DO 10.1007/500165-016-0371-5
BCS©2016 Formal Aspects

Formal Aspects of Computing (2016) 28: 567-595 Of Computing

@ CrossMark

ASM-based formal design of an adaptivity
component for a Cloud system

Paolo Arcaini!, Roxana-Maria Holom? and Elvinia Riccobene?

! Charles University in Prague, Faculty of Mathematics and Physics, Prague, Czech Republic
2 Christian-Doppler Laboratory for Client-Centric Cloud Computing Hagenberg, Johannes Kepler University Linz, Linz, Austria
3 Dipartimento di Informatica, Universita degli Studi di Milano, Milan, Italy

Abstract. The request of formal methods for the specification and analysis of distributed systems is nowadays
increasing, especially when considering the development of Cloud systems and Web applications. This is due to the
fact that modeling languages currently used in these areas have informal definitions and ambiguous semantics, and
therefore their use may be unreliable. Thanks to their mathematical foundation, formal methods can guarantee
rigorous system design, leading to precise models where requirements can be validated and properties can be
assured, already at the early stages of the system development. In this paper, we present a rigorous engineering
process for distributed systems, based on the Abstract State Machines (ASM) formal method. We rely on the
foundational notions of ASM ground model and model refinement to obtain a precise model for a client-server
application for Cloud systems. This application has been proposed to tackle the problem of making Cloud services
usable to different end-devices by adapting on-the-fly the content coming from the Cloud to the different devices
contexts. The ASM-based modeling process is supported by a number of validation and verification activities that
have been exploited on the component under development to guarantee consistency, correctness, and reliability
properties.

Keywords: Distributed systems, Cloud computing, Abstract State Machines, Modeling process, Model refine-
ment, Validation, Verification

1. Introduction

In the context of service-oriented architecture, Cloud systems are emerging as an important trend. A typi-
cal architecture of a Cloud system presumes many different end-devices (desktop computers, laptops, tablets,
smartphones, etc.), running different operating systems, owning distinct hardware characteristics (e.g., processor
speed, size screen, resolution, etc.), using different browsers, connected to the Cloud, and asking for the same
Cloud service. For a reliable Cloud system, one thing that must be guaranteed is that an end-user should be able
to access the same Cloud service from any kind of device (s)he is using, and that (s)he will receive the same output
independently of the used device.

Correspondence and offprint requests to: P. Arcaini, E-mail: arcaini@d3s.mff.cuni.cz

http://crossmark.crossref.org/dialog/?doi=10.1007/s00165-016-0371-5&domain=pdf

568 P. Arcaini et al.

Engineering a solution to the problem of making Cloud services usable to different end-devices in presence of
device fragmentation and variety of operating systems, is one of the objectives of the project—which the second
author is involved in and this work is part of—presented in [SBL*11]. The long term goal of that project is to
develop a Web service infrastructure that allows any kind of device an end-user is using to access the same Cloud
service. A middleware application should act as an interface between clients’ devices and Cloud services. The
middleware makes use of various internal components to manage the interaction between the clients and the
Cloud services. One of these components, the adaptativity one, is responsible for adapting the content coming
from the Cloud to the different device profiles. Therefore, all the services available inside the Cloud are adapted
on-the-fly to the different end-devices, and are accessible from any device without the need to install any extra
tool.

In order to develop a correct and reliable solution for the Web service infrastructure, the use of formal model-
ing and verification was required. Languages and protocols currently used for developing Web applications have
informal definitions and ambiguous semantics [GBC14]; their use is therefore difficult and unreliable. Differ-
ently, thanks to their mathematical foundation, formal methods can guarantee model preciseness and properties
assurance [GBC14, MsYhSbJ10].

However, Cloud systems and Web service infrastructure pose many challenges to formal approaches. They are
usually large systems having distributed setting, comprise many components of heterogeneous nature (physical
devices, control software, user interfaces, etc.), and are characterized by the simultaneous operations of different
components. These characteristics require a method that supports a distributed computational model, allows
modeling a component in separation with the others, and must be able to express model compositionality and
action parallelism. It has also to be enriched with techniques for model validation and verification of properties.
Besides that, for its practical usage, the formal method must be endowed with a set of tools supporting the
developer along the modeling and analysis activities.

We here concentrate only on the adaptivity component of the Web service infrastructure, and we take advan-
tage of this client-server application to present a system engineering method for the rigorous design of distributed
systems. The approach is based on the Abstract State Machines (ASMs) [BS03] formal method, an extension of
Finite State Machines [Bor05].

We show how to use the ASMs as modeling technique supporting distributed computation, composition of
models, and specification of parallel behaviors. The ASM modeling process is based on the concept of ground
model representing a precise but concise high-level formalization of the system, and on the refinement principle
that allows to capture all details of the system design through a sequence of refined models till the desired level of
detail, possibly bringing to the implementation in a correct and traceable way. We present the analysis techniques
that the method supports for model validation and verification and how to apply them along the development
process to guarantee consistency, correctness, and reliability properties. In particular, we show how to manage
the complexity of a distributed system by proceeding in a modular way, both during model refinement and model
verification. We pose the theoretical bases of this modular approach that permits to design a component at a
time, abstracting from the other system components suitably represented as mock components.

This paper is an extended version of the work in [HRWW16] where we already presented an ASM model
for the adaptivity component. Starting from a preliminary solution presented in [Chel3], in [HRWW16] we
refined the sketched model to give a more detailed specification of the client and the middleware, leaving their
communication abstract. Preliminary analysis techniques were applied to verify the requirements and guarantee
application properties.

The work in [HRWW16] was aimed at presenting an improved version of the solution. It skipped a complete
presentation of the rigorous design approach for distributed systems that we underline as the main contribution
of this paper with respect to [HRWW16], although an enhancement is also from the application point of view.
Indeed, the models of the client and the middleware have been improved, and the complete communication cycle
between the client and the Cloud (mediated by the middleware) has been modeled. We have proceeded through
refinement steps, and each step has been automatically proved correct using a logical solver. Model validation
has been remade on the whole new system model. Temporal properties checking the correct behavior of the client
and the middleware have been suitably updated, and some properties have been proved for the communication.

ASM-based formal design of an adaptivity component for a Cloud system 569

The paper is organized as follows. The ASM theory is presented in Sect. 2, and an ASM-based design
process and tool support for validation and verification are presented in Sect. 3. Section 4 overviews the general
architecture of a client-Cloud interaction middleware, and Sect. 5 presents the client-Cloud adaptivity component
we consider. Section 6 describes the ASM formal specification of the adaptivity component. Sections 7 and 8
describe the validation and verification activities we have performed on the formal specification. Some related
work is introduced in Sect. 9. Section 10 discusses some lessons learned and concludes the paper.

2. ASM theory

The ASM method is a system engineering method that guides the development of software and embedded
hardware-software systems seamlessly from requirements capture to their implementation. Within a precise but
simple conceptual framework, the ASM method allows a modeling technique which integrates dynamic (opera-
tional) and static (declarative) descriptions, and an analysis technique that combines validation (by simulation and
testing) and verification methods at any desired level of detail.

ASMs have been successfully applied in different fields [BS03, SSB01] as: definition of industrial standards
for programming and modeling languages, design and re-engineering of industrial control systems, modeling e-
commerce and web services, design and analysis of protocols, architectural design, language design, verification
of compilation schemes and compiler back-ends, etc. The method has a rigorous mathematical foundation, but a
practitioner needs no special training to use it since ASMs can be correctly understood as pseudo-code or virtual
machines working over abstract data structures.

We here introduce the essential concepts of the formalism, with particular emphasis on the multi-agent
aspects, useful to understand our modeling of the client-Cloud adaptivity component. For a complete theoretical
definition of the ASMs we refer the reader to [BS03].

For system specification, the ASM method builds upon three main concepts (further developed in the following
sections):

e ASM, an extension of Finite State Machines where unstructured control states are replaced by states with
arbitrary complex data;

e ground model, an ASM which is a precise but concise high-level system blueprint (“system contract”), serving
as authoritative reference model for the design;

e model refinement, a general scheme for stepwise instantiations of model abstractions to concrete system
elements, providing controllable links between the more and more detailed descriptions at the successive
stages of system development.

2.1. Abstract state machines

Abstract State Machines (ASMs) are transition systems based on the concept of state representing the instanta-
neous configuration of the system under development, and transition rules describing the change of state. ASM
states are multi-sorted first-order structures, i.e., domains of objects with functions and predicates defined on
them. ASM transition rules express how function interpretations are modified from one state to the next one, and
therefore describe the system configuration changes. The basic form of a transition rule is the guarded update:

“if Condition then Updates”, where Updates is a set of function updates of the form f(¢, ..., t,) := t which are
simultaneously executed when Condition is true; f is an arbitrary n-ary function and ¢, ..., t,, ¢ are first-order
terms.

An ASM state S is represented by a set of couples (location, value). ASM locations, namely pairs (function-
name, list-of-parameter-values), represent the abstract ASM concept of basic object containers (memory units).
Location updates represent the basic units of state change and they are given as assignments, each of the form
loc := v, where loc is a location and v its new value.

Functions that never change during any run of the machine are static. Those updated by agent actions are
dynamic, and distinguished between monitored (only read by the machine and modified by the environment), and
controlled (read and written by the machine).

570 P. Arcaini et al.

program(ag4)

View(ag4,S) P1

Programs

Global State S

Fig. 1. Global state and partial view in a multi-agent ASM (taken from [BS03])

Besides if-then, there is a limited but powerful set of rule constructors: par for simultaneous parallel actions,
seq for sequential actions, choose for nondeterminism (existential quantification), forall for unrestricted syn-
chronous parallelism (universal quantification).

A computation of an ASM is a finite or infinite sequence Sy, Sy, ..., Sn, ... of states of the machine, where
So 1s an initial state and each S+ is obtained from .S,, by simultaneously firing all the transition rules which are
enabled in S,,. The (unique) main rule is a transition rule and represents the starting point of the computation.
An ASM can have more than one initial state. It is possible to specify state invariants.

2.1.1. Multi agents ASM

ASMs allow to model any kind of computational paradigm, from a single agent executing simultaneous parallel
actions, to distributed multiple agents interacting in a synchronous or asynchronous way.

Since a cloud system has a distributed setting, for our modeling purposes we exploit the computational model
of a multi-agent ASM which is defined as a family of pairs (a, M,), where a is an agent belonging to a (possibly
dynamic) finite set Agent, and M, is a machine specifying its behavior.

Each agent a has a “local” view, View(a, S), of the global state S (see Fig. 1). The relation between global
and local states is supported by the use of a special (reserved name) 0-ary function self (of type Agent) to denote
the agents which are executing the underlying “same” but differently instantiated ASM: the function self is
interpreted by each agent a as itself.

Agents can have shared view of a portion of a state, namely View(a, S)N View(b, S) could be not empty for
two different agents a and b. This is possible when shared functions are used to model communication among
parties. Shared functions are defined as dynamic functions which are directly updatable by the rules of two
different agents and can be read by both.! In the sequel we denote by shared(M,, M,) the set of functions shared
between two different agents ¢ and b. Typically a protocol is needed to guarantee consistency of shared function
updates.

Each agent a executes its local behavior (the machine M,), and contributes to determine the next global state
S’. However, the relation between local and global states, and therefore the definition of a run for a multi-agent
ASM, depends on the synchronous or asynchronous nature of the agents.

' The concept of shared functions is also applicable between an agent and its environment, so a shared function can be updatable by the
rules of the agent’s machine and by the environment, and can be read by both.

ASM-based formal design of an adaptivity component for a Cloud system 571

@_

if ctl_state = i then
if cond; then
ruley
ctl_state := 51

if cond, then
rule,
ctl_state := jn

Fig. 2. Control state ASMs

A multi-agent synchronous ASM is defined as a set of agents which execute their own ASMs in parallel,
synchronized using an implicit global system clock. Semantically a synchronous ASM is equivalent to the set
of all its constituent single-agent ASMs, operating in the global states over the union of the signatures of each
component. The sequence of events determining a run is the sequence of states forming the run of the underlying
multi-agent synchronous ASM, where the global clock tick (a built-in signal which is supposed to be present in
every event) plays the role of a step counter.

Definition 2.1 A multi-agent ASM with synchronous agents has quasi-sequential runs, namely a sequence of states
where each state is obtained from the previous state by firing in parallel the rules of all agents.

In asynchronous multi-agent ASM, each agent reacts at its own speed without any global clock, and executes
its ASM in its own local state. This makes it difficult to uniquely define a global state where agents’ moves are
executed and to establish an ordering of moves. However, a synchronization schema must be defined to avoid
incomparability of agents’ moves which may come with different data, clocks, moments and duration of execution.

Since we leave the Cloud part abstract, we can avoid dealing with the complexity of managing synchronization
of asynchronous agents. We can suppose the adaptivity of our application to be synchronous w.r.t the client-side.
Therefore, we model its operation in a distributed setting in terms of synchronous multi-agent models.

For a reader interested in the theory on asynchronous multi-agent ASMs, we refer to [BS03].

2.1.2. Control state ASMs

For modeling the behavior of a single agent, we here use a class of ASMs called control state ASMs [BS03]. They
are particularly useful to model system modes (or control states). Control state ASMs have an intuitive graphical
representation by means of FSM-like state diagrams, and are defined as follows [BS03]:

Definition 2.2 A control state ASM is an ASM whose rules are all of the form as in Fig. 2: in a given control state
i, only one of the conditions condy can be true, 1 < k < n, if any; the machine executes ruley if condy, is true
and changes control state from i to ji; the machine does nothing when no condition cond}, is satisfied.

Note that rule;, can be any ASM rule, so also the parallel composition of more transition rules that is
graphically depicted as sequence of rule blocks (or rectangles).

2.2. Ground model and model refinement

A ground model is an ASM that can be considered a rigorous high-level system blueprint (“system contract™),
specified using domain-specific terms, which can be understood by all stakeholders. The ground model is abstract,
i.e., it avoids irrelevant details necessary later for the implementation, correct, i.e., it reflects the intended initial
requirements, and consistent, i.e., it removes ambiguities of the initial textual requirements. However, it does not
need to be complete, i.e., it may leave some given functional requirements unspecified.

572 P. Arcaini et al.

I
_—
"
iy
I
I
=
I

M 3, 3, 5, —= 3, 3, S

Fig. 3. Stuttering refinement

Model refinement allows to obtain from an abstract model a more detailed one. ASM refinement allows one
to refine either the signature (data refinement) or the control (operation refinement). Also a combination of both
changes is possible, while many notions of refinement in the literature keep these two features separated [FL09,
Abr96].

At each refinement step, a refined model must be proved correct w.r.t. the abstract one. The definition of
correct refinement between ASM models has been originally given in [B6r03, B6r07] and simplified for proof

automation purposes in our refinement prover. To prove that an ASM M is a correct refinement of an ASM M,
the following items must be defined:

e a notion of locations of interest and of corresponding locations, i.e., pairs of (possibly sets of) locations one
wants to relate;

e a notion of equivalence = of the data in the locations of interest which induces a notion of conformance
between abstract and refined states.

Once the notion of equivalence (in terms of locations of interest) has been determined, one can define when
an ASM M is a correct refinement of M.

Definition 2.3 (Stuttering refinement) An ASM M is a correct stuttering refinement of an ASM M if and only if
for each M-run Sy, Sy, ..., thereis an M-run Sy, Si, ... such that (i) initial states are conformant, i.e., So So,

and (ii) if S 1S conformant to S; (i.e., S =), then S;+; is conformant with either S;+; or S; (i.e., Sl+1 = Sj+1

or Sl+1 = 5;). Moreover, both runs terminate and their final states are the last pair of conformant states, or both
runs are infinite.

This notion of refinement requires that every refined state S; is conformant with an abstract state S;, and its
successor state S;+1 is conformant with either S; or with Sj+; (being S;+; a next state of S;). More precisely, given

two related runs, p of M and p of M, each state of p is in relation with a state of p, and each state of p is refined
by at least a state of the refined run p. We therefore perform (0, 1)- or (1, 1)-refinements with the constraint of
total conformance relation on the states of the refined machine.

Figure 3 shows the equivalence relation between states of a run of the refined machine and a run of the abstract
machine. Refined states So, Sl, Sy, and Ss are linked with abstract states Sy, 51, 5>, and S5. Refined states S, and
S3, that are not linked with the next abstract state, are conformant with the previous linked state 5.

Such definition of stuttering refinement is more restrictive than the original refinement definition given by
Borger [Bor03, Bor07], but it has the advantage of preserving invariants (as also the approach in [Sch08]): if a
property (specified over the locations of interest) is true in every abstract state, it will be true also in every refined
state. The classical refinement definition preserves the invariants only weakly, since intermediate refined states
are not required to conform to some abstract state. In previous works (e.g., the modeling of a Landing Gear
System [AGR15] and of a medical device software [ABG™15]), we found that it is often useful to guarantee that
invariants holding in the abstract level, still hold in the refined one.

ASM-based formal design of an adaptivity component for a Cloud system 573

Stuttering refinement has the further advantage to be checked automatically and a technique has been already

developed for this purpose. In order to prove that M refines M , it suffices to prove that the following property
holds:*

o step(S,) 38 (step(S, S') A conf(S', 8"))
VSV SVS: A - v (1)
conf(S,95) conf(5’, S)

where conf is the conformance relation between states, and step the transition relation.

In case of a multi-agents ASM, model refinement can proceed either in horizontal or in vertical way, depending
if the models of all the agents are taken in consideration at each refinement step, or just the specification of only one
agent is considered. Of course, combination of the two approaches is possible. However, to keep the complexity
of the system under control, it is preferable to proceed vertically by refining each component at a time. When
proving correctness of the refinement, the ASMs of the other agents, kept at a higher level of abstraction, are
considered as mock models to mimic the behavior of the rest of the system.

The following theorem establishes the relationship between the stuttering refinement of a single ASM and the
refinement of a multi-agent ASM. It guarantees that, under some assumptions, local refinement always induces
a global refinement.

Theorem 2.4 (Vertical Refinement) Let M be a synchronous multi-agent ASM consisting of the pairs (a, M,) and
(b, My) such that (i) shared(M,, My) = @, or (ii) V& € shared(M,, My), x is a read function for a and write
Jfunction for b, or vice versa, but not both.

IfM is a stuttering refinement of M, and shared(M,, My) = shared(Ma, My) then M = {(a, M,), (b, Mb)}
is a stuttering refinement of M = {(a, M), (b, Mp)}.

Proof By hypothesis, Eq. 1 holds among states of M, and M, and for all possible monitored (in M, and M,) values

of functions z (if any) in shared(M,, M,). The same equation trivially holds for M and M by keeping unchanged

the portion of the state that is relative to the computation of My, and restricting the values of functions z to those

values assigned (written) by b. O
As a consequence of Theorem 2.4, it is possible to prove the following:

Corollary 2.5 Let M = {(a, M), (b, My)} be a synchronous multi-agent ASM such that

(i) shared(M,, My) =G, or
(i) Yz € shared(M,, My), z is a read function for a and write function for b, or vice versa, but not both.

IfM is a stuttering reﬁnement of My, Mb is a stuttering refinement of My, and shared(M,, My) = shared(Ma,
Mb) then M = {(a, M, 2), (b, Mb)} is a stuttering refinement of M = {(a, M,), (b, My)}.

Banach et al. have shown similar results in [BZSW14], studying the problem of decomposing a monolithic
ASM system design (embodying a dual controller/controlled nature) into separate controller and controlled
subsystems. They give the conditions that must be guaranteed to be able to split the monolithic ASM (similar to
the conditions we are giving in Theorem 2.4 on the shared variables) and show that if the refinement holds for
the individual subsystems, it also holds for the global system.

3. ASM-based development process

In this section, we introduce the essential concepts of the design methodology that we exploit in our ASM-based
rigorous modeling of the client-Cloud adaptivity component.

The concepts of ground model and model refinement bring to the definition of a rigorous process for ASM-
based development. The process is depicted in Fig. 4: the modeling activity is complemented with other validation
and verification activities on models, already applicable at ground level and along the chain of refined models.
Such activities help to guarantee correctness of the developed system.

2 A property over initial states must also be proved. It is not reported here.

574

Modeling by refinement

ASM 0

'

ASM 1

f

Refinement

At any
level

v
ASM n
A

ASMRefProver

Annotation

y
Java Code

Implementation

.

Validation and verification

Interactive simulation

Validation
[AsmetasS

]

2

[Model review]

AsmetaMA AsmetaV

[Scenarios

)

1L

Property Verification

Model Checking
AsmetaSMV

)

Conformance Checking
] Model-based testing

ATGT

Runtime verification
CoMA

Fig. 4. ASM-based development process

asm model

// header

import StandardLibrary
signature:

// body
definitions:
function ...

rule roopen = ...

// initial state
default init sO:

main rule r_-main = ...

dynamic monitored value: Integer

Code 1. A template for an ASM

P. Arcaini et al.

A set of tools exists to support the developer in the modeling and analysis activities and to make the ASM
method useful in practice. Tools are part of the ASMETA (ASM mETAmodeling) framework® [AGRSI1,
GRSO08b], and are strongly integrated in order to permit reusing information about models during different
development phases. The IDE AsmEE is available to assist the user when editing an ASM model by using the

concrete syntax Asmetal [GRSO08a].

An Asmetal model is structured into three sections, as shown in Code 1: a header in which external models
can be imported and the signature is declared, a body in which functions, domains, invariants, and rules (including
the main rule) are defined, and an init which initializes the machine. An ASM without the main rule is called

module.

3 http://asmeta.sourceforge.net/.

http://asmeta.sourceforge.net/

ASM-based formal design of an adaptivity component for a Cloud system 575

3.1. Modeling by refinement

Using ASMs, the process of requirements capture results in constructing rigorous ground model (ASMO in Fig. 4)
specified using terms of the application domain, possibly with the involvement of all stakeholders. ASM ground
model helps us to solve three major problems of requirements capture: language and communication problem,
validation problem, and verification-method problem [BS03].

We start from the description of the informal requirements, and the ASM ground model is developed trying
to capture the behavior of the system by means of transition rules, at a very high level of abstraction. The
process of developing the ground model is iterative and can be error-prone. It goes through a sequence of sketchy
intermediate models that could be neither “correct” nor “complete”. Rather, they can expose errors, ambiguities,
or incompletenesses that are typical of the original requirements. Validation and verification techniques (see
Sect. 3.2) are useful to discover such weaknesses. We can try to achieve correctness through continuously reasoning
on requirements, executing the ongoing models, checking them again the expected behavior (by validation) and
required properties (by verification), till the level of the ground model when we have enough confidence that every
feature in the requirements that is relevant for the intended system behavior is present in the reached model. This
ground model is not necessarily complete (and usually it is not) since, although it captures a significant subset of
initial requirements, it can skip irrelevant details necessary later for the implementation.

Starting from the ground model, by step-wise refined models, further details can be added to capture all the
functional requirements and the design decisions. In this way, the complexity of the system can be always taken
under control, and it is possible to bridge, in a seamless manner, the gap between specification and code.

Each time a model is specified as a refinement of an abstract one, refinement correctness should be checked.
This can be done by hand, but we provide an automatic way to achieve this assurance in case of stuttering
refinement. The tool ASMRefProver automatically checks stuttering refinement between two ASM models (see
Sect. 6.2).

In Sect. 6, we show the application of the ASM modeling-by-refinement approach for the specification of the
client-Cloud adaptivity component.

3.2. Model validation and verification

Modeling activity is supported, at each level of refinement, by model validation and verification (V&V).

Model validation should be applied, already at ground model level, in order to ensure that the specification
really reflects the user needs and statements about the system, and to detect faults in the specification as early as
possible with limited effort. ASM model validation is possible by means of the model simulator AsmetaS [GRS08a]
(see Sect. 7.1) and by the validator AsmetaV [CGRSO08] (see Sect. 7.2) that allows to build and execute scenarios
of expected system behaviors. A further validation technique is model review (a form of static analysis) that
determines if a model has sufficient quality attributes (as minimality, completeness, consistency). Automatic
ASM model review is possible by means of the AsmetaMA tool [AGR10b] (see Sect. 7.3). Typical vulnerabilities
and defects that can be introduced during the modeling activity using ASMs are checked as violations of suitable
meta-properties, expressed as CTL formulae. The violation of a meta-property means that a quality attribute is
not guaranteed, and it may indicate the presence of a real fault or only of a stylistic defect.

There is no mandatory order in which these validation activities have to be performed. A modeler can prefer
to first check the model statically, and then execute it interactively or by constructing scenarios, or get feedback
proceeding in the other way around.

Validation usually precedes the application of more expensive and accurate methods, like formal requirements
analysis and verification of properties, that should be applied only when a designer has enough confidence that
the specification captures all informal requirements. However, this is only a usual attitude: the order between
validation and verification is not mandatory.

Formal verification of ASMs is possible by means of the model checker AsmetaSMV [AGR10a] (see Sect. 8).
Computation Tree Logic (CTL) and Linear Temporal Logic (LTL) formulae can be proved on models. In case of
multi-agent ASMs, in order to keep the time and memory consumption of model checking under control, one
can consider a single ASM model at a time and abstract the other models by using monitored functions (to be
understood as mock objects).

576 P. Arcaini et al.

Client-Cloud
Interaction Middleware

Service Owners

I EN

= ./ Security

Monitoring

Management I Adaptivity

i

AAA \

Service Plot
Management

Identity and
Access

Management
Mohile Client—to—(.:lient
Interaction

Fig. 5. CCIM architecture

In case a system implementation is available, either derived from the model as last low-level refinement step,
or externally provided, also conformance checking is possible. For ASMs, techniques and tools for conformance
checking w.r.t. Java code have been developed. The tool ATGT [GRRO03] can be used to automatically generate
tests from ASM models* and, therefore, to check the conformance offfine; CoMA [AGR12], instead, can be used
to perform runtime verification, i.e., to check the conformance online.

Note that conformance checking is out of the scope of this paper since no Java implementation is available yet
for the client-Cloud adaptivity component, but it is argument for future development. As already stated, indeed,
the long term goal of this work is to develop the client-Cloud adaptivity component by following a rigorous
development process as that supported by the ASM method. The intention is to develop a final implementation
of the component in a correct-by-construction way proceeding by correct-proved refinement of models, from the
ground model to the Java code.

4. Client-cloud interaction middleware

Cloud Computing appeared already since years ago and, even though many providers are suggesting that it is
a mature technology, we could still identify existing problems (e.g., the lack of client-orientation and the lack
of formal specifications of the Cloud software solutions) and, therefore, we consider Cloud computing being an
evolving paradigm.

The research done at the Christian Doppler Laboratory for Client-Centric Cloud Computing (CDCC)’ is
addressing the difficulties concerning the client side of Cloud Computing by providing a formalized model for
a client-Cloud interaction middleware (CCIM). Figure 5 shows the system architecture of the CCIM, in which
three entities can be identified: the Cloud providers, which offer the infrastructure, the service owners (tenants),
which offer the software as services (denoted in Fig. 5 by 5,), and the Cloud users, which want to use the
previously mentioned services [BHV15]. The aim of the CCIM model is to integrate various components that are
designed in a loosely coupled way, such that any of them can be removed from the system, and the rest can still
work properly. Each component deals with a specific problem (briefly described in the following) addressed by

4 Note that sequences generated by ATGT could be used to test programs written in any programming language.
5 http://www.cdec.faw.jku.at/.

http://www.cdcc.faw.jku.at/

ASM-based formal design of an adaptivity component for a Cloud system 577

the research at CDCC. The Service Plot Management component [Bos12] solves two problems identified in the
Cloud architecture model: it allows the users to combine functions of Cloud services belonging to different service
owners and also gives the tenants the possibility to fully control the usage of their services. This component also
realizes the integration between the other components. The Identity and Access Management component [Vlel2]
accelerates the adoption or migration to Cloud services, while providing a secure privacy-enhanced integration
between a client and any given Cloud provider with respect to all the aspects related to identity management.
The Client-to-Client Interaction [Bos13] is a mechanism which provides a special kind of services, called channels,
through which the Cloud users can interact with each other in an almost direct way and they can also share
the available Cloud resources among them. The SLA Management component [LR15] deals with monitoring the
service execution adherence to the agreed terms. The Security Monitoring component [LR15] provides an intrusion
detection system that tries to detect anomalies in the client-Cloud interaction by monitoring the communication
protocol language effectively. The Adaptivity component—the one designed in this paper—provides on-the-fly
adaptivity of Cloud applications to different devices (e.g., smartphones, tablets, laptops) and environment.

The CCIM results into a compound software component, which, due to the applied ambient concept [Bos12],
could be casily deployed on the Cloud-side. However, we keep the components in this middleware-based config-
uration, in order to easily manage their interaction and avoid problems in case any of them is eliminated while
the other components still remain active [BHV15]. Another advantage is that, whenever a component must be
updated (for adding functionalities or fixing bugs), only one instance of the component must be redeployed. The
components are independently designed and developed. Some components are already completed and others are
still under development. Not all development processes started by defining a formal model, which could bring to
the implementation, but some were first implemented and system verification was used at the end of the devel-
opment process. In the development process of the adaptivity component, we decided to go from requirements
to implementation (planned as future work) through a sequence of refined models (as presented in this paper).

5. Adaptivity component

This work considers the adaptivity component, whose main contribution in the context of CCIM is to adapt
on-the-fly the cloud service content and layout based on device properties and network characteristics. In this
paper we provide the specification of the adaptivity component (described in Fig. 6), which is analyzed using
different validation and verification activities. Our long term goal [SBL*11] is to obtain, through a chain of
refined models, a correct-by-construction implementation.

5.1. Informal requirements of the adaptivity component

The first step to be done in a development process is the requirements elicitation, which represents a natural-
language problem description. The resulting requirements describe the desired functionality of the system. There
are many techniques (e.g., brainstorming, interviews, domain analysis, prototyping, task analysis, user stories, etc)
and approaches (informal, semi-formal, formal) one could use to manage requirements elicitation. Approaches
use various representations varying from natural language, through graphical forms to formal mathematics.

We here use an informal requirements description, which is very similar to the textual description of UML
use cases [BPP99]. However, one could also use stories (three or four sentences that describe the features of
the system) like the ones exploited by the agile methodologies in the exploration phase [ASRW02, Mey14], or
viewpoint methods (whose representation includes hierarchies, tabular collection forms, and diagrams) [HID10].

Note that the process of ASM modeling works with any approach used for requirements elicitation. In Sect. 6.1
we present how informal requirements are further on captured by the ASM ground models in order to realize
a sufficiently precise, unambiguous, consistent, complete and minimal description of the system. We design the
logic to collect the device information necessary for the content and layout adaptation satisfying the following
requirements:

The client initiates the communication with the Cloud by sending a request from his/her device.
The middleware intercepts the request and gathers information about the device.

The middleware forwards the client’s request to the Cloud.

The answer coming from the Cloud is intercepted by the middleware and processed.

If the answer sent by the Cloud uses other languages than HTMLS5 and JavaScript and this type of language
is not accepted by the device, then the format is converted to HTMLS5 (and JavaScript, if necessary).

bl

578 P. Arcaini et al.

) N Middleware , .
Client .) Adaptivity Component , Cloud Providers
ico i . /
/&J—lﬂﬂlﬂ\ |
\ /
\\ &‘F,\ /
ety :

Web interface

Service interface

Different OSs / Bgl \
. D el ¢ 4
Different Browsers / ~— n@ < l \
/ ~—— S 0 Modernizr \
y S~—— Aud?g/Video \

Converter

Fig. 6. Architecture of the adaptivity component

6. The Cloud’s answer content and layout are adapted by the middleware in accordance with the device profile (a
device profile contains information about the properties of the device, e.g., screen’s width, audio/video format
support, touch, etc).

7. The middleware sends the Cloud’s answer (after processing it) to the client’s device.

8. The client’s device displays the message.

5.2. Architecture of the adaptivity component

Figure 6 represents the architecture of the adaptivity component. The architecture contains three main parts: the
client-side containing various devices that a user could use for accessing the Cloud services, the Cloud-side with
the Cloud services supplied by different Cloud providers, and in the middle there is the adaptivity component,
which is integrated in the middleware framework presented in Fig. 5. The middleware software realizes the
communication between the client and the Cloud, without the need of the client being aware of it. The client
sends its requests through a Web interface (Web application). The communication process is initiated by the
client. It selects a Cloud service from the list filtered based on its credentials. The adaptivity component checks,
both in the client’s cookie and in a local database, for the availability of the device profile. If the profile is not
available, then it requires the necessary information from the device by creating JavaScript tests with the help
of the modernizr framework® (tests which are afterwards executed on the device). The result of the JavaScript
tests is inserted in a cookie and sent back to the middleware. If and when the corresponding device profile is
available on the server-side, then the middleware forwards the client’s request to the Cloud and waits for the
answer. The device profile is used to adapt the content of the answer coming from the Cloud, which is afterwards
sent to the client. The problem of missing browser functionalities can be solved by using replacement code done
in JavaScript, the so-called “polyfills”. If the format of images and/or videos is not accepted by the device, then
third-party tools can be used to generate other formats. The device profile is also saved locally on the server, to
be able to reuse the information when the user logs in again from the same device.

6 http://modernizr.com/.

http://modernizr.com/

ASM-based formal design of an adaptivity component for a Cloud system 579

Checking for extra
resources
Fxooute client tosts Extra resources needed

lessage displayable [Download extra resources]
Displaying the message
{Updatc cookie profile with feature info‘

Fig. 7. Client—control state ASM ground model

Decrypt
message

Send message
Send message

Waiting
for message

—<Client tests available

6. Formal specification
6.1. Ground model

In this section we show how the requirements of the adaptivity component presented in Sect. 5.1 can be formally
captured by (control state) ASM ground models.

A preliminary simplified model was already presented in [HRWW16]. We focused only on the client-side and
on the interaction between the client and the middleware server, but not on the Cloud-side (left abstract) and
neither on the communication with the Cloud. We only had two agent types: the client and the middleware.

In the current work, we present an extended version of the client and of the middleware. The latter includes
also the design of a new agent type, request handler, that is responsible for handling the requests coming from the
clients and processing the answers returned by the Cloud. Moreover, the complete communication cycle between
the client and the Cloud, mediated by the middleware, is modeled. In particular, we added the communication
between the middleware and the Cloud, and the final part of the communication flow when the middleware sends
the message to be displayed to the client.

The whole multi-agent ASM results composed of an agent of type middleware, a family of agents of type
device, owned by the clients, and a family of agents of type request handler created at runtime, one for each client
request. Their behaviors, modeled in terms of control-state ASMs, are explained in details below.

Client model Figure 7 shows the (control state) ASM ground model of the client (the agents executing the flow
presented in this model are the devices of the users). There are six states through which a client’s device goes.
The initial state is Idle, and the final state is Displaying the message. The client initiates the communication by
sending a request to the Cloud (which is intercepted by the middleware) and then waits for the answer. If a message
arrives, then it is automatically decrypted by the browser (we keep this functionality abstract) and the guard Client
tests available checks if the content of the received message contains JavaScript (modernizr) tests. If so, they are
executed and, if the message is not displayable, their result is used to update the cookie (in this way the middleware
will be aware of the new values of the device properties). The messages coming from the middleware are labeled
with a flag saying whether a message should be displayed or not. A message is not displayable if the middleware
needs information about the device to process the answer on the server-side. We can still have JavaScript tests also
if the message is displayable, but these are the so-called “tests per request” (the corresponding device information
could change by every request, e.g., GPS location, screen orientation view, etc). The device agent reaches the
state Checking for extra resources directly if no modernizr test is available or after the execution of the tests, if
the message is displayable. In this state, if extra resources are needed, they are downloaded by the browser, and
then the device agent reaches the final state Displaying the message and the Cloud’s answer (processed by the
middleware) is displayed on the device.

580 P. Arcaini et al.

Waiting for requests Requests available ‘Start request handler
1

Fig. 8. Middleware—control state ASM ground model

Send requests to Cloud‘
!

Waiting for answers
from cloud

Device profile
up-to-date
on the server

Answer available

’Save device profile on the server Reading answer

from Cloud

Device profile available
on the server

Retrieve the local device proﬁlo‘

Device profile retrieved
’Transform message‘

determining device features ’Send requests to Cloud‘
l l Adapting
Require device info Update cookie with
device info Adapt content
Send to client
Sending Client tests Checking tests
to client

per request

Write client tests per request‘

lessage format
supported

Write client tests for

Fig. 9. Request handler—control state ASM ground model

Middleware server model On the server-side we have the specification of the middleware and of the request handler.
Fig. 8 displays the (control state) ASM ground model of the middleware agent. Only one state is available for this
agent: Waiting for requests—the middleware keeps on waiting for requests from the clients. Each device sends
only one request at any given time, thus the middleware agent can deal with requests from different devices in
parallel without difficulties, because requests are independent of each other. For each received request a new
agent of type request handler is generated.

Note that we provide a basic infrastructure for a message-passing communication. When modeling the client-
middleware communication, only reactive behaviors are considered, i.e., the middleware reacts upon receiving
requests from the client. We abstract from considering possible “conversational” aspects (possibly implying
several exchanges of information between the two parts) of the communication in distributed systems. However,
such aspects can be included in further refinements of the model by using the high-level models for fundamental
bilateral service interaction patterns specified by Barros and Borger [BB05] in terms of ASMs. They define ASM
rules to capture the semantics of both asynchronous and synchronous message passing (the non-blocking and
blocking mode) and the semantics of service interactions beyond simple request-response sequences by involving
acknowledgment, resending, etc.

Figure 9 displays the model of a request handler agent. The initial state of a request handler is Start processing,
followed by the guard that checks if the corresponding device profile is available in the cookie. If not available,
the agent searches for the information in the local database. In case device information is not available neither in
the cookie nor on the server, modernizr tests are created in JavaScript, the state of the request handler is set to
Require device info, and the request containing the tests is returned to the client for executing the JavaScript code
and updating the device information in the cookie.

ASM-based formal design of an adaptivity component for a Cloud system 581

Adaptivity Component 3
I_ _____ |
_______________ >— module :
1 [RN
' ,“I::::::I—— o T S)
! ——— module { CSEage X ——L— module :
1 T Bocococooooo A ___ I
: IClient b : . ?l 1Server
W_A \ L ﬁ—'
| | \ [| 1
V- | [mesenen | =====- |
: : —‘—: module ! —'—'—'—: asm ! —‘—: module :
1 I _— - e = - p—
"1 Client ’;_ "7 Mediator |:_ "7l Server {
0 T
D e e e e bbb b b bbb b b oo o e o 1

Fig. 10. The architecture of the client-middleware communication in AsmetalL

module IClient
signature:
domain Device subsetof Agent
controlled cookie: Prod(Device, String) —> String
controlled modernizr: Device —>
Seq(Prod(String, Boolean, Seq(Prod(String, Boolean))))
static dev1: Device
static dev2: Device
static dev3: Device

Code 2. IClient module

After this step, the agent’s state is updated to Message sent, which is also the final state of a request handler.
Otherwise, if the information has been found, the request is forwarded to the Cloud, and its handler enters the
state Waiting for answers from cloud. If the device profile has been retrieved from the cookie, it is updated on the
server (if necessary), otherwise, if it has been retrieved from the server, the cookie is updated. For each answer
that returns from the Cloud, the handler agent verifies whether the device accepts the format: If not, the content
is transformed. Then, the agent goes to the next state Adapting. After the content is adapted using the device
profile, the agent checks if “tests per request” are necessary. If so, the corresponding JavaScript tests are generated
and the agent goes to the Sending to client state. The answer is sent to the client’s device to be displayed and the
handler agent reaches the final state Message sent.

Asmetz%L models We here present (fragments of) the AsmetalL encoding of the control state ASMs presented
before.

The Asmetal. encoding of a multi-agent ASM requires the definition of a main ASM that imports all the
ASM modules and, in its main rule, schedules all the other agents.

Figure 10 displays the architecture of the client-middleware communication in Asmetal..

IClient and Client correspond to the client control state ASM depicted in Fig. 7. IServer and Server
together represent the control state ASMs of the middleware and of the request handler shown in Figs. 8 and
9. MessageBox is a module containing signature to model message exchange between clients and middleware.
Mediator is the main ASM of the multi-agent Asmetal. model. It is responsible for delivering messages among
the other agents. In the figure, dashed arrows represent the importing relation among models: A ——> B means
that A reads (part of) the signature of B. Such feature is particularly common in multi-agent ASMs, since one
agent may need information from other agents.

IClient module (see Code 2) contains the signature of the client that must be accessed by other modules.

Device is the set of the client running agents, and static functions dev1, dev2, and dev3 represent three
concrete client agents; cookie and modernizr functions are declared in this module, because they are also
accessed by the middleware. The module Client (see Code 3) formalizes, by means of the rule r_ClientAction
(partially reported), the behavior of each client operating through a device. The translation from the graphical
notation of the control state ASM to the textual notation is done according to the mapping shown in Fig. 2. Each
action, reported with a rectangle in Fig. 7, becomes a rule in the Asmetal code.

7" All the specifications are available at http://fmse.di.unimi.it/sw/Adaptivity FAOC2016.zip.

http://fmse.di.unimi.it/sw/AdaptivityFAOC2016.zip

582 P. Arcaini et al.

module Client rule r_Send =
par
signature: if isDef(htmITags(self)) then
enum domain State = {IDLE | SEND_MSG | outboxClient(self) := including(outboxClient(self),
WAITING_-FOR-MSG | EXEC_CLIENT_TESTS | second(htmlITags(self)))
CHECKING_FOR_EXTRA_RESOURCES | else
DISPLAYING_THE_.MSG} extend Msg with $m do
controlled state: Device —> State outboxClient(self) := including(outboxClient(self), $m)
controlled htmiTags: Device —> Prod(MessageType, Msg, Msg) endif
monitored extraResources: Device —> Boolean htmITags(self) := undef
monitored clientTestsAvl: Device —> Boolean endpar
derived messageAtrrived: Device —> Boolean rule r_ClientAction = /Behavior of the devices of a client
par
definitions:
function messageArrived($d in Device) = ... if state(self) = SEND_MSG then
par
rule r_DownloadExtraResources = skip //this rule remains abstract r-Send[]
state(self) := WAITING_.FOR_MSG
rule r_DecryptMessage = skip //this rule remains abstract endpar
endif
rule r_updateCookieProfile = if state(self) = WAITING_.FOR_MSG then
r_updateCookieWithModernizr{cookie(self,"deviceProfile"),
modernizr(self)] endpar

Code 3. Client module

module IServer

signature:
domain Middleware subsetof Agent
dynamic domain ReqHandler subsetof Agent
static middleware: Middleware

Code 4. IServer module

For example, rule r_Send describes the behavior of a client that uses the device to send a request to the Cloud
(intercepted by the middleware). As one can observe, the request is not directly sent to the middleware: it is placed
in a queue and processed afterwards by the Mediator. The client is, therefore, not aware of the processing done
by the middleware.

A similarly modeling approach has been followed for the server-side. The functions which are needed in the
other modules are in the signature of module IServer shown in Code 4. We have two declarations of agent
domains on the server-side, because there are two different types of agents: Middleware and ReqHandler. The
agents of type ReqHandler are generated at runtime (inside the Server module as shown in Code 5) by the unique
middleware agent.

The module Server is partially shown in Code 5. Inside the signature, the enumerative domains Middle-
wareState and ReqHandlerState represent the states of, respectively, the middleware and a request handler.
Among the functions, devRequests represents the received requests, and devProfileDB the server database.
Rule r_ReceiveRequest describes the behavior of the middleware agent as described in the control state ASM
shown in Fig. 8: it generates a request handler agent for each new request, and awakes request handlers that did
not reach their final state yet, so that they can further process their corresponding requests.

All the other rules of the module describe the actions executed by the request handler agents as described by
the control state ASM in Fig. 9. Rule r_ProcessRequest is the principal rule of the request handler, that invokes
all the other rules. For example, rule r_Send places the answer for the corresponding device in a queue, so that
the Mediator can forward it to the client-side.

Code 6 displays the Mediator, the main ASM of our project. In the main rule, the programs of all the
device (client) agents and of the middleware agent are executed in parallel. Moreover, rules r_SendToServer and
r_SendToClient establish the connection between the client and the server by delivering messages: the messages
sent by the devices (resp. by the request handlers) are taken from the outboxClient (resp. outboxServer),
queued, and forwarded to the middleware (resp. devices). In the initial state section, the Mediator initializes the
signature of all the modules and specifies the programs (i.c., the starting rules) of the agents.

We skip the presentation of the MessageBox module, that only contains signature including the Msg and
MessageType domains, and the communication queues used by the agents.

ASM-based formal design of an adaptivity component for a Cloud system 583

module Server

signature:
enum domain MiddlewareState = { WAITING_.REQUESTS}
enum domain RegHandlerState ={ START_PROCESSING|
REQUIRE_DEVICE_INFO | WAITING_.FROM_CLOUD |
READING_ANSW_FROM_CLOUD | ADAPTING |
CHECKING_CLIENT_TESTS_REQ |
SENDING_TO_CLIENT | MSG_SENT}
controlled mState: Middleware —> MiddlewareState
controlled reqHandlerState: ReqHandler —>
ReqgHandlerState
controlled devProfileDB:
Device —> Seq(Prod(String, Boolean,
Seq(Prod(String, Boolean))))
controlled devProfileDBRetrieved: Device —> Boolean
controlled devRequests: Device —>
Powerset(Prod(Msg, ReqHandler, Msg))
controlled reqHandlerDev: ReqHandler —>
Prod(Device, Msg, Msg)
controlled clientTests: RequestHandler —> Msg
derived requestsAvl: Boolean
derived cookielnfoAvl: Device —> Boolean
derived devProfileDBUpdated: Device —> Boolean
derived existsDevProfileDB: Device —> Boolean
derived cookieKeys: Prod(Device, String) —>
Seq(String)
derived devProfileDBKeys: Device —> Seq(String)
derived cookieSubprops: Prod(String, String, String) —>
Seq(Prod(String, Boolean))
monitored answerAvl:
Prod(Device, Msg, RequestHandler) —> Boolean
monitored answerFormatSupp: Msg —> Boolean
monitored clientTestsPerRequest: Msg —> Boolean

definitions:

function requestsAvl = ...
function cookielnfoAvl($d in Device) = ...
function cookieKeys($d in Device, $s in String) = ...
function devProfileDBKeys($d in Device) = ...
function devProfileDBUpdated($d in Device) = ...
function existsDevProfileDB($d in Device) = ...
function cookieSubprops($s in String,

$d1 in String, $d2 in String) = ...

rule r_WriteClientTests ($rh in ReqHandler) =
rule r_SendRequestsToCloud($rh in RegHandler, $r in Msg,
$d in Device) = ...
rule r_UpdateDevProfileDB($d in Device) = ...
rule r_-ReadDevProfileDB($d in Device) = ...
rule r_UpdateCookieProfile($d in Device) = ...
rule r_Send($d in Device, $mt in MessageType, $initialReq in Msg,
$answer in Msg) =
outboxServer($d) := ($mt, SinitialReq, $answer)
rule r_ReplaceAnswer($rh in RegHandler, $d in Device, $r in Msg,
$nA in Msg)= ...
rule r_GetAnswerFromCloud($rh in RegHandler, $r in Msg,
$d in Device) = ...
rule r_TransformMessageFormat($rh in RegHandler, $d in Device,
$rin Msg) = ...
rule r_AdaptContent = skip //this rule remains abstract
rule r_UpdateModernizr($d in Device) = ...
rule r_WriteClientTestsPerRequest($rh in RegHandler, $d in Device,
$rin Msg) = ...
rule r_ProcessRequest = //Behavior of the request handler
par
if reqHandlerState(self) = START_PROCESSING then
if cookielnfoAvl(first(reqHandlerDev(self))) then
par
if not devProfileDBUpdated(first(reqHandlerDev(self)) then
r_UpdateDevProfileDBfirst(reqHandlerDev(self))]
endif
r_SendRequestsToCloud[self, second(reqHandlerDev(self)),
first(reqHandlerDev(self))]
endpar
else

endpar
rule r_ReceiveRequest = //Behavior of the middleware

forall $d in Device do
choose $dr in deviceRequests($d) with true do
if isUndef(second($dr)) then
extend RequestHandler with $rh do

endif
forall $reqH in RegHandler
with reqHandlerState($reqH) != MSG_SENT do
program($reqH)

Code 5. Server module

asm Mediator
definitions:
;lljle r-SendToServer =
forall $d in Device with size(outboxClient($d)) > 0 do
forall $m in outboxClient($d) do

rule r_SendToClient =
forall $d in Device with isDef(outboxServer($d)) do

main rule r_-Main =

par

forall $d in Device do
program($d)

program(middleware)
r_SendToServer(]
r_SendToClient[]

endpar

default init sO:
;gent Device: r_ClientAction[]

agent Middleware: r_ReceiveRequest[]
agent RequestHandler: r_.ProcessRequest[]

Code 6. Mediator module

584 P. Arcaini et al.

i

Fig. 11. Client—control state first refinement

M

Client state(devl) = IDLE state(devl) = SEND_MSG —— state(devl) =
ground A A WAITING_FOR_MSG
First state(devl) = IDLE ——— state(devl) = IDLE —— state(devl) = SEND_MSG —— state(devl) =

refinement authenticated(devil) authenticated(devl) A WAITING_FOR_MSG
= false = true P

Fig. 12. First refinement—example of refined run

6.2. Refinement of the client

Starting from the ground models of the client and the middleware server, we proceeded through a chain of
refinements to obtain more detailed models of the client and the middleware server. We followed the vertical
refinement approach where each model is singularly refined. Each refinement step has been proved correct through
the SMT-based tool ASMRefProver. In the following, we show, by means of the first two steps of refinement of
the client, the two possible types of refinement: operation refinement and data refinement.

Our system guarantees the conditions of Theorem 2.4, i.e., that variables shared between agents are only
written by an agent and read by the other one: indeed the client writes variables that are read by the server (that
does not have write access on them) and the other way around. Therefore, according to Theorem 2.4, we can
consider the agents individually and prove refinement for them; if refinement holds for the individual agents, it
will also hold for the global system.

First refinement In the ground model of the client, in the initial state the device is in state IDLE and always
moves to the state SEND_MSG. In the first refinement step, we have added an authentication step in which the
device must login to the middleware service (see the modified control state ASM in Fig. 11). We use a monitored
predicate authenticated for specifying whether the device has been authenticated. This refinement is an operation
refinement since a new behavior (i.e., the authentication phase) has been added in the refined model.

The equivalence between abstract and refined states is given by the equality of the functions state (i.e, the
locations of interests). The refinement is a correct stuttering refinement. In all the states in which the state of
the client is different from IDLE, the proof is straightforward because the refined model behaves as the abstract
model. We only need to prove that the correct refinement holds when the state of the client is IDLE: if in a refined
state S a device is in IDLE and the state is equivalent with an abstract state S, in the next state S’ the refined model
can only be equivalent with either S (if the device failed to authenticate in the previous state) or with §’, the next

state of S (if the authentication was successful). Figure 12 shows an example of refined run So, Sl, 52, ...and a
corresponding abstract run Sy, Si, In the first state S, of the refined run, dev1 is in IDLE state and fails to
authenticate (i.e., authenticated(dev1) is false): therefore, in the second state S it remains IDLE. In the second

state, the device authenticates correctly and, therefore, in the third state 52 its state becomes SEND_MSG. Then the
run continues with the message exchange. We can find a corresponding abstract run that respects the stuttering
refinement relation: the first two states of the refined run are conformant with the first state .S, of the abstract run

in which state(dev1) = IDLE, and then each refined state EZ (7 > 2) is conformant with the abstract state S;_;.

Second refinement In this refinement we implement the updating of the cookie by the modernizr. This refinement
is a data refinement. Indeed, it extends the signature with functions cookie and modernizr, and adds a rule for
updating the cookie, but the transition relation of the previous model is not affected.

ASM-based formal design of an adaptivity component for a Cloud system 585

M

First e ———> state(devl) = _— state(devl) = _— state(devl) =
ref EXEC_CLIENT_TESTS CHECKING_FOR_EXTRA_RESOURCES DISPLAYING_THE_MSG
M

Second - ———> state(devl) = state(devl) = state(devl) =
refinement EXEC_CLIENT_TESTS CHECKING_FOR_EXTRA_RESOURCES DISPLAYING_THE_MSG

cookie(devl) = undef cookie(devl) = c..
modernizr (devl) = "canvas:trueltouch:true"
"canvas:trueYtouch:true" modernizr (devl) =

"canvas:trueYtouch:true"

Fig. 13. Second refinement—example of refined run

Therefore, the proof of correct refinement is straightforward, since each run is associated with a run of equal

length where each refined state S is equivalent with the abstract state S. Figure 13 shows an example of refined
run.

7. Validation

Model validation is a first model analysis activity that is performed to ensure that the specification captures all
system requirements, and owns some specific qualities. We exploited the simulator AsmetaS [GRS08a] and the
validator AsmetaV [CGRSO08] for model simulation in both an interactive and automatic way. Moreover, we used
the tool AsmetaMA to verify system-independent properties (or meta-properties), i.e., properties that any model
should guarantee.

7.1. Simulation

AsmetaS permits to perform either interactive simulation, where required inputs are provided interactively by the
user during simulation, and random simulation, where input values are chosen randomly by the simulator itself.
The simulator, at each step, performs consistent updates checking to check that all the updates are consistent:
in an ASM, two updates are inconsistent if they update the same location to two different values at the same
time [BS03]. Moreover, at each step the simulator also checks that all the invariants hold.

During the development process, we have repeatedly simulated our specification, both interactively and ran-
domly. Figure 14 shows an extract of a simulation trace. In the second state, three devices have sent three messages
to the middleware, putting them in outboxClient. In the following, we only describe the workflow for the request
Msg!3 of device dev1, but all the requests have been handled in parallel during the simulation. In the fourth state,
the middleware has created the request handler ReqHandler!3 for the request of devl and has associated it to
the corresponding message Msg!3 by means of function reqHandlerDev; the state of the handler (i.e., function
reqHandlerState) is set to START_PROCESSING. In state 6, the middleware has updated the cookie of devi,
because the information is available in the database (devProf ileDB); the state of the corresponding request han-
dler has been updated to WAITING_FROM_CLOUD, meaning that the request has been forwarded to the Cloud. In the
following state, through the setting of monitored location answerAvl (devl,Msg!3,ReqHandler!3) to true, we
model the fact that an answer came back from the Cloud for the message Msg! 3. In state 8, the middleware reads
the answer coming from the Cloud (Msg!6) and inserts it in devRequests for devl and in reqHandlerDev (a
function recording the request of each request handler) for ReqHandler!3. In state 9, by means of the monitored
function answerFormatSupp, the middleware checks whether the message Msg!6 returned from the Cloud for
dev1 has the correct format. In this case the format is correct; if the format had been not correct, a new message
would have been generated. In the next state, ReqHandler!3 enters state ADAPTING, i.e., it adapts the message
coming from the Cloud with the information contained in the cookie. In state 13, ReqHandler!3 checks whether
client tests are necessary for handling the current request (e.g., the GPS device must be tested); this is done by
means of function clientTestsPerRequest. In this case, tests are necessary. Therefore, in the next state a new
message is created (Msg!7) for devl and the modernizr (dev1) location is updated with the new test.

586

<State 2 (controlled)>
devRequests (devl)={}
devRequests (dev2)={}
devRequests(dev3)={}
outboxClient (devi)={Msg!3}
outboxClient (dev2)={Msg!2}
outboxClient (dev3)={Msg!1}
state(devl1)=WAITING_FOR_MSG
state(dev2)=WAITING_FOR_MSG
state(dev3)=WAITING_FOR_MSG
mState(middleware)=WAITING_REQUESTS
</State 2 (controlled)>

<State 4 (controlled)>

outboxClient (devl)={}
state(devl)=WAITING_FOR_MSG

reqHandlerDev (ReqHandler!3)=(devl,Msg!3,undef)
reqHandlerState (ReqHandler!3)=START_PROCESSING
devRequests(devl)={(Msg!3,ReqHandler!3,undef)}
outboxServer (devl)=undef

</State 4 (controlled)>

<State 6 (controlled)>

state(dev1)=WAITING_FOR_MSG
cookie(devl,"deviceProfile")="canvas:true)touch:true"
devProfileDB(dev1)=[("canvas",true,undef), ...]
reqHandlerDev(ReqHandler!3)=(devl,Msg!3,undef)
regHandlerState (ReqHandler!3)=WAITING_FROM_CLOUD

</State 6 (controlled)>

Insert a boolean constant for
answerAvl(devi,Msg!3,RegHandler!3):

true

<State 7 (monitored)>

answerAvl(devl,Msg!3,ReqHandler!3)=true

</State 7 (monitored)>

<State 8 (controlled)>

outboxServer (devl)=undef

devRequests(devl)={(Msg!3,ReqHandler!3,Msg!6)}

reqHandlerDev (ReqHandler!3)=(devl,Msg!3,Msg!6)

reqHandlerState (ReqHandler!3)=READING_ANSW_FROM_CLOUD

</State 8 (controlled)>

Insert a boolean constant for answerFormatSupp(Msg!6):

true

<State 9 (monitored)>

answerFormatSupp (Msg!6)=true

</State 9 (monitored)>

<State 10 (controlled)>

regHandlerDev (ReqHandler!3)=(devl,Msg!3,Msg!6)
reqHandlerState (ReqHandler!3)=ADAPTING
state(devl)=WAITING_FOR_MSG

</State 10 (controlled)>

P. Arcaini et al.

<State 12 (controlled)>

state(dev1)=WAITING_FOR_MSG
cookie(devl,"deviceProfile")="canvas:trueYtouch:true"
devProfileDB(devl)=[("canvas",true,undef), ...]
devRequests(devl)={(Msg!3,ReqHandler!3,Msg!6)}
reqHandlerDev(ReqHandler!3)=(devl,Msg!3,Msg!6)
reqHandlerState (ReqHandler!3)=CHECKING_CLIENT_TESTS_REQ

</State 12 (controlled)>

Insert a boolean constant for clientTestsPerRequest(Msg!6):

true

<State 13 (monitored)>
clientTestsPerRequest (Msg!6) = true

</State 13 (monitored)>

<State 14 (controlled)>
state(devl)=WAITING_FOR_MSG
modernizr(devl)=[("geolocation",true,undef)]
reqHandlerDev (ReqHandler!3)=(dev1,Msg!3,Msg!7)
reqHandlerState (ReqHandler!3)=SENDING_TO_CLIENT

</State 14 (controlled)>

<State 16 (controlled)>

outboxServer (dev1)=(DISPLAY,Msg!3,Msg!7)
devProfileDB(devl)=[("canvas",true,undef), ...]
reqHandlerDev (ReqHandler!3)=(dev1l,Msg!3,Msg!7)
reqHandlerState (ReqHandler!3)=MSG_SENT

</State 16 (controlled)>
<State 17 (controlled)>
htmlTags (dev1)=(DISPLAY,Msg!3,Msg!7)

</State 17 (controlled)>

Insert a boolean constant for clientTestsAvl(devl):
true
<State 17 (monitored)>

<State 18 (controlled)>
state(dev1)=EXEC_CLIENT_TESTS

</State 18 (controlled)>
<State 20 (controlled)>
state(dev1)=CHECKING_FOR_EXTRA_RESOURCES

</State 20 (controlled)>
</State 21 (controlled)>

Insert a boolean constant for extraResources(devl):
false

<State 21 (monitored)>

<State 22 (controlled)>
state(dev1)=DISPLAYING_THE_MSG

</State 22 (controlled)>

Fig. 14. Example of simulation trace

Instate 16, message Msg! 7 for dev1 has been sent by adding it to outboxServer and the state of ReqHandler!3
is updated to MSG_SENT. In the next state, message Msg!7 is stored on dev1 (in the function htmlTags). The
function clientTestsAvl checks now if Javascript tests are available in the answer. dev1 executes the test in state
18, checks for extra resources in state 21, and can finally display the message in state 22.

7.2. Scenario-based validation

Although simulation is useful in the first stages of the model development, when the model becomes particularly
big, following a long simulation can be a tedious task for the developer. Scenario-based validation by the tool
AsmetaV [CGRSO08] permits to specify scenarios describing the interaction between a user (i.e., the environment)

ASM-based formal design of an adaptivity component for a Cloud system 587

and the machine. The Avalla language provides constructs to set the values of the monitored functions, to
execute a step of simulation of the ASM, and to check that a given closed first order formula (assertion) holds in
a given state. The validator AsmetaV simulates (using the simulator AsmetaS) the ASM model according to the
commands of the scenario, and checks if all the assertions are satisfied. As soon as an assertion is not satisfied,
the simulation is interrupted reporting the violation.

We have produced some scenarios of interaction sequences with suitable checks describing our expectations
about the model states (similarly to what is done with unit testing in code development). Moreover, such scenarios
have been executed every time we modified and/or enhanced our models to check that no faults were introduced
(in a kind of regression testing).

Code 7 shows the scenario reproducing the simulation reported in Fig. 14.

7.3. Model review

This approach aims at determining if a model is of sufficient quality to be easy to develop, maintain, and enhance.
This technique permits to identify defects early in the system development, reducing the cost of fixing them.
For this reason, it should be applied also on preliminary models. The AsmetaMA tool [AGR10b] (based on the
model checker AsmetaSMV) allows automatic review of ASMs. Typical vulnerabilities and defects that can be
introduced during the modeling activity using ASMs are checked as violations of suitable meta-properties (M P,
defined in [AGR10b] as CTL formulae). The violation of a meta-property means that a quality attribute is not
guaranteed, and it may indicate the presence of a real fault (i.e., the ASM is indeed faulty), or only of a stylistic
defect (i.e., the ASM could be written in a better way).
For this work, we have identified some meta-properties tailored for distributed systems:

e M P,.: no concurrent writing errors occur in the specification. This particular concurrency error occurs when
the same element is simultaneously modified by different agents. Such error corresponds to the ASM notion
of inconsistent update when the same location is updated to two different values at the same time [BS03]. In
our case, we may have inconsistencies in the communication, for example, if the outbox of the middleware
is simultaneously updated with multiple replies. Another inconsistency may occur in the database handling,
for example, if multiple request handlers can update the information of a given device at the same time. This
meta-property guarantees consistency since it checks that no location is simultaneously updated by different
agents. Note that a violation of this meta-property indicates a real fault in the model.

e M P,: all specified behaviors are executed. Such meta-property guarantees that all the rules specified in the
model are executed, i.e., all the agents are active and all their configurations (as shown in the control state
ASMsin Figs. 7, 8, and 9) are actually reachable. Note that this meta-property only guarantees the rechability
of a rule, not its correctness, that can only be checked with application-dependent properties specified by the
user, as described in Sect. 8.

e M P,: the signature is minimal, i.e., it does not contain locations that are unnecessary (they are never read
nor updated) or that do not assume all the values of their codomains. A violation of this meta-property may
indicate over-specification, i.e., the model contains signature elements that are not needed, or that the model
is not complete, i.e., that the designer forgot to add some behaviors (i.e., transition rules) to modify such
locations. Note that removing unnecessary elements at model level is mandatory because if they are kept in
the final implementation, they can negatively influence the performances of the whole system and increase
the costs without any motivation.

Meta-property verification works as follows. A meta-property M P is instantiated on the model under review
producing a set of CTL properties which are proved over the model. If no violation is found, the meta-property
holds. For example, meta-property M P, requiring that each rule R is executed, is defined as EF(firingCondition
(R)), where firingCondition(R) specifies the condition that guards the execution of R. Verification of M P, is
done by instantiating the meta-property on all the rules of the model.

During the development process, we have executed AsmetaMA on all the models. We have found several
minimality violations (meta-property M P,,) in all the models, since some functions were declared but never used:
we discovered that some of these functions were indeed unuseful (and so they could be removed), while some
others were useful, but we forgot to use (read or update) them.

588 P. Arcaini et al.

scenario communication
load Mediator.asm

step

step

check outboxClient(dev1)={Msg!3} and state(dev1)=WAITING_.FOR_MSG;

step

check devRequests(dev1)={(Msg!3,ReqHandler!3,undef)} and reqHandlerDev(ReqHandler!3)=(dev1,Msg!3,undef) and
regHandlerState(ReqHandler!3)=START_PROCESSING;

step

check cookie(dev1,"deviceProfile")="canvas:true
set answerAvl(dev1,Msg!3,ReqHandler!3): = true;
step

check devRequests(dev1)={(Msg!3,ReqHandler!3,Msg!6)} and reqHandlerDev(ReqHandler!3)=(dev1,Msg!3,Msg!6) and
regHandlerState(ReqHandler!3)=READING_ANSW_FROM_CLOUD;

set answerFormatSupp(Msg!6) = true;
step
check reqHandlerState(ReqHandler!3)=ADAPTING;

step

check reqHandlerState(ReqHandler!3)=CHECKING_CLIENT_TESTS_REQ;
set clientTestsPerRequest(Msg!6) := true;

step

check modernizr(dev1)=[("geolocation”,true,undef)] and reqHandlerDev(RegHandler!3)=(dev1,Msg!3,Msg!7) and
reqHandlerState(ReqHandler!3)=SENDING_TO_CLIENT;

step
check outboxServer(dev1)=(DISPLAY,Msg!3,Msg!7) and reqHandlerDev(RegHandler!3)=(dev1,Msg!3,Msg!7) and
reqHandlerState(ReqHandler!3)=MSG_SENT;

step
check htmlTags(dev1)=(DISPLAY,Msg!3,Msg!7);

set clientTestsAvl(dev1) := true;
step
check state(dev1)=EXEC_CLIENT_TESTS;

step
check state(dev1)=CHECKING_FOR_EXTRA_RESOURCES;
set extraResources(dev1) := false;

step
check state(dev1)=DISPLAYING_THE_MSG;

Code 7. Example of scenario

A more serious error that we discovered in our first specification (originally published in [Chel3]) was the
presence of a consistency violation (meta-property M P,.). We found that the client could, under some condi-
tions, simultaneously update a location of the function state (ctl_state in [Chel3]) to two different values.
Although a normal simulation or the scenario-based validation can sometimes unveil the presence of inconsistent
updates, when the model becomes particularly complex, inconsistencies may be more difficult to find, and an
automatic approach as that provided by the model reviewer is helpful. Moreover, simulation can show only some
inconsistencies (i.e., those detected in the executed runs), whereas model review detects @/l the inconsistencies.

ASM-based formal design of an adaptivity component for a Cloud system 589

forall $k in Key do
par
cookie(self, $k) := modernizr(self, $k)
forall $c in SubKey with keyParentalRel($k, $c) do
cookieSub(self, $k, $c) := modernizrSub(self, $k, $c)
endpar

Code 8. Rule r_updateCookieProfile

We also checked more general meta-properties defined in [AGR10b]. In the second refinement of the client
model, we have found several violations of meta-property M P4, requiring that no assignment is always triv-
ial [Gur00]: an update rule [:= ¢ is always trivial if, when the rule is applied, [is already equal to ¢. In our
specification we always update all the keys of a cookie through the modernizer, even if they are already up to
date, as shown in Code 8.

In this way, the locations of function cookie that refer to keys that never change, will be always updated to
the same value. Although this is not a real error, it gave us a more deep understanding of the behavior of our
specification. In a further refinement of our model, we could avoid to update keys that are already up to date;
surely such a control should be done in the final implementation, in order to improve the performances.

In a preliminary version of the middleware server, we also discover a violation of meta-property M P7, requiring
that every controlled location is updated at least once (otherwise it should be defined static). We discovered that
controlled function devProfileDB, representing the database hosted on the middleware, was never updated,
i.e., the middleware never copied in the database the information retrieved from the cookie. In this case, the
meta-property violation was the signal of a requirement that was not modeled.

8. Verification

Once the designer has enough confidence that the specification captures all the intended requirements, (s)he can
apply heavier techniques, as model checking, to guarantee the specification correctness.

We used AsmetaSMV [AGR10a], a tool that translates ASM specifications into models of the NuSMV model
checker, and allows the verification of Computation Tree Logic (CTL) and Linear Temporal Logic (LTL) formulae.
Asunderlined alsoin [Leu08, ADKO08, Hei98], declaring a property for a high level-model of the system is definitely
easier than writing the same property for a low-level model, as the one we would obtain directly using the syntax
provided by model checkers (e.g., Promela, the input language of SPIN, or the input syntax of NuSMYV).

Since model checking requires a finite number of states to verify, we have slightly modified our models in
order to make them suitable for model checking. We have abstracted all the infinite domains with finite ones and
we have considered a finite number of interactions between the client and the middleware. For example, we have
modified the signature of functions cookie and modernizr of the client model as follows:

controlled cookie: Prod(Device, Key) —> Boolean
controlled modernizr: Prod(Device, Key) —> Boolean

being Key an enumerative domain representing the possible keys of a cookie. cookie(d,k) is true if the device
d € Device hasthe key k € Key in its cookie; modernizr (d, k) is true if the modernizr associates the key k to
the device d. Two other functions record the sub-keys of the cookie keys.

controlled cookieSub: Prod(Device, Key, SubKey) —> Boolean
controlled modernizrSub: Prod(Device, Key, SubKey) —> Boolean

Such abstractions have been devised in a way to guarantee that the abstract model bisimulates the original
model [BK08], and therefore properties proved over the abstract model also hold in the original model. In ASM
terms, each run of the original model can be mapped to a run of equal length of the abstract model and vice versa.

The same abstractions have also been applied when we executed model review (see Sect. 7.3), since it is based
on model checking.

We have verified classical temporal properties to guarantee correctness and reliability of the client-Cloud
adaptivity application. Differently from [HRWW16], we have verified properties not only for the client and
for the middleware, but also for their communication. In order to keep the verification times reasonable, we
have first verified the communication, abstracting from the client and the server (mimicking their behaviors by
suitable monitored functions). Then, we have verified the client and the middleware singularly, mimicking the
communication with the other actors.

590 P. Arcaini et al.

Each property has been specified on the model containing the elements involved in the property; for example,
properties related to cookies were specified starting from the client model in which cookies were added. Moreover,
all the properties specified at a given refinement level have also been reproved on all the successive refinement levels.
Indeed, as explained in Sect. 2.2, stuttering refinement only guarantees that invariant properties are preserved by
refined machines. As future work, we plan to investigate which temporal properties are preserved by stuttering
refinement, so to avoid reproving all temporal properties on the refined models. This is usually guaranteed by
stuttering bisimulation [MPMO10]; we will therefore study whether—or under which assumptions—stuttering
bisimulation holds in our context.

All the properties have been specified in CTL. We verified all the properties on a Linux machine, Intel(R)
Core(TM) 17 CPU @ 2.67 GHz, 4 GB RAM.

8.1. Communication

In order to verify the communication, we consider one device (dev1) sending one request to the middleware
which has only one request handler (RQ1). In this way, we are able to identify the request handler which is used
to handle the request.

We verify that the communication flow (as specified in Sect. 5.1) is correct by means of the following set of
properties. We link each property with the requirement that it is supposed to (partially) verify.

Second requirement implies that whenever a device sends a request, the request handler will eventually start
handling it.

ag(state(dev1) = WAITING_FOR_MSG implies ef(reqHandlerState(RQ1) = START_PROCESSING))

As specified by the third requirement, when the request handler starts handling the request, it can eventually
send the request to the cloud.

ag(reqHandlerState(RQ1) = START_PROCESSING implies
ef(reqHandlerState(RQ1) = WAITING_FROM_CLOUD))

Note that the request is not sent to the Cloud when there is no information regarding the device, neither in the
cookie nor in the database (this is why we use ef and not af in the consequent of the implication).

If the request handler is waiting for an answer from the cloud, it can eventually receive it and start adapting
the content (as specified by fourth requirement).

ag(reqHandlerState(RQ1) = WAITING_FROM_CLOUD implies ef(reqHandlerState(RQ1) = ADAPTING))

Note that the cloud could not reply for different reasons (e.g., network problems).
As specified by the seventh requirement, the request handler, after having adapted the message, sends it back
to the client.

ag(reqHandlerState(RQ1) = ADAPTING implies af(reqHandlerState(RQ1) = SENDING_TO_CLIENT))

Finally, the message sent by the server is eventually received by the client that can display it (eighth require-
ment).

ag(reqHandlerState(RQ1) = SENDING_TO_CLIENT implies
af(reqHandlerState(RQ1) = MSG_SENT and state(dev1) = DISPLAYING_THE_MSG))

8.2. Client

With the following properties we check that the clients behave correctly. In this case, we consider multiple clients
running in parallel and we abstract from the communication framework and the middleware. Note that some
properties partially overlap with properties already verified for the communication framework.

ASM-based formal design of an adaptivity component for a Cloud system 591

We first verify that each device can actually receive a message to display® (see eighth requirement).
(forall $d in Device with ef(state($d) = DISPLAYING_THE_MSG))

Then, through a set of properties, we check that the client correctly handles the test, as specified by the sixth
requirement. First, we check that, if a message containing a test arrives and the device is waiting for the message,
then the device surely (in the next state) executes the test.

(forall $d in Device with ag((state($d) = WAITING_FOR_MSG and msgArrived($d) and clientTestsAvl($d))
implies ax(state($d) = EXEC_CLIENT_TESTS)))

Second, we verify that a test is executed correctly: if a device executes a test, then afterwards it has some
information in its cookie (i.e., at least a key of its cookie is defined).

(forall $d in Device with ag((state($d) = EXEC_CLIENT_TESTS) implies
(exists $k in Key with ax(cookie($d, $k) != undef))))

The previous property guarantees that the execution of a test provides some information to the middleware.
However, the property does not check that the information copied in the cookie is indeed correct. Therefore, we
check that during a test the cookie is updated with the information contained in the modernizr.

(forall $d in Device with ag(state($d) = EXEC_CLIENT_TESTS implies
(forall $k in Key with ax(cookie($d, $k) = modernizr($d, $k)))))

8.3. Middleware

The signature of the middleware contains functions cookie and cookieSub as declared for the client; moreover,
it contains functions devProfileDB and devProfileDBsub,’ representing the server database that stores the device
profiles.

With the following properties we verify that the middleware behaves correctly.

First, we check that every request received from the client is eventually considered (it is either sent to the cloud
or returned to the client to have more info), as specified by the second requirement.

(forall $r in RegqHandler with ag(reqHandlerState($r) = START_PROCESSING implies
af(reqHandlerState($r) = WAITING_FROM_CLOUD or reqHandlerState($r) = REQUIRE_DEVICE_INFO)))

The middleware has a database for memorizing the devices profiles extracted from the cookies. The following
three properties check that the memorization mechanism behaves correctly (according to the sixth requirement).
First of all, we check that, if a key is present in a cookie, it will be eventually present in the database as well.

(forall $d in Device, $k in Key with ag(cookie($d, $k) != undef implies ef(devProfileDB($d, $k) != undef)))

The previous property does not check that the value stored in the database is correct. So, we prove that the key
value of a cookie (top-level key or sub-key) is eventually copied in the database.

(forall $d in Device, $k in Key with
ag(cookie($d, $k) != undef implies ef(devProfileDB($d, $k) = cookie($d, $k))))
(forall $d in Device, $k in Key, $c in SubKey with
ag(cookieSub($d, $k, $c) = undef implies ef(devProfileDBsub($d, $k, $c) = cookieSub($d, $k, $c))))

The device configurations stored in the database can also be used to update a cookie if this does not report any
information about the device (i.e., the corresponding location is undef’). So, the following properties check that a
device information stored in the database (as top-level key or sub-key) is eventually copied in the undefined cookie
location.

8 Note that we have actually checked a slightly different property, because in NuSMV (the model checker used by AsmetaSMV) a CTL formula
holds if it holds in all initial states. More information can be found in the NuSMV FAQ http://nusmv.fbk.eu/faq.html#007.

° controlled devProfileDB: Prod(Device, Key) —> Boolean

controlled devProfileDBsub: Prod(Device, Key, SubKey) —> Boolean

http://nusmv.fbk.eu/faq.html#007

592 P. Arcaini et al.

(forall $d in Device, $k in Key with ag((devProfileDB($d, $k) != undef and cookie($d, $k) = undef) implies
ef(cookie($d, $k) = devProfileDB($d, $k))))
(forall $d in Device, $k in Key, $c in SubKey with ag((devProfileDBsub($d, $k, $c) != undef and
cookieSub($d, $k, $¢) = undef) implies ef(cookieSub($d, $k, $c) = devProfileDBsub($d, $k, $c))))

In the middleware model, we assume that the information about a device does not change. So, the following
properties check that, once a cookie gets a value for one of its keys (top-level or sub-key), it cannot change it.

(forall $d in Device, $k in Key, $b in Boolean with ag(cookie($d, $k) = $b implies ag(cookie($d, $k) = $b)))
(forall $d in Device, $k in Key, $c in SubKey, $b in Boolean with
ag(cookieSub($d, $k, $c) = $b implies ag(cookieSub($d, $k, $c) = $b)))

9. Related work

Our work presents a Web solution for the Content Adaptation of Cloud services to different end-devices topic and
its formalization. Therefore, we position our research in the area of content adaptation of Web application and
their formal validation and verification.

Content Adaptation is of major interest in the context of mobile devices. [Crel 1] shortly explains the different
mobile Web content adaptation techniques. Each technique has its own advantages and disadvantages. We think that
the hybrid approach—retrieving the information regarding the device on the client-side, but processing the content
on server-side—is the technique that better suits our project. A similar approach is presented in [RR11] that uses
device detection databases. However, differently from [RR11], we prefer to only use the modernizr framework.

The analysis and verification of Web applications is not a novel idea, because in the past years several papers
regarding this topic appeared, but not many of them are based on formal approaches. The research literature splits
into two groups: on one side there are papers proposing forward engineering methods (starting by specifying the
requirements, then going to the design phase and from this building the Web application), and on the other side
there are papers using reverse engineering methods to extract, from an existing Web application, the corresponding
models, and afterwards verify the models. There are also several analysis methods [ACDO09] that are used, like
modeling the navigational aspects of Web applications, or modeling the behavior and the features of Web appli-
cations, or modeling, validation and verification of the completeness and correctness of Web pages. The survey
in [ACDO09] presents the desirable properties for Web application modeling, and compares and categorizes some
existing modeling methods based on the level of Web application modeling.

Several research papers are using reverse engineering methods. In [HPS04], a communicating finite automata
model is generated from a recorded browsing session. The Spin model checker is used to verify the user-defined
properties based on the obtained model. The authors used the black-box approach by executing the Web application
under test (WAUT) and observed the application’s behavior using a proxy server, that was intercepting the HTTP
requests and responses. In the approach presented in [HPBS13], a Web application is monitored while it is explored
by a user or a program and traces are collected: in this way the Web application behavior is modeled. The difference
with the work in [HPSO04] is that in this work the authors are extending the Linear Temporal Logic (LTL), by
defining specialized operators using scopes. They do this in order to cover the problem of property specification in
LTL over a subset of the states. The system presented in [BGV06] verifies if correctness and completeness properties
are fulfilled by a Web site. The system uses a rule-based language for the specification and the verification of
syntactic and semantic properties of collections of XML/XHTML documents. Using this method, one can only
detect problems in the content of a Web page, but no model, that could be used for the improvement of the Web
site, is generated. The use of validation and verification in the design phase helps to ensure the Web application
reliability.

Other works apply forward engineering methods in order to check if the Web application satisfies the require-
ments. Unified Modeling Language (UML) is used in [SDM*05, MsYhSbJ10] to build the navigation model which
would then be verified using SMV, respectively NuSMYV. Since UML cannot be directly used for automated ver-
ification, the navigation model is defined as a Kripke structure. In [SDM™*05], a parser of the XML Metadata
Interchange (XMI) output of the UML is used to generate the SMV model. In [MsYhSbJ10], the description of the
Web application is completed by incorporating the session mechanism into the navigation model. Another proposal
to Web application navigation model is presented in [HIA*10], where the model is represented by using two finite-
state automata, a page automaton and an internal state automaton, and then expressed using Promela, the input
language for Spin model checker. A drawback would be that they do not use a tool to automatically transform the

ASM-based formal design of an adaptivity component for a Cloud system 593

models into Promela. A non-formal model of the presentation layer of a Web application is presented in [OW10]
with the aim of testing the application; however, the model does not support asynchronous server-client interac-
tions and concurrency, and it is based on a static technique. A correct-by-construction design process for secure
and reliable distributed systems (in particular, Cloud systems) is proposed in [EMMW15]; it is based on process
algebra and rewriting logic. The paper presents the notion of stuttering bisimilarity among different specifications
and how this notion preserves all CTL*\ X formulas: we plan to investigate whether (or under which assumptions)
this notion also applies to our notion of refinement.

Many successful applications exist in literature regarding the use of the ASMs for complex system modeling
and analysis. Due to their multiplicity, we prefer to refer to [BS03] for a complete introduction on the ASM method
and the presentation of the great variety of its successful applications.

10. Discussions and conclusions

The paper presents the formal design of a client-Cloud adaptivity application devised for making Cloud services
available to different devices having different profiles [SBL* 11]. The framework consists of a middleware server that
intercepts requests from the clients, forwards them to the Cloud, and adapts the answers coming from the Cloud
on the base of the profiles of the clients’ devices.

We have modeled the client, the middleware server, and the complete communication cycle (mediated by the
middleware) between the client and the Cloud. The resulting model is a multi-agent ASM. Each ASM has been
obtained through a chain of refinements, starting from a high level model to more detailed ones. The use of the
refinement approach helped us to manage the complexity of the distributed system. The particular kind of refinement
we consider (i.e., stuttering refinement) allowed us to automatically prove each refinement step.

The ASMs method provided us a mathematical founded, yet easy to use, notation for reasoning on the require-
ments of the system and developing a correct specification. Thanks to the modular nature of ASMs, we have been
able to reason both on the single components and on their communication.

Different validation activities have been performed along all the model development, using an iterative process
between model specification and model validation. We found particularly useful the application of model review
for checking application-independent properties tailored for distributed systems. Indeed, thanks to this technique,
we were able to discover real errors in our models (inconsistencies); moreover, other meta-properties violations,
although were not real faults, allowed us to find some weaknesses of the models (e.g., controlled locations that were
never updated).

Once we gained enough confidence that the specification captured the intended requirements, we verified correct-
ness properties through model checking. The ASM-based design approach facilitated this activity, since property
specification can be done at the same level of system specification. Indeed, using the ASMETA framework, the user
does not need to worry about translating the ASM specification into the language of the model checker. The mapping
from an ASM model into a NuSMV model is automatic and the temporal properties can be directly expressed as
part of the ASM model itself. Although some limitations exist on the class of ASMs that can be model checked (e.g.,
only finite domains), the alternative would be to encode the system under development directly in the model checker
syntax, arising two problems: i) model checkers syntaxes usually have a low expressive power and it may be difficult
to model complex systems with them, ii) we could produce a model not equivalent with the ASM specification.

We do not have an implementation of the designed client-Cloud adaptivity component yet. The long term
goal of the project presented in [SBL*11]—which the current work is part of—is to develop, in a controlled and
verified way, through a chain of refinements, the implementation of a prototype. When the implementation will be
available, we could check its conformance w.r.t. the specification using model-based testing and runtime verification
approaches provided by the ASMETA framework.

Acknowledgements

The research reported in this paper has been partly supported by the Charles University research funds PRVOUK
and by the Christian Doppler Society.

594 P. Arcaini et al.

References

[ABG™15] Arcaini, P., Bonfanti, S., Gargantini, A., Mashkoor, A., Riccobene, E.: Formal validation and verification of a medical
software critical component. In: 13th ACM/IEEE International Conference on Formal Methods and Models for Codesign
(MEMOCODE 2015). IEEE (2015)

[Abro6] Abrial, J.-R.: The B book: Deriving Programs from Meaning. Cambridge University Press, Cambridge (1996)

[ACD09] Alalfi, M.H., Cordy, J.R., Dean, T.R.: Modelling methods for web application verification and testing: State of the art. Softw.
Test. Verif. Reliab. 19(4), 265-296 (2009)

[ADKO08] Arvind, N.D., Michael, K.: Getting formal verification into design flow. In: Jorge, C., Tom, M., Kaisa, S. (eds.) FM 2008:
Formal Methods, vol. 5014 of Lecture Notes in Computer Science, pp. 12-32. Springer, Berlin Heidelberg (2008)

[AGR10a] Arcaini, P., Gargantini, A., Riccobene, E.: AsmetaSMV: a way to link high-level ASM models to low-level NuSMV specifica-
tions. In: Proceedings of the 2nd International Conference on Abstract State Machines, Alloy, B and Z (ABZ 2010), vol. 5977
of Lecture Notes in Computer Science, pp. 61-74. Springer, Berlin (2010)

[AGR10b] Arcaini, P., Gargantini, A., Riccobene, E.: Automatic review of abstract state machines by meta property verification. In:
Muioz, C. (ed.) Proceedings of the Second NASA Formal Methods Symposium (NFM 2010), pp. 4-13. NASA (2010)

[AGR12] Arcaini, P, Gargantini, A., Riccobene, E.: CoMA: conformance monitoring of Java programs by Abstract State Machines. In:
Sarfraz, K., Koushik, S. (eds.) Runtime Verification, vol. 7186 of Lecture Notes in Computer Science, pp. 223-238. Springer,
Berlin (2012)

[AGR15] Arcaini, P.,, Gargantini, A., Riccobene, E.: Rigorous development process of a safety-critical system: from ASM models to
Java code. Int. J. Softw. Tools Technol. Transf. 1-23 (2015)

[AGRS11] Arcaini, P, Gargantini, A., Riccobene, E., Scandurra, P.: A model-driven process for engineering a toolset for a formal method.
Softw. Pract. Exp. 41, 155-166 (2011)

[ASRW02] Abrahamsson, P, Salo, O., Ronkainen, J., Warsta, J.: Agile Software Development Methods: Review and Analysis. Technical
Report 478. VIT PUBLICATIONS (2002)

[BBOS] Barros, A., Borger, E.: A compositional framework for service interaction patterns and interaction flows. In: Lau, K.-K.,
Banach, R. (eds.) Formal Methods and Software Engineering, vol. 3785, Lecture Notes in Computer Science, pp. 5-35.
Springer, Berlin Heidelberg (2005)

[BGVO06] Ballis, D., Garcia-Vivo, J.: A rule-based system for web site verification. Electron. Notes Theor. Comput. Sci. 157(2), 11-17
(2006)

[BHV15] Bosa, K., Holom, R.-M., Vleju, M.B.: A formal model of client-cloud interaction. In: Thalheim, B., Schewe, K-D., Prinz, A.,
Buchberger, B. (eds.) Correct Software in Web Applications and Web Services, Texts and Monographs in Symbolic Compu-
tation, pp. 83-144. Springer International Publishing, New York (2015)

[BKOS] Baier, C., Katoen, J.-P.: Principles of Model Checking (Representation and Mind Series). The MIT Press, Cambridge (2008)

[Bor03] Borger, E.: The ASM refinement method. Formal Aspect. Comput. 15, 237-257 (2003)

[Bor05] Borger, E.: The ASM method for system design and analysis. A tutorial introduction. In: Gramlich, B. (ed.) Proceedings of
Frontiers of Combining Systems, 5th International Workshop, FroCoS 2005, Vienna, Austria, Sep 19-21, 2005, vol. 3717 of
Lecture Notes in Computer Science, pp. 264-283. Springer, New York (2005)

[Bor07] Borger, E.: Construction and analysis of ground models and their refinements as a foundation for validating computer based
systems. Formal Aspect. Comput. 19, 225-241 (2007)

[Bos12] Bosa, K.: A formal model of a cloud service architecture in terms of ambient ASM. Technical report, Christian Doppler
Laboratory for Client-Centric Cloud Computing (CDCC), Johannes Kepler University Linz, Hagenberg, Austria (2012)

[B6s13] Bosa, K.: An ambient ASM model for client-to-client interaction via cloud computing. In: José, C., Marca, D.A., van Sinderen,
M. (eds.) ICSOFT 2013 Proceedings of the 8th International Joint Conference on Software Technologies, Reykjavik, Iceland,
29-31 July, pp. 459-470. SciTePress, Portugal (2013)

[BPP99] Back, R.-J., Petre, L., Paltor, I.P.: Analysing UML use cases as contracts. In: Proceedings of the 2nd International Conference
on The Unified Modeling Language: Beyond the Standard, UML’99, pp. 518-533. Springer-Verlag, Berlin, Heidelberg (1999)

[BS03] Borger, E., Stirk, R.: Abstract State Machines: A Method for High-Level System Design and Analysis. Springer Verlag, Berlin
(2003)

[BZSW14] Banach, R., Zhu, H., Su, W., Wu, X.: ASM, controller synthesis, and complete refinement. Sci. Comput. Program. 94(2),
109-129 (2014)

[CGRS08] Carioni, A., Gargantini, A., Riccobene, E., Scandurra, P.: A scenario-based validation language for ASMs. In: Proceedings of
the 1st International Conference on Abstract State Machines, B and Z (ABZ 2008), vol. 5238 of Lecture Notes in Computer
Science, pp. 71-84. Springer-Verlag, Berlin (2008)

[Chel3] Chelemen, R.-M.: Modeling a web application for cloud content adaptation with ASMs. In: Cloud Computing and Big Data
(CloudCom-Asia), 2013 International Conference on, pp. 44-51 (2013)

[Crell] Cremin, R.: Mobile web content adaptation techniques. http://mobiforge.com/starting/story/mobile-web-content-adaptation-
techniques (2011)

[EMMW15] Eckhardt, J., Miihlbauer, T., Meseguer, J., Wirsing, M.: Semantics, distributed implementation, and formal analysis of KLAIM
models in Maude. Sci. Comput. Program. 99, 24-74 (2015)

[FL09] Fitzgerald, J., Larsen, P.G.: Modelling Systems: Practical Tools and Techniques in Software Development. Cambridge Uni-
versity Press, Cambridge (2009)

[GBCl14] Gervasi, V., Borger, E., Cisternino, A.: Modeling web applications infrastructure with ASMs. Sci. Comput. Program. 94(P2),
69-92 (2014)

[GRRO3] Gargantini, A., Riccobene, E., Rinzivillo, S.: Using spin to generate tests from ASM specifications. In: Borger, E., Gargantini,

A., Riccobene, E. (eds.) Abstract State Machines 2003, vol 2589., Lecture Notes in Computer Science, pp. 263-277. Springer,
Berlin Heidelberg (2003)

http://mobiforge.com/starting/story/mobile-web-content-adaptation-techniques
http://mobiforge.com/starting/story/mobile-web-content-adaptation-techniques

ASM-based formal design of an adaptivity component for a Cloud system 595

[GRS08a]
[GRS08b]
[Gur00]
[Hei98]

[HRWW16]
[HIA*10]
[HID10]

[HPBS13]

[HPS04]

[Leu08]
[LR15]
[Mey14]

[MPMO10]
[MsYhSbJ10]

[OW10]
[RR11]
[SBL*11]
[Scho8]
[SDM*05]
[SSBO1]

[Vlel2]

Gargantini, A., Riccobene, E., Scandurra, P.: A metamodel-based language and a simulation engine for abstract state machines.
J. Univ. Comput. Sci. 14(12), 1949-1983 (2008)

Gargantini, A., Riccobene, E., Scandurra, P.: Model-driven language engineering: the ASMETA case study. In: Int. Conf. on
Software Engineering Advances, ICSEA, pp. 373-378 (2008)

Gurevich, Y.: Sequential abstract-state machines capture sequential algorithms. ACM Trans. Comput. Logic 1(1), 77-111
(2000)

Heitmeyer, C.L.: On the need for practical formal methods. In: Proceedings of the 5th International Symposium on Formal
Techniques in Real-Time and Fault-Tolerant Systems, FTRTFT 98, pp. 18-26. Springer-Verlag, London (1998)
Hildebrandt, T., Ravara, A., van der Werf, JM., Weidlich, M. (eds.) Web Services, Formal Methods, and Behavioral Types.
11th International Workshop, WS-FM 2014, Eindhoven, The Netherlands, September 11-12, 2014, and 12th International
Workshop, WS-FM/BEAT 2015, Madrid, Spain, September 4-5, 2015, Revised Selected Papers, vol. 9421. Springer (2016)
Homma, K., Izumi, S., Abe, Y., Takahashi, K., Togashi, A.: Using the model checker spin for web application design. In:
Proceedings of the 2010 10th IEEE/IPSJ International Symposium on Applications and the Internet, SAINT °10, pp. 137-140.
IEEE Computer Society, Washington, DC (2010)

Hull, E., Jackson, K., Dick, J.: Requirements Engineering, 3rd edn. Springer-Verlag New York Inc, New York (2010)
Haydar, M., Petrenko, A., Boroday, S., Sahraoui, H.: A formal approach for run-time verification of web applications using
scope-extended LTL. Inform. Softw. Technol. 55(12), 2191-2208 (2013)

Haydar, M., Petrenko, A., Sahraoui, H.: Formal verification of web applications modeled by communicating automata. In:
Formal Techniques for Networked and Distributed Systems-FORTE 2004, vol. 3235 of Lecture Notes in Computer Science,
pp. 115-132. Springer, Berlin Heidelberg (2004)

Leuschel, M.: The high road to formal validation. In: Proceedings of the 1st international conference on Abstract State
Machines, B and Z, ABZ 08, pp. 4-23. Springer-Verlag, Berlin, Heidelberg (2008)

Lampesberger, H., Rady, M.: Monitoring of client-cloud interaction. In: Thalheim, B., Schewe, K.-D., Prinz, A., Buchberger,
B. (eds.) Correct Software in Web Applications and Web Services, Texts & Monographs in Symbolic Computation, pp. 177-228.
Springer International Publishing, New York (2015)

Meyer, B.: Agile! The Good, the Hype and the Ugly. Springer, New York (2014)

Meseguer, J., Palomino, M., Marti-Oliet, N.: Algebraic simulations. J. Logic Algebr. Program. 79(2), 103-143 (2010)
Mao-shan, S., Yi-hai, C., Sheng-bo, C., Jia, M.: A model checking approach to Web application navigation model with
session mechanism. In: Computer Application and System Modeling (ICCASM), 2010 International Conference on, vol. 5,
pp. V5-398-V5-403 (2010)

Offutt, J., Ye, W.: Modeling presentation layers of web applications for testing. Softw. Syst. Model. 9(2), 257-280 (2010)
Rieger, B., Rieger, S.: Adaptation: why responsive design actually begins on the server. In: Breaking Development Conference,
Nashville, Sep. 12-14 (2011)

Schewe, K.-D., Bosa, K., Lampesberger, H., Ma, H., Vleju, M.B.: The christian Doppler laboratory for client-centric cloud
computing. In: 2nd Workshop on Software Services (WoSS 2011), Timisoara, Romania (2011)

Schellhorn, G.: ASM refinement preserving invariants. J. Univ. Comput. Sci. 14(12), 1929-1948 (2008)

Sciascio, E., Donini, FEM., Mongiello, M., Totaro, R., Castelluccia, D.: Design verification of web applications using symbolic
model checking. In: Lowe, D., Gaedke, M. (eds.) Web Engineering, vol. 3579, Lecture Notes in Computer Science, pp. 69-74.
Springer, Berlin Heidelberg (2005)

Stark, R.F, Schmid, J., Borger, E.: Java and the Java Virtual Machine: Definition, Verification, Validation. Springer, New York
(2001)

Vleju, M.B.: A client-centric ASM-based approach to identity management in cloud computing. In: Advances in Conceptual
Modeling., vol. 7518 of Lecture Notes in Computer Science, pp. 34—43. Springer, Berlin Heidelberg (2012)

Received 1 March 2015
Accepted in revised form 12 March 2016 by Thomas Hildebrandt, Joachim Parrow, Matthias Weidlich, and Marco Carbone
Published online 13 April 2016

	ASM-based formal design of an adaptivity component for a Cloud system
	Abstract
	1 Introduction
	2 ASM theory
	2.1 Abstract state machines
	2.1.1 Multi agents ASM
	2.1.2 Control state ASMs

	2.2 Ground model and model refinement

	3 ASM-based development process
	3.1 Modeling by refinement
	3.2 Model validation and verification

	4 Client-cloud interaction middleware
	5 Adaptivity component
	5.1 Informal requirements of the adaptivity component
	5.2 Architecture of the adaptivity component

	6 Formal specification
	6.1 Ground model
	6.2 Refinement of the client

	7 Validation
	7.1 Simulation
	7.2 Scenario-based validation
	7.3 Model review

	8 Verification
	8.1 Communication
	8.2 Client
	8.3 Middleware

	9 Related work
	10 Discussions and conclusions
	Acknowledgements
	References

