
DOI 10.1007/s00165-014-0311-1
BCS © 2014
Formal Aspects of Computing (2015) 27: 499–523

Formal Aspects
of Computing

Language and tool support for event refinement
structures in Event-B
Asieh Salehi Fathabadi, Michael Butler and Abdolbaghi Rezazadeh
Electronics and Software Systems Group, School of Electronics and Computer Science, University of Southampton,
Southampton SO17 1BJ, UK

Abstract. Event-B is a formalmethod formodelling and verifying the consistency of chains ofmodel refinements.
The event refinement structure (ERS) approach augments Event-B with a graphical notation which is capable of
explicit representation of control flows and refinement relationships. In previous work, the ERS approach has
been evaluated manually in the development of two large case studies, a multimedia protocol and a spacecraft
sub-system. The evaluation results helped us to extend the ERS constructors, to develop a systematic definition
of ERS, and to develop a tool supporting ERS. We propose the ERS language which systematically defines
the semantics of the ERS graphical notation including the constructors. The ERS tool supports automatic
construction of the Event-B models in terms of control flows and refinement relationships. In this paper we
outline the systematic definition of ERS including the presentation of constructors, the tool that supports it and
evaluate the contribution that ERS and its tool make. Also we present how the systematic definition of ERS and
the corresponding tool can ensure a consistent encoding of the ERS diagrams in the Event-B models.

Keywords: Event refinement structure, Atomicity decomposition, Event-B, Formal method, Control flow,
Refinement

1. Introduction

The Event-B formal method [Abr10] is an evolution of classical B [Abr96]. Event-B is proven to be applicable in
a wide range of domains, including distributed algorithms, railway systems and electronic circuits. In the Event-B
modelling language states of a system are defined by variables and state changes of a system are defined by
guarded actions, called events. The main specification construct is a machine that is comprised of variables and
events. Event-B supports refinement [Abr05] in which an abstract model is elaborated towards an implementation
in a step-wise manner. During refinement steps a model can be modified and enriched.

One weakness of Event-B is that control flow between events is typically modelled implicitly. Since the Event-
B language is a state-based language, ordering between several events can only be modelled in event guards
which include conditions on state variables. Because Event-B is also used to model systems with rich control flow
properties, it has been observed that explicit control flow specification is beneficial [But00, IIi09].

Correspondence and offprint requests to: A. Salehi Fathabadi, E-mail: asf08r@ecs.soton.ac.uk

http://crossmark.crossref.org/dialog/?doi=10.1007/s00165-014-0311-1&domain=pdf

500 A. Salehi Fathabadi et al.

Fig. 1. Research road map

New events may be introduced in Event-B refinement and these are often used to decompose the atomicity
of an abstract event into a series of steps. A second weakness of Event-B is that there is no explicit link between
such new events that represent a step in the decomposition of atomicity and the abstract event to which they
contribute. Although the refinement process in Event-B provides a flexible approach to modelling, it is unable to
explicitly show the relationships between abstract events and new events introduced during a refinement step.

To address these weaknesses, the event refinement structure (ERS) [But09, SaB10, SRB11, SBR12] addresses
the explicit control flow modelling and explicit refinement relationships representation.1 It provides a graphical
notation to structure the refinement process and to illustrate the explicit ordering between events of a model. The
ERS graphical notation contains tree structured diagrams based on Jackson Structure Diagrams (JSD) [Jac83].
Semantics are given to an ERS diagram by defining a corresponding Event-B model from it.

The steps carried in the research are presented in Fig. 1. ERS was first introduced by Butler [But09]
(step 1). It has been observed that methodological support for ERS, which is outlined in this paper, was weak.
So we decided to evaluate and enhance the existing ERS from [But09]. For this reason we manually applied
ERS to two sizeable case studies, a multimedia protocol [ZaC09] and a spacecraft system [ESA08] (step 2). The
first case study, the multimedia protocol [ZaC09], contains requirements to establish, modify and close a media
channel between two endpoints for transferring multimedia data. The second case study is based on a spacecraft
system called BepiColombo [ESA08]. Developments of both these case studies involving manual translation of
ERS diagrams to Event-B, have been published in [SaB10] and [SRB11] respectively. Insights gained from these
case studies enabled us to define a formal description of the ERS language and formal translation rules from
ERS diagrams to the Event-B language (step 3). Based on the ERS language and translation rule descriptions,
we have developed the ERS tool support, as a plug-in for the Event-B tool-set (step 4). Our ERS tool provides
an environment to construct the ERS diagrams and automatically translate them to Event-B models. Finally we
re-developed the case study models using the provided ERS tool support (step 5).

The contribution of this paper is to present the full description of the ERS language and translation rules
from ERS diagrams to the Event-B language, covering step of Fig. 1. We also outline the development of the
ERS tool and the technologies that were used in this tool development (step 4). In order to present these outputs,
we are using the automatically constructed models of the case studies (step 5). One of our objectives in this paper
is to present the benefits of using ERS in formal modelling development; moreover the evaluation results assess
how application of translation rules makes the automatic models of case studies more consistent and systematic,
compared with the previous manual ones.

Earlier steps of this research have already been published. An early version of ERS was first introduced by
Butler in [But09]; the manual applications of the initial ERS to the case studies have been published in [SaB10]
and [SRB11]. Finally in [SBR12], a part of the ERS language, some of the translation rules and the tool support
have been published. This paper is an extension of the later publication [SBR12]. In [SBR12] we only presents a
part of the ERS language dealing with constructors (three out of seven) and corresponding translation rules that
have been applied to the the case studies. In this paper, the full description of the ERS language, including the
additional four constructors and corresponding translation rules, are presented. The presentation of translation
rules is more detailed and precise, compared to the brief overview in [SBR12]. Also more evaluation results,
including the proof obligation statistics, are presented and the related work is improved.

The paper is structured as follows: Sect. 2 outlines the Event-B formal method, the event refinement structure
approach and an overview of the case studies requirements; Sect. 3 and Sect. 4 contain the ERS language
description and definitions of translation rules respectively; Sect. 5 presents the tool developed to support ERS;
In Sect. 6 we evaluate how the ERS language has helped us to enhance the Event-B formal development; finally
Sect. 7 presents related work and conclusion.

1 In [But09]ERS is referred to as event refinement diagram, and in [SaB10, SRB11, SBR12]ERS is referred to as theAtomicityDecomposition
approach.

Language and tool support for event refinement structures in Event-B 501

Fig. 2.Machine and context relationships in Event-B

2. Background and related work

2.1. Event-B

The Event-B formal method [Abr10, MAV05] has evolved from classical B [Abr96] and action systems [BaK88].
Event-B is used inmodelling andverifying the consistencyof chains ofmodel refinements. Themodelling language
is based on set theory and first order logic.

A model in Event-B can consist of several Contexts and Machines. Contexts contain the static part (types
and constants) of a model while machines contain the dynamic part (variables and events). Contexts provide
axiomatic properties of an Event-B model, whereas machines provide behavioural properties of an Event-B
model. A machine consists of variables, invariants, events. Invariants constrain variables, and are supposed to
hold whenever variables are changed by an event. Each event is composed of a name, a set of guardsG(t, v) and
some actions S (t, v), where t are parameters of the event and v is state of the systemwhich is defined by variables.
All events are atomic and can be executed only when their guards hold. When the guards of several events hold
at the same time, then only one of those events is chosen nondeterministically to be executed.

A context can be “extended” by other contexts and “referenced” by machines. A machine can be “refined”
by other machines and can reference contexts. The relationships between various contexts and machines are
illustrated in Fig. 2.

Building a model in Event-B usually starts with an abstract specification, and continues in successive refine-
ment levels. The abstract model provides a simple view of the system, focusing on the main purposes of the
system. Details are added gradually to the abstract model during refinement levels. In Event-B, refinement is used
to introduce new functionality or add details of current functionality. One of the important features of Event-B
refinement is the ability to introduce new events in a refinement level that have no corresponding abstract event. A
new event refines an implicit skip event. A skip event is an empty event which does not modify any variable. From
a given machine, Machine1, a new machine, Machine2, can be built as a refinement of Machine1. In this case,
Machine1 is called an abstraction of Machine2, and Machine2 is said to be a refinement of Machine1. Event-B
defines proof obligations to verify that events preserve invariants and that refinements are consistent. Also in
guard strengthening proof obligations it should be proved that for refining events, the refining guards are stronger
than abstract guards.

Event-B is supported by an Eclipse-based tool called Rodin [ABH06] that provides a modelling and proving
environment. Rodin generates proof obligations for models and provides a range of automated and interactive
provers [ABH06] as well as a model checker [Pro]. Rodin is an open platform, and is an extensible and adaptable
modelling tool. We have taken advantage of the extensibility feature of Rodin to develop tool support for the
ERS language.

502 A. Salehi Fathabadi et al.

Fig. 3. Event refinement structure diagram

2.2. Event refinement structure

Although refinement in Event-B provides a flexible approach to modelling, it has the weakness that we cannot
explicitly represent the relationships between abstract events and new events which are introduced in a refinement
level. Another weakness of Event-B modelling is that we are not able to model the sequencing between events
explicitly. The control flows are implicitlymodelled in guards and actions of the events. Event refinement structure
(ERS) approach is proposed to address these limitations. The idea is to augment Event-B refinement with a graph-
ical notation that is capable of representing the explicit relationships between abstract and concrete events as well
as explicit representation of the control flows. Figure 3 illustrates these two features of theERS graphical notation.

Assume machine M0, on the left hand side of Fig. 3, is an abstract Event-B machine which contains the
Initialisation event and the abstract specification ofAbstractEvent.MachineM1 refinesmachineM0. Themachine
M1 encodes its control flow (ordering between Event1 and Event2) via guards on the events. This control flow is
made explicit in the ERSdiagrampresented in the right hand side. This diagram explicitly illustrates that the effect
achieved by AbstractEvent in the abstract machine M0, is realized in the refining machine M1, by occurrence of
Event1 followed by Event2. The sequential ordering of the leaf events is from left to right (this is based on JSD
diagrams [Jac83]). The solid line indicates that Event2 refines AbstractEvent while the dashed line indicates that
Event1 is a new event which refines skip. In the Event-B model of machineM1 on the left hand side, Event1 does
not have any explicit connection with AbstractEvent, but the diagram indicates that we break the atomicity of
AbstractEvent into two sub-events in the refinement. One and only one of the children in an ERS diagram is
connected to the root event with a solid line. Other leaves have to be connected with dashed lines. This restriction
is a result of restrictions in the Event-B model. Since there can be only one occurrence of the abstract event in
the refinement level, there is only one refining child (child with the solid line).

The parameter par in the diagram indicates that we are modelling multiple instances of AbstractEvent and its
sub-events. Events associated with different values of parmay be interleaved thus modelling interleaved execution
of multiple processes. The execution effect of an event with parameter par, is to add the value of par to a control

Language and tool support for event refinement structures in Event-B 503

variable with the same name as the event, i.e., par ∈ Event1 means that Event1 has occurred with value par.
The use of a set means that the same event can occur multiple times with different values for par. The guard of
an event with value par specifies that the event has not already occurred for value par but has occurred for the
previous event, e.g., the guard of Event2 says that Event1 has occurred and Event2 has not occurred for value par.

2.3. Overview of case studies

This section outlines an overview of our case studies, a multimedia protocol [ZaC09] and a subsystem of a
spacecraft system based on BepiColombo [ESA08]. The case studies help to illustrate the translation rules in
Sect. 4 and are used in the evaluation of the approach in Sect. 6.

2.3.1. Multimedia protocol

This case study specifies a protocol for establishing, modifying and closing a media channel. A media channel
is established between two endpoints for transferring multimedia data. There are three phases in the protocol:
establish, modify and close. In themodification phase some properties of the established channel can bemodified,
such as the codec used for data encoding.

It is worth comparing our approach to the multimedia protocol with the approach taken by Zave and Cheung
[ZaC09]. Zave and Chueng present Promela models of the behaviour of each end of the protocol and use the
Spin model checker to verify that these models satisfy certain safety and liveness properties. In our approach
with Event-B, we start with a more global view of the protocol and then use ERS to arrive at models that have a
level of details similar to the Promela models. Development of this case study, involving the application of ERS
diagrams in the Event-B modelling, has been published in [SaB10].

2.3.2. Spacecraft system

Exploration of the planet Mercury is the main goal of the BepiColombo mission [ESA08]. One of the Bepi-
Colombo subsystems that handles communications between Earth and the satellite is taken for modelling. This
subsystem consists of a core and four devices. The core and the control software are responsible for controlling
the power of devices and their operation states and to handle TeleCommand (TC) and TeleMessage (TM) com-
munications. In our work, we treat a part of the BepiColombo system related to the management of TC and
TM communications. The core software (CSW) plays a management role over the devices. CSW is responsible
for communication with Earth on one hand and with the devices on the other hand. Here is the summary of the
system requirements:

• A TeleCommand (TC) is received by the core from Earth.
• The CSW checks the syntax of the received TC.
• Further semantic checking has to be carried out on the syntactically validated TC. If the TC contains a
message for one of the devices, it has to be sent to the device for semantic checking, otherwise the semantic
checking is carried out in the core.

• For each valid TC a control TeleMessage (TM) is generated and sent to Earth.

The development of the Event-B model of this case study includes an abstract level followed by three levels
of refinement. Then the third refinement is decomposed to two sub-models, devices and core, and it is followed
by two more refinement levels on the core sub-model. In all of the refinement steps, we applied ERS and also
we evaluate the application of ERS and model decomposition together. Development of this case study has been
published in [SRB11].

3. Event refinement structure language

In order to aid understanding of the ERS language, we provide an abstract example in Fig. 4, and a refinement
example in Fig. 5. Considering the example in Fig. 4, in the ERS diagram of the most abstract level of an Event-B
model, the name of a process in the system appears in an oval as the root node, and the names of themost abstract
events appear in the leaves in order from left to right. All lines have to be dashed lines, since all of leaves are the

504 A. Salehi Fathabadi et al.

Fig. 4. An ERS diagram example, abstract level

Fig. 5. An ERS diagram example, refinement level

most abstract events and do not refine the root node. In Fig. 4, for each p ∈ P , proc(p) executes a(p) followed
by b(p, q) for all q ∈ Q , followed by c(p) and d(p). Event a is further decomposed to three sub-events in the first
refinement level, as shown in Fig. 5.

To describe the ERS language syntax, we use Augmented Backus–Naur Form (ABNF) [CrO08]. ABNF is a
metalanguage based on Backus–Naur Form (BNF). BNF is a notation for context-free grammars, often used to
describe the syntax of languages. It is applied wherever exact descriptions of language syntaxes are needed. The
differences between standard BNF andABNF involve naming rules, repetition, alternatives, order-independence,
and value ranges. An ABNF specification is a set of derivation rules, written as

rule � definition
The following ABNF operators are used in describing ERS language:

• Terminal values:
Terminal values are placed between two apostrophes (“Terminal”).

• Alternative: (Rule1 / Rule2)
A rule may be defined by a list of alternative rules separated by a solidus (“/”).

• Variable repetition: (n*m element)
To indicate repetition of an element the form (n*m element) is used. The optional n gives theminimumnumber
of elements to be included with the default of 0. The optionalm gives the maximum number of elements to be
included with the default of infinity. We use *element for zero or more elements, 1*element for one or more
elements and 2*element for two or more elements.

The ERS language syntax is presented in Fig. 6. The detailed definition of the ERS constructors are gradually
outlined in the next sections. A flow, in Fig. 6, refers to a single root of an ERS diagram. To describe the type of
a line (solid/dashed), we use a boolean property, called “ref”. When a sub-event refines the abstract event (solid
line) , “ref” is one; otherwise “ref” is zero. Considering Fig. 6, the ABNF of ERS language may be described
informally as follows:

• A flow consists of a name, zero or more parameters, and one or more children. Each child of a flow has a
“ref ” property.

• A parameter consists of a name and the type (index set) of the parameter.

Language and tool support for event refinement structures in Event-B 505

Fig. 6. Syntax of the ERS language

• A child is either a “leaf ” with a name or a constructor or one or more flow(s), when it is further decomposed
in the next refinement level.

• Constructors are divided to three groups:

– Loop constructor: including “loop” with one constructor child (cons-child).
– Logical constructors: including “and”, “or” and “xor”, with two ormore constructor children (cons-child)
– Replicator constructors: including “all”, “some” and “one” with a parameter, followed by one constructor
child (cons-child)

• A cons-child is either a “leaf ” with a name or one or more flow(s), when it is further decomposed in the next
refinement level.

Following the ERS language syntax definition in Fig. 6, the textual syntax of the example in Fig. 4 is as bellow:

flow (proc, p : P)(
leaf (a)(0),
all (q : Q)(leaf (b))(0),
and (leaf (c), leaf (d))(0)
)

In the textual syntax of the example in Fig. 5, as shown below, leaf(a) is replaced by a flow:

flow (proc, p : P , 1)(
flow(a, p:P)(leaf(e)(0), loop(leaf(f))(0), leaf(g)(1))(0),
all (q : Q)(leaf (b))(0),
and (leaf (c), leaf (d))(0)
)

Figure 3 briefly represented how a simple ERS diagram is translated to an Event-B model. The next section
outlines the translation rules for all of the ERS constructors presented in this section.

4. Translation rules

Formal semantics are given to an ERS diagram by transforming it into an Event-B model, based on a collection
of translation rules. In this section, we discuss these translation rules. The main syntactic elements of an Event-B
machine are variables, invariants, guards and actions. The encoding of ERS diagrams in Event-B uses a collection
of Event-B syntactic patterns such as typing invariants, sequencing invariants, partitioning invariants, disabling
guards, sequencing guards and leaf actions. Our translation scheme defines a separate rule for each of these
syntactic patterns. Figure 7 outlines the full list of translation rules. Each translation rule defines a transformation
from an ERS source element to an Event-B destination element. Note that for each ERS element usually there is
more than one applicable translation rule. We explain the role of each translation rule using snippets taken from
the case studies. We first explain the rules related to sequencing of events. After outlining the sequencing rules,
we discuss the rules for a solid leaf, the loop, logical constructors and replicator constructors.

506 A. Salehi Fathabadi et al.

Fig. 7. Translation rules

4.1. Sequencing rules

As discussed in Sect. 2.2, one major feature of ERS diagrams is the explicit representation of sequencing between
events. To illustrate this concept, we have taken a part of the most abstract level diagrams of the BepiColombo
system, presented in the upper level of Fig. 8. In the most abstract diagram, the name of the system appears in an
oval as the root node, and the names of the most abstract events appear in the leaves ordered from left to right.
This diagram specifies an event ordering whereby a TC is received by the core, ReceiveTC event, and then it is
validated by TC Validation Ok event.

The arrows in Fig. 8 indicate the application of translation rules. For example, the TR1 arrow from the
ReceiveTC leaf in the diagram to the ReceiveTC variable in the Event-B model shows that the application of the
TR1 rule to each source leaf produces a variable, with the same name as the leaf, in the Event-B model. The
constructed variables are of type set and are used to control the sequencing of the leaf events. We refer to the
values in a leaf variable as tokens. So for a parameterised event, the leaf variable added by TR1 is the token set.

ApplicationofTR2 to thefirst leaf produces an invariantwhichdefines the typeof the leaf variable.Application
ofTR3 to the second leaf produces an invariantwhich describes the sequencing constraint between two leaf events.
The sequencing invariant describes the second leaf variable as a subset of the previous leaf variable, since the
second leaf event is allowed to execute only after execution of its previous leaf event.

In the most abstract diagram, since all leaves represent the most abstract events, there is no solid line. For
each leaf with a dashed line, TR4 constructs a non-refining event. The parameter of the leaf is transformed to
the event parameter. For each leaf, TR5 constructs a disabling guard, which specifies that the leaf event has not
executed for a token before. In other words, a token indicates that the event occurred with that value. For each
non-first event, like TC Validation Ok here, another guard is required to make sure that the previous event has
been executed for the token before; this translation is carried out via TR6. Finally TR7 defines an action that
adds a token to the leaf variable and as a result disables the corresponding leaf event for that token.

The translation rules TR1–TR7 are applicable to leaf nodes and encode sequencing collectively.

4.2. Solid line

In Fig. 9, the abstract atomic TC Validation Ok event from Fig. 8, is decomposed to three sub-events in a
refinement level. Validating a received TC is performed in two steps, checking the syntax, in the TCCheck Ok
event, and the semantics, in the TCExecute Ok event, of a received TC. After syntax and semantic checks, in the
third step, TCExecOk ReplyCtrlTM, a control TM is produced and sent back to Earth.

Language and tool support for event refinement structures in Event-B 507

Fig. 8. The most abstract level model, BepiColombo system

Fig. 9. The ERS diagram of TC Validation Ok, BepiColombo system

Considering Fig. 9, a solid line in an ERS diagram has two effects. First, it is translated to an invariant which
connects the abstract variable to the refinement variable (TR8); this is called a gluing invariant. Second, it is
translated to an event which refines the abstract event in the root node (TR9).

4.3. Loop constructor

The loop constructor is used to model zero or more executions of a leaf. Figure 10 presents the most abstract
ERS diagram of the multimedia protocol which contains the loop constructor as its second child. The diagram
states that first a media channel is established, then it can be modified zero or more times and finally it is closed.
Considering Fig. 10, there is no variable constructed for the loop leaf (modify), since we do not need to record
the loop event execution. The event following the loop event (close) can execute immediately after execution of
the event preceding the loop event (establishMediaChannel).

The loop event can execute several times before execution of the event that follows it. In Fig. 10, TR10
transforms the loop constructor to a guard in the loop event, modify. This guard checks that the event after
the loop, close, has not already executed for the channel. The other Event-B elements in Fig. 10 are constructed
via TR1-TR7 which have been described previously. The modify event has no action as we do not need to track
its occurrence in order to constrain the event that follows it (close), nor does an occurrence of modify constrain

508 A. Salehi Fathabadi et al.

Fig. 10. The most abstract level, multimedia protocol

Fig. 11. Refinement level, multimedia protocol

subsequent occurrences. The grd1 of close event (constructed byTR6) is based on establishMediaChannel variable,
because close event can execute immediately after execution of establishMediaChannel event, with zero execution
of the loop event.

In the next refinement level, as illustrated in Fig. 11, the abstract atomic modify event, is decomposed to
two sub-events. First the codec list is modified by sending a descriptor signal from one of the endpoints of the
established media channel to another one (modifyCodecListByDescriptor event). Then the other endpoint has
to respond to the descriptor signal by selecting a codec from the received codec list and sending back a selector
signal containing the selected codec (respondBySelectorToCodec event).

When a loop leaf, such as modify, is further decomposed to some sub-events, two extra translation rules are
needed. First it is required that the event after the loop, close here, is not allowed to execute in the middle of
execution of the loop events, e.g. in Fig. 11, close cannot occur in between modifyCodecListByDescriptor and
respondBySelectorToCodec. Considering Fig. 11, TR11 ensures this property by constructing a guard which is
added to the next event, close. Second we need a reset event. In order to enable more than one execution of the
loop events, the loop control variables need to be reset. This is performed as the result of TR12 in Fig. 11. The

Language and tool support for event refinement structures in Event-B 509

Fig. 12. Logical constructors

reset loop event removes a channel token from the control variables of the loop events, which allows them to
execute for the same channel again. A reset event is not required in Fig. 10 where the loop leaf is not decomposed
further, since there is no control variable constructed for the loop leaf.

4.4. Logical constructor

The ERS logical constructors are presented in Fig. 12. The diagrammatic notation for these is represented in the
upper level of the figure using three simple patterns of the ERS diagrams. From left to right, the and constructor
specifies the requirement to execute all of its sub-events; The or constructor specifies the requirement to execute
one or more of its sub-events; Finally the xor constructor specifies the requirement to execute exactly one of its
sub-events.

The encoded Event-B model of the logical constructors is presented in the lower level of Fig. 12. The Event-B
models of the logical constructors are similar together and are constructed as the results of the translation rules
that have been discussed in the previous sections. There are two differences in the model of the and constructor
and or/xor constructors which are highlighted in Fig. 12 and are discussed in this section. First inv3a corresponds
to the and constructor, while inv3b corresponds to the or/xor constructors. Second grd1a in Event3 corresponds
to the and constructor, while grd1b corresponds to the or/xor constructors.

Considering the Event-B model in Fig. 12, as the result of TR2 (Sect. 4.1), the type of the constructors’
sub-events are defined in inv1 and inv2. In the case of the and constructor, inv3a specifies that Event3 can execute
only after execution of both and sub-events. This invariant is constructed as the result of TR3. In the case of the
or/xor constructors, inv3b specifies thatEvent3 can be executed after execution of one ormore of the constructors’
sub-events. inv4, constructed as the result of TR8 (Sect. 4.2), specifies the connection between the abstract variable
and the corresponding concrete variable. The events, their guards and actions are constructed as explained before.
Here we highlight the constructed guard (from TR6) in the event after the logical constructors, Event3. In the
case of the and pattern, grd1a in Event3 ensures that Event3 can execute only for a parameter which all of the and

510 A. Salehi Fathabadi et al.

Fig. 13. The ERS diagram of TC Execute Ok, BepiColombo system

sub-events has executed before. In the case of the or and xor patterns, grd1b ensures that Event3 can execute only
for a parameter which at least one of the or/xor sub-events has executed before. In the case of the xor pattern an
invariant and a guard in each of the xor sub-events, are needed to ensures the exclusiveness property of the xor
sub-events; these invariant and guards are discussed in the next section.

4.5. xor constructor

Exclusive choice between two ormore events is introduced to the ERS diagrams with a constructor called xor. An
application of the xor constructor in BepiColombo development is presented in Fig. 13. A TC either belongs to
the core or the devices and not both of them. The figure illustrates a further level of refinement where the atomicity
of the semantics checking event, TCExecute Ok, is decomposed to an exclusive choice between two sub-events;
TCCoreExecute Ok checks the semantics of aTCwhich belongs to the core andTCDeviceExecute Ok checks the
semantics of a TC which belongs to the device. Exclusive choice means the system executes TCCoreExecute Ok
or TCDeviceExecute Ok but not both.

xor sub-events inherit the type of their line (solid/dashed) from the xor constructor. Considering Fig. 13, the
xor constructor is connected to the root node with a solid line, therefore both xor sub-leaves are connected with
solid lines and refine the abstract event in the root node.

There are two translation rules for the xor constructor in Fig. 13. First the xor constructor is transformed to
the partitioning invariant (TR13), which ensures exclusivity of execution. The partition operator in Event-B is
defined as follows:

partition(E ,E1, ...,En) ≡ (E � E1 ∪ ... ∪ En) ∧ (i �� j ⇒ Ei ∩ Ej � ∅)
This states that E is partitioned into n sets, E1 to En .
The constructed partitioning invariant first describes the relationship between the abstract variable and the

refinement variables:

TCExecute Ok � TCCoreExecute Ok ∪ TCDeviceExecute Ok .
Second it describes the mutually exclusive property of the xor sub-events:

TCCoreExecute Ok ∩ TCDeviceExecute Ok � ∅.
If the xor constructor is connected to the root node with a dashed line, there is no relationship between the

abstract variable and the refinement variables; Therefore in the case of dashed line there is no corresponding
abstract event and the partitioning invariant becomes

partition((TCCoreExecute Ok ∪ TCDeviceExecute Ok),
TCCoreExecute Ok ,TCDeviceExecute Ok).

Language and tool support for event refinement structures in Event-B 511

This is constructed as the result of TR14. In the case of a dashed lined xor constructorwith just two sub-events,
the partitioning invariant can be simplified to specify the mutual exclusive property of the two xor sub-events.
For example the latest invariant can be simplified as:

TCCoreExecute Ok ∩ TCDeviceExecute Ok � ∅.
However when the number of xor sub-events exceeds two, the partitioning invariant is preferable due to the

growing number of mutually exclusive conditions. Therefore, due to the coherence issue, TR14 always construct
the partitioning invariant even for a dashed lined xor constructor with just two sub-events.

The second translation rule in Fig. 13 (TR15) constructs a guard for each xor sub-event. This guard enforces
the exclusiveness property of xor sub-events. The guard in each xor sub-event checks that the other xor sub-events
have not occurred for the intended value of the TC.

4.6. Replicator constructor

There are three replicator constructors, all, some and one, each of which adds a new parameter to its single
sub-event. Figure 14 illustrates these constructors using three simple patterns of the ERS diagrams. From left to
right, the all constructor specifies execution of its sub-event for all instance values of its new parameter, q; The
some constructor specifies execution of its sub-event for some instance values of its new parameter; Finally the
one constructor specifies execution of its sub-event for exactly one instance value of its new parameter. The all,
some and one replicators are generalisations of the and, or and xor logical constructor respectively.

The encoded Event-B model of the replicators is presented in the lower level of Fig. 14. There is a new
translation rule (TR16); the rest of the model is constructed as a result of the previously defined translation rules.
The replicators add a new parameter, the q parameter, to their sub-events, Event1. TR16 constructs the type of
the replicator leaf variable, Event1.

The Event-B models of the replicators are similar together. There are two differences in the model of the
all replicator and some/one replicators which are highlighted in Fig. 14 and are discussed in this section. First
inv2a, which is constructed as the result of TR3, specifies the sequencing between the all sub-event (Event1) and
the following event (Event2). inv2a specifies the execution of Event1 for all instances of the parameter q before
execution of the Event2. This invariant uses relational image, r [S], which in Event-B is defined as follows:

r [S] � {y | ∃x .x ∈ S ∧ x �→ y ∈ r}
inv2a specifies that Event2 only can execute for an instance of the parameter p for which Event1 has already
executed for all instances of the all parameter, q. In the case of the some and one patterns, inv2b specifies that
Event2, which is a subset of TYPE(p), is a subset of the first dimension of the Event1. Secondly in a similar way,
grd2a and grd2b, constructed as the result of TR6, enforce the sequencing between sub-events in the case of all
and some/one respectively. In the case of the one constructor, an invariant and a guard in the one sub-event, are
needed to ensures the single execution of the one sub-event; these invariant and guards are discussed in the next
section.

4.7. one constructor

The one constructor is a generalisation of the xor constructor and specifies execution of an event for exactly
one instance value of a new parameter. An application of the one constructor in BepiColombo develop-
ment is presented in Fig. 15. Figure 15 illustrates that the TCExecOk ReplyCtrlTM event is decomposed
to produce exactly one TM, in the TCExecOk ProcessCtrlTM event, followed by the completion action,
TCExecOk CompleteCtrlTM.

As presented in Fig. 15, the one constructor adds a new parameter, the tm parameter, to its sub-
event, TCExecOk ProcessCtrlTM. inv1 (constructed by TR16) specifies the type of the one leaf variable,
TCExecOk ProcessCtrlTM. For each validated tc, exactly one control tm should be processed. To enforce this
constraint, the one constructor is translated to an invariant and a guard. TR17 constructs an invariant which
defines the one constructor property, specifying that for each tc, the cardinality of the set of processed tms is at
most one. TR18 constructs a guard to make sure that the one sub-event has not executed for the same value of
the intended tc before.

512 A. Salehi Fathabadi et al.

Fig. 14. Replicator constructors

Fig. 15. The ERS diagram of TCExecOk ReplyCtrlTM, BepiColombo system

4.8. The formal description of the translation rules

In the previous sections we demonstrated a graphical representation of the application of the translation rules in
the case studies. For each translation rule, the source element was presented as a graphical ERS element, and the
constructed element was presented as an instantiated Event-B element. The graphical representation of the ERS
approach is used by end users and can be specified in a more general manner as the textual ABNF representation
of the ERS approach (presented in Sect. 3). This section describes how translation rules are defined precisely in a
formal textual manner. Here translation rules are presented based onABNF representation of the ERS language.

Language and tool support for event refinement structures in Event-B 513

Fig. 16. TR1 definition

Fig. 17. TR1 instantiation for the diagram of the Fig. 8

The source element is an ABNF element of the ERS language, and the constructed element is an Event-B element
of the Event-B language.

As summarised in the Fig. 7, the source elements of the translation rules (in the right side of each translation
rule arrow) are type of a leaf or the loop constructor or the xor constructor or the one constructor. These
elements are translated into the Event-B elements such as variables, invariants, events, guards and actions. A leaf
is transformed to a variable, an invariant, an event, guard(s) and an action in order to manage the sequencing
between events and to specify the relationship between the abstract event and the refining sub-event. The loop
constructor is transformed to guards and a resetting event to control the loop execution. The xor-constructor
is transformed to an invariant and guards to specify the mutual exclusive property of its children. The one-
replicator is transformed to an invariant and a guard to limit the number of executions of its child to one.

We explain the textual description of three translation rules, with different target Event-B element, here. The
rest of the rules are working in a very similar manner.2

First, the formal description of TR1 (introduced in Fig. 8) is presented in Fig. 16. The left-hand box contains
the ABNF representation of ERS elements that is transformed to the right-hand box containing the description
of the Event-B element. In the case of TR1, the right-hand side contains the representation of seven different
types of a leaf in the ERS language: a simple leaf or a leaf of six different ERS constructors. Each of these leaf
element is transformed to a variable (with the same name as the leaf) in the Event-B language. The leaf of a
loop constructor is not appeared in the source element of this rule, since as described in Sect. 4.3, no variable is
constructed for a loop leaf.

Figure 17 exemplifies the application of TR1 in the BepiColombo system. This figure illustrates the instan-
tiation of the TR1 in Fig. 16, for the BepiColombo diagram presented in Fig. 8. Based on the ERS language
description in Fig. 6, the ABNF representation of the diagram in Fig. 8 is shown in the left-hand box and the
result of applying TR1 is shown as the Event-B elements in the right-hand box.

For the second case, we presentTR9 rule (introduced in Fig. 9) in Fig. 18. This rule is applicable to a sub-event
that is connected to its parent with a solid line (represented as ref � 1 in the ERS language). Such sub-event
is translated to a refining event in the Event-B model. This leaf can be a simple leaf, or a leaf of a refining
xor constructor, or a refining one replicator. Recalling Sect. 2.2, only one occurrence of the abstract event is
allowed in the refinement level. Considering definition of the constructors in the previous sections, in the case
of xor constructor and one replicator, only one execution of their sub-events is allowed, but in the case of other
constructors, more than one execution is allowed; therefore the other constructors are always non-refining, with
dashed lines (ref � 0). Therefore TR9 is applicable to a simple leaf or a leaf of a refining xor constructor, or a
refining one replicator.

2 The full formal description of the translation rules is presented in the PhD thesis of the first author of this paper: http://eprints.soton.ac.
uk/340357/.

http://eprints.soton.ac.uk/340357/
http://eprints.soton.ac.uk/340357/

514 A. Salehi Fathabadi et al.

Fig. 18. TR9 definition

Fig. 19. TR13 definition

Finally, Fig. 19 presentsTR13 (introduced in Fig. 13). A solid line xor constructor results in construction of an
Event-B partitioning invariant, which describes the relationship between the abstract variable and the refinement
variables; also it describes the mutually exclusive property of the xor sub-events.

5. Tool support

Eclipse [Ecl], is a multi-language Integrated Development Environment (IDE) with an extensible plug-in system.
The Rodin platform is an Eclipse-based IDE for Event-B and is further extendable with plug-ins. By taking
advantage of the extensibility feature of the Rodin platform, we have developed a plug-tool to support the ERS
approach. Since the ERS plug-in addresses automatic construction of the Event-Bmodels in term of control flows
and refinement relationships, the ERS plug-in helps developers to build Event-B models in a more consistent and
systematic way, compared with manually constructed models. The ERS plug-in allows users to define the ERS
diagrams, then the ERS diagram is automatically transformed to an Event-B model.

Concerning the development architecture, we define the ERS language specification in an EMF (Eclipse
Modelling Framework) [SBP08] meta-model, called the source meta-model, and then the source meta-model is
transformed to the Event-B EMFmeta-model as the target meta-model. The transformation is performed using
the Epsilon Transformation Language (ETL) [KRP08]. ETL is a rule-based model-to-model transformation
language.

ETL rules are direct implementation of the translation rules. The ETL rule for TR1 (from Fig. 16) is as
follows:

rule Leaf2Variable
transform l : Source!Leaf
to v : Target!Variable{
v.name :� l.name;}

This rule transforms a leaf from the ERS language meta-model (as the source meta-model) to a variable in the
Event-B meta-model (as the target meta-model). In the body of rule the name of the target component (variable)
is assigned to the name of the source component (leaf).

Language and tool support for event refinement structures in Event-B 515

Fig. 20. Overall refinement structure after model decomposition, BepiColombo system

6. Evaluation

The contributions of the ERS approach in specifying the explicit control flows and refinement relationships in the
Event-B formal modelling have been outlined in the previous sections. This section discusses other benefits of the
systematisation and automatic translation of ERS, in terms of the methodological results and the comparison
with previous manual development and recent automatic development of the case studies.

6.1. Overall visualisation of refinement and event tracking

The ERS diagrams provide the overall visualisation of refinement structure. Figure 20 presents a part of the
overall refinement structure of the BepiColombo system. Using the overall view of refinement structure gives
us the ability to track possible event execution traces by following leaf events from left to right. It provides the
visualisation of the behaviour of the entire Event-Bmodel which ismore difficult to understand by just reading the
Event-B. Event tracking helps us to describe the system requirements which can help us to identify requirements
coverage. For instance, in Fig. 20 one of the possible execution traces is shown below. It shows the model covers
the case when the validation is ok and the TC belongs to a device.

< ReceiveTC ,

TCCheck Ok ,

SendTC Core to Device,CheckTC in Device Ok ,SendOkTC Device to Core,

Produce ExecOkTM ,Send ExecOkTM ,TCExecOk CompleteCtrlTM ,

TC GenerateData in Device,TC TransferData Device to Core,

Produce DataTM ,Send DataTM ,TCValid CompleteDataTM >

This trace illustrates that a tc is received (the leftmost leaf node), then its syntax is checked (second line), then
since the tc belongs to a device it will be sent to the device (second child of the xor), its semantic is checked in the
device and the result is sent back (third line), and so on.

516 A. Salehi Fathabadi et al.

Fig. 21. Decomposing atomicity of modify event in two levels of refinement

Fig. 22. Decomposing atomicity of modify event in one level of refinement

Using the xor constructor allows for other event traces. For instance considering xor constructor in decom-
posing the TCExecute Ok event into TCCore Execute Ok and TCDevice Execute Ok sub-events (bottom left
of Fig. 20), another possible event trace, when the TC belongs to the core, is to replace execution of

< SendTC Core to Device,CheckTC in Device Ok ,SendOkTC Device to Core >

with TCCore Execute Ok .

6.2. Exploring alternatives

The possibility of a diagrammatic view of the developments gives us the chance to consider alternatives in
decomposing the atomicity of an event. This decision can be done before making the effort of changing the
Event-B model. For instance in the media channel development, we identified two possible ways of refining the
modify event, presented separately in Figs. 21 and 22. The atomicity decomposing of the modify event is done
in two levels of refinement in Fig. 21 whereas by using the second decomposition in Fig. 22, we can reduce it
to one level of refinement. In the second way we separate the case split in two separate decomposition diagrams
(simple sequence of events without using constructors), shown in Fig. 22. We chose ERS in Fig. 22 with fewer
refinements to reduce the effort of modelling. This case shows how we can explore event refinement alternatives
using ERS diagrams before creating the Event-B model. Therefore the ERS approach can help us find good ways
of refining events before getting involved with the complex Event-B model.

6.3. Prevention of wrong event decomposition

Using ERS diagrams can result in earlier detection of wrong refinements in the modelling process. Figure 23
presents one possible way of decomposing the atomicity of validation phase in the development of the Bepi-
Colombo system. Figure 23 states that a validation can succeed, TC Validation Ok, or fail, TC Validation Fail.
A successful validationmeans successful syntax validation,TCCheck Ok event, followed by a successful semantic
validation, TCExecute Ok event. And a failed validation fails either in the syntax check, TCCheck Fail event, or
the semantics check, TCExecute Fail. The possible event executions of Fig. 23 are:

< TCCheck OK (tc),TCExecute OK (tc) >
< TCCheck Fail (tc) >
< TCExecute Fail (tc) >

Language and tool support for event refinement structures in Event-B 517

Fig. 23.Wrong ERS

These traces do not cover the following trace where the syntax validation is ok but the semantic check fails:

< TCCheck OK (tc),TCExecute Fail (tc) >

A wrong refinement could be identified without using the ERS diagrams as well, but discovering the mistake
needs effort of the Event-B modelling and model checking.Whereas using ERS diagram helped us to prevent a
wrong refinement earlier, before doing the effort of Event-B modelling.

6.4. Assessment of the automatic models

Our ERS tool addresses automatic construction of control flow in Event-B modelling. Moreover using the ERS
plug-in to create theEvent-Bmodel of a system, ensures a consistent encoding of theERSdiagrams in a systematic
way. In order to investigate the contributions of the ERS approach, first we developed the Event-B models of the
case studiesmanually. The insights gained from themanual developments helped us to improve the ERS approach
and develop the tool supporting the approach. The manually constructed Event-B models are less systematic and
less consistent, since at the time of developing them our experience of ERS applications was less mature. The
versions of the case studies reported in this paper are referred to as automatically constructed models. We applied
the tool to the two case studies and compared the automatic models with the manual models, reported in our
earlier work. There are some differences between the automatic models and the manual models, of which some
of the more notable ones are described in this section.

6.4.1. Naming convention

In the automatic Event-B models (like Fig. 8), each control variable has the same name as the corresponding
event name.Whereas in the manual Event-B models, there was no specific naming convention for variable names.
Providing a unique naming protocol makes it easier to understand the model and to track the ordering between
events more easily.

6.4.2. Alternative approaches of control flow modelling in Event-B

There are several approaches to modelling control flow in Event-B. In the automatic Event-B translation, we
adopted the subset approach to model ordering between sequential events. Consider Fig. 8 where the second
control variable is a subset of the first one (inv2: TC Validation Ok ⊆ ReceiveTC). The alternative approach is
disjoint sets. Using the disjoint sets, the token is removed from one set before it can be moved to the next set. The
Event-B model of disjoint sets for the diagram in Fig. 8 is presented in Fig. 24. In this way the parameter tc is
removed from ReceiveTC set variable in the body of TC Validation Ok event. The set variables ReceiveTC and
TC Validation Ok are always disjoint, as specified in inv1 (ReceiveTC ∩ TC Validation Ok � ∅).

518 A. Salehi Fathabadi et al.

invariants
 @inv1 ReceiveTC TC_Validation_Ok =

event ReceiveTC
any tc
where

 @grd1 tc ReceiveTC
then

 @act1 ReceiveTC ReceiveTC {tc}
end

event TC_Validation_Ok
any tc
where

 @grd1 tc ReceiveTC
 then

@act1 ReceiveTC ReceiveTC / {tc}
 @act2 TC_Validation_Ok TC_Validation_Ok {tc}
end

Fig. 24. Disjoint sets in the most abstract level, BepiColombo system

One of the advantages of using the subset relationships in the Event-B models is that the sequencing rela-
tionships between the control variables can be specified in the invariants of the model. Considering Fig. 8, inv2
specifies the ordering relationship between control variables. This ensures that the orderings are upheld in the
Event-B model more strongly than if specified only in the event guards. Moreover, having disjoint set variables
would not allow us to model some of the constructors in a simple way as subset variables provide. For example,
in the case of and constructor, a logical and between two events, a and b, means four states as follows:

• none has happened
• a happened but not b
• b happened but not a
• a and b both happened

Using subset sets allows us tomodel these combinations using two set variables. But disjoint set variables does
not allow this by using only two set variables. Using disjoint set variables to model these combinations would
requires four state variables explicitly. As a result the Event-B models of the and constructor corresponding to
the disjoint set approach are larger and more complex comparing to the subset approach models.

6.4.3. Complex guard versus simple guard

Considering the automatic Event-B model in Fig. 8, there is a separate guard for each predicate (grd1 and grd2 in
theTC Validation Ok event). These separate guards are constructed as a result of different translation rules (TR5
and TR6 respectively). Whereas in the manual Event-B model, we modelled all of the pre-condition predicates
in a single guard. For instance, guards of TC Validation Ok event in Fig. 8, can be merged as a more complex
guard:

tc ∈ ReceiveTC \ TC Validation Ok .

To verify the correctness and consistency of an Event-B model, some proof obligations are generated by
Rodin provers. Some of the generated proof obligations are related to the guard verification. Proving such proof
obligations generated for the manual Event-B models requires more effort compared to the proof obligations
generated for the automatic Event-B models, since the corresponding separated guards are simpler predicates
compared to a merged guard.

6.4.4. More refinement levels

In the manual Event-B model, we did not have a one-to-one relation between control variables and events. In the
media channel system case study, there are two different ways of opening a channel: open a channel with a codec
and open a channel without a codec. Considering the manual events in Fig. 25, bothOpenWithRealCodecs event
and OpenWithoutCodecs event change the state of a channel, ch, to open. Whereas in the automatic Event-B
model, as presented in Fig. 26, there is a one-to-one relation between control variables and the events. Each event
change the state of a media channel to a unique state with same name as the event.

In the manual model there is a further refinement level in order to introduce a unique state for each event; for
instance, concrete variables,OpenWithCodecs andOpenWithoutCodecs, replace the single abstract variable, open.

Language and tool support for event refinement structures in Event-B 519

event OpenWithCodes
any ch
where

 @grd ch open
then

 @act open open {ch}
end

event OpenWithoutCodes
any ch
where

 @grd ch open
then

 @act open open {ch}
end

Fig. 25. Sharing a state variable in the manual model, media channel system

event OpenWithCodes
any ch
where

 @grd ch OpenWithCodes
then

 @act OpenWithCodes
OpenWithCodes {ch}

end

event OpenWithoutCodes
any ch
where

 @grd ch OpenWithoutCodec
then

 @act OpenWithoutCodec
OpenWithoutCodec {ch}

end

Fig. 26. Unique state variables in the automatic model, media channel system

The further refinement level makes themanual model larger andmore complex, compared with the automatic
model. Also more effort is need to define the gluing invariants between abstract variables and concrete variables.

6.5. Overview of proof obligations

The result of the proof effort in the Rodin platform for the automatic Event-B model of the multimedia system,
is outlined in Fig. 27. The Total column shows the total number of proof obligations generated for each level.
The Auto column represents the number of those proof obligations that are proved automatically by the prover
and theManual column shows the number of proof obligations which are proved interactively. In Fig. 27, almost
all proof obligations are proved automatically.

Figure 28 presents the proof effort for the manual Event-B model. The total number of proofs is more than
the total number of proofs in the automatic model, because the extra refinement level in the manual model
(Machine6), outlined in Sect. 6.4.4, significantly increases the number of proof obligations. A large number of
proof obligations are caused by gluing invariants. Gluing invariants which that are needed to define the relations
between the abstract non-unique states and concrete unique states, should be proved to be preserved by each
action of each event. Also there are six proof obligations in Machine6 which needed to be proved interactively.
The interactive proofs are the gluing invariant preservation proofs. Therefore, recalling Sect. 6.4.4, introducing
the unique states in an extra refinement level, not only makes the model large and complex, but also it makes the
proof more complex.

Fig. 27. Proof obligation statistics for the automatic multimedia Event-B model

520 A. Salehi Fathabadi et al.

Fig. 28. Proof obligation statistics for the manual multimedia Event-B model

Fig. 29. Proof obligation statistics for the automatic spacecraft Event-B model

A summary of the proof obligations for the automatic Event-B model of the spacecraft system can be seen in
Fig. 29. The overall 205 generated proof obligations discharged automatically. Most of the proof obligations are
related to gluing invariants preservation and guard strengthening. Figure 30 presents the summary of the proof
obligations for the manual Event-B model for the BepiColombo system. The number of proof obligations in the
manual model is slightly less than the automatic ones. As described in Sect. 6.4.3, having separate guards in the
automatic model increases the number of proof obligations, though they are individually simpler. However all of
the automatic model’s proofs are discharged automatically, whereas in the manual model, nine proofs had to be
discharged interactively.

Fig. 30. Proof obligation statistics for the manual spacecraft Event-B model

Language and tool support for event refinement structures in Event-B 521

7. Related work and conclusion

7.1. Related work

The desire to explicitlymodel control flow is not restricted to Event-B. To address this issue usually a combination
of two formal methods are suggested. A good example of such an approach is Circus [WoC02] combining CSP
[Hoa85] and Z [DaW96]. The combination of CSP and classical B [Abr96] has also been investigated in [But00]
and [ScT04].

To provide explicit control flow for an Event-B model, a combination of two formal methods is presented
in [STW10] which is based on using CSP alongside Event-B. As presented in Sect. 2.2, control flow can only be
implicitly modelled in state variables and event guards in Event-B. On the other hand CSP is a process-based
formalism, which explicitly supports specifying control flow via processes. [STW10] presents an integrated formal
method, a combination of Event-B as a state-based formalism andCSP as a control-based formalism, to explicitly
model control flow in Event-B.UML-B [SBS08, SBS09] provides a “UML-like” graphical front-end for Event-B.
It adds support for class-oriented and state machine modelling. State machines provide a graphical notation to
explicitly define event sequencing. Events are represented by transitions on a state machine, and control flow is
specified by defining the source and target state of each transition. Another method to explicitly define control
flow properties of an Event-B model is suggested in [IIi09] and [IIi10]. This method extends Event-B models with
expressions, called flows, defining event ordering. Flows are written in a language resembling those in process
algebra.

A comparison between ERS and other techniques outlined above, is provided as follows:

• All the outlined techniques only dealwith explicit event sequencing; they donot support the explicit refinement
relationship, provided by ERS diagrams. ERS provides a graphical front-end to Event-B along with other
features such as supporting explicit event sequencing and expressing refinement relationships between abstract
and concrete events. The graphical front-end of ERS can provide an overall visualisation of the refinement
structure, which is not supported by any of the techniques outlined above.

• In integrated formalmethods, the control flowconstructs rely on the constructs in the process-based formalism
of the integration. CSP constructs are used to model control flow in integrations of CSP and Z/B/Event-B.
CSP constructs include prefix, deterministic choice, nondeterministic choice, parallel, interleaving, hiding and
recursion.
ERS constructs, as presented in Sect. 3, contain the sequence construct, the loop construct, logical constructs,
e.g. and/or/xor, and all/some/one constructs as generalisation of the and/or/xor constructs.
The CSP constructs and the ERS constructs can be compared as follows:

– The prefix operator in CSP is used to describe the sequence of events and is equivalent to the sequence
construct in ERS.

– The choice operators in CSP are equivalent to the xor construct in ERS. We do not distinguish between
deterministic and nondeterministic choice in ERS. The one construct in ERS is generalisation of the xor
construct; CSP also supports a generalisation of its choice operators similar to our one construct.

– The parallel operator is CSP is equivalent to the all construct in ERS. In ERS, the all construct is
generalisation of the and construct; the and construct is also supported by parallel operator in CSP.

– The interleaving operator is supported in CSP. In ERS, different diagrams can be interleaved based on the
Event-B interleaving.

– CSP includes an event hiding operator. In the Event-B refinement, a new event introduced in a refining
machine, may be considered as a hidden event in the abstract machine. In ERS, we decomposed the
atomicity of an abstract event to new concrete events and a refining concrete event. The new events
connected with dashed lines to the abstract event, are considered as hidden events in the abstract machine.

– CSP supports recursion (which makes it possible to model loops). ERS supports loops but not recursion.

522 A. Salehi Fathabadi et al.

– There is no equivalences for the or construct and the some construct (as generalisation of or) of ERS, in
CSP. Recalling the or construct in Fig. 12, in (Event1 or Event2), one or both may occur which is different
from choice and different from interleaving.

The flow language, presented in [IIi09] and [IIi10], is based on process algebra. The flow language constructs
contain sequential composition, parallel composition, choice and loop.
Control flow in Event-B can bemodelled in statemachine supported byUML-B [SBS08, SBS09]. Sequencing,
choice and loop can be encoded in state machines, state machines do not have explicit constructs for these.
State machines have explicit constructs for parallel regions. The or construct and the some construct (as
generalisation of or) of ERS, are not supported in UML-B state machine.

• A Classical B operation can be called by other operations. It is the responsibility of the caller to ensure that
the called operation pre-conditions hold. In contract in Event-B, an event contain guards and the enabled
events are continually executed in a nondeterministic manner.
In the integration of CSP and classical B presented in [ScT04], classical B operations are called with CSP
description. CSP description allows us to make sure that pre-conditions of called operations hold. In the
integration of CSP and Event-B presented in [STW10], the authors do not need to deal with pre-conditions,
as Event-B events contain guards rather than preconditions.

• In the integration of CSP and Event-B technique presented in [STW10], a new tool framework for reasoning
about combined specificationswouldbe required. In contrast inERSandUML-B statemachines the graphical
representation is directly transformable to the Event-B formalism. This in turn means that verification effort
can be carried out in the existing Event-B tool-set, Rodin, which is already familiar to the Event-B users. Also
in the combined CSP with classical B approach presented in [But00], CSP specifications are converted into
standard B specifications.

• As [STW10] suggests, in combining formal method descriptions we may not be able to express all invariants
as state predicates; because the control flow requirements are separated in a process-based description. While
in ERS, control flow requirements are translated into Event-B; and Event-B invariants have access to all state
variables in one place, the Event-B model.

7.2. Conclusion

In the previous publications [SaB10, SRB11] we have demonstrated how the event refinement structure (ERS)
approach provides a means of introducing explicit flow control and explicit refinement relationships into Event-B
development process. In this paper, we have presented the formal description of the ERS language and translation
rules from theERS language to theEvent-B language.Wehave developed a tool, supportingERS; the tool support
was developed as a plug-in for the Event-B tool-set, Rodin. A brief description of ERS tool development has
been illustrated. Using translation rules developed in the ERS tool, has helped us to develop the models of the
previous case studies in an automatic way. Compared to the previous manual models of the case studies, the
automatic models are more consistent and systematic. Some aspects of this improvement have been outlined.

The current ERS tool does not provide a graphical environment of ERS diagrams. Instead an ERS diagram
is represented as an EMF model that is manipulated using an EMF structure editor. We consider developing
a graphical environment of ERS diagrams as future work. Also future work is needed in order to improve the
ERS language and translation rules. For this reason, further applications of ERS using the ERS tool are being
undertaken.

Acknowledgements

This work is funded by the FP7 ADVANCE Project, http://www.advance-ict.eu.

References

[ABH06] Abrial JR, ButlerM,Hallerstede S, SonHoangT,MehtaF,Voisin L (2010)Rodin: an open toolset formodelling and reasoning
in Event-B. STTT 12:447–466

[Abr96] Abrial JR (1996) The B-book: assigning programs to meanings. Cambridge University Press, Cambridge

http://www.advance-ict.eu

Language and tool support for event refinement structures in Event-B 523

[Abr05] Abrial JR (2005) Refinement, decomposition and instantiation of discrete models. In: Proceedings of the 12th international
workshop on abstract state machines, pp 17–40

[Abr10] Abrial JR (2010) Modeling in Event-B: system and software engineering. Cambridge University Press, Cambridge
[BaK88] Back RJ, Kurki-Suonio R (1988) Distributed cooperation with action systems. ACM Trans Program Lang Syst, vol 10,

pp 513–554
[But00] Butler M (2000) csp2B: a practical approach to combining CSP and B. Form Asp Comput 12:182–196. ISSN 0934-5043
[But09] Butler J (2009) Decomposition structures for Event-B. In: IFM2009. LNCS, vol 5423. Springer, Berlin
[CrO08] Crocker D, Overell P (2008) Augmented BNF for syntax specifications: ABNF. STD 68, RFC 5234
[Ecl] Eclipse [Online] (2013). http://www.eclipse.org
[ESA08] ESA Media Center, Space Science (2008) Factsheet: Bepicolombo. http://www.esa.int/esaSC
[Hoa85] Hoare CAR (1985) Communicating sequential processes. Prentice Hall, Englewood Cliffs. ISBN 0-13-153289-8
[IIi09] Iliasov A (2009) On Event-B and control flow. Technical Report, School of Computing Science, Newcastle University, http://

deploy-eprints.ecs.soton.ac.uk/144
[IIi10] Iliasov A (2010) Tutorial on the flow plugin for Event-B. Workshop on B Dissemination [WOBD] Satellite event of SBMF,

Natal, Brazil
[Jac83] Jackson MA (1983) System development. Prentice-Hall, Englewood Cliffs
[KRP08] Kolovos D, Rose L, Paige R (2008) The epsilon book. http://www.eclipse.org/gmt/epsilon/doc/book
[MAV05] MetayerC,Abrial JR,VoisinL (2005)Event-B language.RODINProjectDeliverable 3.2. http://rodin.cs.ncl.ac.uk/deliverables/

D7.pdf
[Pro] ProB Animator and Model Checker [Online] (2013). http://wiki.event-b.org/index.php/ProB
[SaB10] Salehi Fathabadi A, ButlerM (2010) Applying Event-B atomicity decomposition to amulti media protocol. In: FMCO formal

methods for components and objects, pp 89–104
[SBP08] Steinberg D, Budinsky F, Paternostro M, Merks E (2008) EMF: eclipse modeling framework, 2nd edn. Part of the eclipse

series. Addison-Wesley Professional, Reading
[SBR12] Salehi Fathabadi A, Butler M, Rezazadeh R (2012) An approach to atomicity decomposition in the Event-B formal method.

In: SEFM software engineering and formal methods, pp 78–93
[SBS08] SaidMY,ButlerM,SnookC (2008)UML-BandEvent-B: an integrationof languages and tools. In:The IASTED international

conference on software engineering, pp 336–341
[SBS09] Said MY, Butler M, Snook C (2009) Language and tool support for class and state machine refinement in UML-B. In:

FM2009-16th international symposium on formal methods, pp 579–595
[ScT04] Schneider S, Treharne H (2004) Verifying controlled components. In: Proc IFM, Springer, Berlin, pp 87–107
[SRB11] Salehi Fathabadi A, Rezazadeh A, Butler M (2011) Applying atomicity and model decomposition to a space craft system in

Event-B. In: NASA formal methods, pp 328–342
[STW10] Schneider S, Treharne H, Wehrheim H (2010) A CSP approach to control in Event-B. In: Proceedings of the 8th international

conference on integrated formal methods, pp 260–274
[DaW96] Woodcock J, Davies J (1996) Using Z: specification, refinement and proof. Prentice hall international series in computer

science. ISBN 0-13-948472-8
[WoC02] Woodcock J, Cavalcanti A (2002) The semantics of circus. In: ZB 2002: Formal specification and development in Z and B,

2nd international conference of B and Z users, pp 184–203
[ZaC09] Zave P, Cheung E (2009) Compositional control of IP media. IEEE Trans Softw Eng 35(1):46–66

Received 22 August 2013
Revised 27 May 2014
Accepted 8 July 2014 by George Eleftherakis and Jim Woodcock
Published online 12 September 2014

http://www.eclipse.org
http://www.esa.int/esaSC
http://deploy-eprints.ecs.soton.ac.uk/144
http://deploy-eprints.ecs.soton.ac.uk/144
http://www.eclipse.org/gmt/epsilon/doc/book
http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf
http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf
http://wiki.event-b.org/index.php/ProB

	Language and tool support for event refinement structures in Event-B
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Event-B
	2.2 Event refinement structure
	2.3 Overview of case studies
	2.3.1 Multimedia protocol
	2.3.2 Spacecraft system

	3 Event refinement structure language
	4 Translation rules
	4.1 Sequencing rules
	4.2 Solid line
	4.3 Loop constructor
	4.4 Logical constructor
	4.5 xor constructor
	4.6 Replicator constructor
	4.7 one constructor
	4.8 The formal description of the translation rules

	5 Tool support
	6 Evaluation
	6.1 Overall visualisation of refinement and event tracking
	6.2 Exploring alternatives
	6.3 Prevention of wrong event decomposition
	6.4 Assessment of the automatic models
	6.4.1 Naming convention
	6.4.2 Alternative approaches of control flow modelling in Event-B
	6.4.3 Complex guard versus simple guard
	6.4.4 More refinement levels

	6.5 Overview of proof obligations

	7 Related work and conclusion
	7.1 Related work
	7.2 Conclusion

	Acknowledgements
	References

