
DOI 10.1007/s00165-015-0334-2
BCS © 2015
Formal Aspects of Computing (2015) 27: 613–640

Formal Aspects
of Computing

An algebraic theory for web service contracts
Cosimo Laneve1 and Luca Padovani2
1 Dipartimento di Informatica - Scienza e Ingegneria, Università di Bologna, Bologna, Italy
2 Dipartimento di Informatica, Università di Torino, Turin, Italy

Abstract. We study the foundations of Web service technologies for connecting abstract and concrete service
definitions and for discovering services according to their observable behavior. We pursue this study addressing a
subset of bpel activities that include concurrency constructs. We present a formal semantics—called compliance
preorder—of this subset of bpel and we define a behavioral type discipline that guarantees the correctness of
client-server interactions. The types of our discipline, called contracts, are De Nicola and Hennessy tau-less,
finite-state ccs processes. We show that contracts are bpel normal forms according to the compliance preorder
and that the compliance preorder does coincide with a well-known equivalence in concurrency theory, the must-
testing preorder. The compliace preorder is not fully adequate for discovering Web services though, since it does
not support width and depth extensions ofWeb services. To address this issue, we propose a sound generalization
of the compliance preorder, called subcontract relation, that admits a notion of principal service contract—the
dual contract—compliant with a given client contract and that exhibits good precongruence properties when
choreographies of Web services are considered.

Keywords: Web services, bpel, Contracts, Compliance,Must-testing, Subcontract, Dual contract, Choreography

1. Introduction

Service-oriented technologies and Web services have been proposed as a new way of distributing and organizing
complex applications across the Internet. These technologies are nowadays extensively used for delivering cloud
computing platforms. A large effort in the development of Web services has been devoted to their specification,
their publication, and their use. In this context, the Business Process Execution Language for Web Services
(bpel for short) has emerged as the de facto standard for implementing and composing Web services and is now
supported by severalmajor software vendors (Oracle ProcessManager, IBMWebSphere, andMicrosoft BizTalk).

The research reported in this paper was partially funded by the EU FP7 610582 project called ENVISAGE.
Correspondence and offprint requests to: C. Laneve, E-mail: cosimo.laneve@unibo.it; laneve@cs.unibo.it

http://crossmark.crossref.org/dialog/?doi=10.1007/s00165-015-0334-2&domain=pdf

614 C. Laneve, L. Padovani

BPEL Client BPEL Service 1 BPEL Service 2

T P1 P2

ρ σ1 σ2Dρ

source-to-source
transformation

source-to-source
transformation

model checking model checking

Fig. 1. Summary of contributions

The main issue concerning the publication ofWeb services is the definition of appropriate service descriptions
that enable their identification, discovery and composition without disclosing important details concerning their
internal implementation and their binding to concrete protocols. The current standard for service description is
defined by theWebServiceDescriptionLanguage (wsdl) [CCMW01], which specifies the format of the exchanged
messages—the schema—, the locations where the interactions are going to occur—the interface—, the transfer
mechanism to be used (i.e. soap- rpc, or others), and basic service abstractions (one-way/asynchronous and
request-response/synchronous patterns of conversations). These abstractions are very simple and inadequate
for expressing arbitrary, possibly cyclic protocols of exchanged messages between communicating parties. That
is, the information provided by wsdl is insufficient for verifying the behavioral compliance between parties. It
is also worth to notice that other technologies, such as uddi registries (Universal Description, Discovery and
Integration [BKL01]), provide limited support because registry items only include pointers to the locations of
the service abstractions, without constraining the way these abstractions are defined or related to the actual
implementations. In this respect, uddi registries are almost useless for discovering services; an operation that is
performed manually by service users and consumers.

The publication of abstract service descriptions, which we call contracts, and the related ability to discover
Web services by means of their contract require studying the connection between a Web service and its contract
and,more generally, defining a formal theory for reasoning aboutWeb services bymeans of their contracts. In this
article we provide such a theory and we do so adopting a well-known approach in concurrency theory whereWeb
services are abstracted using process calculi and contracts are behavioral types (see, for instance, [NN94,HVK98]).
More specifically, our approach is based on the following cornerstone items:

(I1) A formal semantics of bpel to express client/service interactions.

(I2) A language of contracts and an algorithm that connects a Web service to its contract.

(I3) A subcontract relation that embodies the principle of safe Web service replacement.

We now provide a more detailed roadmap of the overall approach, schematically illustrated in Fig. 1, and
how it unfolds in the rest of the article.

(I1) bpel abstract activities. In Sect. 2 we identify a sublanguage of bpel that captures its concurrency and
communication constructs, called bpel abstract activities, and we ignore the details related to the actual syntax of
bpel, the schema and content of messages, and the definition of transmission protocols. These aspects are largely
orthogonal to our investigation. We do not commit to a particular interpretation of actions occurring in abstract
activities either: they may represent different typed channels, different operations, different types of messages.
Abstract activities are denoted as the terms T , P1, and P2 in Fig. 1 and represent over-approximations of the
behavior of the corresponding concrete bpel processes. By this we mean that every action that can be executed
by a concrete bpel process can also be executed by its corresponding abstract activity, but the converse does not
necessarily hold. Such over-approximation is necessary in order for the theory to be decidable and tractable.

An algebraic theory for web service contracts 615

The semantics of bpel abstract activities is defined by a technique based on tests [DH84]. That is:

• we define a basic observation, called compliance and notedT � P , which holds wheneverT successfully com-
pletes every interaction with P ; here “successfully” means that T never gets stuck (this notion is purposefully
asymmetric as client’s satisfaction is our main concern).

• we derive a compliance preorder by comparing the sets of clients that successfully interact with bpel abstract
activities: two bpel abstract activities are equivalent if they satisfy the same clients.

The assumption to work with over-approximations of bpel processes means that, if T successfully interacts
with P and T and P are over-approximations of the bpel processes C and S respectively, then C successfully
interacts with S as well. Obviously, since our notion of compliance between abstract activities solely concerns the
communication aspects of the interaction and not, for example, the actual content of messages, the meaning of
“successful interaction” should be interpreted in this more abstract scope.

(I2) Contracts. In Sect. 3 we define contracts as the sub-calculus of De Nicola and Hennessy tau-less ccs [DH87]
consisting of prefixing, internal and external choices, and recursion. We demonstrate that our contracts, noted
τ , σ1, and σ2 in Fig. 1, retain convenient properties:

1. contracts do not disclose implementations details of bpel processes;
2. contracts have finite-state models;
3. contracts are normal forms of bpel abstract activities with respect to compliance preorder (� in Fig. 1).

A consequence of properties 2 and 3 is that bpel abstract activities also have finite-state models. It is therefore
possible to develop algorithms for connecting abstract activities with their contract. In addition, in Sect. 4 we
show that the compliance preorder corresponds to awell-known semantics in concurrency theory, themust-testing
semantics. Thismeans that thewhole plethora of algorithms and tools already developed formust-testing theories,
such as the Concurrency Workbench [CPS93], can be applied to our framework for reasoning on contracts and
bpel abstract activities. It should be remarked that the connection between the compliance preorder and must-
testing is not obvious, since the two relations are induced by tests with quite different features. To prove their
equivalence, we define an alternative semantics of must-testing formulated in a coinductive way, which supports
a powerful proof technique.

(I3) Subcontract relation. In Sect. 5 we observe that the compliance preorder is a fine-grained semantics of bpel
activities that forbids two key properties that are useful for service discovery. These properties are called width
and depth extension. By width extension wemean the replacement of a service with another one that provides new
functionalities (called operations, in the Web service terminology); by depth extension we mean the replacement
of a service with another one that allows for longer communications beyond the terminal states of the original
service. We therefore define a variant of the compliance preorder, called subcontract preorder and noted � in
Fig. 1, which supports these forms of extensions. Notwithstanding the differences in the corresponding preorder
relations, the equivalences induced by � and � do coincide. This means that, if a client is subcontract-compliant
with a contract σ1, then it will be subcontract-compliant with the corresponding abstract bpel activity P1, as well
as with every activity P2 that (width/depth-) extends P1.

We then analyze the problem of querying a repository of bpel activities. In Sect. 6, we define an algorithm
that takes a client T exposing a certain behavior ρ and returns the smallest service contract (according to the
subcontract preorder) that satisfies the client—the dual contract, noted Dρ in Fig. 1. This contract, acting like
a principal type in type systems, guarantees that a query to a Web service registry is answered with the largest
possible set of compatible services in the registry’s databases.

As a validation step for our theory, in Sect. 7 we show that the subcontract relation is well behaved when
applied to choreographies of Web services [KBR+05]. Technically, this means that � is a pre-congruence with
respect to parallel composition under mild conditions. This property has important practical consequences, since
it enables the modular refinement of complex systems.

We conclude with a discussion of related works in Sect. 8, and a summary of contributions and directions for
future research in Sect. 9. Proofs of the results are deferred to “Appendix A”.

Origin of the material. The basic ideas of this article have appeared in conference proceedings. In particular,
the theory of contracts we use is introduced in [LP07] while the relation between (abstract) bpel activities and
contracts has been explored in [LP13]. This article is a thoroughly revised and enhanced version of [LP07,LP13]

616 C. Laneve, L. Padovani

that presents the whole framework in a uniform setting and includes the full proofs of all the results. A more
detailed comparison with other related work is deferred to Sect. 8.

2. BPEL abstract activities

In this section we define a model of bpel processes that is suitable to be formally investigated. The idea is to
over-approximate the behavior of bpel processes using terms of a process algebra in such a way that the actual
interacting behavior of a bpel process is one of the possible interacting behaviors expressed by the corresponding
term.Wewill not be able to formally prove that the approximation we provide is sound, since bpel is not equipped
with a formal semantics. We will nonetheless argue in favor of this property.

2.1. A quick look at BPEL

In bpel, business processes are described as the composition of basic activities, which include the sending and
receivingofmessages.We introduce thebasic notionsof bpel lookingat a strippedoff versionof the initial business
process example in the language specification [Alv07]. The xml document in Fig. 2 describes the behavior of an
e-commerce service that interacts with four other partners, one of thembeing the customer (identified by the name
purchasing in the figure), the other ones being a service (identified by invoicing) that provides prices, a service
(identified by shipping) that takes care of the shipment of goods, and a service (identified by scheduling) that
schedules the manufacturing of goods. The business process is made of activities, which can be either atomic or
composite. In this example atomic activities consist of the invocation of operations in other partners (lines 10–14,
22–27, 31–36), the acceptance ofmessages from other partners, either as incoming requests (line 3) or as responses
to previous invocations (lines 15–19 and 28), and the sending of responses to clients (line 39). Atomic activities
are composed together into so-called structured activities, such as sequential composition (see the sequence
fragments) and parallel composition (see the flow fragment at lines 4–38). In a sequence fragment, all the child
activities are executed in the order in which they appear, and each activity begins the execution only after the
previous one has completed. In a flow fragment, all the child activities are executed in parallel, and the whole
flow activity completes as soon as all the child activities have completed. It is possible to constrain the execution
of parallel activities by means of links. In the example, there is a link ship-to-invoice declared at line 6 and
used in lines 12 and 25, meaning that the invocation at lines 23–27 cannot take place before the one at lines 10–14
has completed. Similarly, the link ship-to-scheduling means that the invocation at lines 32–36 cannot take
place before the receive operation at lines 15–19 has completed. In short, the presence of links limits the possible
interleaving of the activities in a flow fragment.

bpel includes other conventional constructs not shown in the example, such as conditional and iterative
execution of activities. For example, the bpel activity

<if>
<condition> bool-expr </condition>
activity-True
<else> activity-False </else>

</if>

evaluates bool-expr,whichmustbeaBooleancondition, andexecutes eitheractivity-Trueoractivity-False
depending on whether the condition turns out to be true or false. Similarly, the activity

<while>
<condition> bool-expr </condition>
activity

</while>

specifies that activity should be repeatedly executed as long as the Boolean condition bool-expr is true.

2.2. A formal model of BPEL abstract activities

To pursue our formal investigation, we will now present an abstract language of activities whose operators
correspond to those found in bpel.

An algebraic theory for web service contracts 617

1 <process>
2 <sequence>
3 <receive partnerLink="purchasing" operation="sendPurchaseOrder"/>
4 <flow>
5 <links>
6 <link name="ship-to-invoice"/>
7 <link name="ship-to-scheduling"/>
8 </links>
9 <sequence>

10 <invoke partnerLink="shipping" operation="requestShipping">
11 <sources>
12 <source linkName="ship-to-invoice"/>
13 </sources>
14 </invoke>
15 <receive partnerLink="shipping" operation="sendSchedule">
16 <sources>
17 <source linkName="ship-to-scheduling"/>
18 </sources>
19 </receive>
20 </sequence>
21 <sequence>
22 <invoke partnerLink="invoicing" operation="initiatePriceCalculation"/>
23 <invoke partnerLink="invoicing" operation="sendShippingPrice">
24 <targets>
25 <target linkName="ship-to-invoice"/>
26 </targets>
27 </invoke>
28 <receive partnerLink="invoicing" operation="sendInvoice"/>
29 </sequence>
30 <sequence>
31 <invoke partnerLink="scheduling" operation="requestProductionScheduling"/>
32 <invoke partnerLink="scheduling" operation="sendShippingSchedule">
33 <targets>
34 <target linkName="ship-to-scheduling"/>
35 </targets>
36 </invoke>
37 </sequence>
38 </flow>
39 <reply partnerLink="purchasing" operation="sendPurchaseOrder"/>
40 </sequence>
41 </process>

Fig. 2. bpel business process for an e-commerce service

We use a set N of names, ranged over by a, b, c, . . . , that represent communication channels or message types
and a disjoint setN of co-names, ranged over by a, b, c, . . . ; the term action refers to names and co-names without
distinction; actions are ranged over by α, β, We use A, B , . . . to range over sets of names and we define an
involution · such that a � a. We use ϕ,ψ, . . . to range over (N ∪ N)∗ and r, s, . . . to range over finite sets of
actions. Let r def� {α | α ∈ r}.

The syntax of bpel abstract activities is defined by the grammar in Table 1, where each construct has been
named after the corresponding xml tag in bpel. Essentially we represent bpel abstract activities as terms of
a simple process algebra similar to Milner’s CCS [Mil82] and Hoare’s CSP [BHR84]. We are interested in the
interactions of bpel activities with the external environment rather than in the actual implementation of business
processes. For this reason, our process language overlooks details regarding internal, unobservable computations,
exception handling, value passing and focuses on the communication behavior of activities.

The activity 0 represents the completed process that performs no actions. The activity a represents the act
of waiting for an incoming message. Here we take the point of view that a stands for a particular operation
implemented by the process. The activity a represents the act of invoking the operation a provided by another
partner. The activity

∑
i∈I αi ;Pi represents the act of waiting for any of the αi operations to be performed,

i belonging to a finite set I . Whichever operation αi is performed, it first disables the remaining ones and the

618 C. Laneve, L. Padovani

continuation Pi is executed. If αi � αj and i �� j , then the choice whether executing Pi or Pj is implementation
dependent. The processP |A Q , whereA is a set of names, represents the parallel composition (flow) ofP andQ
and the creation of a private setA of link names that will be used byP andQ to synchronize; an example will be
given shortly. The n-ary version

∏A
i∈1...nPi of this construct may also be considered: we stick to the binary one for

simplicity. The process P ;Q represents the sequential composition of P followed by Q . Again we only provide
a binary operator, where the bpel one is n-ary. The process

⊕
i∈I Pi represents an internal choice performed by

the process, that results into one of the finite I continuations Pi . Finally, P* represents the repetitive execution
of process P so long as an internally verified condition is satisfied.

The pick activity
∑

i∈1...n αi ;Pi and the if activity
⊕

i∈1...n Pi will also be written α1;P1 + · · · + αn ;Pn

and P1 ⊕ · · · ⊕ Pn , respectively. In the following we treat (empty), (receive), and (invoke) as special cases of
(pick), while at the same time keeping the formal semantics just as easy. In particular, we write 0 for

∑
α∈∅

α;Pα

and α as an abbreviation for
∑

β∈{α} β ;0 (tailing 0 are always omitted).
As we have anticipated, the language omits the details about the conditions that determine which branch of

an if is taken or howmany times an activity is iterated. For example, the if activity shown at the end of Sect. 2.1
will be abstracted into the process activity-True⊕activity-False, meaning that one of the two activities will
be performed and the choice will be a consequence of some unspecified internal decision. A similar observation
pertains to the <while> activity (see also Remark 2.2).

Example 2.1 The bpel activity in Fig. 2 can be described by the term below, where for the sake of readability we
give short names to the operations used in the activity as by Table 2:

sPO;
(
rS;

(
(sti |

∅
sS;sts) |{sti} iPC;sti;sSP;sI

) |{sts} rPS;sts;sSS
)
;sPO (1)

Note that we use names for specifying both actions and links. For example, we represent the source of the
link ship-to-invoice as the action sti and the corresponding target as the action sti. Since sti guards the
actions sSP and sI, these will not be executed until after rS, which guards sti, has been executed. Similarly for
the ship-to-scheduling link. Note that names corresponding to links are restricted so that they are not visible
from outside. Indeed, we will see that they do not appear in activity’s behavioral description. �

Table 1. Syntax of bpel abstract activities

P ,Q,Pi ::� 0 (empty)
| a (receive)
| a (invoke)
| ∑

i∈I αi ;Pi (pick)
| P |A Q (flow & link)
| P ;Q (sequence)
| ⊕

i∈I Pi (if)
| P* (while)

Table 2. Legend for the operations of the bpel process in Fig. 2
Name Operation
sPO sendPurchaseOrder
rS requestShipping
sS sendSchedule
iPC initiatePriceCalculation
sSP sendShippingPrice
sI sendInvoice
rPS requestProductionScheduling
sSS sendShippingSchedule
sti ship-to-invoice
sts ship-to-scheduling

An algebraic theory for web service contracts 619

Table 3. Operational semantics of abstract bpel

Completion predicate P�

0�
P� Q�

P |A Q�

P� Q�

P ;Q�

Transition relation P
μ−→ Q

(action)
∑

i∈I αi ;Pi
αi−→ Pi

(if)
⊕

i∈I Pi
ε−→ Pi

(flow)

P
μ−→ P ′ μ �∈ A ∪ A

P |A Q
μ−→ P ′ |A Q

(link)

P α−→ P ′ Q α−→ Q ′ α ∈ A ∪ A

P |A Q ε−→ P ′ |A Q ′

(seq)

P
μ−→ P ′

P ;Q
μ−→ P ′;Q

(seq- end)

P� Q
μ−→ Q ′

P ;Q
μ−→ Q ′

(while- end)

P* ε−→ 0

(while)

P
μ−→ P ′

P* μ−→ P ′;P*

Remark 2.1 The bpel specification defines a number of static analysis requirements beyond the mere syntactic
correctness of processes whose purpose is to “detect any undefined semantics or invalid semantics within a process
definition” [Alv07]. Several of these requirements regard the use of links. For example, it is required that no link
must cross the boundary of a repeatable construct (while). It is also required that link ends must be used exactly
once (hence 0 |{a} a is invalid because a is never used), and the dependency graph determined by links must
be acyclic (hence a.b |{a,b} b.a is invalid because it contains cycles). These constraints may be implemented by
restricting the arguments to the above abstract activities and then using static analysis techniques. �

2.3. Operational semantics of BPEL abstract activities

In order to reason about abstract activities, the language in Table 1 must be equipped with semantics that have
both a sensible discriminating power and some convenient proof techniques. The usual approach in concurrency
theory is to define a transition relation that represents process evolution and to define an observation predicate
that detects the successful termination [Hen88,Mil89]. Based on these two notions, one derives the semantics of
a process by testing the observation predicate under all possible contexts.

The operational semantics of bpel abstract activities is defined in Table 3. In the table we define two relations:

P�, read P has completed, and P
μ−→ Q , where μ ranges over actions and the special name ε denoting internal

computations, as the least ones satisfying the corresponding rules. The table does not report the symmetric rules
for |.

According to Table 3, the process
∑

i∈I αi ;Pi has as many α-labelled transitions as the number of actions in
{αi | i ∈ I }. After a visible transition, only the selected continuation is allowed to execute. The process

⊕
i∈I Pi

may internally choose to behave as one of the Pi , with i ∈ I . The process P |A Q allows P and Q to internally
evolve autonomously, or to emit/receive messages on names not in the set A, or to synchronize with each other
on names in A. It completes when both P and Q have completed. The process P ;Q reduces according to the
reductions of P first, and ofQ when P has completed. Finally, the process P* may either complete in one step by
reducing to 0, or it may execute P one more time followed by P*. The choice among the two possibilities results
from an internal computation which is left implicit in the model.

620 C. Laneve, L. Padovani

Remark 2.2 According to the operational semantics,P*may execute the activityP an arbitrary number of times.
This is at odds with concrete bpel activities having P* as abstract counterpart. For example, in bpel it is possible
to write a process like

<while>
<condition> bool-expr </condition>
activity

</while>

which means executing activity as long as the bool-expr condition is true. Representing such bpel activity
with activity*means over-approximating it: the above fragment of bpel executes activityn for an arbitrary n;
we approximate this as activity* which corresponds to 0⊕ activity⊕ activity2 ⊕ · · · . This approximation
is crucial for Lemma 2.1 below. �

We illustrate the semantics of bpel abstract activities through few examples:

1. (a ⊕ b |{a,b} a ⊕ b);c ε−→ (a |{a,b} a ⊕ b);c by (if), (flow), and (seq). By the same rules, it is possible to
have (a |{a,b} a ⊕ b);c ε−→ (a |{a,b} b);c, which cannot reduce anymore (a |{a,b} b is a deadlocked activity).

2. let Ψ
def� 0; (0 ⊕ 0)*. Then, according to rules (seq- end), (if), and (while), Ψ

ε−→ Ψ and Ψ
ε−→ 0.

3. (a |{a} a)*
ε−→ 0 |{a} 0; (a |{a} a)* by rules (link) and (while).

In the following we write ε�⇒ for the reflexive, transitive closure of
ε−→ and α�⇒ for the composition

ε�⇒ α−→ ε�⇒; we also write P
μ−→ (respectively, P α�⇒) if there exists Q such that P

μ−→ Q (respectively,

P α�⇒ Q); we let P �

μ−→ if not P
μ−→.

A relevant property of our bpel abstract calculus is that the model of every activity P , that is the set of
processes reachable from P by means of arbitrary reductions, is always finite. Because of this, it is possible to
devise verification techniques of activities by reasoning directly on the models, rather their abstraction.

Lemma 2.1 Let reach(P) def� {Q | ∃ϕ : P ϕ�⇒ Q}. Then, for every activity P , the set reach(P) is finite.

We introduce a number of auxiliary definitions that will be useful in the rest of the paper. By Lemma 2.1 these
notions are trivially decidable.

Definition 2.1 We introduce the following notation:

• We say that P diverges, notation P↑, if there is an infinite sequence of ε-transitions P ε−→ ε−→ · · · starting
from P . We say that P converges, notation P↓, if it does not diverge.

• We let init(P) def� {α | P α�⇒} be the set of initial visible actions performed by P .

• We say that P has ready set r, notation P ⇓ r, if P ε�⇒ Q and r � init(Q).

• Let P α�⇒. Then P (α) def� ⊕
P

ε�⇒ α−→Q
Q . We call P (α) the continuation of P after α.

These definitions are almost standard, except for P (α) (that we already used in [LP07]). The abstract activity
P (α) represents the residual behavior ofP after an action α, from the point of view of the party that is interacting
with P . Indeed, the party does not know which, of the possibly multiple, α-labelled branches P has taken. For
example (a ;b + a ;c + b ;d)(a) � b ⊕ c and (a ;b + a ;c + b ;d)(b) � d .

2.4. The compliance preorder

Weproceed defining a notion of equivalence between abstract activities that is based on their observable behavior.
To this aim, we introduce a special name e (not inN) for denoting the successful termination of an abstract activity
(“e” stands for end). We let T range over client activities, that is activities that may contain such special name e.
By compliance between a “client” activity T and a “service” activity P we mean that every interaction between
T and P , where P stops communicating with T , is such that T has reached a successfully terminated state.
Following De Nicola and Hennessy’s approach to process semantics [DH84], this compliance relation induces a
preorder on services on the basis of the set of client activities that comply with a given service activity.

An algebraic theory for web service contracts 621

Definition 2.2 (Compliance) The (client) activity T is compliant with the (service) activity P , written T � P , if
P |N T ε�⇒ P ′ |N T ′ implies:

1. if P ′ |N T ′
�

ε−→, then {e} ⊆ init(T ′), and

2. if P ′↑, then {e} � init(T ′).

The compliance preorder is the relation induced by compliance: P �∼ Q if and only if T � P implies T � Q
for every T . We write � for �∼ ∩ �∼.

According to the notion of compliance, if the client-service conversation terminates, then the client is in
a successful state (it will emit an e-name). For example, a ;e + b ;e � a ⊕ b and a ;e ⊕ b ;e � a + b but
a ;e⊕ b ;e �� a⊕ b because of the computation a⊕ b |N a ;e⊕ b ;e ε�⇒ b |N a ;e �

ε−→where the client waits for an
interaction on a in vain. Similarly, the client must reach a successful state if the conversation does not terminate
but the divergence is due to the service. In this case, however, every reachable state of the client must be such
that the only possible action is e. The practical justification of such a notion of compliance derives from the fact
that connection-oriented communication protocols (like those used for interaction with Web services) typically
provide for an explicit end-of-connection signal. Consider for example the client behavior e + a ;e. Intuitively
this client tries to send a request on the name a, but it can also succeed if the service rejects the request. So
e + a ;e � 0 because the client can detect the fact that the service is not ready to interact on a. The same client
interacting with a diverging service would have no way to distinguish a service that is taking a long time to accept
the request from a service that is perpetually performing internal computations, hence e + a ;e �� Ψ. As a matter
of fact, the definition of compliance makes Ψ the “smallest service”—the one a client can make the least number
of assumptions on (this property will be fundamental in the definition of principal dual contract in Sect. 6). That
is Ψ �∼ P , for every P . As another example, we notice that a ;b + a ;c �∼ a ;(b ⊕ c) since, after interacting on a,
a client of the smaller service is not aware of which state the service is in (it can be either b or c).

Example 2.2 As a counter-example of compliance, consider the process

sPO;rS;
(
(sS |

∅
rPS);sSS |

∅
iPC;sSP;sI

)
;sPO (2)

which has been obtained from Example 2.1 by removing and serializing the synchronizations described by the
links. It is relevant to ask whether this implementation of the e-commerce service is equivalent to the previous
one according to the compliance pre-order. It turns out that this is not the case, in particular the client activity

sPO; (e + rPS)

is compliant with (2) but not with (1), while the client activity

sPO;rPS;e

is compliant with (1) but not with (2). For example, after the two operations sPO and rPS, the first test reduces
to 0, which allows no further synchronizations with the service and does not perform e actions. It can be shown
that (1) is compliant-equivalent to the abstract activity

sPO;
(
rS;

(
(sS |

∅
rPS);sSS |

∅
iPC;sSP;sI

)
+ rPS;rS; (sS;sSS |

∅
iPC;sSP;sI)

)
;sPO

�

622 C. Laneve, L. Padovani

As by Definition 2.2, it is difficult to formally show the compliance preorder between two activities because of
the universal quantification over all (client) activities T . For this reason, in Sect. 4, we will provide an alternative
characterization of �∼ that allows us to prove the compliance preorder without any universal quantification.

3. Contracts

Following the longstanding approach of behavioral type systems that enforce correctness invariants on interac-
tions of concurrent systems [HVK98], in this section we discuss how to associate abstract descriptions, called
contracts, to a bpel abstract activity. There is always a tradeoff between detail and abstraction when defining a
contract language. In general, three criteria should be taken in consideration:

(1) contracts should be expressive enough to enable reasoning about the compliance of bpel activities;

(2) contracts, being public, should not disclose the internal structure and actual implementation of services;

(3) contracts, like behavioral types, should support automated model/type checking tools that associate them
with processes.

We consider a set of contract names, ranged over C,C′,C1, A contract is a tuple

(C1 � σ1, . . . ,Cn � σn , σ)

whereCi � σi are contract name definitions, σ is themain term, andwe assume that there is no chain of definitions
of the form Cn1 � Cn2 , Cn2 � Cn3 , . . . , Cnk

� Cn1 . The syntax of the σi ’s and of σ is given by the grammar below:

σ ::� C | α;σ | σ + σ | σ ⊕ σ

where C ∈ {C1, . . . ,Cn }. The contract α;σ represents sequential composition in the restricted form of prefixing.
The operators + and ⊕, referred to as external and internal choice, correspond to pick and if of bpel activities,
respectively. These operations are assumed to be associative and commutative; therefore we will write σ1 + · · ·+σn

and σ1 ⊕ · · · ⊕ σn without confusion and will sometimes shorten these contracts as
∑

i∈1..n σi and
⊕

i∈1..n σi ,
respectively. The contract name C is used to model recursive behaviors such as C � a ;C. In what follows we will
leave contract name definitions implicit and identify a contract (C1 � σ1, . . . ,Cn � σn , σ) with its main body
σ . We will write cnames(σ) for the set {C1, . . . ,Cn } and actions(σ) for the set of actions occurring in σ or in any
of the σi .

The operational semantics of contracts is defined by the rules below:

α;σ
α−→ σ σ ⊕ ρ

ε−→ σ
σ

ε−→ σ ′

σ + ρ
ε−→ σ ′ + ρ

σ
α−→ σ ′

σ + ρ
α−→ σ ′

C � σ σ
μ−→ σ ′

C
μ−→ σ ′

plus the symmetric of rules + and ⊕. Note that + evaluates the branches as long as they can perform invisible
actions. This rule is absent in bpel abstract activities because, there, the branches are always guarded by an action.

In the following we will use these definitions:

• 0
def� C0, where C0 � C0 + C0 represents a terminated activity;

• Ω
def� CΩ, where CΩ � CΩ ⊕ CΩ represents divergence, that is a non-terminating activity.

In particular, there are no μ and σ such that 0
μ−→ σ and Ω

ε−→ Ω is the only transition of Ω. Although the
contract language is apparently simpler than bpel abstract activities, it is not a sublanguage of the latter. In fact,
Ω cannot be written as a term in the syntax of Sect. 2. Nevertheless, in the following we will demonstrate that
contracts provide alternative descriptions (with respect to the preorder �∼) to bpel abstract activities.

An algebraic theory for web service contracts 623

1 <process>
2 <sequence>
3 <receive partnerLink="e-commerce" operation="Login"/>
4 <while>
5 <condition>
6 ... check credentials ...
7 </condition>
8 <sequence>
9 <invoke partnerLink="e-commerce" operation="InvalidLogin"/>

10 <receive partnerLink="e-commerce" operation="Login"/>
11 </sequence>
12 </while>
13 <invoke partnerLink="e-commerce" operation="ValidLogin"/>
14 ...
15 </sequence>
16 </process>

Fig. 3. bpel business process for an e-commerce service

We can relate bpel abstract activities and contracts by means of the corresponding transition systems. To this
aim, let X and Y range over bpel abstract activities and contracts. Then, X and Y interact according to the rules

X
μ−→ X′ μ �∈ A ∪ A

X |A Y
μ−→ X′ |A Y

Y
μ−→ Y′ μ �∈ A ∪ A

X |A Y
μ−→ X |A Y′

X
α−→ X′ Y

α−→ Y′ α ∈ A ∪ A

X |A Y
ε−→ X′ |A Y′

It is possible to extend the definition of compliance to contracts and, by Definition 2.2, obtain a relation that
allows us to compare activities and contracts without distinction. To be precise, the relation X �∼ Y is smaller
(in principle) than the relation �∼ given in Definition 2.2 because, as we have said, the contract language is not a
sublanguage of that of activities and, therefore, the set of tests that can be used for comparing X and Y is larger.
Nonetheless, in Sect. 4, we demonstrate that �∼ of Definition 2.2 coincides with the relation X �∼ Y. This is a key
point of our development, which will allow us to safely use the same symbol �∼ for both languages and to define,
for every activity P , a contract σP such that P � σP . In particular, we let CP be the contract name defined by

CP �
⎧
⎨

⎩

Ω if P↑
⊕

P⇓r
∑

α∈r α;CP (α) otherwise

Intuitively, when P diverges, the contract CP associated with P is the canonical diverging contract Ω. When
P converges, then CP has as many top-level states as the ready sets of P , which are in correspondence with all
the residuals to which P may reduce by means of invisible moves. For each ready set r of P , the contract of P
exposes all and only the visible actions α in r and continues as CP (α). We illustrate the computation of CP by
means of an example.

Example 3.1 Figure 3 reports the initial fragment of the bpel code that implements the e-commerce service whose
conversation is shown in Fig. 4 and is discussed in Example 3.1. The e-commerce service is represented in abstract
bpel as the process P defined by

624 C. Laneve, L. Padovani

in: Login

out: ValidLogin

out: InvalidLogin

in: Query

out: Catalog
in: Purchase

out: Accepted

out: InvalidPayment

out: OutOfStock

in: Logout

[ValidLogin]

[OutOfStock]

[InvalidLogin]

[InvalidPayment]

[Accepted]

[OutOfStock]
[InvalidPayment]

Fig. 4. Contract of a simple e-commerce service as a wscl diagram

P def� Login; (InvalidLogin;Login)*;ValidLogin;Q

According to the above definition, the contract associated to P is

CP � Login;C(InvalidLogin;Login)*;ValidLogin;Q

C(InvalidLogin;Login)*;ValidLogin;Q
� InvalidLogin;CP ⊕ ValidLogin;CQ

CQ � · · ·
Observe that the contract C1 in Example 3.1, which corresponds to the same activity P , is syntactically different
from the one we obtain above. Using the techniques we develop in the next section, it is possible to demonstrate
that the two contracts are equivalent. �

A relevant property of CP is an immediate consequence of Lemma 2.1.

Lemma 3.1 For every P , the set cnames(CP) is finite.

Given a bpel abstract activity P , the contract CP is compliance equivalent to it:

Theorem 3.1 P � CP .

Remark 3.1 The Web service conversation language wscl [BBB+02] describes conversations between two parties
by means of an activity diagram (Fig. 4). The diagram is made of interactions connected with each other by
transitions. An interaction is a basic one-way or two-way communication between the client and the server. Two-
way communications are just a shorthand for two sequential one-way interactions. Each interaction has a name
and a list of document types that can be exchanged during its execution. A transition connects a source interaction
with a destination interaction. A transition may be labeled by a document type if it is active only when a message
of that specific document type was exchanged during the previous interaction.

The diagram in Fig. 4 describes the conversation of a service requiring clients to login before they can issue a
query. After the query, the service returns a catalog. From this point on, the client can decide whether to purchase
an item from the catalog or to logout and leave. In case of purchase, the servicemay either report that the purchase
is successful, or that the item is out-of-stock, or that client’s payment is refused. By interpreting names as message
types, this e-commerce service can be described by the tuple:

(C1 � Login; (InvalidLogin;C1 ⊕ ValidLogin;C2) ,

C2 � Query;Catalog; (C2 + C3 + C4) ,

C3 � Purchase;(Accepted
⊕ InvalidPayment;(C3 + C4)
⊕ OutOfStock;(C2 + C4)) ,

C4 � Logout ,
C1)

There is a strict correspondence between unlabeled (respectively, labeled) transitions in Fig. 4 and external
(respectively, internal) choices in the contract. Recursion is used for modeling the cycles in the figure, namely the
behaviors that can be iterated.

An algebraic theory for web service contracts 625

Theorem 3.1 allows us to define flow & link-free �∼-normal forms of abstract bpel activities. Such normal
forms are as intelligible aswscl conversation diagrams, independently defined at Hewlett–Packard with the exact
purpose of specifying the abstract interfaces supported by a concrete services. �

4. Coinductive compliance and must-testing

It is difficult to understand the general properties of the compliance preorder solely looking at Definition 2.2,
because of the universal quantification over all (client) activitiesT and sequences of reductions. This makes direct
proofs particularly challenging. For this reason, it is convenient to provide alternative characterizations of the
compliance preorder that are supported by more manageable proof techniques. Among such characterizations,
the so-called coinductive semantics are particularly appropriate, because proofs need to consider only single
reduction steps instead of (infinite sets of) traces [Mil89]. In this section, we study a coinductive characterization
of the compliance preorder and prove its correspondence with the semantics in Definition 2.2. Using this new
definition of compliance we then demonstrate that the compliance preorder does coincide with a well-known
semantics in concurrency theory: the must-testing preorder [Hen88,DH84]. This coincidence allows us to reuse
the well-established theory developed for must-testing to reason about bpel activities.

We follow the same conventions of Sect. 3 and let X and Y range over bpel abstract activities and contracts
without distinction.

Definition 4.1 A coinductive compliance is a relation R such that X R Y and X↓ implies

1. Y↓, and
2. Y ⇓ r implies X ⇓ s for some s ⊆ r, and

3. Y α�⇒ implies X α�⇒ and X(α) R Y(α).

We write � for the largest coinductive compliance relation.

According to this definition, a termX such thatX↑ is the smallest one.WhenX↓, condition 1 requires the larger
term Y to converge as well, since clients might rely on the convergence of X to complete successfully. Condition 2
states that each ready set r of Y (that is, each state reachable from Y by means of invisible moves only) is matched
by a corresponding ready set s of X such that s ⊆ r. This is to say that Y exhibits a more deterministic behavior
than X and that Y exposes at least the same capabilities as X. Condition 3 demands that Y should provide no
more actions than those provided by X and that the corresponding continuations for any such action α be related
by coinductive compliance. The rationale for using the continuations X(α) and Y(α) rather than simply any pair
of derivatives of X and Y (as would be in a standard simulation relation) is motivated by the fact that clients are
unaware of the internal choices performed by services. So, for example, a ;b + a ;c � a ; (b ⊕ c) because, after
interacting on a, a client of the service on the left hand side of � is not aware of which state the service is in (it
can be either b or c). By considering the continuations after a, we end up verifying b ⊕ c R b ⊕ c, which trivially
holds for every coinductive compliance relation.

By now we have defined a range of compliance relations: one based the successful client-service interactions
(Definition 2.2) and a coinductive one �. Definition 2.2 can also be adapted according to the set of tests that
we take into account. In particular, let �∼C

be the compliance relation when tests T are contracts and let �∼A+C
be the compliance relation of Definition 2.2 when tests T can be either abstract activities or contracts. Clearly
X �∼A+C

Y implies both X �∼ Y and X �∼C
Y, while in principle the converse may be false. The following theorem

guarantees the coincidence of all the compliance relations defined thus far and shows that � is a coinductive
characterization of them.

Theorem 4.1 For every X and Y, the following statements are equivalent:

1. X � Y;
2. X �∼ Y;

3. X �∼C
Y;

4. X �∼A+C
Y.

By relating a testing semantics and a coinductive semantics, Theorem 4.1 bridges the gap between the two
techniques and allows one to choose the corresponding arguments interchangeably. Similar results have been

626 C. Laneve, L. Padovani

provided for the lazy lambda calculus by Abramsky [Abr90], for the lambda calculus with local store by Pitts
and Stark [PS93], and for process calculi by Boreale and Sangiorgi [BS98] and by Fournet and Laneve [FL01].
Thanks to Theorem 4.1, in the rest of the paper we will just use the symbol �∼ to denote both �∼A+C

and �∼C
.

An application ofTheorem4.1 is to relate two apparently different testing semantics for abstract activities (and
contracts): the compliance preorder and themust-testing preorder [Hen88]. To this aim, we recall the definition of
the must preorder. In accordance with Definition 2.2, we let T to range over activities/contracts that may contain
the special name e.

Definition 4.2 (Must preorder [DH87]) A sequence of transitions X0 |N T0
ε−→ X1 |N T1

ε−→ · · · is a maximal
computation if either it is infinite or the last term Xn |N Tn is such that Xn |N Tn �−→.

Let X must T if, for every maximal computation X |N T � X0 |N T0
ε−→ X1 |N T1

ε−→ · · · , there exists n ≥ 0
such that Tn

e−→.
We write X �must Y if and only if, for every T, X must T implies Y must T.

Before showing the precise relationship between �∼ and �must, let us comment on the differences between
X � T and X must T. The must relation is such that σ must e + ρ holds for every σ , so that the observers of the
form e + ρ are useless for discriminating between different (service) behaviors in �must. However this is not the
case for �. For example e + a �� a whilst a must e + a. In our setting it makes no sense to declare that e + a is
compliant with a with the justification that, at some point in a computation starting from e+ a | a, the client can
emit e. When a client and a service interact, actions cannot be undone. On the other hand we have e⊕ e � Ω and
Ω must� e⊕ e. That is a (client) behavior compliant with a divergent (service) behavior is such that it is compliant
with every (service) behavior. Hence e ⊕ e is useless for discriminating between different services. Historically,
Ω must� e⊕ e has beenmotivated by the fact that the divergent process may prevent the observer from performing
the one internal reduction that leads to success. In a distributed setting this motivation is no longer sustainable,
since client and service will usually run independently on different processors. Finally, consider a divergent (client)
behavior ρ. In the must relation such observer never succeeds unless ρ

e−→. In the � relation such observer is
compliant so long as all of its finite computations lead to a successful state. So, for example, the client behaviors
C � a ;e ⊕ C and a ;e have the same discriminating power as far as �∼ is concerned.

Notwithstanding the above different testing capabilities, �must and �∼ do coincide. As by Theorem 4.1, this is
proved by demonstrating the equality of �must and �.

Theorem 4.2 X �must Y if and only if X �∼ Y.

Incidentally, Theorem 4.2, by relating �must and �∼, provides a coinductive characterization of �must, which
is, to the best of our knowledge, original in [LP07].

5. The subcontract relation

Theorems 3.1 and 4.2 show that �∼ and must-testing are appropriate relations to reason about (abstract) bpel
activities and their own contracts, since they are defined taking Web service clients as tests for discriminating
between behaviors. Yet, there are contexts in which these relations are too strong, in particular when querying
a repository of Web service contracts. In these cases, it is reasonable to work with a weaker notion of “service
compatibility” that enables two useful properties called width and depth extension.

To illustrate, consider a service whose contract is a ;c, namely a service that receives a request a to which it
answers with a response c. It is reasonable to expect that, if the service is extended with a new functionality, let us
say a ;c + b ;d , the clients of the original service will still comply with the extended one. Regrettably, this is not
the case; for example, we have a ;c;e + b � a ;c and a ;c;e + b �� a ;c + b ;c, that is a ;c;e + b succeeds with
the original service, but fails with the extended one, witnessing that a ;c ��∼ a ;c + b ;c. This is an instance of
width extension failure, whereby it is not possible to extend the behavior of a service with new operations offered
by means of external choices. Similarly, extending the service a ;c to a ;c;b ;d is not allowed by �∼ because
a ;c; (e + b) � a ;c and a ;c; (e + b) �� a ;c;b ;d . This is an instance of depth extension failure, whereby it is
not possible to prolong the behavior of a service beyond its terminal states.

An algebraic theory for web service contracts 627

Both width and depth extension failures are a consequence of the fact that, among the clients of the original
service (contract) a ;c, we respectively admit a ;c;e + b and a ;c; (e + b) which are specifically (and possibly
maliciously) crafted to sense anoperation b not providedby the original service and to fail as soonas this operation
is provided by the extended one. The existence of these clients is what makes compliance conservative, because �∼
quantifies over all possible clients, including malicious ones. To define a coarser relation between contracts, one
that allows both width and depth extensions, we restrict the set of clients (hence, of tests) that are compliant to
(the contract of) an activity to those that never perform unavailable operations. To do so, following [LP07], we
switch to more informative contracts than those described in Sect. 3. In particular, we consider pairs i : σ , called
extended contracts, where σ is a term as in Sect. 3 and i ⊇ actions(σ) is a finite set of actions that defines the
interface of the service whose behavior is described by σ . Then, we define a subcontract relation along the lines of
Definition 2.2, except that we consider as tests only those clients that respect the interface of a contract, namely
that do not request operations other than those in the interface of the contract.

Definition 5.1 (Subcontract relation) Let i : σ � j : τ if i ⊆ j and, for every k : ρ such that k\{e} ⊆ i and ρ � σ
implies ρ � τ . Let ≈ be � ∩ �.

Notice that i : σ � j : τ only if i ⊆ j. This apparently natural prerequisite has substantial consequences on
the properties of � because it ultimately enables width and depth extensions, which are not possible in the �∼
preorder. For instance, we have {a} : a � {a, b} : a + b whilst a ��∼ a + b (width extension). Similarly we have

{a} : a � {a, b} : a ;b whilst a ��∼ a ;b (depth extension).
To highlight the relevant properties of � and conforming to the same pattern used for �∼, we provide an

alternative characterization of �, which is also convenient in proofs. The characterization is similar to the one of
Definition 4.1.

Definition 5.2 A coinductive subcontract is a relation R such that if i : σ R j : τ , then i ⊆ j and whenever σ↓ we
have:

1. τ↓, and
2. τ ⇓ r implies σ ⇓ s and s ⊆ r, and

3. α ∈ i and τ
α�⇒ imply σ

α�⇒ and i : σ (α) R j : τ (α).

Definition 5.2 is structurally very similar to Definition 4.1, with two relevant differences: the first one is
the condition i ⊆ j, which follows directly from Definition 5.1; the second and fundamental one is that, in
condition (3), only the actions α that were already present in the smaller contract are taken into account when
considering the continuations. This way, any behavior provided by the larger contract that follows an action α
which is not in the interface of the smaller contract need is ignored. Definition 5.2 completely characterizes the
subcontract relation:

Theorem 5.1 � is the largest coinductive subcontract relation.

Thenext proposition summarizes themost relevant properties of� in a formalway. In particular, it emphasizes
the width and depth extensions allowed by � but forbidden in �∼ and in the must-testing preorder. The proof of
these properties is easy using the alternative characterization of � in Definition 5.2).

Proposition 5.1 The following properties hold:

1. If i : σ � j : τand i : σ � j : τ ′, theni : σ � j : τ ⊕ τ ′;
2. if i : 0 � j : τ, theni : σ � j : σ + τS (width extension);
3. if i : 0 � j : τ, theni : σ � j : σ{τ/0},whereσ{τ/0} is the replacement of every occurrence of the contract name

0 with τ (depth extension).

Item 1 states that the clients that are compliant with both contracts j : τ and j : τ ′ are also compliant with
services that internally decide to behave according to either τ or τ ′. Item 2 gives sufficient conditions for width
extensions of Web services: a Web service may be upgraded to offer additional functionalities without affecting
the set of clients it satisfies, so long as the names of such new functionalities were not present in the original
service. Here the premise i : 0 � j : τ formalizes the concept of “new functionality”: any action α such that
τ

α�⇒ must be in j\i and in particular it cannot be an action of σ . Additionally, the same premise implies that

628 C. Laneve, L. Padovani

τ↓, because we have 0↓ (see Definition 5.2). Item 3 is similar to item 2, but concerns depth extensions, that is
the ability to extend the conversation offered by a service, provided that the additional conversation begins with
new functionalities not present in the original service. In fact, item 2 can be seen as a special case of item 3, if we
consider the contract i : σ + 0 instead of simply i : σ .

The precise relationship between � and �∼ is expressed by the following statement.

Proposition 5.2 i : σ ≈ j : τ if and only if σ � τ and i � j.

6. Duality

We now analyze the problem of querying a repository of bpel activities, where every activity P is modeled by
the extended contract iP : CP such that iP � actions(CP) and CP is defined in Sect. 3. The basic problem for
querying such a repository is that, given a client’s extended contract k : ρ, one wishes to find all the pairs i : σ
such that k\{e} ⊆ i and ρ � σ .

We attack this problem in two steps: first of all, we compute one particular extended contract k\{e} : Dk
ρ , called

dual of k : ρ, such that ρ � Dk
ρ ; second, we collect all the services in the registry whose extended contract is larger

(according to �) than this one. To be sure that no suitable service is missing in the answer to the query, the dual
of a client k : ρ should be a pair k\{e} : Dk

ρ that it is the smallest one (according to �) that satisfies the client
k : ρ. We call such pair the principal dual extended contract of k : ρ.

In defining the principal dual extended contract, it is convenient to restrict the definition to those client’s
behaviors ρ that never lead to 0 without emitting e. For example, the behavior a ;e + b describes a client that
succeeds if the service proposes a, but that fails if the service proposes b. As far as querying is concerned, such
behavior is completely equivalent to a ;e. As another example, the degenerate client behavior 0 is such that no
service will ever satisfy it. In general, if a client is unable to handle a particular action, like b in the first example,
it should simply omit that action from its behavior. We say that a (client) extended contract k : ρ is canonical if,
whenever ρ

ϕ�⇒ ρ ′ is maximal, then ϕ � ϕ′e and e does not occur in ϕ′. For example {a, e} : a ;e, {a} : C, where
C � a ;C, and ∅ : Ω are canonical; {a, b, e} : a ;e + b and {a} : C′, where C′ � a ⊕ C′, are not canonical.

Observe that Lemma 2.1 also applies to contracts. Therefore it is possible to extend the notions in Defini-
tion 2.1, by replacing activities with contracts.

Definition 6.1 (Dual contract) Let k : ρ be a canonical extended contract. The dual of k : ρ is k\{e} : Dk
ρ where

Dk
ρ is the contract name defined as follows:

Dk
ρ

def�

⎧
⎪⎪⎨

⎪⎪⎩

Ω if init(ρ) � {e}
∑

ρ ⇓ r
r\{e} �� ∅

(
0 ⊕
︸︷︷︸
if e∈r

⊕
α∈r\{e} α;Dk

ρ(α)

)
+ Ek\init(ρ) otherwise

Es def� 0 ⊕ ⊕
α∈s α;Ω

︸ ︷︷ ︸
if s �� ∅

Few comments about Dk
ρ , when init(ρ) �� {e}, follow. In this case, the behavior ρ may autonomously transit

to different states, each one offering a particular ready set. Thus the dual behavior leaves the choice to the client:
this is the reason for the external choice in the second line. Once the state has been chosen, the client offers to the
service a spectrum of possible actions: this is the reason for the internal choice underneath the sum

∑
.

The contract Ek\init(ρ) covers all the cases of actions that are allowed by the interface and that are not offered
by the client. The point is that the dual operator must compute the principal (read, the smallest) service contract
that satisfies the client, and the smallest convergent behavior with respect to a nonempty (finite) interface s is
0⊕ ⊕

α∈s α;Ω. The 0 summand accounts for the possibility that none of the actions in k\init(ρ) is present. The
external choice “+” distributes the proper dual contract over the internal choice of all the actions in k\init(ρ). For
example,D{a,a,e}

a ; e � a ;Ω+(0⊕a ;Ω). The dual of a divergent (canonical) client {a, e} : C, whereC � a ;e⊕C, is

An algebraic theory for web service contracts 629

also well defined:D{a,e}
C � a ;Ω. We finally observe that the definition also accounts for duals of non-terminating

clients, such as {a} : C′, where C′ � a ;C′. In this case, D{a}
C′ � a ;D{a}

C′ .

Similarly to the definition of contract names CP in Sect. 3, it is possible to prove that Dk
ρ is well defined.

Lemma 6.1 For every k : ρ, the set cnames(Dk
ρ) is finite.

Example 6.1 We illustrate the definition of dual of an extended contract on a potential client of the service in
the Example 3.1. This simple client Logins and, when the credentials have been accepted, performs exactly one
Query to the Catalog and then Logouts. The contract of such a client is defined by the following equations:

C′
1 � Login;C′

2
C′
2 � InvalidLogin;C′

1 + ValidLogin;C′
3

C′
3 � Query;C′

4
C′
4 � Catalog;C′

5
C′
5 � Logout;e

Let k � {Login, InvalidLogin, ValidLogin, Query, Catalog, Logout, e} and notice that k : C′
1 is canonical.

Its principal dual extended contract is k\{e} : Dk
C′
1
, where

Dk
C′
1
� Login;Dk

C′
2
+ Ek\{Login}

Dk
C′
2
� (InvalidLogin;Dk

C′
1
⊕ ValidLogin;Dk

C′
3
) + Ek\{InvalidLogin,ValidLogin}

Dk
C′
3
� Query;Dk

C′
4
+ Ek\{Query}

Dk
C′
4
� Catalog;Dk

C′
5
+ Ek\{Catalog}

Dk
C′
5
� Logout;Ω + Ek\{Logout}

Let k′ � k ∪ {Purchase, Accepted, InvalidPayment, OutOfStock}. We invite the reader to verify that k\{e} :
Dk

C′
1

� k′\{e} : C1, where C1 has been defined in Example 3.1. �

A basic property of the dual contract of k : ρ is that it defines the behavior of the least service compliant with
k : ρ. This property, known in type theory as principal type property, guarantees that queries to service registries
are answered with the largest possible set of compliant services.

Theorem 6.1 Let k : ρ be a canonical extended contract. Then:

1. ρ � Dk
ρ ;

2. if k\{e} ⊆ s and ρ � σ , then k\{e} : Dk
ρ � s : σ .

A final remark is about the computational complexity of the discovery algorithm. Deciding � is EXPTIME-
complete in the size of the contracts [AIS11], and this cost should, in principle, be multiplied by the number of
services in the repository. However, since� is (obviously) transitive (see Definition 5.1), it is reasonable to assume
that Web service are ordered according to � as soon as they are entered into the registry. Therefore, at runtime
the � relation must be decided only for the �-minimal services, the remaining ones being determined by the
(pre-computed) transitive closure.

7. Choreographies

The theory of contracts developed so far is based on the interaction between one client and one service. The aim
of this section is to study some properties of the subcontract relation in a broader context, considering systems
composed of an arbitrary number of services. A choreography describes the (parallel) composition of n services
(called participants) that communicate with each other by means of private names and with the external world by
means of public names. Standard languages for describing choreographies, such as theWeb Service Choreography
Description Language (ws-cdl [KBR+05]), allow an architect of a distributed system to describe the inter-
participant interactions by giving a global description (choreography) of the system, rather than describing the
behavior of each single participant (end-point behavior). In particular, the global description determines where

630 C. Laneve, L. Padovani

and when a communication has to happen. That is, the architect decides that e.g. there will be a message from
a participant A to a participant B and overlooks how this communication will be implemented. Eventually, the
global description is projected into the local descriptions of its participants. In this section, following a standard
approach in the literature, see for example [CHY07] and [BZ07], we identify the local description of a participant
with its extended contract, and we represent a choreography as the parallel composition of the contracts of its
participants. More formally, we represent a choreography as an ordered version of the n-ary flow and link term
in Sect. 2:

 ::� ∏A(i1 : σ1, . . . , in : σn)

where A is a subset of names representing the private names of the choreography. We write
[i �→ j : ρ] for the
choreography that is the same as
 except that (the extended contract of) the i th participant has been replaced
by j : ρ.

The transition relation of choreographies is defined using that of behaviors by the following rules, where

 � ∏A(i1 : σ1, . . . , in : σn):

σ
μ−→ σ ′ μ �∈ A ∪ A

[i �→ i : σ]
μ−→
[i �→ i : σ ′]

i �� j σ
α−→ σ ′ τ

α−→ τ ′ α ∈ A ∪ A

[i �→ i : σ][j �→ j : τ]
ε−→
[i �→ i : σ ′][j �→ j : τ ′]

That is, a choreography
 � ∏A(i1 : σ1, . . . , in : σn) is akin to a (compound) service whose interface is
actions(
) def� ⋃

1≤i≤n ii\(A∪A) and whose behavior is the combination of the behaviors of the end-point projec-
tions running in parallel.

Having provided choreographies with a transition relation, the notions of convergence, divergence, and ready
set can be immediately extended from Definition 2.1 to choreographies. Similarly, the notion of compliance may
be extended in order to relate the behavior of a client with (the behavior of) a choreography, which we denote
by ρ �
. More precisely, we say that an extended (client) contract k : ρ is compliant with the choreography
 if
k\{e} ⊆ actions(
) and ρ �
, as in Definition 2.2.

In the remaining part of the section we show that the subcontract relation (Definition 5.1) suitably addresses
the problem of contract refinement, namely it allows one to replace a given choreography
 with a refined one

′, where some or all the participants behave according to refined contracts, still preserving the correctness of
the overall system. By correctness we mean that every client that was compliant with the original choreography
is still compliant with the refined one. Technically, this shows that under mild conditions the relation � is a pre-
congruence with respect to parallel composition of services, and therefore can be used for the modular refinement
of complex systems.

Definition 7.1 (Choreography refinement) Let
 � ∏A(i1 : σ1, . . . , in : σn) and
′ � ∏A(j1 : τ1, . . . , jn : τn) be
choreographies. We say that
′ is a refinement of
 if:

1. ii : σi � ji : τi for every 1 ≤ i ≤ n;
2. (ji\ii) ∩ ij � ∅ for every 1 ≤ i , j ≤ n.

Refinement defines a “safe” replacement of activities in a choreography with refined ones (such as their
implementations). The replacing activities may have more capabilities than those offered by the replaced ones
(condition (1)), although the set A of private names must be the same in both the original and the refined
choreography. This is to make sure that the original choreography specification is respected in the refinement.
Additionally, there must be no interferences between the additional capabilities of the refined choreography with
respect to those in the original choreography (condition (2)). In particular, every action that is introduced in
the refinement of a peer must be disjoint from any other action of the original choreography. To illustrate the
relevance of condition (2), consider the choreographies

1
def� ∏

∅({a} : a, {b, c} : b ;c) and
2
def� ∏

∅({a, b} : a + b, {b, c} : b ;c)
and observe that each extended contract in
1 is a subcontract of the corresponding one in
2, that is
1 and
2
satisfy condition (1) of Definition 7.1. Nonetheless, extending the first participant in
1 to {a, b} : a + b in
2
introduces an interference on b, which is an operation provided also by the second participant. For instance, the

An algebraic theory for web service contracts 631

client behavior b ;c;e is compliant with
1 but not with
2. Condition (2) prevents
2 from being a refinement
of
1 by forbidding the introduction of these interferences. In practice, this condition is not restrictive since
operation names usually include the name of the participant which provides them.

We now prove a soundness result for the notion of refinement. The result does not rely on any particular
property (e.g. deadlock freedom) of the choreography itself. We merely show that, from the point of view of a
client interacting with a choreography as a whole, the refinement of the choreography is unobservable.

Theorem 7.1 Let k : ρ be compliant with
1 and
2 be a refinement of
1. Then k : ρ is also compliant with
2.

8. Related work

In this section, we relate our results to previous contributions in the literature. Since this paper covers several
areas, we organize the analysis of related works in different paragraphs.

Semantics of bpel. This paper defines a formal semantics of bpel abstract activities, which has been the subject
of several works (a comparative summary of the contributions in this area is given in [OVvdA+07]). In particular,
the contributions in the literature define bpel activities in terms of some finite model, such as Petri nets or finite
state automata. Unlike these works, our approach focuses on the interactions between a bpel process and the
environment in which it executes. This is a well-known approach for the semantics of processes in concurrency
theory (see, for instance, [Mil82,Hen88,Mil89]), but it is original for bpel. Inparticular, it allowsus togive anatural
semantics of bpel activities based on client-server interactions, which we call compliance preorder. However, the
direct definition of compliance preorder (Definition 2.2) quantifies over both contexts and reductions; this makes
direct proofs particularly difficult. To overcome this problem, following [Mil89] we define an alternative semantics
formulated in a coinductive way—the coinductive compliance (Definition 4.1)—which supports a powerful proof
technique. Our approach has also suggested the behavioral types for bpel abstract activities: they are simply the
normal forms of the compliance preorder, namely tauless ccs processes, a calculus developed by De Nicola and
Hennessy in a number of contributions [Mil82,DH87,Hen88].

Behavioral types. Contracts are a form of behavioral type insofar they describe the behavior of a communicating
process (in our case, a bpel activity) in terms of the order of interaction events the process is supposed to
perform. The literature on behavioral types is extensive. Among the pioneering works using ccs-like processes
as types we mention [NN94, IK01,CRR02]. Perhaps the family of behavioral types that relates more closely to
our contracts is session types [Hon93,HVK98]. Session types describe the order, direction and type of messages
that are supposed to be exchanged over a communication channel and enable forms of static analysis to ensure
the absence of communication errors, protocol fidelity, and limited forms of progress. Both contracts and session
types distinguish between internal choices, those autonomously performed by an entity that behaves according to
the type, and external choices, those determined by the environment in which the entity executes. These analogies
carry on to some extent at the semantic level, since subtyping relations for session types are known to support
width extensions [GH05]. Contracts differ from session types, and from the other kinds of behavioral types
mentioned above, at various levels. Amajor distinction is that we use contracts for providing abstract descriptions
of whole process behaviors, whereas other behavioral types, session types in particular, describe the behavior of
a process with respect to a single communication channel. In our case, the actions occurring in a contract can
identify operations, methods, messages, signals, and invocations/interactions are not required to occur within the
scope of a single communication channel. For example, in Sect. 7 we use actions for describing the interactions
of a choreography in which we assume that no interference is possible in communications between different
pairs of participants. That is to say that we assume peer-to-peer, independent communications between pairs of
participants. Another difference is the granularity at which interactions are described. In our contract language
actions are atomic and have no structure. Conversely, session types usually allow fine-grained descriptions of the
content of messages and even forms of higher-order communications. Our contract language can be extended
for supporting forms of channel mobility, as described for example in [CP09]. We have already mentioned that
session type theories are usually equipped with a subtyping relation [GH05] that shares common traits with the
subcontract relation (Definition 5.1 and Proposition 5.1). With respect to [GH05] our contract language can
express more general forms of interaction. In particular, subtyping for session types is often restricted in such a
way that only choices of the same kind can be related by subtyping, meaning that internal and external choices
can never be related. For example, the relation {a, b} : a ⊕ b � {a, b} : a + b does not hold in session type

632 C. Laneve, L. Padovani

theories. Also, depth extension of session types is generally unsupported since session interactions are meant to
guarantee progress for all participants of a session. Asymmetric, session-based interactions have been considered
in [BCd09]. A thorough analysis of the relationship between contracts and session types and between subcontract
and subtyping relations have been investigated in [Ber13,BH12,LP08].

Types as search keys. The idea of using abstract description of software entities—types in particular—as keys
for querying libraries/repositories is not new and can be traced back to [Rit93,Cos95]. The cornerstone of these
approaches is the definition of a notion of type equivalence, therein called type isomorphism, that is used for
comparing the type/key of the entities in a repository with the type/key of the ideal entity that is required in a
particular context. The precise notion of type equivalence must be carefully crafted to meet three contrasting
criteria: it should be sufficiently coarse to maximize the number of results of a query; it should be sufficiently
narrow so that only compatible entities are identified; finally, it should be efficient to decide, given the potentially
large size of libraries/repositories. All the aforementioned works refer to a sequential setting where types describe
the input/output behaviors of functions. Our work, which started off with [CCLP06], shares similar objectives,
but in the context of concurrent, usually distributed, Web service compositions whose type we call contract. The
definition of contract equivalences based on a notion of client satisfaction—compliance—is a straightforward
way of meeting the first criterion. In [CCLP06] the subcontract relation (over finite contracts) enjoys the width
extension property illustrated in Sect. 4 but it lacks transitivity. Transitivity, while not being strictly necessary
as far as querying and searching are concerned, is a key ingredient for meeting the third criterion. Indeed, if
the subcontract relation is transitive, then databases of Web service contracts can be organized in accordance
with the subcontract relation, so as to reduce the run time spent for executing queries: only services with a
minimal contract must be checked for answering a query, the others are implicitly determined by transitivity and
can be precomputed when the repository is populated. The problem of defining a sufficiently coarse, transitive
subcontract relation has also been addressed in [CGP09]. The authors of [CGP09]make the assumption that client
and service canbemediatedby afilter, whichprevents potentially dangerous interactions bydynamically changing
the interface of the service as it is seen by the client. Evenmore expressive filters, akin to actual orchestrators, have
been investigated in [Pad08,Pad09,Pad10]. In these cases the subcontract relation can be extended even further,
by allowing (partial) permutation of actions whenever these do not disrupt the flow of messages between client
and service. The present work, on the other hand, defines a transitive subcontract that supports both width and
depth extensions of services without assuming any filter/orchestrator that mediates the interaction between the
service and its clients. Clearly, the resulting subcontract relation is not as coarse as those defined in these works,
but it embeds a safe substitution principle without implying any runtime overhead. In the present work we also
consider divergence, which is not addressed in [CGP09,Pad08,Pad09,Pad10]. Using a framework similar to the
one we have adopted in this work, subcontract and subtyping relations that preserve liveness properties have been
defined in [BMPR09,Pad13,Pad14].

Choreographies. There has been a growing interest in studying the formal relationship between global description
of interaction protocols—choreographies—and the local behavioral description of their participants. For example,
in [CHY07,HYC08], Carbone et al. define amodel of ws- cdl and relate this model to session types. The contract
language that we have studied in this work is not aimed at providing choreographic descriptions. Rather, it is
appropriate for describing the local behavior of choreography participants. In this sense, it closer in spirit to
the contract languages studied by Bravetti et al. in a number of contributions [BLZ09, BZ09b, BZ08, BZ09a].
The main difference between these works and our own is the use of contract interfaces enabling forms of service
discovery and replacement (width and depth extensions) that are normally unsound according to the well-known
behavioral equivalences such as must- and should-testing.

xml schemas. Regarding schemas, which are currently part of bpel contracts, it is worth mentioning that they
have been the subject of formal investigation by several research projects [HP03,BCF03,CLP09]. This work aims
at pursuing a similar objective, but moving from the description of data to the description of behaviors.

An algebraic theory for web service contracts 633

9. Conclusions

In this contribution we have studied a formal theory of Web service abstract (behavioral) definitions as normal
forms of a natural semantics for bpel activities. Our abstract definitions may be effectively used in any query-
based system for service discovery because they support a notion of principal dual contract. This operation is
currently done in an ad hoc fashion using search engines or similar technologies.

It should be noted that our framework rests on a correspondence between abstract activities as defined in
Sect. 2 and bpel activities, noted “bpelClient”, “bpel Service 1”, and “bpel Service 2” in Fig. 1, which cannot be
completely formalized for the simple reason that bpel is not equipped with a formal semantics. In addition, bpel
activities define details about internal computations that are omitted in the corresponding abstractions. In fact,
models of bpel services are infinite state, while abstract bpel activities have finite models. However, our abstract
bpel activities allow us to over-approximate bpel activities as far as the observable communication behavior is
concerned by increasing non-determinism (for example, by representing a deterministic conditional construct as
a non-deterministic choice P ⊕ Q). Roughly speaking, this means for instance that P1 � “bpel Service 1” in
Fig. 1 and we give some evidence of this fact in Sect. 2. A side-effect of this added non-determinism is that there
may be bpel clients that successfully complete their interaction with a bpel service, while the compliance cannot
be assessed between the corresponding abstract bpel activities. In general, such approximations are widespread
in (behavioral) type theories and are in fact one of the key ingredients that make them decidable.

Several future research directions stem from this work. On the technical side, a limit of our technique is that
bpel activities are “static”, i.e. they cannot create other services on the fly. This constraint implies the finiteness
of models and, for this reason, it is possible to effectively associate an abstract description to activities. However,
this impacts on scalability, in particular when services adapt to peaks of requests by creating additional services.
It is well-known that such an additional feature makes models to be infinite states and requires an approximate
inferential process to extract abstract descriptions from activities. Said otherwise, extending our technique to full
ccs or π -calculus amounts to defining abstract finite models such that Theorem 3.1 does not hold anymore. For
this reason, under- and over-estimations for services and clients, respectively, must be provided.

Another interesting technical issue concerns the extension of our study to other semantics for bpel activities,
such as the preorder in [BZ09b], or even to weak bisimulation (which has a polynomial computational cost). To
this aim, the axiomatizations that have been defined for these semantics might be used to select normal forms
of processes and in turn to determine their contracts. However it is not clear whether such semantics admit a
principal dual contract or not.

It is also interesting to prototyping our theory and experimenting it on some existing repository, such as
http://www.service-repository.com/. To this aim we might re-use tools that have been already developed for the
must testing, such as the concurrency workbench [CPS93].

Appendix: Proofs

Notation

In this section we use some additional yet fairly conventional notation.

• We let ≤ be the prefixing ordering relation between sequences of actions.
• Wegeneralize the definitionof actions(·) to sequences of actions so that actions(ϕ) is the set of actions occurring
in ϕ.

• We write ϕ for the sequence obtained from ϕ by swapping each action with the corresponding co-action.

• We write X α1···αn���⇒ if there exists X′ such that X α1�⇒ · · · αn�⇒ X′.
• We extend continuations to sequences of actions. Let X

ϕ�⇒. If ϕ � ε, then X(ϕ) � X; if ϕ � αϕ′, then
X(ϕ) � X(α)(ϕ′).

• We generalize the convergence and divergence predicates so that X↓ε if X↓ and X↓αϕ if X↓ and X
α�⇒ X′

implies X′↓ϕ. We write X↑ϕ if not X↓ϕ.
• Many proofs rely on the “unzipping of derivations” [Hen88], which decomposes the interaction between two
terms X and Y. In particular, let X |N Y

ε�⇒ X′ |N Y′. Then, by definition of |N, there is a sequence ϕ of

actions such that X
ϕ�⇒ X′ and Y

ϕ�⇒ Y′. By “zipping” we mean the inverse process whereby two derivations

http://www.service-repository.com/

634 C. Laneve, L. Padovani

X
ϕ�⇒ X′ and Y

ϕ�⇒ Y′ are combined to produce X |N Y
ε�⇒ X′ |N Y′. See [Hen88] for a more detailed

discussion.

Proof of Lemma 2.1

The proof of Lemma 2.1 is a simple adaptation of a similar result for ccs* [BGZ09].

Lemma 2.1 Let reach(P) � {Q | there are μ1, . . . , μn with P
μ1−→ · · · μn−→ Q}. Then, for every activity P , the set

reach(P) is always finite.

Proof For an arbitrary activity P we inductively define the set D(P) as follows:

D(0) def� {0}
D(

∑
i∈I αi ;Pi)

def� {∑i∈I αi ;Pi } ∪ ⋃
i∈I D(Pi)

D(P |A Q) def� {P ′ |A Q ′ | P ′ ∈ D(P),Q ′ ∈ D(Q)}
D(P ;Q) def� {P ′;Q | P ′ ∈ D(P)} ∪ D(Q)

D(
⊕

i∈I Pi)
def� {⊕i∈I Pi } ∪ ⋃

i∈I D(Pi)
D(P*) def� {P*, 0} ∪ {P ′;P* | P ′ ∈ D(P)}

A simple inductive argument allows one to establish that D(P) is finite for every P . Now, we conclude if we

are able to show that P
μ−→ P ′ implies D(P ′) ⊆ D(P). This follows from an induction on the derivation of

P
μ−→ P ′. We leave the details to the reader. �

Proof of Theorem 4.1

Lemma 2 Let X R Y where R is a coinductive compliance and Y
ϕ�⇒. Then either there exists ϕ′ ≤ ϕ such that

X(ϕ′)↑ or X(ϕ)↓ and X(ϕ) R Y(ϕ).

Proof By induction on ϕ. If X↑, then we conclude immediately by taking ϕ′ � ε. If X↓, then by definition of
coinductive compliance we have Y↓. If ϕ � ε, then we conclude X(ϕ) R Y(ϕ). If ϕ � αϕ′′, then by definition of
coinductive compliance we have X′ def� X(α) R Y(α) def� Y′. By induction hypothesis we have that either there exists
ϕ′′′ ≤ ϕ′′ such that X′(ϕ′′′)↑ or X′(ϕ′′)↓ and X′(ϕ′′) R Y′(ϕ′′). In the first subcase we conclude by taking ϕ′ � αϕ′′′,
because X(ϕ′) � X(αϕ′′′) � X′(ϕ′′′). In the second subcase we conclude by observing that X(ϕ) � X′(ϕ′′) and
Y(ϕ) � Y′(ϕ′′). �

Theorem 4.1 For every X and Y, the following statements are equivalent:

1. X � Y;

2. X �∼ Y;

3. X �∼C
Y;

4. X �∼A+C
Y.

Proof We show 1 ⇒ 2 and 2 ⇒ 1, the remaining implications are analogous since the proof does not depend on
the syntax of activities/behaviors except for the availability of prefixes, internal and external choices, which are
valid constructs for both activities and behaviors.

An algebraic theory for web service contracts 635

• (1 ⇒ 2) Let T � X and consider a derivation of Y |N T
ε�⇒ Y′ |N T′. By unzipping this derivation we obtain

a sequence ϕ of actions such that T
ϕ�⇒ T′ and Y

ϕ�⇒ Y′. From Lemma 2 we deduce that either there exists
ϕ′ ≤ ϕ such that X(ϕ′)↑ or X(ϕ)↓ and X(ϕ) � Y(ϕ). In the first case, using the hypothesis T � X we conclude
{e} � init(T(ϕ′)) � init(T′). In the second case, suppose Y′ |N T′

�

ε−→. From the definition of coinductive
compliance we have Y(ϕ)↓ and, from condition (2) of Definition 4.1, we know that there exists X′ such that
X(ϕ) ε�⇒ X′

�

ε−→ and init(X′) ⊆ init(Y′). Then X |N T
ε�⇒ X′ |N T′

�

ε−→ and, using the hypothesis T � X, we
conclude {e} ⊆ init(T′).

• (2 ⇒ 1) SupposeX �∼ Y andX↓. Regarding condition (1) of Definition 4.1, suppose by contradictionY↑, let a
be a name that does not occur in X nor in Y and considerT def� e+a. ThenT � X butT �� Y, which contradicts
the hypothesis X �∼ Y. Hence Y↓ and condition (1) is satisfied. Regarding condition (2) of Definition 4.1,
let s1, . . . , sn be the ready sets of X (there are finitely many of them) and suppose that there exists r such
that Y ⇓ r and si �⊆ r for every 1 ≤ i ≤ n, that is there exists αi ∈ ri\s for every 1 ≤ i ≤ n. Consider
T

def� ∑n
i�1 αi ;e. We have T � X and T �� Y, which contradicts the hypothesis X �∼ Y. Hence there exists

1 ≤ i ≤ n such that si ⊆ r and condition (2) is satisfied. Regarding condition (3) of Definition 4.1, suppose
Y

α�⇒ and suppose, by contradiction, that X �

α�⇒. Then e + α � X and e + α �� Y, which contradicts the
hypothesisX �∼ Y, henceX α�⇒. Now letT′ be an arbitrary activity/behavior such thatT′ � X(α) and consider

T
def� e + α;T′. We have T � X hence, from the hypothesis X �∼ Y, we deduce T � Y. This implies T′ � Y(α),

hence we conclude X(α) �∼ Y(α) because T′ is arbitrary, and condition (3) is satisfied. �

Proof of Theorem 3.1

Theorem 3.1 P � CP .

Proof By Theorem 4.1 it is sufficient to prove that R def� {(P ,CP)} is a coinductive compliance. The proof that
R−1 is also a coinductive compliance is similar. Let X R Y. Then X � P and Y � CP for some P . Suppose
P ⇓ for otherwise there is nothing to prove. From the definition of CP we deduce CP ⇓, hence condition (1) of
Definition 4.1 is satisfied. Now let CP ⇓ r. By definition of CP we have P ⇓ s with s ⊆ r, therefore condition (2)
of Definition 4.1 is satisfied. Finally, suppose CP

α�⇒. Then P α�⇒. By definition of R we have P (α) R CP (α)
and we conclude that condition (3) of Definition 4.1 is satisfied by observing that CP (α) � CP (α). �

Proof of Theorem 4.2

Theorem 4.2 X �must Y if and only if X �∼ Y.

Proof Because of Theorem 4.1 we can show the equivalence between �must and �.
(⇐) Let X � Y and assume, by contradiction, that X must T and Y must� T for some T. Then there must be a
maximal computation Y |N T � Y0 |N T0

ε−→ Y1 |N T1
ε−→ · · · such that Ti �

e−→ for every i � 0, 1, We
distinguish two cases: (a) the computation is finite, (b) the computation is infinite.

In case (a) there exists n such that Yn |N Tn �

ε−→. Then there exists ϕ such that Y
ϕ�⇒ Yn and T

ϕ�⇒ Tn .

From Lemma 2 we deduce that either there exist ϕ′ ≤ ϕ and X′ such that X
ϕ′�⇒ X′↑ or X(ϕ)↓ and X(ϕ) � Y(ϕ).

By zipping the computations starting from X and T, in the first subcase we can build an infinite computation
X |N T

ε�⇒ X′ |N T|ϕ′|
ε−→ · · · , while in the second case we can find an X′ such that X

ϕ�⇒ X′
�

ε−→ and
init(X′) ⊆ init(Yn). In both cases we deduce X must� T, which is absurd.

In case (b), we distinguish two subcases:

b1. there exists n such that Yn↑ or Tn↑. Then using an argument similar to case (a), it is possible to show a
contradiction for X must� T.

b2. Y and T communicate infinitely often, that is the computation may be unzipped into Y
ϕ�⇒ and T

ϕ�⇒, where

ϕ is infinite. It is easy to prove that, for every finite ϕ′ ≤ ϕ, there is X′ such that X
ϕ′�⇒ X′. Therefore there

636 C. Laneve, L. Padovani

exists an infinite computation of X |N T that transits in the same states T0,T1, . . . as the ones of Y |N T. This
contradicts the hypothesis X must T.

(⇒) We prove that

R def� {(Y1,Y2) | Y1 �must Y2}
is a coinductive compliance. Let Y1 R Y2 and Y1↓. We prove the three conditions of Definition 4.1 in order.

1. Suppose by contradiction Y2↑. Then Y1 must e ⊕ e whereas Y2 must� e ⊕ e which is absurd, hence Y2↓.
2. Let r1, . . . , rn be the ready sets of Y1. Assume by contradiction that there exists s such that Y2 ⇓ s and

ri �⊆ r for every 1 ≤ i ≤ n. That is, every ri is nonempty and, for every 1 ≤ i ≤ n, there exists αi ∈ ri\s.
Now Y1 must

∑
1≤i≤n αi ;e while Y2 must� ∑

1≤i≤n αi ;e, which is absurd.

3. Let Y2
α�⇒ Y′

2. Then also Y1
α�⇒. In fact, if this were not the case, then Y1 must e + α while Y2 must� e + α,

which is absurd. Let T be an arbitrary term such that Y1(α) must T. Then Y1 must e + α;T. From the
hypothesis Y1 �must Y2 we deduce Y2 must e + α;T, therefore Y2(α) must T. We conclude Y1(α) R Y2(α)
by definition of R. �

Proof of Theorem 5.1

Lemma 2 Let i : σ R j : τ where R is a coinductive compliance and τ
ϕ�⇒ and actions(ϕ) ⊆ i. Then either there

exists ϕ′ ≤ ϕ such that σ (ϕ′)↑ or σ (ϕ)↓ and σ (ϕ) R τ (ϕ).

Proof Analogous to that of Lemma 2. �

Theorem 5.1 � is the largest coinductive subcontract relation.

Proof We begin showing that � is a coinductive subcontract relation. Suppose i : σ � j : τ and σ↓. Then by
Definition 5.1 we know i ⊆ j. We now prove the conditions of Definition 5.2 in order.

1. Suppose by contradiction that τ↑. Then Ω � σ and Ω �� τ , which contradicts the hypothesis i : σ � j : τ ,
hence we conclude τ↓ and condition (1) is satisfied.

2. Let r1, . . . , rn be the ready sets of σ and assume by contradiction that there exists s such that τ ⇓ s and for
every 1 ≤ i ≤ n there exists αi ∈ ri\s. By definition of ready set we have τ

ε�⇒ τ ′
�

ε−→ and init(τ ′) ⊆ s.
Consider ρ

def� ∑
1≤i≤n αi ;e. Then, ρ � σ but ρ �� τ because τ |N ρ

ε�⇒ τ ′ |N ρ �

ε−→ and e �∈ init(ρ), which is
absurd. Hence we conclude that ri ⊆ s for some 1 ≤ i ≤ n and condition (2) is satisfied.

3. Let τ
α�⇒ and α ∈ i. It must be the case that σ

α�⇒, otherwise e + α � σ while e + α �� τ , which contradicts
the hypothesis i : σ � j : τ . Let ρ be an arbitrary behavior such that actions(ρ)\{e} ⊆ i and ρ � σ (α). Then
e + α;ρ � σ . From the hypothesis i : σ � j : τ we deduce e + α;ρ � τ , hence ρ � τ (α). We conclude
i : σ (α) � j : τ (α) because ρ is arbitrary, hence condition (3) is satisfied.

Next we show that every coinductive subcontract relation is included in�, proving that� is indeed the largest
one. Let i : σ R j : τ where R is a coinductive subcontract. By Definition 5.2 we know that i ⊆ j. Let k : ρ be
such that k\{e} ⊆ i and ρ � σ . Consider a derivation of τ |N ρ

ε�⇒ τ ′ |N ρ ′. By unzipping this derivation we

obtain a sequence ϕ of actions such that ρ
ϕ�⇒ ρ ′ and τ

ϕ�⇒ τ ′ and furthermore actions(ϕ) ⊆ i. From Lemma 2
we deduce that either there exists ϕ′ ≤ ϕ such that σ (ϕ′)↑ or σ (ϕ)↓ and σ (ϕ) R τ (ϕ). In the first case, using
the hypothesis ρ � σ we conclude {e} � init(ρ(ϕ′)) � init(ρ ′). In the second case, suppose τ ′ |N ρ ′

�

ε−→. From
the definition of coinductive subcontract we have τ (ϕ)↓ and, from condition (2) of Definition 5.2, we know that
there exists σ ′ such that σ (ϕ) ε�⇒ σ ′

�

ε−→ and init(σ ′) ⊆ init(τ ′). Then σ |N ρ
ε�⇒ σ ′ |N ρ ′

�

ε−→ and, using the
hypothesis ρ � σ , we conclude {e} ⊆ init(ρ ′). �

An algebraic theory for web service contracts 637

Proofs of Propositions 5.1 and 5.2

Proposition 5.1 The following properties hold:

1. If i : σ � j : τ and i : σ � j : τ ′, then i : σ � j : τ ⊕ τ ′;
2. if i : 0 � j : τ , then i : σ � j : σ + τ (width extension);
3. if i : 0 � j : τ , then i : σ � j : σ{τ/0}, where σ{τ/0} is the replacement of every occurrence of the contract name

0 with τ (depth extension).

Proof We only show the proof of item (2), the others being simpler/analogous. Using Theorem 5.1, it is enough
to show that

R def� {(i : σ, j : σ + τ) | i : 0 � j : τ } ∪ {(i : σ, i : σ) | i : σ is an extended contract}
is a coinductive subcontract. Since � is obviously reflexive, the only interesting case to consider is when i : σ R
j : σ + τ and i : 0 � j : τ . From i : 0 � j : τ we deduce i ⊆ j. Now suppose σ↓; we prove the conditions of
Definition 5.2 in order:

1. From i : 0 � j : τ we deduce τ↓, hence σ + τ↓.
2. Let σ + τ ⇓ r. Then there exist r1 and r2 such that σ ⇓ r1 and τ ⇓ r2 and r � r1 ∪ r2. We conclude by

observing that r1 ⊆ r.

3. Let σ + τ
α�⇒ and α ∈ i. From i : 0 � j : τ we deduce τ �

α�⇒, hence (σ + τ)(α) � σ (α). We conclude
σ (α) R σ (α) by definition of R. �

Proposition 5.2 i : σ ≈ j : τ if and only if σ � τ and i � j.

Proof Using Theorems 4.1 and 5.1 it is enough to show that

R1
def� {(σ, τ) | i : σ � i : τ } and R2

def� {(i : σ, i : τ) | σ � τ }
respectively are a coinductive compliance and a coinductive subcontract. The result follows easily from Defini-
tions 4.1 and 5.2. �

Proof of Theorem 6.1

Theorem 6.1 Let k : ρ be a canonical extended contract. Then:

1. ρ � Dk
ρ;

2. if k\{e} ⊆ s and ρ � σ , then k\{e} : Dk
ρ � s : σ .

Proof Regarding item 1, we remark that, by definition of dual, every derivation Dk
ρ |N ρ

ε�⇒ σ |N ρ ′ may be

rewritten into Dk
ρ |N ρ

ε�⇒ Dk
ρ(ϕ) |N ρ

ε�⇒ σ |N ρ ′, where ρ(ϕ) ε�⇒ ρ ′ and Dk
ρ(ϕ)

ε�⇒ σ .

If σ↑, then Dk
ρ(ϕ) � Ω, which means that {e} � init(ρ ′). In this case, the conditions in Definition 2.2 are

satisfied. If σ |N ρ ′
�

ε−→, then assume by contradiction that e �∈ init(ρ ′). By definition of canonical client,
init(ρ ′) �� ∅. Therefore, by definition of dual, Dk

ρ(ϕ) ⇓ r implies r �� ∅ because Dk
ρ(ϕ) has an empty ready set

provided every ready set of ρ(ϕ) contains e, which is not the case by hypothesis. Hence we conclude init(σ) �� ∅

and init(ρ ′) ∩ init(σ) �� ∅ by definition of dual, which is absurd by σ |N ρ ′
�

ε−→.
Regarding item 2, let k′ def� k\{e} and let R be the least relation such that:

• if σ
ϕ�⇒, ρ

ϕ�⇒, and σ↓ϕ, then k′ : Dk
ρ(ϕ) R s : σ (ϕ);

• if σ
ϕ�⇒ and either ρ �

ϕ�⇒ or σ↑ϕ, then k′ : Ω R s : σ (ϕ).

Note that k′ : Dk
ρ R s : σ . Indeed, if σ↑, then from ρ � σ we derive init(ρ) � {e}, hence Dk

ρ � Ω by definition
of dual. Using Theorem 5.1 it suffices to prove thatR is a coinductive subcontract. Let k′ : Dk

ρ(ϕ) R s : σ (ϕ) and

Dk
ρ(ϕ)↓. The conditions of Definition 5.2 are proved in order:

638 C. Laneve, L. Padovani

1. By definition of R we have σ↓ϕ, hence σ (ϕ)↓.
2. Assume σ (ϕ) ⇓ r. Let {s1, . . . , sn} def� {s | ρ(ϕ) ⇓ s, e �∈ s}. From ρ � σ we derive si ∩ r �� ∅ for

every 1 ≤ i ≤ n, namely there exists αi ∈ si ∩ r for every 1 ≤ i ≤ n. By definition of dual we have
Dk

ρ(ϕ) ⇓ {α1, . . . , αn } and we conclude by observing that {α1, . . . , αn } ⊆ r.

3. Let σ (ϕ) α�⇒ and α ∈ k′. Then α ∈ k and Dk
ρ(ϕ)

α�⇒ by definition of dual. If ρ(ϕ) �

α�⇒, then Dk
ρ(ϕ)(α) � Ω

and we conclude k′ : Ω R σ (ϕα) by definition of R. If ρ(ϕ) α�⇒, then we distinguish two subcases: either
(i) σ (ϕα)↑ or (ii) σ (ϕα)↓. In subcase (i), from ρ � σ we derive init(ρ(ϕα)) � {e}, hence Dk

ρ(ϕα) � Ω

and k′ : Ω R s : σ (ϕα) by definition of R. In subcase (ii) we have Dk
ρ(ϕ)(α) � Dk

ρ(ϕα) and we conclude

k′ : Dk
ρ(ϕ)(α) R s : σ (ϕα) by definition ofR. �

Proof of Theorem 7.1

Theorem 7.1 Let k : ρ be compliant with
1 and
2 be a refinement of
1. Then k : ρ is also compliant with
2.

Proof Let
1 � ∏A(i1 : σ1, . . . , in : σn) and
2 � ∏A(j1 : τ1, . . . , jn : τn) and consider a computation

2 |N ρ

ε�⇒
′
2 |N ρ ′ where
′

2 � ∏A(j1 : τ ′
1, . . . , jn : τ ′

n). By unzipping this computation we deduce that there

exists a sequence ϕ of actions such that ρ
ϕ�⇒ ρ ′ and
2

ϕ�⇒
′
2. By unzipping the computation of
2 with respect

to all of its participants we obtain n sequences ϕ1, . . . , ϕn of actions such that τi
ϕi�⇒ τ ′

i for every 1 ≤ i ≤ n. Note
that ϕ is obtained by erasing pairs of complementary actions from the ϕi ’s, which correspond to synchronizations
occurred within the choreography and solely pertain to names in A, and by suitably interleaving the remaining
actions. Using ii : σi � ji : τi , condition (2), and actions(ϕ) ⊆ k\{e} ⊆ actions(
1), we deduce that all the actions
in the ϕi are in ii and σi

ϕi�⇒ for every 1 ≤ i ≤ n. By zipping these derivations we obtain that
1
ϕ�⇒ as well.

We proceed by considering the two possibilities in Definition 2.2.
Suppose
′

2 |N ρ ′
�

ε−→. If there exists
′
1 such that
1

ϕ�⇒
′
1 and
′

1↑, then from ρ �
1 we conclude
{e} � init(ρ ′). If
′

1↓ whenever
1
ϕ�⇒
′

1, then from
2 �

ε−→ we deduce that for every 1 ≤ i ≤ n there exists σ ′
i

such that σi
ϕi�⇒ σ ′

i and init(σ ′
i) ⊆ init(τ ′

i). Take
′
1 � ∏A(i1 : σ ′

1, . . . , in : σ ′
n). Then �1 |N ε�⇒ �′

1 |N ρ ′
�

ε−→ and
from ρ � �1 we conclude {e} ⊆ init(ρ ′).

Suppose
′
2↑. This may happen either because one (or more) participants diverge autonomously, or because

two (or more) participants interact infinitely often. By definition of refinement and using the same arguments
as above, we obtain that there exists
′

1 such that
1
ϕ�⇒
′

1 and
′
1↑. From the hypothesis ρ �
1 we conclude

{e} � init(ρ ′). �

References

[Abr90] Abramsky S (1990) The lazy lambda calculus. In: Proceedings of research topics in functional programming, Addison-Wesley,
Boston, MA, pp 65–116

[AIS11] Aceto L, Ingolfsdottir A, Srba J (2011) The algoritmics of bisimilarity. In: Sangiorgi D, Rutten J (eds) Advanced topics in
bisimulation and coinduction of Cambridge tracts in theoretical computer science, chapter 3, vol 52. Cambridge University
Press, pp 100–172

[Alv07] Alves A et al. (2007) Web Services Business Process Execution Language Version 2.0. http://docs.oasis-open.org/wsbpel/2.0/
CS01/wsbpel-v2.0-CS01.html

[BBB+02] Banerji A, Bartolini C, Beringer D, Chopella V et al. (2002) Web Services Conversation Language (wscl) 1.0. http://www.w3.
org/TR/2002/NOTE-wscl10-20020314

[BCd09] Barbanera F, Capecchi S, de’Liguoro U (2009) Typing asymmetric client-server interaction. In: Proceedings of fundamentals
of software engineering, third IPM international conference, FSEN 2009,Kish Island, Iran, April 15–17, 2009, revised selected
papers, of Lecture Notes in Computer Science, vol 5961. Springer, pp 97–112

[BCF03] Benzaken V, Castagna G, Frisch A (2003) CDuce: an XML-centric general-purpose language. SIGPLAN Not 38(9):51–63
[Ber13] Bernardi G (2013) Behavioural Equivalences for Web Services. PhD thesis, University of Dublin
[BGZ09] Busi N, Gabbrielli M, Zavattaro G (2009) On the expressive power of recursion, replication and iteration in process calculi.

Math Struct Comput Sci 19(6):1191–1222
[BH12] Bernardi G, HennessyM (2012)Modelling session types using contracts. In: Proceedings of the 27th annual ACM symposium

on applied computing, SAC ’12, ACM, New York, pp 1941–1946
[BHR84] Brookes SD, Hoare CAR, Roscoe AW (1984) A theory of communicating sequential processes. J ACM 31(3):560–599

http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.html
http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.html
http://www.w3.org/TR/2002/NOTE-wscl10-20020314
http://www.w3.org/TR/2002/NOTE-wscl10-20020314

An algebraic theory for web service contracts 639

[BKL01] Beringer D, KunoH, LemonM (2001) Usingwscl in a uddiRegistry 1.0, uddiWorking draft best practices document. http://
xml.coverpages.org/HP-UDDI-wscl-5-16-01.pdf

[BLZ09] Bravetti M, Lanese I, Zavattaro G (2009) Contract-driven implementation of choreographies. In: Proceedings of trustworthy
global computing, lecture notes in computer science, vol. 5474. Springer, pp 1–18

[BMPR09] Bugliesi M, Macedonio D, Pino L, Rossi S (2009) Compliance preorders for web services. In: Proceedings of WS-FM, lecture
notes in computer science, vol. 6194. Springer, pp 76–91

[BS98] Boreale M, Sangiorgi D (1998) Bisimulation in name-passing calculi without matching. In: Proceedings of logic in computer
science, 1998. thirteenth annual IEEE Symposium, pp 165–175

[BZ07] Bravetti M, Zavattaro G (2007) Towards a unifying theory for choreography conformance and contract compliance. In Pro-
ceedings of SC 2007, LNCS, vol 4829. Springer, pp 34–50

[BZ08] Bravetti M, Zavattaro G (2008) A foundational theory of contracts for multi-party service composition. Fundam Inform
89(4):451–478

[BZ09a] BravettiM, ZavattaroG (2009) Contract-based discovery and composition of web services. In: Proceedings of SFM’09, lecture
notes in computer science, vol 5569. Springer, pp 261–295

[BZ09b] Bravetti M, Zavattaro G (2009) A theory of contracts for strong service compliance. Math Struct Comput Sci 19:601–638
[CCLP06] Carpineti S, Castagna G, Laneve C, Padovani L (2006) A formal account of contracts for web services. In: Proceedings of

WS-FM, 3rd international workshop on web services and formal methods, in LNCS, vol 4184. Springer, pp 148–162
[CCMW01] Christensen E, Curbera F, Meredith G, Weerawarana S (2001) Web services description language (wsdl) 1.1. http://www.w3.

org/TR/2001/NOTE-wsdl-20010315
[CGP09] Castagna G, Gesbert N, Padovani L (2009) A theory of contracts for web services. ACM Trans Program Lang Syst 31(5):19
[CHY07] CarboneM, Honda K, Yoshida N (2007) Structured communication-centered programming for web services. In: Proceedings

of 16th European symposium on programming, (ESOP’07), LNCS 4421. Springer, pp 2–17
[CLP09] Carpineti S, LaneveC, Padovani L (2009) PiDuce: A project for experimentingweb services technologies. Sci Comput Program

74(10):777–811
[Cos95] Di Cosmo R (1995) Isomorphisms of types: from Lambda calculus to information retrieval and language desig. Birkhauser,

Basel. ISBN-0-8176-3763-X
[CP09] Castagna G, Padovani L (2009) Contracts for mobile processes. In: Proceedings of the 20th international conference on

concurrency theory (CONCUR’09), of LNCS, vol 5710. Springer, pp 211–228
[CPS93] CleavelandR, Parrow J, Steffen B (1993) The concurrencyworkbench: a semantics-based tool for the verification of concurrent

systems. ACM Trans Program Lang Syst 15(1):36–72
[CRR02] Chaki S, Rajamani SK, Rehof J (2002) Types as models: model checkingmessage-passing programs. SIGPLANNot 37(1):45–

57
[DH84] De Nicola R, Hennessy M (1984) Testing equivalences for processes. Theor Comput Sci 34:83–133
[DH87] De Nicola R, Hennessy M (1987) CCS without τ ’s. In: Proceedings of TAPSOFT’87/CAAP’87, LNCS 249. Springer, pp

138–152
[FL01] Fournet C, Laneve C (2001) Bisimulations in the join-calculus. Theor Comput Sci 266(1–2):569–603
[GH05] Gay S, Hole M (2005) Subtyping for session types in the π -calculus. Acta Informatica 42(2–3):191–225
[Hen88] Hennessy M (1988) Algebraic theory of processes: foundation of computing. MIT Press
[Hon93] Honda K (1993) Types for dyadic interaction. In: Proceedings of CONCUR’93, LNCS 715. Springer, pp 509–523
[HP03] Hosoya H, Pierce BC (2003) XDuce: a statically typed XML processing language. ACM Trans Internet Tech 3(2):117–148
[HVK98] Honda K, Vasconcelos VT, Kubo M (1998) Language primitives and type disciplines for structured communication-based

programming. In: Proceedings of ESOP’98, LNCS 1381. Springer, New York, pp 122–138
[HYC08] Honda K, Yoshida N, Carbone M (2008) Multiparty asynchronous session types. In: Proceedings of POPL 2008. ACM, pp

273–284
[IK01] Igarashi A, Kobayashi N (2001) A generic type system for the pi-calculus. In: Proceedings of POPL 2001, ACM, pp 128–141
[KBR+05] Kavantzas N, Burdett D, Ritzinger G, Fletcher T, Lafon Y, Barreto C (2005) Web services choreography description language

1.0. http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/
[LP07] Laneve C, Padovani L (2007) The must preorder revisited: an algebraic theory for web services contracts. In: Proceedings of

CONCUR’07, LNCS 4703. Springer, pp 212–225
[LP08] Laneve C, Padovani L (2008) The pairing of contracts and session types. In: Proceedings of concurrency, graphs and models,

lecture notes in computer science, vol. 5065. Springer, New York, pp 681–700
[LP13] Laneve C, Padovani L (2013) An algebraic theory for web service contracts. In: Proceedings of 10th international conference

on integrated formal methods, LNCS, vol. 7940. Springer, New York, pp 301–315
[Mil82] Milner R (1982) A calculus of communicating systems. Springer
[Mil89] Milner R (1989) Communication and concurrency. Prentice Hall, Upper Saddle River, NJ
[NN94] Nielson HR, Nielson F (1994) Higher-order concurrent programs with finite communication topology (extended abstract).

In: Proceedings of POPL’94. ACM Press, New York, pp 84–97
[OVvdA+07] Ouyang C, Verbeek E, van der Aalst WMP, Breutel S, Dumas M, ter Hofstede AHM (2007) Formal semantics and analysis

of control flow in ws-bpel. Sci Comput Program 67(2–3):162–198
[Pad08] Padovani L (2008) Contract-directed synthesis of simple orchestrators. In: Proceedings of the 19th international conference

on concurrency theory (CONCUR’08), LNCS, vol 5201. Springer, New York, pp 131–146
[Pad09] Padovani L (2009) Contract-based discovery and adaptation of web services, LNCS, vol 5569. Springer, NewYork, pp 213–260
[Pad10] Padovani L (2010) Contract-based discovery of web services modulo simple orchestrators. Theor Comput Sci 411:3328–3347
[Pad13] Padovani L (2013) Fair subtyping for open session types. In: Proceedings of 40th international colloquium on automata,

languages, and programming, part II, LNCS, vol 7966. Springer, New York, pp 373–384
[Pad14] Padovani L (2014) Fair subtyping for multi-party session types. Math Struct Comput Sci, pp 1–41

http://xml.coverpages.org/HP-UDDI-wscl-5-16-01.pdf
http://xml.coverpages.org/HP-UDDI-wscl-5-16-01.pdf
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/

640 C. Laneve, L. Padovani

[PS93] Pitts AM, Stark IDB (1993) Observable properties of higher order functions that dynamically create local names, or what’s
new? In: Proceedings of 18th international symposium on mathematical foundations of computer science, lecture notes in
computer science, vol 711. Springer, New York, pp 122–141

[Rit93] Rittri M (1993) Retrieving library functions by unifying types modulo linear isomorphism. In: Proceedings of RAIRO theo-
retical informatics and applications 27(6):523–540

Received 12 November 2013
Revised 30 January 2015
Accepted 27 February 2015 by Einar Broch Johnsen, Luigia Petre, and Michael Butler
Published online 8 April 2015

	An algebraic theory for web service contracts
	Abstract
	1 Introduction
	2 BPEL abstract activities
	2.1 A quick look at BPEL
	2.2 A formal model of BPEL abstract activities
	2.3 Operational semantics of BPEL abstract activities
	2.4 The compliance preorder

	3 Contracts
	4 Coinductive compliance and must-testing
	5 The subcontract relation
	6 Duality
	7 Choreographies
	8 Related work
	9 Conclusions
	Appendix: Proofs
	Notation
	Proof of Lemma 2.1
	Proof of Theorem 4.1
	Proof of Theorem 3.1
	Proof of Theorem 4.2
	Proof of Theorem 5.1
	Proofs of Propositions 5.1 and 5.2
	Proof of Theorem 6.1
	Proof of Theorem 7.1

	References

