
DOI 10.1007/s00165-016-0372-4
BCS © 2016
Formal Aspects of Computing (2016) 28: 597–613

Formal Aspects
of Computing

On the expressive power of behavioral profiles
Artem Polyvyanyy1, Abel Armas-Cervantes2,∗, Marlon Dumas2 and
Luciano Garcı́a-Bañuelos2
1 Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia
2 Institute of Computer Science, University of Tartu, Tartu, Estonia

Abstract. Behavioral profiles have been proposed as a behavioral abstraction of dynamic systems, specifically
in the context of business process modeling. A behavioral profile can be seen as a complete graph over a set
of task labels, where each edge is annotated with one relation from a given set of binary behavioral relations.
Since their introduction, behavioral profiles were argued to provide a convenient way for comparing pairs of
process models with respect to their behavior or computing behavioral similarity between process models. Still,
as of today, there is little understanding of the expressive power of behavioral profiles. Via counter-examples,
several authors have shown that behavioral profiles over various sets of behavioral relations cannot distinguish
certain systems up to trace equivalence, even for restricted classes of systems represented as safe workflow nets.
This paper studies the expressive power of behavioral profiles from two angles. Firstly, the paper investigates
the expressive power of behavioral profiles and systems captured as acyclic workflow nets. It is shown that for
unlabeled acyclic workflow net systems, behavioral profiles over a simple set of behavioral relations are expressive
up to configuration equivalence. When systems are labeled, this result does not hold for any of several previously
proposed sets of behavioral relations. Secondly, the paper compares the expressive power of behavioral profiles
and regular languages. It is shown that for any set of behavioral relations, behavioral profiles are strictly less
expressive than regular languages, entailing that behavioral profiles cannot be used to decide trace equivalence
of finite automata and thus Petri nets.

Keywords: Behavioral profile, Expressive power, Behavioral equivalence, Behavioral abstraction, Dynamic sys-
tem, Regular language

1. Introduction

Behavioral profiles [WMW11a, WPMW11] are behavioral abstractions of process models that have been widely
applied in the context of behavioral comparison, similarity search, and compliance checking [WPDM10,
KWW11, WMW11a, WMW11b, WPD+11]. In a nutshell, a behavioral profile of a process model is
a complete graph over the set of task labels of the model in which edges are labeled by binary behavioral
relations, e.g., causality or conflict. Alternatively, a behavioral profile can be seen as a square matrix where rows
and columns represent task labels and each cell is labeled by a binary behavioral relation.

Correspondence and offprint requests to: A. Polyvyanyy, E-mail: artem.polyvyanyy@qut.edu.au.
∗ Since 2016, Abel Armas-Cervantes is with Queensland University of Technology

http://crossmark.crossref.org/dialog/?doi=10.1007/s00165-016-0372-4&domain=pdf

598 A. Polyvyanyy et al.

(a) Net system S1 (b) Classic behavioral profile

Fig. 1. A net system (a) and its classic behavioral profile (b)

For example, Fig. 1 shows a process model captured as a Petri net system along with the matrix-based
representation of its behavioral profile defined over the three binary behavioral relations proposed in [WMW11a]:
(i) strict order “�→” between two task labels denotes that one task label always occurs before the other task label
in computations of the model, (ii) exclusiveness “+” signifies that two given task labels never occur together in
computations of the model, and (iii) interleaving “|||” indicates that a given pair of task labels is neither in the
strict order, nor in the inverse strict order, nor in the exclusiveness relation (the task labels may occur in any order
in computations of the model). In an extended version of behavioral profiles [WPMW10, WPMW11], a fourth
behavioral relation of co-occurrence “�” is introduced, stressing the fact that the notion of behavioral profile is
independent of a specific set of relations. Two task labels are co-occurring, if every computation of the model
that contains the first label also contains the second label. The introduction of the co-occurrence relation in
behavioral profiles allows capturing optionality and causality on task labels [WPMW11]. Hereinafter, behavioral
profiles defined over the behavioral relations proposed in [WMW11a] and [WPMW11] are referred to as classic
and causal behavioral profiles, respectively.

It has been suggested that the problem of behavioral comparison of process models can be reduced to com-
parison of their behavioral profiles [KWW11]. Given that nodes of every behavioral profile have distinct task
labels (no duplicates allowed), the comparison trivially reduces to matrix equality checking, provided that the
rows and columns of both matrices follow the same order on task labels. This property gives a convenient basis
for computing behavioral similarity between pairs of process models. However, as of today, the expressive power
of behavioral profiles is not well understood [WMW11b]. Counter-examples have been put forward showing that
two process models with identical behavioral profiles (defined over the three behavioral relations listed above)
may be not trace equivalent [Eng85], i.e., may define different sets of computations.

This paper studies the expressive power of behavioral profiles defined over different repertoires of behavioral
relations. The paper shows that two systems captured as acyclic unlabeled workflow nets that have identical
behavioral profiles over a repertoire of only two behavioral relations are configuration equivalent [vGG89].
However, this result no longer holds for labeled systems, even for behavioral profiles defined over behavioral
relations introduced in [WMW11a, WPMW11] or a wider array of behavioral relations proposed in [PWC+14].
Having put into evidence the limitations of behavioral profiles for acyclic workflow nets under configuration
equivalence, the paper then studies the expressive power of behavioral profiles over aweaker notion of equivalence
namely trace equivalence, or language equivalence. Thepaper shows that behavioral profiles are “lossy” for the class
of regular net systems, i.e., Petri net systems that recognize regular languages. In other words, two such systems
may recognize different (regular) languages, yet have identical behavioral profiles. Importantly, this result holds
regardless of over which finite repertoire of behavioral relations (and of which arity) these behavioral profiles are
defined.

This paper is a revised and extended version of our previous work reported in [ADGP]. The main additional
result included in this paper is concerned with the comparison of the expressive powers of behavioral profiles and
regular net systems. In addition, this paper proposes a new definition of a behavioral profile that conveniently
abstracts from the repertoire of behavioral relations and their arity.

The rest of the paper is structured as follows. Section 2 states preliminary notions that are used in subsequent
discussions. Section 3 proposes a new definition of a behavioral profile that generalizes all the existing similar
definitions. Section 4 studies the expressive power of behavioral profiles for the class of workflow net systems—a

On the expressive power of behavioral profiles 599

special class of Petri net systems that is widely used to encode business processes [vdA00]; this section focuses
on acyclic systems under the notion of configuration equivalence. Section 5 investigates the expressive power of
behavioral profiles for a larger class of regular net systems under trace equivalence. Finally, Sect. 6 summarizes
the contributions and outlines directions for future work.

2. Preliminaries

This section introduces Petri nets in general and two specific classes of nets, namely workflow nets, which is a class
of nets that are traditionally used to model business processes, and flow nets, which is a class of nets that is used in
this paper to analyze the expressive power of behavioral profiles. The section also introduces an alternative model
of concurrency, called flow event structure, which is used in the subsequent discussions to establish a formal link
between behavioral profiles and flow nets.

2.1. Petri nets

A Petri net is a mathematical formalism for the description of concurrent systems [Mur89].

Definition 2.1 (Petri net) A (labeled) Petri net, or a net, is a 5-tuple N :� (P ,T ,F ,�, λ), where P is a finite set
of places, T is a finite set of transitions, F ⊆ (P × T) ∪ (T × P) is the flow relation, � is a set of labels (P ,T ,
and � are pairwise disjoint), and λ : T →� ∪ {τ } is a function that maps transitions of N to labels, where τ is a
special label, τ 	∈�. �
Places and transitions are conjointly referred to as nodes of the net. We write •y :� {x ∈ P ∪T | (x , y) ∈ F } and
y• :� {z ∈ P ∪ T | (y, z) ∈ F } to denote the preset and postset of a node y ∈ P ∪ T , respectively.

Transitions of Petri nets are used to encode actions/tasks. It is often convenient to distinguish between observ-
able and silent transitions to denote tasks that have a well-defined meaning in the problem domain and tasks that
have no domain interpretation, respectively. If λ(t) � τ , where t ∈ T , then t is said to be silent; otherwise t is
said to be observable. In the special case when λ is injective and its image does not contain τ , i.e., all transitions
are observable and ‘wear’ distinct labels, the net is referred to as unlabeled.

One can define the execution semantics of Petri nets in terms of markings.

Definition 2.2 (Marking) A marking of a net N :� (P ,T ,F ,�, λ) is a function M :P → N0 that maps places of
N to natural numbers. �
For a place p ∈ P , we say that markingM putsM (p) tokens at p. By abuse of notation, if a markingM puts one
token at a place p ∈ P and no tokens elsewhere then we denote the marking by [p]. A transition t ∈ T is enabled
in a markingM of N , denoted by (N ,M)[t〉, iff every input place of t contains at least one token, i.e., ∀ p ∈ •t :
M (p) > 0. If a transition t ∈ T is enabled in a markingM ofN , then t can occur, which leads to a fresh marking
M ′ ofN , whereM ′(p) � M (p)−1 if p ∈ •t\t•,M ′(p) � M (p)+1 if p ∈ t •\•t , andM ′(p) � M (p) otherwise. By
(N ,M)[t〉(N ,M ′),wedenote the fact that anoccurrenceof transition t leads frommarkingM tomarkingM ′ ofN .

A net system is a Petri net together with its initial marking.

Definition 2.3 (Net system) A net system is a pairS :� (N ,M), whereN is a net andM is the initialmarking ofN .�
By S, we denote the universe of net systems. Net systems have a well-established graphical notation. In
this notation, places and transitions are visualized as circles and rectangles, respectively. If a transition
is silent, then the corresponding rectangle is drawn empty. If a transition t ∈ T is observable, then
the corresponding rectangle contains label λ(t) within its boundaries. Every pair of nodes (x , y) in the
flow relation is depicted as a directed arc that leads from x to y . Finally, the initial marking is visu-
alized by drawing black dots inside places, i.e., for every place p ∈ P , M (p) black dots (tokens) are
placed inside the circle that represents p. For example, Fig. 1a shows a net system that can be formal-
ized as a pair (N ,M), N :� (P ,T ,F ,�, λ), where P :� {p1, p2, p3, p4, p5, p6}, T :� {t1, t2, t3, t4, t5},
F :� {(p1, t1), (t1, p2), (t1, p3), (p2, t2), (p2, t5), (p3, t3), (t2, p4), (t5, p4), (t3, p5), (p4, t4), (p5, t4), (t4, p6)}, � :�
{a, b, c, d, e}, λ :� {(t1,a), (t2,b), (t3,c), (t4,d), (t5,e)}, and M :� {(p1,1), (p2,0), (p3,0), (p4,0), (p5,0), (p6,0)}.
Note that the net in Fig. 1a can be referred to as unlabeled, as its transitions ‘wear’ distinct labels.

Let A be a set of elements. Then, by σ :� 〈a1, a2, . . . , an 〉 ∈ A∗, n ∈ N0, we denote a sequence of length n
over A, where ai ∈ A, i ∈ [1..n]. The empty sequence, i.e., the sequence without elements, is denoted by 〈〉.

600 A. Polyvyanyy et al.

(a) WF-net system S2 (b) WF-net system S3

Fig. 2.WF-net systems

Definition 2.4 (Occurrence sequence, execution) Let S :� (N ,M0), N :� (P ,T ,F ,�, λ), be a net system.

• A sequence of transitions σ :� 〈t1, t2, . . . , tn 〉 ∈ T ∗ is an occurrence sequence in S iff σ is empty or
there exists a sequence of markings 〈M0,M1, . . . ,Mn 〉, such that for every position i ∈ [1..n] in σ it holds
that (N ,Mi−1)[ti 〉(N ,Mi); in the latter case we say that σ leads from M0 to Mn and denote this fact by
(N ,M0)[σ 〉(N ,Mn).

• AmarkingM is reachable in S , denoted byM ∈ [S 〉, iffM � M0 or there exists an occurrence sequence σ in
S that leads from M0 to M .

• A markingM of N is terminal iff for every transition t ∈ T it holds that t is not enabled in M .
• An occurrence sequence σ in S that leads to a terminal marking is called an execution of S . �

For example, 〈t1, t5〉 and 〈t1, t3, t2, t4〉 are two occurrence sequences in net system S1 from Fig. 1a, whereas the
latter sequence is also an execution of S1. Given a net system S , by �(S) and �(S) we denote the set of all
occurrence sequences in S and the set of all executions of S , respectively.

2.1.1. Workflow nets

Workflow nets, or WF-nets, is a class of Petri nets that is widely used in the context of business process model-
ing [vdA97]. Every WF-net has a dedicated source place, a dedicated sink place, and every its transition is on a
directed path from the source to the sink.

Definition 2.5 (WF-net, WF-net system) A Petri net N :� (P ,T ,F ,�, λ) is a workflow net, or a WF-net, iff N
has a dedicated source place i ∈ P , with •i � ∅, N has a dedicated sink place o ∈ P , with o• � ∅, and the
short-circuit net N ∗ :� (P ,T ∪ {t∗},F ∪ {(o, t∗), (t∗, i)}) of N is strongly connected, where t∗	∈T is a fresh tran-
sition. A workflow system, or aWF-net system, is a pair (N ,Mi), whereN is aWF-net with the source place i and
Mi � [i]. �

Commonly adopted criteria for correctness of WF-net systems are soundness and safeness [vdA00]. A sound
WF-net system guarantees that every execution ends with one token in the sink place and no tokens elsewhere.

Definition 2.6 (Liveness, boundedness, safeness, soundness) LetS :� (N ,M),N :� (P ,T ,F ,�, λ), be a net system.

• S is live iff for every reachable marking M ′ ∈ [S 〉 and for every transition t ∈ T there exist a marking
M ′′ ∈ [(N ,M ′)〉 such that (N ,M ′′)[t〉.

• A marking M ′ of N is n-bounded, n ∈ N0, iff for every place p ∈ P it holds that M ′(p) ≤ n. S is said to be
bounded iff there exists a number n ∈ N0, such that all reachable markings in S are n-bounded.

• S is safe if all its reachable markings are 1-bounded. Note that one can identify a 1-safe marking M ′ of N as
the set of places {p ∈ P | M ′(p) � 1}.

A WF-net system (N ,Mi) is sound iff the net system (N ∗,Mi), where N ∗ is the short-circuit net of N , is live and
bounded. �

Figures 1a, 2a, and 2b show WF-net systems. For example, the system in Fig. 1a has one dedicated source place
p1, one dedicated sink place p6, and every its node is on a directed path from p1 to p6. The systems in Figs. 1a, 2a
are safe and sound, whereas the system in Fig. 2b is 2-bounded and not sound.

On the expressive power of behavioral profiles 601

2.1.2. Flow nets

Flow nets are a special class of Petri nets, which have the property that their partial order semantics can be given
in terms of occurrence sequences [Bou90]. Flow nets impose two semantic restrictions. Firstly, flow net systems
are semantically acyclic. Intuitively, this means that a token cannot be put at a place which is in the preset of a
transition that has already fired. Thus, every place cannot be marked more than once during an execution of a
flow net system and all transitions in any occurrence sequence are distinct. For example, net system S2 in Fig. 2a
is not a flow net system since it violates the aforementioned restriction. Specifically, place p4 is marked three times
during execution 〈t1, t2, t3, t4〉, as transitions t2 and t3 put a token back at p4.

In the context of flow net systems, the notion of a causal dependency between transitions can be defined
w.r.t. places. In particular, a transition tj causally depends on a transition ti if (i) there exists a place p between
them, and (ii) whenever both ti and tj occur in an occurrence sequence, then ti is the only transition that puts
a token at p; p is said to be a strong postcondition of ti . The notion of a causal dependency between transitions
leads to the second semantic restriction of flow nets, which states that whenever there is a place between a pair of
transitions, then there is also a strong postcondition between them. Figure 2b shows an example of a net system
that violates the second restriction since there is no strong postcondition, neither between t2 and t4, nor between
t3 and t4. Hence, whenever both t2 and t3 occur, it is not possible to know which of them precedes the occurrence
of transition t4, thus the causal dependency between them cannot be determined. It is easy to check that net
system S1 in Fig. 1a is a flow net system, as it satisfies both stated requirements. Before presenting the definition
of flow net systems, we formally define the notion of a strong postcondition to complement the above informal
description.

Definition 2.7 (Strong postcondition, cf. [Bou90]) A place p ∈ P of a net system S :� (N ,M), N :�
(P ,T ,F ,�, λ), is a strong postcondition of a transition t ∈ T iff p ∈ t•, and for every occurrence sequence
σ :� 〈t1, . . . , tn 〉 ∈ �(S), n ∈ N, in which t occurs, i.e., t � tj , for some j ∈ [1..n], only t can mark p,
i.e., M (p) +

∑
1≤j≤n | tj • ∩ {p} | � 1. �

Finally, a flow net system is defined as follows.

Definition 2.8 (Flow net, flow net system, cf. [Bou90]) A net system S :� (N ,M), N :� (P ,T ,F ,�, λ), is a flow
net system and N is a flow net iff for every occurrence sequence σ :� 〈t1, . . . , tn 〉 ∈ �(S), n ∈ N, and for every
i , j ∈ [1..n], such that i < j , it holds that:

1. a place p ∈P is in the preset of at most one transition of σ , i.e., •ti ∩ •tj �∅, and
2. if ti • ∩ •tj 	� ∅ then there exists p ∈ ti • ∩ •tj , such that p is a strong postcondition of ti . �
An alternative way to define the execution semantics of a net system is using the notion of a configuration. The
main difference between occurrence sequences and configurations is that the former are used to describe the
interleaving semantics, whereas the latter capture the partial order semantics of the system. A configuration of
a net system is a multiset of its transitions. A configuration induces the state during the execution of the system
which is reached after occurrences of all the instances of transitions in the configuration; note that in general a
transition can occur more than once in an execution of a net system. However, configurations of flow net systems
are sets because of their semantically acyclic nature [Bou90]. This fact is captured below.

Definition 2.9 (Flow net configuration) A configuration of a flow net system S :� (N ,M), N :� (P ,T ,F ,�, λ),
is a set C ⊆ T of transitions for which there exists an occurrence sequence σ :� 〈t1, . . . , tn 〉 ∈ �(S), n ∈ N0,
tj ∈ T , j ∈ [1..n], that consists of the transitions in C , i.e., it holds that C � {t1, . . . , tn}. �
We will denote the set of all configurations of a flow net system S by Conf (S).

For example, Fig. 3a and 3c show a flow net system and its configurations ordered by set inclusion, respec-
tively. Configurations can be used to define a well-known notion of behavioral equivalence in the spectrum of
true concurrency, called configuration equivalence [vGG89].1 Intuitively, two flow net systems are configuration
equivalent if they have the same configurations. Next, we give a formal form to this intuition.

1 The authors of [vGG89] use the term pomset-trace equivalence.

602 A. Polyvyanyy et al.

(a) Flow net system S4 (b) Flow net system S5

(c) Configurations of S4 and S5

Fig. 3. Flow net systems and their configurations ordered by set inclusion

Definition 2.10 (Configuration equivalence of flow net systems) Let S :� (N ,M), N :� (P ,T ,F ,�, λ), and
S ′ :� (N ′,M ′), N ′ :� (P ′,T ′,F ′,�′, λ′), be flow net systems. By S �conf S ′, we denote the fact that for every
configuration C of S there exists a configuration C ′ of S ′ such that there exists a bijection β : C → C ′ for
which it holds that λ(t) � λ

′(β(t)), t ∈ C . Flow net systems S and S ′ are configuration equivalent, denoted by
S ≈conf S ′, iff S �conf S ′ and S ′ �conf S . �
Note that flow net systems S4 and S5 shown in Fig. 3a and 3b, respectively, are configuration equivalent, as Fig. 3c
also shows all the configurations of S5.

2.2. Flow event structures

A flow event structure (FES) describes the behavior of a concurrent system, e.g., a net system, by means of events
(occurrences of tasks) and two binary behavioral relations on events.

Definition 2.11 (Labeled flow event structure) A (labeled) flow event structure (FES) is a 5-tuple F :� (E ,#,Î,
�, λ), where E is a set of events, # ⊆ E × E is the conflict relation,Î ⊆ E × E is the flow relation (# andÎ are
symmetric and irreflexive, respectively), � is a set of labels, and λ : E →� ∪{τ } is a function that maps events of
F to labels, where τ is a special label, τ 	∈�. �
Again, if λ(e) � τ , where e ∈ E , then e is said to be silent; otherwise e is observable.

Intuitively, the flow relation specifies possible immediate precedence of events, i.e., if two events e and e ′ are
in the flow relation (e Î e ′), then event e can potentially occur before e ′. The conflict relation represents mutual
exclusion of events, i.e., two events e and e ′ in the conflict relation (e#e ′) cannot occur together.

Similar to configurations of flow net systems, one can talk about configurations of FESs.

Definition 2.12 (FES configuration) A configuration of a FES F :� (E ,#,Î,�, λ) is a set of events C ⊆ E that
is conflict free, i.e., ∀ e, e ′ ∈ C :¬(e#e ′), has no flow cycles, i.e., the transitive closure of the restriction ofÎ to C
is a partial order, and for all events e ′ ∈C and e 	∈C such that eÎ e ′, it holds that there is an event e ′′ ∈C such
that e#e ′′ and e ′′Îe ′. �
We will denote the set of all configurations of a FES F by Conf (F).

On the expressive power of behavioral profiles 603

Fig. 4. FES E(S4) of the WF-flow net system in Fig. 3a

The notion of configuration equivalence, presented above for flow net systems, can be lifted to flow event
structures as follows.

Definition 2.13 (Configuration equivalence of flow event structures) Let F :� (E ,#,Î,�, λ) and F′ :� (E ′,#′,Î′,
�′, λ′) be flow event structures. By F �conf F′, we denote the fact that for every configuration C of F there exists
a configuration C ′ of F′ such that there exists a bijection β : C → C ′ for which it holds that λ(e) � λ′(β(e)),
e ∈ C . Flow event structures F and F′ are configuration equivalent, denoted by F ≈conf F′, iff F �conf F′ and
F′ �conf F. �
Figure 4 shows the FES representing the same set of configurations as the net system S4 in Fig. 3a; the config-
urations are shown in Fig. 3c. In this graphical notation, the letters represent events, the double-headed arrows
denote the flow relation and the annotated dotted lines denote the conflict relation. Observe that for every transi-
tion in S4 there is an event with the same label in the FES, and for every place between a pair of transitions there
is a flow relation between the corresponding events.

3. Behavioral profiles

This section contributes to the theory of behavioral profiles [WMW11a, WPMW11]. A behavioral profile gives
an alternative (declarative) characterization of a dynamic system. A behavioral profile of a system is a collection
of behavioral constraints (relations) on its action/task labels that the system must obey in its computations. In
the sequel, we propose a definition of a behavioral profile that can be seen as a generalization of all the existing
(to the best of our knowledge) similar definitions. We also demonstrate how the notion of a classic behavioral
profile [WMW11a] can be captured using the new formalism.

By ˜, we denote the universe of labels. Let S :� (N ,M), N :� (P ,T ,F ,�, λ), be a net system. Then,
labels(S) :� image(λ), where image(λ) is the image of the entire domain T of λ.

Definition 3.1 (Behavioral predicates and relations) An (n-ary) behavioral predicate, n ∈ N, is a set of pairs
π ⊆ {(S ,R) ∈ S× (˜n) | R ∈ (labels(S))n}. An (n-ary) behavioral relation, n ∈ N, of a net system S ∈ S induced
by an n-ary behavioral predicate π , denoted byR[S , π], is the set {R ∈ ˜n | (S ,R) ∈ π}. �
An example of a behavioral predicate is a weak order predicate proposed in [WMW11a].

Definition 3.2 (Weak order [WMW11a]) Theweak order behavioral predicate is the set of pairs≺ :� {(S , (α, β)) ∈
S×(˜2) | α, β ∈ labels(S) ∧ (∃ σ ∈�(S) ∃ i , j ∈ [1.. |σ|] : i < j ∧ λ(σi)�α ∧ λ(σj)�β)}. �
Clearly,≺ is a behavioral predicate. A repertoire of behavioral predicates� is a finite non-empty set of behavioral
predicates. Finally, a behavioral profile of a system induced by a repertoire of behavioral predicates is defined by
behavioral relations of the system induced by these predicates.

Definition 3.3 (Behavioral profile) A behavioral profile of a net system S ∈ S induced by a repertoire of behavioral
predicates �, denoted by R[S ,�], is a function that maps every behavioral predicate π ∈ � to its behavioral
relation of S induced by π , i.e., R[S ,�] :� {(π,R[S , π]) | π ∈ �}. �
In this light, the classic behavioral profile can be defined as follows.

Definition 3.4 (Classic behavioral profile [WMW11a]) The classic behavioral profile of a net systemS ∈ S, denoted
by BPc(S), is the behavioral profile of S induced by the repertoire of behavioral predicates � :� {←�, �→,+, |||},
i.e., BPc(S) :� R[S ,�], where:

• ←� :� {(S , (α, β)) ∈ S×(˜2) | (S , (α, β)) ∈ ≺ ∧ (S , (β, α)) 	∈ ≺ },

604 A. Polyvyanyy et al.

• �→ :� {(S , (α, β)) ∈ S×(˜2) | (S , (α, β)) 	∈ ≺ ∧ (S , (β, α)) ∈ ≺ },
• + :� {(S , (α, β)) ∈ S×(˜2) | (S , (α, β)) 	∈ ≺ ∧ (S , (β, α)) 	∈ ≺ }, and
• ||| :� {(S , (α, β)) ∈ S×(˜2) | (S , (α, β)) ∈ ≺ ∧ (S , (β, α)) ∈ ≺ }. �

For example, the classic behavioral profile of the Petri net system S in Fig. 1a is given by BPc(S) :�
{(←�, {(b, a), (c, a), (d, a), (d, b), (d, c), (d, e), (e, a)}), (�→, {(a, b), (a, c), (a, d), (a, e), (b, d), (c, d), (e, d)}),
(+, {(a, a), (b, b), (b, e), (c, c), (d, d), (e, b), (e, e)}), (|||, {(b, c), (c, b), (c, e), (e, c)})}.
Definition 3.5 (Basic repertoire of behavioral predicates) A repertoire of n-ary behavioral predicates �, n ∈ N, is
basic iff for every net system S ∈ S it holds that:

• for every two distinct behavioral predicates π1, π2 ∈ �, R[S , π1] and R[S , π2] are disjoint, and
• ⋃

π∈� R[S , π] � (labels(S))n . �
The repertoire of binary behavioral predicates � :� {←�, �→,+, |||}, refer to Definition 3.4, is basic [WMW11a].

As pointed out in the Introduction, a behavioral profile of a net system induced by a basic repertoire of
behavioral predicates can be visualized as a square matrix where rows and columns represent task labels and each
cell is labeled by the respective behavioral relation. Recall that Fig. 1b encodes the classic behavioral profile of
the net system in Fig. 1a.

4. Behavioral profiles and equivalence preservation

The section starts with the definition of the equivalence preservation property on repertoires of behavioral predi-
cates. This property is used in Sect. 4.2 to study the expressive power of classic behavioral profiles w.r.t. configu-
ration equivalence ofWF-flow net systems. AWF-flow net is a flow net that can be used to define a soundWF-net
system, e.g., the two WF-nets in Fig. 3 are WF-flow nets. Finally, Sect. 4.3 collects and discusses limitations of
behavioral profiles.

4.1. Equivalence preserving repertoires of behavioral predicates

It is well-accepted that the expressive power of a modeling language for capturing dynamic systems should be
defined with respect to a notion of (behavioral) equivalence. In the context of dynamic systems, there are several
such notions, which are broadly classified into two categories: equivalences that are based on the interleaving
semantics and those based on the true concurrency semantics, cf. [vG90, vGG89, vGG01, PWW12] for details.

Given that behavioral profiles do not have execution semantics per se, when studying their expressive power,
one cannot directly reuse existing equivalences. To this end, we introduce the notion of equivalence preservation,
which is a property on a repertoire of behavioral predicates.

Definition 4.1 (Equivalence preserving repertoire of behavioral predicates) Let S′ ⊆ S be a class of net systems
and let ≈ be an equivalence relation on S′. A repertoire of behavioral predicates � preserves ≈ on S′ iff for all
S ,S ′ ∈ S′ it holds that:

R[S ,�] � R[S ′,�] ⇔ S ≈ S ′. �
Intuitively, a repertoire of behavioral predicates preserves an equivalence on a class of net systems iff equivalent
systems imply equal behavioral profiles of these systems induced by the behavioral predicates, and vice versa.

4.2. Behavioral profiles and WF-flow nets

In [Bou90], the author shows that FESs correspond to the family of flow net systems. Specifically, it is always
possible to compute a FES of a given flow net system, where configurations of the FES can be derived from
occurrence sequences in the system. Next, we show how to construct a FES of a WF-flow net system.

Definition 4.2 (FES of a WF-flow net system) The FES of a WF-flow net system S :� (N ,M) ∈ S, N :�
(P ,T ,F ,�, λ), denoted by E(S), is the FES (T ,#,Î,�, λ), where for every t, t ′ ∈ T it holds that:

• t#t ′ ⇔def ∀ C ∈ Conf (S) : {t, t ′} 	⊆ C , and
• t Î t ′ ⇔def ¬(t#t ′) ∧ t • ∩ •t ′ 	� ∅. �

On the expressive power of behavioral profiles 605

Fig. 5. FES E(S5) of the WF-flow net system in Fig. 3b

Furthermore, occurrence sequences in a flownet system induce configurations of the correspondingFES, and vice
versa. The following proposition restates one result from [Bou90] for the set of unlabeled WF-flow net systems.

Proposition 4.3 (Configurations of flow net systems and FESs, cf. [Bou90]) If F :� E(S) is a FES of an unlabeled
WF-flow net system S , then it holds that Conf (S) � Conf (F). �
A direct consequence of Proposition 4.3 is that two configuration equivalent WF-flow net systems induce con-
figuration equivalent FESs. This is captured in the following corollary.

Corollary 4.4 (FES, WF-flow nets and configuration equivalence) If F :� E(S) and F′ :� E(S ′), where S and S ′
are unlabeled WF-flow net systems, then it holds that:

S ≈conf S ′ ⇔ F ≈conf F′. �
The relation between the two formalisms, i.e., FESs andWF-flow net systems, demonstrates that the behavior of
a WF-flow net system can be encoded using two binary relations. These relations can be employed to induce a
new type of behavioral profiles.

Definition 4.5 (FES behavioral profile) Let S∗ ⊂S be the set of all unlabeled WF-flow net systems and let S ∈S∗,
where S :� (N ,M) and N :� (P ,T ,F ,�, λ). The FES behavioral profile of S , denoted by BPfes(S), is the
behavioral profile induced by the repertoire of behavioral predicates � :� {#,Î}, i.e., BPfes(S) :� R[S ,�],
where:

• # :�{(S , (α, β))∈S∗× (˜2) | ∃ t1, t2 ∈ T ∀C ∈Conf (S) : ({t1, t2} 	⊆ C ∧ λ(t1) � α ∧ λ(t2) � β)},
• Î :�{(S , (α, β))∈S∗×(˜2) | ∃ t1, t2 ∈ T ∃ C ∈Conf (S) : ({t1, t2} ⊆ C ∧ t1•∩•t2 	� ∅ ∧ λ(t1)�α ∧ λ(t2)�β)}.

�
The notion of a configuration of a FES can be applied directly over the BPfes , such that any conclusion (w.r.t.
behavior) derived from theBPfes (S) holds in the corresponding unlabeledWF-flow net system S . Note thatBPfes

is not a basic repertoire of behavioral predicates since there can be pairs of labels (events in the FES) neither in
flow nor in conflict relation, i.e.,

⋃
π∈{#,Î} R[S , π] 	� (labels(S))2. Indeed, the flow relations of two configuration

equivalent unlabeled WF-flow net systems can be different. This fact will be made obvious after the following
proposition, which shows that all the places, except for the source and sink place, in a WF-flow net system are
strong postconditions of some transitions and thus induce flow relations.

Proposition 4.6 (Strong postconditions and WF-flow net systems) Let S :� (N ,M), N :� (P ,T ,F ,�, λ), be a
WF-flow net system and let σ :� 〈t1, . . . , tn 〉 ∈ �(S), n ∈ N, be an execution of S . A place p ∈ ti• ∩ •tj is a strong
postcondition of ti , where 1 ≤ i , j ≤ n. �
The proof of Proposition 4.6 follows immediately from Definition 2.8.

Consider unlabeled WF-flow net systems S4 and S5 in Fig. 3a and 3b, respectively. Figs. 4 and 5 show FESs
of S4 and S5, respectively. The two FESs are clearly not isomorphic since E(S4) has a flow relation between a and
e that is not present in E(S5), while E(S5) has a flow relation between b and f that is not present in E(S4). Yet,
they encode the same set of configurations (those shown in Fig. 3c). The differences in the flow relations between
the FESs of S4 and S5 are translated into differences in the Î relations of BPfes (S4) and BPfes (S5). Hence, the
repertoire of behavioral predicates {Î,#} does not preserve configuration equivalence for the class of unlabeled
WF-flow net systems.

We now turn our attention to the behavioral predicates of classic behavioral profiles and show that preserve
configuration equivalence on unlabeled WF-flow net systems. We start by defining the structural strict order
relation between a pair of transitions in an unlabeled WF-flow net system.

606 A. Polyvyanyy et al.

Definition 4.7 (Structural strict order) Let S :� (N ,M), N :� (P ,T ,F ,�, λ), be a net system. The structural
strict order behavioral predicate is the set of pairs � :� {(S , (α, β)) ∈ �→ | ∃ σ ∈�(S) ∃ i , j ∈ [1.. |σ |] : λ(σi)�
α ∧ λ(σj)�β ∧ σi • ∩ • σj 	� ∅}, where �→ is defined in Definition 3.4. �
Intuitively, two task labels are in structural strict order relation if the transitions ‘wearing’ these labels have a place
between them and one occurs before the other in all the occurrence sequences.

Definition 4.8 (Classic FES behavioral profile) The classic FES behavioral profile of a net system S ∈ S, denoted
by BPc

fes (S), is the behavioral profile of S induced by the repertoire of behavioral predicates � :� {�,⊕},
⊕ :� {(S , (α, β)) ∈ + | α, β ∈ labels(S) ∧ α 	� β}, where � and + are defined in Definitions 4.7 and 3.4,
respectively, i.e., BPc

fes (S) :� R[S ,�]. �

The next proposition shows that given an unlabeled WF-flow net system S , it holds that BPfes (S) � BPc
fes (S), if

we assume the correspondence between ⊕ and # and between � and Î.

Proposition 4.9 (BPfes and BPc
fes) Let S be an unlabeled WF-flow net system. Then, it holds that BPfes (S) �

BPc
fes (S), where BP

fes (S) :� R[S , {#,Î}] and BPc
fes (S) :� R[S , {�,⊕}], i.e., for any two labels α, β ∈ labels(S)

it holds that:

• (S , (α, β)) ∈ # ⇔ (S , (α, β)) ∈ ⊕, and
• (S , (α, β)) ∈ Î ⇔ (S , (α, β)) ∈ � . �

ProofWithout loss of generality, and since S is unlabeled, assume t, t ′ ∈ T are the only transitions with labels α
and β, respectively, i.e., λ(t) � α and λ(t ′) � β. Consider the following cases.

1. (S , (α, β)) ∈ ⊕ ⇔ (S , (α, β)) ∈ #.
(⇒) By the definition of ⊕, we know that α 	� β, which implies t 	� t ′, and (S , (α, β)) ∈ +. Additionally, by
the definition of + (Definition 3.4) in BPc , we have that (S , (α, β)) 	∈ ≺∧ (S , (β, α)) 	∈ ≺. Given that α and
β are not in weak order ≺, there is no sequence where both t and t ′ occur, i.e., � σ ∈�(S) ∃ i , j ∈ [1.. |σ |] :
i < j ∧ ((σi � t ∧ σj � t ′) ∨ (σi � t ′ ∧ σj � t))), see Definition 3.2. Therefore, there is no configuration C
in the WF-flow net system (Definition 2.9) with transitions ti , tj ∈ C : ti � t ∧ tj � t ′, and so t#t ′, which
leads to the desired results: (S , (λ(t), λ(t ′))) � (S , (α, β)) ∈ #.
(⇐) The inverse case clearly follows fromDefinition 4.2. I.e., t, t ′ ∈ T : t#t ′ ⇔ ∀ C ∈ Conf (S) : {t, t ′} 	⊆ C ,
thus there is no σ ∈ �(S) : ∃ i , j ∈ [1.. |σ |] : i < j ∧ ((σi � t ∧ σj � t ′) ∨ (σi � t ′ ∧ σj � t)). Hence,
(S , (λ(t), λ(t ′))) � (S , (α, β)) ∈ +. Finally, given that t 	� t ′, it also holds that (S , (λ(t), λ(t ′))) � (S , (α, β)) ∈
⊕ as desired.

2. (S , (α, β)) ∈� ⇔ (S , (α, β)) ∈Î.
(⇒) According to the definition of structural strict order �, Definition 4.7, ∃ σ ∈�(S) ∃ i , j ∈ [1.. |σ|] : σi �
t ∧ σj � t ′ ∧ t • ∩ • t ′ 	� ∅. Given that t • ∩ • t ′ 	� ∅, by Proposition 4.6, ∃p ∈ t • ∩ • t ′ which is a strong
postcondition of t . Thus, by Definition 4.2, we have that t Î t ′ in E(S) and (S , (λ(t), λ(t ′))) � (S , (α, β)) ∈Î
in BPfes (S), as required.
(⇐) Suppose (S , (α, β)) ∈Î in BPfes (S), but (S , (α, β)) 	∈�. By Definition 4.2, given that (S , (α, β)) ∈Î then
t • ∩ • t ′ 	� ∅ and (S , (α, β)) 	∈ #. Note that if (S , (α, β)) 	∈� then (S , (α, β)) 	∈�→, see Definition 4.7, and
since (S , (α, β)) 	∈ # then (S , (α, β)) 	∈ ⊕—see previous case. Furthermore, given that the classic behavioral
profile is basic, it holds that (S , (β, α)) ∈≺, such that (S , (α, β)) ∈ �→or (S , (α, β)) ∈ |||. Hence, there is at least
an occurrence sequence where t ′ occurs before t , i.e., σ ∈ �(S) ∃ i , j ∈ [1.. |σ |] : j < i ∧ σj � t ′ ∧ σi � t .
Moreover, there is a strong postcondition p of t (see Proposition 4.6) between t and t ′ since (S , (α, β)) ∈Î.
However, p ∈ •t ′ and p can be only marked by t , thus if (S , (β, α)) ∈≺ then ∃k ∈ [1.. |σ|] : k < j ∧ σk � t .
The last contradicts the fact that S is a WF-flow net system, because σ would have 2 occurrences of t and, by
Definition 2.7, p cannot be marked more than once by the transitions of any occurrence sequence σ ∈ �(S).
Therefore, if (S , (α, β)) ∈Î then (S , (α, β)) ∈� and it concludes the proof. �

Thus, one can derive the configurations ofS fromBPc
fes (S). Inwhat follows, we prove that {←�, �→,+, |||} preserves

configuration equivalence on the class of unlabeled WF-flow net systems.

On the expressive power of behavioral profiles 607

(a) Net system S6 (b) Branching process

Fig. 6. A net system (a) and its branching process (b)

Proposition 4.10 (Configuration equivalence and equality of BPc) Let S :� (N ,M), N :� (P ,T ,F ,�, λ), and
S ′ :� (N ′,M ′), N ′ :� (P ′,T ′,F ′,�, λ

′), be two unlabeled WF-flow net systems such that there exists a bijection
γ : T → T ′, λ(t) � λ

′(γ (t)), t ∈ T . Then, it holds that:

BPc(S) � BPc(S ′) ⇔ S ≈conf S ′. �

Proof (⇒) Firstly, let us show that if BPc(S) � BPc(S ′) then S ≈conf S ′.
Suppose that BPc(S) � BPc(S ′), but ¬(S ≈conf S ′). By Corollary 4.4, we have ¬(E(S) ≈conf E(S ′)). Fur-

thermore, by Proposition 4.9, for any pair of transitions t, t ′ ∈ T it holds: (S , (λ(t), λ(t ′))) ∈ ⊕ ⇔ t#t ′ and
(S , (λ(t), λ(t ′))) ∈� ⇔ t Î t ′, and analogously for any pair of transitions in T ′.

Assume a configuration C ⊆ T in E(S) and its mapping C ′ � {γ (t ′) | t ′ ∈ C } in E(S ′), such that C ′ is not
a configuration. By Definition 2.12, the configuration C of a FES (i) is conflict free, (ii) for all t ′ ∈ C and t 	∈ C ,
s.t., t Î t ′ there exists an t ′′ ∈ C s.t. t#t ′′ Î t ′, and (iii) has no flow cycles.

Therefore, we must consider the following cases:

(i) Conflict freeness. Since C is a configuration in E(S), then for any t, t ′ ∈ C it holds ¬(t#t ′) and, in conse-
quence, (S , (λ(t), λ(t ′))) 	∈ + by Proposition 4.9(1). Then, by the assumption on the equality of the BPc ’s,
∃ t1, t ′

1 ∈ C ′ : γ (t) � t1 ∧ γ (t ′) � t ′
1, such that (S , (λ(t1), λ(t ′

1))) 	∈ +and thus¬(t1#t ′
1). So,C

′ is also conflict
free if C is conflict free, and for every pair of t1, t ′

1 ∈ C ′ then (S , (λ(t), λ(t ′))) ∈ |||, (S , (λ(t), λ(t ′))) ∈ �→or
(S , (λ(t), λ(t ′))) ∈�→.

(ii) For any t ′′
1 ∈ C ′ and t1 	∈C ′, s.t., t1 Î t ′′

1 , there exists an t ′
1 ∈ C ′ : t1#t ′

1 Î t ′′
1 . Suppose that there is

an event t1 	∈C ′, such that ∃ t ′′
1 ∈ C ′ : t1 Î t ′′

1 and ∀ t ′
1 ∈ C ′ : ¬ (t1#t ′

1). Given that t1 Î t ′′
1 , then

(S , (λ(t1), λ(t ′′
1))) ∈�→ (in fact, (S , (λ(t1), λ(t ′′

1))) ∈�), and since ¬ (t1#t ′
1) then (S , (λ(t1), λ(t ′

1))) 	∈ + for
any t ′

1 ∈ C ′ by Proposition 4.9. Hence, by the equality of BPc ’s, ∃ t ∈ T , t ′′ ∈ C : t 	∈ C ∧ γ (t) �
t1 ∧ γ (t ′′) � t ′′

1 ∧ (S , (λ(t), λ(t ′′))) ∈�→, and for any t ′ ∈ C it holds (S , (λ(t), λ(t ′))) 	∈ +. However, the
last contradicts the fact that C is a configuration in E(S), because t would necessarily be in C . Henceforth,
condition 2 also holds for C ′.

(iii) Free of flow cycles. The only case remaining, so that C ′ is not a configuration in E(S ′), is when C ′ contains
cycles, i.e.,Î∗

C ′ is not a partial order. This case simply cannot happen because WF-flow nets are acyclic and
any occurrence sequence contains at most one occurrence of each activity.

Therefore, if C is a configuration in E(S), then C ′ must also be a configuration in E(S ′) .
(⇐) The opposite case, S ≈conf S ′ ⇒ BPc(S) � BPc(S ′), follows directly from the construction of the BPc , see
Definition 3.4. �
Armed with the above, one can conclude that {←�, �→,+, |||} is equivalence preserving on the class of unlabeled
WF-flow net systems. This fact is captured in the following Corollary.

Corollary 4.11 (Classic behavioral profiles and equivalence preservation) The repertoire of behavioral predicates
{←�, �→,+, |||}, cf. Definition 3.4, preserves configuration equivalence, cf.Definition 2.10, on the set of all unlabeled
WF-flow net systems. �

608 A. Polyvyanyy et al.

(a) Flow net system S7 (b) Flow net system S8

Fig. 7. Two flow net systems that have equal causal behavioral profiles

4.3. Discussion on the limitations of behavioral profiles

Figure 6a shows net system S6 that demonstrates one limitation of classic behavioral profiles. Note that for this
net system, task labels b and e are in the interleaving relation, i.e., it holds that b|||e. This, however, does not
capture the fact that in some configurations b always precedes e. In particular, in all the configurations of S6 that
contain transitions labeled with b, e, and f, it is always the case that b precedes e.

A solution todisambiguate this situation canbe to reasonnot in termsof task labels, but in termsof their occur-
rences. In this regard, alternative representations of net systems, e.g., by means of branching processes [Eng91],
can result useful. However, the price to pay is that a branching process can contain several instances of a single
task that must be treated as different label instances in corresponding behavioral profiles. Hence, representation
of a behavioral profile as a matrix of size |�|2 is no longer guaranteed. For example, Fig. 6b shows the maximal
branching process of net system S6 from Fig. 6a. Note that this branching process contains two occurrences of
label e and two occurrences of label g.

Another approach to cope with lack of expressive power of classic behavioral profiles is to rely on other
repertoires of behavioral predicates, as proposed in [WvdW12]. This latter work studies causalities with different
look-aheads. The authors claim that the use of more behavioral predicates improves expressiveness of the induced
behavioral profiles. They show that 1-look-ahead causalities induce trace equivalence for a restricted family
of Petri nets. However, as it is shown below, repertoires of behavioral predicates used by causal behavioral
profile [WPMW11] and the 4C spectrum [PWC+14], which containmore behavioral predicates than the repertoire
used by classic behavioral profiles, do not preserve trace equivalence, even on acyclic net systems.

Proponents of classic behavioral profiles seek to provide a representation that only considers the distinct labels
of the observable tasks yet is equivalence preserving. When it comes to representing net systems, the common
approach is to ignore the silent transitions and to consider all the transitions with the same label as the same
action. This design choice, however, comes with a loss of accuracy. Acknowledging the limitations of classic
behavioral profiles, several extensions have been proposed, which incorporate other repertoires of behavioral
predicates. For example, causal behavioral profiles [WPMW11], in addition to the behavioral predicates of classic
behavioral profiles, include one additional behavioral predicate.

Definition 4.12 (Co-occurrence relation, cf. [WPMW11]) The co-occurrence behavioral predicate is the set of
pairs � :� {(((P ,T ,F ,�, λ),M), (α, β)) ∈ S×(˜2) | α, β ∈ � ∧ (∀ σ ∈�(((P ,T ,F ,�, λ),M)) : (∃ i ∈ [1.. |σ |] :
λ(σi)�α) ⇒ (∃ j ∈ [1.. |σ|] : λ(σj)�β)}. �
Then, the causal behavioral profile of a net system is defined as follows.

Definition 4.13 (Causal behavioral profile, cf. [WPMW11]) The causal behavioral profile of a net system S ∈ S,
denoted by BPcausal (S), is the behavioral profile of S induced by the repertoire of behavioral predicates
� :� {←�, �→,+, |||,�}, i.e., BPcausal (S) :� R[S ,�], where � is the co-occurrence behavioral predicate, and
the other behavioral predicates are defined in Definition 3.4. �
Despite adding one additional behavioral predicate, causal behavioral profiles still fall short of preserving con-
figuration equivalence on the class of WF-flow net systems. Two flow net systems S7 and S8 in Fig. 7 are not
configuration equivalent. Interestingly, there is only one configuration that distinguishes the two systems, namely
{a, c}; note that we restrict configurations to observable transitions. However, their causal and, hence, classic
behavioral profiles are equal, i.e., BPcausal (S7) � BPcausal (S8) and BPc(S7) � BPc(S8).

On the expressive power of behavioral profiles 609

(a) S9 (b) S10

Fig. 8. Generalization of the net systems in Fig. 7

Another class of behavioral profiles can be induced by the behavioral predicates of the 4C spectrum [PWC+14].
The 4C spectrum defines a repertoire of eighteen behavioral predicates that capture such behavioral phenomena
as co-occurrence, conflict, causality, and concurrency. Due to the non-mutually-exclusive nature of the predicates,
two task labels of a system can be in several behavioral relations of the 4C spectrum at the same time, i.e., the
repertoire of behavioral predicates of the 4C spectrum is non-basic, cf. Definition 3.5.

Despite the large size of the repertoire of behavioral predicates of the 4C spectrum, this repertoire does not
preserve configuration equivalence on the class of WF-flow net systems. Indeed, the two WF-flow net systems
in Fig. 7 are not configuration equivalent but have equal behavioral profiles induced by the predicates of the
4C spectrum; we refer the reader to [PWC+14] for the precise definition of the 4C spectrum. Figure 8 shows
two constructions that generalize the net systems in Fig. 7. For any fixed value of n ∈ N, system S9 in Fig. 8a
comprises the set of configurations {{a, b1, b2, . . . , bn , c}} ∪ {{a, bm , c} | m ∈ [1 ..n]}. However, S9 has the same
representation as system S10 in Fig. 8b over the relations of the 4C spectrum. Note that system S9 encodes n + 1
configurations, whereas system S10 describes 2n configurations. Therefore, there exist two net systems for which
there is an exponential number of configurations that are indistinguishable when using the representation based
on the behavioral predicates of the 4C spectrum; specifically, 2n − n − 1 indistinguishable configurations for
systems in Fig. 8.

The above observations confirm that existing behavioral profiles are lossy behavioral representations of net
systems. Thus, if one relies on the existing behavioral profiles in the context of process model comparison, then
one must tolerate inaccurate diagnosis. To address this problem, one can either look for new and more accurate
behavioral profiles or, alternatively, explore behavior representations in terms of occurrences of actions. However,
the size of such latter representations can be larger than |�|2.

5. Behavioral Profiles and Regular Languages

Under the notion of trace equivalence, a dynamic system is fully characterized by the language consisting of all the
strings that the system can recognize, where the symbols of the alphabet of this language represent actions/tasks
that the system can perform. Each string in this language describes a possible computation, or instance, of the
system, i.e., a sequence of actions that can be performed by the system.

Taking this viewpoint, this section examines the ability of behavioral profiles to discriminate net systems that
accept regular languages. We start by introducing notation related to formal languages, followed by a definition
of net systems that induce regular languages. Then, we show that there exist regular net systems that cannot be
distinguished by behavioral profiles, regardless of the specific set of predicates employed.

5.1. Strings and languages

An alphabet is any non-empty finite set. The elements of an alphabet are also called symbols. The following are
three examples of alphabets:

• 1 :� {0, 1}
• 2 :� {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f}
• 3 :� {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z}

610 A. Polyvyanyy et al.

A string over some alphabet is a finite sequence of symbols from that alphabet. The symbols of a string are usually
written next to one another. For example, q :� 101011, r :� 2b, and s :� ababahalamaha, are strings over 1,
2, and 3, respectively; q can also be seen as a string over alphabet 2. If x is a string, the length of x , denoted
by |x |, is the number of symbols that x contains, e.g., |q | � 6, |r | � 2, and |s| � 13. The string of length zero is
called the empty string and is denoted by ε.

If a string x over an alphabet has length n, we can write x � x1x2 . . . xn , where each xi ∈ , i ∈ [1..n].
Given a string x over an alphabet and a set X ⊆ , by x |X we denote x restricted to X , i.e., the string

obtained from x by deleting all symbols of x that are not members of X without changing the order of the
remaining symbols, e.g., ababahalamaha |{a,b,h}� ababahaaaha.

The concatenation of a string x of length n and a string y of length m is the string obtained by appending y
to the end of x , as in x1 . . . xny1 . . . ym , denoted by x ◦ y . We use the superscript notation x z , z ∈ N, to denote
the string obtained by concatenating x with itself z times. For example, x 1 � x , y2 � yy , and 13 � 111.

Finally, a (formal) language over an alphabet is a set of strings over .

5.2. Regular languages and regular net systems

A regular language is a formal language that can be expressed using a regular expression (for the strict form of
regular expressions used in theoretical computer science [Sip12]). Alternatively, a regular language can be defined
as a language recognized by a finite automaton as per Kleene’s theorem [Yu97].

Definition 5.1 (Finite automaton) A finite automaton is a 5-tuple (Q, , δ, q0,K), where
• Q is a finite non-empty set of states,
• is an alphabet,
• δ : Q × (∪ {τ }) → Q is the transition function, where τ is a special symbol, τ 	∈ ,
• q0 ∈ Q is the start state, and
• K ⊆ Q is the set of accept states. �

Next, we give a formal definition of a computation of a finite automaton.

Definition 5.2 (Computation) A computation of a finite automaton (Q, , δ, q0,K) is either the empty string ε
or a string s :� s1s2 . . . sn , n ∈ N, where every si is a member of ∪ {τ }, i ∈ [1..n], and there exists a sequence
of states q :� 〈q0, q1, . . . , qn 〉, where every qj is a member of the set of states Q , j ∈ [1..n], such that for every
position k in s it holds that δ(qk−1, sk) � qk . �
We say that s leads to qn . By convention, the empty string always leads to the start state. A finite automaton
A :� (Q, , δ, q0,K) accepts a sting s iff s is a computation of A that leads to an accept state q ∈ K of A.

Definition 5.3 (Language of a finite automaton) The language of a finite automaton A :� (Q, , δ, q0,K) is
denoted by L(A) and is the set of all strings that A accepts restricted to , i.e., L(A) :� {s ∈ ∗ | ∃ r ∈
(∪ {τ })∗ : (A accepts r) ∧ (s � r |)}. �
We say that finite automaton A recognizes language L(A).

Let S :� (N ,M), whereN :� (P ,T ,F ,�, λ), be a net system. Function λ can be lifted to a homomorphism
from T ∗ to �∗ in the canonical way as follows: λ(〈〉) :� 〈〉 and λ(σ ◦ 〈t〉) :� λ(σ) ◦ λ(t) for σ ∈ T ∗ and t ∈ T .

For a given net system (N ,M) and a finite set of markings M of N , the triple (N ,M ,M) is a net system with
accept marking set. The set of all occurrence sequences in (N ,M) that lead to some marking M ′ ∈ M induce the
language of the system.

Definition 5.4 (Language of a net system) The language of a net system with accept marking set S :� (N ,M ,M),
N :� (P ,T ,F ,�, λ), is denoted by L(S) and is the set of strings {s ∈ �∗ | ∃ σ ∈ �((N ,M)) : λ(σ)|�� s ∧
(∃ M ′ ∈ M : (N ,M)[σ 〉(N ,M ′))}. �
We say that S recognizes L(S). For every regular language there exists a system that recognizes this language.

Proposition 5.5 (Finite automata and net systems) For every finite automaton A there exists a net system with
accept marking set S that recognizes the language of A, i.e., L(S) � L(A). �
Indeed, given a finite automaton, one can obtain a system that recognizes the same language via a straight-
forward construction. LetA :� (Q, , δ, q0,K) be a finite automaton. Then, the net system with accept marking
set S :� ((Q, δ,F , , λ),M ,M), where F :� {(q, (q, x , q ′)) ∈ Q × δ | (q, x , q ′) ∈ δ} ∪ {((q, x , q ′), q ′) ∈ δ × Q |

On the expressive power of behavioral profiles 611

(q, x , q ′) ∈ δ}, λ :� {((q, x , q ′), x) ∈ δ × (∪ {τ }) | (q, x , q ′) ∈ δ},M is the marking that puts one token at place
q0 ∈ Q and no tokens elsewhere, and for every k ∈ K it holds that M contains the marking that puts one token
at place k ∈ Q and no tokens elsewhere, recognizes the language of A, i.e., L(A) � L(S).

A regular net system is a net system that recognizes a regular language.

Definition 5.6 (Regular net system) A regular net system is a net system with accept marking set that recognizes
a regular language. �
Note that there exist net systems that are not bounded but recognize regular languages [VV81].

5.3. Behavioral profiles and regular net systems

By Sreg , we denote the class of all regular net systems. It is well-known that the class of all net systems properly
contains the class of all regular net systems, i.e., it holds that Sreg ⊂ S. It is also known that the class of regular
net systems properly contains the class of all bounded net systems [VV81].

Let � ⊆ ˜ be a set of labels. By S�, we denote the set of all net systems over labels in �, i.e., S� :� {S ∈ S |
labels(S) � �}. Finally, we introduce the main result of this section, which states that behavioral profiles cannot
distinguish between regular net systems with different languages.

Theorem 5.7 (Two regular net systems with distinct languages may have identical profiles) For every repertoire of
behavioral predicates � there exist two regular net systems S1,S2 ∈ Sreg such that:

R[S1,�] � R[S2,�] ∧ L(S1) 	� L(S2).
�

Proof Note that the set of all regular languages over an alphabet is infinite. This follows from the following two
facts: (i) for every symbol a ∈ it holds that language {a}, i.e., the language with exactly one string composed of
a single symbol a, is a regular language, and (ii) the class of regular languages is closed under the concatenation
operation [Sip12]. Hence, the set {{an} | n ∈ N}, where a ∈ , i.e., the set that for every natural number n ∈ N
contains the language composed of exactly one string that is a concatenation of string a with itself n times, is,
indeed, an infinite set of regular languages over .

Furthermore, note that for every alphabet and every repertoire of behavioral predicates �, it holds that
the set of all behavioral profiles of net systems in S induced by �, i.e., {R[S ,�] | S ∈ S}, is finite. This follows
immediately from the following two facts: (i) � is finite, and (ii) there exist exactly 2||n distinct behavioral
relations of net systems in S induced by n-ary behavioral predicates.

Let us assume that there exists a repertoire of behavioral predicates � such that for every two regular net
systems S1,S2 ∈ Sreg it holds that if R[S1,�] � R[S2,�] then L(S1) � L(S2). Let be some alphabet and let
R be the equivalence relation on Sreg ∩ S such that S1 R S2 iff R[S1,�] � R[S2,�], S1,S2 ∈ Sreg ∩ S . Note
that the set of all equivalence classes of Sreg ∩ S by R is finite, as the set {R[S ,�] | S ∈ S} is finite. Let f be a
function that maps every regular language over to its equivalence class of Sreg ∩S by R that contains regular
net systems that recognize this language; such an equivalence class always exists because of Proposition 5.5 and
the fact that one can always construct a net system with accept marking set that recognizes the same language
as a given finite automaton. Note that f is non-injective; recall that the set of all regular languages over is
infinite. Then, there exist two distinct regular languages L1 and L2 over such that f (L1) � f (L2). Hence, there
exist two regular net systems S1 and S2 such that R[S1,�] � R[S2,�] and L(S1) 	� L(S2). We have reached a
contradiction. �
As a consequence of Theorem 5.7, one cannot rely on behavioral profiles—regardless of the specific set of
behavioral relations employed—as the basis for deciding whether two regular language systems, e.g., finite
automata [Sip12] or regular net systems [VV81], recognize the same language, i.e., they are trace equiva-
lent [Eng85].

Corollary 5.8 (Regular net systems and equivalence preservation) There exists no repertoire of behavioral predi-
cates that preserves trace equivalence on Sreg . �
For example, the classic behavioral profiles of the two net systems in Fig. 9a and 9b are identical to the one shown
in Fig. 9c. However, the languages of these net systems are different (assuming that the accept marking set of
each of the systems is composed of a single marking that puts one token in the only place in the postset of the
transition with label e).

612 A. Polyvyanyy et al.

(a)

(b) (c)

Fig. 9. Two net systems (a, b), and their classic behavioral profile (c)

6. Conclusion

In summary, this paper has shown that:

1. The repertoire of behavioral predicates used to induce classic behavioral profiles proposed in [WMW11a]
preserves configuration equivalence on the class of unlabeled WF-flow nets. This provides evidence that
behavioral profiles can be used to characterize the behavior of a restricted class of systems.

2. There exists noknown repertoire of behavioral predicates that preserves somewell-knownnotionof behavioral
equivalence on the class of acyclic labeled WF-net systems.

3. For any finite set of behavioral predicates, behavioral profiles induced by this set are strictly less expressive
than regular language systems, i.e., the set does not preserve trace equivalence on systems that recognize
regular languages.

These results leave open the question of possible trade-offs between expressiveness and convenience of use of
behavioral profiles. One assumption underpinning behavioral profiles is that the size of the matrix, when one
considers binary behavioral relations, is |�|2 where � is a set of task labels. In contrast, other behavioral repre-
sentations, such as event structures [NPW81], capture relations between label occurrences, which entails a larger
representation as the same label type may have multiple occurrences, to the benefit of expressiveness.

A possible trade-off between behavioral profiles and event structures would be to reduce the size of event
structures using reduction rules, while retaining expressiveness. In separate work, we have proposed a notion
of canonically reduced event structures as a means to achieve this trade-off [ABDG14, ABG15]. However, the
extent to which reduction can be achieved for different classes of net systems is still an open question.

An interesting line of future research is the analysis of other existing behavioral relations, e.g., the relations in
[HKS13] and [WvdW12], that canpotentially offermore fine-grained insights into the expressiveness of behavioral
profiles. It would be particularly interesting to define behavioral predicates that preserve trace equivalence or
configuration equivalence (or any other well-known notion of behavioral equivalence) on a more substantial
family of net systems rather than unlabeled WF-flow net systems.

References

[ABDG14] Armas-Cervantes, A., Baldan, P., Dumas, M., Garcı́a-Bañuelos, L.: Behavioral comparison of process models based on
canonically reduced event structures. In: Business Process Management—12th International Conference, BPM 2014, Haifa,
Israel, Sep 7–11, 2014. Proceedings, vol. 8659 of Lecture Notes in Computer Science, pp. 267–282. Springer, Berlin (2014)

[ABG15] Armas-Cervantes, A., Baldan, P., Garcı́a-Bañuelos, L.: Reduction of event structures under history preserving bisimulation.
J. Logic. Algebraic Methods Program. (2015) (in press)

[ADGP] Armas-Cervantes, A., Dumas, M., Garcı́a-Bañuelos, L., Polyvyanyy, A.: On the suitability of generalized behavioral profiles
for processmodel comparison. In:WebServices andFormalMethods 11th InternationalWorkshop,WS-FM2014,Eindhoven,
The Netherlands, Sep 11–12 Proceedings (Accepted on 10 July 2014) (2014)

On the expressive power of behavioral profiles 613

[Bou90] Boudol, G.: Flow event structures and flow nets. In: Semantics of Systems of Concurrent Processes, LITP Spring School
on Theoretical Computer Science, La Roche Posay, France, April 23–27, 1990, Proceedings, vol. 469 of Lecture Notes in
Computer Science, pp. 62–95. Springer, Berlin (1990)

[Eng85] Engelfriet, J.: Determinacy −→ (observation equivalence = trace equivalence). Theor. Comput. Sci. (TCS), 36, 21–25 (1985)
[Eng91] Engelfriet, J.: Branching processes of Petri nets. Acta Inf. 28(6), 575–591 (1991)
[HKS13] Haar, S., Kern, C., Schwoon, S.: Computing the reveals relation in occurrence nets. Theor. Comput. Sci. (TCS) 493, 66–79

(2013)
[KWW11] Kunze, M., Weidlich, M., Weske, M.: Behavioral similarity: a proper metric. In: Business Process Management—9th Interna-

tional Conference, BPM 2011, Clermont-Ferrand, France, August 30–September 2, 2011. Proceedings, vol. 6896 of Lecture
Notes in Computer Science, pp. 166–181. Springer, Berlin (2011)

[Mur89] Murata, T.: Petri nets: Properties, analysis and applications. Proc. IEEE 77(4) (1989)
[NPW81] Nielsen,M., Plotkin, G.D.,Winskel, G.: Petri nets, event structures and domains, Part I. Theor. Comput. Sci. (TCS) 13, 85–108

(1981)
[PWC+14] Polyvyanyy, A., Weidlich, M., Conforti, R., La Rosa, M., ter Hofstede, A.H.M.: The 4C spectrum of fundamental behavioral

relations for concurrent systems. In: Application and Theory of Petri Nets and Concurrency—35th International Conference,
PETRI NETS 2014, Tunis, Tunisia, June 23–27, 2014. Proceedings, vol. 8489 of Lecture Notes in Computer Science, pp.
210–232. Springer, New York (2014)

[PWW12] Polyvyanyy, A., Weidlich, M., Weske, M.: Isotactics as a foundation for alignment and abstraction of behavioral models. In:
Business ProcessManagement—10th International Conference, BPM 2012, Tallinn, Estonia, Sep 3–6, 2012. Proceedings, vol.
7481 of Lecture Notes in Computer Science, pp. 335–351. Springer, New York (2012)

[Sip12] Sipser, M.: Introduction to the Theory of Computation, 3rd edn. Cengage Learning (2012)
[vdA97] van der Aalst, W.M.P.: Verification of workflow nets. In: Application and Theory of Petri Nets 1997, 18th International

Conference, ICATPN ’97, Toulouse, France, June 23–27, 1997, Proceedings, vol. 1248 of Lecture Notes in Computer Science,
pp. 407–426. Springer, Berlin (1997)

[vdA00] van derAalst,W.M.P.:Workflowverification: finding control-flow errors using Petri-net-based techniques. In: Business Process
Management, Models, Techniques, and Empirical Studies, vol. 1806 of Lecture Notes in Computer Science, pp. 161–183.
Springer, New York (2000)

[vG90] van Glabbeek, R.J.: The Linear Time-Branching Time Spectrum, vol. 458 of Lecture Notes in Computer Science. Springer,
New York (1990)

[vGG89] van Glabbeek, R.J., Goltz, U.: Equivalence notions for concurrent systems and refinement of actions. In: Mathematical
Foundations of Computer Science 1989, MFCS’89, Porabka-Kozubnik, Poland, August 28–Sept 1, 1989, Proceedings, vol.
379 of Lecture Notes in Computer Science, pp. 237–248. Springer, New York (1989)

[vGG01] van Glabbeek, R.J., Goltz, U.: Refinement of actions and equivalence notions for concurrent systems. Acta Informatica
(ACTA) 37(4/5), 229–327 (2001)

[VV81] Valk, R., Vidal-Naquet, G.: Petri nets and regular languages. J. Comput. Syst. Sci. (JCSS) 23(3), 299–325 (1981)
[WMW11a] Weidlich, M., Mendling, J., Weske, M.: Efficient consistency measurement based on behavioral profiles of process models.

IEEE Trans. Softw. Eng. (TSE) 37(3), 410–429 (2011)
[WMW11b] Weidlich, M., Mendling, J., Weske, M.: A foundational approach for managing process variability. In: Advanced Information

Systems Engineering—23rd International Conference, CAiSE 2011, London, UK, June 20–24, 2011. Proceedings, vol. 6741
of Lecture Notes in Computer Science, pp. 267–282. Springer, New York (2011)

[WPD+11] Weidlich, M., Polyvyanyy, A., Desai, N., Mendling, J., Weske, M.: Process compliance analysis based on behavioural profiles.
Inform. Syst. (IS) 36(7), 1009–1025 (2011)

[WPDM10] Weidlich, M., Polyvyanyy, A., Desai, N., Mendling, J.: Process compliance measurement based on behavioural profiles. In:
Advanced Information Systems Engineering, 22nd International Conference, CAiSE 2010, Hammamet, Tunisia, 2010. Pro-
ceedings, vol. 6051 of Lecture Notes in Computer Science, pp. 499–514. Springer, Berlin (2010)

[WPMW10] Weidlich, M., Polyvyanyy, A., Mendling, J., Weske, M.: Efficient computation of causal behavioural profiles using structural
decomposition. In:Applications andTheory of PetriNets, 31st InternationalConference, PETRINETS2010,Braga, Portugal,
June 21–25, 2010. Proceedings, vol. 6128 of Lecture Notes in Computer Science, pp. 63–83. Springer, New York (2010)

[WPMW11] Weidlich, M., Polyvyanyy, A., Mendling, J., Weske, M.: Causal behavioural profiles—efficient computation, applications, and
evaluation. Fundamenta Informaticae (FUIN) 113(3–4), 399–435 (2011)

[WvdW12] Weidlich, M., Martijn, J., van der Werf, E.M.: On profiles and footprints-relational semantics for Petri nets. In: Application
and Theory of Petri Nets—33rd International Conference, PETRI NETS 2012, Hamburg, Germany, June 25–29, 2012.
Proceedings, vol. 7347 of Lecture Notes in Computer Science, pp. 148–167. Springer, Berlin (2012)

[Yu97] Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 41–110. Springer, Berlin
Heidelberg (1997)

Received 8 March 2015
Accepted in revised form 14 March 2016 by Thomas Hildebrandt, Joachim Parrow, Matthias Weidlich, and Marco Carbone
Published online 13 May 2016

	On the expressive power of behavioral profiles
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Petri nets
	2.1.1 Workflow nets
	2.1.2 Flow nets

	2.2 Flow event structures

	3 Behavioral profiles
	4 Behavioral profiles and equivalence preservation
	4.1 Equivalence preserving repertoires of behavioral predicates
	4.2 Behavioral profiles and WF-flow nets
	4.3 Discussion on the limitations of behavioral profiles

	5 Behavioral Profiles and Regular Languages
	5.1 Strings and languages
	5.2 Regular languages and regular net systems
	5.3 Behavioral profiles and regular net systems

	6 Conclusion
	References

