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1 Centro de Informática, Federal University of Pernambuco, Av. Jornalista Anibal Fernandes, s/n-Cidade Universitária, Recife,
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Abstract. A model checker is an automatic tool that traverses a specific structure (normally a Kripke structure
referred as the modelM ) to check the satisfaction of some (temporal) logical property f . This is formally stated
as M |� f . For some formal notations, the model M of a specification S (written in a formal language L) can
be described as a labelled transition system (LTS). Specifically, it is not clear in general how usual tools such as
SPIN, FDR, PAT, etc., create the LTS representation from a given process. Although one expects the coherence
of the LTS generation with the semantics of L, it is completely hidden inside the model checker itself. In this paper
we show how to create a model checker for L, using a development approach based on its operational semantics.
We use a systematic semantics embedding and the formal modeling using logic programming and analysis (FOR-
MULA) framework to this end.We illustrate our strategy considering the formal language COMPASSmodelling
language (CML)—a new language that was based on CSP, VDM and the refinement calculus proposed for mod-
elling and analysis of systems of systems. As FORMULA is based on satisfiability modulo theories solving, our
model checker can handle communications and predicates involving data with infinite domains by building and
manipulating a symbolic LTS. This goes beyond the capabilities of traditional CSP model checkers such as FDR
and PAT. Moreover, we show how to reduce time and space complexities by simple semantic modifications in
the embedding. This allows a more semantics-preserving tuning. Finally, we show a real implementation of our
model checker in an integrated development platform for CML and its practical use on an industrial case study.
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1. Introduction

It is very common, and with certain frequency, to find news about the creation of a new model checker T
for a certain formal specification (or programming) language L [CGL94]. There are two main reasons for this
continuous creation:

1. The languageL is new and specifically designed to deal with a certain kind of problem that justifies the existence
of model checking support; or

2. The model checker T is better (for instance, it has a superior performance or can handle a larger class of
problems) than another model checker T ′ for the same language L.
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Although amodel checker should obey the structured operational semantics (SOS) of a formal languageL [Plo04],
it is created, in general, as any other software. That is, it can be error-prone itself. In this sense, a development
process strongly associated to the SOS of L results in an immediate benefit: the correctness of the model checker
by construction (with respect to the correctness of the underlying implementation infrastructure).

In this paper we propose a new model checker based on three main arguments:

1. the language CML [WCF+12] is new and there is no available tool support for it;
2. we cannot create a CMLmodel checker by reusing previous model checkers in a semantic preserving way; and
3. our proposed model checker follows the SOS of CML clearly and directly, as opposed to the general practice

for previous formal languages.

This work is one of several efforts in the context of the COMPASS project [FLW14]. It is implemented as
a feature of the Symphony tool platform [CML+12].1 The Symphony tool provides syntax and type checking,
interpretation/debugging, proof obligation generation, theorem proving, model checking, test automation and a
connection to the Artisan Studio SysML tool where static fault analysis additionally is supplied. Symphony is
based on COMPASSmodelling language (the CML), a semantic combination among CSP, VDMand refinement
calculus, whose purpose is to provide support for modelling systems of systems (SoS).

The approach presented here has a low adaptation cost to become applicable to any language with CSP-like
concurrency and communication and rich state expressed in B, VDM, or Z, or even an imperative programming
language like C. So, the work is really applicable to CSP || B [ST02], Circus [WCF05] and Jin Song Dong’s
CSP# [SLDC09], as well as languages that can be translated into these more basic languages, such as Wellings
and Cavalcanti’s Safety-Critical Java [ZCW11]. The semantic link between all these languages together is UTP.
So, the choice of CML is really made for two reasons: (i) because we needed a model checker for COMPASS;
and (ii) because it is a concrete exemplar of a whole class of languages with quite a diverse user base.

Concerning the class of problems we can deal with, consider the following simple CML process.

1 channels a: int
2

3 process Main =
4 begin
5 actions
6 P = a?x -> a?y ->
7 if x <> y and x*x > 9
8 then Stop
9 else P

10 @ P
11 end

The process P receives two integers x and y on channel a. After that, if these values are different (x <> y)
and x*x > 9 the system deadlocks; otherwise, it behaves as P again. Process P cannot be handled by traditional
CSPmodel checkers, such as FDR [Ros98, Ros10] or PAT [LSD11], because it can accept infinite values (int) for
x and y, as well as the predicate x <> y is completely unbounded.2 To use traditional model checkers, one has
to use a subset of the integers and be smart enough to guarantee that at least one combination of values for x and
y satisfies the predicate x <> y and x*x > 9 as well as falsifies it. For simple problems, this is trivial. How-
ever, for practical situations, the usual is to have more complex predicates (due to dependencies among them, for
example) and the user can loose important properties of the original system if data values are not chosen carefully.

The model checker we propose in this paper follows directly from the SOS of CML in a systematic manner.
We use some ideas of [Leu01] and [Lee85] of capturing an SOS by a deep embedding (that is, representing the
semanticmodel as a transitionmachine stated in terms of logical facts), except for the underlying semantics of our
implementation platform (we use the Microsoft Research framework formal modeling using logic programming
and analysis (FORMULA) [JLB11]) and, as a consequence, on how the logical rules may be stated. We capture
data aspects of a language by a shallow semantics embedding, that is, capturing expressions directly in terms of
the elements available in the implementation platform.

1 More information available at: http://symphonytool.org/.
2 There are infinite valuations satisfying the predicate.

http://symphonytool.org/
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As we adopt the generic framework FORMULA [JLB11], which has a declarative language front-end similar
to Prolog but with a back-end that works in cooperation with the Z3 SMT solver [dMB11], we can build symbolic
model checkers able to handle communications and predicates involving data with infinite domains.

The embedding investigated in this work is a result of an evolution of previous embeddings in a product
line for developing model checkers. The embedding of CSP has been first produced focused on behavioural
aspects [MF13b]. It resulted in an apparatus to be reused to handle behavioural aspects inCMLembedding. Then,
the idea has evolved by also including data aspects, considering the operational semantics of Circus [MFDW14,
MF14].Afterwards,wehave introduced the concepts ofVDMin this embedding andadded timeaspects according
to CML’s operational semantics.

Although our CML model checker is based on a formal semantics, we developed a complementary testing
campaign based on expected behavioural properties (algebraic laws) as a preliminary investigation on the sound-
ness of our model checker. In this campaign the tests covered the key CSP operators and captured features of
the CSP SOS, so that we could compare the results of our model checker against the results of FDR. A more
detailed comparison of our model checker with others existing tools is pointed out as future work in Sect. 7.

Finally, we employ our CML model checker on a case study provided by the COMPASS industrial partner
Insiel.3

The main contributions of this paper are:

• a more intuitive and systematic model checker development strategy based on the SOS of a given concurrent
language;

• the use of FORMULA for implementing model checkers in a fast, sound and powerful way;
• manipulation of infinite data communications and predicates by the created model checker;
• integration of our model checker with a wider development environment (Symphony IDE);
• tuning model checker performance by simple semantic manipulation;
• applying the proposed CML model checker to an industrial case study.

This work is organised as follows. Section 2 presents a sufficient background onCML. Section 3 providesmaterial
regarding theMicrosoft FORMULA framework and the embedding of CML in it. In Sect. 4 we present the kind
of properties one is usually interested in investigating a system and their corresponding encoding in FORMULA.
Section 5 addresses the use of our model checker inside the Symphony IDE. Finally, we present some related
work in Sect. 6 and our conclusions and future work in Sect. 7.

2. Background

In this section we provide a background on the theory and on the framework we use in our approach.

2.1. Microsoft FORMULA

We present the underlying framework—Microsoft FORMULA—to build and analyse a CML specification.
FORMULA [JLB11] is a modern framework that follows the principles of model-based development and is

based on algebraic data types and strongly-typed constraint logic programming (CLP). It supports concise spec-
ifications of abstractions (in a Prolog-like style) and model transformations. As FORMULA uses SMT solving,
it has the advantage of providing model finding and design space exploration facilities. Thus, FORMULA can
be used to construct system models satisfying complex domain constraints. The internal activity of FORMULA
consists of a bottom-up least fixpoint search based on the Z3 SMT solver also from Microsoft.

The main elements of a FORMULA specification are:

• domains used to create abstractions of real-world problems in a way very similar to Prolog (with facts, rules,
and queries);

– facts n-ary operators (n ≥ 1), completely instantiated. They can be primitive or not. Only primitive facts
can be used within (partial) models (given as initial facts). On the other hand, primitive facts cannot be
used as head of rules because they cannot be derived from other facts;

3 http://www.insiel.eu/.

http://www.insiel.eu/
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Fig. 1. FORMULA snapshot model analysis

– rules they have the same role as in Prolog, except that rules cannot leave unbounded the elements used in the
head. A FORMULA rule has the format LHS:- RHS, where the right-hand side (RHS) is the head and
the left-hand side (LHS) is the body of the rule (a list of facts used to derive the RHS). For every element
X used in the RHS, we must have some constructor Cons(X ) in the LHS to constrain the possible values
of X ; FORMULA can only build the head from the elements of the body (bottom-up approach);

– queries predicates in terms of the (primitive) constructors of the language. The special query conforms
combines other queries using logical operators and is used as the main goal to validate a model in a
domain. When a (partial) model is inspected in FORMULA, the conforms clause is the starting point of
the searching procedure. If it is not possible to find an instance that satisfies this special query, the (partial)
model is said to be Unsatisfiable;

• (partial) models these are possible instances of domains. The main distinction between models and partial
models are that models are closed instances and partial models are open (to be closed/instantiated by the
solver) instances.

Although domains have elements similar to Prolog programs, they work differently. Prolog uses rules as starting
points of the searching procedure and stops at facts (a top-down approach), whereas FORMULAuses (primitive)
facts as starting points to create new facts (a bottom-up approach).

We illustrate the work of FORMULA using an example that captures the essence of a basic Digraph (see
Fig. 1). The choice for this example was based on a quick understanding of FORMULA. Although it does
not explicitly represent a labelled transition system (LTS) to be analysed, it is useful to allow a brief discussion
about searching and solving. Actually, FORMULA creates new facts in its logical database by using the rules on
non-primitive constructs (this can be viewed as the searching part). When no new fact can be created, the solver
tries to fill the primitive facts with data that yields a valid model (this is the solving part where FORMULA
automatically reuses Z3 [JKD+10]).

A Digraph is modelled as a domain containing a set of vertexes (V) and a set of edges (E). The qualifier
primitive indicates that vertexes and edges cannot be generated during the analysis (however their values can
be instantiated). The rulepath links vertexeswhere there is a single edge or several edges. Byusing the definitionof
path, FORMULA is able to find a path between two vertexes (if it exists) by building paths between intermediate
vertexes. The element undeclVertex establishes constraints upon the domain; it captures undeclared vertexes
by checking if the first (E(V(x), )) or the second (E( ,V(y))) components of edges have not been declared
as vertexes [fail V(x) and fail V(y), respectively]. Finally, the conforms constraint defines a final goal:
a valid graph cannot have undeclared vertexes.

We use two models to check instances of the domain Digraph. The model G1 defines a Digraph with one
vertex (V(5)) and a self-edge. As it has no undeclared vertexes, FORMULA detects its conformance with the
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Digraph domain (satisfiable). Concerning the partial model G2, there are three edges and two vertexes (some
are left undetermined). These elements play the role of parameters to be instantiated by FORMULA to make G2
satisfiable. In this case, FORMULA found the instances V(3) and V(–103701) and used V(3) to validate the
edge with the first vertex undertermined (E(V(3),V(3))). The value –103701 is arbitrary and was generated
only because there are two given vertexes in G2. If we remove one vertex, only V(3) is used. In this sense,
FORMULA works as a symbolic executor, expanding its base of facts as much as necessary. This fits well the
purposes of LTS generation.

2.2. The CML language

We start by introducing CML focusing on its features and operational semantics. CML is the first formal lan-
guage specifically designed for modelling and analysing SoSs. It is founded on the well-established formalisms
Circus [WC02] and VDM [FLV08], and combines a number of aspects required in SoS modelling such as discrete
time, concurrency, processes, state and contracts [WCF+12].

A CML model is basically composed by the following elements:
• types defining new types (numeric, lists, sequences, sets, records, union types, etc.) to be manipulated along
the specification and possible invariants over them;

• functions establishing maps between input and output types, possibly containing pre- and post-conditions;
• channels useful to define elements over which systems can communicate messages;
• processes model elements consisting of:

– state establishing mutable variables to be manipulated by its process;
– operations similar to functions but also working over state variables;
– actions specifying reactive behaviour such as calls, message passing, timeout, choices, etc.

2.2.1. Syntax of CML

The syntax of CML has been defined in [WM12] and contains constructs to provide support for several features.
Here, we select the subset of the original grammar to show the embedding of CML constructs in FORMULA.
Although we present construct for actions, processes can be combined by using the same operators and have a
similar understanding.
action =

Skip | Stop | Diverge (Basic actions)
| Wait expression (Delay action)
| communication -> action (Communication action)
| [ expression ] & action (Guarded action)
| action ; action (Sequential composition)
| action |˜| action (Internal choice)
| action [] action (External choice)
| action / [ expression ] \ action (Timed Interrupt)
| action, [ [ expression ] > action (Timed Timeout)
| action \\ chanset expression (Hiding)
| parallel actions
| control statements ;

parallel actions =
| action ||| action (Interleaving)
| action [| chanset expression |] action (Generalised parallelism) ;

control statements =
| if statement (Conditional choice statement)
| call statement (Call statement) ;

if statement =
if expression then
action

[ else
action ] (Conditional statement);
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According to the CML semantics, the primitive actions Skip and Stop, respectively, mean immediate termi-
nation and immediate deadlock. The basic action Diverge means a divergent behaviour—it runs without ever
interacting in any observable event (similar to an infinite loop doing nothing). The delay action ‘Wait t’ does
nothing for ‘t’ units of time and then terminates successfully. The communication action ‘comm –> P’ offers the
communication event ‘comm’ to its environment, and after its occurrence, it behaves as ‘P’. When values may be
exchanged between processes, we use the constructs ‘ch!exp’ to send the value corresponding to expression ‘exp’
(output event) and ‘ch?x’ to receive a value and store it in the variable ‘x’ (input event); otherwise, the event can be
simply denoted by the channel name ‘ch’. The guarded action ‘[cond] & P’ uses the boolean condition ‘cond’
to behave as ‘P’, if ‘cond’ is valid, or Stop, otherwise. The sequential composition ‘P;Q’ represents a process that
behaves as ‘P’ until ‘P’ terminates successfully, then the composition behaves as ‘Q’. The internal choice ‘P |˜|
Q’ nondeterministically behaves either as ‘P’ or ‘Q’. The external choice ‘P [] Q’ behaves as ‘P’ or ‘Q’ where the
choice ismade by the environment (that is, the context outside ‘P’ and ‘Q’ decideswhich of ‘P’ or ‘Q’ should evolve).
The timed interrupt action ‘P / t \ Q’ allows ‘P’ to continue for ‘t’ number of time units, after which it will be
interrupted by ‘Q’. This operator is not invoked if ‘P’ terminates before the time value ‘t’. If ‘t’ is not specified, the
action ‘P / \ Q’ behaves as ‘P’ until ‘Q’; that is, if any of the initial events of ‘Q’ occurs (at any time), the combined
process starts to behave like ‘Q’. The timed timeout action ‘P [ t > Q’ behaves as ‘P’ for ‘t’ units of time, then it
behaves as ‘Q’. If ‘P’ fails to begin a communication, ‘Q’ silently takes over. If ‘t’ is not specified, the action ‘P [ >
Q’ behaves as ‘P’, but can change the behaviour to ‘Q’ nondeterministically at any time.The hiding action ‘P \\ s’
behaves as ‘P’ but hiding the events in the set ‘s’. The interleave ‘P ||| Q’ means the parallel execution (with no
synchronisation) of ‘P’ and ‘Q’. On the other hand, the generalised parallelism ‘P [|cs|] Q’ executes ‘P’ and
‘Q’ in parallel synchronising on the events in the set ‘cs’. The conditional choice ‘if cond then P else Q’
behaves as ‘P’ if ‘cond’ is valid or as ‘Q’, otherwise. Finally, a call statement ‘P(params)’ invokes the action ‘P’
using ‘params’ as parameters (optional). This construct is useful for handling recursion in actions and processes.4

2.2.2. Operational semantics of CML

The semantics of CML has been originally defined in terms of Hoare and He’s unifying theories of programming
(UTP) [HH98]. This CMLUTP semantics was formally rewritten [CW13] in terms of a SOS following a Plotkin-
style [Plo04]. We present this SOS semantics and use it in a way closer to how a model checker works.

The operational semantics is described by a transition relation for the language constructs. These rules can be
used to define an abstract interpreter for the language, giving possible execution steps for CML processes. This
description can then be used as a guide for implementing model checking, refinement checking, animation, and
test automation [CW13].

The semantics deals with a CML program text and its current state, which is an assignment to all the program
variables in scope. This state is structured into global and local variables. So for example, when the program text
is the parallel composition of two actions, each may have its own local state as well as there being a global state
that persists beyond both their lifetimes [BGW12].

The operational meaning of a CML action is a computation: a sequence of individual steps that the action can
make as it executes. These steps are represented by a transition relation between individual machine states: (s, P).
Here, s is a text assigning constants to alphabetical variables and P is an action text. The pair represents the
current state of the computation, s, and the action yet to be executed, P. It is important to note that the transition
relation relates syntactic objects, not semantic ones. When we need to relate syntax to semantics, we write P to
describe the syntax of a action P with semantics P .

If we allow Skip to represent program termination, then (s, Skip ) is a terminal execution state, where s is
the final value of the computation.

A transition relation describes how the system moves from a start state (s, P) to a next state (t, Q) via a
transition with label (or event) l. Its generic representation is given by

(s, P) -→l (t, Q).
The transition relation will be given inductively over the syntax of the language. Here, the after-state (t, Q)

is one possible outcome of executing P starting from s. We hereafter assume basic knowledge in UTP and
operational semantics.5

4 There is also a specific constructor (mu) for recursion. The work presented here deals with explicit recursion (directly defined in action’s
body).
5 More details about firing rules of CML operational semantics can be found in [CW13].
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Fig. 2. Firing rules for CML

Figure 2 shows some firing rules of CML. The rules define a way of evolving a CML process/action from a
state to another.6 This is basically what we need to build LTSs, as explained in Sect. 3.

2.2.3. Classical properties of CML specifications

Similar to other languages likeCSP andCircus, CML specifications can also be analysed in terms of three classical
properties: deadlock, livelock and nondeterminism. These properties are defined like in CSP and have a strict
relation with the graph representation (LTS):

• deadlock a process is deadlocked if it reached some state (different from successful termination) where no
transitions can be fired;

• livelock a process has a livelock if it performs a τ -loop (a loop of internal or τ -transitions);
• nondeterminism a process is nondeterministic if it decides to accept or reject a same event.

6 For a complete understanding of the notation and all rules (including rules for time semantics) please refer to [CW13].



982 A. Mota et al.

3. Capturing the CML SOS

In this section we present how to capture the SOS of CML in FORMULA. This provides a systematic way of
creating a model checker from the operational semantics of a formal language in a fast and very intuitive manner,
similar to Leuschel [Leu01] and Verdejo [Ver00].

The work towards model checking assumes that the model M is given and focuses on formally describing
what means M |� f , or how to check f by traversing M . For languages whose syntax are closer to an LTS, and
that do not use complex data representations, the modelM can be represented more directly and, thus, it is easy
to justify that LTS was expressed (or captured) correctly. Nevertheless, for languages such as CSP [Ros98, Ros10],
PROMELA [GM99] and Circus [WCF05], creating a model checker by a direct programming approach can be
too error-prone. In practice, most model checkers only creates M from L using some black-box implementation
susceptible to programming errors. However, if the modelM is systematically created from the SOS of L (that is,
M ∈ SOS {L}) the model checker becomes a semantics-preserving model checker for L relative to the semantics
of the framework used to encode the SOS of L. The same applies to the property f . But for f , there is a standard
logical way of creating correct algorithms by reusing traditional graph traversal algorithms.

In this section we show how to capture the firing rules of the CML SOS in FORMULA so that the LTS is
directly derived from a conceptual (and formal) model. The semantics of a complex language might have several
aspects, such as, for example, data aspects and control (or concurrent). The ideal situation is to guarantee full
correctness about a possible encoding of a language semantics into a programming framework is a one-to-one
mapping from each syntactic fragment of the language to its meaning (or interpretation) using the constructors
of the programming framework. This is called a deep semantics embedding.

Sometimes, however, the semantics of part of the source language is close to the one available in the program-
ming framework. This is frequently the case of data aspects, where the programming framework already provides
means to deal with arithmetic expressions, known data types (natural, integer, real numbers and strings), sets,
relations, sequences, and so on. When a language semantics is captured in this way, we say that such a semantics
was shallow embedded in the programming framework.

3.1. Basic shallow embedding in FORMULA

Wepropose a way to capture the SOS of CMLusing a so called hybrid semantics embedding in which behavioural
aspects are captured in a deep embeddingway and data aspects are not interpreted. They are simplymapped in the
available elements, yielding a shallow embedding. Although FORMULA provides basic data types (integer,
natural, real and string), more complex types (like sets, relations, functions, sequences, bags, etc.) are
absent and the mapping is not so direct. The domain AuxiliaryDefinitions (see Fig. 3) has the purpose of
modelling types (basic types and complex) and operations over them.

The type VOID (line 3) is just a bottom value for all possible types. The most basic types (natural, integer, real
and strings) are directly reused from FORMULA. The sequence type is defined by the constructor (SeqType
in line 6) that is the union of two types (inductively defining a sequence). The constructor EmptySeq defines an
empty sequence and NonEmptySeq defines a non-empty sequence as a tuple containing the head (an element)
and a tail (another sequence).

The set type definition is similar to that of sequences and also provides a recursive description of sets in
FORMULA (lines 8–10).

Operations over sequences and sets are also provided as auxiliary definitions. They describe how the usual
operations (cardinality, union, intersection, concatenation, etc.) work in terms of FORMULA representations.
We omit them here to save space.

The ProductType is intended to represent the product of types of CML as a pair of two types.
The user defined types are also added in this FORMULA section. The inclusion of these types is necessary

to turn them available to create new types or be simply reused along the specification, which is achieved by union
of types (line 18) including basic types (integer, natural, real, string), complex types (SeqType,
SetType), product type (ProdType) and user defined types. For each basic type and user defined type, there
must be a constructor to provide support for instantiation of their values by FORMULA. These constructors
are called wrappers (lines 20–28) and have a specific use: they allow their use in facts where the internal types are
instantiated by FORMULA instead of given by the user or computed by the specification.

The constructor ParamW (line 30) is a wrapper specific for parameters. A parameter has a name (normally
the name of the action or process using it) and a value.
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Fig. 3. Representations for types and operations over them in FORMULA

The constructor for bindings (lines 33–36) are intended to define a set containingmaps from variable to values.
Operations over bindings are also included in this section.

Finally, the constructors guardDef and guardNDef represent the evaluation of an associated boolean
expression (the id identifies the evaluation). That is, each expression to be evaluated can have guardDef and
guardNDef facts describing the effect over bindings when the expression is valid or not, respectively.

3.2. Capturing the CML syntax

TheCMLSOS is captured as in the real scenario: the syntax and semantics are described in two separated domains
(syntax and semantics). The syntax domain defines the structures (building blocks) necessary to represent CML
constructs for events and processes. Figure 4 illustrates the FORMULA representation for someCML constructs
presented in Sect. 2.2.1.

The support for describing communications includes channel definition (line 3), the communication event
itself (line 4) and its effect over the bindings (lines 5–6). In this representation, communications without values
use the value void for the type being communicated. Events are represented by different constructs. The set of
all possible visible events7 is defined by union of types (line 7). Special events are defined in lines 8–9 and the type
for all possible events (visible, internal and time) is defined in line 10.

7 All events except for τ (internal event).
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Fig. 4. CML syntax represented in FORMULA

The representation of actions (and processes) starts by describing the basic actionsStop,Skip and Diverge
in the element BasicProcess (line 13). The Prefix (communication action) is represented as a pair of an
event (from Sigma) and the next behaviour. Internal and external choices are respectively represented by the
constructors iChoice and eChoice; each of them is composed by a left and a right processes (lines 15–16). The
constructors for interrupt (intrpt) and untimed timeout (uTimeout) are binary and contain a left and a right
process (lines 17–18). Their timed versions (tIntrpt and tTimeout) also contain a natural number to capture
the units of time. Particularly, the constructor tTimeout is used to represent the delay action (Wait N) as it
can be expressed as Stop [ N > Skip. The constructor extraChoice represents a special operator used
by the semantic rules of external choice (see Fig. 2), where the usual external choice ([]) is translated into such
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an operator ([+]) to which the firing rules are defined. The conditional choice constructor (condChoice) has
three components: a boolean condition identifier, a process defining the behaviour if the condition is valid and
another process defining the behaviour if the condition is invalid. The evaluation of the condition is captured by
the constructor (guardDef and guardNDef) defined in the auxiliary domain to avoid direct interpretation in
FORMULA.8 The constructor for sequential composition (seqC) is defined as a pair containing the first and the
second processes. The hiding (hide) is represented by a constructor containing a process and a set of events to
be hidden (represented as a string). This is a design decision used to avoid the interpretation of set operations in
FORMULA; the necessary information over sets (membership, inclusion, etc.) is given as initial facts to improve
the performance of FORMULA. Specially the facts establishing that an event belongs to a set are stated by the
constructor lieIn (line 52), which has a visible event and a set of events.

The generalised parallelism is represented by the constructor genPar (line 32). It contains a left process, a
synchronisation set and a right process. The constructor par (lines 33–34) represents a special operator used by
the semantic rules of generalised parallelism (see Fig. 2), where bindings are considered in each constituent part
of the parallel composition.

Aprocess call is represented by the constructor proc (line 36) that contains a process name and its parameters.
The constructor operation (line 37) represents an operation call anc contains the operation name and its

parameters.
An operation itself is represented by the constructor operationDef(opName,opParam,st,st ) (line

40), where opName is the name of the operation, opParam its parameter and st and st are the bindings rep-
resenting the state before and after executing the operation. The constructor preOpOk(opName,opPar,st)
(line 41) syntactically represents the precondition and actually is used to establish a fact to be created if the pre-
condition is holds. Ideally, we should embed the operation body once and calculate the validity of its precondition.
However, this is not possible due to some FORMULA requirements.9 As a solution, we use the precondition
expression to generate specific facts separately from operation’s body.

The constructor CMLProcess (line 44) defines (syntactically) all possible processes as the union of all kinds
of processes previously defined.

Finally, the constructor ProcDef (line 49) captures a process definition containing a name, its parameters
and the corresponding body.

3.3. Deep embedding of CML SOS in FORMULA

Concerning the deep embedding, where the behavioural aspects are completely interpreted in FORMULA, we
use an approach similar to those in the literature [Leu01, Ver00]: one-to-one mapping for each firing rule. The
deep embedding rules are defined in a specific section (the semantic domain) that extends the syntax domain.

The first definitions of the semantic domain are related to the underlying LTS structure: states and transitions.
1 domain CMLSemantics extends CMLSyntax {
2 State ::= (b: Binding, p: CMLProcess).
3 trans ::= (source: State, ev: SigmaTauTock, target: State).
4 primitive Clock ::= (Natural).
5 primitive GivenProc ::= (name: String).
6 ...
7 }

The constructor State captures any possible state (or context) of a CMLprocess during its execution directly
from the syntax domain. A transition is intuitively captured by the constructor trans as a triple containing a
source state, an event (captured as presented in the previous section) as label and a target state. Transitions
also consider the time event (tock) due to the timed semantics of CML. Note that these constructors are derived
because these elements will be generated during the LTS construction. Thus, one can think about the LTS being
represented by FORMULA facts where State are the nodes of the LTS and trans are the transitions between
states.

The constructor Clock is useful to consider time events during the analysis, where Clock(N)means that N
units of time have passed.

The constructor GivenProc has the purpose of defining the starting point of the analysis: the name of the
process to be analysed. From the name, FORMULA recovers the body and starts the LTS generation.

8 Design decision due to performance.
9 This actually originates non-stratified models, that are not allowed by FORMULA.
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Below the representation of each firing rule presented in Fig. 2 in terms of FORMULA transitions and states
is shown. The transitions involving time are not represented here but follow a similar way.

No transition

Similar to CSP, the action Stop does not have associated transition because it represents a final state. In CML,
Skip also represents a final state and has no transition (differently from CSP that defines a special transition for
termination).

On demand state creation

Except for the initial state, the LTS creation requires instantiation of new states and transitions. The existence of
a transition is associated with the existence of its source state (besides other conditions as defined by the firing
rules). Thus, whenever a new transition is created we need to provide a dynamic creation of the (next) states as
well (which are essential to keep going on the LTS expansion). This is achieved by the general rule

State(st,body):- trans(S,ev,State(st,body)).

The above rule guarantees the creation of the final state of a transition (and, more importantly, the initial
state of a new transition).

Divergent behaviour

The divergent behaviour originates a transition to itself. This is represented by

trans(iS,tau,iS):- iS is State(st,Div).

Prefix

The representation for communication action in FORMULA is intuitive as it simply creates a transition labelled
with an event to the next behaviour:

1 State(st_,P),
2 trans(ini, CommEv(chName,chExp,chType), State(st_,P)):-
3 ini is State(st,Prefix(IOComm(id,chName,chExp,chType),P)),
4 IOCommDef(id,chType,st,st_).

As long as there is a state where a communication is ready to be performed (IOComm(id,chName,...))
and its respective effect over bindings (IOCommDef(id,...)) also exists, there must be a transition from such
a state via a corresponding event (CommEv(chName,chExp,chType)) to the next state (State(st ,P)).
Although the dynamic creation of states would be responsible for creating the State(st ,P), its occurrence in
the LHS of the rule is to avoid such a creation only in the next FORMULA iteration.

Nondeterministic choice

Recall from the firing rule for nondeterministic choice that internal progress can occur in both elements. This
originates two rules in FORMULA:

1 State(st,P),
2 trans(State(st,iChoice(P,Q)),tau,State(st, P)):- State(st,iChoice(P,Q)).
3 State(st, Q),
4 trans(State(st,iChoice(P,Q)),tau,State(st, Q)):- State(st,iChoice(P,Q)).

Note that the rules of the internal choice create both next states and internal transitions to them.

External choice

The firing rules for external choice have some subtleties that are explained accordingly. First, the usual external
choice ([]) moves to another operator ([+]), where the binding is copied to each constituent part. As long as
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the state State(st,eChoice(P,Q)) state is reached, the system moves (via a τ transition) to State(st,
extraChoice(st,P,st,Q). The creation of the states in lines 1–3 is an optimization to create, in the current
iteration, the premises for the next expansions.

1 State(st,P),
2 State(st,Q),
3 State(st, extraChoice(st,P,st,Q)),
4 trans(iS, tau, State(st, extraChoice(st,P,st,Q))):- iS is State(st,eChoice(P,Q)).

If one of the operands terminates, the external choice also terminates. That is, the extraChoice
(st1,Skip, , ) evolves to State(st1,Skip) (or extraChoice( , ,st2,Skip) evolves to State
(st2,Skip)) via a τ transition.

1 State(st1,Skip),
2 trans(iS,tau,State(st1,Skip)):- iS is State(st,extraChoice(st1,Skip,_,_)).
3 State(st2,Skip),
4 trans(iS,tau,State(st2,Skip)):- iS is State(st,extraChoice(_,_,st2,Skip)).

If one of the operands have internal progress, the external choice does so accordingly. This is expressed as
follows:

1 State(stP_,P_),
2 State(st,extraChoice(stP_,P_,stQ,Q)),
3 trans(iS,tau,State(st,extraChoice(stP_,P_,stQ,Q))):- //the combination evolves
4 iS is State(st,extraChoice(stP,P,stQ,Q)),
5 trans(State(stP,P),tau,State(stP_,P_)). //there is internal progress
6

7 State(stQ_, Q_),
8 State(st,extraChoice(stP,P,stQ_,Q_)),
9 trans(iS,tau,State(st,extraChoice(stP,P,stQ_,Q_))):-

10 iS is State(st,extraChoice(stP,P,stQ,Q)),
11 trans(State(stQ,Q),tau,State(stQ_,Q_)).

Whenever one of the constituent parts can evolve via a visible event, the external choice behaves accordingly.
That is, the entire combination evolves, via a visible event, to the next behaviour of the corresponding constituent
part. This is expressed as follows:
1 State(st3,P_),
2 trans(iS,ev,State(st3,P_)):- iS is State(st,extraChoice(st1,P,st2,Q)),
3 trans(State(st1,P),ev,State(st3,P_)), ev != tau, ev != tock.
4 State(st3,Q_),
5 trans(iS,ev,State(st3,Q_)):- iS is State(st,extraChoice(st1,P,st2,Q)),
6 trans(State(st2,Q),ev,State(st3,Q_)), ev != tau, ev != tock.

Note that the conditions ev != tau and ev != tock are necessary to exclude internal and time events
from this kind of progress.

Parallelism

The general parallelism is also defined in terms of two constructors: one considering only processes (genPar)
and another considering the internal states of each component process (par). The first firing rule concerns the
beginning of the parallel execution and it is represented by:
1 State(st,P),
2 State(st,Q),
3 trans(iS,tau,State(st,par(st,P,X,st,Q))):- iS is State(st,genPar(P,X,Q)).

The parallel execution (genPar) starts by originating a parallel execution (par) with copies of the original
bindings to each component part.

Once a parallel state par(...) is created, it can progress only if its parts (premises) are available. The
following rule has this purpose.

1 State(stP,P), State(stQ,Q):- State(st,par(stP,P,X,stQ,Q)).
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The parallelism of two independent processes evolves only one of its internal parts if the event to be performed
does not belong to the synchronisation set. This rule is written distinctly for both parts as follows:

1 State(st,par(stP_,P_,X,stQ,Q)),
2 trans(iS, ev, State(st,par(stP_,P_,X,stQ,Q))):-iS is State(st,par(stP,P,X,stQ,Q)),
3 trans(State(stP,P),ev,State(stP_,P_)),fail lieIn(ev, X).
4

5 State(st,par(stP,P,X,stQ_,Q_)),
6 trans(iS, ev, State(st,par(stP,P,X,stQ_,Q_))):-iS is State(st,par(stP,P,X,stQ,Q)),
7 trans(State(stQ,Q), ev, State(stQ_,Q_)), fail lieIn(ev, X).

Note that the fact fail lieIn(ev,X) belongs to the right-hand side of both rules. It means that the
left-hand side facts are created only if the event ev is not a member of the set X.

The parallel synchronised, on the other hand, requires both parts agree on the same event (a member of the
synchronisation interface).

1 State(st,par(stP_,P_,X,stQ_,Q_)),
2 trans(iS, ev1, State(st,par(stP_,P_,X,stQ_,Q_))):- iS is State(st,par(stP,P,X,stQ,Q)),
3 trans(State(stP,P),ev1,State(stP_,P_)), trans(State(stQ,Q),ev2,State(stQ_,Q_)),
4 ev1!=tau, ev2 != tau, lieIn(ev1, X), lieIn(ev2, X),
5 ev1 = CommEv(chanName,_,value), ev2 = CommEv(chanName,_,value).

Finally, the synchronised parallelism ends when both parts reach a successful termination.

1 State(st,Skip),
2 trans(iS, tau, State(st,Skip)):- iS is State(st,par(stP,Skip,X,stQ,Skip)).

Sequential composition

The rules of sequential composition captures the two situations specific of the operator: when the first process
evolves (lines 1–2) and when it terminates (lines 4–5). In the first situation, the composition moves to another
composition where only the first process evolves. In the second situation, the composition simply evolves to the
second process.

1 State(st_,seqC(P_,Q)),
2 trans(iS,ev,State(st_,seqC(P_,Q))):- iS is State(st,seqC(P,Q)),trans(State(st,P),ev,State(st_,P_))

.
3 State(st,Q),
4 trans(iS,tau,State(st,Q)):- iS is State(st,seqC(Skip,Q)).

Process call

In terms of operational semantics, a process call is represented as a transition from the call itself to the body of
the process. In FORMULA, this is expressed as follows:

1 trans(n,ev,State(st_,P_)):- n is State(st,proc(P,pPar)), RecoverBody(n,pBody),
2 trans(State(st,pBody),ev,State(st_,P_)).
3

4 State(st,pBody):- n is State(st,proc(P,PPar)), ProcDef(P,PPar,pBody).
5

6 RecoverBody ::= (s:State,p:CMLProcess).
7 RecoverBody(n, pBody):- n is State(st,proc(P,PPar)), ProcDef(P,PPar,pBody).
8 RecoverBody(n, pBody_):- n is State(st,proc(P,PPar)), ProcDef(P,PPar,pBody), pBody = proc(N,NPar),

RecoverBody(State(st,pBody),pBody_).

Once the stateState(st,proc(P,pPar)) (line 1) has been reached during the LTS generation, we recover
the body associated with the process name P (RecoverBody(n,pBody) in line 1) and require that there is a
transition from such a process fragment trans(State(st,pBody),ev,State(st ,P )) (line 2). This
causes the creation of a new transition from the initial state to the next state (after the body has been recovered).
This is an optimisation to avoid body recovery via internal transitions and has improved the performance of
FORMULA when handling parallelism. The constructor RecoverBody is useful for recovering the real body
of a call, even when there are successive calls.
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Operations

Recall from Sect. 3.2 that operations are syntactically represented by constructors capturing its precondition and
another capturing its post condition. Furthermore, each precondition originates one rule that is useful to create a
trigger fact to the transition associated with an operation execution. Such a fact is created only if the precondition
holds. The general form of a precondition rule is

1 preOpOk(opName,opParam,st):- pre opName.

In the above rule, pre opName is a generic representation of the real precondition of operation opName.
Indeed, it is the FORMULA sentence for the real precondition and, obviously, it depends on each operation. As
it is in the right hand side of the rule, it enables the creation of the fact preOpOk(opName,opParam,st) only
if the real precondition holds.

On the other hand, the generic representation of the transition associated with an operation execution is
1 trans(n,tau,State(st_,Skip)):- n is State(st,operation(opN,opPar)), preOpOk(opN,opPar,st),
2 operationDef(opN,opPar,st,st_).

Is it worth noting that a transition associated to an operation leads to a state there the process
component is Skip. This comes from the semantics of a CML operation. As long as the there is a
state containing an operation call (n is State(st,operation(opN,opPar)) whose corresponding pre-
condition holds (preOpOk(opN,opPar,st)) and according to the corresponding operation definition
(operationDef(opN,opPar,st,st )), the transition is created. Furthermore, it is worth mentioning that
the fact operationDef is operation dependent and is created for each operation defined in aCML specification.
It incorporates the changes performed by the operations in variables and has the general form
1 operationDef(opN,opPar,st,st_):- n is State(st,operation(opN,opPar)), st=bindings, st_=bindings_,
2 var_ = update_expr.

An operation definition is captured by a fact that is created only if there is an operation call and the variables
of the bindings after (with suffix ) are updated according with the expression update expr (extracted from
the post condition and represented in FORMULA).

4. Classical properties

In this section we show how to check classical properties of CML specifications in FORMULA. Our goal here is
to show how to perform similar analysis as provided by FDR and PAT, but for unbounded state spaces (infinite
data communications and predicates).

The rules presented previously guide FORMULA to build the LTS for a CML process according to its
operational semantics. Once the LTS is created, FORMULA can walk through it to find specific properties. We
focus on three classical properties because they are supported by CSP traditional tools like FDR and PAT:

The most suitable way to represent properties in FORMULA is using a specific domain that extends the
semantic one, as illustrated by Fig. 5.

The notion of reachability is captured by the constructor reachable (lines 2–7). The first reachable state is
initial one (associated with the body of the process to be analysed). Furthermore, all states reached by a transition
or by recovering the associated state (for calls) are also reachable.

A deadlock (lines 9–10) is captured by the existence of a reachable state (different from Skip) from which we
cannot recover a body (the state is not a call) neither go to any other state by a transition. The term failmeans
the absence of a specific fact in the language of FORMULA.

The constructor tauPath (lines 13–15) captures sequences of τ -transitions between two states. A tauPath
can have only one transition or a tauPath to an intermediate state and another tauPath to the final state.

The constructor accepts (lines 19–21) captures the acceptances in a state. For a state P, this can be done
by capturing directly the events of all outgoing transitions from P or from all states reached from P by invisible
transitions.

The nondeterminism property (lines 23–25) is captured by checking the existence of two transitions with
the same event (possibly τ -transitions) from the same state L (trans(L, ev1, S1) and trans(L, ev1,
S2)) leading to different states (S1!=S2) in which the process can accept (accepts(S1, ev)) or reject (fail
accepts(S1, ev)) the same visible event (ev!= tau).
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Fig. 5. Capturing classical properties in FORMULA

It is worth noting that representing classical properties in FORMULA is almost a direct transcription from
its definition. This is a result of reasoning with FORMULA and its language is similar to reasoning about First-
Order Logic (Clark completion). A detailed discussion on how FORMULA rules are associated to First-Order
Logic formulae byClark completion is presented in [MF13a,MFDW14], including the derivation of FORMULA
expressions for each classical property. Actually, FORMULA is a combination between CLP and satisfiability
modulo theories (SMT) [JSD+09]. Executing a FORMULA abstraction means determining whether a logic
program can be extended by a finite set of (primitive) facts so that a goal is satisfied. This requires searching
through (infinitely) many possible extensions using the state-of-the-art SMT solver Z3 [DMB08]. Consequently,
FORMULAabstractions can include variables rangingover infinite domains and richdata types.Nonetheless, the
method is constructive. That is, the algorithm behind FORMULA returns extensions of the program witnessing
goal satisfaction. Moreover, as FORMULA is based on First-Order Logic and LTL is a subset of this logic, we
can encode LTS in terms of FORMULA and perform LTL model checking. However, this is not in the scope
of this paper. We restricted ourselves to perform those properties check simultaneously supported in FDR and
PAT. For instance, PAT supports LTL model checking but FDR does not.

5. Using the model checker

To use our proposed model checker in practice, it is expected that the user can write specifications using CML
syntax and get error messages in a user-friendly way. Thus, this section provides an overview about how the
model checker presented in this article fits into the Symphony IDE: an open source tool supporting systematic
engineering of SoSs using the CML.

5.1. The Symphony IDE tool

Symphony IDE is a tool built on top of the Eclipse platform, that integrates several features and auxiliary
tools to provide support for dealing with SoSs. Detailed information about the Symphony IDE can be found
in [CMDC+14]. Relevant material and the download link are available on the Symphony tool website.10

10 http://symphonytool.org.

http://symphonytool.org
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Fig. 6. CML model checker perspective

Broadly, the Symphony IDE integrates all of the available CML analysis functionality and provides editing
abilities. The integration with Artisan Studio provides the ability to model SoSs using SysML. CML model files
can be generated directly from SysML models and recognised within the Symphony tool automatically. SysML
models may also have static fault analyses performed on them using the external HiP-HOPS tool [PWP+11].

The main Symphony tool contains many submodules [abstract syntax tree (AST), parser, type-checker and
editor] and plug-ins (the larger grey boxes). Concerning external tools, Symphony IDE uses RT-Tester, the
Isabelle theorem prover, the Microsoft FORMULA model checker and Maude. For each external tool there is
a corresponding plug-in. Furthermore, the model checker plug-in also provides support for the fault tolerance
plug-in to analyse fault tolerance properties of CML models.

The simulator plugin is capable of simulatingCMLmodelswithin theSymphony IDEwithnoneed for external
components, but it is also capable of co-simulating a model that does have external components. This is done via
a set of libraries that are embedded into the external component, and which allow for communication with the
simulator plug-in also used for incorporation of passive testing as well as external code gradually [LrNK14].

Furthermore, as the Symphony IDE is based on Eclipse platform, it provides a common look and feel to a
large collection of extension products and the use of views and perspectives.

5.1.1. The model checker plugin

The model checker functionalities are available through the CML model checker perspective (see Fig. 6), which
is composed by the Symphony Explorer (1), the CML Editor (2), the Outline view (3), the internal Web browser
(visible when the user wish to see possible counterexamples) and two further specific views: the CML model
checker list view (4) to show the overall result of the analysis and the model checker progress view (5) to show
the execution progress of the analysis, which is invoked through the context menu when the CML or the MC
perspectives are active.

The way the model checker instantiates data from infinite domains is configurable in Symphony through the
menu Window –> Preferences. There is a section “model checker setup” (see Fig. 7) that provides a field
containing the number of instances that the model checker will use for all infinite types used in any CMLmodel.
The default value is 1. The suitable value depends on the specification. For example, if the piece of CML code
ch?x –> Stop is used, only and ch is a channel supporting an infinite type, only one instance is enough to
detect the deadlock. However, if the CML code a?x -> b?y -> if (a <> b) then ... (a and b support
infinite type) is used, the model checker needs two instances (at least) to perform the correct analysis.
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Fig. 7. CML model checker preferences

In general guidelines, the number of instances can be determined by looking at the necessary values to explore
all branches of the analysed process.

Right click on the CML project (or file) to be analysed and select Model check → Property to be checked.
The option Check MC Compatibility allows a previous check if the constructs used in the model are supported
by the model checker. If some constructor is not supported by the model checker, the Symphony IDE shows a
warning message (a popup) and the user can see more details by accessing the problems view.

When invoking the model checker, the result is shown in the model checker list view (� satisfiable or X for
unsatisfiablemodels). Theprogress view shows theFORMULAinvocation,where theuser can stop the analysis by
pressing the cancel button. For satisfiable models, the model checker plug-in provides a graph visualisation using
the internal browser (by a double click in a specific item of the model checker list view component). The graph of
the counterexample is generated by an internal component (graph builder) that obtains the output of FORMULA
and uses is built by processing the output of FORMULA and algorithms considering the shortest path from the
initial state to the state validating the property. Thus, although there might be other counterexamples, it shows
the shortest one.

5.2. Examples and industrial case studies

The Symphony IDE provides some public examples that can be imported. This is achieved by a right click on
the CML Explorer component and choosing the Import option. Then select the option Symphony → Symphony
examples. The examples accepted by the model checker contain the suffix “ MC”in their names.

Simple bit register

The BitRegister MC project contains the model of a bit register (a simple and didactic example), whose
specification contains types, values and functions as follows.

1 values
2 MAX : nat = 4
3 increment : nat = 1
4

5 functions
6 oflow : int*int -> bool
7 oflow(i,j) == i+j > MAX
8

9 uflow : int*int -> bool
10 uflow(i,j) == i-j < 0
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11

12 types
13 MYINT = nat
14 inv i == i in set {increment}
15

16 channels
17 init, overflow, underflow
18 inc, dec : MYINT

The MAX value is intended to limit the number of bits manipulated by the register; its value is 4. The
increment value denotes the number to be used in increment or decrement operations. The functions uflow
and oflow are useful to detect underflow and overflow, respectively. And the type MYINT is a natural number
with a constraint (invariant) limiting the possible values to the set {1}.

In terms of channels, the bit register uses ainit (to represent an event specific for initialisation purposes),inc
and dec. The last two channels support the type MYINT and are used to communicate the value of increment.

Concerning the main description, the bit register is modelled as a process (RegisterProc) that contains
a state, operations and actions. The state contains one variable (reg) that stores a natural number with default
value 0. Three operations are defined to change the state variable: INIT simply assigns MAX–1 to reg, whereas
ADD and SUB define sum and subtraction of a value (argument) over reg.

Concerning actions, the RegisterProc has an auxiliary action REG that is an external choice between two
actions: one involving increments and other involving decrements. The first action offers an event on channel
inc and then checks if an overflow occurs (before performing the actual increment on reg). If so, the process
deadlocks; otherwise, the operation ADD is executed and the process recurses in action REG again. The second
action is similar but offers an event on channel dec, checks for underflows and executes the operation SUB and
recurses again (as long as underflow does not occurs). Finally, the main action of RegisterProc establishes
that the process performs the init action and then behaves like the sequential composition INIT();REG, where
the initialisation is executed and the system behaves as the action REG.
1 process RegisterProc =
2 begin
3 state
4 reg : int := 0
5

6 operations
7 INIT : () ==> ()
8 INIT() == reg := MAX - 1
9

10 ADD: int ==> ()
11 ADD(i) == reg := reg + i
12

13 SUB: int ==> ()
14 SUB(i) == reg := reg - i
15

16 actions
17 REG = (inc.increment -> [not oflow(reg,increment)] & ADD(increment);REG)
18 []
19 (dec.increment -> [not uflow(reg,increment)] & SUB(increment);REG)
20 @ init -> INIT(); REG
21 end

It is not difficult to see that the RegisterProc process can deadlock in two situations: after one increment
(two events inc.1 are performed but only one ADD operation is executed) there is an overflow, or after MAX–1
decrements (MAX events dec.1 are performed but the operation SUB is executed MAX–1 times). Figure 8 shows
the deadlock for the first situation (the shortest path to deadlock). If one changes the values of increment to
2, only one inc.2 event is performed before reaching a deadlock.

Handling infinite types

An example of simple CML processes handling infinite types in communications and predicates is also available
in the project InfComm MC. Although the processes are quite simple, they are useful to show the power of SMT
solving inside the model checker to handle the infinite types. The processes used here are not analysable by FDR
or PAT.
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Fig. 8. Graph of bit register

The types manipulated by this example (NATA and REALB) are declared just as alias for natural and real
numbers. The declared channels a and b respectively support the types NATA and REALB.

1 types
2 NATA = nat
3 REALB = real
4

5 channels
6 a:NATA
7 b:REALB

The first process has a state variable (n) of type NATA and it is initialised with 0. It also declares an operation
(Double) that receives a natural number and puts its double value in the state variable. The behaviour is described
by the action MAIN: it performs the input event a?x and calls the operation Double. This puts 2*x in the state
variable n. Then the process receives another input (a?y) and checks if n = y and y > 2 holds. If so, the
process deadlocks; otherwise, it terminates successfully.
1 process P =
2 begin
3 state
4 n : NATA := 0
5 operations
6 Double:nat ==> ()
7 Double(k) == n := 2*k
8 actions
9 MAIN = a?x -> Double(x); a?y -> if (n = y and y > 2) then Stop else Skip

10 @ MAIN
11 end

The input events a?x and a?y correspond to an infinite family of events (channel a accepts any natural
number). This is not allowed in FDR or PAT. Our model checker instantiates symbolic values and tries to find
the deadlock. It is quite intuitive that two instances are necessary to validate the predicate n = y and y >
2 and detect the deadlock. This information is put in the model checker setup preferences and the deadlock
check is performed. After the analysis, the graph representation shows the values 2 and 4 as assigned to x and y,
respectively. Indeed, they are the least natural numbers that satisfy the predicate n = y and y > 2. It is not
clear in the documentation how Z3 finds these values internally. However, they just need to satisfy all predicates
and constraint they are involved in.
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Fig. 9. Outline of the emergence response system

The second process is a variation of the previous one, but instead of terminating via Skip, it has the possibility
of executing infinitely (by a recursion call). The process receives an input (a?x1) and calls the Triple operation.
Then, it receives a real number as input (b?y1) and tests if the predicate value = y1 and y1 > 2 holds. If
it is true the process deadlocks; otherwise, the process repeats the same behaviour again.

1 process PRec =
2 begin
3 state
4 value : NATA := 0
5 operations
6 Triple:nat ==> ()
7 Triple(v) == value := 3*v
8 actions
9 MAIN = a?x1 -> Triple(x1); b?y1 -> if (value = y1 and y1 > 2) then Stop else

MAIN
10 @ MAIN
11 end

This process is not analysable in FDR or PAT. The infiniteness of the input events disable the analysis by
both tools. Furthermore, the use of real numbers in events disables the analysis in FDR. By manipulating only
one instance of NATA and one of REALB our model checker was able to find de deadlock. In this case, the values
found for x1 and y1 were 1 and 3, respectively.

Industrial case study

Although the COMPASS project has several case studies, all examples chosen to be analysable by the model
checker do not use communications and predicates involving data of infinite domain. We have selected the
emergence response system (ERS) to evaluate the model checker because it has a detailed description of its
requirements and due to its high complexity (as a SoSs). The ERS is a compound system introduced in [APR+13,
ADP+13] (see its Outline view in Fig. 9). It is supplied by the Italian company Insiel, which supports an SoS
in northern Italy incorporating separate emergency services (such as fire departments and ambulance services).
The constituent systems are operationally and managerially independent (provided and developed by external
organisations). They are the Phone System, Call Centre, Radio System and Emergency Response Unit (ERU).
Each constituent may be geographically distributed and may evolve. The entities in the environment with which
the SoS interacts include Callers and Targets. The purpose of this simplified Insiel SoS is to meet one high-level
requirement: for every call received, send an ERU with correct equipment to the correct target. We extract the
code that corresponds to the activation, detection and recovery of faults.

We add controller processes ERUs 0, ERUs 1 to complete the entire behaviour of the Call Centre, controlling
the number of ERUs currently allocated (see Fig. 10). They are similar but have a subtle difference in their
operation deallocate(). The controller process ERUs 0 has a state containing the number of allocated ERUs
(allocated 0) and the total number of controlled ERUs (total erus 0). Both variables have 0 as default
values. The defined operations allocate 0() and deallocate 0() have the purpose of modifying the
variable allocated 0, by maintaining or decreasing its value accordingly.
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Fig. 10. CML specification of the ERUs

Concerning the behaviour, the processERUs 0 has four auxiliary actions:InitControl that simply initiates
the state variables with convenient values; Choose that behaves like action Allocate, if there is no allocated
ERU (allocated 0 = 0), Service, if all ERUs are already allocated (allocated 0 = total erus 0)
or like (Allocate [] Service), otherwise;Allocate that communicates the allocation of an available ERU
(through event allocate idle eru), allocates it (by calling operation allocate 0) and then behaving like
Choose again (by using sequential composition); and Service that communicates the execution of a rescue
service (through event service rescue), makes an ERU available (by calling operation deallocate 0)
and then behaving like Choose again. The main behaviour of the ERUs 0 process is defined by the sequential
composition between InitControl and Choose. The process ERUs 1 has almost the same description. It
has its own state variables and operations. However, operation allocate 1() changes the corresponding state
variable differently (Fig. 10).

The processes InitiateRescueFault1Activation and Recovery1 (see Fig. 11) establish activities of
fault rescue and recovery, respectively. They are useful to detect faults in the system and start a recovery procedure
in order to guarantee the allocation of an ERU. The two versions of the entire ERS are described by ERSystem 0
and ERSystem 1. In version ERUs 0 the operation allocate 0 should add 1 to the previous allocated 0
value. This simple mistake causes a deadlock on process ERSystem 0—because channel service rescue is
never offered by ERUs 0—that is successfully detected by the model checker. On the other hand, the process
ERUs 1 fixes this problem and ERSystem 1 in Fig. 11 is deadlock-free.
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Fig. 11. The fault rescue and recovery activities of ERS

6. Related work

The efforts toward increasing the power of CSP verification have focused on auxiliary techniques to go beyond
FDRcapabilities.Theuseof SAT-solving, for example, as anauxiliary techniquehasbeen investigated in [POR12],
where a prototype called SymFDR implements a boundedmodel checker for CSP. The authors compare with the
FDR tool to show that SymFDR can deal with problems beyond FDR, such as combinatorial complex problems.
SymFDR uses FDR as expansion engine but deals with specific SAT-based analysis. For some problems FDR
outperforms SymFDR and for other problems the reverse occurs. In [POR12] the authors attempts at explaining
why such situations happen. For our context, what matters is that although SymFDR is based on SAT, it can only
handle finite state space systems because it reuses the LTS representation of CSP processes provided by FDR.

The approach proposed in [Leu01] is strongly related to ours and consists of an implementation of the
CSP language based on SICStus Prolog (a variation of Prolog). Its main goal is to provide a CSP interpreter
and animator (instead of a model checker). According to the authors, with a little effort, their solution could be
combinedwith anLTLmodel checker (e.g. SPIN) to also provide verification ofCTLproperties. Part of the design
of ourmodel checker in FORMULA follows a similar declarative and logic representation as reported in [Leu01],
but we focus on model checking instead of interpretation. Nevertheless, the LTS generated by FORMULA in
our approach is also used to show the (symbolic) execution of the process (the entire graph). Furthermore, as our
model checker can handle infinite state systems, we indeed concretise a future work pointed out in [Leu01].

The ProB tool [LB03] provides animation and model checking support for the B method [Abr96]. In its
internal structure, ProB contains several modules: front-end, B-kernel, interpreter, animator, state-based model
checker and temporal model checker. The last two modules enable ProB to support temporal model checking
and constraint-based model checking. Furthermore, the tool provides verification facilities for CSPM such as
refinement checking, LTL model checking, and CTL model checking as well. Hence, CSPM specifications can
be analysed and verified in ProB by means of refinement checking and classical model checking (using temporal
properties). A component of ProB is used (particularly the solver) in Symphony (by the CML interpreter) to
solve constraints related to the data aspects of CML.11 Although ProB is a sophisticated debugging tool even for
very large machines (non-exhaustive exploration of the state space and capability of finding potential problems
are strong points of ProB [LB03]), it can handle only finite sets and variables with finite range of values. In our
model checker, the use of symbolic values and SMT solving also allows one to handle data with infinite domain
in communications or predicates (using any variable). Then, Z3 provides these concrete values automatically.
Furthermore, our model checker is able to cope with time aspects as well. Nevertheless, we consider ProB a
strong candidate to be used as underlying framework, instead of FORMULA, in our approach (as pointed out
as future work in Sect. 7).

11 This use is indeed present in the VDM interpreter of the Overture tool, which is reused by the CML interpreter included in Symphony.
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Amodel checker forCSPM has been proposed in [LF08]. It considers a subset ofCSPM and has the advantage
of being FDR-compliant. Thus, FDR has been used to validate the output produced by the tool. Under the point
of view of embedding, this work goes beyond [Leu01] by also providing verification capabilities. The tool deals
with some issues in a more efficient way than FDR does (the use of lazy evaluation, for example). However, it
does not support time aspects (this is pointed out as future work).

The approach presented in [DHSZ06] is another interesting work similar to ours. It allows verification of
properties and refinement between Timed CSP specifications by using CLP [JL87]. The approach starts by
encoding the semantics (operational and denotational) of Timed CSP in CLP. Although this allows a systematic
translation, no tool support was presented to allow the user to handle Timed CSP directly (and derive the CLP
code automatically). The approach is able to cope with state-based specifications (even with more complex data)
and also allows refinement checking via CLP. However, it is not able to handle communications involving data
from infinite domains.12 In this sense, our work goes beyond by using the power of STM solving to also handle
communications and predicates involving (not complex for the moment) data with infinite domains.

The idea of using SMT-solving for model checking purpose is not new either, mainly because the advances
of SMT solvers bring a new level of verification. For example, the approach proposed in [BMR12] extends the
SMT-LIB to describe rules and declare recursive predicates, which can be used by symbolic model checking.
Moreover, that work investigates the strong similarity between property verification and reachability analysis.
We use this result to encode queries in FORMULA as reachability questions. Another approach is presented
in [ABG+13] proposes an SMT-based specification language to improve the verification of safety properties. Our
work, on the other hand, brings a new perspective for reasoning about infinite systems by using a high level
specification language; we maintain CSP as the specification language and provide automatic translation from
specification toFORMULAcode.13 Ourwork differs from that of [ABG+13] by using an SMT-solving to increase
the expressiveness of CSP and provides a powerful tool for verification and reasoning of programs.

There is also a similar approach proposed in [Ver00] that usesMAUDE for executing and verifying concurrent
communicating systems (CCS). According to that work, only behavioural aspects can be handled, whereas we
handle data aspects even if they come from an infinite domain and are involved in communications and in
predicates. Moreover, that work also considers temporal logic, whereas we do not (it is not a CSP culture but
FORMULA can handle it). We point out that MAUDE can be more powerful than FORMULA but it can
be harder to guarantee convergence when applying rewriting rules. Our work is free of convergence problems
because the engine of FORMULA focuses on finding the least fixed-point using SMT solving.

7. Conclusions and future work

This paper has presented a systematic way for creating a model checker from the syntax and from the SOS of
the CML language. We have used the Microsoft FORMULA framework as the core engine for the analysis. The
FORMULA tool has two main advantages: (i) its language is fully declarative and allows one to create high-
level implementations (or abstractions); (ii) its integration with the Z3 SMT-based solver allows one to create
model checkers that can deal with infinite aspects whose underlying logics is decidable.We illustrated our strategy
considering the process algebra CSP, which is widely used for specifying concurrent systems.

The idealway to capture all semantic aspects of the language is by using a deep embedding.However, due to the
degradation of performance and the available infrastructure for data types provided byFORMULA,we proposed
a hybrid embedding approach that captures data aspects directly in terms of FORMULA (exhibiting a shallow
semantics embedding) and fully interpreting the behavioural aspects (following a deep semantics embedding).
This allows us to create a semantics preserving model checker. Of course, the one-to-one mapping of the CML
semantics used in our deep embedding is a strong evidence of semantics preservation (not a formal proof).
However, this absence of formal proof also occurs with other works in the literature (like [Leu01], for example)
where the underlying framework Prolog does not have a public available formal semantics. Our hypothesis is that
FORMULA is sound with respect to its intended semantics. To attest the evidence of semantic preservation, we
performed a test suite containing about 170 examples (property verification and traces refinement). The examples
were focused on capturing the essence of the semantics with its subtleties (mainly with complex constructs like
parallelism, hiding, sequential composition and recursion). For those that could also be analysed in FDR and
PAT we obtained the same results.

12 The authors mention nothing about the infiniteness of communication data, but present an example where input communications are
restricted.
13 The implementation of a tool that converts a CSP specification into a FORMULA script is a still in progress and is not available yet.
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To provide a real integration of FORMULA in the CML development platform—Symphony IDE—we have
developed a plugin that provides a user friendly way to automatically analyse CML specifications. The advantage
of making our model checker as part of the Symphony tool has the advantage of integration with other tools
(plugins) that allow other features for CML like parsing, animation, debugging, proof obligation generation,
discharging proof obligations (via theorem proving), test generation, fault tolerance analysis, refinement analysis,
graph visualisation, etc.

As our focus was in correctness14 and handling communications and predicates with infinite data, the com-
parison (in terms of performance) of our model checker with FDR and PAT is an intended topic for future work.
Indeed, goodperformance is desirable formodel checkers.Our preliminary results indicate that ourmodel checker
can outperform FDR and PAT for data-intensive communicating systems, that is, systems using big sets of values
involved in communication and in predicates. This is rather reasonable because FORMULA manipulates the
LTS differently: generation on demand and interaction with SMT-solving. Regarding performance comparison,
we already have some results regarding efficiency, but they are still inconclusive. Concerning time to produce a
model checker, our experience shows that the creation with FORMULA is smaller, however, this still depends
on the user experience. We also intend to generalise our model checker creation technique to consider only two
formal descriptions: syntax and semantics, expressed in a domain specific language (DSL). This will allow us
to provide automatic generation of model checkers for languages whose syntax and SOS are specified in such a
DSL.15

We also intend to provide an embedding for temporal logic in FORMULA; this allows specifying other
properties rather than the classical properties addressed in this work (deadlock, livelock and nondeterminism).
Although in CSP, any property verification is performed by refinement, the direct analysis of a property avoids
using the refinement checking approach in FORMULA (where two LTSs are instantiated).

We are currently implementing a model checker for Circus using the K framework [RŞ10]. It is an executable
semantic framework (a rewriting system) in which programming languages, calculi, as well as type systems or
formal analysis tools can be defined, making use of configurations, computations and rules. We also intend to
compare the CML model checker with the K model checker, FDR and PAT together to produce a more general
guide to help decisions based on performance, class of problems, aspects (behaviour, data, time, etc.), available
platforms and scalability.

Another interesting topic for future work is the manipulation of specifications involving processes that
originate an infinite LTS (like for example the process P(k) = · · · P(k+1)) by using data abstrac-
tion [DFM09, FMS08], induction [BK08], and optimization techniques like OBDD [Bry92] and partial order
reduction [God91, Pel93, BK08]. This will certainly represent an important step towards overcoming the state
explosion problem.

Finally, the use of ProB in Symphony has revealed a point that deserves deeper investigation: the use of ProB
as underlying framework for other model checkers. Indeed, as the ProB interpreter is written in a SOS style, it
fits well to the ideas of the systematic embedding used here. Moreover, there are a lot of components ready to use
and material about ProB (available at http://stups.hhu.de/ProB/).
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