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Abstract. Model composition is a crucial activity in Model Driven Engineering both to reuse validated and veri-
fied model elements and to handle separately the various aspects in a complex system and then weave them while
preserving their properties. Many research activities target this compositional validation and verification (V &V)
strategy: allow the independent assessment of components andminimize the residual V&V activities at assembly
time. However, there is a continuous and increasing need for the definition of new composition operators that
allow the reconciliation of existing models to build new systems according to various requirements. These ones
are usually built from scratch and must be systematically verified to assess that they preserve the properties of
the assembled elements. This verification is usually tedious but is mandatory to avoid verifying the composite
system for each use of the operators. Our work addresses these issues, we first target the use of proof assistants
for specifying and verifying compositional verification frameworks relying on formal verification techniques in-
stead of testing and proofreading. Then, using a divide and conquer approach, we focus on the development of
elementary composition operators that are easy to verify and can be used to further define complex composition
operators. In our approach, proofs for the complex operators are then obtained by assembling the proofs of the
basic operators. To illustrate our proposal, we use the Coq proof assistant to formalize the language-independent
elementary composition operators Union and Substitution and the proof that the conformance of models with
respect to metamodels is preserved during composition. We show that more sophisticated composition opera-
tors that share parts of the implementation and have several properties in common (especially: aspect oriented
modeling composition approach, invasive software composition, and package merge) can then be built from the
basic ones, and that the proof of conformance preservation can also be built from the proofs of basic operators.
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1. Introduction

Model composition is a crucial activity in Model Driven Engineering (MDE) both to reuse validated and verified
model elements and to handle separately the various aspects in a complex system and then weave them while
preserving their properties in a correct by construction manner. Many research activities target compositional
validation and verification which allow for assessing components independently from one another and then
minimizing the residual validation and verification activities at assembly time. However, contributions are still
needed in the area of correct by constructionmodels composition. Providing formal specifications for component
models and composition operations allows for assessing the correctness of these strategies and thus relying on
them for the correctness of composite systems.

In order to improve the efficiency of system development, there is a continuous and increasing need for the
definition of new composition operators that allow the reconciliation of existing models to build new systems
according to various requirements. An example is the reconciliation of models developed following aspect-
oriented modeling and viewpoint-oriented modeling paradigms and the modification or addition of features
for existing models. These newly defined complex composition operators are usually built from scratch and must
be systematically verified to assess that they preserve the properties of the assembled elements.

Our work addresses these issues. First, in order to ease the integration of formal specification and verification
technologies, [TCCG07] proposed a formal deep embedding of some key aspects of MDE (models, metamodels,
conformance and promotion) in Set Theory which was then implemented using the Calculus of Inductive Con-
struction (CIC) and the Coq 1 proof-assistant using its elementary constructs. The purpose of this framework
called Coq4MDE is to provide sound mathematical foundations for the study of MDE technologies. The choice of
constructive logic and type theory as formal specification language allows for the extraction of prototype tools
from the executable specification which can then be used to validate the specification itself with respect to external
tools implementing MDE (for example, in the Eclipse Modeling Project). We extended the framework Coq4MDE
in [KPCT11] to support the specification of the Invasive Software Composition (ISC) [Aßm03] operators and
the proof of the well-foundedness and termination of these operators. The first version was limited to the verifi-
cation of the metamodel structural conformance relation. It relied on the model and metamodel concepts from
Coq4MDE to formalize the notion of fragment proposed by ISC as well as various other aspects assisting with the
proof that composition preserves well typedness. This work was extended in [KHPCT14a] to support the proof
of the preservation of semantic properties for a sub-set of Meta Object Facility (MOF) [Obj13a] which covers the
hierarchy, the abstract classes, the multiplicities, the opposite and the composite references. These formalization
and verification activities were conducted from scratch without reusing more elementary composition operators.
This paper will extend that work to illustrate how the ISC operators can be formalized and verified relying on
common elementary operators.

To ease the verification of other composition operators, we followed a divide and conquer approach by
focusing on the development of elementary composition operators that are more easily verifiable and which can
then be used in the implementation of more complex composition operators. The proof of the sophisticated
operators are then obtained by assembling the proofs of the basic ones. We presented in [KHPCT14b] a first
experiment which used two elementary composition operators Union and Substitution for the formalization
and the proof of properties for the MOFPackageMerge operator [Obj13b]. In this paper, we givemore details about
our formalization and proof strategies aswell as other applications. The composition operators that are supported
by our work rely on two principal activities: matching (ensured by the Substitution operator) and assembly
(ensured by the Union operator) of the input model elements. The applications of our work include a variety of
high level model composition approaches covering for example: product line evolution, model parametrization,
and ontology composition.

The main contributions of this paper are: to extend the [KHPCT14b] paper with a more detailed account
of the formalization and proofs for the elementary operators, then to show how the ISC operators [Aßm03]
presented in [KPCT11] and [KHPCT14a] can be formalized and verified using more elementary operators, and
to present a new application of the formalized elementary operators from an aspect-oriented modeling (AOM)
composition approach [FR07].

1 http://coq.inria.fr.

http://coq.inria.fr
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The remainder of this paper is organized as follows: In Sect. 2, we give the Background by introducing MDE,
the Coq4MDE framework, the MOF standard and some composition operators used to validate our proposal.
In Sect. 3, we show the expected property for the composition and our verification strategy. In Sect. 4, we present
the formalization of the primitive operators and the verification of their properties. In Sect. 5, we rely on the
use cases to illustrate our proposal: formalize complex composition operators relying on proved elementary
operators. Section 6 discusses related work and Sect. 7 concludes and provides insights on future works.

2. Background

In this section, we summarize the principles behind MDE, we then highlight the concepts of the Coq4MDE frame-
work, and present the principles of the MOF standard. Lastly, we detail several composition operators that are
used in the use cases section.

2.1. Model driven engineering

The core principle of MDE is “everything is a model” [Béz04]. It emphasizes the role of models as primary artifacts
in software and even system development and, in particular, argues that models should be precise enough to
support automatedmodel transformations between lifecycle phases [WHR14].Models are definedusingmodeling
languages. Metamodels are models of modeling languages defined using metamodeling languages. A model M
conforms to a metamodelMM ifMM models the language used to defineM . Metamodels, like data types, define
the structure common to all its conforming models, but it can also give semantic properties like dependent types
do. The Coq4MDE framework described in the next section aims to formalize the principles of MDE through the
concepts of model, metamodel, and the conformance relation.

2.2. COQ4MDE

This section gives in a nutshell the framework Coq4MDE 2, derived from [TCCG07]. It separates the model level
(value or object) from the metamodel level (type or class), and describes them with different data structures,
and hence different types in Coq. A model (M ) is at the instance level while a metamodel (MM ), as a modeling
language used to define models, is thus at the type level. In order to avoid constraints on mixing inductive and
co-inductive types in Coq needed for a natural encoding of the model graph structures, we decided to rely on a
deep embedding where both the instance and type level are encoded as data inCoq. AMM also specifies semantic
properties common to its conforming models. These properties are expressed as predicates on the data types that
model both model (instance) and metamodel (type) levels. Both concepts are formally defined in the following
way. Let us consider two sets of labels: Classes, and References, representing the set of all possible classes and
reference labels. Let us also consider instances of such classes, the set Objects of object labels. References also
includes a specific inh label used to specify the inheritance relation at the model level. In the next sections, we
will elide the word label and directly talk about classes, references and objects.

Definition 1 (Model) Let C ⊆ Classes be a set of classes. Let R ⊆ {〈c1, r , c2〉 | c1, c2 ∈ C , r ∈ References}3
be a set of references between classes.

A Model over C and R, written 〈MV ,ME 〉 ∈ Model (C ,R) is a multigraph built over a finite set MV of
typed object vertices and a finite set ME 4 of reference edges such that:

MV ⊆ {〈o, c〉 | o ∈ Objects, c ∈ C }
ME ⊆

{
〈〈o1, c1〉, r , 〈o2, c2〉〉 〈o1, c1〉, 〈o2, c2〉 ∈ MV ,

〈c1, r , c2〉 ∈ R

}

We thus have three distinct layers in the encoding: set, graph and model.

2 http://coq4mde.enseeiht.fr/FormalMDE.
3 〈c1, c2, r〉 in the Coq code is denoted here for simplification as: 〈c1, r , c2〉.
4 〈〈o1, c1〉, r , 〈o2, c2〉〉 is denoted in the Coq code as: 〈〈o1, c1〉, 〈o2, c2〉, r〉〉.

http://coq4mde.enseeiht.fr/FormalMDE
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Note that, in case of inheritance, the sameobject labelwill be used several times in the samemodel graph. Itwill
be associated to the different classes in the inheritance hierarchy going from one of the roots (multiple inheritance
can lead to several distinct roots for the inheritance graph) to the class used to create the object (the constructor
class). This label reuse encodes the inheritance polymorphism, a key aspect of most OO languages. Inheritance is
represented in the models with a special reference called inh. Accordingly, we first define an auxiliary predicate
stating that an object o of type c1 has a downcast duplicate of type c2.

hasSub(o ∈ Objects, c1, c2 ∈ Classes, 〈MV ,ME 〉) �
c1 � c2 ∨ ∃c3 ∈ Classes, 〈〈o, c2〉, inh, 〈o, c3〉〉 ∈ ME
∧ hasSub(o, c1, c3, 〈MV ,ME 〉)

Then, we define the notion of standard inheritance. The first part of the conjunction states that the inheritance
relation only relates duplicate objects. The second part states that every couple of duplicates has a common
downcast element (a common subclass) using twice the hasSub predicate.

standardInheritance(〈MV ,ME 〉) �
( ∀〈〈o1, c1〉, inh, 〈o2, c2〉〉 ∈ ME → o1 � o2)
∧ (∀〈o1, c1〉, 〈o2, c2〉 ∈ MV , o1 � o2 → ∃c ∈ Classes,

hasSub(o1, c1, c, 〈MV ,ME 〉)
∧ hasSub(o2, c2, c, 〈MV ,ME 〉))

The following property states that c2 is a direct subclass of c1.

subClass(c1, c2 ∈ Classes, 〈MV ,ME 〉) � ∀ o ∈ Objects,
〈o, c2〉 ∈ MV → 〈〈o, c2〉, inh, 〈o, c1〉〉 ∈ ME

The isConstructorClass property states that a class c1 is a constructor class for an object o1.

isConstructorClass(o1 ∈ Objects, c1 ∈ Classes, 〈MV ,ME 〉) � ∀〈o2, c2〉 ∈ MV ,
o2 � o1 → hasSub(o1, c2, c1)

AbstractClasses that are specified inametamodelusing theisAbstractattribute arenot suitable for instantiation.
They are used to represent abstract concepts or entities. If an object can be of an abstract class type, it must have
a downcast duplicate from a concrete class.

isAbstract(c1 ∈ Classes, 〈MV ,ME 〉) � ∀ o ∈ Objects,
〈o, c1〉 ∈ MV → ∃c2 ∈ Classes, 〈〈o, c2〉, inh, 〈o, c1〉〉 ∈ ME

Definition 2 (MetaModel) A MetaModel is a multigraph representing classes as vertices and references as edges as
well as semantic properties over instantiation of classes and references. It is represented as a pair (MMV ,MME )
built over a finite set MMV of vertices, a finite set MME of edges, and a predicate over models representing the
semantic properties conformsTo.

A MetaModel is a pair 〈(MMV ,MME ), conformsTo〉 such that:

MMV ⊆ Classes
MME ⊆ {〈c1, r , c2〉 | c1, c2 ∈ MMV , r ∈ References}
conformsTo : Model × (MMV ,MME ) → Bool

Given one ModelM and one MetaModelMM , we can check its conformance using the conformsTo predicate
embedded in MM . It identifies the set of valid models with respect to a metamodel.

In our framework, the conformance checks for the model M that:

1. every object o in M is the instance of a class C in MM ;
2. every link between two objects is such that there exists, in MM , a reference between the two classes typing

the two elements. In the following we will say that these links are instances of the reference between classes in
MM ;

3. finally, every semantic property defined in MM is satisfied in M . For instance, the multiplicity defined on
references between concepts denotes a range of possible links between objects of these classes (i.e. concepts).
Moreover, structural properties expressed on the metamodel can also be taken into account.
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ActivityNode ActivityEdge

1

target

1

source

〈MMV {ActivityNode,ActivityEdge},
MME {(ActivityEdge, target, ActivityNode),

(ActivityEdge, source, ActivityNode)},
conformsTo lower(ActivityEdge, source, 1)

∧ upper(ActivityEdge, source, 1)
∧ lower(ActivityEdge, target, 1)
∧ upper(ActivityEdge, target, 1)〉

Fig. 1. A simplified activity diagram metamodel in the Coq4MDE notation

The semantic properties associated to the metamodel are encoded in the conformsTo predicate.
Figure 1 shows an example of a simplified activity diagrammetamodel [Obj13b] on the left and its Coq4MDE

representation on the right hand side. The conformsTo predicate describes the properties associated with a
metamodel which must be satisfied by the conforming models. It is defined here as a conjunction of four pred-
icates. The first two predicates, lower (ActivityEdge, source, 1) and lower (ActivityEdge, target, 1), set the lower
bound of a particular source and target relation for an instance of ActivityEdge. The last two predicates are:
upper (ActivityEdge, source, 1) and upper (ActivityEdge, target, 1) setting the maximum number of a source and
target relations for an instance of ActivityEdge. The formal description of these properties is given later in the
paper.

Figure 2 shows an example of a model that conforms to the metamodel given in Fig. 1. This example is
inspired from [HHJZ09] and is reused in Sect. 5. Part (c) of Fig. 2 shows the Coq4MDE textual representation
corresponding to this model. All the structural and semantic properties of the metamodel in Fig. 1 are respected
in this model. More specifically, every object is an instance of the class ActivityNode or ActivityEdge and every
object instance of ActivityEdge is linked with exactly one relation source and one relation target to an object
instance of ActivityNode.

2.3. Meta-object facility (MOF)

The Object Management Group (OMG) has standardized the MOF, a reflexive metamodeling language (i.e. MOF is
defined as a model in the MOF language). MOF is used for the specification of the OMGmodeling language standards
like MOF itself, UML [Obj13b], OCL [Obj14], SysML [HP08] and many others. The relation between MOF and the
metamodels is the same as the one between a metamodel and its conforming models.

Since the MOF version 2 released in 2006 [Obj06], a kernel named EMOF was extracted from the complete
version of MOF (CMOF). EMOF provides a minimal set of elements required to model languages. Figure 3 gives
the key concepts of EMOF specified as an UML class diagram where the class names written in italics indicate the
abstract classes. We informally describe the EMOF and also define a set of generic properties representing its core
concepts. Each property, once instantiated, is meant to yield the conformsTo predicate.

The principal concept is Class to define classes (usually called metaclasses) that represent concepts in a
modeling language. Classes allow the creation of objects in models. The type of an object is the class that was
used to create it. Classes are composed of an arbitrary number of Properties (we will call them reference and
attribute in order to avoid ambiguities with the model property we want to assess). References allow the creation
of relations between the objects in the models. Classes can inherit references and attributes from other classes.
Inheritance is expressed using the superClass reference from Class and introduces a subtyping relation between
the types associated to the classes. Classes can be abstract (isAbstract): no object can have the type associated
to an abstract class as smallest type according to the subtyping relation. Property has a lower and an upper
attributes that restrict the number of objects contained in a given reference. Two references can be opposite, and
build a bidirectional relation between objects in a model.

Figure 4 shows the simplified activity diagrammetamodel presented in Fig. 1 as a model conforming to EMOF.
In this model, ActivityEdge and ActivityNode are instances of Class and the references source and target are
instances of Property.

In order to construct a formal framework for model composition, we extend the existing MDE framework
in a manner that allows formalizing and proving the preservation of properties for composition operators. Our
ultimate goal is to formalize compositional verification activities butwemust first define our targeted composition
operators which are principally based on the substitution and union of models.
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(a)

(b)

(c)

Fig. 2. An activity diagram model in the Coq4MDE notation
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NamedElement

Type TypedElement

DataType

Fig. 3. The basic concepts of EMOF

Fig. 4. Simplified activity diagram metamodel as a model conforms to EMOF

2.4. Composition operators

We present in this section several composition operators from the literature that are used later in the paper
to illustrate our proposal. These operators share a significant part of their implementation and they can be
formalized as compositions of elementary composition operators.

2.4.1. Composition in the aspect-oriented modeling approach

The concept of Separation of Concerns (SoC) is not a new one [Dij76, Par72], its key idea is the identification of
the different concerns in a system and separate themby encapsulating them in appropriatemodules that constitute
independent parts of the developed software with explicit interfaces. The AOM [SSK+07] is an approach that
adopts this idea and the principle behind, i.e., to allow designing in isolation the different aspects that make up
an integrated system.

Aiming to automate the support for composing aspectsmodels, France et al. in [FRGG04, FFR+07] proposed
amodel composition technique that allows for the conceptualization of logical dependability solution in isolation
leading to so called aspectmodels.An integrated viewof the system is producedby composing aspects andprimary
models. The main motivation for their work is to formulate a technique that uses rules for syntactically matching
elements across models, which allow for a fully automation of the composition. The matching rules use syntactic
deterministic properties to define the similarities between model elements. For instance, a matching rule can state
that all the classes having the same name represent the same concept and allows in this case for merging classes
having the same name and different attributes as provided by the OMG PackageMerge operator.

In the version presented in [FRGG04], an aspect-oriented architecture model of an application consists of
(1) a base model, (2) one or several aspect models together with the bindings used for their instantiation in the
application context, and (3) composition directives that define how the composition of the instantiated aspect
models with the primary model should be performed to produce the composedmodel. Figure 5 [FR07] illustrates
how an aspect-oriented architecture model consisting of two aspect models (aspect model 1 and aspect model
2) and a base model is composed. The aspect models are instantiated by binding template models parameters
to specific values for the application. Composition of context-specific aspects and primary models produces the
composite model.
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Fig. 5. An overview of composition in the AOM approach [FR07]

This AOM approach thus provides a basic composition procedure that can be altered in restricted ways
with the help of composition directives. For example, a composition directive can (1) specify how to override
conflicting properties in aspect models, (2) specify the modifications of the model elements during composition,
and (3) determine the order in which the aspectmodels are composed. In thismethod, as explained in [FFR+07], a
signature type is defined as a set of properties associated with a specific element type. A particular model element
signature is composed of the values given to the properties associated with the element type.

In this method, the model elements are composed if they are of the same type or in other words if they are
instances of the same meta model class. An aspect model may also contain a concept that is not present in a base
model, and vice versa. In these cases, the model elements are added directly to the composed model.

An example is given in Fig. 6 (inspired from [RGF+06] and [KAAK09]) using theKompose tool.5 For the class
diagrams, we follow the standard notation.6 More precisely, the arrows specify the direction of the association
while a solid line connecting two classes without arrow represents a binary association. In this example, amodeller
creates a target model in which an instance of Writer (an output producer) sends outputs directly to the output
device to which it is linked and that is an instance of FileStream. The modeller then decides to introduce a
buffering feature into the model by composing a buffering aspect model. The aspect model describes how entities
that produce outputs (represented by instantiations of Buffer) are decoupled from output devices through the
use of buffers. The result of the composition of the base and aspect models is the model named Composed Class
Diagram where the model elements with the same name have been combined.

Note that France et al. also proposed in [FFR+07] a language of directives to modify the models before and
after the composition step. This language is useful to adapt a generic aspect model to a specific target model
or to improve the composed model. We are interested in the pre-merge directives which specify simple model
modifications that are to be made before the models are merged. We present a detailed example in the use cases
section.

The aimof ourwork is to ensure that the composition is carried out in a safemanner (i.e., themodel it produces
has the intended properties), and for this there is a need to take into consideration the semantic properties when
matching and merging model elements.

2.4.2. ISC

ISC is a generic technology for extendingaDomainSpecificModelingLanguage (DSML)withmodel composition
facilities. Its first version was defined for composing Java programs. A universal extension called U-ISC was
proposed in [Hen09] that deals with textual components first described using context-free grammars and further

5 http://www.kermeta.org/kompose.
6 http://www.uml-diagrams.org/class-reference.html.

http://www.kermeta.org/kompose
http://www.uml-diagrams.org/class-reference.html
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Fig. 6.Merging class diagrams with Kompose

as trees. The method uses tree merging to implement composition. In order to deal with graphical languages the
method was extended to support typed graphs in [Jen11], and implemented in the ReuseWare framework. This
implementation is consistent with the description of models as graphs in our Coq4MDE framework.

ISC introduces the fragment box structure to group model or source code fragments. The fragment box pro-
vides a composition interface with concepts and associated tools to assist with the composition. The composition
interface for a fragment box is a set of addressable points. Two types of addressable points are defined, the vari-
ation points which are elements inside the fragment box that can be used as a receptor for other elements and
reference points which are used to address some parts inside a fragment box. We formalize in our work one type
of correspondence (variation/reference) points, the pair (hook/prototype). As described in [HHJZ09] a hook is a
variation point that behaves as a place-holder for a fragment referenced by a prototype reference point.

We proposed in [KPCT11] and [KHPCT14a] an extension of the Coq4MDE framework to support ISC
concepts and to define a sound basis for ensuring the correctness by construction for this composition style.
These first formal embedding of ISC were done from scratch without trying to factorize or reuse elements.
Here, we provide an alternate specification that encode the ISC basic operators using more elementary operators
provided by our framework.

2.4.3. Package merge

PackageMerge is an operator for composing packages defined at themetamodeling level. It “can be used to quickly
define newmodeling languages, either by extending existing metamodels with new features through package merge or
by building a new metamodel using existing packages as a base” [Zit06]. Package Merge is a directed relationship
between two packages (see Fig. 7), and indicates that the contents of the two packages are to be combined. It is
very similar to Generalization in the sense that the source element conceptually adds the characteristics of the
target element to its own characteristics resulting in an element that combines the characteristics of both [Obj13b].
The basic merge procedure is simple: any elements (for example, classes, associations, operations) in the target
package with no corresponding element having the same name in the source package are simply included in the
resulting package. If several elements have the same name, they are combined into one element and their features
are combined recursively [Zit06].

We proposed in [KHPCT14b] a formalization of the Package Merge with fully verified properties using some
elementary operators that we present in the next section. The proposed formalization takes into account the
conflicts between the models in relation with abstract classes and the multiplicities (the lower and upper bounds
of attributes and relations). The conflicts are resolved according to the UML specification [Obj13b]. In this paper,
we present a more general picture of our framework and illustrate our proposal with more generic composition
methods like the composition in AOM and ISC.
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Fig. 7. Conceptual view of the package merge [Obj13b]

3. Expected property and verification strategy

3.1. Expected property

The expected property is the preservation of the metamodel conformance during composition. For a model M
and a metamodel MM , this property checks that: (1) every object o in M was created from a class C in MM . (2)
every relation between two objects inM is such that there exists, inMM , a reference between the two classes used
for creating the two objects. (3) every semantic property defined inMM is satisfied inM . The semantic properties
from EMOF (see Fig. 3) are: Inheritance (subClass and classicInheritance), Abstract classes (isAbstract),
Multiplicities (lower, upper), Opposite (isOpposite) and Composite (areComposite) references.

As verifying these properties directly for the AOM composition approach, ISC composition operators, or
MOF Package Merge operator is complex and contains many common aspects, we have selected a divide and
conquer approach to capture these commonalities. This approach resulted from experimenting with the other
composition approaches after early work with ISC. Common aspects occurred in the various formalization that
were factorized thereafter leading to the full proposal described in this paper.

3.2. Verification strategy

We advocate the use of generic primitive composition operators that can be used to specify and prove more
complex ones. We aim for a pragmatic compositional verification: minimize the residual verification that must
be conducted on the result of the composition of correct models. We rely on a simple methodology to design
the contract (pre and post conditions) for the composition operators. If � is the expected property for a model
built using composition operators, then � must be, on the one hand, the postcondition on the model resulting
from the application of each operator; and, on the other hand, the precondition of the parameters of each of
the operators involved. These preconditions are eventually consolidated using an additional glueing property �
which depends on the value of all the parameters of the operator. � is the residual property that must be checked
for each composition. This approach is common for compositional verification strategies.

Definition 3 (Correct composition operator) For a set of modelsm1, . . . ,mn and an n-ary composition operator f
over models, we say that f is correct (or property preserving) with respect to a property� and a glueing condition
� if:∧

1≤i≤n

�mi
∧ �m1,...,mn

⇒ �f (m1,...,mn )

The formalization of the composition operators and the correctness verifications are carried out using the
Coq proof assistant. Details are given in the next section.
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4. Formal primitive composition operators

The primitive operators need to be addressed at all three layers of the Coq4MDE encoding of models i.e., Sets
layer, the graph layer, and the model layer.

Set structure A finite set is a structure that can store elements, without any order or repetition of values. Sets
in type theory, in particular the vertex and edge sets in our framework are represented by their characteristic or
indicator function which ensure by definition that each element is unique. The characteristic function of a set A,
denoted as χA(x ), is implemented in the library Uniset7 from the Coq standard library as follows. χA(x ) takes
the value true if x is a member of the set A, and takes the value false otherwise. The sets of vertices and edges are
structured into two modules E and V respectively (the module structure is implemented in Coq since its version
7.4 [Chr03]). These generic modules can be parametrized using different types and include the definition of the
function add that adds an element to a set of vertices (V.add) or a set of edges (E.add), the function image which
will be defined in 4.1.1, together with their proved properties.8

The graph structure A graph is defined in Coq as an inductive dependent type with three constructors: Nil9,
AddV and AddA.

graph(EmptySet,EmptySet)
Nil

graph(vs, es) ∧ (v �∈ vs)
(graph((V .add v vs), es))

AddV

graph(vs, es) ∧ (v1 ∈ vs) ∧ (v2 ∈ vs) ∧ (〈v1, e, v2〉 �∈ es)
(graph(vs, (E .add 〈v1, e, v2〉 es)))

AddA

The model structure As discussed in Sect. 2.2, a model is denoted as 〈vs, es〉 where vs is a finite set of typed
objects and es is a set of reference edges is constructed from the sets vs and es associated with the proof that
these two sets build a multigraph.

4.1. Definition of the primitive operators

We are interested in two basic operations which were, in our experiments, sufficient to implement complex
composition operators.

4.1.1. Substitution

The model elements are typed objects. For example 〈x , c〉 is a model element whose type is c and name is x . The
Substitution operator replaces a model element name by another name. This operation as well as the Union
operator need to be described at all three hierarchical layers of the encoding of models.

Set layer Substituting a model element name o1 by a model element name o2 in the vertices and edges sets is
done using three operations: mapv , mapa and mape.

mapv is used to map o1 to o2 in the set of vertices. It is defined as follows:

mapv 〈o1, c1〉 〈o2, c2〉 〈x , c〉 �
{ 〈o2, c〉 if x � o1

〈x , c〉 otherwise

An edge is defined as having two ends (two model elements) and an edge label. For example 〈〈v1, v2〉, a〉 is the
edge between v1 and v2 whose label is a. The function mapa defines the edges labels image by the Substitution

7 http://coq.inria.fr/stdlib/Coq.Sets.Uniset.html.
8 coq4mde.enseeiht.fr/FormalMDE/Subst_Verif.html.
9 EmptySet in the definition represents the empty set.

http://coq.inria.fr/stdlib/Coq.Sets.Uniset.html
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operator, and it is defined in our case as an identity function mapa a � a.10 The function mape maps the model
element names in the edges such as:

mape 〈〈v1, v2〉, a〉 � 〈〈mapv o1 o2 v1,mapv o1 o2 v2〉,mapa a〉

The graph layer The image of the sets of vertices or edges of a graph g with vs the set of vertices and es the set of
edges using mapv or mape is given, using the functions image encoded for the vertices and edges respectively in
themodulesV andE previously mentioned,11 by (V .image mapv (vs, es) g) or (E .image mapv mapa (vs, es) g).
Coding sets as characteristic functions allows for deciding efficiently whether an element belongs or not to a set.
It is difficult, however, to iterate over the elements of a set, e.g., to define the V .image that applies mapv on all
elements in the set of vertices. A special fold function is used to implement V .image and E .image (the function
that applies mape on all the edges). The fold function applies mapv or mape on every vertex or edge of the graph
and constitutes the image of the vertices set and the image of the edges set. The image of a graph is constructed
from images of its vertices and edges. This property is formalized in Theorem 4.1 which shows that such graph
always exists; this theorem is proved by induction on the structure of the graph12 and allows for the definition of
the structure of the resulting graph from the substitution.

Theorem 4.1 (graph substitution)
∀ vs ∈ Classes, es ∈ References, g ∈ graph(vs, es),

graph (V .image mapv (vs, es) g) (E .image mapv mapa (vs, es) g)

The model layer Substituting a model element o1 by another o2 in the vertex or edge sets in addition to the graph
image of substitution (defined by Theorem 4.1) constitute the substituted model. The operator Substitution :
(Objects × Classes) × (Objects × Classes) × Model → Model is defined as:

Substitution o1 o2 〈MV ,ME 〉 � 〈SubstV o1 o2 MV ,SubstE o1 o2 ME 〉
where (SubstV o1 o2 MV ) substitutes o1 by o2 in MV
and (SubstE o1 o2 ME ) substitutes o1 by o2 in ME .

4.1.2. Union

Set layer We also make use of the Union operator ∪, for characteristic functions, which is implemented in Uniset
as well. The set union is implemented using the boolean disjunction such that, x is a member of A1 ∪ A2 if and
only if the value of χA1 (x ) ∨ χA2 (x ) is true.

χA1∪A2 (x ) � χA1 (x ) ∨ χA2 (x )

The graph layer The union of two graphs is also a graph, the set of vertices is the union of vertex sets and the set
of edges is the union of the edge sets of the two models. The graph union is formalized in Theorem 4.2, the proof
that the two sets make a graph is by induction on the structure of the second graph (graph(vs2, es2)).13

Theorem 4.2 (graph union)
∀ vs1 vs2 ∈ C , es1 es2 ∈ R

graph(vs1, es1) ∧ graph(vs2, es2) → graph(vs1 ∪ vs2, es1 ∪ es2)

The model layer The Union of two models is the union of their vertex and edge sets in addition to the proof of
the graph union (Theorem 4.2). The operator Union : Model × Model → Model is defined as:

Union 〈MV1,ME1〉 〈MV2,ME2〉 � 〈MV1 ∪ MV2,ME1 ∪ ME2〉

10 This function can allow for the definition of the image of the a label for other operators.
11 coq4mde.enseeiht.fr/FormalMDE/Subst_Verif.html.
12 http://coq4mde.enseeiht.fr/FormalMDE/Subst_Verif.html#elements.
13 http://coq4mde.enseeiht.fr/FormalMDE/Graph.html#elements.

coq4mde.enseeiht.fr/FormalMDE/Subst_Verif.html
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4.2. Properties preservation for the primitive composition operators

The Substitution and Union operators are defined in order to enforce both the well typedness and MOF semantic
properties. These two operators like all the concepts, theorems and proofs presented in this paper are encoded in
theCoq proof assistant and are available on the FormalMDEweb page.14 The aim of this formalization is to help
with checking some properties on the composite models and also provide a formal basis for the specification and
proof of correctness of compositional verification technologies. The first property considered is the well typedness
property.This property is related to the conformancedefined inSect. 2.2. It checks for amodelM andametamodel
MM that every object in M is the instance of a class in MM and that every link in M is an instance of a relation
in MM . To prove that this verification is compositional, we need to prove that the composition of two model
instances of the same metamodel is also an instance of the same metamodel. We define the first validity criterion
for any composition function. This criterion is defined as a higher order predicate that checks the well typedness
of some operator. The function InstanceOf is used for this purpose, it checks that all objects and links of amodel
are instances of classes and references in a metamodel. The function InstanceOf : Model × MetaModel → Bool
is defined as:

InstanceOf (〈MV ,ME 〉, 〈(MMV ,MME ), conformsTo〉) �
∀〈o, c〉 ∈ MV , c ∈ MMV ∧ ∀〈〈o, c〉, r , 〈o ′, c′〉〉 ∈ ME , 〈c, r , c′〉 ∈ MME

Then, this predicate is used to verify that the result of applying the Substitution function to an instance ofMM
is also an instance of MM . This is described in Theorem 4.3.15

Theorem 4.3 (ValidSubstitution)
∀M ∈ Model ,MM ∈ MetaModel , o1 o2 ∈ (Objects × Classes), InstanceOf (M ,MM )

→ InstanceOf ((Substitution o1 o2 M ),MM )

Proof Sketch of Theorem 4.3 Let M be an instance of metamodel MM . We prove that the model obtained by
applying the Substitution operator to this model using any two model elements o1 and o2 is also an instance
of the metamodel MM . We show that the Substitution operator does not change the types of the vertices and
edges and so preserves the conformance to the metamodel. �

Many frameworks for model specification such as the Unified Modeling Language (UML) and the Eclipse
Modeling Framework (EMF) are based on the MOF standard. We present an elegant way to take into account the
MOF metametamodel constraints and to verify that the basic operators preserve the conformity with respect to
the metamodel’s semantic properties (other than the type safety). This approach avoids extracting the properties
from the metamodel which is not easily accomplished. The solution is to check that each elementary property
verified by the initial models is also verified on the model resulting from the application of a basic operator.
If the initial models are conforming to some metamodel, the resulting model is also conforming to the same
metamodel. The elementary semantic properties are: the hierarchy (subClass and standardInheritance), the
abstract classes (isAbstract), the multiplicities (lower, upper), the opposite references (isOpposite) and the
composite references (areComposite).

In the following, we present for every elementary semantic property its formalization, the lemma that formal-
izes the preservation of the property for the Substitution basic operator, a proof sketch, and the link to the
complete proof in Coq.

subClass The subClass property formalization is given in Sect. 2. Theorem 4.416 states that this property is
preserved by the Substitution operator. For any classes c1 c2 and for any model elements o1 o2, if c1 is a
subclass of c2 in a model M , then c1 is also a subclass of c2 in (Substitution o1 o2 M ).

Theorem 4.4 (SubstSubClassPreserved)
∀M ∈ Model , c1 c2 ∈ Classes, o1 o2 ∈ (Objects × Classes),

subClass c1 c2 M → subClass c1 c2 (Substitution o1 o2 M )

14 http://coq4mde.enseeiht.fr/FormalMDE.
15 http://coq4mde.enseeiht.fr/FormalMDE/Subst_Verif.html#ValidSubst.
16 http://coq4mde.enseeiht.fr/FormalMDE/Subst_Verif.html#SubstSCP.

http://coq4mde.enseeiht.fr/FormalMDE
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Proof Sketch of Theorem 4.4We prove that any two classes c1 and c2 linked by the inh relation in a model M , are
also linked by the inh relation in the model obtained from the Substitution of any two model elements o1 and
o2 in the model M . We suppose that we have a relation inh between any two model elements with types c1 and
c2 in the model M . We show that the Substitution operator does not change the types of model elements and
the types of relations and, thus in the resulted model we always have an inh relation between any model elements
with types c1 and c2. The Coq proof is long but straightforward and considers all the cases of equality between
the name of any model element typed by c1 and the names of the model elements o1 and o2 and shows in all cases
that the existing inh relations are preserved. �

standardInheritance The standardInheritance property formalization is given in Section 2. Theorem 4.5 states
that this property is preserved by the application of the Substitution operator for a modelM if for every couple
of objects o1 and o2 both in M , and for every couple c1 and c2 of constructor classes of o1 respectively o2, either
〈o1, c1〉 or 〈o2, c2〉 is in M .

Theorem 4.5 (SubstStandardInheritancePreserved)
∀ M ∈ Model , o1 o2 ∈ Objects, c1 c2 ∈ Classes,

condStandardInhSubst M o1 o2 � true ∧ standardInheritance M
→ standardInheritance (Substitution (o1, c1) (o2, c2) M )

The gluing condition is given by condStandardInhSubst :

condStandardInhSubst(〈MV ,ME 〉 ∈ Model , o1 ∈ Objects, o2 ∈ Objects) �
∀ c1 c2 ∈ Classes, isConstructorClass(o1, c1, 〈MV ,ME 〉) ∧ isConstructorClass(o2, c2, 〈MV ,ME 〉)
→ 〈o1, c1〉 ∈ MV ∨ 〈o2, c2〉 ∈ MV

isAbstract The isAbstract property is also formalized in the Sect. 2. The preservation of this property by the
Substitution basic operator is proved using Theorem SubstIsAbstractPreserved.17 This theorem states that
all the abstract classes in some model are also abstract in the model after substitution.

Theorem 4.6 (SubstIsAbstractPreserved)
∀ M ∈ Model , c ∈ Classes, o1 o2 ∈ (Objects × Classes),

isAbstract c M → isAbstract c (Substitution o1 o2 M )

Proof Sketch of Theorem 4.6 We prove that any abstract class c in any model M , is also abstract in the model
obtained by the Substitution of any two model elements o1 and o2 using in the model M . We suppose that
the class c is abstract in the model M . We show that the Substitution operator does not introduce a concrete
instance for the element typed by c and that this class stays abstract in the model after substitution. �

Lower and upper For both attributes and references, a minimum andmaximum number of instances of the target
concept can be defined using the lower and upper attributes. This pair is usually referred to as multiplicity. In
order to ease themanipulation of this data-type, we introduce the typeNatural� � N∪{�}. Using both attributes,
it is used to represent a range of possible numbers of instances. Unbounded ranges can be modelled using the �
value for the upper attribute.

lower (c1 ∈ MMV , r1 ∈ MME ,n ∈ Natural�, 〈MV ,ME 〉) � ∀〈o, c〉 ∈ MV ,
c � c1 → |{m2 ∈ MV | 〈〈o, c1〉, r1,m2〉 ∈ ME }| ≥ n

An analogous formalization is defined for the upper property replacing≥ by≤. Theorem 4.718 states that starting
from any two models conforming to the same metamodel; the preservation of the lower property is not trivial
and requires some gluing condition to be satisfied in the two models. The condition in this case requires the
Substitution operator to be injective, i.e., not allowing for two distinct elements to be mapped to the same
element, thus preserving the uniqueness in the resulting model. This is ensured if the object o2 is not in the
substituted model, and therefore, the Substitution operator does not add an element that is already in the
model. The lower bounds are thus preserved. This verification is generic and can be applied for any metamodel
where the lower property is specified independently about the considered models.

17 http://coq4mde.enseeiht.fr/FormalMDE/Subst_Verif.html#SubstIAP.
18 http://coq4mde.enseeiht.fr/FormalMDE/Subst_Verif.html#SubstLP.
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Theorem 4.7 (SubstLowerPreserved)
∀ 〈MV ,ME 〉 ∈ Model , c ∈ Classes, r ∈ References, n ∈ Natural�,
〈o1, c1〉 〈o2, c2〉 ∈ (Objects × Classes),

c1 � c2 ∧ (�〈o, c〉 ∈ MV ∧ o � o2) ∧ Injective Substitution ∧ (lower c r n 〈MV ,ME 〉)
→ (lower c r n (Substitution 〈o1, c1〉 〈o2, c2〉 〈MV ,ME 〉)).

Proof Sketch of Theorem 4.7 Let us assume that, for a model 〈MV ,ME 〉, a lower bound n is satisfied for the class
c in relation with the reference r (maximum n model elements are related by the relation r to the same instance
of the class c). We prove that this lower bound n is also satisfied in the model obtained from the Substitution
of any two model’s elements o1 and o2 using the model 〈MV ,ME 〉. We show that the Substitution operator
does not change the types of the model elements and does not reduce the lower bound in the resulting model
because the Substitution operator is injective and so does not introduce newmodel elements duplications. The
Coq proof is long and uses intermediate lemmas to simplify iterations and calculations of the links and the model
elements. �

The upper property preservation is described using Theorem SubstUpperPreserved19 which is similar to
the previous theorem for the lower property. The model must not contain an element whose name is o2.

isOpposite A reference can be associated to an opposite reference. It implies that, in valid models, for each such
a link between two object instances, there must exist a link in the opposite direction between these two same
objects.

isOpposite(r1, r2 ∈ MME , 〈MV ,ME 〉) � ∀ m1,m2 ∈ MV , 〈m1, r1,m2〉 ∈ ME ↔ 〈m2, r2,m1〉 ∈ ME

Theorem SubstIsOppositePreserved20 states that any two references opposite in some model remain also
opposite in the model after applying the Substitution operator. So, the isOpposite property is preserved.

Theorem 4.8 (SubstIsOppositePreserved)
∀ M ∈ Model , r1 r2 ∈ References, o1 o2 ∈ (Objects × Classes), (isOpposite r1 r2 M )

→ (isOpposite r1 r2 (Substitution o1 o2 M )).

Proof Sketch of Theorem 4.8We prove that any two references r1 and r2 that are opposite in a model M , are also
opposite in the model obtained from the Substitution of any two model elements o1 and o2 in the model M .
We show that the Substitution operator does not change the references and so we can find all the opposite
references from the initial models. �

areComposite A reference can be composite and as a matter of fact, defining a set of references as a whole to
be composite, instead of a single one, is closer to the intended meaning. In such a case, instances of the target
concept belong to a single instance of source concepts.

areComposite(c1 ∈ MMV ,R ⊆ MME , 〈MV ,ME 〉) � ∀ 〈o, c〉 ∈ MV ,
c � c1 → |{m1 ∈ MV | 〈m1, r , 〈o, c〉〉 ∈ ME , r ∈ R}| ≤ 1

Theorem 4.921 states that, a set of references which are composite in some model are also composite in the model
obtained after applying the Substitution operator. This theorem also assumes that the Substitution operator
is injective and requires that the substituted model does not contain an element named o2.

Theorem 4.9 (SubstAreCompositeSubsPreserved)
∀ 〈MV ,ME 〉 ∈ Model , c ∈ Classes, r ⊂ References, 〈o1, c1〉 〈o2, c2〉 ∈ (Objects × Classes),

c1 � c2 ∧ (�〈o, c〉 ∈ MV ∧ o � o2) ∧ (Injective Substitution) ∧ (areComposite c r 〈MV ,ME 〉)
→ (areComposite c r (Substitution 〈o1, c1〉 〈o2, c2〉 〈MV ,ME 〉))

19 http://coq4mde.enseeiht.fr/FormalMDE/Subst_Verif.html#SubstUP.
20 http://coq4mde.enseeiht.fr/FormalMDE/Subst_Verif.html#SubstIOP
21 http://coq4mde.enseeiht.fr/FormalMDE/Subst_Verif.html#SubstACP.
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Proof Sketch of Theorem 4.9 Let us assume that, for any model 〈MV ,ME 〉, and for any instance of a class c in
this model, at most one ancestor is linked with a composite reference. We verify that this property is also satisfied
in the model obtained from the substitution of any two model elements o1 and o2 using this model. We show that
the Substitution operator does not change the types of the model elements and does not increase the number
of composite references for any model element. We prove this using the fact that the Substitution operator
is injective and thus it does not introduce new model elements duplications. The Coq proof is long and uses
intermediate lemmas to simplify iterations and calculations of the references and models elements. The proof
considers all the cases of equality between the name of any instance of c in both models and the names of the
model elements o1 and o2 and shows in all cases that the limit for the number of composite relation for any model
element is preserved. �

The same properties are verified for the Union operator. The Union operator given in Sect. 4.1.2 requires other
assumptions to ensure that all the properties are satisfied.22

To preserve the property standardInheritance, the two models M1 and M2 must satisfy the condition
condStandardInhUnion that can be explained as: for every object o both in M1 and M2 and for every couple c1
and c2 of constructor classes of o respectively in M1 and M2, either 〈o, c1〉 is in M1 or 〈o, c2〉 is in M2.

condStandardInhUnion(〈MV1,ME1〉, 〈MV2,ME2〉 ∈ Model ) �
∀〈o, c〉 ∈ MV1, 〈o, c′〉 ∈ MV2, c1 c2 ∈ Classes,
isConstructorClass(o, c1, 〈MV1,ME1〉) ∧ isConstructorClass(o, c2, 〈MV2,ME2〉)

→ 〈o, c1〉 ∈ MV1 ∨ 〈o, c2〉 ∈ MV2

To preserve the lower property, i.e. to prove (lower c r n) for the model obtained from the Union of the two
models 〈MV1,ME1〉 and 〈MV2,ME2〉 that satisfy the lower property, the cardinality n of the object o typed by
the class c in relation with the reference r must satisfy the following condition:

lowerCond (〈o, c〉 ∈ (Objects × Classes),n ∈ Natural�, 〈MV1,ME1〉 〈MV2,ME2〉 ∈ Model ) �
n ≥ |{o2 ∈ (MV1 ∩ MV2) | 〈〈o, c〉, r , o2〉 ∈ (ME1 ∩ ME2)}|

It follows thus, that the number of links r from an element of type c in the intersection of the two models must
be lower or equal to its cardinality n from the metamodel.

To preserve the upper property in the model resulting from the Union of the two models 〈MV1,ME1〉
and 〈MV2,ME2〉 must satisfy the upper property. The multiplicity n must satisfy the upperCond
condition:

upperCond (〈o, c〉 ∈ Objects,n ∈ Natural�, 〈MV1,ME1〉 〈MV2,ME2〉 ∈ Model ) �
n > |{o2 ∈ MV1 | 〈〈o, c〉, r , o2〉 ∈ ME1}| + |{o2 ∈ MV2 | 〈〈o, c〉, r , o2〉 ∈ ME2}|

−|{o2 ∈ (MV1 ∩ MV2) | 〈〈o, c〉, r , o2〉 ∈ (ME1 ∩ ME2)}|
It follows, thus, that the cardinality n of a link r in relation with an element whose type is c must be higher then
the number of links r from an element of type c in both the first and the second models.

A similar condition to the upperCond which replaces n by the value 1 is necessary to verify the property
areComposite. Thus, for a composite reference instance, the target concept belongs to a single instance of the
source concept which must be the same in both models.

5. Formalization of high level composition operators

In this section, we present the usage of the two elementary operators Union and Substitution for describing
the high level composition operators presented in Sect. 2.4.

5.1. Aspect oriented model composition

A composition of models corresponding to design views following the AOM approach [FRGG04] is structured
into two major phases (1) the matching phase where model elements that describe different views of the same
concept are identified, (2) themergingphasewhere thematchedmodel elements aremerged to create the integrated

22 http://coq4mde.enseeiht.fr/FormalMDE/Union_Verif.html.
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Fig. 8. An extension of EMOF concepts presented in Fig. 3

views.We show in the first example that the basicmatch is supported by the Unionoperator. In the second example,
we show that more sophisticated matches can be given manually (represented as directives) and unification can
be done using the Substitution operator. The following examples require the representation of operations
associated with classes, and to support this property we extend the concepts of EMOF presented in Fig. 3 via a
relation ownedOperation as presented in Fig. 8.

5.1.1. Example 1

We illustrate first how a composition can be carried out using the small example in Fig. 6, the Base CD model is
represented in Coq4MDE using the set of vertices MVBaseCD and the set of edges MEBaseCD as follows:

MVBaseCD � { 〈System,Class〉, 〈Writer ,Class〉, 〈FileStream,Class〉,
〈start,Property〉, 〈fstream,Property〉, 〈startWriter ,Property〉,
〈writeLine,Property〉, 〈addToStream,Property〉 }

MEBaseCD � { 〈〈System,Class〉, ownedOperation, 〈startWriter ,Property〉〉,
〈〈System,Class〉, ownedAttribute, 〈start,Property〉〉,
〈〈start,Property〉, type, 〈Writer ,Class〉〉,
〈〈Writer ,Class〉, ownedOperation, 〈writeLine,Property〉〉,
〈〈Writer ,Class〉, ownedOperation, 〈fstream,Property〉〉,
〈〈fstream,Property〉, type, 〈FileStream,Class〉〉,
〈〈FileStream,Class〉, ownedOperation, 〈addToStream,Property〉〉 }

The Context-Specific Buffering Aspect is represented in Coq4MDE as follows:

MVCSBA � { 〈Writer ,Class〉, 〈Buffer ,Class〉, 〈FileStream,Class〉,
〈buffer ,Property〉, 〈bfstream,Property〉, 〈writeLine,Property〉,
〈write,Property〉, 〈addToStream,Property〉 }

MECSBA � { 〈〈Writer ,Class〉, ownedOperation, 〈writeLine,Property〉〉,
〈〈Writer ,Class〉, ownedAttribute, 〈buffer ,Property〉〉,
〈〈buffer ,Property〉, type, 〈Buffer ,Class〉〉,
〈〈Buffer ,Class〉, ownedOperation, 〈write,Property〉〉,
〈〈Buffer ,Class〉, ownedAttribute, 〈bfstream,Property〉〉,
〈〈bfstream,Property〉, type, 〈FileStream,Class〉〉,
〈〈FileStream,Class〉, ownedOperation, 〈addToStream,Property〉〉 }

The union of the two models BaseCD and CSBA corresponds exactly to the intended model in Fig. 6. The
sets of vertices and edges of the obtained model are represented in Coq4MDE as follows:

MVUnion BaseCD CSBA � { 〈System,Class〉, 〈Writer ,Class〉, 〈FileStream,Class〉,
〈start,Property〉, 〈fstream,Property〉, 〈startWriter ,Property〉,
〈writeLine,Property〉, 〈addToStream,Property〉, 〈Buffer ,Class〉,
〈buffer ,Property〉, 〈bfstream,Property〉, 〈write,Property〉 }
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MEUnion BaseCD CSBA � { 〈〈System,Class〉, ownedOperation, 〈startWriter ,Property〉〉,
〈〈System,Class〉, ownedAttribute, 〈start,Property〉〉,
〈〈start,Property〉, type, 〈Writer ,Class〉〉,
〈〈Writer ,Class〉, ownedOperation, 〈writeLine,Property〉〉,
〈〈Writer ,Class〉, ownedAttribute, 〈fstream,Property〉〉,
〈〈fstream,Property〉, type, 〈FileStream,Class〉〉,
〈〈FileStream,Class〉, ownedOperation, 〈addToStream,Property〉〉,
〈〈buffer ,Property〉, type, 〈Buffer ,Class〉〉,
〈〈Writer ,Class〉, ownedAttribute, 〈buffer ,Property〉〉,
〈〈Buffer ,Class〉, ownedOperation, 〈write,Property〉〉,
〈〈Buffer ,Class〉, ownedAttribute, 〈bfstream,Property〉〉,
〈〈bfstream,Property〉, type, 〈FileStream,Class〉〉 }

5.1.2. Example 2

We use here an example from [FRGG04]. Figure 9b which shows a primary model that describes a user man-
agement system in which Manager objects are linked to a UserMgmt object that controls access to a repository
of user information (a UserRepository object). The UserMgmt class defines operations for adding a user to
the repository (addUser) and for deleting a user from the repository (deleteUser). Access to the addUser and
deleteUser operations by Manager objects is unrestricted in the primary model. The corresponding model for
the User Management primary class diagram presented in Fig. 9b written manually in the Coq4MDE syntax is
〈MVUserManagement ,MVUserManagement 〉 where the two sets of vertices and edges are completely represented as
follows:

MVUserManagement � { 〈Manager ,Class〉, 〈UserMgmt,Class〉, 〈UserRepository,Class〉,
〈m,Property〉, 〈addUser ,Property〉, 〈deleteUser ,Property〉,
〈MgrID,Datatype〉, 〈UID,Datatype〉, 〈in u,Property〉,
〈accesses,Property〉, 〈accessUserRep,Property〉 }

MEUserManagement � { 〈〈Manager ,Class〉, ownedAttribute, 〈m,Property〉〉,
〈〈m,Property〉, type, 〈MgrID,Datatype〉〉,
〈〈Manager ,Class〉, ownedAttribute, 〈accesses,Property〉〉,
〈〈accesses,Property〉, type, 〈UserMgmt,Class〉〉,
〈〈accesses,Property〉, ownedAttribute, 〈1, lowerUserMgmt 〉〉,
〈〈accesses,Property〉, ownedAttribute, 〈1, upperUserMgmt 〉,
〈〈UserMgmt,Class〉, ownedAttribute, 〈accesses,Property〉〉,
〈〈accesses,Property〉, type, 〈Manager ,Class〉〉,
〈〈accesses,Property〉, ownedAttribute, 〈1, lowerManager 〉〉,
〈〈accesses,Property〉, ownedAttribute, 〈�, upperManager 〉,
〈〈UserMgmt,Class〉, ownedOperation, 〈addUser ,Property〉〉,
〈〈addUser ,Property〉, ownedAttribute, 〈in u,Property〉〉,
〈〈in u,Property〉, type, 〈UID,Datatype〉〉,
〈〈UserMgmt,Class〉, ownedOperation, 〈deleteUser ,Property〉〉,
〈〈deleteUser ,Property〉, ownedAttribute, 〈in u,Property〉〉,
〈〈UserMgmt,Class〉, ownedAttribute, 〈accessUserRep,Property〉〉,
〈〈accessUserRep,Property〉, type, 〈UserRepository,Class〉〉,
〈〈accessUserRep,Property〉, ownedAttribute, 〈1, lowerUserRepository 〉〉,
〈〈accessUserRep,Property〉, ownedAttribute, 〈1, upperUserRepository 〉〉,
〈〈UserRepository,Class〉, ownedAttribute, 〈accessUserRep,Property〉〉,
〈〈accessUserRep,Property〉, type, 〈UserMgmt,Class〉〉,
〈〈accessUserRep,Property〉, ownedAttribute, 〈1, lowerUserMgmt 〉〉,
〈〈accessUserRep,Property〉, ownedAttribute, 〈1, upperUserMgmt 〉〉 }

To restrict access to these operations the instantiated Authentication aspect model shown in Fig. 9a is com-
posed with the primary model to obtain the composed model shown in Fig. 10.
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(a) (b)

Fig. 9. Integrated aspect and primary view

Fig. 10. Composed class diagram

The context-specific aspect model in Fig. 9a is obtained by instantiating the Authentication aspect model
using bindings that define the values that are to be substituted for parameters in the authentication diagram
templates. A binding relates an aspect model element to a model element and can be expressed as a pair (aspect
element name, model element name). The model element name can be the name of a primary model element or
the name of an application-specific element that is to be added to the composed model during composition.

The set of vertices and the set of edges corresponding to the authentication context-specific aspect model are
represented manually using the Coq4MDE syntax by: MVAuthContext and MEAuthContext . In this definition, an
operation is linked to its parameters via a relation ownedAttribute, and a parameter is linked to its type via a
relation type.

MVAuthContext � { 〈Manager ,Class〉, 〈UserMgmt,Class〉, 〈SystemMgmtAuthRep,Class〉,
〈m,Property〉, 〈addUser ,Property〉, 〈deleteUser ,Property〉,
〈doAddUser ,Property〉, 〈doDeleteUser ,Property〉, 〈checkSysAuth,Property〉,
〈in,Property〉, 〈in u,Property〉, 〈in mid ,Property〉,
〈in op,Property〉, 〈accesses,Property〉, 〈accessAuthRep,Property〉
〈MgrID,Datatype〉, 〈UID,Datatype〉 }
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MEAuthContext � { 〈〈Manager ,Class〉, ownedAttribute, 〈m,Property〉〉,
〈〈m,Property〉, type, 〈MgrID,Datatype〉〉,
〈〈Manager ,Class〉, ownedAttribute, 〈accesses,Property〉〉,
〈〈accesses,Property〉, type, 〈UserMgmt,Class〉〉,
〈〈accesses,Property〉, ownedAttribute, 〈1, lowerUserMgmt 〉〉,
〈〈accesses,Property〉, ownedAttribute, 〈1, upperUserMgmt 〉,
〈〈UserMgmt,Class〉, ownedAttribute, 〈accesses,Property〉〉,
〈〈accesses,Property〉, type, 〈Manager ,Class〉〉,
〈〈accesses,Property〉, ownedAttribute, 〈1, lowerManager 〉〉,
〈〈accesses,Property〉, ownedAttribute, 〈�, upperManager 〉,
〈〈UserMgmt,Class〉, ownedOperation, 〈addUser ,Property〉〉,
〈〈addUser ,Property〉, ownedAttribute, 〈in,Property〉〉,
〈〈in,Property〉, type, 〈UID,Datatype〉〉,
〈〈addUser ,Property〉, ownedAttribute, 〈in u,Property〉〉,
〈〈in u,Property〉, type, 〈UID,Datatype〉〉,
〈〈UserMgmt,Class〉, ownedOperation, 〈deleteUser ,Property〉〉,
〈〈deleteUser ,Property〉, ownedAttribute, 〈in mid ,Property〉〉,
〈〈in mid ,Property〉, type, 〈UID,Datatype〉〉,
〈〈deleteUser ,Property〉, ownedAttribute, 〈in u,Property〉〉,
〈〈UserMgmt,Class〉, ownedOperation, 〈doAddUser ,Property〉〉,
〈〈doAddUser ,Property〉, ownedAttribute, 〈in u,Property〉〉,
〈〈doDeleteUser ,Property〉, ownedAttribute, 〈in u,Property〉〉,
〈〈UserMgmt,Class〉, ownedAttribute, 〈accessAuthRep,Property〉〉,
〈〈accessAuthRep,Property〉, type, 〈SystemMgmtAuthRep,Class〉〉,
〈〈accessAuthRep,Property〉, ownedAttribute, 〈1, lowerSystemMgmtAuthRep〉〉,
〈〈accessAuthRep,Property〉, ownedAttribute, 〈1, upperSystemMgmtAuthRep〉〉,
〈〈SystemMgmtAuthRep,Class〉, ownedAttribute, 〈accessAuthRep,Property〉〉,
〈〈accessAuthRep,Property〉, type, 〈UserMgmt,Class〉〉,
〈〈accessAuthRep,Property〉, ownedAttribute, 〈1, lowerUserMgmt 〉〉,
〈〈accessAuthRep,Property〉, ownedAttribute, 〈1, upperUserMgmt 〉〉,
〈〈SystemMgmtAuthRep,Class〉, ownedAttribute, 〈checkSysAuth,Property〉〉,
〈〈checkSysAuth,Property〉, ownedAttribute, 〈in mid ,Property〉〉,
〈〈in mid ,Property〉, type, 〈MgrID,Datatype〉〉,
〈〈checkSysAuth,Property〉, ownedAttribute, 〈in op,Property〉〉,
〈〈in op,Property〉, type, 〈UID,Datatype〉〉 }

The models obtained from these sets and the proof of the corresponding models are denoted by:
〈MVAuthContext ,MEAuthContext 〉 and 〈MVUserManagement ,MEUserManagement 〉.
The composition directives can be implemented using the Substitution operator, as:

• The directive Rename Primary :: UserMgmt :: addUser () to doAddUser () corresponds exactly to:
Substitution addUser doAddUser 〈MVUserManagement ,MEUserManagement 〉

• The directive Rename Primary :: UserMgmt :: deleteUser () to doDeleteUser () corresponds exactly to:
Substitution deleteUser doDeleteUser 〈MVUserManagement ,MEUserManagement 〉
Applying the Union operator on the model resulting from the two applications of the Substitution operator

generates directly the intended result for this example thanks to the representation of models in Coq4MDEwhich
ensures that attributes and operations for classes are directly merged in classes having the same class name.

5.2. Formalizing the ISC operators

Following the ISCmethod, besides a component, an interface consists of connection points (variation/reference
points) that reveal how a component can be interconnected with its reuse context, which items are communicated
to and from the environment, and which relations to the outer world must be established. In the following we
present first the mechanisms of metamodel extension [KPCT11], followed by the operators for models composi-
tion, and finally we present a detailed example.
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Fig. 11.MetaModel extension

5.2.1. Extended metamodel with model component

We must be able to extend any metamodel to support the definition of fragment boxes. This extension adds the
definition of a fragment interface constituted from a set of addressable points. We note the extended metamodel
for some metamodel MM as MMExt . We note ROV the abstract class representing the addressable points, the
Hook variation point and the Prototype reference point are subclasses of ROV . In MMExt , every node in the
graph representing MM can be referenced by an addressable point. For this purpose, an abstract class called
AbsC is added as a super class for all the classes of MM . This class is linked by the reference bind with ROV .
The three classesROV ,Hook and Prototype are also automatically imported to the metamodel with appropriate
inheritance relations between them.23

The following definition represents the extension function implemented in Coq as a graph transformation
which is not in the scope of this paper.

Definition 4 Let MM � 〈〈MMV ,MME 〉, conformsTo〉 be a metamodel.
Let ROV ,Hook ,Prototype,AbsC ∈ Classes, bind ∈ References .
MMExt is defined as 〈〈MMV Ext ,MMEExt 〉, conformsToExt 〉 such that:

MMV Ext � MMV ∪ {ROV ,Hook ,Prototype,AbsC }
MMEExt � MME ∪ {〈ROV , bind ,AbsC 〉}
conformsToExt (〈MV ,ME 〉) � conformsTo(〈MV ,ME 〉)
∧ isAbstract(ROV )
∧ subClass(Hook ,ROV )
∧ subClass(Prototype,ROV )
∧ isAbstract(AbsC )
∧ ∀ c ∈ MMV , subClass(c,AbsC )

Figure 11 shows the example of the extension of the MetaModel MM .

5.2.2. Components composition

In this section, we present the implementation in our framework of the two basic operators of ISC (bind and
extend) presented in [Aßm03, Jen11]. The difference between these operators is that “the bind applied to the
hook replaces the hook (i.e., it removes the hook from its containing fragment) while extend applied on a hook
does not modify the hook itself but uses it as a position for extension (i.e., the hook remains in its containing
fragment)”.

23 Themetamodel extension used in [Jen11] is defined at the thirdmodeling level (metametamodel level) whichmay use the promotion notion
to be defined in the Coq4MDE framework. The extension defined thereafter uses only the second modeling level (metamodel level) which
seems to be sufficient.
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5.2.3. Bind

The bind operator replaces an object o1 referenced by a hook variation point from the first model by an object
o2 referenced by a prototype reference point from the second model. The links to (resp. from) the object o1 are
replaced with links to (resp. from) the object o2. The composed model is obtained by substituting the object o1
by o2 in both objects and links sets using the Substitution operator.
The operator bind : Model × Model × (Objects × Classes) × (Objects × Classes) → Model is defined as:

bind (〈MV1, ME1〉, 〈MV2, ME2〉, 〈b, B〉, 〈b′, B′〉) � 〈MV3, ME3〉
where 〈b, B〉 ∈ MV1 and 〈b′, B′〉 ∈ MV2,

∃ h, p ∈ Objects, 〈〈h, Hook〉, inh, 〈h, ROV〉〉 ∈ ME1
∧〈〈h, ROV〉, bind, 〈b, AbsC〉〉 ∈ ME1
∧〈〈b, B〉, inh, 〈b, AbsC〉〉 ∈ ME1
∧〈〈p, Prototype〉, inh, 〈p, ROV〉〉 ∈ ME2
∧〈〈p, ROV〉, bind, 〈b′, AbsC〉〉 ∈ ME2
∧〈〈b′, B′〉, inh, 〈b′, AbsC〉〉 ∈ ME2
∧B � B′

and finally : 〈MV3, ME3〉 � Substitution b b ′ 〈MV1, ME1〉

The implemented operator24 considers also the case where o1 is referenced by a prototype reference point and
o2 is referenced by a hook variation point and replaces in this situation o2 by o1 in the model 〈MV2, ME2〉. A more
general version of this function is called bind2MSH25 (for binding two models using several hooks). It defines a
recursive call for the previous function using a list of correspondence (Variation/Reference) points allowing for
the replacement of several objects at the same time by trying for every element of the list to replace the variation
point by the reference point. Figure 12 shows an example where the hooks 〈Closed ,State〉, 〈Opened ,State〉,
and 〈open,Transition〉 are replaced, respectively, by the prototypes 〈Locked ,State〉, 〈Unlocked ,State〉, and
〈unlock ,Transition〉.

We proved for the different versions of the bind operator all the properties presented in Sect. 4.We successfully
reused all the proofs previously done for the Substitution and Union operators and the improvement can be
largely seen in the reduced number of lines needed to perform each proof comparing with performing the proofs
without relating on the proofs of the elementary operators. Also we took advantage of theCoq language of tactics
(Ltac)26 that allows us to define proof strategies that try to repeat the application of the theorems proving the
properties for the two versions of bind.27

5.2.4. Extend

This operator allows for the extension of a model 〈MV1, ME1〉 (the extension point is an object o1 addressed as a
hook variation point inside the model) by a model 〈MV2, ME2〉 at an object o2 addressed as a prototype reference
point. Figure 13 presents an example of the extend operator where the model M1 is extended by the model M2 and
the position for extension is the object 〈o1, c1〉 that is linked with the object 〈o2, c2〉 from the model M2.

The function Extend28 is parametrized by a metamodel (to ensure type safety) and a name for the added link
between o1 and o2. The composed model consists of a multigraph built over the union of all objects of 〈MV1, ME1〉
and 〈MV2, ME2〉, all links of the two models in addition to a link between the objects o1 and o2.

24 Is called Bind2M in the implementation: http://coq4mde.enseeiht.fr/FormalMDE/Bind2M_Verif.html#Bind2M.
25 http://coq4mde.enseeiht.fr/FormalMDE/Bind2M_Verif.html#Bind2MSH.
26 https://coq.inria.fr/refman/Reference-Manual012.html#ltac.
27 http://coq4mde.enseeiht.fr/FormalMDE/Bind2M_Verif.html.
28 http://coq4mde.enseeiht.fr/FormalMDE/Extend_Verif.html#compExt.

http://coq4mde.enseeiht.fr/FormalMDE/Bind2M_Verif.html#Bind2M
http://coq4mde.enseeiht.fr/FormalMDE/Bind2M_Verif.html#Bind2MSH
https://coq.inria.fr/refman/Reference-Manual012.html#ltac
http://coq4mde.enseeiht.fr/FormalMDE/Bind2M_Verif.html
http://coq4mde.enseeiht.fr/FormalMDE/Extend_Verif.html#compExt
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Fig. 12. Bind operator

Fig. 13. Extend operator

extend : Model × Model × (Objects × Classes)× (Objects × Classes)× MetaModel × References → Model
is defined as:

extend (〈MV1, ME1〉, 〈MV2, ME2〉, 〈b, B〉, 〈b′, B′〉,
(〈MMV, MME〉, conformsTo), LinkName) � 〈MV3, ME3〉
where ∃ 〈b, B〉 ∈ MV1 and 〈b′, B′〉 ∈ MV2, we have :
extensible(〈MV1, ME1〉, 〈MV2, ME2〉, 〈b, B〉, 〈b′, B′〉,
(〈MMV, MME〉, conformsTo), LinkName) such that :
MV3 � MV1 ∪ MV2
ME3 � ME1 ∪ ME2 ∪ {〈〈b, B〉, LinkName, 〈b′, B′〉〉}
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The predicate extensible checks that a model 〈MV1, ME1〉 whose interface is 〈b, B〉 regarding some metamodel can
be extended by another model 〈MV2, ME2〉 whose interface is 〈b′, B′〉.

extensible(〈MV1, ME1〉, 〈MV2, ME2〉, 〈b, B〉, 〈b′, B′〉,
(〈MMV, MME〉, conformsTo), LinkName) �
isExtendedH (〈MV1, ME1〉, 〈b, B〉)
∧isExtendedP (〈MV2, ME2〉), 〈b′, B′〉)
∧(B, LinkName, B′) ∈ MME

The predicate isExtendedH verifies that 〈b, B〉 is a hook in 〈MV1, ME1〉.
isExtendedH 〈MV1, ME1〉〈b, B〉 �
∃ h ∈ Objects, 〈〈h, Hook〉, inh, 〈h, ROV〉〉 ∈ ME1
∧〈〈h, ROV〉, bind, 〈b, AbsC〉〉 ∈ ME1
∧〈〈b, B〉, inh, 〈b, AbsC〉〉 ∈ ME1

The predicate isExtendedP verifies that 〈b, B〉 is a prototype in the model.

isExtendedP〈MV2, ME2〉〈b, B〉 �
∃ p, 〈〈p, Prototype〉, inh, 〈p, ROV〉〉 ∈ ME2
∧〈〈p, ROV〉, bind, 〈b, AbsC〉〉 ∈ ME2
∧〈〈b, B〉, inh, 〈b, AbsC〉〉 ∈ ME2

We describe in the following section the use of the previously defined basic operators in an example of model
composition following ISC.

5.2.5. Detailed example

This example [HHJZ09] is based on UML activity diagrams which outlines a real-world scenario. The principal
motivation for this example is that although UML activity diagrams can bemodularized into single models, reusing
and combining parts of activities modelled separately is not well-supported by UML itself. The ISCmethod enables
us to define general processes with activity diagrams which can be extended with specific activities for concrete
application use-cases.

The process contains a checking activity that determines whether certain data (here customer data) is con-
sistent. In order to keep the order processing activity extensible such that additional checks can be inserted in
parallel to the customer data check variation pointsmust be defined. To perform the extension, a developer should
not need to know the internal implementation of the ordering process, only that check activities can be inserted.
The developer needs to know that a check activity has to have one incoming control flow (from the checkFork
node) and two outgoing flows (to the checkMerge and checkJoin nodes). With this knowledge, the developer
can design additional check activities for instance, the one from Fig. 15 which determines the customer’s credit
card liquidity. In the ISC method, such extensibility can be realized by thinking about models as components.
We consider also the Model described in Fig. 2 with its associated Coq4MDE notation.

The first step is the definition of the interface for eachmodel. In themodel M1, only the checkFork , checkMerge,
and checkJoin nodes, to which the incoming and outgoing flows of additional checks can connect, should be
reflected in the composition interface. CheckFork , checkJoin, and checkMerge are defined as prototypes as
presented in Fig. 14. In the model M2, we think of the initial (InitialNodeCREDIT ) and final nodes (FINISH
and CANCEL) as open ports in the model which need to be manipulated through the composition interface. So,
InitialNodeCREDIT , FINISH , and CANCEL are defined as hooks like described in Fig. 15.

We can then easily define and execute a composition of both activities. The application of the function bind on
the two fragments using the list of (hook, prototype) composed of (InitialNodeCREDIT , checkFork ), (CANCEL,
checkMerge), and (FINISH , checkJoin) followed by the elimination of the interface produces the model Mbind
shown in Fig. 16.

Then, Start , Exit , and Correct are defined in Mbind as hook variations points as shown in Fig. 17 in the class
diagram graphical notation.

The execution of the function extend on the two models M1 in Fig. 14 and FragmentMbind in Fig. 17 after the
interface elimination generates the model presented in Fig. 18.
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Fig. 14. M1: an activity diagram for the control flow of an order process

Fig. 15. M2: an activity diagram for credit-card checks that can extend the order process with additional check

5.3. Formalizing the package merge

To have a more general idea for the usage of our framework, we recall briefly in this section the use case pre-
sented in [KHPCT14b] that uses our two assembly operators (Union and Substitution) to define the Package
Merge. The Package Merge implementation as described hereafter is available at: http://coq4mde.enseeiht.fr/
PackageMergeCoq/.

To illustrate our methodology, we give an example derived from [Zit06]. The source package (in this case the
package BasicEmployeementioned in Fig. 19) is the package merged. The package EmployeeLocation shown

Fig. 16. Mbind: Result of the application of the bind operator on the two models M1 and M2

http://coq4mde.enseeiht.fr/PackageMergeCoq/
http://coq4mde.enseeiht.fr/PackageMergeCoq/


434 M. K. Hamiaz et al.

Fig. 17. FragmentMbind : fragment box for the model Mbind

Fig. 18. Final composition result

in Fig. 20 is the package receiving. This package contains the additional elements that must be merged with
the package merged. Two conflicts occur between the models merged and receiving. The first one is related to
the attribute upper of worksAs [the maximal bound is equal to 2 in the model BasicEmployee (Fig. 19) and is
equal to 3 in the model EmployeeLocation (Fig. 20)]. The second conflict is related to the class Employee that
is abstract (name in italic) in the merged package and concrete in the receiving package.

Fig. 19. BasicEmployee
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Fig. 20. EmployeeLocation

Fig. 21. An excerpt from the BasicEmployee model

The resolution of this kind of conflicts is done according to the UML specification [Obj13b]. The rule to
resolve the conflict for the upper attribute is: upperResulting � max (upperMerged , upperReceiving ). The rule for the
isAbstract attribute is: isAbstractResulting � isAbstractMerged ∧ isAbstractReceiving . In this work, we focused
on the rules related to the abstract classes and cardinalities, the list of all the possible transformations is available
in the specification [Obj13b, p. 255–258]. The rules used for the resolution of conflicts are specific to the Package
Merge operator as specified in the UML specification and may not be the same for other operators.

Concretely in our abstract syntax,wemanipulate themetamodels asmodels conforming to MOF, so the abstrac-
tion property for classes is represented with attributes isAbstract suffixed with the name of the class (this attribute
is equal to True in the model BasicEmployee (Fig. 19) and equal to False in the model EmployeeLocation
(Fig. 20)). The same principle is used to represent all the properties linked to MOF such as lower and upper.
We show in Fig. 21 the representation of the package BasicEmployee as a model conforming to MOF. The
EmployeeLocation package is represented using the same principle, we don’t show it here for space reasons.

The first step is to resolve all the conflicts. For this, the Substitution operator is applied twice. The first appli-
cation replaces 2 by 3 for the upperJob attribute in the mergedmodel. The second application of the Substitution
operator replaces True by False for the isAbstractEmployee attribute in the merged model.

Once the conflicts are resolved, the final step is the union of the obtained models merged and receiving (the
constraints of the Union operator are satisfied in this case). The result is exactly the merge of the two packages
merged and receiving shown in Fig. 22.

In the previous example, the Package Merge is expressed using the primitive composition operators Union
and Substitution. Defining the Package Merge in this manner ensures that the resulting model is well typed
in relation with the packages merged and receiving and also that it satisfies the semantic properties of the
metamodel when the preconditions are satisfied.
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Fig. 22. The resulting metamodel

6. Related work

Ournotionofmodel follows the MDE vision andwe are interested in the formalization and the verificationbyproofs
of the composition operators. In that sense, our work is related mainly to two lines of research: (1) formalization
of MDE and model transformation and (2) composition approaches and formalization of composition operators.
We highlight in this section previous work that is relevant with regards to our approach. First, we discuss some
formalizations of the MDE to help position our proposal. We then explain our contributions in the context of
several existing composition approaches.

6.1. Formalization of model driven engineering and model transformation

Specification of mathematical foundations for MDE that would allow for the verification of model transformation
properties has attracted a lot of attention from researchers. We refer in the following the closest work to our
contribution.

Aiming to define an algebraic semantics for MOF, Boronat et al proposed in [BM10] a model management
framework based on experiments in formal model transformation and data migration called MoMENT (MOdel
manageMENT). This framework provides a set of generic operators to manipulate models and relies on the
algebraic formalisms provided by theMaude language [CDE+02]. InMoMENT, the metamodels are represented
as algebraic specifications and theoperators are defined independently of themetamodel.Tobeused, theoperators
must be described in a module called signature which specifies the constructs of the metamodel. The approach
was implemented in a tool29 that also gives an automatic translation from an EMF metamodel to a signature
model. Also using Vallecillo et al. have designed and implemented a different embedding of metamodels, models
[JRJEFA07] andmodel transformations [TV10]. Both embeddings are shallow and rely strongly on theMAUDE’s
object structure in order to define model elements as objects, and on MAUDE’s object rewriting semantics for
its implementation of model transformations.

The use of the CIC to formalize the concepts of MDE is not a new idea, Poernomo has proposed an encoding of
metamodels and models using type theory [Poe06] which allows for the development of correct by construction
model transformation using proof assistants like Coq [Poe08], but the proposed formalization was not put
in practice. Also using CIC in the context of model transformation, Calegari et al proposed in [CLST11] a
framework where models andmetamodels are represented as types. Similar to our approach for the formalization
of model composition, the specifications of model transformations are universally or existentially quantified
logical formula. The proofs of these formulas in CIC are constructive and therefore allow for the automated
extraction of programs computing the target model from some specified input. This ensures that the output is
correct with respect to the given specification and in this way, it is possible to obtain certified zero-fault model
transformations/compositions that can also be enriched with verifiable properties that are not included in the
initial specification.

29 http://moment.dsic.upv.es/.

http://moment.dsic.upv.es/
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Some simple experimentshavebeen conductedusingCoqmainlyon tree-shapedmodels [PT10] using inductive
types. General graph model structure can be encoded using co-inductive types but the encoding, as shown in
[PM11] byPicard andMatthes is quite complex. Its complexity is due toCoq enforcing structural constraintswhen
combining inductive and co-inductive types which makes impossible the use of the natural encodings proposed
by Giorgino et al. in [GSMP11]. These ones rely on a spanning tree of the graph combined with additional links
to overcome these restrictions using the Isabelle proof assistant. The model transformation relies on slightly
adapted inductive proofs and which can be followed by the extraction of classical imperative implementations.
These embeddings are all shallow as they all rely on similar sophisticated data structure to represent model
elements and metamodels (e.g. Coq (co-)inductive data types for model elements and object and (co-)inductive
types for metamodel elements).

The work described in this paper is a deep embedding, each model and metamodel concept being encoded
using elementary constructs instead of relying on using similar elements from MAUDE, Coq or Isabelle. The
purpose of this contribution is, in addition to implement model composition using correct-by-construction tools,
to give a kind of denotational semantics for model driven engineering concepts that should provide a deeper
understanding and allow for the formal validation of the various implemented technologies.

6.2. Composition approaches

Models are views of the system thatmust be composed to generate the final system. This is true in awide variety of
modeling domains and several techniques have been proposed to accomplish it.We reviewhere several approaches
collected in [Jea08] : Rational Software Architect30 is designed for UML231 and provides a wizard enabling the
composition of two models [Let05]. Bernstein’s data model [BHP00] treats both models and mapping as first
class citizens, where the models are sets of objects, and the mappings capture relationships between models, and
match and merge operations are available for model composition. Atlas Model Weaver (AMW),32 part of the
AMMAplatform providing the ATL transformation language, also allows for establishing relationships between
elements from different models [DFBJ+05]. Epsilon33 provides a set of languages for the commonModel Driven
Engineering tasks. Signature-based composition [RFG+05] is an approach that does not usemappings to compose
models, the composition being done instead by comparing signatures. Modeling Aspects using a Transformation
Approach (MATA) [JWEG07] is an asymmetric approach for model composition, in which one model plays the
role of base model and the other is the aspect. Theme/UML extends the UML standard with new modularization
and compositional concepts [Cla02]. Prompt [NM00] is an algorithm for merging ontologies, it is implemented
in the Protégé34 toolkit. Easterbrook et al proposed the behavioral merge of state charts [NSC+07] which allows
for the comparison and merging of hierarchical Statecharts. Last but not least, the semantic-based weaving of
scenarios [KLJM06] proposed by Klein et al. (ModMap)35 is a method and tool for defining alignment rules
between both homogeneous and heterogeneous languages, the mappings representing the relations between the
components. The tool allows formanual, semi-automatic and automatic alignment, the user being able to provide
additional directives for improving the quality of mapping descriptions.

In the database context, Carvalho et al proposed in [CLA15] a framework based on MDE to integrate database
schemas where these ones are viewed as database models. The authors make a correspondence between schema
matching and merging and model matching and merging, respectively. This kind of composition can be clearly
supported by our operators which also enable us to add semantic and apply formal verification techniques.

The challenge of composition is also present in the context of software product lines and feature-driven
product derivation [SS09, ALMK08] where there is an emerging necessity to integrate multiple features into a
single system. In this area, recent research is also oriented into the formalization and the correct-by-construction
methodologies; for example, [PDL15] is a first step towards the production of a methodology and a platform that
help the user to automatically produce correct-by-construction product variants from the related featuremodules.
This latter contribution is not yet implemented and depends on the definition of the GFML language that allows

30 http://www-306.ibm.com/software/awdtools/architect/swarchitect/.
31 http://www.uml.org/.
32 http://www.eclipse.org/gmt/amw/.
33 http://www.eclipse.org/gmt/epsilon/.
34 http://protege.stanford.edu/.
35 http://www.kermeta.org/mdk/ModMap.
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writing the features that are compiled to FoCaLiZe36 source program that can be analysed and translated into
Coq sources for verification.

We were looking first for an approach that supports modularizing models and model composition. The ISC
[HHJ+08, HHJZ09] approach supports these two characteristics. The method enables us to extend arbitrary
languages to turn them to reuse adding the concepts of fragment and interfaces of fragments. In this method,
components can be invasively composed, this can be done by adapting or extending the component at some
variation point (fragments or positions, which are subject to change) by transformation. After formalizing ISC,
we were searching for more elementary composition operators that can be used for the formalization of ISC and
other composition methods. We found that the defined elementary operators can be used in the formalization of
composition following AOM approach and especially for MOF and UML Package Merge that allows for the merge
of the content of two packages [Obj13b].

7. Conclusion

Although formal verification is an expensive activity, it is the only sound solution in the case of safety critical
systems. We report on our attempt to bridge the gap between model composition and verification where the
intended level of quality and safety of a composed model is achieved by formalizing and proving the properties
of the intended composed model.

To this end, we used the CIC and theCoq proof assistant as a certification framework for model composition.
Starting from our formal framework for model and metamodel formal specification Coq4MDE, we have tackled
the problem of model composition.

We followed a divide and conquer approach which relies on primitive composition operators that are easy to
verify and can be used to build more sophisticated ones. We prove the correctness of the expected properties of
the primitive operators introducing mandatory preconditions to help us reach the compositional verification of
the targeted properties. The proofs of property preservation for the high level operators combine the proofs of
the primitive ones.

We validate our proposal using the MOF model conformance property, the MOF Package Merge operator, a
more general AOM composition method, and the ISC approach.

All these notions are also currently reflected in theCoq proof assistant, an embedding which provides correct-
by-construction pieces of executable code for the different model operations related to composition. As we target
a general purpose MDE-oriented framework, our work applies to any model, modeling language and application
and is not restricted to a particular language context.

This proposal is a preliminary mandatory step in the formalization of compositional formal verification
technologies. We have tackled the formal composition of models independently of the properties satisfied by the
model and the expected properties for the composite model. The developed Coq code is about 18000 lines with
more than 200 definition and 90 theorems(http://coq4mde.enseeiht.fr/FormalMDE).

This work can be extended in several directions. First, other elementary operators and more sophisticated
composition operators should be supported; the actual use of the elementary operators is promising and allows
for the consideration of richer composition operators. Also, for the definition of other elementary operators,
we hope to enrich and combine our approach in using proof assistants with automated proofs tools (e.g., SMT
solvers like Z3)37 so that we can generate part of the proofs that can be completed interactively using specialized
tools like Why.38 Some changes to the encoding is required to adapt it to Z3 (first-order logic) syntax but the
interactive usage of Coq is still possible using Why.

Also, among the wide variety of properties that can be verified, we focussed on theminimal requirement of the
conformance to the initial metamodel. The next step is to improve the compositional verification of models with
various constraints, from simple static constraints such as verification of OCL constraints satisfaction to dynamic
properties such as deadlock freedom as proposed in the BIP framework [BBS06].

In order to accomplish this, we need to model the behavioral part of each language and we propose to make
use of the generic behaviors applicable to several metamodels along the lines presented in [LG13].We plan also to
experiment the behavioral aspect by considering the merging of Statecharts Specifications [NSC+07]. In the long

36 http://focalize.inria.fr.
37 https://z3.codeplex.com/.
38 http://why3.lri.fr.
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run, we plan to integrate the work of Garnacho et al. [MJPM13] that provide an embedding into Coq of timed
transition systems and to apply our formal proposal in the GEMOC framework in order to prove the correctness
of the proposed language composition operators.
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[CLST11] Calegari D, Luna C, Szasz N, Tasistro Á (2011) A type-theoretic framework for certified model transformations. In: Formal
methods: foundations and applications, Springer, New York, pp 112–127
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[JRJEFA07] José Raúl R, José Eduardo R, Francisco D, Antonio V (2007) Formal and tool support for model driven engineering with

maude. J Object Technol 6(9):187–207
[JWEG07] JayaramanP,Whittle J, ElkhodaryAM,GomaaH (2007)Model composition in product lines and feature interaction detection

using critical pair analysis. In: Model driven engineering languages and systems, pp 151–165
[KAAK09] Kienzle J, Al Abed W, Klein J (2009) Aspect-oriented multi-view modeling. In: Proceedings of the 8th ACM international

conference on aspect-oriented software development, pp 87–98, ACM
[KHPCT14a] Kezadri Hamiaz M, Pantel M, Combemale B, Thirioux X (2014) Correct-by-construction model composition: application to

the invasive software composition method. In: FESCA, pp 108–122



440 M. K. Hamiaz et al.

[KHPCT14b] Kezadri HamiazM, PantelM, Combemale B, ThiriouxX (2014) A formal framework to prove the correctness of model driven
engineering composition operators. In: ICFEM’14–16th international conference on formal engineering methods, Springer,
New York, pp 235–250

[KLJM06] Klein J, Loı̈c H, Jean-Marc J (2006) Semantic-based weaving of scenarios. In: Proceedings of the 5th international conference
on aspect-oriented software development, ACM, pp 27–38

[KPCT11] Kezadri M, Pantel M, Combemale B, Thirioux X (2011) A proof assistant based formalization of components in MDE. In:
8th international symposium on formal aspects of component software (FACS 2011), Springer, Berlin, pp 223–240

[Let05] Letkeman K (2005) Comparing and merging UML models in IBM rational software architect. IBM Rational
[LG13] Lara J,GuerraE (2013)From types to type requirements: genericity formodel-driven engineering. SoftwSystModel 12(3):453–

474
[MJPM13] Manuel G, Jean-Paul B, Mamoun F-A (2013) A mechanized semantic framework for real-time systems. In: Formal modeling

and analysis of timed systems, Springer, New York, pp 106–120
[NM00] Noy NF, Musen MA (2000) Algorithm and tool for automated ontology merging and alignment. In: Proceedings of the 17th

national conference on artificial intelligence (AAAI-00). Available as SMI technical report SMI-2000-0831
[NSC+07] Nejati S, Sabetzadeh M, Chechik M, Easterbrook S, Zave P (2007) Matching and merging of statecharts specifications. In:

Proceedings of the 29th international conference on software engineering, IEEE Computer Society, pp 54–64
[Obj06] Object Management Group, Inc. (2006) Meta object facility (MOF) 2.0 Core Specification
[Obj13a] Object Management Group (2013) OMG meta object facility (MOF) Core Specification, Version 2.4.1
[Obj13b] Object Management Group (2013) OMG unified modeling language TM (OMG UML) Version 2.5
[Obj14] Object Management Group (2014) Object constraint language, Version 2.4
[Par72] Parnas DL (1972) On the criteria to be used in decomposing systems into modules. Commun ACM 15(12):1053–1058
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