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Abstract. Safety-Critical Java (SCJ) is a recent technology that changes the execution and memory model of Java
in such a way that applications can be statically analysed and certified for their real-time properties and safe use of
memory. Our interest is in the development of comprehensive and sound techniques for the formal specification,
refinement, design, and implementation of SCJ programs, using a correct-by-construction approach. As part of
this work, we present here an account of laws and patterns that are of general use for the refinement of SCJ
mission specifications into designs of parallel handlers, as they are used in the SCJ programming paradigm. Our
refinement notation is a combination of languages from the Circus family, supporting state-rich reactive models
with the addition of class objects and real-time properties. Starting from a sequential and centralised Circus
specification, our laws permit refinement into Circus models of SCJ program designs. Automation and proof of
the refinement laws is examined here, too. Our work is an important step towards eliciting laws of programming
for SCJ and fits into a refinement strategy that we have developed previously to derive SCJ programs from
specifications in a rigorous manner.
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1. Introduction

Java is indisputably one of the most popular programming languages nowadays. Despite this, its use in the
safety-critical industry has been modest due to Java’s generality and rich set of features. Significant issues are,
for example, the use of garbage collection and problems related to thread prioritisation [STR06, The11], which
render it inadequate for time-critical applications. Safety-Critical Java (SCJ) [HHL+09], a recent initiative, ad-
dresses these issues by introducing a restricted version of Java; it is based on the Real-Time Specification for
Java (RTSJ) [Wel04], but further restricts RTSJ’s execution and memory model. SCJ requires programs to con-
form with the SCJ execution paradigm, which is based on missions and handlers. This facilitates the formal
analysis of SCJ applications, and thereby enables the application of formal methods to satisfy stringent criteria
of certification standards like DO-178C [RTC11].

SCJ is organised in three levels (Levels 0–2), which define progressively more complex models of execution.
Our focus is SCJ Level 1, which roughly corresponds to the Ravenscar profile for Ada [Bur99]. At Level 1,
applications are organised as a sequence of missions, and each mission consists of a set of handlers that are
executed in parallel. Missions and handlers are defined by application classes that either extend or implement an
abstract or interface class of the SCJ API; that API is defined as part of the SCJ technology [The11]. Handlers
can either be periodic, which means they are released at regular time intervals, or aperiodic implying that they
are released by some external event or stimulus. When a handler is released, its handleAsyncEvent() method is
scheduled for execution by a priority-based scheduler that is part of a specialised virtual machine for executing
SCJ programs.
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Our previous work focused on complementing the informal account of SCJ [The11] with a formal model of
SCJ’s mission-based execution paradigm [ZCW11] and memory model [CWW11a]. Our modelling notation is a
combination of languages from the Circus family [CSW03, CSW05, SCJS10], specifically tailored for state-rich
reactive systems with the addition of discrete time, object orientation, and object references.

We have also proposed a refinement strategy [CZW+13] to transform abstract specifications into models that
directly correspond to SCJ programs. Such a strategy simultaneously addresses a multitude of concerns. Namely,
we have to consider the preservation of real-time behaviour, the introduction of classes and object references, the
SCJ memory model, the SCJ execution model, and the SCJ application interface. Therefore, it is not surprising
that the existing work [CZW+13] only gives a broad description of the general approach; details of the application
of this strategy to a specific example are available in [ZCW+12].

Our primary contribution in this paper is to examine in detail the refinement of centralised and sequential
specifications of missions into parallel handler designs. In doing so, we elaborate and extend our account of
laws in our previous work [ZC13]. Our starting point for the refinement is a Circus process specification that
supports all constructs of Circus, including Z data operations, classes, and Timed CSP constructs, except for
parallel composition and interleaving. We show how decomposition of data operations, time budgets, and process
actions can be used to transform such a model into a uniform shape that determines the structure and behaviour
of handlers of a mission. Refinement laws directly reflect particular program designs that encapsulate the way in
which data is shared and safely accessed to avoid race conditions, how computational work is divided between
the handlers of a mission, and how handler execution is controlled.

Another contribution is an account on automating the application of the laws. In particular, we discuss how
different stages of the refinement may take advantage of automation and potential tactics for refinement, and
what level of expertise is required in each aspect of the refinement to guide the formal development. We also
present proofs of a few of the novel refinement laws, and thereby illustrate a strategy for validation of the laws
with respect to a denotational semantics of our language. That semantics has been recently formulated in the
context of Hoare and He’s Unifying Theories of Programming (UTP) [HJ98].

The principal motivation for our work is to pave the way for automated tool support for the verification of SCJ
programs. Due to the novelty of SCJ, there are not many tools currently available that support the development
of critical software in SCJ. The available tools mostly focus on isolated statically-checkable properties [TPV10,
DHS12, HL11], but do not address the combination of concerns that characterise the SCJ paradigm. While
we do address many concerns of SCJ simultaneously by using a highly expressive language, the practicalities of
performing actual refinements are largely an open problem. It is, clearly, unrealistic to carry out such refinements
entirely by hand, which is well illustrated by the complexity of the example in [ZCW+12]. Some refinement steps
are, however, inherently difficult to automate. Our work highlights where automation is feasible, and where human
guidance is indispensable to guide the refinement process.

The added contributions of this article with respect to our earlier account on refinement laws for SCJ in [ZC13]
can be summarised as follows.

1. We refine the notion of an SCJ program design by considering termination of missions (Sect. 3).
2. We present laws for two aspects of the refinement that have not been considered so far. The first one is the

introduction of cycle timings for periodic handlers (Sect. 4.1), and the second one is the design of shared data
access as well as explicit mechanisms for handler control (Sect. 4.5).

3. We discuss in detail opportunities and ramifications for automating the application of the laws (Sect. 6).
4. We present proofs for some of the laws and thus illustrate the feasibility of validating the proposed refinement

laws (Sect. 7). This is with respect to a UTP-based semantics of our language.
5. We elaborate our account of applying the refinement laws to our collision detector case study.

The results in this paper contribute towards elaborating the refinement strategy for SCJ in [CZW+13], but they
are also useful outside the context of that technique. Decomposition of centralised models is a general issue in
refinement-based techniques [CSW03], and the models we produce can, in principle, serve as a starting point
for any form of parallel implementation in languages other than SCJ. As the essence of the SCJ paradigm (its
mission-based execution model) can be captured independently of the Java language, our account of mission
decomposition is relevant for languages that adopt a similar execution model, too.
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Fig. 1. Life-cycle of a safelet during execution of a Level 1 application

The structure of the article is as follows. In Sect. 2, we review preliminary material: SCJ, the Circus family of
languages, and a refinement strategy for development or verification of SCJ. Section 3 presents the Circus model
of an SCJ program design targeted by the refinement. Section 4 then discusses our refinement laws by considering
five independent design and verification aspects, and Sect. 5 presents an example that illustrates the application of
the laws: a collision detector for aircraft. Next, Sect. 6 considers issues of automation, and in Sect. 7 we examine
the proof of some of the laws. Finally, in Sect. 8, we conclude, and discuss related and future work.

2. Preliminaries

We next discuss in more detail SCJ Level 1 (Sect. 2.1), the Circus family of notations (Sect. 2.2), and our top-level
refinement strategy (Sect. 2.3). We use a version of the collision detector for aircraft (CDx) in [KHP+09] that has
been adapted for SCJ Level 1 as a running example to explain the SCJ technology and our formal notation, and
later on also to demonstrate the refinement laws. The executable SCJ program and additional documentation are
available from http://www.cs.york.ac.uk/circus/hijac/cdx.html.

2.1. SCJ Level 1

Safety-Critical Java is a restriction of the standard Java language and JDK API. SCJ prohibits certain features of
Java that are difficult to analyse for program certification or otherwise deemed unsafe in a safety-critical context,
like garbage collection or unconstrained use of synchronized blocks. Moreover, SCJ requires program designs
to adhere to particular structures, and therefore includes its own API that provides classes and interfaces that
enable the user to write applications that conform to SCJ’s execution paradigm. In detail, SCJ programs are
distinguished by compliance with one of the three SCJ Levels 0, 1 and 2. These levels define progressively more
complex application architectures and underlying execution models, and are each supported by a specific set of
(abstract) classes and interfaces, provided by the SCJ technology [The11].

Level 0 applications define a set of sequential tasks that are periodically executed by a cyclic scheduler.
SCJ Level 1 adopts the more elaborate execution model based on missions and handlers. SCJ Level 2 relaxes
certain constraints on the use of synchronisation primitives in SCJ Level 1 and moreover supports nesting of
missions. Our focus in this article is SCJ Level 1. The execution model for SCJ Level 1 programs is based on five
primary conceptual entities: safelet, mission sequencer, missions, handlers and SCJ events. They are realised by
the following abstract classes and interfaces: Safelet, MissionSequencer, Mission, PeriodicEventHandler,
AperiodicEventHandler and AperiodicEvent. Concrete Level 1 programs implement these interfaces and
classes and can then be executed by a specialised virtual machine for SCJ.

Figure 1 illustrates the life-cycle of a Level 1 safelet, the top-level entity of an SCJ application. The SCJ
infrastructure, that is, an SCJ-compliant virtual machine, first initialises the safelet. This is followed by a series
of mission executions, each involving the initialisation, execution and termination of a particular mission of the
safelet. Interaction of the infrastructure with the program to carry out these (and other) tasks is done by method
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Fig. 2. Class diagram for an aircraft collision detector in Level 1 SCJ

calls. Mission initialisation creates the mission’s event handlers, which are released either periodically or by an
external or SCJ event during mission execution. Whereas external events are raised by the environment, SCJ
events are fired in software (by a method call) and enable applications to exercise explicit control over handler
releases. SCJ events are modelled by instances of the AperiodicEvent class, which is also part of the SCJ API.
When there are no more missions to execute, the safelet terminates.

Figure 2 includes the UML class diagram for a particular SCJ application: the collision detector (CDx).
Whereas the original CDx [KHP+09] was designed for RTSJ, our version is a recast for SCJ Level 1 and takes ad-
vantage of multiple handlers that parallelise the detection of collisions. Classes surrounded by a blob belong to the
SCJ API, and the remaining ones are application classes. The latter include CDxSafelet, CDxMissionSequencer,
CDxMission, InputFrameHandler, OutputCollisionsHandler, ReducerHandler and DetectorHandler. We
observe that they all implement an entity of the SCJ API.

An instance of the CDxSafelet class provides the safelet of the application and CDxMissionSequencer de-
fines the mission sequencer, which here specifies the execution of a single mission CDxMission that also holds
the data shared between the handlers. The remaining classes are handlers. InputFrameHandler is periodic
whereas ReducerHandler, DetectorHandler and OutputCollisionsHandler are aperiodic and released by
various SCJ events (of type AperiodicEvent). The purpose of InputFrameHandler is to periodically read radar
frames of aircraft positions from an external device. Afterwards, it releases ReducerHandler, which reduces
and divides the computational work using a spacial decomposition algorithm. The actual detection of colli-
sions is performed by four instances of the DetectorHandler class; these instances record their partial results
using the void recColls(int) method of the mission class. Once all detector handlers complete their work,
OutputCollisionsHandler is released to output the result to a warning system. (DetectorControl is a utility
class to control the release of OutputCollisionsHandler.) We note that the program depicted in the UML
diagram has been a priori constructed, but in Sect. 5 we verify it by showing how its design emerges from the
refinement laws that we discuss in Sect. 4.

In terms of the SCJ API, a class implementing Safelet has to provide the methods setUp() and tearDown(),
which are called by the SCJ infrastructure to initialise and shutdown the safelet. The method getSequencer() (see
Fig. 2) is called on the safelet object to obtain the mission sequencer of the application, which defines the sequence
of missions to execute (here it returns an instance of CDxMissionSequencer). In addition, various methods are
called by the infrastructure on the mission sequencer, mission, and handler objects during execution of the safelet.
Most notably, those shown in Fig. 2 are getNextMission() to obtain the next mission to execute, initialize()
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to create the handlers of a mission, and handleAsyncEvent()when a handler is released. As mentioned before, an
SCJ program must provide implementations of these methods and thereby define the structure of the application
in terms of missions and handlers. The code for the CDxMission class is included in Appendix G and illustrates
the creation of handlers, SCJ events and shared data, as well as methods to safely access the shared data. We note
that although the missions and handlers of a safelet are generally determined at run-time, we shall assume that
they are a priori fixed. This simplifies the model, and all SCJ programs we encountered so far adhere to it!

When a mission terminates, cleanup() is called on the mission object to perform application-specific cleanup
tasks. The entire safelet terminates when there are no more missions to execute, signalled in the program by
getNextMission() returning a null reference instead of a mission object.

Memory in SCJ is organised in scoped areas where each scope has a predefined life-span with respect to
the safelet’s life-cycle. Scoped memory eradicates the need for garbage collection while access rules on scopes
alleviate problems of dangling references [PFHV04]. First, we have immortal memory, which is never released
and thus may contain objects shared between missions. Further, each mission has its own mission memory area
that remains valid for the duration of mission execution and is used for shared data between the handlers of a
mission. Finally, handler methods execute in their own private scope when a handler is released; that scope is for
temporary objects and reclaimed each time handleAsyncEvent() terminates.

In summary, the safelet and the mission sequencer are control components that orchestrate the execution of
the missions and their handlers. The missions and the handlers, on the other hand, are the key components that
implement the behaviour of the program, and the main focus of our work here. SCJ events are moreover relevant
for control mechanisms that release handlers explicitly in the program.

2.2. The Circus family

Circus [CSW03] is a language for specification and refinement of state-rich reactive systems. It combines notations
from Z [WD96], CSP [Ros97], and Morgan’s refinement calculus [Mor94]. As in CSP, the key elements of Circus
models are processes that can interact with their environment through channels. Unlike CSP, Circus processes
encapsulate a state that can be modified by actions and data operations of the process. Circus has a denotational
semantics [OCW09] defined using Hoare and He’s Unifying Theories (UTP) [HJ98].

An example of a Circus process is given in Fig. 3. It is the specification of the CDx program introduced in the
previous section. As already noted, the collision detector exhibits a cyclic behaviour in which each cycle entails
reading aircraft positions from a radar device, computing the number of pairs of aircraft at risk of colliding, and
outputting the result to a warning system. The name of the process is CDxSpec, and its state is defined by the
CDxState Z schema, introducing the components posns and motions of type Frame. They are respectively used
to record the positions and trajectories of the aircraft currently in view of the radar. The type Frame is introduced
as the set of partial and finite functions from aircraft identifiers to 3d vectors: Frame �̂ Aircraft � �→ Vector. The
state invariant dom posns � dom motions ensures that we record a motion trajectory for each visible aircraft.
We note that in general, the state components of a process can either have Z (schema) types as in CDxSpec, or
OhCircus [CSW05] class types as we use them later on.

Next, we have a sequence of local action definitions for the actions Init, RecordFrame, CalcCollisions and
CDxCycle. The actual behaviour of the process is specified by its main action after the ‘•’ at the bottom and,
typically, makes use of the local actions. (Here, Init to initialise the state and CDxCycle to execute a single detection
cycle.) Actions may either be specified using Z operation schemas, as in Init, RecordFrame and CalcCollisions,
or using a mixture of CSP constructs and guarded commands, as in CDxCycle. We also admit timed actions
from Circus Time [SCJS10], which is based on a discrete-time version of Timed CSP [RR88, Ros11]. Our formal
modelling notation is, therefore, a combination of Circus, OhCircus and Circus Time. The UTP enables us to
give a sound semantic foundation to this combination of languages.

First, the Init action of CDxSpec initialises the state components to empty functions. This is by constraining
primed state components only which, by convention, refer to their values after execution of an operation (un-
primed variables refer to their initial values). We note that CDxState′, �CDxState and �CDxState in the declara-
tion parts of the schema actions are all different ways of introducing primed state components. Whereas CDxState′
does not include initial (unprimed) variables, �CDxState enables us to refer to both, initial (unprimed) and fi-
nal (primed) values of state components in the predicate of the operation schema. And �CDxState moreover
incorporates an additional implicit constraint that the state components must not be changed by the opera-
tion. For example, RecordFrame alters the value of the state components posns and motions, and CalcCollisions
implicitly leaves them unchanged. The decorations ‘?’ and ‘!’ are, as usual in Z, used to identify inputs and
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Fig. 3. Process example: specification of a collision detector

outputs of an operation; for instance, frame? is an input parameter of RecordFrame and colls! is an output of
CalcCollisions.

The second action, RecordFrame, records a frame of aircraft positions, provided by the parameter frame?,
in the state of the process. In addition, it records aircraft motions by calculating the differences of the current
and previous aircraft positions. Where aircraft first appear on the radar, their motion is set to zero. The third
action, CalcCollisions, as noted above, does not alter the state, but instead outputs the number of aircraft that
are at risk of colliding as the distance between their predicted trajectories falls below a certain threshold. It uses
an auxiliary function CollSet to compute a set of pairs containing all such aircraft; we divide its size by 2 to
account for symmetry of the collset relation. The definition of CollSet is omitted here for brevity, but can be
found in [ZCW+12].

Whereas Z operations are useful to specify computations, we require CSP actions to specify interactions with
the environment as well as timing properties. As mentioned above, we introduce CDxCycle to define the behaviour
of a single detection cycle. This action makes use of two communication channels, next frame (of type Frame)
to read the next frame of aircraft positions from the radar device, and output collisions (of type N) to output the
number of collisions to a warning system. Generally, a prefixed action c −→ A waits for communication on a
channel c before proceeding with A. Special kinds of prefixes are inputs and outputs: we have that c ! e −→ A
outputs a value e on the channel c while c ? x −→ A(x) reads and binds it to a local identifier x. The parallel
composition (c ! e −→ A1) � ns1 | {| c |} | ns2 � (c ? x −→ A2(x)), explained in more detail in Sect. 3, thus results in
a value being communicated from the left to the right parallel action.

The timed prefix next frame ? frame @ t −→ A is an input communication that binds frame to the value read,
and moreover assigns to t the amount of time the communication was offered before it actually took place. The
Circus Time action (. . .� INP DL) imposes a deadline on the communication to occur, reflecting the assumption
that an environment makes the data available within INP DL time units at the beginning of each cycle. INP DL
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is a constant, whose declaration is omitted in Fig. 3 and whose value is left unspecified. Whereas A� t, in general,
is a deadline on some observable interaction of A with the environment, we also have an alternative construct
A � t, which is a deadline on A to terminate within t time units. For clarification, we point out that all Circus
Time constructs take relative times as their arguments.

After reading the frame, we next invoke RecordFrame to store the frame in the state of the process and calculate
motion trajectories. This is followed by a nondeterministic delay: in general, wait w : t1 . . t2 delays execution
between t1 and t2 time units. Similar to the timed prefix, it binds the actual amount of time waited to a local
variable, here w. If we are not interested in that time, we can use the plain and shortened form wait t1 . . t2, which
has the same effect but does not introduce w. Nondeterministic waits are typically used to define time budgets
for an implementation to carry out some computational task, which here is the calculation of collisions via the
CalcCollisions operation. The time budget allocated to CalcCollisions is the frame period (FRAME PERIOD)
less the maximum time it may take to output the collisions (OUT DL), and less the time t1 already taken to
read the radar frame. Fundamentally, data operations in Circus Time are always instantaneous, hence all timing
behaviour has to be specified explicitly by deadlines and delays.

The number of detected collisions is stored in a local variable colls, declared by var colls : N • . . . ; it is
initialised by the call to CalcCollisions. Subsequently, collisions are output on the channel output collisions, via
a timed output prefix that again records the amount of time that the communication was offered prior to being
taken. The deadline ensures that it must, however, take place within OUT DL time units, which is an imposition
on the environment to accept the output in a set interval. In addition to nondeterministic delays, we may also have
simple (deterministic) delays wait t where t defines the duration. The final wait FRAME PERIOD − (t1 + w + t2)
delays execution so that each cycle takes exactly FRAME PERIOD time units. For feasibility of the model,
we moreover assume that INP DL + OUT DL < FRAME PERIOD holds. This is formalised as part of the
omitted loose specification of those three constants.

The overall behaviour of the CDx is specified by the main action at the bottom, and consists of initialising
the state (action Init) and then using a recursive action to repetitively invoke the cyclic behaviour specified by
CDxCycle. The operator μX • F (X ) denotes the weakest fixed point (with respect to refinement) of a function
F on actions. It is used to define recursive actions since uses of X in F correspond to recursive calls. We observe
that this process is entirely sequential and does not use any form of parallel composition. We shall return to it
in Sect. 5 to illustrate the application of the laws we present in Sect. 4 in order to transform CDxSpec into the
Circus model of an SCJ program design.

2.3. Refinement strategy for SCJ

We next describe the SCJ refinement strategy, which can be used for development or verification of existing
programs. It is a refinement procedure, organised in three steps, where each step is carried out by the application
of refinement laws, some of which are the object of the work we present in this paper. Figure 4 presents the major
models used in that refinement strategy. We refer to them as anchors in accordance with [CWW+11b], where
the term ‘anchor’ was first introduced for the intermediate target models of our refinement strategy. A detailed
discussion of each anchor can additionally be found in [CZW+13].

A anchor The A (abstract) anchor entails the abstract specification. In this model, nothing is said about objects
yet, and the language that we use is a combination of Circus and Circus Time. Parallelism at this level is typically
used to structure and conjoin requirements. Usually, models are expressed as a parallel composition of behavioural
and timing requirements BReqs � . . . � TReqs. Such parallel compositions are later collapsed in the E anchor.
We note that, for simplicity, we do not make use of parallel composition at all in the specification of the CDx in
Fig. 3.

O anchor The O (object-oriented) anchor changes the way data is represented by introducing objects to record
the abstract data in the A anchor; it, therefore, additionally uses constructs from OhCircus (classes, method calls,
and so on). The refinement that is carried out in the construction of this anchor is a data refinement with added
steps that introduce OhCircus class objects for schema types. For example, the abstract type Frame in the process
in Fig. 3 is later refined in the O anchor into the OhCircus classes RawFrame and StateTable that are used to
record aircraft positions and motions in the SCJ program. This aspect of the verification is not a concern for the
laws we discuss in this paper. The report [ZCW+12], however, includes a detailed derivation of this anchor for
the CDx.
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Fig. 4. Refinement strategy for verifying SCJ programs

E anchor The E (execution) anchor introduces the SCJ program design in terms of missions and handlers. It is
this step of the refinement strategy that the laws we present in Sect. 4 cater for, and the following Sect. 3 makes
the structure of this anchor more precise. While an E anchor captures the essence of the mission-based execution
paradigm and architecture, it is not the accurate model of an SCJ program yet and hence cannot be directly
translated into code. It is the next and final anchor that yields such a model.

S anchor The S (SCJ) anchor factors the E anchor into two independent and concurrent parts: an application
model that corresponds closely to an SCJ program and a predefined and fixed framework model that encapsulates
the generic behaviour of the SCJ virtual machine to execute the program. The language of the S anchor is
SCJCircus; it introduces special constructs that resemble the main entities of an SCJ program, namely the safelet,
mission sequencer, missions, handlers, and SCJ events. There is a direct correspondence between S anchor models
and SCJ programs, so that a translation can be performed automatically. The semantics of the S anchor is defined
in terms of the P model, which gives meaning to all SCJCircus constructs and also determines the fixed Circus
model of the SCJ framework.

While the S anchor is close to a concrete program, the E anchor concisely encapsulates the design of a program
in terms of its missions and handlers. Our interest here are laws that can produce such designs. The subsequent
refinement to the S anchor is challenging in its own right, but not particularly interesting in terms of the execution
paradigm, which already emerges in the E anchor. From the sound construction of each anchor, we also obtain
that the S anchor is a sound refinement of the A anchor, although the refinement techniques used vary across
anchors. This is due to a unified semantic notion of refinement in our languages.

3. Circus model of an SCJ program design

Figure 5 presents another Circus process; it illustrates the general form of an E anchor, and, as already said, the
laws we discuss in the next section transform (sequential) specifications of safelets into processes of precisely that
shape. The name of the process here is SCJDesign, and its state is defined by the IMState schema, introducing
the components ci of type Ti . (Inv is an optional state invariant.)

The state components here are used to represent data objects in immortal memory. We then have local
action definitions for Setup, Missioni , Initi , Handlersi , Handlerj , HdlTermCtrl, MAreai , Cleanupi and Teardown.
The Setup and Teardown actions correspond directly to the setUp() and tearDown() methods of the class
implementing the Safelet interface. Likewise, Initi and Cleanupi model the initialize() and cleanup()
methods of concrete subclasses of the Mission class.
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Fig. 5. Target for the refinement that produces the E anchor

The behaviour of the process, as defined by its main action at the bottom, is first to invoke Setup, which
initialises the state and thereby all variables in immortal memory. The ‘. . . ’ in the Setup action indicates that we
may carry out other application-specific interactions here too, for instance, to reset or enable external devices. We
then have a sequence of mission executions whose models are specified by the actions Missioni . Lastly, Teardown
is called to perform custom tasks, if applicable, for shutting down the safelet.

The model of a mission is in essence the parallel composition of its handlers. This composition is captured
by the action Handlersi for some mission i. It uses a mission-specific set of Handlerj actions that provide the
model for individual event handlers. In Circus, the parallel composition of two actions A1 and A2 is written as
A1 � ns1 | cs | ns2 � A2, where cs is a set of interface channels that require synchronisation of the actions, and ns1
and ns2 are disjoint sets of variables that each action is allowed to modify. (We note that parallel composition is
right-associative.) Hence, all handlers of a mission write to mutually disjoint parts of the state space, determined
by the variable sets nsi . This ensures that all Circus constructs (including parallel composition) are monotonic
with respect to refinement by way of enforcing non-interference in shared data access. Monotonicity is crucial
for piecewise development to ensure, for instance, that process actions can be refined individually to obtain a
refinement of the process as a whole. We note that interleaving (A1 � A2) is a special case of parallel composition
where the synchronisation set cs is empty. Termination in parallel compositions and interleavings only occurs
when both parallel actions have terminated.
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The complete model of a mission, as described by the actions Missioni , composes in parallel a further action
HdlTermCtrl to incorporate a control mechanism for termination of the mission via the channels termReq (for
a termination request raised by one of the handlers) and termMsn (to terminate the handlers). Termination
requests can thus be issued asynchronously, whereas termination takes place synchronously. This corresponds
to the protocol defined for the requestTermination() method of the Mission class in the SCJ technology
specification [The11]. The Initi and Cleanupi actions are sequenced to perform mission initialisation and cleanup
tasks. In addition, we have a further parallel action MAreai for each mission i. It encapsulates data that resides
in mission memory and, therefore, is shared between the handlers. The shared data objects are introduced by
way of local variables in MAreai ; they are read and modified by virtue of communications on a designated set
of channels cssh. In terms of SCJ program design, MAreai defines protocols to access shared data safely so that
race conditions cannot occur.

We observe that the channels termReq and termMsn, as well as those in cssh, are hidden using the A \ cs
construct. Hidden channels cannot be observed by the environment anymore, and synchronisation on them takes
place internally and as soon as possible. Hence, the only channels that are exposed by SCJDesign are those that
correspond to external events releasing one of the aperiodic handlers, as explained next.

The handler models, captured by the actions Handlerj , take different shapes for aperiodic and periodic han-
dlers. Both, however, have the form of a recursion μX • (A ; X ) � termMsn −→ skip that repetitively executes
some action A and at the same time enables termination via a synchronisation on termMsn. The event termMsn is
raised by the control action HdlTermCtrl subsequent to a termination request, which can be issued by any of the
handlers at any time through synchronising on termReq. The operator A1 � A2 is external choice: its resolution is
done by the environment. For instance, in (c −→ skip) � (d −→ skip), both communications c and d are offered.
This is in contrast with a nondeterministic (or internal) choice A1 � A2, where the environment has no control
over the outcome of the choice. For example, the action (c −→ skip) � (d −→ skip) can arbitrarily choose to
offer to the environment the communication c or d .

Termination of a handler is indeed enforced since, as explained above, termMsn is hidden in the Missioni actions
and takes place immediately when enabled. Aperiodic handlers are modelled by an external choice that synchro-
nises on a set of channels e (j,1), e (j,2), and so on, which correspond to external or SCJ events bound to the handler
j and, therefore, cause its release. Potentially, each event provides an input v; the handler’s handleAsyncEvent()
method is specified by A(v).

For handlers with a period T , the repetitive behaviour is determined by the action (A � T ) � wait T . The
A � T operator imposes a termination deadline T on A, and wait T corresponds to a delay of T time units. The
interleaving with wait T prevents the action from terminating before T time units have elapsed. Hence, we obtain
a cyclic behaviour that executes A once every T time units.

The time t that is used in actions such as A �t and wait t is specification time: it abstractly captures requirements
related to deadlines and delays. For instance, A � t and A � t express the requirement that A terminates or
interacts within t time units, respectively. When translating A into code, worst-case execution time (WCET)
analysis is performed to verify that all deadlines are met, and only then do we consider the particular timing
characteristics of a concrete hardware and execution environment. This is following Hayes’ approach to refining
real-time systems [HU01]. The main advantage of Hayes’ technique is that, during refinement, we can ignore
the real-time characteristics of an execution environment. WCET analysis can be subtle depending on the target
architecture, but techniques for it have been well studied and are supported by various tools [W+08]. This is hence
not an issue we focus on in this article.

While Sect. 2.2 illustrated the starting point, in this section we have formally defined the target of our refinement
technique and made precise the shape of models that we consider to be SCJ designs. The latter retain a deliberate
degree of abstraction in not restricting the shape of the handler and memory area actions. Next, we discuss the
refinement laws that enable the transformation between those two models.

4. Refinement laws

Refinement laws are generally of the form A � B, where A is the refined action, and B the refining action that
replaces A when the law is applied. We also have equivalence laws A ≡ B, which imply refinement in both
directions: A � B and B � A. We consider five aspects of the verification of a mission implementation. Each
aspect is dealt with by a collection of specialised refinement laws that we discuss in detail. The first aspect is
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the introduction of cycle timings by way of interleavings with wait T statements (Sect. 4.1). The second aspect is
decomposition of data operations to introduce functional models of handlers (Sect. 4.2). The third is distribution
of time budgets between the handlers (Sect. 4.3). The fourth is parallelisation of handlers to match the architecture
of Level 1 SCJ, as formalised by the process in Fig. 5; this also addresses the design of data flow and control
mechanisms via communications (Sect. 4.4). And the fifth is the encapsulation of shared data and mechanisms
to access it safely (Sect. 4.5). The Circus refinement laws we present address each of these verification issues in
isolation and independently of each other.

Although some of the laws have already been given in [Cav97] and [CSW03], the majority of the laws here
are novel. This includes, in particular, the Circus Time laws in Sect. 4.1 (Fig. 7) and Sect. 4.3 (Fig. 11), and the
sharing laws in Sect. 4.5. The parallelisation laws in Figs. 10 and 15 are to our knowledge novel, too. Automation
and proof issues are not discussed here, but separately in Sects. 6 and 7.

4.1. Introduction of cycle timings

An important aspect of an SCJ program are its cycle timings. These are needed to model periodic handlers, as
well as any handlers that have a cyclic behaviour constrained by deadlines and time budgets. This is a commonly
found scenario in control applications.

In our approach, cycle timings are defined by recursions of the form μX • (A � Tp � wait Tp) ; X , where
A does not reference X , and Tp is the period of the cycle. We target the transformation of recursions to obtain
recursions of this form. We observe that actions of this shape resemble the model for periodic handlers discussed
in Sect. 3, though the body A here does not yet correspond to the model of a single handler, but instead abstractly
specifies some cyclic activity, which may also be implemented by a mission, for example.

The refinement laws discussed in this section are applicable to actions that somehow define a cyclic behaviour
with a fixed cycle length. We characterise the general form of such actions as given below, where the action A
specifies the behaviour of a single cycle and does not include recursive calls to X . We use the notation A(B)1 to
denote an action A that includes a single occurrence of an action B.

μ X • A(wait Tp − tA)1 ; X (1)

The laws presented in this section are useful when the purpose of the wait statement is to fill the gap between
the termination of A and the start of the next cycle. In this context, Tp is a constant that determines the cycle
length, and tA an expression that yields the elapsed execution time of A.

We note that not all actions of the above shape exhibit a cyclic behaviour with a fixed cycle length. For instance,
there may be execution paths in A that do not execute the wait Tp − tA statement. In some cases, control flow
analysis can establish if this is so, but generally it is not statically checkable. This is not a problem, though, since
subsequent law applications fail if the targeted recursion does not have an intrinsic fixed cycle length. In that
case, a design via a periodic handler is not appropriate and this step of the refinement strategy does not apply.
The following steps, however, remain useful.

Our first goal is to transform such actions to the form μX • (A�wait Tp); X . For the subsequent introduction
of the termination deadline on A, one possibility is the use of the simple law A � A � T for any T , yielding an
action μX • (A � Tp � wait Tp) ; X as described above. As explained in Sect. 3, the termination deadline Tp
introduces an assumption for the worst-case execution time of A that has to be discharged when A is translated
into program code, hence the law itself does not require a proviso. However, an issue already pointed out in [HU01]
is the possibility of introducing so-called impossible deadlines, which cannot be met by any implementation on
any machine due to contradictory model constraints on timing. Such deadlines do not affect the soundness of
the technique, since the translation into code always catches them in stride, but preferably we would like to detect
them earlier on in the verification.

We hence equip the law for deadline introduction with a supplementary proviso.

Law 1 A ≡ A � t provided TakesAtMost(A) ≤ t

The function TakesAtMost(A) yields an approximation (upper bound) for the specified execution time of
A; it is defined in Fig. 6 for all relevant action constructs. We note that the proviso is not concerned with the
actual execution time of A on a concrete machine, which is, as before, an issue for code generation. We use
TakesAtMost(A) as a conservative oracle for the specified execution time of A.

We have, for instance, that data operations Op and skip, the action that terminates immediately without altering
the state, take no time, but stop, the action that deadlocks, takes an infinite amount of time as it never terminates.
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Fig. 6. Definition of a function TakesAtMost to determine (upper) execution time bounds

A time budget wait t1 . . t2 models the fact that there is the possibility that the execution of an implementation
may take between t1 and t2 time units, hence it takes at most t2 time units. Communications c −→ A are assumed
to take infinite time as the environment is at liberty to postpone them. This is unless they are embedded in a
synchronisation deadline; in that case, the deadline determines the execution time of the communication. For a
termination deadline A � d , we know that the action cannot take longer than d time units, but A may finish
before that, hence the minimum construction, using TakesAtMost(A) as an oracle for the execution time of A.
The composition operators consider all possible execution paths using sums and maxima. For a recursive action
μX • F (X ), we require a means either to infer or predict the maximum number of recursive calls. The result
of TakesAtMost(A) is an overapproximation, since we, in a pessimistic approach, take maxima over branching
execution paths.

Another refinement law we require is used to introduce an interleaving of wait Tp − tA with skip.

Law 2 A ≡ skip � A

To do so, the action A in Law 2 above is matched against the wait Tp − tA when applying the law.
After the application of Law 2, the introduced interleaving is embedded in A as identified in (1). We next use

a collection of laws to extract it from A. These laws are summarised in Fig. 7 and need to be applied exhaustively.
They are special distribution laws for interleaving with a time delay.

We note that the laws cannot extract such interleavings from arbitrarily-shaped actions. For instance, we
cannot extract the wait T construct from an action c −→ (A � wait T ) unless we have some information about
the synchronisation time on c. Otherwise, c −→ (A � wait T ) can take however much time c takes in addition to
at least T time units, and in contrast, in (c −→ A) � wait T the waiting time is not added to the synchronisation
time. So, just in cases where we have some knowledge about the synchronisation time (via an enclosing deadline),
we can relate these actions, as it is captured by Law 4 in Fig. 7.

Where extraction of the wait is not possible, it may be the case that the abstract model cannot be refined into
a design that uses periodic handlers. Yet, the refinement may produce alternative designs that realise periodic
activities, for instance, by way of aperiodic handlers that make use of explicit mechanisms for time control. So,
this is not a limitation on refinement per se but rather on design.

Law 3 relies on the fact that data operations Op are instantaneous. A weaker version of the law may be
specified in which Op is replaced by any action that (as a proviso) does not consume time. Law 4 deals with timed
prefixes. Here, the prefix is a simple synchronisation, but the law can be easily generalised to input and output
prefixes on the channel c. We observe that the argument of the wait statement in Law 4 needs to have a particular
shape to enable application of the law. Moreover, the prefix has to be embedded in a synchronisation deadline.
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Fig. 7. Laws for extraction of wait statements for cycle timings

Where this, initially, is not the case, transformation laws can be applied that distribute synchronisation deadlines
through action operators; they are in Fig. 24 in Appendix A.

Law 5 extracts an interleaving with wait T − t from a time budget. Here, t is introduced by the budget to refer
to the actual time waited. The remaining Laws 6–10 are straightforward distribution laws. Notably, Law 8 and
Law 9 for internal and external choice require the delay to be the same in both actions. Again, supplementary
transformations may be applied to rewrite actions into a shape that enables the application of these laws; the laws
we discuss later on in Sect. 4.3 are useful for this purpose too.

To illustrate the use of the laws, we apply them to the recursive action given below.

μX • (c ? x @ t −→ Op(x) ; wait 10 − t) � 5 ; X

This action (sequentially) describes a cyclic behaviour that repeats every 10 time units. An input communication
on a channel c occurs within the first 5 times units, and is followed by a data operation Op(x) that makes use
of the input. For the refinement, we first identify that wait 10 − t fills the time gap between cycles, and we apply
Law 2 to introduce an interleaving with skip there.

≡ “introduction of interleaving with skip (Law 2)”
μX • (c ? x @ t −→ Op(x) ; (skip � wait 10 − t)) � 5 ; X

We proceed by applying the laws in Fig. 7, as well as some trivial simplifications.

≡ “extraction of interleaving with a time delay from a sequence (Law 3)”
μX • (c ? x @ t −→ ((Op(x) ; skip) � wait 10 − t)) � 5 ; X
≡ “simplification: A ; skip ≡ A”
μX • (c ? x @ t −→ (Op(x) � wait 10 − t)) � 5 ; X
≡ “extraction of interleaving with a time delay from a prefix (Law 4)”
μX • (c ? x @ t −→ Op(x) � 5 � wait 10) ; X

The application of Law 4 above raises a proviso 5 ≤ 10, which is trivially discharged. We complete the refinement
by applying Law 1 to introduce the termination deadline on the body of the recursion.

≡ “simplification: c @ t −→ A ≡ c −→ A if A does not mention t”
μX • (c ? x −→ Op(x) � 5 � wait 10) ; X
≡ “introduction of termination deadline (Law 1)”
μX • ((c ? x −→ Op(x) � 5) � 10 � wait 10) ; X

This raises a proviso TakesAtMost(c ? x −→ Op(x) � 5) ≤ 10. Applying the definition of TakesAtMost in
Fig. 6, we calculate that TakesAtMost(c ? x −→ Op(x) � 5) � 5 + TakesAtMost(Op(x)) � 5 + 0 � 5 which
discharges the proviso. We next examine laws for decomposition of data operations.
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Fig. 8. Sequential decomposition of independent data operations

Fig. 9. Sequential decomposition of dependent data operations

4.2. Decomposition of data operations

Here we target data operations that specify the behaviour of a mission. We note that we do not generally assume
that the specification of a mission involves a single data operation. For missions with simple interaction patterns,
such as reading an input, performing a computation, and writing an output, it is possible to capture the functional
aspects of the mission in a single data operation. In the general case, however, where inputs and outputs may
occur sporadically during mission execution, a functional mission model may be split into more than one data
operation. We assume, on the other hand, that all data operations specify mission behaviour at a suitably high
level of abstraction: this means they are centralised models of functionality, and hence do not already encapsulate
any form of computational or algorithmic design.

Our goal is to decompose data operations so that the (functional) specifications of individual handlers
emerge. We employ schema composition to model sequential execution of handlers, and schema conjunction
to model parallel execution of handlers. All refinement is carried out at the level of Z. The Z Refinement Calcu-
lus (ZRC) [Cav97, CW98], whose laws are valid in Circus [OCW09], provides the foundation for our laws here.
The laws we present are, therefore, applicable and relevant for Z refinement in general.

Though [Cav97, Gro02], for example, present a collection of laws that address issues of decomposition too, it
is well understood that decomposition of data operations is overall difficult to automate. We propose a number
of specialised laws that cover a broad spectrum of mission designs. Each law encapsulates either a sequential or
parallel design that carries out a centralised computation by two or more handlers.

Laws for sequential decomposition of data operations We distinguish two fundamental cases. The first one assumes
no dependency between the data operations in terms of the computed results. The corresponding law is presented
in Fig. 8. The State schema that specifies the state on which the operations act is partitioned into two disjoint lists
of variables, x and y, which are respectively constrained by the invariants I1(x) and I2(y). The law decomposes
Op into a sequence Op1 � Op2, where Op1 only modifies the components in x, and Op2 only modifies those in
y and does not depend on x. Application of this law entails transforming the predicate of an operation schema
into a form P(x, x′, y) ∧ Q(y, y′).

The second case is where there exists a data dependency between the operations, that is, the second operation
uses data that is computed by the first one. Here, we have the general law in Fig. 9. The crucial difference is in
the shape of the predicate of the refined operation Op, where Q(x′, y, y′) refers to the final value of x. The state
invariant is decomposed as well, namely into a conjunct I1(x) that only considers constraints on x, and another
conjunct I2(x, y) that relates x and y.
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Fig. 10. Parallel decomposition of dependent data operations

The decomposition and propagation of invariants proves to be especially important to facilitate further
decomposition and later algorithmic refinement. Invariant decomposition involves the transformation of a single
invariant I (x, y) into the conjunction I1(x) ∧ I2(x, y) so that all relevant knowledge about the components in x
is encoded by I1(x).

We have defined several variations of the previous two laws that moreover deal with inputs and outputs of
operations. We omit their discussion as they are straightforward generalisations. They can, however, be found
in [CZW+13]. Next, we take a look at parallel decomposition.

Laws for parallel decomposition of data operations As before, we have a pair of laws that consider the case of
independent and dependent data operations. Dependency here means that the operations cumulatively participate
in the computation of some result. For independent data operations, the law is similar to that in Fig. 8 with a
small modification of the right-hand side: firstly, the sequence Op1 � Op2 is replaced by a conjunction Op1 ∧ Op2,
and secondly, we remove the � schemas in the declaration part of Op1 and Op2. The fact that both laws have the
same left-hand side illustrates that there is often more than one possible handler design, giving rise to different
degrees of parallelisation.

A more interesting parallelisation law is presented in Fig. 10. There, we have n handlers participating in
the computation of the result r and using the components x. The behaviour of the handlers is specified by the
predicate Q(ri, i, x) for 1 ≤ i ≤ n. Decomposition here yields a conjunction that includes a conjunct POp for
each handler, as well as a merge operation MOp that collects the partial results ri to compute the overall result of
the refined operation. Following the Z convention, the symbols ‘?’ and ‘!’ in the declaration part of the schemas
POp and MOp are used to identify input and output parameters. We use renamings POp[ri/r!] in the right-hand
side of the law to replace in POp the schema component r! by the local variables ri to which the partial results
are assigned. The existential quantifications (∃ i? : Z • POp[. . . ] ∧ i? � n) are necessary to define the input i? of
POp accordingly for a particular invocation of POp. The merge operation is parametrised by a bag to enforce
syntactically that the order in which the results are delivered is irrelevant. The notation [[e1, e2, . . .]] is used to
construct a bag for a given set of elements and items converts a sequence into a bag. We moreover require that the
binary operation used in the merge is associative and commutative; the merge then basically consists of folding
this operation over the list of partial results.
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Fig. 11. Laws for decomposition, narrowing and distribution of time budgets

4.3. Distribution of time budgets

Data operations in Circus are atomic and instantaneous. Hence, all timing behaviour has to be specified explicitly
using timed action operators. Time budgets specify the permissible amount of time that an implementation may
take to execute a data operation; in Circus, they can be captured by nondeterministic wait statements of the
form wait 0 . . t that precede or follow a data operation. The laws in this section are hence essentially about wait
statements modelling time budgets, and, therefore, are useful in any context where we want to reason about the
timing of Z data operations in Circus Time.

Our general assumption is that the specification of mission behaviour may utilise wait statements in arbitrary
places. The laws in this section decompose and distribute those wait statements in order to attach them to the
data operations emerging from the decomposition in the previous step. Using these laws, we can equip each
decomposed data operation Op with an operation-specific time budget wait 0 . . OpTB, where OpTB determines
the amount of time the operation may take to execute in an SCJ program.

The refinement laws needed can be divided into two classes. In the first class, we have two key laws given in
Fig. 11 for the decomposition and narrowing of time budgets. Law 15 replaces a single time budget by a sequence
of two time budgets, and Law 16 reduces nondeterminism to narrow a time budget. Decomposition may be
applied iteratively, so that a single budget can be split into several budgets.

The second class of laws addresses the issue of moving the decomposed time budgets to suitable locations
in order to attach them to their respective data operations. For this, we first transform all Z schema composi-
tions (Op1 � Op2) into Circus action sequences (Op1 ; Op2). The distinction between these two operators for
composition is mostly technical. Intuitively, they both capture the notion of sequential execution, namely of data
operations via relational composition of schema predicates in Z, and actions within the UTP-based semantics
of Circus. The Z schema composition, however, implicitly constrains nondeterminism in the first data operation
to satisfy the precondition of the second data operation. This angelic behaviour is not present in the sequential
composition of actions. The standard law for rewriting schema compositions is in [Cav97]. The motivation for
this transformation is to enable the subsequent steps, which can only be carried out at the level of actions but not
data operations, due to the latter not supporting timed constructs.

We further require the specialised distribution Law 17 in Fig. 11. This law is in fact noncompositional: it
is a law about processes rather than actions. Hence, it only holds if the underlying action wait t1 . . t2 ; Op is
embedded in a process P. The justification for the law comes from the structure and semantics of processes that
prevents observation of the precise time at which an (internal) state change takes place. A proof of this law may,
for example, proceed by induction over the structure of processes.

We note that no distribution laws exist to move time budgets across prefixes, since such transformations would
not be correct as they alter the observable behaviour. Consider, for example, c−→(wait t ; A). Refining this action
by wait t ; c −→ A would be unsound since the refining action refuses communication on the channel c for t
time units, whereas the refined action offers it immediately. Some general laws for Circus refinement in [Oli05]
are useful, too; namely to distribute time budgets into and out of internal and external choice. Lastly, we have a
fusion law for nondeterministic choice of time budgets:

Law 3 wait t1 . . t2 � wait t′
1 . . t′

2 ≡ wait min(t1, t′
1) . . max(t2, t′

2)

This law is useful as it enables the combination of two budgets, in addition to their decomposition.
The laws we present here are evidently complete for mission specifications in which each abstract data operation

is already associated with an (abstract) time budget. An overall caveat for the transformation is that we cannot
distribute time budgets between parallel data operations that are represented by Z schema conjunctions. This is
because the conjunction operator only applies to schemas and not to actions, and the schema calculus, as already
noted, does not support timing constructs such as wait t1 . . t2. Distribution of the budgets of parallel operations
can, therefore, only be done after the Circus parallel operators are introduced.
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Fig. 12. Parallelisation of independent sequential data operations

Fig. 13. Parallelisation of dependent sequential data operations

The next section examines the refinement of sequential actions and schema conjunctions, as they emerge from
the laws discussed so far, into parallel actions.

4.4. Introduction of parallel handler actions

In Sect. 4.2, we have presented laws to parallelise data operations using schema conjunction, but considered no
laws to parallelise actions. The laws we discuss next can be used to parallelise mission actions. Like in Sect. 4.2,
we divide the necessary laws into two classes: those that account for sequential designs and those that cater for
parallel designs. In the sequel, we discuss both classes of laws.

Laws for sequential handler designs The parallelisations achieved by the first class of laws given in Figs. 12 and 13
are to align the model with the SCJ paradigm and architecture. In other words, they do not parallelise the
computations of the respective handlers, which are still performed in sequence here. This reflects that sequential
execution in an SCJ design needs to be explicitly enforced, while parallel execution (of handlers) is the default.
The first law assumes that there exists no data dependency between the sequential handler actions A1 and A2,
hence we have the proviso wrt(A1) ∩ used(A2) � ∅, which states that the state components written by A1 are
disjoint from those read by A2. A fresh typeless channel c is introduced to control the order of execution of the
parallel actions: they both have to synchronise on it, so that the right parallel action c −→ A2 blocks until the
left parallel action is ready to execute the prefix c −→ skip. The channel c models an SCJ event that is bound to
the second handler and fired by the first handler.

The second law (Fig. 13) assumes that there is a data dependency between the sequential handlers. In that
case, the channel c is parametrised by the type of the data that is passed between A1 and A2. Multiple data
items can be passed by using product types, and, as mentioned earlier, OhCircus class types are permissible.
An interesting observation at this point is that the channel c fulfils a dual purpose: it controls both the order of
execution of handlers and makes available shared data. Further refinement is hence required to untangle these
concerns, namely by way of encapsulating the shared data independently of the control aspect. This is a separate
and independent design issue that we address in Sect. 4.5.

Laws for parallel handler designs A key law for transforming parallel data operations modelled by conjunctions
into parallel actions is presented in Fig. 14. It applies to data operations Op1 and Op2 that write to disjoint sets
of variables, which is what we usually expect from a parallelism at that level.

Law 22 (Fig. 15) applies to the result of the earlier parallelisation Law 14 for data operations, and, beyond
parallelisation into actions, also caters for further decomposition of time budgets. This shows in the time budgets
POpTB, RecTB and MergeTB replacing the global time budget OpTB. We hence have a proviso POpTB +n∗RecTB +
MergeTB ≤ OpTB that considers the time allowance of the parallelised operations to compute the partial results,

Fig. 14. Low-level law for refining parallel data operations into actions
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Fig. 15. High-level law for refining parallel data operations into actions

the time to record them, and the time needed to merge them. The concrete values of these freshly introduced
budgets do not have to be specified when applying the law, and are not an issue for the refinement since later
schedulability analysis can determine them as part of translating the S anchor into a program for a concrete SCJ
execution platform with known timing characteristics.

A design artifact of Law 22 is that it introduces a fresh typed channel rec that is used to communicate the
partial results to a parallel operation that receives and merges them into the final result. From this, a control
action emerges (the right-hand parallel action of the law) that is later refined into shared data that aggregates the
partial results as they arrive. Its refinement is treated separately, in the next section, and entails the design of the
storage and processing of the partial results.

To conclude this aspect of the refinement, we observe that we can either tackle it by way of applying the more
general Law 21, or by using specialised high-level laws like Law 22 that encapsulate particular designs.

4.5. Encapsulation of shared data

The purpose of the laws we discuss last is to isolate control mechanisms and shared data access, so that all control
is modelled by designated, typeless channels, which may later be refined into models of SCJ events. Similarly,
designated channels are introduced and used for shared data access, namely to read and modify shared data in a
safe way, so that no data races occur; those channels model calls to synchronized methods.

The verification here relies on a set of highly specialised laws that encapsulate shared data into a separate
action MArea (see Sect. 3). We show that shared data may not only arise from input and output communications
as in Law 20, but also as a consequence of refining more sophisticated mechanisms of control, such as barrier
synchronisations, or the control fragment emerging from high-level parallelisation laws like Law 22 above. We
provide laws for each of those three cases and discuss them separately in the sequel.

Laws for channel communications The first law we discuss is Law 23 in Fig. 16. It is a general channel decom-
position law that, throughout some action A, replaces all occurrences of input and output prefixes involving a
communication on a local channel c by a sequence of communications: two for control, namely on fresh type-
less channels csync and cpivot, and another one to read or write to a shared variable introduced to hold the data
communicated through c. Reading and writing of the shared variable is via a pair of new channels cread and cwrite
of the same type as c. To read from the shared variable, we use an input prefix cread ? x −→ A(x), and to write a
value e to it, an output prefix cwrite ! e −→ skip.

To model the shared variable, the right recursive action of the parallel composition in Law 23 synchronises
on these channels while the block (var v : T • . . . ) introduces a local variable v of type T to hold the shared data.
Another channel cterm is introduced to control termination of the recursive action, when it is no longer needed.
This ensures that the parallel composition in Law 23 altogether terminates when the action on the left-hand side
of the law does so (after synchronising on cterm).
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Fig. 16. Sharing law for encapsulation of data passed through a channel

Whereas communications on the channels cread and cwrite model nonblocking variable access, the purpose of
the channels csync and cpivot is to ensure synchroneity and the absence of race conditions. The law also makes
use of a function ChanDecomp(c)(A), parametrised by the channel c (to be decomposed) and an action A to be
transformed. The formal definition of this function is sketched below.

Def 2 Action transformation function for channel decomposition used by Law 23 (Fig. 16).

ChanDecomp : Channel → Action → Action

∀A, A1, A2 : Action; c, d : Channel; cs : ChannelSet; e : Expr; v : Var | c �� d •
ChanDecomp(c)(c ! e −→ A) � csync −→ skip ; cwrite ! e −→ cpivot −→ ChanDecomp(c)(A)
ChanDecomp(c)(c ? v −→ A) � csync −→ skip ; cpivot −→ cread ? v −→ ChanDecomp(c)(A)
ChanDecomp(c)(d ! e −→ A) � d ! e −→ ChanDecomp(c)(A) (for channels other than c)
ChanDecomp(c)(d ? v −→ A) � d ? v −→ ChanDecomp(c)(A) (for channels other than c)
ChanDecomp(c)(A \ cs) � (if c ∈ cs then A else ChanDecomp(c)(A)) \ cs
ChanDecomp(c)(A1 � ns1 | cs | ns2 � A2) � ChanDecomp(c)(A1) � ns1 | csr | ns2 � ChanDecomp(c)(A2)
where csr �̂ if c ∈ cs then (cs − {| c |}) ∪ {| csync, cpivot |} else cs
ChanDecomp(c)(A1 � A2) � ChanDecomp(c)(A1) � ChanDecomp(c)(A2)
ChanDecomp(c)(A1 ; A2) � . . .

The only action constructs that are affected are input and output prefixes on c, channel hiding, and parallel
composition. The dots in the last line of the definition above indicate that ChanDecomp(c) distributes through
all other action operands, applying itself recursively. For communications on channels other than c, the transfor-
mation carried out by ChanDecomp(c) simply distributes through the prefix. It also distributes through parallel
actions, while replacing c in the synchronisation sets of parallel actions if present, namely by {| csync, cpivot |}. If c
is captured by a hiding A \ cs such that c ∈ cs, the scope of the transformation ends.

Output prefixes c ! e −→ A are replaced by three synchronisations: the first one on csync initiates the commu-
nication and thereby captures its control aspect, since both the transformed input and output prefix synchronise
on it initially. The second one, cwrite ! e, records the data that is communicated through the channel in a shared
variable. And the third one on cpivot is needed to avoid race conditions: it prevents progress of the reading ac-
tion(s) prior to the data having been written by the writing action. (We note that the three communications could
equivalently be specified in ChanDecomp as a single chain of prefixed actions csync −→ cwrite ! e −→ cpivot −→ . . .
because of the law (c −→ skip ; A) ≡ c −→ A; choosing one or the other form is a question of style.) Similarly,
input prefixes c ? v −→ A(v) are translated into a sequence where the first action, as before, synchronises on
csync, the second action waits for the acknowledgement cpivot raised after the data has been written to the shared
variable, and the third prefix performs a (nonblocking) read access to the shared variable to obtain the data sent
through the channel c in the original communication. We note that this channel replacement principle is only
valid if the replaced channel is hidden as indicated in the left-hand side of Law 23, chiefly as we cannot alter the
way that the environment interacts with A.

Typically, we have matching input and output prefixes in parallel actions: this means that for every input
prefix on a channel c, a communication that outputs on c is performed when the input is reached. To illustrate
the validity of the law under this assumption, we consider the simple communication below.

((c ! e −→ A1) � wrt(A1) | cs | wrt(A2) � (c ? x −→ A2(x))) \ {| c |}
where c ∈ cs and c �∈ usedC(A1) ∪ usedC(A2). Thus, we assume the channel c is not used by A1 and A2.
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The left-hand parallel action outputs a value on c, defined by the expression e, and the right-hand parallel
action inputs that value. Hence, the above is equivalent to (A1 � wrt(A1) | cs | wrt(A2) � A2(e)) \ {| c |}. Formally,
this can be proved using step laws for parallel actions. (Since A1 and A2 do not use the channel c, this can indeed
be further simplified to A1 � wrt(A1) | cs − {| c |} | wrt(A2) � A2(e).)

Applying Law 23 to the above action, we obtain the following refined action.

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎝

(csync −→ skip ; cwrite ! e −→ cpivot −→ A1)

�wrt(A1) | (cs − {| c |}) ∪ {| csync, cpivot |} | wrt(A2)�

(csync −→ skip ; cpivot −→ cread ? x −→ A2(x))

⎞

⎟

⎠\ {| csync, cpivot |} ; . . .

�wrt(A1) ∪ wrt(A2) | {| cread , cwrite, cterm |} | ∅�
⎛

⎝

var v : T •
μX •

(

(cread ! v −→ X ) �
(cwrite ? x −→ v :� x ; X ) � . . .

)

⎞

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

\ {| cwrite, cread , cterm |}

Intuitively, the prefix csync −→ skip in the left-hand parallel composition of actions captures the original syn-
chronisation on c, albeit without considering the communication of data (we note that csync is in the interface
of that composition). Data communication is achieved in a separate step, by using the channels cread , cwrite and
cpivot. Whereas cwrite writes the data communicated through c into the shared variable v, the channel cpivot inhibits
progress of the right (inner) parallel action until the data has been written by the left (inner) parallel action. In
this way, cpivot avoids a potential race condition: it ensures that reads cannot overtake writes of matching inputs
and outputs. Because the channels cread and cwrite are hidden, and the corresponding synchronisations are never
blocked by the action that models the shared data, the original behaviour of the data communication on the
typed channel c is retained. Formally, this can be proved, as before, using step laws. We can also easily convince
ourselves that the law remains valid when multiple actions simultaneously input on the channel c—in that case
we have multiple communications on cread .

In the above example, we assumed that A1 and A2 do not use the channel c. But generally, it does not invalidate
the law if they do. To illustrate this, we consider two outputs on the channel c being performed in sequence. We
thus alter the previously refined action by replacing the left parallel action with c ! e1 −→ c ! e2 −→ A1 and the
right parallel action with c ? x −→ c ? y −→ A2(x, y). This yields the following action fragment after application
of the law (we omit the parallel composition with the shared data).
⎛

⎜

⎜

⎜

⎝

(csync −→ skip ; cwrite ! e1 −→ cpivot −→ ( csync −→ skip ; cwrite ! e2 −→ cpivot −→ A1))

�wrt(A1) | (cs − {| c |}) ∪ {| csync, cpivot |} | wrt(A2)�

(csync −→ skip ; cpivot −→ cread ? x −→ (csync −→ skip ; cpivot −→ cread ? y −→ A2(x, y)))

⎞

⎟

⎟

⎟

⎠

\ . . .

We observe that the boxed csync event arising from the second output c ! e2 −→ A1 can only occur once the
cread ? x −→ . . . communication (boxed) of the first input has taken place. This ensures that the value of the
shared variable is kept as long as there are pending reads. The initial synchronisation on csync in this way ensures
that subsequent writes cannot overtake pending reads. This example moreover elucidates the need for two control
channels as cpivot alone turns out to be insufficient to avoid this kind of race condition.

Another case arises when we have one (or more) inputs, but no matching output in the refined action. In that
case, either the initial or last value written to the shared variable is implicitly communicated. For the validity
of the law, this is again not a problem. The reason for this is that in an action (c ? x −→ A(x)) \ {| c |}, we
have a nondeterminism as to what value is input on the channel. So, we are at liberty to refine such a prefix by
communicating any value we like.

An issue arises though due to write conflicts. To illustrate this, we consider the action

A �̂ (c ! 1 −→ skip � ∅ | {| c |} | ∅ � c ! 2 −→ skip) \ {| c |} (2)

where c is a channel of type N. This action is equivalent to the deadlocked action stop since the output
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communications do not agree on the value output on the channel. Applying Law 23 here yields the action
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎝

(csync −→ skip ; cwrite ! 1 −→ cpivot −→ skip)

�∅ | {| csync, cpivot |} | ∅�

(csync −→ skip ; cwrite ! 2 −→ cpivot −→ skip)

⎞

⎟

⎠ \ {| csync, cpivot |} ; cterm −→ skip

�∅ | {| cread , cwrite, cterm |} | ∅�
⎛

⎜

⎝

var v : N •
μX •

(

(cread ! v −→ X ) �
(cwrite ? x −→ v :� x ; X ) �
(cterm −→ skip

)

⎞

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

\ {| . . . |}

which can be proved equivalent to skip by unfolding the recursion and collapsing the parallel actions using step
laws. Hence, we cannot apply the law to actions that contain conflicting outputs on the channel c.

To determine that such outputs potentially cannot arise, we make use of the predicate WWConfFree(c)(A) in
the proviso of the law. An extract of its definition is included in Fig. 17. As specified by the first conjunct, we can
trivially infer the absence of write conflicts if A does not mention the channel c. This, for instance, enables us to
infer WWConfFree(c)(skip) and WWConfFree(c)(wait t), among other cases. For most other operators (of which
some are omitted for brevity), WWConfFree(c)(A) merely has to be shown for their constituent action operands.
The three notable exceptions to this are channel hiding, recursion and parallel actions. We discuss them in more
detail as they require special treatment.

To establish the absence of write conflicts in a channel hiding A \ cs, we consider two cases. If c ∈ cs, there
are no conflicts since the channel c is captured by the hiding. Otherwise, we have to show the absence of write
conflicts in the action A. For a recursion μX • F (X ), we show the absence of write conflicts in F (X ) under the
assumption that there are no write conflicts in X .

For actions involving parallel compositions, we require further defining rules (not included in Fig. 17) in order
to evaluate WWConfFree(c)(A). They are summarised below.

Def 3 Definition of WWConfFree for actions involving parallel composition.

WWConfFree : Channel → Action → B

. . . c ∈ cs ⇒
WWConfFree(c)(A1 ‖ A2 ‖ · · · ‖ An) ⇔ (∀ i, j : 1 . . n | i �� j • WWConfFree(c)(Ai ‖ Aj))
WWConfFree(c)((c ! e −→ A1 ; A2) � ns1 | cs | ns2 � (c ? x −→ A3 ; A4)) ⇔

WWConfFree(c)((A1 ; A2) � ns1 | cs | ns2 � (A3 ; A4))
WWConfFree(c)((c ! e −→ A1 ; A2) � ns1 | cs | ns2 � (c ! f −→ A3 ; A4)) ⇔ false
WWConfFree(c)((A1 ; A2) � ns1 | cs | ns2 � A3) ⇔

WWConfFree(c)(A2 � ns1 | cs | ns2 � A3) provided c �∈ usedC(A1)
WWConfFree(c)((A1 � A2) � ns1 | cs | ns2 � A3) ⇔

WWConfFree(c)(A1 � ns1 | cs | ns2 � A3) ∧ WWConfFree(c)(A2 � ns1 | cs | ns2 � A3)
. . .

The first conjunct deals with multiple parallel actions. To establish absence of write conflicts there, it is enough to
show that pairwise parallel actions are free of such conflicts. The remaining cases address parallel compositions
where the parallel actions have various shapes. Notable are the laws for prefixes: they are step deductions that
allow us to remove a prefix from both sides of a parallel composition if there is no clash between two output
communications (if there is, the result is false as we would expect). For the remaining operators, like external
choice above, WWConfFree(c)((A1 op A2) � . . . � A3) distributes through the operator.

To illustrate the use of WWConfFree, we apply it to the action used in the counterexample above (2). Using
the definition of WWConfFree(c), we obtain that

WWConfFree(c)(c ! 1 −→ skip � ∅ | {| c |} | ∅ � c ! 2 −→ skip) ⇔ false

which violates the proviso of the sharing law.
The pattern that is used to model the shared variable in the right-hand side of Law 23 via a local variable and

recursion is well-known from languages like CSP. In an SCJ program, it is implemented using plain get and set
methods, and calls to those methods correspond to synchronisations on the read and write channels. As already
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Fig. 17. Extract of the definition of WWConfFree used in Law 23

explained, we also provide a mechanism that caters for termination of this action after termination of A, using
the channel cterm; otherwise, the parallel action would deadlock even when A terminates.

We conclude by pointing out that Law 23 is very general and its application only requires the developer to
identify typed channels for which shared data components have to be introduced. The parallel action that arises
in the right-hand of the law directly contributes to the MArea action in Fig. 5, which encapsulates all shared data
of an SCJ design. In cases where we can show that the action A never terminates, a simpler version of the law can
be used that does not require the channel cterm.

Synchronisation barrier refinement As mentioned earlier on, shared data can also arise from refining control
mechanisms. A common control mechanism is a synchronisation barrier: a number of processes suspend execution
until all processes have reached the barrier. At an abstract level, this is typically modelled by multiple actions
synchronising on a channel cbsync, which models the barrier. To illustrate the refinement of this control mechanism,
we consider actions of the following shape.

Abarrier �̂

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(μX • cstart −→ A1 ; cbsync −→ skip ; X )

�ns1 | cs1 | ns2 ∪ . . . ∪ nsn�

(μX • cstart −→ A2 ; cbsync −→ skip ; X )

�ns2 | cs2 | ns3 ∪ . . . nsn�

. . .

�nsn−1 | csn−1 | nsn�

(μX • cstart −→ An ; cbsync −→ skip ; X )

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(3)

where {| cstart, cbsync |} ⊆ csi and {| cstart, cbsync |} ∩ usedC(Ai) � ∅ for 1 ≤ i ≤ n so that all parallel actions
are recursions whose bodies start synchronously as determined by the channel cstart and end synchronously as
ensured by the synchronisation on the channel cbsync. The channel cstart models an SCJ event that is bound to
several handlers (modelled by the parallel actions) and concurrently releases them. In each handler action, Ai
defines the behaviour before the barrier is reached. We assume that the Ai do not mention cstart and cbsync, so
that cbsync is used only once per cycle. Moreover, the synchronisation on cbsync has to be the last action before the
handlers repeat their cycle (recurse into X ).

It is important to note that in the context where Abarrier occurs, other (handler) actions may synchronise on
the channel cbsync too, without being conceptually part of the barrier. For instance, in another handler action,
cbsync may be used to trigger the release of that handler, and, in that context, we think of it rather as modelling
an SCJ event that is fired in response to the barrier having been reached by all actions. The problem of deciding
which actions are part of a barrier in general requires human insight. The objective of the refinement here is thus
not to remove cbsync from the model, but to eradicate it from the handler parallelism that uses it as a barrier. This
is done by replacing it with a mechanism that does not require synchronisation between the handler actions, and
is realised by shared data.
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Fig. 18. Design law for a synchronisation barrier

Law 24 in Fig. 18 replaces the synchronisations on cbsync by outputs of the form cnotify ! i −→ skip where i
identifies the handler. The cnotify channel of type N is introduced to signal that a handler has reached the barrier.
The purpose of the shared data here is to record the handlers i that have not reached the barrier yet; once all
handlers have reached it, a communication on cbsync is raised. The model for the shared data fragment that
becomes part of MArea is recaptured below from Law 24.

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

var active : P (1 . . n) •

μX •

⎛

⎜

⎜

⎜

⎜

⎜

⎝

(creset −→ active :� 1 . . n ; X )
�

⎛

⎜

⎝ cnotify ? x −→
⎛

⎜

⎝

active :� active − {x};
if active � ∅ −→ cbsync −→ skip
� ¬ active � ∅ −→ skip
fi

⎞

⎟

⎠ ; X

⎞

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The shared variable active holds a set of handler identifiers and determines the handlers that have not reached the
barrier yet. A synchronisation on creset establishes its initial value 1 . .n, which corresponds to the set {1, 2, . . . , n}.
Synchronisation on notify ? x causes x to be removed from active, and when there are no more elements in active,
the event cbsync is raised. In an SCJ program, creset and cnotify are typically implemented by synchronizedmethods,
reflecting their atomic execution in the model. The shared variable active, of abstract type P(N), has to be further
refined into a data structure that is directly available in SCJ like a List or an array. The latter is an independent
verification issue that requires further design laws.

A salient aspect of Law 24 is the parallel control fragment μX • creset −→ cstart −→ X . Its purpose is to
raise the creset event in order to initialise the shared data. In an SCJ program design, there are usually multiple
possibilities where this initialisation could be performed. We require the developer to eliminate this parallel
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action in a separate step. This is achieved by collapsing the action with a handler that is identified to perform the
initialisation, using parallel step laws, and gives rise to further design decisions.

In summary, Law 24 replaces the common synchronisation on cbsync between the handlers by interleaved
synchronisations on cnotify between individual handler actions and the shared data model. Although the handlers
do not block when raising their cnotify event, correctness of the refinement is guaranteed by lock-step progress
due to the initial synchronisation on cstart. The channel cbsync fulfils a different purpose after the refinement: it is
turned into the model of an SCJ event that, in the underlying SCJ program, is fired by the method that implements
notify and controls those handler actions that synchronise on cbsync, but are conceptually not part of the barrier.
The barrier sharing law is clearly more specialised than the previous sharing Law 23. It, nevertheless, retains
abstraction in two ways: firstly, in terms of the representation of the shared data, and secondly, as to where the
shared data is initialised.

Refinement of control actions The last class of laws we discuss refine the way that shared data is realised rather
than introducing it from scratch. For instance, Law 22 introduces shared data via a control action

Acontrol �̂

⎛

⎜

⎜

⎜

⎜

⎜

⎝

var r1, r2, . . . , rn : T •
⎛

⎜

⎝

(rec ? x −→ wait 0 . . RecTB ; r1 :� x);
(rec ? x −→ wait 0 . . RecTB ; r2 :� x);
. . .
(rec ? x −→ wait 0 . . RecTB ; rn :� x)

⎞

⎟

⎠ ;

wait 0 . . MergeTB ; MOp([[r1, r2, . . . , rn]])

⎞

⎟

⎟

⎟

⎟

⎟

⎠

that constitutes the right-hand action of the resulting parallel composition. Above, we have a local variable ri for
each partial result communicated by a parallel handler action, and the computation of r via MOp takes place only
when all ri have been received. Law 25 in Fig. 19 permits the refinement of this action into an action that only uses
a single variable r, namely to assimilate the results communicated by the concurrent computations as they arrive.
The refined shared data design may, for instance, be preferable in situations where limited resources for storage
are available. It is conceivable that control actions of a similar shape as above arise from other parallelisation
laws too; hence Law 25 is likely to be useful beyond earlier application of Law 22 (Fig. 15).

For Law 25 to be applicable, the control fragment Acontrol has to be embedded into an action

var r : T • (μX • start −→ (wait 0 . . InitTB ; InitOp ; Acontrol ; out ! r −→ skip) ; lockstep −→ X )

We first have a local block (var r : T • . . . ) that introduces the variable r of type T that holds the result of the
merge operation. The body of the recursion synchronises on a channel start and then performs a data operation
to initialise the local variable r. This is followed by execution of the control action Acontrol which updates the value
of r using MOp, and a finalising synchronisation on lockstep. The channel start is needed to determine when
Acontrol should start, and lockstep signals termination of Acontrol after which the recursive behaviour repeats and
thus Acontrol may be used again.

An important proviso of Law 25 is that the merge operation MOp must distribute through bag union, namely
MOp(b1�b2) � MOp(b1); MOp(b2). This establishes that the combination of partial results, which is done in one
shot by the call MOp([[r1, r2, . . . , rn]]) in Acontrol , can be decomposed into multiple incremental merge operations
MOp([[ri ]]). Each incremental merge operation takes into account the current value of r, whilst combining it with
the next partial result ri . The action modelling the shared data in the right-hand side of Law 25 (left parallel
action) here supports three interactions: init to initialise the value of the shared data, output rec ? x to record a
partial result, and input out ? y to read the aggregated result so far.

We notice that the law introduces a control fragment of its own, which is recaptured below.
⎛

⎜

⎝μX • start −→ init −→
⎛

⎜

⎝

(rec ? y −→ skip) �
(rec ? y −→ skip) �

. . .
(rec ? y −→ skip)

⎞

⎟

⎠ ; out ? y −→ skip ; lockstep −→ X

⎞

⎟

⎠

The purpose of this control action is to determine the order of interactions with the shared data. This is essential
to ensure the validity of the law because the parallel action that models the shared data per se does not constrain
that order, whereas the refined action clearly does. Essentially, we have a communication on init, followed by n
communications on rec, and a communication on out and lockstep to finalise the cycle. Here, we are not concerned
with the actual values communicated on the channels rec and out as y is not used. We recall that the interleaving
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Fig. 19. Design law for a control action

does not cause synchronisation between the rec ? y −→ skip actions and terminates only when the environment
has communicated n times on rec. Further refinement is needed to eliminate this control action by decomposing
and distributing it into the handlers.

The refinement of shared data is perhaps the most novel and interesting part of the verification laws. Our
experience shows that we can define specialised laws that deal with common design patterns, such as inputs and
outputs, barrier synchronisations, and control fragments. The main challenges here are to identify the channels
or actions that ought to be refined using a particular sharing law, and to eliminate emerging control fragments.
The latter may be achieved by further laws (or tactics) that decompose and distribute those control fragments
into handlers, subject to guidance by the developer. We next look at the CDx example in order to demonstrate
the refinement for a realistic and non-trivial SCJ program.

5. Refinement of the CDx

To illustrate the refinement laws, we consider the refinement of the CDx specification in Fig. 3. This corresponds
to an O anchor. The structure of this section mirrors that of Sect. 4, discussing the application of the laws for
each of the five verification aspects in a separate section. A more detailed account of the refinement, including
all elementary steps, can be found in [ZCW+12] and the complete SCJ program code is available on http://www.
cs.york.ac.uk/circus/hijac/cdx.html for inspection.

5.1. Introduction of cycle timings

Our starting point is the recursion in the main action of the process CDxSpec in Fig. 3. It is recaptured below
after applying the copy rule to eliminate the reference to CDxCycle. (The copy rule for actions permits us to

http://www.cs.york.ac.uk/circus/hijac/cdx.html
http://www.cs.york.ac.uk/circus/hijac/cdx.html
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replace the invocation of a local action by its definition within a process.)

μX •

⎛

⎜

⎜

⎜

⎜

⎜

⎝

next frame ? frame @ t1 −→
⎛

⎜

⎜

⎜

⎝

RecordFrame;
wait w : 0 . . FRAME PERIOD − OUT DL − t1 •
var colls : N • CalcCollisions;
(

output collisions ! colls @ t2 −→
wait FRAME PERIOD − (t1 + w + t2)

)

� OUT DL

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎠

� INP DL ; X

We begin by introducing cycle timings into the model. For that, we first identify that in the above recursion,
wait FRAME PERIOD− (t1 +w+ t2) fills the time gap between cycles. We then apply Law 2 in order to introduce
an interleaving with skip there. The extraction laws we require to move the wait action to the outside of the body of
the recursion are, specifically, Law 3–5 and Law 11. The application of Law 3 and Law 4 raises proof obligations.
For instance, Law 4 generates a proof obligation to show that OUT DL ≤ FRAME PERIOD− (t1 +w). We can
prove it by making use of local assumptions about the value of w. Generally, for actions wait w : t1 . . t2 • A(w), a
valid inference is to introduce an assumption t1 ≤ w ≤ t2 into A (a similar law exists for timed prefixes embedded
in a synchronisation deadline). In the above case, the local assumption implies that w ≤ FRAME PERIOD −
OUT DL − t1, which can be rewritten into the proviso using elementary laws of arithmetic.

The result of the interleaving extraction is given by the action below.

μX •

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎝

next frame ? frame @ t1 −→
⎛

⎜

⎝

RecordFrame;
wait 0 . . FRAME PERIOD − OUT DL − t1;
var colls : N • CalcCollisions;
(output collisions ! colls −→ skip) � OUT DL

⎞

⎟

⎠

⎞

⎟

⎟

⎟

⎠

� INP DL

� wait FRAME PERIOD

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

; X

At this point, we apply a further refinement to narrow the time budget specified by the nondeterministic delay
wait 0 . . FRAME PERIOD − OUT DL − t1 • . . . using Law 16. Above, this budget, in theory, enables us to
make use of additional time gained when an environment synchronises on next frame sooner than the deadline
INP DL; more precisely, we then gain INP DL − t1 time units. In practice, however, we cannot rely on the
environment acting in a benevolent manner, hence that additional time is difficult (if not impossible) to utilise by
an implementation. The motivation for narrowing the time budget is to remove the reference to t1 so that we can
subsequently remove the timed prefix on next frame. We thus refine the budget into

wait 0 . . FRAME PERIOD − OUT DL − INP DL

whereby we ignore the value of t1. Finally, we also use the auxiliary distribution laws in Fig. 24 (Appendix A) to
localise the outer synchronisation deadline (. . . ) � INP DL to the relevant prefix. We conclude the introduction
of cycle timings by introducing a termination deadline (. . . ) � FRAME PERIOD on the body of the recursion.
Below we have the action that results from the aforementioned refinement steps.

μX •

⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎝

(next frame ? frame −→ RecordFrame) � INP DL;
wait 0 . . FRAME PERIOD − OUT DL − INP DL;
var colls : N • CalcCollisions;
(output collisions ! colls −→ skip) � OUT DL

⎞

⎟

⎠ � FRAME PERIOD

� wait FRAME PERIOD

⎞

⎟

⎟

⎟

⎠

; X

The introduction of the termination deadline raises a proof obligation TakesAtMost(B) ≤ FRAME PERIOD
where B is the interleaving above in the body of the recursion. This is to show that B does not overrun the cycle
time. Appendix B contains the calculation proving that TakesAtMost(B) � FRAME PERIOD.
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Fig. 20. Refined Z operation specifying the cyclic mission behaviour of the CDx

5.2. Decomposition of data operations

The next aspect of the verification consists of data refinement. This alters the state and data operations of the
CDxSpec process. The laws for data refinement in Z [WD96, Cav97] and Circus [CSW03, Oli05] have been
explored elsewhere and thus are not subject of this paper; we hence only present the relevant results. That is,
in particular, the refined RecordFrame operation, given in Fig. 20. A detailed account of the refinement steps is
discussed in [ZCW+12], and the article [CZW+13] describes the overall strategy that is used here. We emphasise
that data refinement is inherently a non-trivial activity that, in many cases, requires human ingenuity. It is a
classical problem that has been extensively studied.

We observe that in Fig. 20, the state components posns and motions of the abstract CDx specification CDxSpec
have been replaced by the concrete data objects currentFrame and state, which are, respectively, instances of
the OhCircus classes RawFrame and StateTable. Their class definitions can be found in [ZCW+12]. Whereas
currentFrame stores the current frame of aircraft positions by virtue of arrays, state records their previous positions
in a Java Map; from this, it is possible to reconstruct the motion information. We note that the functions F ( ) and
G( , ) are abstraction functions mapping concrete to abstract states. For instance, given an object currentFrame,
the function F calculates the corresponding value of posns based on the fields of the underlying RawFrame class
that encodes aircraft positions by multiple arrays of type float. We omit the definitions of F and G for brevity,
but likewise they can be found in the report [ZCW+12].

A further state component work of class type Partition (defined in Appendix C) is introduced: it records
partitions of the computational work for collision detection, calculated by a voxel-based reduction algorithm.
The local variable voxel map models a Java HashMap that maps voxels—volumetric elements that subdivide the
3d space—to Lists of aircraft in that voxel. Finally, the collisions component records the result of the detection.
Hence, after the data refinement, RecordFrame not only records aircraft positions, but, also detects collisions, so
that the refined CalcCollisions operation, in contrast to the abstract one in Fig. 3, merely has to output the value
of the collisions component.

We start by decomposing RecordFrame into sequences and conjunctions of data operations. This is done
by applying Law 13 three times, followed by an application of Law 14. The refinement here is not trivial, since
the RecordFrame operation contains further existentially-quantified variables that either correspond to abstract
model variables (posns and motions) arising from earlier data refinement, or local variables like voxel map (here
capturing the result of the voxel-hashing algorithm). These quantifiers either have to be eliminated using the one-
point rule, or localised to predicates corresponding to single handlers. In particular, voxel map can be localised
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to the inner predicate that models the handler for voxel-hashing.

∃ voxel map : HashMap[Vector2d, List[Motion]] | voxel map �� null •
⎛

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎝

∀ a1, a2 : Aircraft | {a1, a2} ⊆ dom posns′ •
(a1, a2) ∈ CollSet(posns′, motions′) ⇒
(∃ l : List[Motion] | l ∈ voxel map.values().elems() •

MkMotion(a1, posns′ a1 −V motions′ a1, posns′ a1) ∈ l.elems() ∧
MkMotion(a2, posns′ a2 −V motions′ a2, posns′ a2) ∈ l.elems()

)

⎞

⎟

⎟

⎟

⎠

∧

voxel map.values().elems() � ⋃ {i : 1 . . 4 • work′.getDetectorWork(i).elems()}

⎞

⎟

⎟

⎟

⎟

⎟

⎠

Another issue that needs to be addressed is that the flow of data is not always explicit in abstract operations specify-
ing missions. In our SCJ program (see Fig. 2), for example, data is transmitted between the ReducerHandler (cap-
tured by the predicate above) that carries out the voxel-hashing, and the detector handlers that perform the
detection. That is, the reducer handler writes to the component work, which records information of how the com-
putational work is split, and this variable is also read by the detector handlers. In the data-refined RecordFrame
operation in Fig. 20, the last existential conjunct

∃ collset : F(Aircraft × Aircraft) | collset � CollSet(posns′, motions′) •
(# collset � 0 ∧ collisions′ � 0) ∨ (# collset > 0 ∧ collisions′ ≥ (# collset) div 2)

specifies the behaviour of the detector handlers, and we notice that the new value of collisions is determined by
the function CollSet(posns′, motions′) in terms of the abstract model variables. To reformulate it in terms of work,
as it is needed to align the model to the data flow in the SCJ design that is verified, we require further rewriting
that appears to necessitate essential human guidance. We skip further details of the refinement of RecordFrame
and just present the result of the decomposition using Law 12 in Fig. 8.

μX •

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎝

next frame ? frame −→
⎛

⎝

StoreFrame �
PartitionWork �
DetectCollisions

⎞

⎠

⎞

⎟

⎟

⎠

� INP DL;

wait 0 . . FRAME PERIOD − OUT DL − INP DL;
var colls : N • CalcCollisions;
(output collisions ! colls −→ skip) � OUT DL

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

� FRAME PERIOD

� wait FRAME PERIOD

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

; X

We observe that the RecordFrame operation has been replaced by a sequence of three data operations: that is,
StoreFrame � PartitionWork � DetectCollisions. Law 13 has therefore been applied three times. The definition of
StoreFrame and PartitionWork is in Appendix D. The report [ZCW+12] discusses in more detail the transforma-
tion of the refined RecordFrame operation that enables the application of the laws. We omit a further discussion
of their application here as this is not the most interesting aspect of the refinement.

The DetectCollisions operation is further decomposed into a conjunction, using Law 14. Its definition at
this stage of the refinement is included in Fig. 21. The local variables collset1, collset2, and so on, have been
subsequently introduced in auxiliary rewriting steps to prepare the application of the law; this again relies on
human expertise. After application of Law 14, DetectCollision in Fig. 21 is refined into the action

DetectCollisions �̂
⎛

⎜

⎜

⎜

⎜

⎜

⎝

var colls1, colls2, colls3, colls4 : Z •
⎛

⎜

⎝

(∃ i? : Z • CalcPartCollisions[colls1/pcolls!] ∧ i? � 1) ∧
(∃ i? : Z • CalcPartCollisions[colls2/pcolls!] ∧ i? � 2) ∧
(∃ i? : Z • CalcPartCollisions[colls3/pcolls!] ∧ i? � 3) ∧
(∃ i? : Z • CalcPartCollisions[colls4/pcolls!] ∧ i? � 4)

⎞

⎟

⎠ ;

SetCollisionsFromParts([[colls1, colls2, colls3, colls4]])

⎞

⎟

⎟

⎟

⎟

⎟

⎠

where the decomposed Z operations CalcPartCollisions and SetCollisionsFromParts can also be found in Appen-
dix D. This completes the decomposition of data operations. Each data operation at this stage can be traced to
one of the seven handlers of the design that we verify. Table 1 in Appendix D illustrates the relationship between
the data operations and handlers of the SCJ program.
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Fig. 21. Shape of DetectCollisions before applying the decomposition law

5.3. Distribution of time budgets

We proceed with the decomposition and distribution of time budget between the newly introduced sequen-
tial operations. For this, we introduce the handler-specific time budgets StoreFrameTB, PartitionWorkTB and
DetectCollisionsTB. Multiple applications of Law 15 in Fig. 11 to the abstract time budget

wait 0 . . FRAME PERIOD − OUT DL − INP DL

produces the following action where the above budget has been split twice.

μX •

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎝

next frame ? frame −→
⎛

⎝

StoreFrame �
PartitionWork �
DetectCollisions

⎞

⎠

⎞

⎟

⎟

⎠

� INP DL;

wait 0 . . StoreFrameTB;
wait 0 . . PartitionWorkTB;
wait 0 . . DetectCollisionsTB;
. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

� FRAME PERIOD

� wait FRAME PERIOD

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

; X

The law applications raise provisos that, in conjunction, require us to establish that

StoreFrameTB + PartitionWorkTB + DetectCollisionsTB ≤ FRAME PERIOD − OUT DL − INP DL

As we introduce the new budgets as abstract constants whose precise definition is deferred until we carry out the
translation into code, we add the above as an axiomatic constraint to our Circus model.

Next, the time budgets are moved backwards through the sequence of data operations. Trivial elementary
refinement steps are applied to distribute the prefix with an input via next frame through the sequence and localise
the deadline (. . . ) � INP DL. The localisation of time budgets to the relevant Z operations essentially makes
use of Law 17 in Fig. 11. A related issue that arises is that Z compositions (Op1 � Op2) have to be turned into
Circus action compositions (Op1 ; Op2). Law scompC in [Cav97] achieves this. The result of localising budgets
is illustrated by the action below.

μX •

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎝

(

next frame ? frame −→
wait 0 . . StoreFrameTB ; StoreFrame

)

� INP DL;
wait 0 . . PartitionWorkTB ; PartitionWork;
wait 0 . . DetectCollisionsTB ; DetectCollisions;
. . .

⎞

⎟

⎟

⎟

⎠

� FRAME PERIOD

� wait FRAME PERIOD

⎞

⎟

⎟

⎟

⎟

⎟

⎠

; X
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This last refinement step completes the allocation and distribution of time budgets. We note that further
decomposition and distribution of the time budget DetectCollisionsTB takes place implicitly during the subsequent
parallelisation of actions. The reason we cannot perform this decomposition here is due to the fact that time
budgets cannot be moved into schema conjunctions as present in the definition of DetectCollisions. Moreover,
there is no obvious way to turn those conjunctions into actions at this stage as this would involve design via
parallelisation laws, which is an orthogonal aspect of the verification, and discussed next.

5.4. Introduction of parallel handler actions

The parallelisation into handler actions relies on Law 20 (Fig. 13) and Law 22 (Fig. 22). First, Law 20 is applied
three times to parallelise the sequential actions above, and then Law 22 is used to parallelise the conjunction in
DetectCollisions. To illustrate the application of Law 20, we consider the sequential fragment
⎛

⎜

⎜

⎜

⎜

⎝

(

next frame ? frame −→
wait 0 . . StoreFrameTB ; StoreFrame

)

� INP DL;
(wait 0 . . PartitionWorkTB ; PartitionWork;

wait 0 . . DetectCollisionsTB ; DetectCollisions;
. . .

)

⎞

⎟

⎟

⎟

⎟

⎠

Application of Law 20 transforms this into the action
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎝

(

next frame ? frame −→
wait 0 . . StoreFrameTB ; StoreFrame

)

� INP DL;
reduce ! (currentFrame, state) −→ skip

⎞

⎠

�{currentFrame, state} | {| reduce |} | {work, collisions}�
⎛

⎜

⎝

reduce ? (currentFrame, state) −→
(wait 0 . . PartitionWorkTB ; PartitionWork;

wait 0 . . DetectCollisionsTB ; DetectCollisions;
. . .

)

⎞

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

\ {| reduce |}

A new channel reduce of type RawFrame × StateTable is introduced by the law. It communicates the relevant
shared data between the handler that inputs the next radar frame and records current and previous aircraft
positions (StoreFrame), and the handler that performs the voxel hashing and partitioning of the computational
work (PartitionWork). The channel moreover enforces sequential execution of the handlers.

Before proceeding with applying the law again, namely to parallelise the sequence between PartitionWork and
DetectCollisions, a few elementary refinement steps are needed. These are to extract the hiding on reduce to the
outer level of the recursion, and to distribute the prefix in the right-hand parallel action.
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

μX •

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

. . .
)

�{currentFrame, state} | {| reduce |} | {work, collisions}�
⎛

⎜

⎜

⎜

⎝

(

reduce ? (currentFrame, state) −→
wait 0 . . PartitionWorkTB ; PartitionWork

)

;
(

wait 0 . . DetectCollisionsTB ; DetectCollisions;
. . .

)

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

� . . .

� wait FRAME PERIOD

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

; X

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

\ {| reduce |}

We omit a detailed discussion here of the two pending applications of Law 20 as this does not add anything new.
Instead, we consider the parallelisation of DetectCollisions via Law 22. After the parallelisation of sequential
actions, the action that carries out the detection of collisions has the following shape.
(

detect ? work −→
wait 0 . . DetectCollisionsTB ; DetectCollisions;
output ! collisions −→ skip

)

The channels detect and output have been introduced by two further applications of Law 20 and, as before,
encapsulate the communication of shared data. For instance, detect propagates the shared data that determines



Laws of mission-based programming 453

voxel partitions from the reducer handler to the detector handlers, and output propagates the shared data used
to hold the detection result to the handler that outputs it. Expanding the definition of DetectCollisions using the
copy rule yields the following action.
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

detect ? work −→
wait 0 . . DetectCollisionsTB;
⎛

⎜

⎜

⎜

⎜

⎜

⎝

var colls1, colls2, colls3, colls4 : Z •
⎛

⎜

⎝

(∃ i? : Z • CalcPartCollisions[colls1/pcolls!] ∧ i? � 1) ∧
(∃ i? : Z • CalcPartCollisions[colls2/pcolls!] ∧ i? � 2) ∧
(∃ i? : Z • CalcPartCollisions[colls3/pcolls!] ∧ i? � 3) ∧
(∃ i? : Z • CalcPartCollisions[colls4/pcolls!] ∧ i? � 4)

⎞

⎟

⎠ ;

SetCollisionsFromParts([[colls1, colls2, colls3, colls4]])

⎞

⎟

⎟

⎟

⎟

⎟

⎠

;

output ! collisions −→ skip

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Application of Law 22 refines it into the action below.
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

detect ? work −→
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

( var colls1 : Z • wait 0 . . CPCTB;
(∃ i? : Z • CalcPartCollisions[colls1/pcolls!] ∧ i? � 1);
rec ! colls1 −→ skip

)

‖
( var colls2 : Z • wait 0 . . CPCTB;

(∃ i? : Z • CalcPartCollisions[colls2/pcolls!] ∧ i? � 2);
rec ! colls2 −→ skip

)

‖
( var colls3 : Z • wait 0 . . CPCTB;

(∃ i? : Z • CalcPartCollisions[colls3/pcolls!] ∧ i? � 3);
rec ! colls3 −→ skip

)

‖
( var colls4 : Z • wait 0 . . CPCTB;

(∃ i? : Z • CalcPartCollisions[colls4/pcolls!] ∧ i? � 4);
rec ! colls4 −→ skip

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

�∅ | {| rec |} | {colls}�
⎛

⎜

⎜

⎜

⎜

⎜

⎝

var colls1, colls2, colls3, colls4 : Z •
⎛

⎜

⎝

(rec ? x −→ wait 0 . . RecTB ; colls1 :� x);
(rec ? x −→ wait 0 . . RecTB ; colls2 :� x);
(rec ? x −→ wait 0 . . RecTB ; colls3 :� x);
(rec ? x −→ wait 0 . . RecTB ; colls4 :� x)

⎞

⎟

⎠ ;

wait 0 . . SCFPTB ; SetCollisionsFromParts([[colls1, colls2, colls3, colls4]])

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

;

output ! collisions −→ skip

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The result here illustrates that we require additional elementary law applications to turn this into a parallel compo-
sition for four detector handlers. In particular, the initial synchronisation on detect and the final synchronisation
on output have to be moved into each detector handler and the auxiliary control action. For this, all detector
handlers and the control action have to synchronise on detect and output. Whereas the synchronisation on detect
is later refined into an SCJ event that releases multiple (detector) handlers, the synchronisation on output is a
barrier mechanism that requires further refinement as shown below. After the aforementioned finalising steps
each detector handler now has the following shape.
⎛

⎜

⎝

detect ? work −→
( var collsk : Z • wait 0 . . CPCTB;

(∃ i? : Z • CalcPartCollisions[collsk/pcolls!] ∧ i? � k);
rec ! collsk −→ skip

)

; output ? y −→ skip

⎞

⎟

⎠ where k : 1 . . 4

As noted earlier on, the refinement has resulted in further decomposition of a time budget. Namely, the budget
DetectCollisionsTB has been split into two budgets, CPCTB and SCFPTB, which encapsulate the time allowances
for the parallel detectors as well as the operation that merges the results.
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5.5. Encapsulation of shared data

The last verification issue is the refinement of shared data. First of all, the application of the parallelisation law
for sequential actions (Law 20) has introduced three typed channels: reduce, detect and output. Each of these
channels is decomposed now using the sharing Law 35 in Appendix A, after introducing a channel lockstep to
ensure lock-step progress of the recursive handler actions. It is a specialisation of Law 23 presented in Sect. 4.5
that considers unidirectional communication between handlers that execute sequentially and do not terminate.
Unlike Law 23, this law does not introduce the channel csync due to the particular structure of actions, and thus
yields a simplified refinement result.

To illustrate the application of Law 35, we consider the parallel action
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎝μX •
⎛

⎝

(

next frame ? frame −→
wait 0 . . StoreFrameTB ; StoreFrame

)

� INP DL;
reduce ! (currentFrame, state) −→ skip

⎞

⎠ ; lockstep −→ X

⎞

⎠

�{currentFrame, state} | {| reduce, lockstep |} | {voxel map, work}�
(

μX •
(

reduce ? (currentFrame, state) −→
wait 0 . . PartitionWorkTB ; PartitionWork;
detect ! work −→ skip

)

; lockstep −→ X

)

�{voxel map, work} | {| detect, lockstep |} | ∅�

. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

This corresponds to the result of applying Law 20 on page 452 after exhaustive application of the parallelisation
laws. The application of Law 35 (Appendix A) refines this into the action fragment below
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜
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⎜
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⎜

⎝

⎛
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⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎝

μX •
⎛

⎝

(

next frame ? frame −→
wait 0 . . StoreFrameTB ; StoreFrame

)

� INP DL;
reducewrite ! (currentFrame, state) −→ reducepivot −→ skip

⎞

⎠ ;

lockstep −→ X

⎞

⎟

⎟

⎠

�{currentFrame, state} | {| reducepivot, lockstep |} | {voxel map, work}�
⎛

⎜

⎝

μX •
(

reducepivot −→ reduceread ? (currentFrame, state) −→
wait 0 . . PartitionWorkTB ; PartitionWork;
detect ! work −→ skip

)

;

lockstep −→ X

⎞

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

\ {| reducepivot |}

�{currentFrame, state, work, collisions} | {| reduceread , reducewrite |} | ∅�
⎛

⎝

var v : RawFrame × StateTable •
μX •

(

(reduceread ! v −→ skip) �
(reducewrite ? x −→ v :� x)

)

; X

⎞

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

\ {| reduceread , reducewrite |}
where the third parallel action encapsulates the shared data and thus corresponds to (a part of) MArea in our target
model in Fig. 5. The typeless channel reducepivot is freshly introduced and models an SCJ event that in the CDx
program releases ReducerHandler. The channels reduceread and reducewrite model variable accesses to write to the
shared variables currentFrame and state in the CDxMission class. To emphasise their rôle, we can, of course,
subsequently rename these channels. Here, in particular, it is sensible to rename them to getCurrentFrameState
and setCurrentFrameState, and also reducepivot to reducefire.

As mentioned before, the sharing law for channel decomposition is applied two more times, which gives rise to
two more parallel actions that contribute to MArea. For reasons of space, we omit a discussion of the application
of the barrier law (Law 24) and parallel design law (Law 25) though both are needed for the CDx refinement
too. For a detailed account, we refer again to [ZCW+12]. Applying those laws produces a Circus process whose
shape corresponds precisely to SCJDesign in Fig. 5. The refinement here produces a model that reflects the
design of the CDx program that we introduced in Sect. 2.1. The aim of the refinement was indeed to establish
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this correspondence in order to verify an a priori given SCJ program. If no program is given, we are at liberty to
apply the laws based on preference whenever alternative design choices emerge.

Having examined the application of the laws in the context of a specific example, in the next section, we look
more generally at the possibility of automating the law applications and refinement.

6. Automation

In this section, we discuss ways of automating the application of the refinement laws. Again, we look at each
of the five verification issues as they were described in Sects. 4.1–4.5, and examine how the laws for that aspect
may be automated by tactics and decision procedures. Our objective is to determine the parts of the verification
that do not require expert knowledge in refinement techniques and, in relation to this, what guidance has to be
provided by a (non-expert) user of our technique to enable the automation of those parts. This is based on our
experience with automation of refinement in Circus [OZC11, ZOC12] using theorem provers and an embedding
of Circus and its semantics.

6.1. Introduction of cycle timings

Human guidance is required to identify recursions that model cyclic activities, as well as wait statements inside
those recursions that fill the time gap between cycles. Once this is done, the application of Law 2 (to introduce
an interleaving with skip) and the extraction laws in Fig. 7 can be automated, subject to automating simple
transformations that align the shape of time expressions in wait statements to facilitate the matching of laws such
as Law 4 and Law 5 in Fig. 7.

Some of the extraction laws have provisos whose proofs, in most cases, merely require arithmetic rewriting and
laws for solving inequalities. Ample work has been done elsewhere on automating such proofs [Nor03]. In some
cases, it turns out that we also require local assumptions about bound variables introduced by timed prefixes and
nondeterministic delays. For example, in (c @ t −→ A(t) ; . . . ) � d we have a local assumption in A that t ≤ d .
Likewise, in wait t : t1 . . t2 • A(t) we can assume that t1 ≤ t ≤ t2 in A. The propagation of such assumptions can
be automated by a proof tool in a fairly straightforward manner.

An automatic procedure can decide when the wait statement has been fully extracted from the body of the
recursion, as this terminates the application of the extraction laws. Where automation cannot proceed due to no
extraction law being applicable, assistance is required either to perform elementary refinement steps to enable
further application of extraction laws, or to concede that the cycle length of the recursive action is not fixed and
thus not a valid target for the refinement.

The finalising application of Law 1 for the introduction of a termination deadline raises a proviso
TakesAtMost(A) ≤ T where A is the body of the recursion and T its cycle. We expect that this proviso can
be discharged automatically after rewriting the application of TakesAtMost using the rules in Fig. 6. This is again
contingent on support for solving arithmetic inequalities and simplifying arithmetic expressions.

Overall, we conclude that the prospect of automating this part of the verification is altogether positive: with
special tactics for solving arithmetic inequalities there ought to be no need for manual refinement. The only
potential obstacle for automation is that TakesAtMost(A) may yield too coarse an approximation of the execution
time of A, and as a consequence the proviso of Law 1 becomes unprovable. This is not necessarily a show-stopper
as we can introduce the termination deadline anyway, though it may render the model unimplementable. So far,
we have not encountered specifications where we had to resort to this solution.

6.2. Decomposition of data operations

From our experience gained working on the CDx case study, decomposition of data operations seems amongst
the most difficult aspects of the refinement and presumably the most challenging to automate. This is not surpris-
ing; research in refinement techniques [AH07] identifies decomposition as being inherently a difficult problem.
Furthermore, the shape of the operations that we target in this aspect of the verification is largely influenced by
earlier data refinement, hence we can make little to no assumptions about the actual structure of models that we
target with our laws in this aspect of the verification.

For automation, the main challenge is to conduct preliminary transformations that enable the application of
one of the decomposition laws. For simple laws such as Laws 12 and 13, tailored refinement tactics could perhaps
be used to decompose schema predicates and invariants automatically, so that the laws can be directly applied.
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Those tactics are expected to apply logic rewrites to isolate predicates that reference certain components of a
schema, and guidance as to what components to isolate is likely to be needed.

For more complex patterns such as parallel decomposition via Law 13, the developer needs to determine
the target of each law application, that is, the schema predicates on the right-hand side of the law. With that, a
verification condition can be generated to establish that the predicate of the schema being refined can be written
in the form required by the application of the law. Specialised proof tactics may again be useful in trying to
discharge those verification conditions. The advantage of this approach is that less expertise is needed because
the developer just needs to postulate the result of the law application rather than carry out the refinement. If
the automatic tactic fails to prove the verification condition, we envisage that the refinement verification requires
more expertise and perhaps involvement of a domain expert.

We can in any case profit from a large body of existing work on decomposition. The main issue of the
intermediate refinements here is to make the data flow in the program explicit in the predicates of operation
schemas. Usually, the developer will have an understanding of how data is used in the SCJ program to be
designed; this already determines which laws need to be applied.

6.3. Distribution of time budgets

This aspect involves two conceptual designs: the decomposition (splitting) of time budgets and the localisation of
budgets to their respective actions. Both of these aspects require guidance from the developer, but the refinement
itself is easy to automate. In a first step, the developer has to identify time budgets wait 0 . . TB in actions that
have to be split. For this, it is convenient to specify a number of constants TB1, TB2, and so on, that constitute
the split budgets where (�i : 1 . . n • TBi) ≤ TB. We can then automate the sequenced application of the Laws 15
and 16 in order to refine the original budget into an action sequence

wait 0 . . TB1 ; wait 0 . . TB1 ; . . . ; wait 0 . . TBn.

Further automation of the refinement can be envisaged by annotating each data operation with the intended
time budget TBi , and using tactics to mechanically perform the localisation of the budgets to the respective data
operations. Such tactics merely have to decide whether a budget needs to be moved forward or backward through
a sequence, and depending on this, either to use Law 17 directly or its symmetric version.

More difficult to automate is the intentional reduction of time budgets using Law 16 in order to obtain a more
tractable model for further refinement. This is illustrated in Sect. 5.1, where the budget wait w : FRAME PERIOD
− OUT DL − t1 is narrowed to simplify the shape of the cycle action. As with splitting budgets, the developer
has to determine the narrowed budget as this is a design issue.

To conclude, we observe that the splitting and narrowing laws (Law 15 and Law 16) for budgets give rise
to provisos that have to be discharged. The technique for doing so is similar to the one described earlier on in
proving the provisos for cycle-timing laws. After application of the narrowing law, it is sensible to assume that all
budgets are determined by plain constants rather than complex time expressions. The only notable proof effort
is hence to discharge the proviso of Law 16. Overall, this verification issue appears to be the easiest to automate,
subject to the developer providing the above information.

6.4. Introduction of parallel handler actions

The shapes we target here are the ones produced by earlier decomposition of data operations; this facilitates
automation of this aspect of the verification. We observe, for instance, that the first parallelisation Law 19
targets precisely the shape of models generated by earlier applications of Law 12 (Fig. 8). Similarly, the second
parallelisation Law 20 targets the shape of models generated by earlier applications of Law 13 (Fig. 9), subsequent
to replacing Z compositions by action sequences (which is done collaterally as part of the distribution of time
budgets). It is hence possible to suggest applicable laws automatically so that the developer merely has to make
a choice of which law to apply if there is more than one.

As with the decomposition of data operations, there turn out to be situations where intermediate refinement
steps are required between the law applications, as we illustrated in Sect. 5. Here, however, those steps are much
more straightforward and susceptible to automation, although it is still an open issue how a collection of tactics
can be defined. Heuristics are deemed to be useful in that context to normalise actions into shapes that make
subsequent law applications more likely to be feasible.
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6.5. Encapsulation of shared data

The encapsulation of shared data requires a more diverse set of strategies for automation. As already mentioned,
we have three classes of laws here: firstly, laws for channel decomposition; secondly, laws for high-level control
mechanisms such as a barrier; and thirdly, laws for the refinement of residual control actions that emerge during
refinement and are expected to (mostly) disappear. Regarding the first class, we have the generic decomposition
Law 23 that can be applied to arbitrary actions to decompose a channel c hidden in the model. Here, we merely
require the developer to identify channels to be decomposed. These are typically channels that arise from earlier
applications of Law 35 for sequential transfer of data. Although the definition of WWConfFree is on the whole
elaborate in having to deal with a lot of cases, fundamentally its evaluation can be automated in a straightforward
manner. Establishing the proviso WWConfFree(c)(A) is therefore trivial where information flow is static. Manual
proof effort may only be required in cases where more sophisticated mechanisms determine the direction in which
information flows.

We also require some intermediate refinements that, as before, are mostly concerned with reordering parallel
actions and extracting channel hidings to tease out the MArea action; this is because the parallel fragments
contributing to MArea are typically embedded inside the parallel handler actions after application of sharing
laws like Law 23 and Law 35. These manipulations are not a significant challenge for automation. The channel
replacement principle defined by ChanDecomp(c)(A) is automatable, too.

For the second class of laws, the refinement is a simple matching of control design laws, modulo some
preliminary transformations for reordering parallel actions and extraction of channel hidings; a refinement tool
can make suggestions here, giving the developer a set of choices.

More interesting is the third class of laws. We recall that both the parallelisation Law 22 and sharing Law 24
give rise to an auxiliary control action. To complete the refinement, those control actions have to be eliminated so
that we are left with only a parallel composition of handlers. The elimination proceeds by sometimes decomposing
the control fragments further into parallel actions, and then collapsing those parallel actions with existing handler
actions. This can give rise to further design, namely when the control fragments do not entirely disappear. We
envisage that an engineer merely has to provide information about which actions ought to be collapsed, causing
the relevant step laws to be applied automatically.

To conclude our account on automation, we observe that the refinement of time-related designs is the easiest
to automate. Most difficult to tackle is the decomposition of data operations, but, as mentioned earlier, we can
take advantage of extensive previous work on this subject. The parallelisation and sharing laws pose a twofold
challenge in that they require more subtle guidance by the user as well as preliminary refinements that, however,
seem feasible to be carried out by automatic tactics. If the laws can be determined a priori, the fundamental proof
effort can be factored into verification conditions.

7. Proofs of Laws

In this section, we examine the proofs of a few of the laws in Sect. 4. In particular, we look at the novel Circus
Time laws in Fig. 11. We first present the Unifying Theories of Programming framework (UTP) which is our
semantic framework, next give a brief account of the semantics of Circus Time in UTP, and afterwards present
two examples of proofs. Further proofs can be found in [ZCW+12].

7.1. Unifying Theories of Programming

The UTP, at the core, is an algebra of relations described by alphabetised predicates. The latter are pairs formed
by an alphabet of variables and a predicate over these variables. The alphabet of a predicate P is obtained by
αP. Alphabets include observable quantities of interest, such as program variables or special (auxiliary) variables
that capture particular aspects of a model of computation. Alphabetised predicates describe the observations
we can make about program behaviour. For instance, the predicate ok ∧ y �� 0 ⇒ ok′ ∧ z′ � x/y specifies a
computation that, if started in a state where y �� 0, assigns to the program variable z the quotient of the program
variables x and y. The variables ok and ok′ (of boolean type) capture the observations that the program has started
and terminated. Primed variables, as in Z, are used to refer to final (or sometimes intermediate) observations,
and unprimed variables to initial ones.
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More generally, the predicate ok ∧ P ⇒ ok′ ∧ Q encodes a computation that, if started in a state where its
precondition P holds, terminates in a state where its postcondition Q holds. In UTP, this form is called a ‘design’
and the notation P � Q is used to abbreviate it.

UTP theories are sets of predicates over predefined alphabets. However, not every predicate describes a valid
model of a computation. To delineate predicates that do from those that are meaningless, each theory defines
a set of healthiness conditions. These are expressed as idempotent and monotonic functions. Valid models of
computation in a UTP theory are the cumulative fixed points of those functions. For instance, for designs we
have a healthiness condition H1(P) � ok ⇒ P whose fixed points are the predicates that are equivalent to true
when ¬ ok. This rules out any assumption about program behaviour before the program has started. Further
healthiness conditions (H2–H4) for designs can be found in [HJ98].

Each UTP theory defines a collection of operators under which the predicates of the theory have to be closed.
Certain operators have a uniform characterisation across theories. These operators are:

1. Sequential composition, which is modelled by relational composition.
2. Nondeterminism P � Q, which is modelled by disjunction: P � Q �̂ P ∨ Q.
3. Parallel composition, which is modelled by a form of conjunction (parallel by merge).
4. The conditional P � b � Q, which is defined by (b ∧ P) ∨ (¬ b ∧ Q).
5. Refinement, which is modelled by (universal) reverse implication: P � Q �̂ [P ⇐ Q].

Above, [P] denotes the universal closure over the variables in αP.
The definition of sequential composition as a predicate is recaptured below.

Def 5 P ; Q �̂ ∃ v′′ • P[v′ \ v′′] ∧ Q[v \ v′′] provided out(αP) � in(αQ)′

Above, v are the variables at the interface of P and Q. We note that the operator in yields the undashed (input)
variables, and out the dashed (output) variables of an alphabet. The proviso establishes that the predicates are
composable: the output variables of P have to correspond to the input variables of Q.

UTP designs taken by themselves are sufficient to model sequential programs, but they are not powerful
enough to capture reactive and timing behaviour. For this, we next discuss the UTP theory of Circus Time.

7.2. Circus Time

The UTP theory of Circus Time is a derivative of the theory of reactive processes [OCW09]. It includes four
auxiliary variables ok, wait, tr and state, as well as their dashed counterparts. The variables ok and ok′ of boolean
type record the observation that the predecessor or current action is in a stable state, and thus has not diverged.
We note that this is different from the theory of designs where ok and ok′ model program termination. Program
termination here is captured by the boolean variables wait and wait′. Specifically, wait records that the predecessor
has terminated, and wait′ records termination of the current action.

While termination is one possible observation of a reactive process, we may also observe interactions (prior to
termination) with the environment. The variables tr and tr′ of type seq+(seq Event × P Event) record time traces
of interactions. In detail, tr records the interactions that have already taken place when execution starts, and tr′
additionally includes the interactions of the current action, extending tr. Each element of the outer (non-empty)
sequence represents an observation in one time unit. These observations are pairs where the first component of
the pair is a sequence of events that have occurred within the time unit, and the second component is a refusal
set containing the events that are refused at the end of the time unit. Lastly, the variables state and state′ are used
to record the initial and subsequent values of program variables.

The healthiness conditions of Circus Time are a recast of the healthiness conditions for reactive processes;
Fig. 22 summarises their definitions. R1A(A) establishes that an action A cannot alter the previous history of
interactions; the binary operator ≤A here is a specialised prefix operator for time traces, defined in Appendix E.
R2A(A) enforces insensitivity of A to interactions that took place before it started. Namely, we can replace tr by
a trace with no interactions, and tr′ by the difference tr′ −A tr without changing the behaviour of A. Again, −A is
a specialised sequence subtraction for time traces (also in Appendix E). R3A(A) masks out any behaviours of A
until the predecessor action has terminated (wait is true). We note that in R3A, IIA (also called skip) corresponds
to the relational identity on the alphabet A; where II does not have a subscript, it is the identity on the theory
alphabet.
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Fig. 22. Healthiness conditions for the theory of Circus Time actions

We define RA as the composition R1A ◦ R2A ◦ R3A. The form RA(P � Q) is called a reactive design. It can
be shown that all predicates of the theory of Circus Time can be expressed in this form. This representation
allows us to reduce proofs about Circus Time actions to (simpler) proofs about designs. In particular, since RA
is monotonic, P1 � Q1 � P2 � Q2 establishes that RA(P1 � Q1) � RA(P2 � Q2), and the former can be further
reduced to (P1 ⇒ P2) ∧ (Q2 ∧ P1 ⇒ Q1); that is, proofs about pre- and postconditions. This yields an effective
strategy for proving our refinement laws.

The additional healthiness conditions CSP1 and CSP2 in Fig. 22 are recast from the UTP theory of CSP: CSP1
requires that upon divergence of an action, no assumptions can be made other than that the trace is extended.
And CSP2 captures that we cannot require a program to diverge.

We next present the definitions of several action constructs that are used later on in the proofs. For a complete
account, the reader is referred to [Woo13]. The first definition is for a simple delay.

Def 6 wait t �̂ RA(true � delay(t) ∧ trace(tr′) − trace(tr) � 〈〉)
Above, delay(t) �̂ (wait′ ∧ # tr′ − # tr < t) ∨ (¬ wait′ ∧ # tr′ − # tr � t ∧ state � state′) and the function
trace converts a time trace into a conventional trace by concatenating the sequences of events in each time
unit. For example, trace(〈(〈a, b〉, r1), (〈c〉, r2)〉) � 〈a, b, c〉. The refusal sets r1, r2, and so on, are discarded by
the trace function. While the true precondition of the reactive design implies the absence of divergence, the
postcondition captures two essential behaviours: before t time units have elapsed (# tr′ − # tr < t), we are in
an intermediate (waiting) state. After t time units (# tr′ − # tr � t), the action terminates (¬ wait′ holds) while
leaving the state unchanged (state′ � state). The conjunct trace(tr′) − trace(tr) � 〈〉 in the definition captures
that while wait t executes, no interaction with the environment takes place.

The definition of a time budget wait t1 . . t2 is a nondeterministic choice of simple wait statements.

Def 7 wait S �̂ �
t : S • wait t

Here, we make use of the generalised choice
�

x : S • P(x), which is a nondeterminism of all behaviours P(x)
where x ranges over some set S. It is defined in UTP as follows:

�
x : S • P(x) �̂ ∃x : S • P(x).

Having briefly introduced the semantics of Circus Time, we next present two examples of proofs of laws from
Sect. 4 involving Circus Time actions.

7.3. Laws: example proofs

We present the proofs of two laws: Law 16 for narrowing budgets and Law 15 for splitting budgets.

7.3.1. Proof of the budget narrowing law

The first law we prove is Law 16 for narrowing a time budget. We recapture it below.

wait 0 . . t1 � wait 0 . . t2 provided t2 ≤ t1 (Law 16)

The proof of this law is facilitated by a more general lemma about generalised nondeterminism.

Lemma 1
�

x : S • P(x) � �
x : T • P(x) provided T ⊆ S
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Fig. 23. Circus Time law for the decomposition of simple delays

This law is easily shown by rewriting the definition of
�

x : S • P(x) and using elementary logic deductions.
	

x : S • P(x) �
	

x : T • P(x)

≡ “unfolding definition of generalised choice”
(∃x : S • P(x)) � (∃x : T • P(x))
≡ “unfolding definition of refinement”
[∃x : S • P(x)] ⇐ [∃x : T • P(x)]
� “elementary logic”
T ⊆ S �

Because of 0 . . t1 ⊆ 0 . . t2 under the assumption t2 ≤ t1, we immediately obtain a proof of Law 16 after unfolding
the time budgets by virtue of Def. 7 and subsequent application of Lemma 1.

7.3.2. Proof of the budget splitting law

More challenging is the proof of Law 15 for time budget splitting. For this, we have to show that

wait 0 . . t ≡ wait 0 . . t1 ; wait 0 . . t2 provided t � t1 + t2 (Law 15)

To prove this law, we first establish the validity of an analogous property for simple delays formulated by
Law 26 in Fig. 23. To prove it, we start by rewriting the right-hand side of that law:

wait t1 ; wait t2

≡ “unfolding definition of wait statements (Def. 6)”

RA(true � delay(t1) ∧ trace(tr′) − trace(tr) � 〈〉) ; RA(true � delay(t2) ∧ trace(tr′) − trace(tr) � 〈〉)
In order to proceed, we require a specialised law for sequential composition of reactive designs. Two relevant
laws for this are included in Appendix F. Law 36 is a general law for sequential composition of arbitrary Circus
Time reactive designs and proved in [Woo13]; here, we use its specialisation given by Law 37, which applies to
terminating designs only, but produces a simpler result with a true precondition.

≡ “application of Law 37 for reactive design composition”

RA

(

true � R1A(delay(t1) ∧ trace(tr′) − trace(tr) � 〈〉) ;
R1A(II � wait � R2A(delay(t2) ∧ trace(tr′) − trace(tr) � 〈〉))

)

≡ “unfolding definition of R1A (Fig. 22)”

RA

(

true � (delay(t1) ∧ trace(tr′) − trace(tr) � 〈〉 ∧ tr ≤A tr′) ;
(II � wait � R2A(delay(t2) ∧ trace(tr′) − trace(tr) � 〈〉)) ∧ tr ≤A tr′

)

≡ “unfolding definition of delay and removal of the application of R2A (Fig. 22)”

RA

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

true �

⎛

⎝

(

(wait′ ∧ # tr′ − # tr < t1) ∨
(¬ wait′ ∧ # tr′ − # tr � t1 ∧ state � state′)

)

∧
trace(tr′) − trace(tr) � 〈〉 ∧ tr ≤A tr′

⎞

⎠ ;

⎛

⎝ II � wait �

⎛

⎝

(

(wait′ ∧ # tr′ − # tr < t2) ∨
(¬ wait′ ∧ # tr′ − # tr � t2 ∧ state � state′)

)

∧
trace(tr′) − trace(tr) � 〈〉

⎞

⎠

⎞

⎠ ∧ tr ≤A tr′

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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The removal of the application of R2A(. . . ) above is justified by a property of substitution. We first note that we
can express the predicate delay(t2) ∧ trace(tr′) − trace(tr) � 〈〉 as a function of the trace difference tr′ −A tr;
we omit details of this for brevity. For a predicate of the form P(tr′ −A tr), it is easy to show that application of
R2A(. . . ) has no effect: R2A(P(tr′ −A tr)) ≡ P((tr′ −A tr) −A 〈〉) ≡ P(tr′ −A tr).
We next unfold the definition of II and sequential composition. This yields the following predicate.

≡ “unfolding definition of II and sequential composition (Def. 5)”

RA

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

true �

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∃ok′′; wait′′; tr′′; state′′ •
⎛

⎝

(

(wait′′ ∧ # tr′′ − # tr < t1) ∨
(¬ wait′′ ∧ # tr′′ − # tr � t1 ∧ state � state′′)

)

∧
trace(tr′′) − trace(tr) � 〈〉 ∧ tr ≤A tr′′

⎞

⎠ ∧

⎛

⎜

⎜

⎜

⎝

(ok′ � ok′′ ∧ wait′ � wait′′ ∧ tr′ � tr′′ ∧ state′ � state′′)
� wait′′ �

⎛

⎝

(

(wait′ ∧ # tr′ − # tr′′ < t2) ∨
(¬ wait′ ∧ # tr′ − # tr′′ � t2 ∧ state′′ � state′)

)

∧
trace(tr′) − trace(tr′′) � 〈〉

⎞

⎠

⎞

⎟

⎟

⎟

⎠

∧

tr′′ ≤A tr′

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(4)

To proceed with the proof, our aim is to eliminate wait′′ from the existential quantifier by splitting the predicate
into two disjuncts: one where wait′′ � true and one where wait′′ � false. For conciseness, we abbreviate the above
reactive design by RA(true � ∃wait′′ • Q). By elementary logic, we then obtain
RA(true � ∃wait′′ • Q) ≡ RA(true � Q[wait′′ \ true] ∨ Q[wait′′ \ false]). We next provide lemmas that evaluate
and simplify Q[wait′′ \ true] and Q[wait′′ \ false], respectively.

Lemma 2 Evaluation of postcondition Q where wait′′ � true.

Q[wait′′ \ true] ≡ (wait′ ∧ # tr′ − # tr < t1 ∧ trace(tr′) − trace(tr) � 〈〉 ∧ tr ≤A tr′)

The above lemma is proved by a few elementary steps shown below.

Q[wait′′ \ true]

≡ “definition of Q and substitution of wait′′”
⎛

⎝

∃ok′′; tr′′; state′′ •
(# tr′′ − # tr < t1 ∧ trace(tr′′) − trace(tr) � 〈〉 ∧ tr ≤A tr′′) ∧
(ok′ � ok′′ ∧ wait′ ∧ tr′ � tr′′ ∧ state′ � state′′) ∧ tr′′ ≤A tr′

⎞

⎠

≡ “application of the one-point rule for existential quantifiers”

(wait′ ∧ # tr′ − # tr < t1 ∧ trace(tr′) − trace(tr) � 〈〉 ∧ tr ≤A tr′) ∧ tr′ ≤A tr′

≡ “reflexivity of ≤A”

(wait′ ∧ # tr′ − # tr < t1 ∧ trace(tr′) − trace(tr) � 〈〉 ∧ tr ≤A tr′) �
An analogue lemma is provided next for the case where wait′′ does not hold.

Lemma 3 Evaluation of postcondition Q where wait′′ � false.

Q[wait′′ \ false] ≡
((

(wait′ ∧ t1 ≤ # tr′ − # tr < t1 + t2) ∨
(¬ wait′ ∧ # tr′ − # tr � t1 + t2 ∧ state � state′)

)

∧ trace(tr′) − trace(tr) � 〈〉 ∧ tr ≤A tr′
)

The proof is slightly more elaborate here and presented in the sequel.

Q[wait′′ \ false]

≡ “definition of Q and substitution of wait′′”
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⎛

⎜

⎜

⎜

⎜

⎝

∃ok′′; tr′′; state′′ •
(# tr′′ − # tr � t1 ∧ state � state′′ ∧ trace(tr′′) − trace(tr) � 〈〉 ∧ tr ≤A tr′′) ∧
⎛

⎝

(

(wait′ ∧ # tr′ − # tr′′ < t2) ∨
(¬ wait′ ∧ # tr′ − # tr′′ � t2 ∧ state′′ � state′)

)

∧
trace(tr′) − trace(tr′′) � 〈〉 ∧ tr′′ ≤A tr′

⎞

⎠

⎞

⎟

⎟

⎟

⎟

⎠

≡ “application of the one-point rule and removing the unused ok′′”
⎛

⎜

⎜

⎜

⎜

⎝

∃ tr′′ •
(# tr′′ − # tr � t1 ∧ trace(tr′′) − trace(tr) � 〈〉 ∧ tr ≤A tr′′) ∧
⎛

⎝

(

(wait′ ∧ # tr′ − # tr′′ < t2) ∨
(¬ wait′ ∧ # tr′ − # tr′′ � t2 ∧ state � state′)

)

∧
trace(tr′) − trace(tr′′) � 〈〉 ∧ tr′′ ≤A tr′

⎞

⎠

⎞

⎟

⎟

⎟

⎟

⎠

≡ “reordering of conjuncts for readability”
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∃ tr′′ • (tr ≤A tr′′ ∧ tr′′ ≤A tr′) ∧
(trace(tr′′) − trace(tr) � 〈〉 ∧ trace(tr′) − trace(tr′′) � 〈〉) ∧
(# tr′′ − # tr � t1) ∧
(

(wait′ ∧ # tr′ − # tr′′ < t2) ∨
(¬ wait′ ∧ # tr′ − # tr′′ � t2 ∧ state � state′)

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

We next remove the existential quantification over tr′′. Here, however, this is not so easy as we cannot apply the
one-point rule. Instead, we use the trivial law (∃x • P(x)) ≡ Q for some Q that does not mention x, and where
we can show that Q ⇔ (∃x • P(x)). The most difficult part of this step is to find the correct Q as well as the
witness x in proving the forward implication. We omit the details of finding Q and proving the proviso, but just
present the result of applying this deduction.

≡ “removing existential quantification ∃ tr′ • P(tr′)”
(

(wait′ ∧ t1 ≤ # tr′ − # tr < t1 + t2) ∨
(¬ wait′ ∧ # tr′ − # tr � t1 + t2 ∧ state � state′)

)

∧ trace(tr′) − trace(tr) � 〈〉 ∧ tr ≤A tr′

We next put the two disjuncts resulting from the Lemmas 2 and 3 together to obtain the overall result of the
elimination of wait′′ from (4), and continue the proof of the law from there onwards.

(4) ≡ “splitting existential quantifier over wait′′ via Lemma 2 and Lemma 3”

RA

⎛

⎜

⎜

⎜

⎝

true �

⎛

⎜

⎜

⎜

⎝

(wait′ ∧ # tr′ − # tr < t1 ∧ trace(tr′) − trace(tr) � 〈〉 ∧ tr ≤A tr′)
∨

⎛

⎝

(

(wait′ ∧ t1 ≤ # tr′ − # tr < t1 + t2) ∨
(¬ wait′ ∧ # tr′ − # tr � t1 + t2 ∧ state � state′)

)

∧
trace(tr′) − trace(tr) � 〈〉 ∧ tr ≤A tr′

⎞

⎠

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

≡ “application of distributivity laws to merge disjuncts”

RA

⎛

⎝true �
⎛

⎝

(

(wait′ ∧ # tr′ − # tr < t1 + t2) ∨
(¬ wait′ ∧ # tr′ − # tr � t1 + t2 ∧ state � state′)

)

∧
trace(tr′) − trace(tr) � 〈〉 ∧ tr ≤A tr′

⎞

⎠

⎞

⎠

≡ “exploiting the assumption tr ≤A tr′ in A; this holds due to application of R1A via RA”

RA

(

true �
(

(wait′ ∧ # tr′ − # tr < t1 + t2) ∨
(¬ wait′ ∧ # tr′ − # tr � t1 + t2 ∧ state � state′)

)

∧ trace(tr′) − trace(tr) � 〈〉
)

≡ “folding definition of delay and wait (Def. 6)”

wait t1 + t2 �
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With Law 26 being proved, we finally tackle the proof of the budget splitting law (Law 15) that our initial
goal was to verify. Starting from the left-hand side wait 0 . . t of the law, we obtain

wait 0 . . t

≡ “unfolding definition of time budget, nondeterminism, and wait (Def. 6 and Def. 7)”

∃d : 0 . . t • RA(true � delay(d) ∧ trace′ � 〈〉)
≡ “lemma: (∃d : 0 . . t • P(d)) ⇔ (∃d1 : 0 . . t1 • ∃d2 : 0 . . t2 • P(d1 + d2))”

∃d1 : 0 . . t1 • ∃d2 : 0 . . t2 • RA(true � delay(d1 + d2) ∧ trace′ � 〈〉)
≡ “folding definition of wait (Def. 6)”

∃d1 : 0 . . t1 • ∃d2 : 0 . . t2 • wait t1 + t2

≡ “application of the Law 26 for splitting a simple delay”

∃d1 : 0 . . t1 • ∃d2 : 0 . . t2 • wait d1 ; wait d2

≡ “distribution law: (∃x • A1 ; A2) ⇔ A1 ; (∃x • A2) if A1 does not reference x”

∃d1 : 0 . . t1 • wait d1 ; (∃d2 : 0 . . t2 • wait d2)

≡ “distribution law: (∃x • A1 ; A2) ⇔ (∃x • A1) ; A2 if A2 does not reference x”

(∃d1 : 0 . . t1 • wait d1) ; (∃d2 : 0 . . t2 • wait d2)

≡ “folding definition of generalised nondeterminism and time budget (Def. 7)”

wait 0 . . t1 ; wait 0 . . t2 �
The two proofs we discussed in this section are primarily meant to illustrate the possibility and the general
approach to proving the laws that we presented earlier on. Additional examples that illustrate the use of algebraic
strategies are available in [ZCW+12].

8. Conclusion

We have presented a collection of Circus refinement laws that can be used to refine sequential specifications
of SCJ mission behaviour into parallel designs that match the SCJ Level 1 programming model. We have also
highlighted challenges for automation: they are, primarily, in the decomposition of sequential and parallel data
operations, and to provide a repository of parallelisation and sharing laws that deal with a wide spectrum of
recurring program designs. Due to the novelty of SCJ, there are still open issues related to the designs that ought
to be supported, and hence we do not claim completeness at this stage. On the other hand, our results showed
that the introduction of cycle timings and the decomposition of time budgets can largely be automated, and so
can (the intermediate steps in) the refinement of data operations into parallel handler actions and encapsulation
of shared data; this ultimately creates a positive outlook.

Like in SCJ, our model and strategy supports data sharing between missions, and novel refinement laws have
been presented that encapsulate shared data to refine communication patterns while accounting for sequential
data flow, parallel computations, and control mechanisms by virtue of SCJ events. The soundness of the laws
guarantees the absence of race conditions in the emerging SCJ program model.

Though we have focused on handler architectures, the mission design in fact emerges where sequential actions
of an abstract centralised model are retained during refinement. In terms of sharing, sequential composition is
not an issue. Accordingly, data shared between missions is kept as state components of the process in Fig. 5
that defines the refinement target. Data shared between handlers must, however, be encapsulated and accessed
through communications, as Circus parallel composition prohibits data sharing as to retain monotonicity of that
operator with respect to refinement, which is crucial for compositionality.

In practical terms, we propose to facilitate the decomposition of data operations, the more difficult aspect of
a refinement, by asking the developer to identify intermediate target models that permit the application of one of
the decomposition laws. Each intermediate model generates a refinement proof obligation which can be tackled
in isolation, and, as we hope, its resolution will be able to take some advantage of automatic refinement tactics.



464 F. Zeyda, A. Cavalcanti

The development of useful tactics is still ongoing work, however, their mechanisation may use a tool like [ZOC12]
interacting with a prover to ensure soundness of refinements and laws alike.

In terms of the laws, it is still an open issue how the application of more specialised laws like Law 22, Law 25
and Law 35 (in Appendix A) can be automated. There may again be scope for using heuristics and tactics, but
more experience needs to be gained to ascertain this. Furthermore, we observe that the decomposition (Sect. 4.2),
parallelisation (Sect. 4.4) and sharing (Sect. 4.5) laws are defined so that they can be applied in succession: each
law for a later stage targets the result of the application of another law from an earlier stage. An interesting
opportunity is to consider the fusion of matching laws. While this offers the potential to increase automation
by reducing the number of law applications, it has the downside of reducing modularity and thereby the design
space of realisable SCJ program designs. We thus observe a trade-off and delicate balance to be struck between
flexibility of the approach and ease of its use. A lesson learned here is that parallel control fragments can provide
genericity in laws as they enable us to postpone certain aspects of the refinement and support the definition of
laws whose application requires less context.

For validation, we have presented the proofs for two key Circus Time laws. In [ZCW+12], we moreover sketch
a proof of Law 22 which uses a few novel and interesting elementary laws. That proof, however, uses existing
Circus laws rather than the UTP-based semantics of Circus Time we recaptured in Sect. 7.2. We note that
standard Circus laws like those in [CSW03, CCO11] remain valid in Circus Time.

Related work includes action systems and their refinement [Bac89, BKS83]. Action systems combine state and
behaviour by way of atomic guarded actions that operate on the state and that can be executed concurrently if there
are no write conflicts to variables. Like Circus, action systems come with an extensive refinement calculus, sup-
porting the refinement of centralised sequential specifications into distributed implementations [Bac89, BvW03].
The execution model is typically a priori fixed, nondeterministically choosing an action whose guard is enabled,
and performing the respective state update. Expressivity is constrained by the fact that any form of synchronisa-
tion has to be achieved through guards and the only way of communicating data is via shared variables. While
the semantics of the guarded command language is simpler than that of Circus and CSP, it is not obvious how
the mission-based execution paradigm can be expressed in terms of (one of) the common execution models for
action systems.

Event-B [Abr10] is a practically-oriented formalism closely-related to action systems; it has been successfully
used in the formal development of distributed systems in academia and industry. Research has been prompted
to overcome initial restrictions of the method to deal with decomposition [But09] and time [CMR06]. Funda-
mentally, however, the same restrictions as for action systems apply: that is the lack of synchronisation and
communication primitives. Some effort has been made to combine B with CSP to reap the benefits of both
worlds [ST05, STW10]. It would thus be interesting to examine whether Event-B and its combination with
CSP are indeed expressive enough for SCJ handler models, and whether the refinement laws we propose can be
formulated and validated in that setting.

To overcome the issue of complexity of our refinement strategy for SCJ, a first important future work is to
develop a semi-automatic refinement tool to facilitate the application of that strategy. This is to make the strategy
amenable to use by engineers without expert knowledge in Z or Circus. The tool will provide an extendible
collection of laws and tactics for each anchor, and, in particular, adopt the ideas for automation discussed earlier
on in Sect. 6. Rather than applying laws one by one, we envisage that the developer will be able to select high-
level patterns to decompose an abstract operation or orchestrate handler execution. Such patterns will be verified
independently outside the tool, and the integration with a theorem prover based on the LCF principle is envisaged
to guarantee that all laws and patterns are sound.

An automatic translator from SCJ Level 1 into the P model (Fig. 4) [ZLCW13] is already available to pave
the way for the verification of existing programs, and we are currently addressing translation into the opposite
direction to cater for program development by virtue of the laws. The translation between the P model and S
anchor is pending work but technically not as challenging; we are also looking at this issue.

Further work is required to integrate the semantics of Circus Time with that of OhCircus. And importantly,
we require a proof that the laws from either language (OhCircus and Circus Time) hold within the combined
language. The UTP being the common semantic foundation for all Circus dialects ought to facilitate such a proof.
It is an issue that is high on our agenda of research.

SCJ is still a very new technology, and, as far as we know, this is the first work that looks at refinement more
specifically in the context of the SCJ programming model. Our results though contribute to a wider objective
of proposing and proving refinement laws for all aspects of the verification of SCJ programs. These are, among
others, data refinements in Circus Time and the introduction of class objects, the use of object references, SCJ
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libraries, and the transformation of models into SCJCircus, a new language sufficiently concrete to be directly
translatable into code. They are all immediate areas for future work, each bringing its own set of challenges for
refinement and automation.
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A. Supplementary Refinement Laws

See Figs. 24 and 25.

B. Evaluation of TakesAtMost in the CDx example

TakesAtMost

⎛

⎜

⎝

(next frame ? frame −→ RecordFrame) � INP DL;
wait 0 . . FRAME PERIOD − OUT DL − INP DL;
var colls : N • CalcCollisions;
(output collisions ! colls −→ skip) � OUT DL

⎞

⎟

⎠

� “definition of TakesAtMost(A1 ; A2) in Fig. 6”
⎛

⎜

⎝

TakesAtMost((next frame ? frame −→ RecordFrame) � INP DL) +
TakesAtMost(wait 0 . . FRAME PERIOD − OUT DL − INP DL) +
TakesAtMost(var colls : N • CalcCollisions) +
TakesAtMost((output collisions ! colls −→ skip) � OUT DL)

⎞

⎟

⎠

� “definition of TakesAtMost((c −→ A) � d) in Fig. 6”
⎛

⎜

⎝

TakesAtMost(RecordFrame) + INP DL +
TakesAtMost(wait 0 . . FRAME PERIOD − OUT DL − INP DL) +
TakesAtMost(var colls : N • CalcCollisions) +
TakesAtMost(skip) + OUT DL

⎞

⎟

⎠

� “definition of TakesAtMost(wait t1 . . t2) in Fig. 6”

Fig. 24. Distribution laws for synchronisation deadlines
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Fig. 25. Specialised sharing law for unidirectional communication between sequential handlers

⎛

⎜

⎝

TakesAtMost(RecordFrame) + INP DL +
FRAME PERIOD − OUT DL − INP DL +
TakesAtMost(var colls : N • CalcCollisions) +
TakesAtMost(skip) + OUT DL

⎞

⎟

⎠

� “definition of TakesAtMost(var v : T • A) in Fig. 6”
⎛

⎜

⎝

TakesAtMost(RecordFrame) + INP DL +
FRAME PERIOD − OUT DL − INP DL +
TakesAtMost(CalcCollisions) +
TakesAtMost(skip) + OUT DL

⎞

⎟

⎠

� “definition of TakesAtMost(skip) and TakesAtMost(Op) in Fig. 6”

0 + INP DL + FRAME PERIOD − OUT DL − INP DL + 0 + 0 + OUT DL

� “arithmetic simplification”

FRAME PERIOD �

C. Class definition for the Parition class

The Partition class is used in the CDx program to record partitions of the voxel space that define the computational
work for the parallel detector handlers. The aircraft in one voxel are encoded by a List of Motion objects. The
class constructor (initial paragraph) receives the number of work partitions.

class Partition �̂ begin
state PartitionState
private parts : Array[List[VoxelMotions]] (where VoxelMotions abbreviates List[Motion])
private counter : int

parts �� null ∧ 0 ≤ counter < parts.length

initial Init �̂ val n : int •
⎛

⎜

⎝

parts :� newM Array[List[VoxelMotions]](n);
(

for index � 0 to parts.length − 1 •
parts.setArray(index, newM LinkedList[Motion]())

)

;
counter :� 0

⎞

⎟

⎠
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public sync clear �̂
⎛

⎝

(

for index � 0 to parts.length − 1 •
parts.clear())

)

;
counter :� 0

⎞

⎠

public sync recordVoxelMotions(motions : VoxelMotions]) �̂
(

parts.getArray(counter).add(motions);
counter :� (counter + 1) mod parts.length

)

public sync getDetectorWork �̂ val detector : int; res ret : List[VoxelMotions] •
ret :� parts.getArray(detector − 1)

end

D. Decomposed data operations of the CDx example

See Table 1.

Table 1. Mapping between Z operations and handlers in the verified CDx program design
Z data operation Handle class in the SCJ program Description

StoreFrame InputFrameHandler Read frame and calculate motions
PartitionWork ReducerHandler Voxel-hashing and partitioning voxels
CalcPartCollisions DetectorHandler (4 instances) Compute collisions for each voxel partition
SetCollisionsFromParts OutputCollisionsHandler Obtain and output collisions result

StoreFrame
� [currentFrame : RawFrame; state : StateTable; work : Partition; collisions : Z]
frame? : Frame

∃posns, posns′ : Frame; motions, motions′ : Frame |
dom posns � dom motions ∧ dom posns′ � dom motions′ •

⎛

⎜

⎝

posns′ � frame? ∧
motions′ � (λ a : dom posns′ • if a ∈ dom posns then (posns′ a) −V (posns a) else ZeroV ) ∧
posns � F (currentFrame) ∧ motions � G(currentFrame, state) ∧
posns′ � F (currentFrame′) ∧ motions′ � G(currentFrame′, state′)

⎞

⎟

⎠

PartitionWork
� [currentFrame : RawFrame; state : StateTable; work : Partition; collisions : Z]

currentFrame′ � currentFrame ∧ state′ � state
∃posns : Frame; motions : Frame | dom posns � dom motions •
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

posns � F (currentFrame) ∧ motions � G(currentFrame, state) ∧
∃ voxel map : HashMap[Vector2d, List[Motion]] | voxel map �� null •
⎛

⎜

⎜

⎜

⎝

∀ a1, a2 : Aircraft | {a1, a2} ⊆ dom posns •
(a1, a2) ∈ CollSet(posns, motions) ⇒
(∃ l : List[Motion] | l ∈ voxel map′.values().elems() •

MkMotion(a1, posns a1 −V motions a1, posns a1) ∈ l.elems() ∧
MkMotion(a2, posns a2 −V motions a2, posns a2) ∈ l.elems()

)

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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CalcPartCollisions
� [currentFrame : RawFrame; state : StateTable; work : Partition; collisions : Z]
i? : 1 . . 4
pcolls! : Z

pcolls! � #

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

a1 : Aircraft; a2 : Aircraft | ∃ l : work.getDetectorWork(i?).elems() •
⎛

⎜

⎝

∃ v1, v2 : Vector; w1, w2 : Vector •
MkMotion(a1, v1, w1) ∈ l.elems () ∧
MkMotion(a2, v2, w2) ∈ l.elems () ∧
collide((v1, w1 −V v1), (v2, w2 −V v2))

⎞

⎟

⎠

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

div 2

SetCollisionsFromParts
� [currentFrame : RawFrame; state : StateTable; work : Partition; collisions : Z]
collsbag? : bag int

currentFrame′ � currentFrame ∧ state′ � state ∧ work′ � work
∃ s : seq int | collsbag? � items s • collisions′ � �seq s (�seq yields the sum of sequence elements)

E. Circus Time UTP model

Def 8 Definition of prefix and subtraction for time traces in Circus Time.

tr1 ≤A tr2 �̂ front(tr1) < tr2 ∧ last(tr1).1 ≤ head(tr2 − front(tr1)).1

tr1 −A tr2 �̂ 〈(head(t2 − front(tr1)).1 − last(tr1).1, head(tr2 − front(tr1)).2)〉 � tail(tr2 − front(tr1))

where ≤ and < are the standard prefix operators on sequences, and − is (standard) sequence subtraction. The
notations c.1 and c.2 are used for pair selection, and head , tail, front and last have their usual meanings.

F. Circus Time UTP Laws

See Figs. 26 and 27.

Fig. 26. Sequential composition of reactive designs in Circus Time
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Fig. 27. Sequential composition of terminating reactive designs in Circus Time

G. Mission class of the Level 1 CDx

import javax.safetycritical.Mission;

public class CDxMission extends Mission {
/* Records the current radar frame of aircraft positions. */
public RawFrame currentFrame;

/* Holds previous aircraft positions; it is used to predict their motions. */
public StateTable state;

/* Records the computational work for the detector handlers. */
public Partition work;

/* Accumulates the number of collisions calculated during detection. */
public int collisions;

/* Control object that is used to orchestrate handler execution. */
public DetectorControl control;
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public CDxMission() {
/* Here we create shared data objects in mission memory. */
currentFrame = new RawFrame();
state = new StateTable();
work = new Partition(4);
collisions = 0;

}

public @Override void initialize() {
/* SCJ event that releases ReducerHandler. */
AperiodicEvent reduce = new AperiodicEvent();

/* SCJ event that releases all four DetectorHandlers. */
AperiodicEvent detect = new AperiodicEvent();

/* SCJ event that releases OutputCollisionsHandler. */
AperiodicEvent output = new AperiodicEvent();

/* Control object that fires the output event when detection is completed. */
control = new DetectorControl(output, 4);

/* InputFrameHandler reads radar frames; the only periodic handler. */
InputFrameHandler h1 = new InputFrameHandler(this, reduce);

/* ReducerHandler performs voxel-hashing and then subdivides the work. */
ReducerHandler h2 = new ReducerHandler(this, detect, control, reduce);

/* Four DetectorHandler instances perform the actual detection work. */
DetectorHandler h3 = new DetectorHandler(this, control, 1, detect);
DetectorHandler h4 = new DetectorHandler(this, control, 2, detect);
DetectorHandler h5 = new DetectorHandler(this, control, 3, detect);
DetectorHandler h6 = new DetectorHandler(this, control, 4, detect);

/* OutputCollisionsHandler outputs the collisions results. */
OutputCollisionsHandler h7 = new OutputCollisionsHandler(this, output);

/* Below we register all handlers with the mission. */
h1.register(); h2.register(); h3.register(); h4.register();
h5.register(); h6.register(); h7.register();

}

/* SCJ method that specifies the amount of mission memory required. */
public @Override long missionMemorySize() {
return Constants.MISSION_MEMORY_SIZE;

}

/* Method to get the current frame of aircraft positions. */
public synchronized RawFrame getFrame() {
return currentFrame;

}

/* Method to set the current frame of aircraft positions. */
public synchronized void setFrame(RawFrame frame) {
currentFrame = frame;

}

/* Method to get previous aircraft positions. */
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public synchronized StateTable getState() {
return state;

}

/* Method to set previous aircraft positions. */
public synchronized void setState(StateTable state) {
this.state = state;

}

/* Method to get the shared work variable. */
public synchronized Partition getWork() {
return work;

}

/* Method to set the shared work variable. */
public synchronized void setWork(Partition work) {
this.work = work;

}

/* Resets the number of detected collisions. Called by ReducerHandler. */
public synchronized void initColls() {
collisions = 0;

}

/* Records a partial collisions result. Called by the DetectorHandlers. */
public synchronized void recColls(int n) {
collisions += n;

}

/* Returns the cumulative collisions. Called by OutputCollisionsHandler. */
public synchronized int getColls() {
return collisions;

}
}
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