
DOI 10.1007/s00165-016-0356-4
BCS © 2016
Formal Aspects of Computing (2016) 28: 109–143

Formal Aspects
of Computing

Deciding probabilistic automata weak
bisimulation: theory and practice
Luis Marı́a Ferrer Fioriti1, Vahid Hashemi1,2, Holger Hermanns1 and Andrea Turrini3
1 Department of Computer Science, Saarland University, Saarbrücken, Germany
2 Max Planck Institute for Informatics, Saarbrücken, Germany
3 State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China

Abstract. Weakprobabilistic bisimulation on probabilistic automata can be decided by an algorithm that needs to
check a polynomial number of linear programming problems encodingweak transitions. It is hence of polynomial
complexity. This paper discusses the specific complexity class of the weak probabilistic bisimulation problem,
and it considers several practical algorithms and linear programming problem transformations that enable an
efficient solution. We then discuss two different implementations of a probabilistic automata weak probabilistic
bisimulationminimizer, one of them employing SATmodulo linear arithmetic as the solver technology. Empirical
results demonstrate the effectiveness of the minimization approach on standard benchmarks, also highlighting
the benefits of compositional minimization.

Keywords: Complexity, Compositional analysis, Concurrency, Efficiency, Linear programming, Probabilistic au-
tomata, Satisfiability modulo theories, Weak bisimulation

1. Introduction

Probability and nondeterminism are core aspects of concurrent systems. Probability for instance arises when a
system, performing an action, is able to switch tomore than one state and the likelihood of each of these states can
be faithfully estimated. Probability can model both specific system choices (such as flipping a coin, commonly
used in randomized distributed algorithms) and general system properties (such as message loss probabilities
when sending a message over a wireless medium). Nondeterminism represents behaviours that we can not or do
not want to attach a precise (possibly probabilistic) interpretation to. This might reflect the concurrent execution
of several components at unknown (relative) speeds or behaviours we decide to keep undetermined for simplifying
the system model or allowing for different implementations.

Several models have been proposed in the literature to study formally systems where a combination of prob-
ability and nondeterminism is considered: among others, there are Markov Decision Processes (MDP) [Der70],
Labelled Concurrent Markov Chains (LCMC), Alternating Probabilistic Models [Var85, Han91, PLS00], and
Probabilistic Automata (PA) [Seg95].

Correspondence and offprint requests to: Andrea Turrini, E-mail: turrini@ios.ac.cn

http://crossmark.crossref.org/dialog/?doi=10.1007/s00165-016-0356-4&domain=pdf

110 L. M. Ferrer Fioriti et al.

Probabilistic automata extend classical concurrencymodels in a simple yet conservative fashion. In probabilis-
tic automata, there is no global notion of time, and concurrent processes may perform probabilistic experiments
inside a transition. This is represented by transitions of the form s

a−→ μ, where s is a state, a is an action label,
and μ is a probability measure on states. Labelled transition systems are instances of this model family, obtained
by restricting to Dirac measures (assigning full probability to single states). Moreover, foundational concepts and
results of standard concurrency theory are retained in full and extend smoothly to the PA model. Since the PA
model is akin to theMDPmodel, its fundamental beauty can be pairedwith powerful model checking techniques,
as implemented for instance in the PRISM tool [KNP11]. We refer the interested reader to [Seg06] for a survey
on this and other models.

Given a real system, we can conceive several different probabilistic automata models to reflect its behaviour.
Bisimulation relations provide a powerful tool to check whether two models describe essentially the same system.
They are then called bisimilar. The bisimilarity of two systems can be viewed in terms of a game played between
a challenger and a defender. In each step of the possibly infinite bisimulation game, the challenger chooses
one automaton, makes a step, and the defender matches it with a step of the other automaton. Depending on
how we want to treat internal computations, this leads to strong and weak bisimulations: the former requires
that each single step of the challenger automaton is matched by an equally labelled single step of the defender
automaton, the latter allows the matching up to internal computation steps. On the other hand, depending on
how nondeterminism is resolved, probabilistic bisimulations can be varied by allowing the defender to match
the challenger’s step by a convex combination of enabled probabilistic transitions. This results in a spectrum of
four bisimulations: strong [Seg95, Han91, Var85], strong probabilistic [Seg95], weak [PLS00, Seg95, EHZ10a,
EHZ10b], and weak probabilistic [Seg95, EHZ10b, EHZ10a] bisimulations. For a recent survey on behavioural
equivalences and preorders, we refer the interested reader to [GHT14].

Besides comparing automata, bisimulation relations allow us to reduce the size of an automaton without
changing its properties (i.e., with respect to logic formulae satisfied by it). This is particularly useful to alleviate
the state explosion problem notoriously encountered in model checking. If the bisimulation is a congruence with
respect to the operators of a process calculus used to build up the automata out of smaller ones, this can give
rise to a compositional strategy to associate a small automaton model to a large system without intermediate
state space explosion. In several related settings, this strategy has been proven very effective [CGM+96, HK00,
KKZJ07, BHH+09, CHLS09]; it can speed up the overall model analysis or turn a too large problem into a
tractable one. Both, strong and weak bisimilarity are used in practice, with weaker relations leading to greater
reduction. However, this approach has thus far not been explored in the context of MDPs or probabilistic
automata.A striking reason is that until recently no effective decision algorithmwas at hand forweakprobabilistic
bisimilarity onPA. A polynomial time decision algorithmhas been proposed only recently [TH15], based on linear
programming problems. That algorithm can be embedded into a procedure to compress a givenPA to its canonical
minimal representative [EHS+13]. Since weak probabilistic bisimilarity is a congruence for parallel composition
and hiding operators on PAs (we refer the interested reader to [Seg95, SL95] for more details), this paves the way
for compositional strategies to associate a small PA model to a large system without intermediate state space
explosion.

The weak bisimilarity decision algorithm follows the standard partition refinement approach [KS90, PT87,
PLS00, CS02], and thereby induces a polynomial number of linear programming problems that can be solved
in polynomial time [Kar84, Kha79]. In this paper, we discuss the efficiency of solving the specific LP problems
from both theoretical and practical viewpoints. We first consider the theoretical efficiency of solving the problem.
We first look at rational PAs, i.e, PAs with only rational probability values, and study the complexity of the
decision problem together with several optimizations. This entails reformulating the original LP problem [TH15]
in order to simplify the construction of the dual LP problem [BT97] which is smaller in size than the original. By
using a state-of-the-art preconditioned conjugate gradient (PCG) algorithm combined with a partial updating
procedure [Ans99] that dual LP problem can be solved efficiently. On the other hand, taking advantage of the
small-sized dual LP problem, we give an upper bound on the complexity of checking the feasibility of the original
LP problem.

We also discuss how the efficiency of solving the decision problem can exploit the problem structure. In
practice one would usually opt for the notoriously efficient simplex method [Sha87] to solve the LP problems.
But a small modification of the underlying network [TH15] enables us to adapt the corresponding LP problem
into a variant of a minimum cost flow problem [AMO93] with flow proportional sets. This is a special classof

Deciding probabilistic automata weak bisimulation: theory and practice 111

linear programming problems where the underlying network structure can be exploited, in particular if it is
sparse. Sparsity is indeed frequently observed in practical applications of probabilistic automata. We therefore
compare the simplex method with a very efficient state-of-the-art network simplex algorithm [BF12] specialized
for the minimum cost flow problem with additional side constraints. This is known to outperform the simplex
method [MSJ11, HK95, Cal02] when the number of nodes is an order of magnitude larger than the number of
side constraints.

We furthermore discuss different implementations of the decision algorithm, focusing on effective minimiza-
tion of PA with respect to weak probabilistic bisimilarity. One of the implementations exploits that the problem
at hand can be encoded into SATmodulo linear arithmetic.We report on extensive empirical investigations in the
context of concurrent probabilistic systems. It turns out that minimization can be applied effectively to standard
PA benchmarks. Several techniques and heuristics are discussed to further reduce the actual execution time of
the algorithm, by showing how an accurate management of transition computation and minimization helps in
the reduction of large automata, in particular when they are the result of the composition of several automata.
The problem of efficiently deciding bisimilarities for PAs and MDPs is of pivotal importance for compositional
construction and minimization techniques for complex probabilistic models. Once in place, these techniques can
be rolled out to operations research, automated planning, and decision support applications.

This article is a revised and extended version of [HHT13]. Implementation considerations, case studies, and
empirical results have not been published before.

Organization of the paper After the preliminaries in Sect. 2, we present in Sect. 3 the probabilistic automata
model and the weak probabilistic bisimulation. Then, in Sect. 4, we show how to compute the weak probabilistic
bisimulation and how tominimize an automaton.We devote Sect. 5 to the LP problem construction and in Sect. 6
we focus on the efficiency of solving the LP problem. Section 7 presents implementation considerations together
with several cases studies showing the effectiveness of the minimization in particular for compositional analysis.
Section 8 concludes the paper.

2. Mathematical preliminaries

We now recall the basic mathematical preliminaries together with the notational conventions we adhere to in this
work.

Given two sets X and Y , denote by X � Y the disjoint union of X and Y .
A σ -field over a set X is a set F ⊆ 2X that includes X and is closed under complement and countable

union. A measurable space is a pair (X ,F) where X is a set, also called the sample space, and F is a σ -field
over X . A measurable space (X ,F) is called discrete if F � 2X . A measure over a measurable space (X ,F)
is a function ρ : F → R

≥0 such that, for each countable collection {Xi }i∈I of pairwise disjoint elements of F ,
ρ(∪i∈IXi) � ∑

i∈I ρ(Xi). A probability measure over a measurable space (X ,F) is a measure ρ over (X ,F) such
that ρ(X) � 1. A sub-probability measure over (X ,F) is a measure over (X ,F) such that ρ(X) ≤ 1. A measure
over a discrete measurable space (X , 2X) is called a discrete measure over X . The support of a measure ρ over
(X ,F), denoted by Supp(μ), is the set {x ∈ X | μ(x) > 0 }. To simplify the notation, we may write ρ(x) instead
of ρ({x }), for x ∈ X .

Given a setX , denote by Disc(X) the set of discrete probability measures overX , and by SubDisc(X) the set
of discrete sub-probability measures over X . Given a discrete sub-probability measure ρ of SubDisc(X), denote
by ρ(⊥) the value 1−ρ(X). For a discrete sub-probability measure ρ, we also write ρ � {(x , px) | x ∈ X } where
px is the measure ρ(x) of x . We call a discrete (sub-)probability measure ρ ∈ SubDisc(X) a uniform measure
on a set ∅ �� Y ⊆ X , denoted by υY , if υY (y) � 1

|Y | for each y ∈ Y . We call a discrete (sub-)probability
measure a Dirac measure if it assigns measure 1 to exactly one object x ∈ X (denote this measure by δx), that is,
δx (y) � 1 if y � x , 0 otherwise. We also call Dirac a discrete sub-probability measure that assigns measure 0 to
all objects, and we denote it by δ⊥. Given ρ ∈ SubDisc(X), we denote by ρ\z the z -conditional sub-probability
measure such that ρ\z (x) � 0 if x � z and ρ\z (x) � ρ(x)

ρ(X \{z }) otherwise, provided that ρ(X \ {z }) �� 0. Given
ρx ∈ SubDisc(X) and ρy ∈ SubDisc(Y), we denote by ρx × ρy the sub-probability measure over X ×Y defined
by ρx × ρy (u, v) � ρx (u) · ρy (v) for each (u, v) ∈ X × Y . Given a finite set I of indexes, a family {pi ∈ R

>0}i∈I
such that

∑
i∈I pi � 1, and a family {ρi ∈ SubDisc(X)}i∈I , we say that ρ is the convex combination of {ρi }i∈I

according to {pi}i∈I , denoted by
∑

i∈I pi · ρi , if, for each x ∈ X , ρ(x) � ∑
i∈I pi · ρi (x).

Given a relation R ⊆ X × Y and x ∈ X , we denote by R(x) the set of elements of Y related to x , i.e.,
R(x) � {y ∈ Y | x R y } and we call R(x) the relation set of x .

112 L. M. Ferrer Fioriti et al.

s̄

r

y

g

0.3τ

0.1

0.6

1

τ 1a

1a

1a
1

τ

Fig. 1. An example of PAs: the PA E

Given an equivalence relation R on X , we denote by X /R the set of equivalence classes induced by R and,
for x ∈ X , by [x]R the class C ∈ X /R such that x ∈ C. We denote by I the identity relation, i.e., the equivalence
relation having [x]I � {x } for each x ∈ X .

The lifting [JL91] of a relation R ⊆ X × Y to a relation L(R) ⊆ Disc(X) × Disc(Y) is defined as follows:
for ρX ∈ Disc(X) and ρY ∈ Disc(Y), ρX L(R) ρY holds if there exists a weighting function ω : X × Y → [0, 1]
such that

• ω(x , y) > 0 implies x R y ,

• ∑
y∈Y ω(x , y) � ρX (x), and

• ∑
x∈X ω(x , y) � ρY (y).

When R is an equivalence relation on a set X , ρ1 L(R) ρ2 holds if, for each C ∈ X /R, ρ1(C) � ρ2(C). In
particular, when R � I, ρ1 L(I) ρ2 holds if and only if ρ1 � ρ2. This property can be generalized to: if
R ∩ Supp(ρ1) × Supp(ρ2) ⊆ I, then ρ1 L(R) ρ2 holds if and only if ρ1 � ρ2.

3. Probabilistic automata

We now recall the main parts of the probabilistic automata framework [Seg95] we use in this paper, following
the notation of [Seg06]. Note that the probabilistic automata we use here correspond to the simple probabilistic
automata of [Seg95].

Definition 1 A probabilistic automaton (PA) is a tuple A � (S , s̄, �, T), where S is a set of states, s̄ ∈ S is the
start state, � is the set of actions, and T ⊆ S × � × Disc(S) is a probabilistic transition relation.

The start state is also called the initial state.
The set � is divided in two disjoint setsH and E of internal (hidden) and external actions, respectively; we let

s , t , u, v , and their variants with indices range over S ; a, b range over actions; and τ range over internal actions.
We denote the generic elements of a probabilistic automaton A by S , s̄ , �,H , E , T , and we propagate primes

and indices when necessary. Thus, for example, the probabilistic automatonA′
i has states S

′
i , start state s̄

′
i , actions

�′
i , internal actions H

′
i , external actions E

′
i , and transition relation T ′

i .
A transition tr � (s, a, μ) ∈ T , also denoted by s

a−→ μ, is said to leave from state s , to be labelled by a,
and to lead to the measure μ. We denote by src(tr) the source state s , by act(tr) the action a, and by trg(tr) the
targetmeasure μ, also denoted by μtr . We also say that s enables the action a, that the action a is enabled from s ,
and that (s, a, μ) is enabled from s . We call a transition s

a−→ μ internal or external whenever a ∈ H or a ∈ E ,
respectively. Finally, we let T (a) � {tr ∈ T | act(tr) � a } be the set of transitions with label a.

We say that a state s is a deadlock state if it enables no transitions, i.e., {tr ∈ T | src(tr) � s } � ∅.
Given a PA A, we denote by si ze(A) � max {| S |, | T |} the size of A. For the purposes of this paper, we

assume that A is finite, that is, both S and T are finite sets; moreover, we assume that each state of A can be
reached from s̄ .

Deciding probabilistic automata weak bisimulation: theory and practice 113

Example 1 An example ofPA is the one shown inFig. 1: the set of states is the start state
is s̄ , the set of actions� is the unionof the set of external actionsE � {a} andof the set of internal actionsH � {τ },
and the transition relation T contains the following transitions: s̄ τ−→ ρ with ρ � {(r , 0.3), (y, 0.1), (g, 0.6)},

, , , r τ−→ δs̄ , and g
τ−→ δs̄ . , and are deadlock states and the size of E is

si ze(E) � 7. �

3.1. Parallel composition and hiding

The following definition of parallel composition is an equivalent rewriting of the definition provided in [Seg06].

Definition 2 Given two PAs A1 and A2, we say that A1 and A2 are compatible if �1 ∩ H2 � ∅ � H1 ∩ �2.
Given two compatible PAs A1 and A2, the parallel composition of A1 and A2, denoted by A1 ‖ A2, is the

probabilistic automaton A � (S , s̄, �, T) where

• S � S1 × S2,
• s̄ � (s̄1, s̄2),
• � � E ∪ H where E � E1 ∪ E2 and H � H1 ∪ H2, and
• ((s1, s2), a, μ1 ×μ2) ∈ T if and only if

– whenever a ∈ �1 ∩ �2, (s1, a, μ1) ∈ T1 and (s2, a, μ2) ∈ T2,
– whenever a ∈ �1\�2, (s1, a, μ1) ∈ T1 and μ2 � δs2 , and
– whenever a ∈ �2\�1, (s2, a, μ2) ∈ T2 and μ1 � δs1 .

For a ∈ �1\�2, we denote by (s2, νa , δs2) the apparent internal transition corresponding to not performing any
transition from s2 in the combined transition, and similarly for a ∈ �2\�1.

For two compatible PAs A1 and A2 and their parallel composition A1 ‖ A2, we refer to A1 and A2 as the
component automata and to A1 ‖ A2 as the composed automaton.

Definition 3 Given a PA A and a set A of actions, the hiding of A in A, denoted by HideA(A), is the automaton
A′ that is the same as A except for E ′ � E\A and H ′ � H ∪ A.

Remark 1 In the above definition of parallel composition between PAs, we require that they are compatible, i.e.,
the internal actions of one automaton can not be actions of the other automaton. This requirement seems to be
never fulfilled when we consider the internal action τ .

In the Process Algebra world, usually τ is the only internal action available, and it is used by every process
to denote an internal transition. In the Probabilistic Automata framework, τ is used as a symbol for referring to
internal actions, but usually it is not an actual action of the automaton. This means that, for two automata A1
and A2, when we write (s1, τ, μ1) ∈ T1 and (s2, τ, μ2) ∈ T2, we are not requiring that the label is the same for
both transitions, but we are just referring to (s1, a1, μ1) ∈ T1 and (s2, a2, μ2) ∈ T2 for some ai ∈ Hi , i ∈ {1, 2}.

The role of τ as symbol for internal actions and not as actual action becomes clear from the definition of the
hiding operator: for a given setA of actions to be hidden, instead of replacing each action inAwith τ as happens
in process algebra world, we simply move the actions in A from E to H ; the actual actions remain unchanged.

Note that it is rather easy to transform two automata A1 and A2 that are not compatible into compatible
ones, by means of the action renaming operator [Seg95] that allows us to rename actions under the assumption
that external actions remain external and internal actions remain internal. So, we can just rename the internal
actions of both A1 and A2 with fresh (internal) actions and the resulting automata are then compatible.

3.2. Weak transitions

In the setting of labelled transition systems, weak transitions are used to abstract from internal computations
[Mil89]. Intuitively, an internalweak transition is formedby an arbitrary long sequence of internal transitions, and
an external weak transition is formed by an external transition preceded and followed by arbitrary long sequences
of internal transitions. Note that the empty sequence is a valid arbitrary long sequence of internal transitions. To
lift this idea to the setting of probabilistic automata is a little intricate owed to the fact that transitions branch

114 L. M. Ferrer Fioriti et al.

into probability measures, and one thus has to work with tree-like objects instead of sequences, as detailed in the
sequel.

An execution fragment of a PA A is a finite or infinite sequence of alternating states and actions α �
s0a1s1a2s2 . . . starting from a state s0, also denoted by f irst(α), and, if the sequence is finite, ending with a
state denoted by last(α), such that for each i > 0 there exists a transition (si−1, ai , μi) ∈ T such that μi (si) > 0.
The length of α, denoted by |α|, is the number of occurrences of actions in α. If α is infinite, then |α| � ∞. We
denote by state(α, i) the state si and by action(α, j) the action aj , provided that 0 ≤ i ≤ |α| and 0 < j ≤ |α|.
Denote by f rags(A) the set of execution fragments of A and by f rags∗(A) the set of finite execution fragments
of A. An execution fragment α is a prefix of an execution fragment α′, denoted by α � α′, if the sequence α is a
prefix of the sequence α′. The trace of α, denoted by trace(α), is the sub-sequence of external actions of α; we
denote by ε the empty trace andwe extend trace(·) to actions by defining trace(a) � a if a ∈ E and trace(a) � ε
if a ∈ H .

A scheduler for a PA A is a function σ : f rags∗(A) → SubDisc(T) such that for each α ∈ f rags∗(A),
σ (α) ∈ SubDisc({tr ∈ T | src(tr) � last(α) }) or, equivalently, Supp(σ (α)) ⊆ {tr ∈ T | src(tr) � last(α) }.
Given a scheduler σ and a finite execution fragment α, the measure σ (α) describes how transitions are chosen
to move on from last(α). We call a scheduler determinate [CS02] if, for each α, α′ ∈ f rags∗(A) such that
trace(α) � trace(α′) and last(α) � last(α′), then σ (α) � σ (α′). Essentially, a determinate scheduler bases its
choice only on the current state (as happens for history-independent schedulers, also known as stationary policies
in the context of Markov decision processes) and on the past external actions. In other words, a determinate
scheduler acts as a history-independent scheduler between one external action and the following external action
(or the choice of stopping).

A scheduler σ and a state s induce a probability measure μσ,s over execution fragments as follows. The basic
measurable events are the cones of finite execution fragments, where the cone of α, denoted by Cα, is the set
Cα � {α′ ∈ f rags(A) | α � α′ }. The probability μσ,s of a cone Cα is defined recursively as follows:

μσ,s (Cα) �

⎧
⎪⎨

⎪⎩

1 ifα � s,

0 ifα � t for a state t �� s,

μσ,s (Cα′) · ∑
tr∈T (a) σ (α′)(tr) · μtr (t) ifα � α′at .

Standard measure theoretical arguments ensure that μσ,s extends uniquely to the σ -field generated by cones. We
call the resulting measure μσ,s a probabilistic execution fragment of A and we say that it is generated by σ from
s . Given a finite execution fragment α, we define μσ,s (α) as μσ,s (α) � μσ,s (Cα) · σ (α)(⊥), where σ (α)(⊥) is the
probability of choosing no transitions after α has occurred.

Definition 4 Given a PA A, we say that there is a weak combined transition from s ∈ S to μ ∈ Disc(S) labelled by
a ∈ �, denoted by s a�⇒c μ, if there exists a scheduler σ such that the following holds for the induced probabilistic
execution fragment μσ,s :

1. μσ,s (f rags
∗(A)) � 1;

2. for each α ∈ f rags∗(A), if μσ,s (α) > 0 then trace(α) � trace(a);

3. for each state t , μσ,s ({α ∈ f rags∗(A) | last(α) � t }) � μ(t).

In this case, we say that the weak combined transition s
a�⇒c μ is induced by σ , that s a�⇒c μ exists in A, and

that A enables s a�⇒c μ.
Albeit the definition of weak combined transitions is admittedly intricate, it is just the obvious extension of

weak transitions on labelled transition systems to the setting with probabilities. We refer to Segala [Seg06] for
more details on weak combined transitions.

Deciding probabilistic automata weak bisimulation: theory and practice 115

Example 2 Consider the automaton E depicted in Fig. 1 and let ρ be ρ � {(r , 0.3), (y, 0.1), (g, 0.6)}; E enables the
weak combined transition s̄ a�⇒c μwhere via the scheduler σ defined as follows:

We now verify the three properties that μσ,s̄ has to satisfy in order to justify s̄ a�⇒c μ: we start from the third
property, since the first two can be derived from it. Consider the state it is reached with probability:

as required. The fact that

is justified as follows: let α such that if
f irst(α) � t �� s̄ , then by the recursive definition of μσ,s̄ (Cα) we have that the base case is μσ,s̄ (Ct) � 0,
hence μσ,s̄ (Cα) � 0 as well. Suppose that f irst(α) � s̄ and consider the case

Finally, the remainingfinite execution fragments are such thatα ∈ Cs̄τrτ s̄τrτ s̄∪Cs̄τrτ s̄τgτ s̄∪Cs̄τgτ s̄τrτ s̄∪Cs̄τgτ s̄τgτ s̄ .
Consider the caseα ∈ Cs̄τrτ s̄τrτ s̄ : by the recursive definition ofμσ,s̄ (Cα) we have thatμσ,s̄ (Cα) � μσ,s̄ (Cs̄τrτ s̄τrτ s̄)·

116 L. M. Ferrer Fioriti et al.

p for some value p ∈ R
≥0; now, consider μσ,s̄ (Cs̄τrτ s̄τrτ s̄):

μσ,s̄ (Cs̄τrτ s̄τrτ s̄) � μσ,s̄ (Cs̄τrτ s̄τr) ·
∑

tr∈T (τ)
σ (s̄τrτ s̄τr)(tr) · μtr (s̄)

� μσ,s̄ (Cs̄τrτ s̄τr) · (σ (s̄τrτ s̄τr)(r τ−→ δs̄) · δs̄ (s̄)

+ σ (s̄τrτ s̄τr)(s̄ τ−→ ρ) · ρ(s̄)

+ σ (s̄τrτ s̄τr)(g τ−→ δs̄) · δs̄ (s̄))

� μσ,s̄ (Cs̄τrτ s̄τr) · (0 · 1 + 0 · 0 + 0 · 1) � 0,

and similarly for the remaining cases α ∈ Cs̄τrτ s̄τgτ s̄ , α ∈ Cs̄τgτ s̄τrτ s̄ , and α ∈ Cs̄τgτ s̄τgτ s̄ . This completes the
justification of

A similar analysis shows that and
; for each remaining state s ∈ {s̄, r , y, g}, it is easy to verify

that μσ,s̄ ({α ∈ f rags∗(E) | last(α) � s }) � 0. Regarding the first two properties of the definition of weak
combined transition, we have that μσ,s̄ (f rags

∗(E)) � 1 follows directly from the third condition, as well as the
second property by considering the trace of the finite execution fragments occurring with non-zero probability. �

3.3. Weak probabilistic bisimulation

As said in the introduction, bisimulation relations constitute a powerful tool that allows us to verify whether two
models describe essentially the same real system. Moreover, they allow us to compute the minimal automaton
that is bisimilar to the given one [EHS+13]. We now recall the definition of weak probabilistic bisimulation
[Seg95, Seg06], that is the relation that allows us to abstract away from internal computations while solving
nondeterministic choices via convex combinations of the available transitions.

Definition 5 Given a PA A, an equivalence relation R on S is a weak probabilistic bisimulation if, for each pair
of states s, t ∈ S such that s R t , if s a−→ μs for some probability measure μs , then there exists a probability
measure μt such that t a�⇒c μt and μs L(R) μt .

In the following, we may refer to the condition “there exists μt such that t a�⇒c μt and μs L(R) μt” as the
step condition of the bisimulation. Specially, when the bisimulation is seen as a two-player game between the two
automata, the step condition is the condition on the weak transition (or weak step) performed by the defender
state t while matching the transition (or step) performed by the challenger state s .

To checkwhether twoPAsA1 andA2 are weak probabilistic bisimilar, we can either adapt the above definition
to work with pairs of automata, or we can just consider the PA A � A1 � A2 such that S � S1 � S2, s̄ � s̄1,
H � H1 ∪ H2, E � E1 ∪ E2, T � T1 � T2. Note that the choice s̄ � s̄1 is arbitrary, since it does not affect the
weak probabilistic bisimulation; similarly, we can ignore the requirement E ∩H � ∅ since actions are taken into
account by the step condition: if the same action is external for A1 and internal for A2, then A1 and A2 are not
bisimilar since the external transition proposed byA1 can not bematched byA2. Deciding whether two automata
are bisimilar then reduces to compute the bisimulation R on A and to check whether their start states are related
by R, i.e., whether s̄1 R s̄2.

Definition 6 Given two PAs A1 and A2, we say that A1 and A2 are weakly probabilistic bisimilar if there exists
a weak probabilistic bisimulation R on S1 � S2 such that s̄1 R s̄2. We denote the coarsest weak probabilistic
bisimulation by ≈, and call it weak probabilistic bisimilarity.

Weak probabilistic bisimilarity is an equivalence relation preserved by standard process algebraic composition
operators on PA [PS04], such as parallel composition, action hiding, action renaming, and action prefixing. As
we will see in the next section, the complexity of decidingA1 ≈ A2 strictly depends on finding the matching weak
combined transition t

a�⇒c μt for which determinate schedulers suffice (cf. [CS02, Proposition 3]): in Sect. 5 we
will show how to find them in polynomial time.

Deciding probabilistic automata weak bisimulation: theory and practice 117

Quotient(A)

1: R = {S};
2: (s, a, μs) = FindSplit(R);
3: while s = ⊥ do
4: R = Refine(R, (s, a, μs));
5: (s, a, μs) = FindSplit(R);
6: return R

FindSplit(R)

1: for all s ∈ S do
2: for all (s, a, μs) ∈ T do
3: for all t ∈ [s]R do
4: if there does not exist t a=⇒c μt

such that μs L(R) μt then
5: return (s, a, μs)
6: return (⊥, τ, δs̄)

Refine(R, (s, a, μs))

1: Cs = C¬s = ∅
2: for all t ∈ [s]R do
3: if there exists t a=⇒c μt such that μs L(R) μt then
4: Cs = Cs ∪ {t}
5: else
6: C¬s = C¬s ∪ {t}
7: return R \ {[s]R} ∪ {Cs, C¬s}

Fig. 2. The decision procedure for the weak bisimilarity

Remark 2 In this work we do not consider the weak bisimulation relation obtained by restricting to weak tran-
sitions t a�⇒ μt induced by a deterministic (or Dirac) scheduler, i.e., by a scheduler σ such that for each finite
execution fragment α, either σ (α) � δtr for some tr ∈ T , or σ (α) � δ⊥. In fact, as shown in [Den05], the resulting
bisimulation is not transitive and this makes the usual compositional minimization approach muchmore difficult
to use. In such an approach a given automatonA0 is decomposed into multiple sub-automata running in parallel,
i.e., A0 � B1 ‖ B2 ‖ . . . ‖ Bn ; then one component Bi at a time is replaced by another component B′

i that is
bisimilar to but smaller than Bi . This gives rise to a sequence of automata A0, A1, . . . , An such that for each
0 ≤ i < n, Ai and Ai+1 are bisimilar. If the bisimulation relation is not transitive, then we can not derive that A0
and An are bisimilar. Instead, we have to provide a relation witnessing the bisimilarity of A0 and An . Moreover,
the construction we present in Sect. 5 to efficiently find a weak combined transition is not easily extendable to
weak (non-combined) transitions; see Remark 4 for a more detailed explanation.

Since in this paper we consider only weak combined transitions and weak probabilistic bisimulation and
bisimilarity, from now on we omit the adjectives “combined” and “probabilistic”, respectively.

4. Computing the weak bisimilarity for minimizing automata

In this section, we recast the decision procedure of [CS02] that decides whether two probabilistic automata A1
and A2 are weak bisimilar by following the standard partition refinement approach [KS90, PT87, PLS00].

4.1. Deciding weak bisimilarity

We now study in detail the decision procedure for the weak bisimulation and then we analyze the complexity of
the algorithm.

4.1.1. Weak bisimilarity decision algorithm

The decision algorithm for the weak bisimulation is sketched in Fig. 2; the procedure Quotient iteratively
constructs the set S/≈, the set of equivalence classes of states S under ≈, starting with the partitioning R � {S }
and refining it until R satisfies the definition of weak bisimulation and thus the resulting partitioning is the
coarsest one, i.e., we compute the weak bisimilarity. In the following, we treat R both as a set of partitions and
as an equivalence relation without further mentioning.

118 L. M. Ferrer Fioriti et al.

Thepartitioning is refinedbyprocedureRefine intoafinerpartitioningas longas there is apartition containing
two states that violate the bisimulation condition, which is checked for in procedure FindSplit. Procedure Refine
splits the partition [s]R into two new partitions Cs and C¬s according to the discriminating information (s, a, μs)
identified by FindSplit before. More precisely, Cs contains all states belonging to [s]R that are able to match
(s, a, μs), while C¬s contains the remaining states in [s]R that fail to match (s, a, μs). It is clear that at the
termination of the for loop at line 2 of Refine, both Cs and C¬s are not empty: Cs obviously contains the state s
while C¬s contains for sure the state t that caused FindSplit to return (s, a, μs) at line 4. So far, the procedure
essentially agrees with the DecideBisim(A1,A2) procedure of [CS02].

The real difference between the decision procedure we provide here and the one presented in [CS02] however
appears inside theprocedureFindSplit,wherewe checkdirectly the step conditionby looking for aweak transition
t

a�⇒c μt such that μs L(R) μt , instead of computing the information associated by a to s and t , i.e., the set
with respect to R of the probability measures reached from s (and t) via a weak transition labelled by a.

Remark 3 In the context of model checking, the definition of bisimulation usually requires that two related states
are labelled with identical sets of atomic propositions. The decision procedure presented in Fig. 2 can be easily
adapted to such a definition by modifying line 1 of Quotient as follows: the initial partitioning R is such that
for each class C of R, s, s ′ ∈ C if and only if s and s ′ are labelled with identical sets of atomic propositions.

4.1.2. Complexity of the decision algorithm

Assume we are given the PA A; let N � si ze(A). The for loop at line 1 of the procedure FindSplit cycles at most
N times. Now, consider the for loop at line 2: since T � ⋃

s∈S{tr ∈ T | src(tr) � s } and {tr ∈ T | src(tr) �
s } ∩ {tr ∈ T | src(tr) � t } � ∅ for each s, t ∈ S with s �� t , it follows that the two for loops together cycle
at most N times. In the worst case (that occurs when [s]R � S and each state t satisfies the step condition), the
for loop at line 3 cycles at most N times as well. This means that the existential check of t a�⇒c μt such that
μs L(R) μt at line 4 is performed at most N 2 times. Let W (N) be the complexity of such check; it is immediate
to see that FindSplit ∈ O(N 2 · W (N)).

The for loop in procedure Refine can be performed at most N times; this happens when [s]R � S . In each
loop, an instance of the existential check of t a�⇒c μt such thatμs L(R) μt has to be computed, with complexity
W (N); the resulting complexity of Refine is therefore O(N · W (N)).

The while loop in the procedure Quotient can be performed at most N times; this happens when in each
loop the procedure FindSplit returns (s, a, μs) where s �� ⊥, that is, not every pair of states in [s]R satisfies the
step condition. Since in each loop the procedure Refine replaces such class [s]R with two non-empty classes Cs

and C¬s , after at most N loops every class contains a single state and the procedure FindSplit returns (⊥, τ, δs̄)
since each transition s

a−→ μs is obviously matched by s itself. Since Refine has complexity O(N · W (N)) and
FindSplitO(N 2 ·W (N)), it follows that the overall complexity ofQuotient isO(N · (N 2 ·W (N)+N ·W (N))) �
O(N 3 · W (N)).

Proposition 1 Given two PAs A1 and A2, let S � S1 � S2 and N � si ze(A1) + si ze(A2); given a state t ∈ S ,
an action a ∈ �, the probability measures μs , μt ∈ Disc(S), and an equivalence relation R on S , let W (N) be
the complexity of checking the existence of t a�⇒c μt such that μs L(R) μt . Checking A1 ≈ A2 has complexity
O(N 3 · W (N)).

Proof Immediate by the previous analysis. �

4.2. Minimization and parallel composition

In this section, we explain in detail the practical steps that lead from a PA A to the minimal automaton M that is
weak bisimilar to A, as formalized in [EHS+13, HK00, CGM+96]: the first step extracts the reachable fragment
A� of A, i.e., the states and the corresponding transitions that can be reached with non-zero probability from
the start state. (Note that by our assumptions on the automata we do not need this initial step.) The second
step generates the quotient automaton by computing the weak bisimilarity ≈. Once ≈ is at hand, the quotient
automaton [A�]≈ is extracted in a third step: it has as set of states the set of the equivalences classes of ≈ and as
the start state the class of s̄ ; the sets of internal and external actions are the same as in A� while the transition
relation contains only the transitions [s]≈

a−→ ρ such that there exists s a−→ μ ∈ T� where ρ(C) � ∑
t∈C μ(t)

for each C ∈ [S�]≈. The fourth step of the minimization procedure removes from [A�]≈ the transitions that are

Deciding probabilistic automata weak bisimulation: theory and practice 119

redundant, i.e., the transitions that can be removed from the automaton since they can be weakly matched by
the remaining transitions; the fifth and final step normalizes the internal transitions, i.e., each transition s

τ−→ μ
is replaced by s

τ−→ μ \s . Note that the fourth step ensures that there are no transitions s τ−→ δs since they are
trivially redundant.

The correctness of the above construction is justified by the following properties of weak probabilistic bisim-
ulation: let A be a set of actions and A, A′, A′′, and Ae be four PAs such that Ae is compatible with both A and
A. Then the following holds:

• ≈ is transitive [Seg95]: if A ≈ A′ and A′ ≈ A′′, then A ≈ A′′;
• ≈ is preserved by parallel composition [Seg95]: if A ≈ A′, then A ‖ Ae ≈ A′ ‖ Ae ;
• ≈ is preserved by the hiding operator: if A ≈ A′, then HideA(A) ≈ HideA(A′);
• A ≈ A� [EHS+13];
• A ≈ [A]≈ [EHS+13];
• removing redundant transitions preserves weak bisimilarity [EHS+13]; and
• normalizing internal transitions preserves weak bisimilarity [EHS+13].

The main computational bottleneck of this overall minimization procedure applied to an automaton A is the
second step, the weak bisimulation computation, that we have already seen by Proposition 1 to beO(N 3 ·W (N)).

Therefore, this bottleneck has to be carefully considered, with respect to the size of the models to be processed
by it: when we want to minimize a large automaton that is the result of the parallel composition of several smaller
automata, according to the definition of parallel composition, the resulting state space is the Cartesian product
of the single state spaces. This means that the state space of the composed automaton grows exponentially in
the number of components, in particular when they are different instances of the same system, leading quickly
to prohibitively large automata. However, it is quite common to in this way generate states and transitions that
are actually useless since they are not reachable from the start state of the composed automaton, in particular
when the resulting transition has as label an internal action. For instance, suppose that we have a transition
s1

τ−→ μ1 ∈ T1. According to the definition of parallel composition, for each s2 ∈ S2 we have to generate the
transition (s1, s2)

τ−→ μ1 × δs2 , even when (s1, s2) can not be reached from (s̄1, s̄2). To alleviate the fast growth
of the parallel composition it is advisable to generate only the reachable fragment or adopt more advanced
techniques [GSL96, KM00].

Furthermore, consider the two PAs A1 and A2 such that their only transitions are
{
s

τ−→ δt , t
a−→ δt

}
and{

x
a−→ δy , y

a−→ δy
}
, respectively: it is immediate to see that both automata are weak bisimilar toA3 whose only

transition is v a−→ δv and that A1 ‖ A2 is weak bisimilar to A3 ‖ A3 whose only transition is (v , v) a−→ δ(v ,v).
Such weak bisimilarity between A1 ‖ A2 and A3 ‖ A3 is not fortuitous but derives from the fact that the weak
bisimulation is preserved by the parallel composition. In fact, for any pair of compatible PAs A1 and A2, we have
thatA1 ‖ A2 ≈ [A1]≈ ‖ A2 ≈ [A1]≈ ‖ [A2]≈. The first bisimulation is justified by takingA2 as context and the fact
thatA1 ≈ [A1]≈, and similarly for the second bisimulation. The compatibility of the pair of automatawe compose
is ensured by the fact that an automaton and its quotient have the same sets of actions. In general [A1]≈ ‖ [A2]≈
is not the minimal automaton that is weak bisimilar to A1 ‖ A2: in fact, the presence of internal transitions
may lead to symmetric constructions that are identified and collapsed by computing the weak bisimulation. For
instance, suppose that we have the states s1 and s2 enabling the transitions s1

τ−→ δs ′
1
, s1

a−→ μ1, and s ′
1

b−→ μ
′
1

and s2
τ−→ δs ′

2
, s2

a−→ μ2, and s ′
2

b−→ μ
′
2, respectively. In the parallel composition we obtain the four internal

transitions (s1, s2)
τ−→ δ(s ′

1,s2), (s1, s2)
τ−→ δ(s1,s ′

2), (s
′
1, s2)

τ−→ δ(s ′
1,s

′
2), and (s1, s ′

2)
τ−→ δ(s ′

1,s
′
2) and the two external

transitions (s1, s2)
a−→ μ1 ×μ2 and (s ′

1, s
′
2)

b−→ μ′
1 ×μ′

2. It is clear that the states (s
′
1, s2), (s1, s

′
2), and (s ′

1, s
′
2) are

weak bisimilar, so they can be collapsed. Applying the hiding operator after a parallel composition increases this
effect considerably.

5. Weak transition construction as a linear programming problem

As discussed in the previous section, the main source of the worst case behaviour of the decision algorithms
[TH15, CS02] for PA weak probabilistic bisimulation is the recurring need to check for the existence of the weak
transition. This is solved with an exponential algorithm in [CS02] and a polynomial algorithm in [TH15]. The
latter approach takes inspiration from network flow problems: a weak transition t

a�⇒c μt of a PAA is described

120 L. M. Ferrer Fioriti et al.

as an enriched flow problem in which the initial probability mass δt splits along internal transitions, and precisely
one external transition with label a �� τ for every stream, in order to reach μt . The enriched flow problem is then
translated into a Linear Programming (LP) problem extended with balancing constraints that encode the need to
respect transition probability measure.

5.1. Network construction

To describe the structure of the enriched LP problem, we first recall the definition of the network graph corre-
sponding to a weak transition.

Definition 7 (cf. [TH15, Sect. 5.2])Given aPAA, a state t , an actiona, a probabilitymeasureμ, and an equivalence
relation R on S , the network graph G(t, a, μ,R) � (V ,E) relative to the weak transition t

a�⇒c μt is defined
as follows. Given v ∈ S , a ∈ E , and tr ∈ T , let va , v tr , and v tr

a be three copies of v . For a ∈ E , the set V of
vertices is

V � {�,�} ∪ S ∪ S tr ∪ Sa ∪ S tr
a ∪ S/R

where

S tr � {v tr | tr � v
b−→ ρ ∈ T , b ∈ {a} ∪ H },

Sa � {va | v ∈ S }, and
S tr
a � {v tr

a | v tr ∈ S tr }
and the set E of arcs is

E � {(�, t)} ∪ L1 ∪ La ∪ L2 ∪ La
R

where

L1 � {(v , v tr), (v tr , v ′) | tr � v
τ−→ ρ ∈ T , v ′ ∈ Supp(ρ) },

La � {(v , v tr
a), (v tr

a , v ′
a) | tr � v

a−→ ρ ∈ T , v ′ ∈ Supp(ρ) },
L2 � {(va , v tr

a), (v tr
a , v ′

a) | tr � v
τ−→ ρ ∈ T , v ′ ∈ Supp(ρ) }, and

La
R � {(va , C), (C,�) | C ∈ S/R, v ∈ C }.

For a ∈ H the definition is similar:

V � {�,�} ∪ S ∪ S tr ∪ SR ∪ S/R

and

E � {(�, t)} ∪ L1 ∪ L⊥ ∪ LR,

where LR � {(v , C), (C,�) | C ∈ S/R, v ∈ C }.
We refer to the elements of S ∪Sa as state nodes, of T � S tr ∪S tr

a as transition nodes, and of S/R as class nodes.

Example 3 Consider again the PA E in Fig. 1 and suppose that we want to check whether there exists a weak
transition s̄

a�⇒c ρ such that ρ L(R) μ where and R � I. Note that this implies
thatρ � μ.Denote asusual the transitionsofE as follows: tr0 � s̄

τ−→ {(r , 0.3), (y, 0.1), (g, 0.6)},
, , tr4 � r

τ−→ δs̄ , and tr5 � g
τ−→ δs̄ . The network G(s̄, a, μ,R) is shown in

Fig. 3, where we omit the state vertices , and as well as the transition vertices r tr1 , y tr2 , and g tr3 since they
are not involved in any arc of the network.

It is worthwhile to note that for a ∈ E , each path in the network graph from � to � has to pass through a
transition vertex v tr

a where act(tr) � a, i.e., r tr1a , y tr2
a , or g tr3a . This construction ensures that the external action

is performed with probability 1. �

Deciding probabilistic automata weak bisimulation: theory and practice 121

s̄ s̄tr0

r

y

g

rtr4

gtr5

rtr1
a

ytr2
a

gtr3
a

a

a

a

[]R

[]R

[]R

s̄a s̄tr0
a

ra

ya

ga

rtr4
a

gtr5
a

[r]R

[y]R

[g]R

[s]R

Fig. 3. The networkG(s̄, a, μ, R) of Example 3

5.2. LP problem construction

As pointed out in [TH15], the fact that the network admits a flow that respects the probability measure μt does
by itself not imply the existence of a corresponding weak transition, because the flowmay not respect probability
ratios. To account for the latter, the network is converted into a linear programming problem for which the
feasibility is shown to be equivalent to the existence of the desired weak transition. The idea is to convert the
flow network into the canonical LP problem and then add the balancing constraints that force the “flow” to split
according to transition probability measures.

Definition 8 (cf. [TH15, Definition 7]) Given a PA A, a state t ∈ S , an action a ∈ �, a probability measure
μ ∈ Disc(S), and a binary relation R on S , for a ∈ E we define the LP problem LP(t, a, μ,R) associated to the
network graph (V ,E) � G(t, a, μ,R) as follows.

max
∑

(u,v)∈E −fu,v

subject to
fu,v ≥ 0 for each (u, v) ∈ E
f�,t � 1
fC,� � μ(C) for each C ∈ S/R∑

(u,v)∈E fu,v − ∑
(v ,w)∈E fv ,w � 0 for each v ∈ V \ {�,�}

fv tr ,v ′ − ρ(v ′) · fv ,v tr � 0 for each tr � v
τ−→ ρ ∈ T and v ′ ∈ Supp(ρ)

fv tr
a ,v ′

a
− ρ(v ′) · fva ,v tr

a
� 0 for each tr � v

τ−→ ρ ∈ T and v ′ ∈ Supp(ρ)
fv tr

a ,v ′
a

− ρ(v ′) · fv ,v tr
a

� 0 for each tr � v
a−→ ρ ∈ T and v ′ ∈ Supp(ρ)

When a ∈ H , the LP problem LP(t, a, μ,R) associated to G(t, a, μ,R) is defined as above without the last
two groups of constraints:

max
∑

(u,v)∈E −fu,v

subject to
fu,v ≥ 0 for each (u, v) ∈ E
f�,t � 1
fC,� � μ(C) for each C ∈ S/R∑

(u,v)∈E fu,v − ∑
(v ,w)∈E fv ,w � 0 for each v ∈ V \ {�,�}

fv tr ,v ′ − ρ(v ′) · fv ,v tr � 0 for each tr � v
τ−→ ρ ∈ T and v ′ ∈ Supp(ρ)

Example 4 Consider again the automaton E from Example 1 (depicted in Fig. 1) and a weak transition s̄
a�⇒c ρ

such that ρ L(R) μwhere andR � I. As in Example 3, since I is the identity re-
lation, we have that ρ � μ. Denote as usual the transitions of E as follows: tr0 � s̄

τ−→ {(r , 0.3), (y, 0.1), (g, 0.6)},
, , tr4 � r

τ−→ δs̄ , and tr5 � g
τ−→ δs̄ .

122 L. M. Ferrer Fioriti et al.

Besides the constraints for the non-negativity of the variables, theLPproblem LP(s̄, a, μ,R) has the following
constraints:

• initial flow and challenging probabilities:

• conservation of the flow for vertices in S :

f�,s̄ + fr tr4 ,s̄ + fg tr5 ,s̄ − fs̄,s̄ tr0 � 0 fs̄ tr0 ,r − fr ,r
tr1
a

− fr ,r tr4 � 0
fs̄ tr0 ,y − fy,y

tr2
a

� 0 fs̄ tr0 ,g − fg,g
tr3
a

− fg,g tr5 � 0

• conservation of the flow for vertices in S tr :

fs̄,s̄ tr0 − fs̄ tr0 ,r − fs̄ tr0 ,y − fs̄ tr0 ,g � 0 fr ,r tr4 − fr tr4 ,s̄ � 0
fg,g tr5 − fg tr5 ,s̄ � 0

• conservation of the flow for vertices in Sa :

• conservation of the flow for vertices in S tr
a :

• conservation of the flow for vertices in S/R:

• balancing constraints for τ -transitions generating L1:

fs̄ tr0 ,r − 0.3 · fs̄,s̄ tr0 � 0 fs̄ tr0 ,y − 0.1 · fs̄,s̄ tr0 � 0
fs̄ tr0 ,g − 0.6 · fs̄,s̄ tr0 � 0 fr tr4 ,s̄ − 1 · fr ,r tr4 � 0
fg tr5 ,s̄ − 1 · fg,g tr5 � 0

• balancing constraints for a-transitions generating La :

• balancing constraints for τ -transitions generating L2:

fs̄ tr0a ,ra
− 0.3 · fs̄a ,s̄

tr0
a

� 0 fs̄ tr0a ,ya
− 0.1 · fs̄a ,s̄

tr0
a

� 0
fs̄ tr0a ,ga

− 0.6 · fs̄a ,s̄
tr0
a

� 0 fr tr4
a ,s̄a

− 1 · fra ,r
tr4
a

� 0
fg tr5

a ,s̄a
− 1 · fga ,g

tr5
a

� 0

Deciding probabilistic automata weak bisimulation: theory and practice 123

A solution that maximizes the objective function sets all variables to the value 0 except for the following
variables:

It is worthwhile to note the value 80/50 for the variable fs̄,s̄ tr0 : this is caused by the fact that the arc (s̄, s̄ tr0) is
part of a cycle and its flow value is greater than 1, confirming that 1, the maximum probability, in general is not
a proper value for arc capacities, as discussed in [TH15]. �

In the LP problem described in Definition 8, the objective function maximizes the total sum of negated flow
routed along the arcs of the network. In fact, the total flow is described as the sum of negated flow variables
which are positive themselves. This prevents routing large amounts of flow over disconnected components of
the network or over cycles that can be ignored. Furthermore, in the LP problem, there are two different sets of
constraints. The first set is the ordinary set of flow conservation constraints which require the total flow incoming
and outgoing a node of the network to be equal. The second set is the set of balancing constraints that require
the entering amount of flow to a transition node to be distributed based on probabilities assigned to the outgoing
arcs.

It is easy to observe that the LP(t, a, μ,R) LP problem has size that is quadratic in the sizeN � si ze(A): the
number of variables is at most 3N 2 +5N +1 while the number of constraints is at most 6N 2 +11N +2.Moreover,
it is also worthwhile to spell out the number of transition, state, and class nodes of the network G(t, a, μ,R):
there are at most 2 | T | transition nodes, at most 2 | S | state nodes, and at most | S | class nodes.

The equivalence of the LP problem and the weak transition is formalized by Theorem 9 and Corollary 12(1)
of [TH15]:

Proposition 2 A weak transition t a�⇒c μt such that μ L(R) μt exists if and only if the LP problem LP(t, a, μ,R)
has a feasible solution.

Remark 4 The LP problem construction proposed in Definition 8 is not easily extendable to weak non-combined
transitions induced by a Dirac scheduler. In fact, in order to obtain for such setting a result equivalent to
Proposition 2, we should enforce that the flow leaving the nodes v and va is not split among several outgoing
arcs, but it is routed completely to a single arc. To obtain such a situation, we should replace, for each v ∈ S ∪Sa ,
the flow conservation constraint in Definition 8

∑

(u,v)∈E
fu,v −

∑

(v ,w)∈E
fv ,w � 0 for each v ∈ V \ {�,�}

by the following set of constraints:
∑

(u,v)∈E fu,v − ∑
(v ,w)∈E αv ,w fv ,w � 0 for each v ∈ V \ {�,�}∑

(v ,w)∈E αv ,w � 1 for each v ∈ V \ {�,�}
αv ,w ∈ {0, 1} for each (v ,w) ∈ E

The latter ensures that the flow is sent through a single outgoing arc in its entirety. This change implies that
the resulting problem is no longer a Linear Programming problem but a Mixed Integer Nonlinear Programming
problem (MINLP), known to belong to the class ofNP-complete problems [Sch03].While it is rather easy to show
that the problem of finding a weak transition induced by a Dirac scheduler is equivalent to the above MINLP
problem (the proof is essentially the same of the one of Proposition 2, see [TH15, Lemmas 7 and 8]), such an
equivalence is not sufficient to establish the NP-completeness of the problem. However, it is still possible to show
such a result by a direct reduction from the 3-SAT problem.

First, we introduce some terminology about satisfiability of formulas. Given a set V of variables taking
values in {t, f}, a literal l is either a variable v or the negation of a variable ¬v , where v ∈ V . A clause Cl is a
disjunction of literals. A formula φ is written in conjunctive normal form with three variables per clause (3-CNF)

124 L. M. Ferrer Fioriti et al.

if φ � ∧n
i�1 Cli where each clause Cli is a disjunction of three literals. To simplify the presentation, we assume

that each clause contains distinct literals. A formula φ is satisfiable if there exists a logical value assignment for
the variables that makes the formula true. Given a formula φ, we denote by Var (φ) the set of variables occurring
in φ, by Lit(φ) the set of literals occurring in φ, by Cl(φ) the set of clauses of φ, and, given a literal l , we denote
by Cl(φ, l) the set of clauses of φ where l occurs.

Proposition 3 Given a PA A, a state s ∈ S , an action a ∈ �, and a probability measure μ ∈ Disc(S), checking
whether there exists a Dirac scheduler inducing s

a�⇒ μ is NP-complete.

Proof To prove the claim, we have to show two results: the problem is NP-hard and belongs to NP.
The fact that the problem belongs to NP follows directly from the fact that the existence of a weak transition

induced by a Dirac scheduler can be encoded as a MINLP problem, that is in NP.
For showing theNP-hardness, we provide a reduction from the 3-SAT problem. Let φ � ∧n

i�1 Cli be a 3-CNF
formula, n �| Cl(φ) |, and m �| Var (φ) |.

Consider the PA Aφ whose set of states is S � {φ,�} ∪ Var (φ)∪ {vf, vt | v ∈ Var (φ) } ∪Cl(φ), whose start
state is φ, whose set of actions is � � {τ }, and whose transitions are:

T � {
φ

τ−→ υVar (φ)
} ∪ {v τ−→ δvt , v

τ−→ δvf | v ∈ Var (φ) }
∪ {vt τ−→ ρv | v ∈ Lit(φ) } ∪ {vf τ−→ ρ¬v | ¬v ∈ Lit(φ) }
∪ {Cl τ−→

{

(Cl,
1
k
), (�,

k − 1
k

)
}

| Cl ∈ Cl(φ), k ∈ {1, 2, 3} },

where, for a literal l , ρl is defined as

ρl (t) �

⎧
⎪⎨

⎪⎩

1
n

if t ∈ Cl(φ, l),
|Cl(φ)\Cl(φ,l)|

n
if t � �,

0 otherwise.

We now prove that φ is satisfiable if and only if Aφ exhibits the weak transition φ
τ�⇒ μ where

μ(t) �
⎧
⎨

⎩

1
n ·m if t � Cl for some clauseCl ∈ Cl(φ),
1 − 1

m
if t � �, and

0 otherwise.

Suppose that φ is satisfiable; this implies that there exists a truth value assignment for the variables occurring
in φ that makes the formula true. Moreover, since φ is satisfiable, it follows that at least one literal of each clause
Cl ∈ Cl(φ) has assignment t. Let σ be the Dirac scheduler defined as follows:

σ (α) �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ
φ

τ−→υVar (φ)
ifα � φ,

δ
v

τ−→δvt
ifα � φτv and v is t in the assignment,

δ
v

τ−→δvf
ifα � φτv and v is f in the assignment,

δ
vt

τ−→ρv
ifα � φτvτvt and v ∈ Lit(φ),

δ
vf

τ−→ρ¬v
ifα � φτvτvf and¬v ∈ Lit(φ),

δ
Cl

τ−→{(Cl, 1
k),(�, k−1

k)} ifα ∈ {
φτvτvtτCl, φτvτvfτCl

}
and exactly k literals ofCl are t,

δ⊥ otherwise.

It is rather easy to verify that σ actually induces the weak transition φ
τ�⇒ μ. Consider, for instance, a clause Cl;

let Cl � l1 ∨ l2 ∨ l3 and vi be the variable associated to the literal li . The probability of reaching Cl is:

μσ,φ({α ∈ f rags∗(Aφ) | last(α) � Cl })
� μσ,φ(

{
φτv1τv

v
1 τClτCl

}
) if l1 � t and v is the assignment of v1

+ μσ,φ(
{
φτv2τv

v
2 τClτCl

}
) if l2 � t and v is the assignment of v2

+ μσ,φ(
{
φτv3τv

v
3 τClτCl

}
) if l3 � t and v is the assignment of v3

Deciding probabilistic automata weak bisimulation: theory and practice 125

For each i ∈ {1, 2, 3} such that li � t, we have that μσ,φ(
{
φτviτv

v
i τClτCl

}
) � 1

m
· 1
n

· 1
k
, where k is the number

of literals of Cl that are t. In fact, for each i ∈ {1, 2, 3} such that li � t,

μσ,φ(
{
φτviτv

v
i τClτCl

}
)

� μσ,φ(Cφτvi τv
v
i τClτCl) · σ (φτviτv

v
i τClτCl)(⊥)

� μσ,φ(Cφ) ·
⎛

⎝
∑

tr∈T (τ)
σ (φ)(tr) · μtr (vi)

⎞

⎠

·
⎛

⎝
∑

tr∈T (τ)
σ (φτvi)(tr) · μtr (v

v
i)

⎞

⎠

·
⎛

⎝
∑

tr∈T (τ)
σ (φτviτv

v
i)(tr) · μtr (Cl)

⎞

⎠

·
⎛

⎝
∑

tr∈T (τ)
σ (φτviτv

v
i τCl)(tr) · μtr (Cl)

⎞

⎠

· σ (φτviτv
v
i τClτCl)(⊥)

(In the following step, we omit the transitions chosen by σ with probability 0; for instance, φ
τ−→ υVar (φ) when

α � φτvi . For improving readability, we write θCl for the distribution
{
(Cl, 1

k
), (�, k−1

k
)
}
.)

� μσ,φ(Cφ) · (σ (φ)(φ τ−→ υVar (φ)) · υVar (φ)(vi))

· (σ (φτvi)(vi
τ−→ δvv

i
) · δvv

i
(vv

i))

· (σ (φτviτv
v
i)(v

v
i

τ−→ ρl) · ρl (Cl))

· (σ (φτviτv
v
i τCl)(Cl τ−→ θCl) · θCl (Cl))

· σ (φτviτv
v
i τClτCl)(⊥)

� 1 ·
(

1
m

)

· (1) ·
(
1
n

)

·
(
1
k

)

· 1 � 1
m

· 1
n

· 1
k

Since μσ,φ(
{
φτviτv

v
i τClτCl

}
) � 1

m
· 1
n

· 1
k
holds for each i ∈ {1, 2, 3} such that li � t, it follows that, for k

literals being t in Cl, the overall probability assigned to the state Cl is k · 1
m

· 1
n

· 1
k

� 1
n ·m as required. Since this

probability is independent from the particular Cl, the overall probability assigned to Cl(φ) is n · 1
n ·m � 1

m
; the

remaining probability value 1 − 1
m

is assigned to �, as required, as it can be easily checked in a similar way. The
other properties the scheduler has to satisfy trivially follow from the previous one and the fact that the PA Aφ

has E � ∅, so σ actually induces the weak transition φ
τ�⇒ μ. This completes the proof that if φ is satisfiable,

then there is a Dirac scheduler inducing φ
τ�⇒ μ.

Now, suppose that there exists a Dirac scheduler inducing φ
τ�⇒ μ. We want to derive a logical value assign-

ment such that the formula φ holds. For each variable v ∈ Var (φ), define the assignment θ (v) as follows:

θ (v) �
{
t if σ (φτv) � δ

v
τ−→δvt

,

f otherwise.

Since by hypothesis each clause Cl is reached with probability 1
n ·m , it means that there exists at least one finite

execution fragment of the form φτvτvvτClτCl that occurs with non-zero probability. In particular,

v �
{
t if σ (φτv) � δ

v
τ−→δvt

,

f otherwise,

126 L. M. Ferrer Fioriti et al.

i.e., v has truth value v. Moreover, the existence of such execution fragment implies that the literal v occurs in
Cl if v � t or the literal ¬v occurs in Cl if v � f. The former case implies that Cl � v ∨ l ′ ∨ l ′′ for some literal l ′
and l ′′ with v � t, while the latter case implies that Cl � ¬v ∨ l ′ ∨ l ′′ for some literal l ′ and l ′′ with v � f. In both
cases the clause Cl is satisfied, hence φ is satisfied as well since Cl is a generic clause in Cl(φ). This concludes the
proof that if there exists Dirac scheduler inducing the weak transition φ

τ�⇒ μ, then φ is satisfiable.
Since we have shown that φ is satisfiable if and only if Aφ exhibits the weak transition φ

τ�⇒ μ, in order to
complete the reduction we have to show that the reduction is polynomial in the size of the formula φ: this follows
immediately by the construction ofAφ whose number of states and transitions is linear in the number of variables
and clauses of φ. �

5.3. Complexity analysis of deciding weak bisimulation

Proposition 2 allows us to verify the existence of a weak transition t
a�⇒c μt such that μs L(R) μt at line 3 of

FindSplit efficiently:W (N) is actually p(N) for some polynomial p, hence the following result holds.

Theorem 1 Given two PAs A1 and A2, let N � si ze(A1) + si ze(A2). Checking A1 ≈ A2 is polynomial in N .

6. Efficiency of solving the LP problem

The analysis of the LP(t, a, μ,R) LP problem formalized in [TH15, Proposition 6] considers the theoretical
complexity class the problem belongs to. It does not address how efficiently the LP problem can indeed be solved.
Practical implementation aspects and empirical results will be presented in Sect. 7. To prepare for that, we first
discuss abstract observations concerning the worst case running time needed to solve the LP problem. Then we
recast the LP problem into a flow network problem and exploit the underlying network structure to arrive at an
efficient LP problem solution approach harvesting an algorithm in the network optimization setting. We further
discuss various alternative approaches to improve solution efficiency, including approximative methods.

6.1. Efficient solution: theory

Throughout this section, we define the dimension of an input to an algorithm as the number of data items in
the input. The size of a rational number p/q is defined as the length of its binary description, i.e., si ze(p/q) �
�log2(p + 1)�+ �log2(q + 1)�, where �x� denotes the smallest integer not less than x . The size of a rational vector
or matrix is defined as the sum of the sizes of its entries.

Deciding the existence of a weak transition in a probabilistic automaton can be done in polynomial time
[TH15, Proposition 6 and Theorem 8]. With the aim to refine this result, we discuss the problem in the context
of the restricted class of rational probabilistic automata.
Rational PAsWe start our analysis with the class of rational PAs.

Definition 9 Given a PA A, we say that A is rational if for each (s, a, μ) ∈ T and v ∈ Supp(μ), we have that
μ(v) ∈ Q.

For this class of probabilistic automata, we look for a tighter worst case complexity bound of solving the
LP problem LP(t, a, μ,R). We proceed via a reformulation that reduces the size of LP(t, a, μ,R). This size
reduction directly reduces the solution effort needed for the LP problem, since the latter depends on the number
of variables and constraints, and this will indeed provide a tighter worst case bound. To reach our goal, wemodify
the network provided in Definition 7 and reformulate the original LP problem on the basis of these changes.

Consider the network G(t, a, μ,R) and let G(t, a, μ,R) be a directed network which is generated from
the network G(t, a, μ,R) by removing the source node � and the sink node �; let V � V \ {�,�} and E �
E\({(�, t)} ∪ {(C,�) | C ∈ S/R }) be the set of vertices and directed arcs of G(t, a, μ,R), respectively. Moreover,
let Ē ⊆ E be the set Ē � {(v tr , v ′), (v tr

a , v ′
a) | tr � v

τ−→ ρ ∈ T , v ′ ∈ Supp(ρ) } ∪ {(v tr
a , v ′

a) | tr � v
a−→ ρ ∈

T , v ′ ∈ Supp(ρ) }. Then, we define ρi,j � μtr (v
′) as the proportionality coefficient corresponding to the arc

(i , j) ∈ Ē where (i , j) � (v tr , v ′) or (i , j) � (v tr
a , v ′

a). Since in both original and modified networks each arc in Ē
belongs to a single transition, the corresponding proportional coefficient is uniquely determined.

Deciding probabilistic automata weak bisimulation: theory and practice 127

For each node u ∈ V , let bu be a supply/demand value, that is, if bu > 0 the node u is a supply node and if
bu < 0 the node u is a demand node. For the network G(t, a, μ,R), we define bu for each node u ∈ V so as to
take value 1 if u � t , value −μ(C) if u � C ∈ S/R and 0 otherwise. It is immediate to see that

∑
u∈V bu � 0.

This fact can be seen as a feasibility condition in the corresponding flow network [AMO93]. For s ∈ T , assume
As to be the set of all arcs in the node-arc incidence matrix A that should have proportional flow. We define Ã to
be the subset of arcs in A that do not belong to any set As for s ∈ T . More precisely, Ã � A\⋃

s∈T As . Based on
the definitions, the LP(t, a, μ,R) LP problem can be reformulated as follows:

LP1:min
∑

(i,j)∈ E fi,j
s.t.

∑
(i,j)∈ E fi,j − ∑

(j ,i)∈ E fj ,i � bi for each i ∈ V
fi,j
ρi,j

are all equal s ∈ T , (i , j) ∈ As

fi,j ≥ 0 for each (i , j) ∈ E

Lemma 1 The LP(t, a, μ,R) LP problem and LP1 are equivalent.

Proof The statement follows immediately by a simple manipulation of the balancing constraints: consider the
transition tr � v

τ−→ ρ; it is encoded in the network as the transition node v tr and the arcs (v , v tr) and (v tr , v ′)
for v ′ ∈ Supp(ρ). The corresponding balancing constraints are fv tr ,v ′ − ρ(v ′) · fv ,v tr � 0, that is, fv tr ,v ′

ρ(v ′) � fv ,v tr .

Since fv ,v tr is independent on v ′, it follows that the ratio fv tr ,v ′
ρ(v ′) is equal for all v ′ ∈ Supp(ρ), as required.

The same holds for the transition nodes v tr
a and v tr ′

a , the latter corresponding to the transition
tr ′ � v

a−→ γ . �
By assuming the unit flow cost ci,j � 1 for each arc (i , j) ∈ E , the objective of this problem is to minimise

the total cost of routing the flow on network arcs subject to the ordinary flow conservation constraints, the
proportional flow constraints corresponding to the balancing constraints of the original LP problem, and the arc
flow lower bounds.

It is worthwhile to note that there exists a proportional flow set for each transition node in the network and that
each arc may belong to at most one proportional flow set. The flow on the arcs in each of these flow proportional
sets can be regarded as a single decision variable. Using this intuition, let ai,j denote the column corresponding
to the arc (i , j) in the node-arc incidence matrix of the network G(t, a, μ,R) and let as � ∑

(i,j)∈As
ρi,j · ai,j for

each s ∈ T . We denote by ak
s the k -th component of the vector as . Since the column vector ai,j in the node-arc

incidence matrix includes only entities 0, +1 and -1 therefore, the k -th component of the vector as , i.e., ak
s can be

equivalently written as ak
s � ∑

(k ,j)∈As
ρk ,j −∑

(j ,k)∈As
ρj ,k . By using the new notations, LP1 can be reformulated

as the following LP problem which in turn can be regarded as an adaptation of the LP considered in [BF12].

LP2:min
∑

(i,j)∈ Ã fi,j +
∑

s ∈ T fs
s.t.

∑
(i,j)∈ Ã fi,j − ∑

(j ,i)∈ Ã fj ,i +
∑

s ∈ T ai
s · fs � bi for each i ∈ V

fi,j ≥ 0 for each (i , j) ∈ Ã
fs ≥ 0 for each s ∈ T

Lemma 2 LP1 and LP2 are equivalent.

Proof Let f � {fi,j | (i , j) ∈ Ã } ∪ {fs | s ∈ T } be a feasible solution for LP2. Define flow f̃ as follows:

f̃i,j �
⎧
⎨

⎩

fi,j if (i , j) ∈ Ã

ρi,j · fs if s ∈ T and (i , j) ∈ As

0 otherwise.

128 L. M. Ferrer Fioriti et al.

We claim that the flow f̃ satisfies the LP1 constrains. To show this, in the first set of constraints in LP1 and for
each i ∈ V we get the following equivalences (comments refer to the previous equivalence):

∑

(i,j)∈E
f̃i,j −

∑

(j ,i)∈E
f̃j ,i �

⎛

⎝
∑

(i,j)∈Ã
f̃i,j +

∑

(i,j)∈E\Ã
f̃i,j

⎞

⎠ −
⎛

⎝
∑

(j ,i)∈Ã
f̃j ,i +

∑

(j ,i)∈E\Ã
f̃j ,i

⎞

⎠

�
∑

(i,j)∈Ã
f̃i,j −

∑

(j ,i)∈Ã
f̃j ,i +

∑

(i,j)∈E\Ã
f̃i,j −

∑

(j ,i)∈E\Ã
f̃j ,i

�
∑

(i,j)∈Ã
f̃i,j −

∑

(j ,i)∈Ã
f̃j ,i +

∑

s∈T

∑

(i,j)∈As

f̃i,j −
∑

s∈T

∑

(j ,i)∈As

f̃j ,i

by definition of Ã

�
∑

(i,j)∈Ã
fi,j −

∑

(j ,i)∈Ã
fj ,i +

∑

s∈T

∑

(i,j)∈As

ρi,j · fs −
∑

s∈T

∑

(j ,i)∈As

ρj ,i · fs

by definition of f̃

�
∑

(i,j)∈Ã
fi,j −

∑

(j ,i)∈Ã
fj ,i +

∑

s∈T
fs ·

⎛

⎝
∑

(i,j)∈As

ρi,j −
∑

(j ,i)∈As

ρj ,i

⎞

⎠

by simple term manipulation

�
∑

(i,j)∈Ã
fi,j −

∑

(j ,i)∈Ã
fj ,i +

∑

s∈T
ai
s · fs

by definition of ai
s

� bi

by definition of LP2. Moreover, for each s ∈ T and (i , j) ∈ As ,
f̃i,j
ρi,j

� ρi,j ·fs
ρi,j

� fs . This means that for each

s ∈ T and for all (i , j) ∈ As ,
f̃i,j
ρi,j

are all equal. Also, for each (i , j) ∈ Ã, f̃i,j � fi,j ≥ 0 and for each s ∈ T and

(i , j) ∈ As , f̃i,j � ρi,j · fs ≥ 0. Therefore, f̃i,j for (i , j) ∈ E is indeed a feasible solution for LP1. Next, consider
the value of the objective function for LP1:

∑

(i,j)∈E
f̃i,j �

∑

(i,j)∈Ã
f̃i,j +

∑

(i,j)∈E\Ã
f̃i,j

�
∑

(i,j)∈Ã
f̃i,j +

∑

s∈T

∑

(i,j)∈As

f̃i,j

by definition of Ã

�
∑

(i,j)∈Ã
fi,j +

∑

s∈T

∑

(i,j)∈As

ρi,j · fs

by definition of f̃

�
∑

(i,j)∈Ã
fi,j +

∑

s∈T
fs ·

1
︷ ︸︸ ︷∑

(i,j)∈As

ρi,j

Deciding probabilistic automata weak bisimulation: theory and practice 129

by simple term manipulation and the fact that ρi,j � μtr (v
′) where (i , j) � (v tr , v ′) or (i , j) � (v tr

a , v ′
a)

�
∑

(i,j)∈Ã
fi,j +

∑

s∈T
fs .

Therefore, corresponding to this feasible solution, the value of the objective function of both LP problems are
the same. For the reverse side, assume f̄ � { f̄i,j | (i , j) ∈ E } is a feasible solution for LP1. Define the flow

f̂ � { f̂i,j | (i , j) ∈ Ã } ∪ { f̂s | s ∈ T } where f̂i,j � f̄i,j for (i , j) ∈ Ã and f̂s � f̄i,j
ρi,j

for each s ∈ T where (i , j) ∈ As .

In the following we show that f̂ is a feasible solution for LP2. For each i ∈ V , it holds:
∑

(i,j)∈Ã
f̂i,j −

∑

(j ,i)∈Ã
f̂j ,i +

∑

s∈T
ai
s · f̂s

�
∑

(i,j)∈Ã
f̂i,j −

∑

(j ,i)∈Ã
f̂j ,i +

∑

s∈T

⎛

⎝
∑

(i,j)∈As

ρi,j −
∑

(j ,i)∈As

ρj ,i

⎞

⎠ · f̂s

by definition of ai
s

�
∑

(i,j)∈Ã
f̂i,j −

∑

(j ,i)∈Ã
f̂j ,i +

∑

s∈T

∑

(i,j)∈As

ρi,j · f̂s −
∑

s∈T

∑

(j ,i)∈As

ρj ,i · f̂s

by simple term manipulation

�
∑

(i,j)∈Ã
f̄i,j −

∑

(j ,i)∈Ã
f̄j ,i +

∑

s∈T

∑

(i,j)∈As

f̄i,j −
∑

s∈T

∑

(j ,i)∈As

f̄j ,i

by definition of f̂

�
∑

(i,j)∈Ã
f̄i,j +

∑

s∈T

∑

(i,j)∈As

f̄i,j −
⎛

⎝
∑

(j ,i)∈Ã
f̄j ,i +

∑

s∈T

∑

(j ,i)∈As

f̄j ,i

⎞

⎠

by simple term manipulation

�
∑

(i,j)∈Ã
f̄i,j +

∑

(i,j)∈E\Ã
f̄i,j −

⎛

⎝
∑

(j ,i)∈Ã
f̄j ,i +

∑

(i,j)∈E\Ã
f̄j ,i

⎞

⎠

by definition of Ã

�
∑

(i,j)∈E
f̄i,j −

∑

(j ,i)∈E
f̄j ,i

� bi

by definition of LP1.

Moreover, for each (i , j) ∈ Ã, f̂i,j � f̄i,j ≥ 0 and also for each s ∈ T , f̂s � f̄i,j
ρi,j

≥ 0. Therefore, f̂ is a feasible
solution for the LP2. The amount of the objective function of LP2 corresponding to this feasible solution is:

∑

(i,j)∈Ã
f̂i,j +

∑

s∈T
f̂s �

∑

(i,j)∈Ã
f̂i,j +

∑

s∈T
1 · f̂s

�
∑

(i,j)∈Ã
f̂i,j +

∑

s∈T

⎛

⎝
∑

(i,j)∈As

ρi,j

⎞

⎠ · f̂s

130 L. M. Ferrer Fioriti et al.

by the fact that ρi,j � μtr (v
′) where (i , j) � (v tr , v ′) or (i , j) � (v tr

a , v ′
a) and that

∑
(i,j)∈As

ρi,j � 1

�
∑

(i,j)∈Ã
f̂i,j +

∑

s∈T

∑

(i,j)∈As

ρi,j · f̂s

by simple term manipulation

�
∑

(i,j)∈Ã
f̄i,j +

∑

s∈T

∑

(i,j)∈As

f̄i,j

by definition of f̂s

�
∑

(i,j)∈Ã
f̄i,j +

∑

(i,j)∈E\Ã
f̄i,j

by definition of Ã

�
∑

(i,j)∈E
f̄i,j .

As a consequence, since every feasible solution for LP1 is a feasible solution for LP2 and vice versa, and the value
of the objective functions is the same, we have that LP1 and LP2 are equivalent. �

Since both LP1 and LP2 are equivalent to the LP(t, a, μ,R) LP problem, we exploit the structure of LP2
to improve the efficiency of checking for a solution of LP(t, a, μ,R). Simultaneously, we also improve the
complexity of deciding weak bisimulation. Amongst all available versions of polynomial algorithms for solving
a linear programming problem, we resort to a state-of-the-art polynomial interior point method [Ans99] which,
to the best of our knowledge, is equipped with the tightest known worst case complexity.

Theorem 2 Consider a rational PA A, the action a, the probability measure μ ∈ Disc(S), the equivalence relation
R on S and a state t ∈ S . Let N � si ze(A). Then, checking the feasibility of the LP(t, a, μ,R) LP problem can
be done in O(N 3

lnN · L) where L is the bit size of the problem.

Proof By Lemmas 1 and 2, LP(t, a, μ,R) is feasible if and only if LP2 is feasible. Now, consider the dual of LP2;
by assigning the dual variables πs for each s ∈ V , hence O(N) variables, we get the following dual LP problem:

DLP2: max
∑

s∈V bs · πs

s.t. πi − πj ≤ 1 for each (i , j) ∈ Ã∑
t∈V at

s · πt ≤ 1 for each s ∈ T .

By using a state-of-the-art preconditioned conjugate gradient (PCG) method with a partial updating procedure
[Ans99], this LP problem can be solved optimally in O(N 3

lnN · L) where L is the bit size of the problem. At
termination of the algorithm, we have two possible cases:

1. The dual LP problem has a finite optimal objective value: by the strong duality theorem [BT97], the original
LP2 is feasible and also has a finite optimal objective value.

2. The dual LP problem is unbounded: by the strong duality theorem the original LP2 is infeasible.

Thus, by solving the dual LP problem efficiently, we can verify the existence of a weak combined transition for
the given PA. �

Notably, if we were to use the interior point method directly on the original LP problem instead of LP2, we
would face an extra factor N in the complexity bound. This is because the running time of the method depends
on the number of variables: the number of variables occuring in LP(t, a, μ,R) is O(N 2) while the number
of variables in LP2 is O(N). This reduction directly translates into a reduced worst case complexity, and this
especially appreciable if working with large probabilistic automata.

Corollary 1 Given two PAs A1 and A2, let N � si ze(A1) + si ze(A2). Checking A1 ≈ A2 can be done in time
O(N 6

lnN · L) where L is the maximum bit size of the LP problems solved in FindSplit and Refine.

Proof Immediate by Proposition 1 and Theorem 2. �

Deciding probabilistic automata weak bisimulation: theory and practice 131

Since the worst case runtime bound essentially depends on the type of the polynomial algorithm used to solve
the LP problem, any advancement in LP problem solution complexity directly improves the complexity of the
weak bisimulation decision problem.

Remark 5 If considering the structure of the LP(t, a, μ,R) LP problem, one might observe that it is in essence
a system of linear equations with non-negativity constraints. So, we may consider instead to use elimination
techniques (inspired by Gaussian elimination) to reduce the number of variables and constraints we have in the
LP problem:

1. take one of the linear equations, say fv ,v tr − ∑
(v tr ,u)∈E fv tr ,u � 0 and one variable occurring in it, say fv ,v tr ;

2. express the variable as linear combination of the other variables, i.e., fv ,v tr � ∑
(v tr ,u)∈E fv tr ,u ;

3. replace each occurrence of the variable with such combination, i.e., fv ,v tr by
∑

(v tr ,u)∈E fv tr ,u .

If we iterate this process until no more variables can be isolated at step 2, we obtain another LP problem that is
equivalent to the original one.

Now, since we are not interested in the actual value of the variables, but only on whether the problem is
feasible, we can eliminate the equations we considered at step 1 and the corresponding variables at step 2. This
results in an LP problem no more equivalent to the original one, but it is easy to show that the latter is feasible if
and only if the original problem is.

As an example, consider the following LP problem:

f0 − f1 − f2 − f3 � 0 f0 � 1 f0 ≥ 0 f1 ≥ 0
f1 + f2 − f4 � 0 f4 � 0.5 f4 ≥ 0 f2 ≥ 0
f3 − f5 � 0 f5 � 0.5 f5 ≥ 0 f3 ≥ 0

In a single time, if we replace f0, f4, and f5 with their respective values, we obtain:

1 − f1 − f2 − f3 � 0 f0 � 1 1 ≥ 0 f1 ≥ 0
f1 + f2 − 0.5 � 0 f4 � 0.5 0.5 ≥ 0 f2 ≥ 0
f3 − 0.5 � 0 f5 � 0.5 0.5 ≥ 0 f3 ≥ 0

Now, by replacing f3 with 0.5, the system becomes:

1 − f1 − f2 − 0.5 � 0 f0 � 1 1 ≥ 0 f1 ≥ 0
f1 + f2 − 0.5 � 0 f4 � 0.5 0.5 ≥ 0 f2 ≥ 0
f3 − 0.5 � 0 f5 � 0.5 0.5 ≥ 0 0.5 ≥ 0

and by substituting f1 with 0.5 − f2:

1 − 0.5 + f2 − f2 − 0.5 � 0 f0 � 1 1 ≥ 0 0.5 − f2 ≥ 0
f1 � 0.5 − f2 f4 � 0.5 0.5 ≥ 0 f2 ≥ 0
f3 � 0.5 f5 � 0.5 0.5 ≥ 0 0.5 ≥ 0

that is,

0 � 0 f0 � 1 1 ≥ 0 0.5 − f2 ≥ 0
f1 � 0.5 − f2 f4 � 0.5 0.5 ≥ 0 f2 ≥ 0
f3 � 0.5 f5 � 0.5 0.5 ≥ 0 0.5 ≥ 0

This system is feasible and it has a solution for each 0 ≤ f2 ≤ 0.5.
This approach looks promising, but in fact is much more expensive than the result achieved by Theorem 2:

if we ignore the bit size of the problem, for an n × n matrix, the Gaussian elimination has complexity O(n3)
where n is the number of variables in the system of equations (corresponding to the number of columns of the
matrix). In our setting, we have an m × n matrix with m > n, thus the actual complexity is larger than O(n3).
If we now express the complexity of the Gaussian elimination approach in terms of N � si ze(A), since we have
O(N 2) variables, the resulting complexity is at least O(N 6), without considering the complexity of solving the
remaining LP problems.

Non-rational automata The class of rational probabilistic automata, as far as the authors know, encompasses all
PAs that have appeared in practical applications. One may nevertheless consider relevant also the analysis of PAs
with real valued probabilities.

132 L. M. Ferrer Fioriti et al.

One possible way to represent LP problems with real data is to use a model of computation that can perform
any elementary arithmetic operation in constant time, regardless of the type of the operand. Another option is to
encode reals as finite precision rationals. For a survey on the theory of computation over real numbers we refer
the reader to [BSS89, Bel01].

When using finite precision rationals, the representation of the PA must become approximate, and still the
size needed for this can no longer be guaranteed to be bounded by a polynomial. If assuming the rational
approximation scheme being employed by the user, we are back to the rational setting for the LP problem
solution process, and it is left to the user to interpret the outcome on the real valued PA. If instead the algorithm
performs the approximation prior to solving the induced LP problem, the user may in general lack knowledge
on how to transfer the result back to the original real valued PA.

6.2. Efficient solution: exploiting structure

We now consider the practical efficiency of deciding probabilistic automata weak bisimulation. We first discuss
available algorithms that can be employed. We show that the underlying structure of the problem enables us
to check feasibility of the LP problem more efficiently than by just resorting to a general purpose LP solver
implicitely finding the optimal solution. Afterwards we discuss other methods that are known to more efficient
in general but turn out to be unsuitable for solving the LP(t, a, μ,R) LP problem.

Working with a linear programming problem allows practitioners to use the omnipresent simplex method as
an extremely efficient computational tool. It is worthwhile to note that the efficiency of the simplex method is
measured as the number of pivots needed to solve the LP problem. Moreover, practical experiments show that
although this method is highly efficient, there exist problems that require an exponential number of pivots. This
means that the worst case theoretical complexity of the simplex method is exponential time [KM72]. However,
computational experience on thousands of real-world problems reveals that the number of pivots is usually
polynomial in the number of variables and of constraints. For a comprehensive survey on the efficiency of the
simplex method, we refer the interested reader to [Sha87].

Since the LP1 problem is a minimum cost flow problem on the network G(t, a, μ,R) extended with an
additional set of proportional flow constraints, we consider the usage of efficient algorithms that solve the
problem directly on the flow network itself. One such algorithm is the network simplex algorithm [BF12] for the
minimum cost proportional flow problem that improves the per iteration running time considerably with respect
to the simplex method, as long as the number of nodes in the network is at least an order of magnitude larger
than the number of side constraints in the LP problem [Cal02, MSJ11, BF12, MSJ13]. So, the network simplex
algorithm is a candidate for improving the running time required to solve LP1. However, the number of side
constraints coincides with the number of transition nodes in the LP1 problem. Since the number of transitions in
the automaton is usually larger than the number of states, we have that the number of side constraints is linear in
the number of nodes, and thus the above assumption is not satisfied. Still, a more accurate analysis tells us that,
in our setting, the resulting per iteration running time of both methods is in the same complexity class, as shown
in Table 1. Since it is known that the network simplex algorithm without side constraints performs better than
the simplex method [AMO93], it is still worthwhile to consider its usage in an implementation.

Up to now, we have discussed that the simplex method and the network simplex algorithm [BF12] appear
quite competitive in solving the LP1, and that the flow network structure underlying LP1 motivates the use of
the network simplex algorithm. On the other hand, we can take the dual of the equivalent LP2. This allows us
to deal with a smaller sized LP problem which is still close to a well known combinatorial problem by itself. To
clarify the point, consider the dual DLP2 of the LP2 problem:

DLP2:max
∑

s∈V
bs · πs

s.t. πi − πj ≤ 1 for each (i , j) ∈ Ã (1)
∑

t∈V
at
s · πt ≤ 1 for each s ∈ T (2)

The number of constraints in DLP2 is O(N), just as for LP1. The number of variables in DLP2 is O(N) which
compares favorably with O(N 2), the number of variables in the original LP1. This observation is particularly
important whenever the number of transitions is considerably larger than the number of states in the network.

Deciding probabilistic automata weak bisimulation: theory and practice 133

Table 1. Complexity comparison
LP(t, a, μ,R) LP1 LP2 DLP2

Variables/arcs n O(N 2) O(N 2) O(N) O(N)
Constraints m O(N 2) O(N) O(N) O(N)
Proportional flow sets p Not applicable O(N) Not applicable Not applicable
Free arcs n ′ O(N 2) O(N) O(N) O(N)
Simplex method O(nm) O(N 4) O(N 3) O(N 2) O(N 2)
Network simplex algorithm [MSJ13] O(n ′ +mp + p3) Not applicable O(N 3) Not applicable Not applicable

The dual LP problem can again be solved very efficiently using a state-of-the-art variant of the interior point
method [Ans99]. This algorithm is a preconditioned conjugate gradient (PCG) method with a partial updating
procedure which works excellent in practice as well. The algorithm is available in the software tools like CPLEX
and LOQO. Furthermore, DLP2 has itself a combinatorial structure, i.e., it is the dual of the well known shortest
path problem although with additional side constraints. Taking the advantage of this combinatorial property
may help in the design of a more efficient algorithm to solve the problem.

Table 1 summarizes the size of the proposed LP problems and the per-iteration complexity of the simplex
method and of the network simplex algorithm. Since each variable in the LP problem corresponds to an arc in
the network, we identify by n both variables and arcs; on networks, each arc either belongs to a proportional
flow set or is a free arc. The computational comparison of three LP problems is described based on N which is
the size of the automaton A. It is immediate to see that LP2 and DLP2 are the smallest problems that are at least
one degree smaller than the other LP problems, making them more suitable as input for the LP solvers.

6.3. Efficient solution: unsuitable approaches

Aswe have seen, the LP(t, a, μ,R) LP problem can be solved efficiently using the simplexmethod or the network
simplex algorithm.

Several other solutions have been proposed in the literature to solve variations of LPproblemsmore efficiently:
among others, there are approximated algorithms [Vaz04], electrical flow representation [CKMS11], network
decomposition [Pul89], and Lagrangian relaxation [BT97]. As we will see in the remainder of this section, all
these approaches are not suitable for solving the LP(t, a, μ,R) LP problem and its equivalent reformulations, but
for different reasons: either because the corresponding model does not enable an encoding of the LP(t, a, μ,R)
LP problem at hand, or the answer provided by the algorithm can not always be mapped into an answer to our
problem, or the algorithm is prohibitively expensive in case of a positive answer.

Despite being unsuitable, we review our findings concerning these methods for twomainmotivations: the first
is to clearly identify the specific characteristics of the problem faced, the second motivation is to propose a new
challenging problem to both the optimization and the probabilistic automata world.

6.3.1. Approximation algorithms

As a first approach, we consider the use of an approximation algorithm to check the feasibility of the original
LP problem by dropping the proportional flow constraints and then solving the remaining linear programming
problem efficiently. This exploits that the remaining LP problem is actually a minimum cost flow problem on the
network G(t, a, μ,R) and the general network simplex algorithm can solve it extremely efficiently. If the relaxed
problem is infeasible, so it is the original LP problem; otherwise, we get a feasible solution that may not be feasible
for the original one. In this case, we assign fixed weights to each proportional flow constraint and increase the
weight for the violated side constraints as a penalization. This procedure, known as the multiplicative weight
update method [AHK12], is repeated until a feasible solution which is near optimal is found. The advantage of
this approach is that in each iteration we deal with a well structured LP problem that can be solved efficiently.

The main problem of this approach is that in general a positive result does not imply the existence of the
corresponding weak transition. Consider, for example, the automaton whose only transitions are s a−→ μ and
t

a−→ δv where μ � {(v , p), (u, 1 − p)} for some p ∈ [0, 1]; suppose that u �R v . It is easy to verify that μ �L(R) δv
for each p �� 1, so there does not exist any weak transition t

a�⇒c ρ such that μ L(R) ρ since the only possible
weak transition enabled by t labelled by a is t a�⇒c δv . However the approximation algorithm gives us a positive
answer whenever p is close enough to 1, so a positive answer does not ensure the existence of the weak transition,
unless we force the gap between optimal and near optimal objective values to be 0. But this may make the overall

134 L. M. Ferrer Fioriti et al.

algorithm very expensive. However, for practical purposes, approximated algorithms can be used to refute the
existence of a weak transition.

6.3.2. Electrical flows

As a second approach we consider a physical metaphor for graphs by transforming the network G(t, a, μ,R) as
an electrical network. This comes with replacing the arcs of the network by resistors. Our goal is to arrive at a
setting where we can use the state-of-the-art max flow algorithm [CKMS11] as an approximation algorithm to
solve the original LP problem. The weakness of this approach is twofold: the approximate nature of the procedure
has the same drawback as the previous approach, and furthermore the applicability of the transformation. Even
if an efficient non-approximate algorithmwas at hand, the transformation can not be applied, since it is restricted
to undirected networks [CKMS11], whileG(t, a, μ,R) is directed. Extending the results in [CKMS11] to directed
networks is an open problem.

To make the network directed, we may represent each arc by a resistor and a diode that is a two-terminal
component allowing the current to flow in a single direction. Even by using diodes to direct the network, we
still need to solve two problems: cycles and nondeterminism. In an electrical network it is not possible to have
the current going through a passive cycle since the overall potential difference in the cycle is zero, unless we
use some fictitious voltage generator that breaks the cycle, while in probabilistic automata it is common to
have internal cycles: consider for instance the transition s

τ−→ μ where μ � {(t, 0.3), (s, 0.7)}; by using the
determinate scheduler σ that stops in t and performs s τ−→ μ in s , we obtain the weak transition s

τ�⇒c δt ,
that is, we eventually leave the self-loop with probability 1. In order to obtain a similar result in an electrical
network, we have to add a fictitious voltage generator in the cycle corresponding to the self-loop that generates
the correct potential difference. Finding such difference is essentially equivalent to defining the scheduler. The
second problem is related to nondeterminism: suppose that we have two transitions s τ−→ μ and s

τ−→ ρ where
μ � {(u, 0.3), (v , 0.7)} and ρ � {(u, 0.7), (v , 0.3)}, so we can reach v with different probabilities by using two
different transitions.When we encode these two transitions in the electrical network, we obtain two parallel paths
from s to v that are subject to the same voltage difference Vsv , so the current flows in both paths according to
Ohm’s law. However the scheduler can choose to perform only s

τ−→ μ thus in the network we should have a
non null current from s to v in the path modelling such transition and a null current in the path corresponding
to s

τ−→ ρ, that is, the former requires Vsv > 0 while the latter requires Vsv � 0 and this is clearly impossible.

6.3.3. Network decomposition

As a third approach, we consider a natural decomposition of the state space of the underlying network. We aim
at designing a parallel algorithm that speeds up the check for feasibility of the LP problem when a ∈ E . The
underlying network can be seen as a network of three layers (here considered in horizontal layout): the left hand
side and the right hand side layers correspond to the internal transitions (sets L1 and L2, respectively) while the
central layer to the external transitions (set La). Moreover it is possible to change layer only from left to right.
Using this intuition, each layer can be treated independently so that the network simplex algorithm instantiations
can find the minimum cost flow in the left and the right layers in parallel. Then, to connect these two layers via
the central one is enough to solve a linear system of equations corresponding to the central arcs. This system can
be solved in linear time.

However, this approach is not suitable as a negative answer does not imply the non-existence of the weak
transition: consider the following PA.

It is immediate to see that t a�⇒c δz ; now, consider the identity relation over states I and the part of the
corresponding layered network between source and sink, where numbers attached to arcs indicate probabilities,
and are not part of the graph.

Deciding probabilistic automata weak bisimulation: theory and practice 135

The solution of the left layer is unique and it assigns outgoing flow 1/2 to both vertices u and v , while the
optimal solution for the right layer assigns flow 1 to arcs (xa , x trx

a), (x trx
a , ta) and flow 0 to arcs (ya , y

try
a), (y try

a , ta),
and (y try

a , ya). By using these two optimal solutions, there is no way to obtain a solution for the central layer since
there is only one path from u to xa and flow requirements are different. However there exists a solution for the
network as a whole that requires for the right layer the non-optimal feasible solution fxa ,x trx

a
� 1/2, fx trx

a ,za � 1/2,
fya ,y

try
a

� 4/2, fy try
a ,za

� 1/2, and fy try
a ,ya

� 3/2, thus a negative answer from the layered network decomposition
does not imply that there does not exist a feasible solution for the whole network. The core reason is that the
optimal solution of one layer may be not part of a feasible solution of the whole network: a feasible solution may
only be induced by a sub-optimal layer solution.

6.3.4. Lagrangian relaxation

As a last approach, we consider a Lagrangian relaxation [BT97] algorithm to solve the dual LP problem efficiently.
Consider again the DLP2 problem; in order to form a Lagrangian relaxation of DLP2, we multiply the set of
constraints (2) by non-negative Lagrangian multipliers λs , s ∈ T , and we add them to the objective function,
obtaining the following relaxed dual LP (RDLP) problem:

L(λ) : max
∑

t∈V

(

bt +
∑

s∈T
λs ·at

s

)

· πt −
∑

s∈T
λs

s.t. πi − πj ≤ 1 for each (i , j) ∈ Ã

For a fixed vector λ, this LP problem can be efficiently solved using the simple and fast algorithm described in
[HN94]. Consider the Lagrangian dual LP (LDLP) problem:

LDLP: min L(λ)
s.t. λ ≥ 0

The purpose of the LDLP problem is to find the tightest bound L(λ) for the possible values of λ. Since RLDP
is always feasible with solution πt � 0 for each t ∈ V , we can make no claims on the feasibility of the original
DLP2 problem unless (1) actually finding a feasible solution for the original DLP2 problem, or (2) proving that
the optimum solution for LDLP is bounded. This is the main point that induces the weakness of this approach
as an efficient verification procedure.

7. Implementation of minimization

The results presented thus far provide ample understanding for an implementation of a quotienting algorithm.
This section presents and discusses such an implementation which is tailored to the computation of the minimal
automaton that is weak probabilistic bisimilar to a given one [EHS+13]. In fact, some intricate problems remained
to be overcome to make the approach effective and scalable. These problems are rooted in numerical aspects of
the computations at hand as well as in the often excessive number of feasibility checks needed. Both these aspects
are genuine to the setting considered and neither occur in the context of minimizing labelled transition systems,
nor in other stochastic minimization contexts.

Wehere report on our second generation prototypeminimizer, implemented in Java. It has amodular structure
and it can delegate the feasibility checks either to an LP solver, or to an SMT solver. We use LpSolve [LpS] as LP
solver, the GLP Kit [GLP] as exact arithmetic LP solver, and Z3 [dMB08] as SMT solver. We encode our SMT
formulation according to the SMT-LIB format [BST10] allowing the use of other solvers. We can use an SMT
solver instead of an LP solver since Proposition 2 relates the existence of the desired weak transition t

a�⇒ μt

136 L. M. Ferrer Fioriti et al.

such that μ L(R) μt with the feasibility of the LP(t, a, μ,R) problem, so we are not interested in the optimal
solution, but just in a solution.

We perform the feasibility check directly on the original LP(t, a, μ,R) problem. This allows us to maintain
an undisguised view on the structure of the problem, which we considered important to ensure the correctness of
the prototype implementation, and also to assess the relative share of the different algorithmic steps to the overall
runtime and space requirements. We plan to implement the module for the smaller LP2 problem to achieve better
running times while preserving correctness.

7.1. Implementation details

In our prototype we have implemented several heuristics in order to minimize the number of solver calls needed
to compute the coarsest weak bisimilarity. We can classify these heuristics in two classes: the pre-bisimulation
reductions and the in-loop optimizations. Finally, we consider the extraction of exact solutions from inexact
solutions to improve the in-loop optimizations and the parallelization of the solver calls.

7.1.1. Pre-bisimulation reductions

Wereduce the automatonbefore computing theweakprobabilistic bisimulationby removing irrelevant transitions
and collapsing states that are trivially bisimilar. In particular, we remove internal self loops (i.e., transitions as
s

τ−→ δs), we merge all deadlock states in a single one and each pair of states (s, t) in t such that the only
transition enabled by s is s τ−→ δt . Moreover, we merge states s and t if the transitions they enable reach the
same distributions via the same labels. These reductions are sound since it is easy to prove that all these merged
states are weak bisimilar.

It is also possible to apply a preliminary bisimulation reduction based on strong (probabilistic) bisimulation
[Seg06, Seg95] that would collapse some more state; note however that such reduction does not cover all above
reductions; for instance, it does not remove self-loops as well as usually it does not collapse transitions like
s

τ−→ δt .

7.1.2. In-loop optimizations

We adopt several optimizations in order to reduce the number of weak combined transitions computed by calling
the solver. Inparticular,we implement the internal optimization that allowsus to skip theLPproblemconstruction
and solution whenever the challenging transition at line 2 of the FindSplit procedure is of the form s

τ−→ μs with
μs ([s]R) � 1. Such transition is trivially matched by any t ∈ [s]R by performing no transitions at all. Similarly,
by using the direct transition optimization we save a solver call if the state t directly enables a transition t

a−→ μt
matching s a−→ μs , i.e., we check whether there exists (t, a, μt) ∈ T such that μs L(R) μt . Finally, we maintain
a transition cache containing for each state t , the list of computed transitions t a�⇒c μt where the distribution
μt has been generated by the solver on the LP(t, a, μs ,R) problem for some challenging transition s

a−→ μs .
This cache allows us to save a solver invocation whenever the cache contains a matching transition. Suppose that
we have already used the LP or SMT solver in order to find a matching transition t

a�⇒c μ
′
t for s

a−→ μ
′
s such

that μ
′
s L(R′) μ

′
t for some partitioning R′. As long as μs L(R) μ

′
t holds for the current partitioning R, there is

no need to call again the solver since it is going to give a positive answer, so we can save such call. In order to be
effective, we need to keep the cache updated and this can be achieved easily since the only operation we need is
to add entries to the cache, provided that we store the computed t

a�⇒c μt transitions.

7.1.3. Exact solutions from inexact solutions

The optimizations presented previously need to compare distributions, either when checking μs L(R) μt or
while searching for a cached weak combined transition. In order to be effective, rational numbers cannot be
represented using floating-point numbers since small rounding errors may render floating-point comparisons to
become incorrect. For the direct transition optimization we overcome the problem by using exact representations
for probabilities, such as infinite precision integers. For the caching, we need to retrieve the optimal feasible
solution from an LP or SMT solver. This is only possible if we use an SMT solver or an LP solver equipped
with exact arithmetic, since floating-point based LP solvers only provide inexact solutions for the system of
inequalities, making the cache rather useless. We solve this problem via the inexact to exact optimization, i.e.,

Deciding probabilistic automata weak bisimulation: theory and practice 137

by finding the exact solution as long as the underlying rational number does not have a large denominator. Any
number p ∈ R can uniquely be represented as a simple continuous fraction of the form:

a0 +
1

a1 + 1

...

Therefore any number can be represented canonically by the sequence a0, a1, . . . ; note that such sequence is finite
if and only if p ∈ Q. The canonical representation can be obtained by using the following inductive definitions
[JT80]:

ai � �pi� p0 � p pi+1 � (pi − �pi�)−1

Any number can be approximated by cn , the continuous fraction obtained from the finite sequence a0, . . . , an .
In fact, cn is the best rational approximation: any other rational number that is closer to p has a denominator
larger than cn . Moreover, cn+1 has a denominator larger than cn , thus the sequence {ci } converges absolutely to
p. We calculate the sequence of approximations c0, c1, . . . until we find a value cn such that |p − cn | < ε for a
predefined ε > 0.

7.1.4. Parallel solvers

In FindSplit, for each state s , for the current partitionRwe have to check whether all its enabled transitions have
a matching weak transition in all the states in [s]R. During such a loop the partitionR does not change, therefore
we can generate all the LP problems in advance, so as to solve them in parallel. We implemented a simple thread
pool where each single task checks all the matching transitions from a given t ∈ [s]R, i.e., the first task manages
t1, the second task t2, and so on.

7.2. Case studies

We evaluated our prototypical implementation by applying it to several cases studies taken from the literature.
Experiments were run on four AMD� Opteron� 8350 (Quad-core) 2GHzwith 120GB of RAM.We only used 14
out of 16 cores with the memory usage restricted to 8GB. Time-outs correspond to experiments that took more
than 6 hours to complete. Themodels we considered are IEEE 802.3 CSMA/CDprotocol, dining cryptographers,
IEEE 1394 FireWire root contention protocol, IEEE 802.11 Wireless LAN, and IPv4 Zeroconf protocol that
we have taken from the PRISM benchmark suite [PRI] and only minor changes have been made to manage
the shared variables for synchronization. More information on the case studies and the choice of parameters is
directly available from the benchmark suite [PRI]. We hide the action time in the variant with suffix “-nt” and
we unify similar actions in the “-sa” variant; for example, we rename send1 and send2 to send.

7.2.1. Additional reductions

Given a PA A, we denote by A� the automaton resulting from the repeated application of the pre-bisimulation
reductions until such reductions do not change the automaton anymore. The effectiveness of these reductions
is shown in Table 2, where we report for several case studies the state and transitions space size of the original
automaton A, of the corresponding A�, and of the minimal automaton [A]≈. The columns tA�

and t[A]≈ report
the time needed to reduce A to A� and to generate [A�]≈ from A� and the given ≈, including the time for the
post-quotient reductions of the automaton.

More precisely, we consider in [A�]≈ also the time needed for removing redundant transitions (that requires
further checks for the existence of the weak combined transitions) and for rescaling distributions (cf. Sect. 4.2). In
particular, the former reduction requires to remove one transition at a time and check whether there exists a weak
combined transition using only the remaining transitions that reaches the same distribution. The difference of
time of the Wireless LAN case with respect to the other cases depends on the number of internal transitions still
present in the quotient as well as the number of transitions leaving the state: if a state enables only one transition
or only transitions with different external actions, then there is no need to try to remove such a transition, since
we will obtain a negative answer for sure.

138 L. M. Ferrer Fioriti et al.

Table 2.Minimization overview
Problem | S | | T | | S� | | T� | tA� | [S]≈ | | [T]≈ | t[A�]≈
csma2 1038 1054 835 849 1s 449 459 1s
csma2-sa 1038 1054 621 630 7s 233 237 <1s
csma2-sa-nt 1038 1054 91 98 <1s 87 90 <1s
dining4 2165 4540 161 300 <1s 1 1 <1s
firewire3 611 694 425 469 5s 425 469 5s
firewire3-nt 611 694 29 62 <1s 4 4 <1s
wlan dl0dl6 97 148 63 94 <1s 59 86 1s
wlan0col0 2954 3972 1097 1591 14s 798 1092 120s
zeroconf 670 827 341 433 <1s 334 420 14s
zeroconf-nt 670 827 52 75 <1s 41 52 <1s

Table 3. Caching overview for SMT
Problem | T� | � DT CH TC t≈ tSolver | ≈ |
csma2 849 24,297 82,337 150 11,700 288 s 243 s 449
csma2-sa 630 9111 66,162 0 6067 97 s 83 s 233
csma2-sa-nt 98 1739 186 14 1118 12 s 6 s 87
dining4 300 45,440 240 2175 145 6 s 5 s 1
firewire3 469 30,842 34,070 257 1311 44 s 36 s 425
firewire3-nt 62 664 833 48 166 2 s 1 s 4
wlan dl0dl6 94 107 277 46 405 4 s 1 s 59
wlan0col0 1591 48,284 102,296 14,902 30,204 1 h 3 m 1 h 1 m 798
zeroconf 433 2063 30,829 453 2065 59 s 47 s 334
zeroconf-nt 75 361 265 99 348 5 s 2 s 41

7.2.2. Quotient performance

Tables 3, 4, and 5 show the effects of the different optimizations and the running time of the implementation of
the Quotient procedure, where the solver used for checking LP(t, a, μs ,R) is SMT, LP, and GLP, respectively.

After the columns with the problem and the number of transitions of A�, the column � shows the number
of challenging transitions verified via the internal optimization. Note that this condition trivially holds for each
internal transition in the first round of the outer cycle since the initial partition contains only S� as class, so every
internal transition reaches such class with probability 1. The column DT shows the number of times the defender
t has been able to use the direct transition optimization, i.e., by a transition t

a−→ μt , to match a challenging
transition s

a−→ μs . Column CH reports the number of cache hits, that is, the challenging transitions s a−→ μs
that have been matched by a transition stored in the transition cache. The column TC contains the number of
challenging transitions for which we have solved the LP(t, a, μs ,R) problem.

The following two columns show the time t≈ spent computing the weak bisimilarity ≈ including the time
tSolver spent by the solvers for verifying all transitions counted in column TC . Since we use a pool of solvers
running in parallel, tSolver is the time spent by the slowest solvers in the pool, i.e., the time elapsing from the
activation of the first solver to the completion of all solvers in the pool. Finally, the last column | ≈ | gives the
size of the partition, i.e., the number of classes of bisimilar states. This value, decreased by 1, is also the number
of refinements we perform in order to terminate the while loop of Quotient.

Table 4. Caching overview for LP with inexact to exact optimization
Problem | T� | � DT CH TC t≈ tSolver | ≈ |
csma2 849 24,289 73,229 150 11,650 560 s 556 s 449
csma2-sa 630 9111 67,657 0 6078 121 s 118 s 233
csma2-sa-nt 98 1739 186 14 1118 6 s 6 s 87
dining4 300 45,440 240 2175 145 4 s 3 s 1
firewire3 469 30,842 33,878 257 1311 68 s 66 s 425
firewire3-nt 62 664 833 48 166 1 s 1 s 4
wlan dl0dl6 94 107 275 45 410 1 s <1 s 59
wlan0col0 1591 53,768 109,604 16,584 30,362 1 h 17 m 1 h 17 m 798
zeroconf 433 2258 35,098 515 2063 71 s 69 s 334
zeroconf-nt 75 379 281 105 333 2 s 2 s 41

Deciding probabilistic automata weak bisimulation: theory and practice 139

Table 5. Caching overview for GLP (exact solver)
Problem | T� | � DT CH TC t≈ tSolver | ≈ |
csma2 849 24,297 55,499 150 12,139 1 h 2 m 1 h 2 m 449
csma2-sa 630 9111 66,969 0 6136 555 s 544 s 233
csma2-sa-nt 98 1739 186 14 1118 18 s 17 s 87
dining4 300 45,440 240 2175 145 7 s 6 s 1
firewire3 469 30,842 34,064 257 1311 404 s 399 s 425
firewire3-nt 62 664 833 48 166 2 s 2 s 4
wlan dl0dl6 94 107 275 45 410 2 s 2 s 59
wlan0col0 1591 —time-out—
zeroconf 433 2009 29,781 421 2069 207 s 200 s 334
zeroconf-nt 75 362 269 99 348 5 s 4 s 41

Table 6. Compositional minimization of consensus protocol for three parties
Components | S� | | T� | | [S]≈ | | [T]≈ | t≈
c3 ‖ p1 114 772 95 643 6 s
[c3 ‖ p1]≈ ‖ p2 570 2502 285 1214 1 h 31 m
[[c3 ‖ p1]≈ ‖ p2]≈ ‖ p3 1172 2352 1 1 1 h 38 m

c3 ‖ p1 ‖ p2 ‖ p3 2720 5568 —time-out—

By comparing the running times for the SMT, LP, and GLP solvers, we can see that GLP is always the slowest
one while SMT is the best performing among them. This can possibly be explained by the highly optimized code
of Z3 and the remarkable results achieved by the SAT community on satisfaction modulo theory problems. The
use of SMT, however, introduces an overhead in the computation, as highlighted by the comparison between the
columns t≈ and tSolver of Table 3. Such overhead is mainly caused by the need of translating the LP problem
construction into the textual SMT-LIB format [BST10] and then converting the solution (when the problem is
satisfiable) back to numeric values. This induces a considerable usage of string operations and conversions that
are not needed for the other solvers.

It is worthwhile to note that the values relative to the in-loop optimizations, including � and DT , strictly
depend on the order in which we check the pairs of states belonging to the equivalence classes of the current
partition R. In fact, if we have a class C that has to be split in C1, C2, and C3, we may first split out C1, or C2, or C3.
This means, for instance, that if we have tomatch from a state t ∈ C1 a transition s

τ−→ μ such thatμ(C1∪C2) � 1
but μ(C1) < 1, only the latter split permits to increase �. Moreover, the cache hits values are also affected by the
fact that when we solve LP(t, a, μs ,R), we look for one possible weak transition t a�⇒c μt such thatμs L(R) μt
and in case there are several of them, we just store in the cache the transition computed by the solver. However
there is no guarantee that such transition is the same for all solvers, thus the actual content of the cache can be
different. This influences the successive cache hits, in particular after the split of one class.

It is worthwhile to remark that there are cases where an unlucky order of the partition splits may scale the
transitions to check by a factor 20 that causes a significant increase of both t≈ and tSolver . For this motivation,
we do not fix an order on the pairs of states we check, and we let it depend on the nondeterministic insertion
of states in the classes. In fact, for a fixed challenger state s , we generate the required LP(t, a, μs ,R) problems
for each challenging transition s

a−→ μs and each defender state t and then we use a pool of solvers running in
parallel to verify them. In case of failure, we add the failing defender t to Cf but the order of such additions is
nondeterministic since it depends on the solver running time, the scheduling of the Java threads interacting with
the solvers, the operating system scheduling of the solvers, and so on.

As the tables show, the in-loop optimizations reduce considerably the number of transitions that have to be
checked by calling the LP or SMT solver, thus making the program faster. In fact, there is a strict correlation
between the number of checked transitions and the time spent by the solver. This can be taken as a justification for
the claim that weak bisimulation minimization does not scale very well to larger automata, unless the automaton
is given as the composition of several smaller automata running in parallel.

In particular, the experiments demonstrate that our implementation uses a reasonable amount of time on
automata whose size is the order of up to 3 · 103 states and transitions. Larger automata are likely to induce a
time-out, as exemplified in Table 6. In these cases, compositional minimization is the suggested way to overcome
this limitation, as we discuss in the next section.

140 L. M. Ferrer Fioriti et al.

Table 7. Compositional minimization of dining cryptographers: termination
Components | S� | | T� | | [S]≈ | | [T]≈ | t≈ (s)
d1 ‖ d2 33 76 6 14 2
[d1 ‖ d2]≈ ‖ d3 39 92 6 14 4
[[d1 ‖ d2]≈ ‖ d3]≈ ‖ d4 39 92 1 1 5

d1 ‖ d2 ‖ d3 ‖ d4 2165 4540 1 1 5
d1 ‖ d2 ‖ . . . ‖ d8 1,687,113 6,952,248 1 1 13
d1 ‖ d2 ‖ . . . ‖ d10 42,906,171 220,947,474 1 1 18

Table 8. Compositional minimization of dining cryptographers: Anonymity
Components | S� | | T� | | [S]≈ | | [T]≈ | t≈
i1 � d1 ‖ d2 41 92 20 41 4 s
i2 � [i1]≈ ‖ d3 105 247 33 75 33 s
i3 � [i2]≈ ‖ d4 180 482 45 107 330 s
i4 � [i3]≈ ‖ d5 248 706 57 139 20 m
[i4]≈ ‖ d6 178 372 7 6 22 m

d1 ‖ d2 ‖ d3 ‖ d4 2242 4708 5 4 39 s
d1 ‖ d2 ‖ . . . ‖ d5 12,042 31,184 6 5 335 s
d1 ‖ d2 ‖ . . . ‖ d6 63,511 196,642 7 6 22 m
d1 ‖ d2 ‖ . . . ‖ d7 329,784 1,189,626 8 7 59 m
d1 ‖ d2 ‖ . . . ‖ d8 1,689,417 6,961,480 9 8 161 m

7.3. Compositional minimization

To show the practical effectiveness of the minimization in a compositional context, which we discussed in theory
in Sect. 4.2, we consider two case studies that we fail to reduce otherwise, due to their prohibitive size: the
Consensus Protocol with three parties and the Dining Cryptographers with four, eight, and ten cryptographers.
For instance, by applying Definition 2, the four cryptographers case requires 38416 states and 6380 transitions;
eight and ten cryptographers are essentially intractable since they involve around 1.5 and 300 billions states,
respectively. We avoid this by constructing the model compositionally, applying weak bisimulation minimization
on the intermediate automata. Moreover, to make this compositional minimization more effective, we use the
hiding operator as soon as possible to restrict the visibility of the actions that are “private” between two automata.

Each of the Tables 6, 7 and 8 is split in two parts: the top part contains all intermediate steps performed by
the compositional minimization leading to the minimization of the final automaton; in each row, the column t≈
includes the value of the previous row, thus reporting the total time used thus far. The bottom part of the table
contains the number of states and transitions of the composed automata without intermediate minimization, and
the time for the corresponding compositional minimization.

For the consensus protocol, we can see from the top part of Table 6 that the compositional minimization
allows us to reduce the automaton to a single state and transition, representing the fact that the consensus is
reachedwith probability 1, whereas the same reduction can not be obtainedwithin the time-out by first composing
the parties and then minimizing the composed automaton. The time required for the former approach actually
depends on the intermediate step, where we reduce the automaton [c3 ‖ p1]≈ ‖ p2, that returns an automaton that
is essentially half of the original one. The main motivation for this situation is that the intermediate automaton
has still a lot of visible actions that can not be hidden since they are needed to synchronize with p3.

On the contrary, the dining cryptographers protocol is a good example that shows how using the hiding
operator as soon as possible permits to drastically reduce the size of the minimized automaton. In fact, since
the synchronization happens only between cryptographers that are neighbors, such as di and di+1, and such
synchronization has to be secret, it makes sense to hide it just after having composed di and di+1. Consider the
termination of the dining cryptographers protocol with n � 4 cryptographers, as shown in the top part of Table 7:
the proposed combination of hiding and compositional minimization permits to reduce any chain d1 ‖ · · · ‖ dl ,
where 1 < l < n, to an automaton with 6 states and 14 transitions. Then, for l � n − 1, the synchronization of
d1 and dn−1 with dn closes the circle of cryptographers that once minimized shows that the protocol terminates
with probability 1.

For the anonymity property, the reduction of each chain does not lead to the same size but to an automaton
whose size grows linearly with the number of cryptographers. This is caused by the fact that we have to keep track
of the sequence of agrees announced by the cryptographers and this number clearly depends on the involved
cryptographers. As in the PRISM benchmark, we assume that one cryptographer is paying and we check a

Deciding probabilistic automata weak bisimulation: theory and practice 141

0

1 2

3 s

1
2

τ
1
2

1
2

τ

1
2

1
2

τ

1
2

succ

Fig. 4. The minimized four dining cryptographers (anonymity)

particular outcome of the agreement, that is, we check that the probability of a given sequence of agrees and
disagrees is 1/2n−1. It is immediate to see that the minimized automaton satisfies this property; see for instance
the anonymity of four cryptographers in Fig. 4, where the probability of reaching the state s is 1/23.

It is clear that for the dining cryptographers protocol the compositional minimization approach outperforms
the minimization of the composition and we expect that this extends to all systems where few components share
the same actions.

8. Conclusion

This paper has considered deciding PA weak bisimulation which is known to be polynomial [TH15]. After a
survey of available polynomial algorithms to solve an LP problem, we established an upper bound on the worst
case complexity of the decision problem for general PA. We demonstrated that a small modification of the
LP problem discussed in [TH15] enables taking advantage of the underlying network structure to improve the
practical efficiency of solving the problem.

In addition, we have presented an implementation of the decision algorithm, in the form of a quotienting algo-
rithm enabling to minimise probabilistic automata with respect to weak probabilistic bisimulation. We enhanced
this algorithmwith several heuristics that permit to reduce the running time of the program considerably, and have
shown thatminimization can be applied effectively to standard benchmarkmodels.We have also investigated how
compositional minimization techniques can be exploited for models consisting of several sub-automata running
in parallel.

As future work, we plan to improve the efficiency of our heuristics as well as to optimize the code in order
to speed up the response time. Moreover, we plan to investigate heuristics that allow us to optimize the sequence
of the parallel compositions in order to take advantage from the compositional minimization approach, as done
in [CL11, CH10]. Furthermore, the results of this paper allow a number of directions for further research: the
network simplex algorithm specialized for the minimum cost flow problem with additional side constraints can
be seen itself as the foremost next step. In fact, designing a new data structure to be able to deal with a large
number of additional side constraints is not only a very important contribution in theoretical setting but also it
improves the practical efficiency of the decision problem under our consideration.

Acknowledgments

This work has been supported by the DFG/NWO Bilateral Research Programme ROCKS, by the DFG as
part of the SFB/TR 14 “Automatic Verification and Analysis of Complex Systems” (AVACS), by the European
Union Seventh Framework Programme under Grant agreements 295261 (MEALS) and 318490 (SENSATION),
by the Chinese Academy of Sciences Fellowship for International Young Scientists (Grant 2015VTC029), by
the National Natural Science Foundation of China (Grants 61472473 and 61550110249), by the CAS/SAFEA
International Partnership Program for CreativeResearch Teams, and by the CDZproject CAP (GZ 1023). Part of

142 L. M. Ferrer Fioriti et al.

this work has been done when Andrea Turrini was at Saarland University supported by the Cluster of Excellence
“Multimodal Computing and Interaction” (MMCI), part of the German Excellence Initiative.

References

[AHK12] Arora S, Hazan E, Kale S (2012) The multiplicative weights update method: a meta-algorithm and applications. Theory
Comput 8:121–164

[AMO93] Ahuja RK, Magnanti TJ, Orlin JB (1993) Network flows: theory, algorithms, and applications. Prentice Hall, New York

[Ans99] Anstreicher KM (1999) Linear programming in O(n3

lnn L) operations. SIAM J. Optim. 9(4):803–812
[Bel01] Beling PA (2001) Exact algorithms for linear programming over algebraic extensions. Algorithmica 31(4):459–478
[BF12] Bahçeci U, Feyziog̃lu O (2012) A network simplex based algorithm for the minimum cost proportional flow problem with

disconnected subnetworks. Optim Lett 6:1173–1184
[BHH+09] Böde E,HerbstrittM,HermannsH, Johr S, PeikenkampT, PulunganR,Rakow J,WimmerR, Becker B (2009) Compositional

dependability evaluation for STATEMATE. ITSE 35(2):274–292
[BSS89] Blum L, Shub M, Smale M (1989) On a theory of computation and complexity over the real numbers; NP -completeness,

recursive functions and universal machines. Bull AmMath Soc 21(1):1–46
[BST10] Barrett C, Stump A, Tinelli C (2010) The SMT-LIB standard: version 2.0. In SMT
[BT97] Bertsimas D, Tsitsiklis JN (1997) Introduction to linear optimization. Athena Scientific, Belmont
[Cal02] Calvete HI (2002) Network simplex algorithm for the general equal flow problem. Eur J Oper Res 150(3):585–600
[CGM+96] Chehaibar G, Garavel H, Mounier L, Tawbi N, Zulian F (1996) Specification and verification of the PowerScaleregistered bus

arbitration protocol: an industrial experiment with LOTOS. In: FORTE, pp 435–450
[CH10] Crouzen P, Hermanns H (2010) Aggregation ordering for massively compositional models. In: ACSD, pp 171–180,
[CHLS09] Coste N,HermannsH, Lantreibecq E, SerweW (2009) Towards performance prediction of compositional models in industrial

GALS designs. In: CAV. LNCS, vol 5643, pp 204–218
[CKMS11] Christiano P, Kelner JA, Ma̧dry A, Spielman D (2011) Electrical flows, laplacian systems, and faster approximation of maxi-

mum flow in undirected graphs. In: STOC, pp 273–282
[CL11] Crouzen P, Lang F (2011) Smart reduction. In FASE. LNCS, vol 6603, pp 111–126
[CS02] Cattani S, Segala R (2002) Decision algorithms for probabilistic bisimulation. In: CONCUR of LNCS, vol 2421, pp 371–385
[Den05] Deng Y (2005) Axiomatisations and types for probabilistic and mobile processes. PhD thesis, École des Mines de Paris
[Der70] Derman C (1970) Finite state markovian decision processes. Academic Press, Inc, New York
[dMB08] Mendonça de Moura L, Bjørner N (2008) Z3: an efficient SMT solver. In: TACAS. LNCS, vol 4963, pp 337–340
[EHS+13] Eisentraut C, Hermanns H, Schuster J, Turrini A, Zhang L (2013) The quest for minimal quotients for probabilistic automata.

In: TACAS. LNCS, vol 7795, pp 16–31
[EHZ10a] Eisentraut C, Hermanns H, Zhang L (2010) Concurrency and composition in a stochastic world. In: CONCUR. LNCS, vol

6269, pp 21–39
[EHZ10b] Eisentraut C, Hermanns H, Zhang L (2010) On probabilistic automata in continuous time. In: LICS, pp 342–351
[GHT14] Gebler D, Hashemi V, Turrini A (2014) Computing behavioral relations for probabilistic concurrent systems. In: Stochastic

model checking. Rigorous dependability analysis using model checking techniques for stochastic systems. LNCS, vol 8453.
Springer Berlin Heidelberg, pp 117–155

[GLP] GNU linear programming kit. http://www.gnu.org/software/glpk/.
[GSL96] Graf S, Steffen B, Lüttgen G (1996) Compositional minimisation of finite state systems using interface specifications. Formal

Asp Comput 8(5):607–616
[Han91] Hansson HA (1991) Time and probability in formal design of distributed systems. PhD thesis, Uppsala University
[HHT13] Hashemi V,HermannsH, Turrini A (2012) On the efficiency of deciding probabilistic automataweak bisimulation. ECEASST,

vol 66
[HK95] Helgason RV, Kennington JL (1995) Primal simplex algorithms for minimum cost network flows. In: Network models. Hand-

books in operations research and management science, vol 7, chapter 2. Elsevier, Amsterdam, pp 85–113
[HK00] Hermanns H, Katoen J-P (2000) Automated compositional Markov chain generation for a plain-old telephone system. Sci

Comput Program 36(1):97–127
[HN94] Hochbaum DS, Naor JS (1994) Simple and fast algorithms for linear and integer programs with two variables per inequality.

SIAM J Comput 23(6):1179–1192
[JL91] Jonsson B, Larsen KG (1991) Specification and refinement of probabilistic processes. In: LICS, pp 266–277
[JT80] Jones WB, Thron WB (1980) Continued fractions: analytic theory and applications. In: Encyclopedia of mathematics and its

applications. Addison-Wesley, New York
[Kar84] Karmarkar N (1984) A new polynomial-time algorithm for linear programming. Combinatorica 4(4):373–395
[Kha79] Khachyan LG (1979) A polynomial algorithm in linear programming. Sov Math Doklady 20(1):191–194
[KKZJ07] Katoen J-P,KemnaT,Zapreev IS, JansenDN(2007)Bisimulationminimisationmostly speeds upprobabilisticmodel checking.

In: TACAS. LNCS, vol 4424, pp 76–92
[KM72] Klee V, Minty GJ (1972) How good is the simplex algorithm? In: Inequalities, vol III, pp 159–175. Defense Technical Infor-

mation Center, USA
[KM00] Krimm J-P, Mounier L (2000) Compositional state space generation with partial order reductions for asynchronous commu-

nicating systems. In: TACAS. LNCS, vol 1785, pp 266–282
[KNP11] KwiatkowskaM, Norman G, Parker D (2011) PRISM 4.0: verification of probabilistic real-time systems. In: CAV. LNCS, vol

6806, pp 585–591
[KS90] Kanellakis PC, Smolka SA (1990) CCS expressions, finite state processes, and three problems of equivalence. I&C. 86(1):43–68

http://www.gnu.org/software/glpk/

Deciding probabilistic automata weak bisimulation: theory and practice 143

[LpS] LpSolve mixed integer linear programming solver. http://lpsolve.sourceforge.net.
[Mil89] Milner R (1989) Communication and concurrency. Prentice-Hall International, Englewood Cliffs
[MSJ11] Morrison DR, Sauppe JJ, Jacobson SH (2011) A network simplex algorithm for the equal flow problem on a generalized

network. INFORMS J Comput 25(1):2–12
[MSJ13] Morrison DR, Sauppe JJ, Jacobson SH (2013) An algorithm to solve the proportional network flow problem. Optim Lett

8(3):801–809
[PLS00] Philippou A, Lee I, Sokolsky O (2000) Weak bisimulation for probabilistic systems. In: CONCUR. LNCS, vol 1877, pp

334–349
[PRI] PRISM model checker. http://www.prismmodelchecker.org/
[PS04] Parma A, Segala R (2004) Axiomatization of trace semantics for stochastic nondeterministic processes. In: QEST, pp 294–303
[PT87] Paige R, Tarjan RE (1987) Three partition refinement algorithms. SIAM J Comput 16(6):973–989
[Pul89] Pulat PS (1989) A decomposition algorithm to determine the maximum flow in a generalized network. Comput Oper Res

16:161–172
[Sch03] Schrijver A (2003) Combinatorial optimization: polyhedra and efficiency. In: Algorithms and combinatorics, vol 24. Springer,

Berlin
[Seg95] Segala R (1995) Modeling and verification of randomized distributed real-time systems. PhD thesis, MIT
[Seg06] Segala R (2006) Probability and nondeterminism in operational models of concurrency. In: CONCUR. LNCS, vol 4137, pp

64–78
[Sha87] Shamir R (1987) The efficiency of the simplex method: a survey. Manag Sci 33(3):301–334
[SL95] Segala R, Lynch NA (1995) Probabilistic simulations for probabilistic processes. Nordic J Comput 2(2):250–273
[TH15] Turrini A, Hermanns H (2015) Polynomial time decision algorithms for probabilistic automata. I&C 244:134–171
[Var85] Vardi MY (1985) Automatic verification of probabilistic concurrent finite-state programs. In: FOCS, pp 327–338
[Vaz04] Vazirani VV (2004) Approximation algorithms. Springer, Berlin

Received 23 April 2015
Accepted in revised form 4 January 2016 by Joachim Parrow
Published online 19 February 2016

http://lpsolve.sourceforge.net
http://www.prismmodelchecker.org/

	Deciding probabilistic automata weak bisimulation: theory and practice
	Abstract
	1 Introduction
	2 Mathematical preliminaries
	3 Probabilistic automata
	3.1 Parallel composition and hiding
	3.2 Weak transitions
	3.3 Weak probabilistic bisimulation

	4 Computing the weak bisimilarity for minimizing automata
	4.1 Deciding weak bisimilarity
	4.1.1 Weak bisimilarity decision algorithm
	4.1.2 Complexity of the decision algorithm

	4.2 Minimization and parallel composition

	5 Weak transition construction as a linear programming problem
	5.1 Network construction
	5.2 LP problem construction
	5.3 Complexity analysis of deciding weak bisimulation

	6 Efficiency of solving the LP problem
	6.1 Efficient solution: theory
	6.2 Efficient solution: exploiting structure
	6.3 Efficient solution: unsuitable approaches
	6.3.1 Approximation algorithms
	6.3.2 Electrical flows
	6.3.3 Network decomposition
	6.3.4 Lagrangian relaxation

	7 Implementation of minimization
	7.1 Implementation details
	7.1.1 Pre-bisimulation reductions
	7.1.2 In-loop optimizations
	7.1.3 Exact solutions from inexact solutions
	7.1.4 Parallel solvers

	7.2 Case studies
	7.2.1 Additional reductions
	7.2.2 Quotient performance

	7.3 Compositional minimization

	8 Conclusion
	Acknowledgments
	References

