the contrary how we can
deceive slicing by obfuscating a program. This can be done by considering aB-completeness formulation of the
notion of precision, namely we provide a completeness equation characterising when an abstraction αF

s is precise:
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Let us define �P�
αF
s

PDG
def� {

lfp〈σ, P〉p ◦αF

s

∣
∣σ ∈ �

}
|PDG

, where 〈σ, 〈l , l ′〉,Pl ,Dl 〉|PDG � Pl , and �P�PDG
def� �P�id

PDG, then the
abstraction αF

s is precise with respect to the dependency observation if the following completeness equation holds

�P�PDG � �P�
αF
s

PDG (1)

corresponding to the general approach provided, with S � �·�PDG, whileA � αF

s . We use this equation for proving
that the syntactic PDG-based computation of slices [HRB90] can be modelled in this framework by considering
the abstraction U

def� αUse

s , and that it is inherently incomplete in presence of fake dependencies. The following
lemma tells us that the transition function p preserves strict inclusions between PDGs.

Lemma 4.3 Let P1,P2 ∈ PDGP such that P1 <PDG P2, σ ∈ M, 〈l , l ′〉 ∈ N × N and Dl a definition function for P,
then p(〈σ, 〈l , l ′〉,P1,Dl 〉)|PDG < p(〈σ, 〈l , l ′〉,P2,Dl 〉)|PDG .

Proof Suppose P1 <PDG P2, it means that Nodes(P1) ⊂ Nodes(P2), or Control(P1) ⊂ Control(P2) or Flow(P1) ⊂
Flow(P2). In any case, by definition, we can observe that p can only enlarge these sets, and since we are precisely
in the same program point of P, it modifies the PDGs in the same way, therefore preserving the strict inclusion.

�
The following lemma tells us that the PDG computed on a portion of a program P, which does not contain

fake dependencies, is the same even if we use the transition function abstracted by U.

Lemma 4.4 A program P has no fake dependencies upto program point l if and only if

p(〈σ, 〈l , l ′〉,Pl ,Dl 〉)|PDG � p ◦U(〈σ, 〈l , l ′〉,Pl ,Dl 〉)|PDG .

Proof Trivial since, without fake dependencies, we can prove inductively on the syntax that, for each l ∈ N,
Use(l ) � Dep(l ), hence the functions p and p ◦U compute precisely the same PDG. �

The following lemma says that, if we compute the PDG by the abstract transition function then we obtain the
same set of flow edges computed by abstracting the flow edges generated by the transition function p.

Lemma 4.5 Let PUse

l be the PDG computed by using the abstract transition function p ◦U, namely built step by step
by using Use, while Pl is the PDG computed by using p. Then Flow(PUse

l ) � Flow(U(Pl )).

Proof Consider 〈l1, l2〉 ∈ Flow(PUse

l ), then ∃x ∈ Use(l2) ∩
{
x

∣
∣StmP(l1) � x :� e

}
, but then l1 � Dl (x ), which

implies that 〈l1, l2〉 ∈ Flow(U(Pl )) by definition.
Let 〈l1, l2〉 ∈ Flow(U(Pl )), then l2 ∈ Nodes(Pl ), x ∈ Use(l2) and n � Dl (x ), but this means that x ∈ Use(l2) ∩{
x

∣
∣StmP(l1) � x :� e

}
, namely 〈l1, l2〉 ∈ Flow(PUse

l ). �
The following result proves that when a program P has fake dependencies then the syntactic computation of

the PDG is incomplete, namely less precise than the semantic PDG computation.

Proposition 4.6 Let P a program with fake dependencies, then �P�PDG < �P�UPDG.

Proof Suppose P contains its first fake dependency at the program point l , namely P � P′; c; P′′ with
l � PLP(c), where P′ does not contain fake dependencies. Let l ′ the last program point of P executed before
l . Then, by Lemma 4.4, given σ ∈ M computed by p upto l ′, we have that Pl ′ � PUse

l ′ . At this point, we consider
p(〈σ, 〈l ′, l〉,Pl ′ ,Dl ′ 〉) and p ◦U(〈σ, 〈l ′, l〉,PUse

l ′ ,Dl ′ 〉), and we observe that these computation differ only in the com-
putation of the set of flow edges. In particular, by Lemma 4.5 we have that Flow(PUse

l ) � {〈Dl (x ), l〉
∣
∣ x ∈ Use(l )

}
,

but then we have

Flow(Pl ) �
{〈Dl (x ), l〉

∣
∣ x ∈ Dep(l )

} ⊂ {〈Dl (x ), l〉
∣
∣ x ∈ Use(l )

} � Flow(PUse

l )

since Dep(l ) ⊂ Use(l ) due to the fake dependency in l . Hence, Pl <PDG PUse

l . But this, by Lemma 4.3, implies that
also the resulting PDGs strictly preserve the same relation, namely �P�PDG < �P�UPDG. �
Theorem 4.7 �P�PDG � �P�UPDG if and only if P does not contain fake dependencies.

Proof The (⇐) direction comes from Lemma 4.4, while the (⇒) direction comes directly from Proposition 4.6.
�
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Note that, the presence of fake dependencies generates incompleteness since �P�PDG considers flow edges not
concerning all the used variables. For instance in y :� x + z − x we have an edge from the definition of z to the
expression x + z − x but not from the definition of x , which is a fake dependence, and which is instead considered
when abstracting by αUse

s .
In the following, we show how we can use the incompleteness compressor on the above equation in order to

characterise the potency of slicing obfuscation.

Theorem 4.8 Given a program P, the incomplete compressor with respect to the domain PDGP is the abstraction αF

s
with F(l ) � NodesP, adding all the possible flow edges between all the nodes of the PDG, namely between all the
instructions of P.

Proof In order to prove the thesis, we have to identify precisely the portion in αF

s that approximated the flows.
Let s � 〈σ, 〈l , l ′〉,Pl ,Dl 〉 be a state, pS

P denotes the function p specialised on the portion of the input consisting
in σ , 〈l , l ′〉, Dl , Nodes(Pl ) and Control(Pl ), namely the only unknown input is Flow(Pl ). Then we observe that:

�P�PDG(s) �� �P�
αF
s

PDG(s) iff pS
P (Flow(Pl ))|Flow �� pS

P ◦αF

f (Flow(Pl ))|Flow

Consider URB
pS
P ,id

(id) on uco(FlowP), by Proposition 3.9 we have that

URB
pS
P ,id(id) �M

(
Mirr

(
id � RB

pS
P
(id)

)
�RB

pS
P
(id)

)
�M

(
Mirr(FlowP)�RB

pS
P
(id)

)

where RB
pS
P
(id) �M(

∨
P∈PDG max(pS

P
−1(↓P)) and ∨

is a shorthand for
∨

PDG. At this point, in order to understand

these elements we observe that pS
P
−1 goes back one step of execution for each PDG in ↓P. Let us observe that,

in order to compute the PDG semantics, we have to compute the fix point of p, and therefore of pS
P . This means

that any PDG can be obtained as inverse image of a PDG, in particular, if a portion of the program P is missing
then it is the image of the PDG where one more statement is executed, otherwise it is the fix point and therefore
it is the image of itself. Therefore, also all the elements in Mirr(FlowP) can be inverse image of pS

P , i.e.,

Mirr(FlowP)�RB
p (id) � ∅ ⇒ URB

pS
P ,id(id) �M(∅) � λX ⊆ FlowP. FlowP

This function corresponds to αF

f , where F is defined as ∀ l ∈ NodesP. F(l ) � NodesP, i.e., it is the function adding
any kind of noise to the set of flow edges. We can conclude that the maximal possible noise about flow edges is
characterised by this F, and the corresponding state abstraction is αF

s . �
The meaning of this theorem and also of its proof is that, in this case, the only possibility for adding noise

is to enlarge the set of flows in the PDG computation of a program. Thus moving from the concrete set of
dependency-based flow edges, to the set of all the possible flow edges.

Corollary 4.9 LetO and obfuscation technique adding fake dependencies to aPDG, and let S be the functionmapping
programs to PDG. Then

PotO,S �
{
A

∣
∣A � αF

f , where ∀ l ∈ NodesP. F(l ) � NodesP
}

It is worth noting that, once we have an approximated PDG PF

P of a program P, namely the PDG of P
computed by considering the abstraction of flow edges F approximating Use, a way to implement the added noise
consists in transforming the program in a way such that: for each x ∈ F(l ′) with x defined in l (〈l , l ′〉 ∈ Flow(PF

P))
we transform StmP(l ′) by adding fake dependencies which use the variable x . For instance by transforming an
expression e in e + x − x , or adding an opaque predicate on x . In this way, we generate a new program O(P)
such that �P� � �O(P)�, which implies PO(P) � PP, and such that its abstract PDG PUse

O(P) is precisely the final
abstract PDG PF

P, namely PUse

O(P) � PF

P >PDG PP. To conclude, the space of functions F provides the potency of
slicing obfuscation since function F allows us to tune the amount of added noise.

4.4. Obfuscating static disassembly

In this section, we consider static disassembly and a typical code obfuscation technique used to induce a loss of
precision in the disassembly process. By using the proposed framework we are able to provide both a character-
isation of the class of static disassembly algorithms for which the considered obfuscation is potent, and formal
evidence of how the obfuscation should work to thwart static disassembly.
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Fig. 8. Static disassembly

Disassembly refers to the process of recovering assembly code instructions from a machine code file. Indeed,
the process of reverse engineering an executable program typically begins with disassembly, which translates
machine code to assembly code. Hence, obfuscation techniques that aim at thwarting disassembly can be used to
obstruct reverse engineering [LD03]. An executable file typically consists of a number of different sections and of a
header describing these sections. These different sections, such as the text section, the read-only data section, etc.,
contain various sorts of information about the program. In particular, the header contains information about the
program entry point and the total size or extent of its instructions.We consider here static disassembly algorithms
that proceed by examining the file to disassemble without executing it. Given an executable file static disassembly
algorithms begin by extracting the set of locations that are supposed to contain encoding of instructions, and then
they proceed by decoding the hexadecimal values stored at these locations, thus recovering the corresponding
assembly instructions. Indeed, the precision of static disassembly algorithms can be measured in terms of their
precision in identifying the locations in the text section.

Two typical static disassembly algorithmsare linear sweep andrecursive traversal and they are reported
in Fig. 8.

The linear sweep algorithm proceeds by decoding all the hexadecimal values that can be found in the text
section of the executable file, thus assuming that all the values in the text section are encoding of instructions.
Indeed, it is well known that the main weakness of this algorithm is that it is prone to disassembly errors resulting
from the misinterpretation of data that is embedded in the text section. The recursive traversal algorithm is
in general more precise since it identifies the locations to be disassembled by statically following the control flow
of the executable. In particular, the recursive traversal algorithm starts by decoding the hexadecimal value
at the entry point of the text section and then it recursively decodes the hexadecimal value stored in locations
that are possible successors of the decoded instruction. For these reasons, in order to obstruct static disassembly,
researchers have developed obfuscation techniques that insert junk in the text section, where static disassembly
algorithms, such as linear sweep and recursive traversal, assume to find instructions [LD03].

In the following, we show that the precision of a static disassembly algorithm can be expressed as a com-
pleteness problem with respect to the way that the disassembly algorithm approximates the set of locations that
contain the encoding of program instructions. Moreover, we formally prove that in order to lose precision of the
disassembly, namely completeness, we need to insert junk in the locations of the text section that do not store
the encoding of instructions. We conclude by proving that the algorithm of linear sweep is the B-incomplete
compressor of static disassembly. This means that linear sweep represents the maximal imprecision that we
can have in static disassembly when we insert junk in the text section.
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In order to formally prove this we need to introduce some notation: Loc ⊆ N denotes the set of memory
locations, Val denotes the set of possible hexadecimal values stored in a memory location, mem : Loc → Val
denotes the memory map that specifies the hexadecimal value contained in a given location, I denotes the set of
possible assembly instructions.

We assume that the decoding function keeps track of the locations where instructions and corresponding
hexadecimal values are stored. Indeed, we define the decoding function as decode : (Loc→ Val)→ (Loc × I).
Observe that if mem(x ) � ⊥ then decode(x ,⊥) � ∅, meaning that if the memory location x does not contain
an hexadecimal value then its decoding produces no assembly instructions. Given an executable file F we denote
with TextF ⊆ Loc the set of locations of the text section of F and with InstrF ⊆ TextF the set of all and only
the locations of the text section that contain the hexadecimal encoding of instructions of F . Thus, the precise
disassembly of an executable F is defined as:

Disassembly(F ) def� StaticDisF (InstrF )

where function StaticDisF : ℘(TextF )→ ℘(Loc × I) is defined as follows:

StaticDisF (X ) � {
decode(x ,mem(x ))

∣
∣ x ∈ X

}

It is clear that, the main challenge of a static disassembly algorithm is to extract from an executable file F the set
InstrF of locations where instructions are really encoded. In general, a static disassembly algorithmwill extract a
sound approximation of InstrF , namely a superset of InstrF . This means that we can associate with each static
disassembly algorithm a closure operator that models how the considered disassembly approximates the set of
locations that are assumed to contain the encoding of instructions. Let η ∈ uco(℘(TextF )) be the approximation
of InstrF associated to a static disassembly algorithm. Then, this algorithm computes a precise disassembly of
an executable file F when StaticDisF (InstrF ) � StaticDisF (η(InstrF )), namely when 〈id, η〉 isB-complete
for the computation of function StaticDisF . Observe that we have B-completeness when η abstracts the set
InstrF by adding locations x ∈ TextF�InstrF such that mem(x ) � ⊥, since in this case decode(x ,⊥) � ∅
and this does not affect the result of disassembly. Of course we have precision when η � id.

Proposition 4.10 Given a static disassembly algorithm A and an executable file F , let ηA ∈ uco(℘(TextF )) be the
closure operator that models how disassembly A approximates the locations that should contain the encoding of
instructions of F , and let id ∈ uco(℘(Loc × I)). Then, algorithm A computes a precise disassembly of F if and only
if the domains 〈id, ηA〉 are B-complete for the computation of function StaticDisF .

Proof Trivial by definition. �
The following result shows that the loss of precision in the static disassembly algorithms is due to junk inserted

in locations of the text section, where the algorithms are supposed to find the encoding of instructions.

Proposition 4.11 Given a static disassembly algorithm A and an executable file F , let ηA ∈ uco(℘(TextF )) be the
closure operator that models how disassembly A approximates the locations that should contain the encoding of
instructions of F , and let id ∈ uco(℘(Loc × I)). Then, algorithm A computes a precise disassembly of F if and only
if ∀ x ∈ ηA(InstrF )�InstrF : mem(x ) � ⊥.
Proof From Proposition 4.10 we have that algorithm A computes a precise disassembly of F if and only if
StaticDisF (InstrF ) � StaticDisF (ηA(InstrF )). Recall that decode(x ,⊥) � ∅ and that in general InstrF ⊆
ηA(InstrF ). Thus, StaticDisF (InstrF ) � StaticDisF (ηA(InstrF )) holds if and only if InstrF
� {

x ∈ TextF
∣
∣mem(x ) �� ⊥}

, namely if ∀ x ∈ ηA(InstrF )�InstrF : mem(x ) � ⊥. �

This precisely means that, in order to induce imprecision in the result of a static disassembly algorithm, it is
sufficient to add noise (junk) exactly to thosememory locations that are supposed to contain an instruction encod-
ing, but which do not really contain such encodings. These location are those in ηA(InstrF )�InstrF , added
by the approximation induced by the considered static disassembly algorithm. Indeed, StaticDisF (InstrF ) ��
StaticDisF (ηA(InstrF ))when∃x ∈ ηA(InstrF )�InstrF such thatmem(x ) �� ⊥, namelydecode(x ,mem(x )) ��
∅.

Observe that, the closure operator associated with linear sweep algorithm is ηLS ∈ uco(℘(TextF )) such
that ηLS(X ) � TextF for every X ∈ ℘(TextF ). This precisely models the fact that the linear sweep algorithm
approximates InstrF with the entire text section. It is possible to prove that the B-incomplete compressor of
StaticDisF with respect to (id, id) is precisely ηLS, namely the algorithm of linear sweep. This means that, as
expected, the linear sweep algorithm induces the coarsest approximation of InstrF thus inducing themaximal
loss of precision in presence of junk added in the text section.
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Proposition 4.12 URB
StaticDisF ,id(id) � ηLS ∈ ℘(TextF ).

Proof Observe that function StaticDisF has inverse StaticDis−1F : ℘(Loc × I) → ℘(TextF ) defined as:
StaticDis−1F (Y ) � {

x
∣
∣ (x , I ) ∈ Y

}
. We have to show thatURB

StaticDisF ,id(id) � ηLS. By definition we have that:

URB
StaticDisF ,id(id) �M

⎛

⎝Mirr

⎛

⎝id �M
⎛

⎝
⋃

y∈id
StaticDis−1F (↓ y)

⎞

⎠

⎞

⎠ �M

⎛

⎝
⋃

y∈id
StaticDis−1F (↓ y)

⎞

⎠

⎞

⎠

It is clear that id is the most concrete closure and therefore:

M

⎛

⎝Mirr

⎛

⎝id �M
⎛

⎝
⋃

y∈id
StaticDis−1F (↓ y)

⎞

⎠

⎞

⎠ �M

⎛

⎝
⋃

y∈id
StaticDis−1F (↓ y)

⎞

⎠

⎞

⎠

�M

⎛

⎝Mirr(id)�M

⎛

⎝
⋃

y∈id
StaticDis−1F (↓ y)

⎞

⎠

⎞

⎠

by definition of meet-irreducible elements we have that:

M

⎛
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Function StaticDis−1F is monotone and therefore:
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Since we consider every possible element of ℘(Loc × I) we have that for every meet-irreducible element X of
℘(TextF ) there exist an element y ∈ ℘(Loc × I) such that StaticDis−1F (y) � X , thus:

M

⎛

⎝
{
TextF�{x } ∣∣ x ∈ TextF

}
�M

⎛

⎝
⋃

y∈id
StaticDis−1F (y)
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⎞

⎠ �M(∅)

By definition of Moore closure we have that M(∅) � λX .TextF and by definition this closure is precisely ηLS,
and this concludes the proof. �
Corollary 4.13 Let O be an obfuscating technique that adds junk in the locations of the text section that do not
encode instructions, let S be the StaticDisF function then:

PotO,S �
{
A

∣
∣ id � A � ηLS

}

Indeed, the above result proves that all the static disassembly algorithms whose characterising closure ηA ∈
uco(℘(TextF )) is such that id � ηA � ηLS produces an imprecise disassembly when junk is inserted in the
locations of the text section that do not encode instructions. In other words the obfuscation that inserts junk
in the text section is potent with respect to all the static disassembly algorithms that induce an approxiamtion
of InstrF between id(InstrF ) excluded and ηLS(InstrF ) included. Observe, for example, that the closure
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operator ηRT ∈ uco(℘(TextF )) associated to the recursive traversal static disassembly algorithm is such that
id � ηRT � ηLS, meaning that the obfuscation that inserts junk in the text section is potent also with respect to
the recursive traversal algorithm, which is however more precise than linear sweep.

5. Discussion: towards incompleteness driven obfuscation design

We introduced the notion of incomplete compressor for an abstract domain and proved that, under non-restrictive
hypotheses, it inducesmaximal incomplete abstract interpretations. The incomplete compression provides an ade-
quate model for formally characterising the potency of an obfuscating program transformation. In particular,
the incomplete compression removes precisely those elements of the abstract domain which are necessary to
achieve a precise (complete) abstract interpretation of the program. These elements drive the construction of the
obfuscating transformation. The idea is that the obfuscation should make the original abstract interpretation of
the transformed program as imprecise as if we perform the abstract interpretation of the source code on the com-
pressed abstract domain. This is what we observed in the obfuscation of program slicing and static disassembly,
as shown in Sect. 4, where the domain compression corresponds respectively to augment dependencies and add
junk instructions in specific locations. These features can be injected by simple program transformations which
obfuscate the code making program slicing and code disassembly ineffective.

This idea can be partially automated in combination with the definition of obfuscating transformers as spe-
cialised interpreters, as introduced in [JGM12]. The obfuscating transformation is here the result of the specialisa-
tionof an interpretermodified inorder to induce incompleteness.Correctness is ensuredhere by thefirstFutamura
projection [JGS93], while obfuscation is given by distorting the interpreter. An interpreter is a self-interpreter
if it written precisely in the interpreted language. This choice is connected with the process of specialization.
Indeed, specialization (also known as partial evaluation) means to partially evaluate a program on some known
inputs, namely the specialised program [JGS93] is precisely the same but with some instantiated computations.
Hence, an interpreter specialised on a program is precisely the interpreter where all the computations concerning
the input program are instantiated. Suppose that the program to obfuscate is written in the language L, then
if we want the obfuscated program (i.e., the specialised interpreter) to be written in the same language L, then
the interpreter interp has to be written precisely in L, namely it has to be a self-interpreter.7 The obfuscation
of P can be obtained by modifying the self-interpreter interp in order to force abstract interpretation to deal
with operations that induce incompleteness in the attacker. This yields, by specialization, a modified program
P′ :� �spec�(interp+, P) which is precisely the obfuscation of P. The incomplete compressor suggests here a
way to design interp+: The information removed by the compressor is precisely the noise that interp+ has to
introduce in the interpretation of P. Although intuitively clear, a calculational design (in the style of [Cou99]) of
the distorted interpreter interp+ from the incomplete compressor of the attacker is still a major challenge in
fully automating the design of obfuscators.
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