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Abstract. As a system-level modelling language, SystemC possesses several novel features such as delayed notifi-
cations, notification cancelling, notification overriding and delta-cycle. It also has real-time and shared-variable
features. Previously we have studied an operational semantics for SystemC Peng et al. (An operational semantics
of an event-driven system-level simulator, pp 190–200, 2006) and bisimulation has been introduced based on
some aspects of reasonable abstractions. The denotational method is another approach to studying the semantics
of a programming language. It provides the mathematical meaning to programs and can predict the behaviour of
programs. Due to the novel features of SystemC, it is challenging to study the denotational semantics for SystemC.
In this paper, we apply Unifying Theories of Programming (abbreviated as UTP ) Hoare and He (Unifying the-
ories of programming, 1998) in exploring the denotational semantics. Two trace variables are introduced, one to
record the state behaviours and another to record the event behaviours. The timed model is formalized in a three-
dimensional structure. A set of algebraic laws is explored, which can be proved via the presented denotational
semantics. In this paper, we also consider the linking between denotational semantics and algebraic semantics.
The linking is obtained by deriving the denotational semantics from algebraic semantics for SystemC. A complete
set of parallel expansion laws is explored, where the location status of an instantaneous action is studied. The
location status indicates an instantaneous action is due to which exact parallel component. We introduce the
concept of head normal form for each program and every program is expressed in the form of guarded choice
with location status. Based on this, the derivation strategy for deriving denotational semantics from algebraic
semantics is provided.

Keywords: Denotational semantics, Algebraic semantics, Semantic linking, Head normal form, SystemC

1. Introduction

SystemC is a system-level modelling language which can be used to model a system at different abstract levels.
Modelling and simulation in SystemC gives the designers early insights about the potential design problems
that could arise. Compared with traditional hardware description languages, SystemC possesses several new and
interesting features, including delayed notifications, notification cancelling, notification overriding and delta-
cycle.
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In SystemC, processes can trigger events actively while in hardware description language Verilog [Ver01]
events are generated based on changes of states. In SystemC, events represent some general conditions during the
execution of the program. An event can be notified on many separate occasions. There are three kinds of event
notifications: immediate event notifications, delta-cycle delayed notifications and timed notifications. Delayed
notifications can be cancelled via cancel statements before they are triggered. Delayed notifications on the same
event override each other and only one delayed notification survives.

Although SystemC comes with a user manual [Ope01, Ope03], a formal semantics of SystemC is needed for
various applications in simulation and formal verification. Previously we have studied an operational semantics
for SystemC [PZHJ06]. Based on the operational semantics, bisimulation has been studied for the language by
introducing some aspects of reasonable abstractions. Generally, the operational semantics of a programming
language indicates how a program works , which defines not the observable overall effect of a program but rather
suggests a complete set of possible individual steps which may be taken in its execution [HH98].

Besides the operational semantics, the denotational method is another approach to studying the semantics
of a programming language, which provides the mathematical meaning to programs. Compared with the oper-
ational semantics, the denotational semantics indicates what a program does . In the denotational framework,
“the behaviour of each program can be predicted without actually executing it on a computer, and similarly
the semantics of a program language can be understood as a whole without visualizing how programs run on a
computer” ([Wat91], page 49).

This paper considers the denotational semantics of SystemC, where our approach is based on Unifying
Theories of Programming (abbreviated as UTP ) [HH98]. UTP was developed by Hoare and He in 1998 [HH98].
It covers wide areas of fundamental theories of programs in a formalized style and acts as a consistent basis for the
principles of programming language. It has been successfully applied in studying the semantics of programming
languages and their algebraic laws, as well as the refinement calculus of different level programs. The new features
of SystemC make it worthwhile to formalize its denotational semantics via UTP approach. In order to deal
with the event notification and event driven feature, as well as the shared-variable feature, two trace variables
are introduced, one is to record the state behaviours and another is to record the event behaviours. Our timed
model is formalized in a three-dimensional structure. Based on the timed model, sequential construct, channel
communication, event notification and event waiting are formalized. In order to give the semantics for parallel
composition, the merging operator is defined, aiming to achieve the two traces for the parallel composition based
on the traces for each component.

As described in Hoare and He’s Unifying Theories of Programming [HH98], three different mathematical
models are often used to represent a theory of programming, namely, the operational, the denotational, and
the algebraic approaches [Plo81, Sto77, HHH+87]. Each of these representations has distinctive advantages for
theories of programming. For instance, the algebraic semantics is well suited in symbolic calculation of parameters
and structures of an optimal design. The algebraic approach has been successfully applied in provably correct
compilation [HHS93, He94, Sam97]. A comprehensive theory of programming should offer all these semantic
models and should ensure that all the models are pairwise consistent [HH98]. Therefore, the linking of these three
semantics is a challenging task. The traditional way to link denotational and algebraic semantics is that algebraic
semantics can be explored based on the achieved denotational semantics.

To link denotational and algebraic semantics for SystemC, this paper considers the inverse work; i.e., gen-
erating the denotational semantics from algebraic semantics for SystemC. We introduce the concept of guarded
choice, which is composed of a set of guarded components. Guarded choice is divided into five types. With
the introduction of guarded choice, a complete set of parallel expansion laws is studied. In order to index an
instantaneous action to which exact component of a parallel process, the concept of location status (i.e., locality)
is introduced. To support the generating of denotational semantics, we introduce the concept of head normal
form, where every program is expressed in the form of guarded choice. We provide the definition for deriving
denotational semantics from algebraic semantics. The derived denotational semantics gives us a way to reason
about program properties easily.

This paper combines and extends our previous work at UTP 2008 [ZHPJ10]and UTP 2010 [ZYH10]. The
timed model of the denotational semantics in [ZHPJ10] was formalized as three dimensional structure. However,
the timed model in [ZYH10] was formalized in one dimensional structure, where the first element and second
element in a snapshot in this one dimensional structure stand for the macro time point and micro tine point at
which an action (or event) happens. This means that the corresponding generation of denotational semantics in
[ZYH10] was explored in the timed model of one dimensional structure. In this paper we adopt the timed model in
[ZHPJ10] (i.e., three dimensional structure) as the coherent model for both formalizing the denotational semantics
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and generating the denotational semantics (from algebraic semantics). This means that the algebraic generation
of denotational semantics is now studied in the timed model of three dimensional structure.

The rest of this paper is organized as follows. In Sect. 2 we select a kernel subset of SystemC and present an
introduction to the language. We provide the denotational semantic model in this section. The timed model of
SystemC is considered in a three-dimensional structure. A set of healthiness conditions is explored in order to
achieve the denotational semantics. Section 3 is devoted to the denotational semantics of SystemC using the UTP
approach. We also study the algebraic laws for sequential constructs in this section, which can be proved via the
achieved denotational semantics. Section 4 investigates the derivation of denotational semantics from algebraic
semantics for SystemC. We give the concept of guarded choice with locality and investigate a complete set of
parallel expansion laws in this section. The definition of head normal form for each statement is provided. Based
on this, we provide a strategy for deriving denotational semantics from algebraic semantics in this section. Section
5 is discusses the related work about SystemC, UTP approach and semantic linking. Finally Sect. 6 concludes
the paper and presents some possible future work.

2. The semantic model of SystemC

2.1. The syntax of SystemC

SystemC is an event-driven modelling language built on standard C++. Besides providing a set of modelling
constructs that are similar to those used for RTL and behavioral modelling within an HDL such as Verilog or
VHDL, SystemC also enables system levelmodelling, i.e., modelling of systems above the RTL level of abstraction,
including systems which might be implemented in software or hardware or some combination of the two [Ope01,
Ope03].

In this paper we select a kernel subset of SystemC for exploring its semantics. Although it is a subset of
SystemC, it still covers the interesting and major features, such as delayed notifications, notification cancelling,
notification overriding, channels, concurrent processes and delta-cycle. In this section, we present the syntax of
the selected subset and give a brief introduction to its interesting features.

For simplicity, we omit the syntactic elements for representing the architecture of a SystemC program. The
subset language adopts a C-like syntax:

PP ::� P | PP ‖ PP
P ::� Skip | v :� exp | chan stmt | event stmt | wait stmt

| P ; P | if b then P else P | while b do P
chan stmt ::� ch??v | ch!!exp
event stmt ::� notify(e�0) | notify(e�1) | notify(e�T ) | cancel (e)
wait stmt ::� wait(�1) | wait(�T ) | wait(e list)

e list ::� single e | ori∈I {single ei }
single e ::� e | pe(ch) | ne(ch)

The meanings of statements such as Skip, assignment (v :� exp), sequential composition (P ; Q), conditional
(if b then P else Q) and iteration (while b do P ) are similar to the conventional programming language.

The channel output statement ch!!exp is executed in the evaluation phase, which generates a request to update
the channel. These update requests will be carried out in the following update phase. If more than one channel
output statement to the same channel occur during a particular evaluation phase, the last one executed determines
the new value of the channel in the following update phase. The channel input statement ch??v assigns the current
value of channel ch to variable v .



136 H. Zhu et al.

An event is notified by statement notify . An event can be notified immediately (i.e., notify(e�0)) or after a
period of time (i.e., notify(e�1)) or notify(e�T )). notify(e�1)) generates event e and this event e will be active
after one delta-cycle (i.e., one micro time unit). notify(e�T )) generates event e and this event e will be active
after a period of specified simulation time T (i.e., T macro time units). Statement cancel (e) cancels the delayed
notifications on event e.

A process may wait for the arrival or firing of an event. These events can be classified into two types; i.e.,
single events or complex events. Single events can have three forms; i.e., e, pe(ch) and ne(ch), where event e can
be generated by event notifications. wait(pe(ch)) is fired only when the current value of channel ch is greater
than its previous value, whereas wait(ne(ch)) stands for the opposite firing case. Complex events can be of the
form ori∈I {single ei }. For the waiting of complex events, if anyone is fired or becomes active, the whole waiting
behaviour becomes fired or active.

Different from traditional hardware description languages, time delay has two types, micro time advance and
macro time advance. wait(�1) stands for one unit micro time (i.e, one delta-cycle) advancing, whereas wait(#T )
stands for T units macro time advancing 1.

P ‖ Q means P runs in parallel with Q . Their communication is through channels and shared variables.
Further, their synchronization is based on events. A process may wait for the arrival or firing of an event via wait
statement. Its parallel partner can generate events via notify command or pending channel update. Therefore,
the waiting of an event can be triggered by the synchronization with its parallel environment.

If any branch processes of a parallel process are ready to run, one branch will be selected to be executed.
The selection is nondeterministic. Channels will be updated when a waiting command is encountered during the
current execution. If all branch processes are still waiting, then time will be advanced. Micro time (delta-cycle)
will be advanced first. If that does not activate any processes, then macro time will be advanced. The execution
is proceeded by the following steps.

1. Evaluation Phase. Select a ready process to execute. The order of selection is nondeterministic. The selected
process executes until a waiting command is encountered. This sequence of instantaneous commands forms
an atomic action, which is uninterrupted.
The execution of a process may cause immediate event notifications to occur. It may also generate pending
requests to update channels in the following update phase.

2. Update Phase. Carry out all pending channel update requests generated in the previous evaluation phase,
which may generate some events pe(ch) or ne(ch). Then go to step (1).

3. Micro Time (Delta-cycle) Advancing Phase. If there are no processes ready to run and no pending channel
update requests, but there exist pending delta-cycle notifications or delta-cycle timeouts, advance the delta-
cycle. Then determine which processes are ready to run and go to step (1).

4. Macro Time Advancing Phase. If there are no processes ready to run, no pending channel update requests,
no pending delta-cycle notifications and no delta-cycle timeouts, advance the current macro time by one time
unit. And determine which processes become ready to run due to events or timeouts that are triggered at the
current time. If any processes are ready to run, then go to step (1), otherwise advance the current macro time
by one time unit again.

2.2. The denotational semantics model

SystemC possesses the feature of shared-variable concurrency. To deal with this, we introduce a sequence type
variable tr1 for recording the state change of a program. Moreover, SystemC not only has the feature of traditional
time delay, it also contains the feature of � time delay (i.e., micro time delay). Therefore, the structure of tr1 can
be depicted as Fig. 1.

At the relative macro time “i” point, time may also advance in � time step, standing for the micro-time
advancing. Therefore, a sequence of behaviours may be recorded at each � time point. These behaviours can be
classified into two types; i.e., contributed by the process itself or its environment. In Fig. 1, the symbols “⊕” and
“◦” stand for the contribution by the process itself and its environment respectively.

1 Figure 1 (page 5) can illustrate the structure of macro time and micro time.
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Fig. 1. Three dimensional structure for the timed model

In order to record these behaviours, the concept of snapshot is introduced, expressed as (σ, f ), where σ stands
for the contribution of the behaviour and f stands for the flag. “f � 1” indicates that the behaviour is contributed
by the process itself and “f � 0” indicates that the behaviour is contributed by its environment. Below is the
formal structure of trace tr1.

Element1 � {(σ, f ) | σ ∈ State ∧ f ∈ {0, 1}},
tr1 ∈ seq(seq(seq(Element1)))

Here, State stands for the type of shared-variable states. seq(T ) stands for a sequence type, where each sequence
is composed of elements from type T .

We select the components of a snapshot using projections.

π1((σ, f )) �df σ and π2((σ, f )) �df f

In SystemC, waiting guards can be triggered by events, which can be generated by the process itself or its
environment. We use the trace variable tr2 to record all the events generated by the process or its environment.
tr2 has the same time structure, as shown in the above Fig. 1. It can be defined as below.

Element2 � {(e, f ) | e ∈ Event ∧ f ∈ {0, 1}}
tr2 ∈ seq(seq(seq(Element2)))

Here, Event stands for the type of events.
For any tr1 (or tr2) type trace s , len(s) stands for the length of sequence s ; i.e., it stands for the length of

macro-time advancing. s [0] and s [len(s) − 1] stand for traces of the start point and end point of the current
macro-time observation interval. Furthermore, s [i ][j ] stands for the trace behaviour at the point of macro-time
i and micro-time j .

Example 2.1 Let Pi � notify(ei�0) ; notify(fi�0) ; ui :� ui + 1 ; vi :� vi + 2 (i � 1, 2). Assume that the
initial states for the above four shared variables are 0. Consider the traces tr1, tr2 for process P1, P2 and P1 ‖ P2.

As the four statements in P1 and P2 form an atomic action respectively. Either notify(e1�0) or notify(e2�0)
can be scheduled first. For all these considered traces, their lengths are 0, and their lengths at the current macro
time point are also 0.

If notify(e1�0) is scheduled first, below are the three tr1 traces at the point of macro time 0 and micro time 0
for P1, P2 and P1 ‖ P2 respectively.

〈(σ1, 1)〉̂〈(σ2, 0)〉, 〈(σ1, 0)〉̂〈(σ2, 1)〉, 〈(σ1, 1)〉̂〈(σ2, 1)〉
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where, σ1 � {u1 
→ 1, v1 
→ 2, u2 
→ 0, v2 
→ 0},
σ2 � {u1 
→ 1, v1 
→ 2, u2 
→ 1, v2 
→ 2}
Here, σ1 stands for the contribution of “u1 :� u1 + 1 ; v1 :� v1 + 2”, whereas σ2 stands for the contribution

of the execution of “u2 :� u2 + 1 ; v2 :� v2 + 2”. The sequence 〈(σ1, 1)〉̂〈(σ2, 0)〉 indicates that P1 performs
the execution of “u1 :� u1 + 1 ; v1 :� v1 + 2” first, and it then also needs to record its environment’s (i.e.,
P2) execution of “u2 :� u2 + 1 ; v2 :� v2 + 2”. Similarly, the sequence 〈(σ1, 0)〉̂〈(σ2, 1)〉 indicates that, before
P2 performs “u2 :� u2 + 1 ; v2 :� v2 + 2”, it also needs to record its environment’s (i.e., P1) execution of
“u1 :� u1+1 ; v1 :� v1+2”. Therefore, the whole system (i.e.,P1 ‖ P2) needs to execute “u1 :� u1+1 ; v1 :� v1+2”
first, after that it also needs to execute “u2 :� u2 + 1 ; v2 :� v2 + 2”.

In this case, three tr2 traces at the point of macro time 0 and micro time 0 for P1, P2 and P1 ‖ P2 are shown
below respectively.

〈(e1, 1)〉̂〈(f1, 1)〉̂〈(e2, 0)〉̂〈(f2, 0)〉, 〈(e1, 0)〉̂〈(f1, 0)〉̂〈(e2, 1)〉̂〈(f2, 1)〉
〈(e1, 1)〉̂〈(f1, 1)〉̂〈(e2, 1)〉̂〈(f2, 1)〉

On the other hand, if notify(e2�0) is scheduled first, the analysis is similar. �

As tr1 and tr2 have a three-dimensional structure, we introduce the prefix definition between two tr1 (or tr2)
type traces, denoted as �1.

Definition 2.2

s �1 t �df ∃m,n •

⎛

⎜

⎜

⎜

⎝

m � len(s) ∧ n � len(t) ∧ m ≤ n ∧
∀i ∈ {0..m − 2} • s [i ] � t [i ] ∧
∃k •

( k � len(s [m − 1]) ∧
∀l ∈ {0..k − 2} • s [m − 1][l ] � t [m − 1][l ] ∧

s [m − 1][k − 1] � t [m − 1][k − 1]

)

⎞

⎟

⎟

⎟

⎠

�

For s �1 t (i.e., the prefix of three-dimensional time structure), the length of s is smaller than or equal to the
length of t . This means that the final macro time point of s is smaller than or equal to that of t . Further, for every
macro time point i less than the final macro time point of s , s [i ] and t [i ] are of two-dimensional time structure
and they should be equal. For the final macro time point m − 1 of s and its corresponding final micro time point
k − 1, for l ∈ {0..k − 2}, s [m − 1][l ] and t [m − 1][l ] should be the same, i.e., s [m − 1][l ] � t [m − 1][l ]. Further,
s [m − 1][k − 1] and t [m − 1][k − 1] can be different, and they should satisfy the traditional prefix condition
s [m − 1][k − 1] � t [m − 1][k − 1], reflected in the last line of the definition.

For traditional sequences s and t , t − s stands for the sequence that subtracts sequence s from t with respect
to the traditional prefix structure �. On the other hand, if s and t are sequences of tr1 (or tr2) type structure,
t − s has a similar meaning with respect to the new �1 prefix structure.

The execution of an atomic action is represented by a single snapshot. To describe the behaviour of an
individual shared variable assignment, we introduce a variable ttr to model the accumulated changes made by
the statements of the atomic action. An assignment is simply formulated as storing the result in variable ttr .
Meanwhile, the current value of channel ch is also stored in variable ttr . On the completion of an atomic action,
the corresponding snapshot is attached to the end of the trace to record its behaviour.

The event generated by the channel receiving will not be immediately attached to the end of the trace variable
tr2. After all the behaviours in an atomic action complete, the process enters into the update phase. Hence we
use a trace variable RQ to record new channel states due to the channel receiving.

Example 2.3 Let P �df x :� x + 1 ; y :� y + 1 ; ch!!(x + y). Assume that shared-variables x and y are 0 and 1
respectively when P is activated. Also assume that the value recorded in channel is initially 0.

The execution of x :� x + 1 produces ttr � {x 
→ 1, y 
→ 0}, whereas the execution of y :� y + 1 produces
ttr � {x 
→ 1, y 
→ 1}.

Further, the execution of “ch!!(x + y)” produces RQ � 〈(ch, 2)〉, where value 2 stands for the current value
of expression “x + y”.

When the event guard wait(e) is encountered, it will attach snapshot (ttr , 1) to the end of trace tr1. Meanwhile,
an event pe(ch) is attached to the end of trace tr2 in the form of (pe(ch), 1), due to the execution of ch!!(x + y)
and the encountering of wait(e). �
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Three kinds of event notifications are introduced in SystemC for generating events. notify(e�0) is used to
generate event e, which will be active immediately. For notify(e�1), it can generate event e that will be active in
one micro time unit. Moreover, notify(e#T ) also generates event e. However, it can only be active in T macro
time units. For recording the events contributed by the above last two notification commands, we introduce two
set type variables, EN 2 and EN 3. Here, EN 2 records the generated events, which will be active in one micro time
unit. EN 3 contains the pairs (e,T ), which indicates that event e will be active in T macro time units.

Example 2.4 Let P � notify(e1 �0) ; notify(e2 �1) ; notify(e3 #2) ; notify(f1 #4). Assume that EN 2 � {e1} and
EN 3 � {(e3, 1), (f1, 5)}. Here e1, e2, e3 and f1 are all events. Now we consider new EN 2 and EN 3 after the
execution of all these notifications.

The first immediate notification will record event e1 in the trace variable tr2, which may fire the environment’s
waiting command immediately. Moreover, event e1 should also be removed from EN 2, while EN 3 remains
unchanged. The execution of the second notification command will add event e2 to EN 2 and also keep EN 3
unchanged.

As (e3, 1) already belongs to EN 3, the execution of the third command will not add anything to EN 3.
Furthermore, the fourth command will remove (f1, 5) from EN 3 and add (f1, 4) to EN 3 because the time stamp
in (f1, 4) is smaller than the time stamp in (f1, 5). Therefore, the final values of EN 2 and EN 3 are:

EN 2 � {e2} and EN 3 � {(e3, 1), (f1, 4)} �

The execution of a SystemC process can never undo an atomic action that has already been performed. A
formula P which identifies a program must therefore imply this fact; i.e., it has to meet the following healthiness
condition:

(H 1) P � P ∧ Inv (tr1, tr2), where Inv (tr1, tr2) �df (tr1 �1 tr1′) ∧ (tr2 �1 tr2′)2

Here Inv (tr1, tr2) indicates tr1 and tr2 are the prefix of tr1′ and tr2′ respectively, which indicates that trace
can only get longer. As in relational calculus, for any denotational variable u, we use u and u ′ to stand for the
initial value and final value for the current execution respectively.

A SystemC process may perform an infinite computation and enter a divergent state. To distinguish its
chaotic behaviour from the stable ones we introduce the variables ok , ok ′ : Bool into the semantical model,
where ok � true indicates that the process has been started, and ok ′ � true states that the process is stable
currently. ok � false means that the program has never started and even the initial values are unobservable.

Definition 2.5 Let Q and R be formulae not containing ok and ok ′. Define

Q � R �df ¬ok ∧ Inv (tr1, tr2) ∨ ¬Q ∨ (ok ′ ∧ R)

A design is a formula that is expressed in this form Q � R. �

A time-controlled statement cannot start its execution before its guard is triggered. To distinguish its waiting
behaviour from terminating one, we introduce another pair of variables wait,wait ′ : Bool . When wait is true the
program is started in an intermediate state, and when wait ′ is true the program is idle. Therefore, for sequential
composition “R ; P”, all the intermediate observations of R are also the intermediate observations of “R ; P”.
Control can pass from R to P only when R is in its terminating state, distinguished by the fact that wait ′ is false.
If program P is asked to start in a waiting state of R, it leaves the state unchanged.

(H 2) P � II � wait � P ,

where, II �df true �
(
∧

s∈{tr1,tr2,ttr ,X ,RQ,EN2,EN3,wait} s
′ � s

)

and P � b � Q �df (P ∧ b) ∨ (¬b ∧ Q)

Here, X stands for the vector containing all the local variables for the current program. X ′ � X indicates that
all the local variables remain unchanged.

2 In this paper we use X and X ′ to stand for the initial value and final value for variable X respectively.
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Definition 2.6 Formula P is healthy iff there exists a design D � (Q � (W � wait ′ � T )) such that P � H(D),
where

H(Y ) �df (II � wait � (Y ∧Inv (tr1, tr2)) �

Theorem 2.7 H(Y ) satisfies healthiness condition (H 1) and (H 2). �

Now we give the definition for sequential composition.

Definition 2.8 Let P1 and P2 be formulae. Define

P1 ; P2 �df ∃S • (P1[S/V ′] ∧ P2[S/V ])

where, V stands for the list of all denotational variables in our model; i.e., ok , tr1, tr2, ttr , X , RQ , EN 2,EN 3,
and wait . �

For the healthy formula H(Q � W � wait ′ � T ), ¬Q , W and T represent the divergent behaviour,
waiting behaviour and terminating behaviour respectively. Now we provide a simple refinement calculus for
healthy formulae and show that they are closed under sequential composition, conditional choice, disjunction
and conjunction. The theorem presented below is similar to those in chapter 3 (page 79, 80) of [HH98]. A
refinement calculus was studied for Guarded Command Language (GCL) in [HH98] and there is no waiting state
for GCL.

Theorem 2.9 If ¬Qi � ¬Qi ∧ Inv (tr1, tr2), Wi � Wi ∧ Inv (tr1, tr2), Ti � Ti ∧ Inv (tr1, tr2) for i � 1, 2, then

(1) H(Q1 � W1 � wait ′ � T1) ; H(Q2 � W2 � wait ′ � T2)
� H(¬(¬Q1 ; Inv (tr1, tr2)) ∧ ¬(T1 ; ¬Q2) � (W1 ∨ (T1 ; W2)) � wait ′ � (T1 ; T2))

(2) H(Q1 � W1 � wait ′ � T1) � b � H(Q2 � W2 � wait ′ � T2)
� H((Q1 � b � Q2) � (W1 � b � W2) � wait ′ � (T1 � b � T2))

(3) H(Q1 � W1 � wait ′ � T1) ∨ H(Q2 � W2 � wait ′ � T2)
� H((Q1 ∧ Q2) � (W1 ∨ W2) � wait ′ � (T1 ∨ T2))

(4) H(Q1 � W1 � wait ′ � T1) ∧ H(Q2 � W2 � wait ′ � T2)
� H((Q1 ∨ Q2) � ((Q1 ⇒ W1) ∧ (Q2 ⇒ W2)) � wait ′ � ((Q1 ⇒ T1) ∧ (Q2 ⇒ T2))) �

The first law stands for the calculation of the sequential composition of two processes. The divergent behavior
for the whole system can be divided into two cases. The first one is simply the divergent behavior of the first
process (expressed as “¬Q1; Inv (tr1, tr2)”), whereas the second case is the terminating behavior of the first
process followed by the divergent behavior of the second process (expressed as “T1 ; ¬Q2”). Moreover, for the
waiting behavior of the whole system, it can also be divided into two cases. The first case is the waiting behavior
of the first process and the second case is the terminating behavior of the first process followed by the the waiting
behavior of the second process. For the terminating behavior of the whole system, it can be described as the
sequential composition of the terminating behaviors of the first process and the second process.

The other three laws stand for the calculation of the behavior of disjunction, conjunction and conditional
choice of two processes, respectively. Their analysis is similar.

Corollary 2.10 If P is healthy then

(1) II ; P � P
(2) ⊥ ; P � ⊥, where ⊥ �df H(false � true)
(3) H(true � W � wait ′ � T ) ; II � H(true � W � wait ′ � T ) �

The above corollary indicates that II and ⊥ are the left units of sequential composition for healthy formulae.
But they are not right units of sequential composition. Corollary 2.10 informs that II can be the right unit of
sequential composition for healthy formulae in the form of H(true � W � wait ′ � T ).
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The laws for disjunction and conjunction can be generalized to the union and intersection of arbitrary sets.
This indicates that healthy formulae form a complete lattice under the implication order. We use HF to denote
the set of all healthy formulae. The weakest fixed point of a monotonic function � on HF can be defined by

μHF X • �(X ) �df �{F | F ⇒ �(F ) and F ∈ HF }
In the subsequent sections we will formalize a SystemC process P as a healthy formula of the form

H(¬div (P ) � wait(P ) � wait ′ � ter (P ))

where div (P ), wait(P ) and ter (P ) stand for the divergent behaviour, waiting behaviour and termination behaviour
of P respectively.

3. The denotational semantics for SystemC

In this section we study the denotational semantics for each statement for SystemC using the UTP approach. The
novel features of SystemC include delayed notifications, notification cancelling, notification overriding, delta-
cycle, etc. Previous UTP study has not covered these features. The timed model in three-dimensional structure is
applied in the formalization of the denotational semantics.

3.1. Sequential constructs

Program variable assignment can be classified into two types: shared variable assignment and local variable
assignment.
Let

Env (s) �df ∀i , j • ( (0 ≤ i < len(s)) ∧ (0 ≤ j < len(s [i ])) ) ⇒ π2(s [i ][j ]) ∈ 0∗

Instenv (s) �df len(s) � 0 ∧ len(s [0]) � 0 ∧ Env (s)

Env (s) is used to describe the phenomena that the new states (or new events) are generated by the environment.
Here π2(s [i ][j ]) ∈ 0∗ stands for the action sequence at the macro time point i and micro time point j are
contributed by the environment. Meanwhile, Instenv (s) behaves like Env (s), and the macro time and micro time
do not advance.

InstEnv �df H

⎛

⎝true �
⎛

⎝

¬wait ′ ∧ ∧

t∈{tr1,tr2} Instenv (t ′ − t)
∧ ttr ′ � π1(last(last(last(tr1′))))
∧ same({X ,RQ,EN 2,EN 3})

⎞

⎠

⎞

⎠

where same(A) �df

∧

x∈A (x ′ � x ). Here last(s) stands for the last element of sequence s .
Formula InstEnv indicates that the trace behaviours of tr1 and tr2 should all satisfy a condition expressed in

the function Instenv and the state of the last snapshot of trace tr1 is assigned to variable ttr . All other variables
remain unchanged.

Now we consider the behaviour of Skip. If it is the first statement of an atomic action, its behaviour can be
formalized using formula InstEnv . Otherwise, it behaves like II .

Skip �df InstEnv � ttr � null � II
Next we consider the definition of shared variable assignment. Let

sassign(v , e) �df H
(

true �
( ¬wait ′ ∧ ttr ′ � ttr [e(ttr ,X )/v ] ∧

same({tr1, tr2,X ,RQ,EN 2,EN 3})
))
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Formula sassign(v , e) indicates that the value of expression e is assigned to v via the state variable ttr . As
expression e can contain shared-variables and local variables, and their values are based on their corresponding
current states in ttr and X , notation e(ttr ,X ) stands for the calculated value of expression e.

Based on this, we can define shared-variable assignment v :� e.

v :� e �df Skip ; sassign(v , e)

For the definition of local variable assignment, we introduce the function lassign(x , f ).

lassign(x , f ) �df H
(

true �
( ¬wait ′ ∧ x ′ � f ∧

same({tr1, tr2, ttr ,X \{x },RQ,EN 2,EN 3})
))

The definition of local variable assignment x :� f can be described as:

x :� f �df Skip ; lassign(x , f )

Formulae sassign(v , e) and lassign(x , u) satisfy the following lemma.

Lemma 3.1

(1) sassign(v , v ) � II
(2) sassign(v , e) ; sassign(v , f (v )) � sassign(v , f (e))
(3) lassign(x , x ) � II
(4) lassign(x , u) ; lassign(x , f (x )) � lassign(x , f (u))

�

Sequential composition (P ; Q) behaves like P before P terminates, and then behaves like Q afterwards.

(P ; Q) �df (P ) ; (Q)

The definition of conditional can be based on Skip.

if b then P else Q �df Skip ; (P � b(ttr ,X ) � Q)

As Boolean expression b can contain shared variables and local variables, we use notation b(ttr ,X ) to stand for
the calculated value of expression e.

The iteration construct is defined in the same way as its counterpart in conventional programming languages.

while b do P �df μHF X • if b then (P ; X ) else Skip

where μHF X •F (X ) denotes the weakest fixed point of the monotonic function F over the set of healthy formulae.

3.2. Channel communication

Firstly, we consider the message output via a channel. We define it as

ch!!exp �df Skip ; RqUpdate(ch, exp)

Similar to the execution of assignment, the execution of channel output command can also be classified into two
cases. One is that the channel is in the first statement of an atomic action, while another stands for the opposite.
This can be classified using formula Skip (see page 9). The recording of channel output is expressed using formula
RqUpdate(ch, exp), i.e., mainly recording the value of expression exp in channel ch.

RqUpdate(ch, exp) �df H
(

true �
(¬wait ′ ∧ same({tr1, tr2, ttr ,X ,EN 2,EN 3})

∧RQ ′ � RQ\(ch,−)̂〈(ch, exp(y))〉
))

where:

(1) y in the above two formulae stands for expression π1(last(last(last(tr1)))).
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(2) ̂ stands for the concatenation of two traditional sequences.

(3) “\” is used to remove the pairs from the update sequence. It can be defined as below:

〈〉\(ch,m) �df 〈〉
(〈(ch,−)〉̂t)\(ch,m) �df t\(ch,m)
(〈(ch1,n)〉̂t)\(ch,m) �df 〈(ch1,n)〉̂(t\(ch,m))

Here, ch1 �� ch and “−” matches to any elements.

The last line (i.e., RQ ′ � RQ\(ch,−)̂〈(ch, exp(y))) in formula RqUpdate(ch, exp) indicates that before
appending the value and its associate channel ch to the trace variable, the snapshots concerned with the corre-
sponding channel ch need to be removed before recording the new value of the channel. Now we give a lemma
for formula RqUpdate().

Lemma 3.2

RqUpdate(ch, exp) ; RqUpdate(ch1, exp1)

� H
(

true �
(¬wait ′ ∧ same({tr1, tr2, ttr ,X ,EN 2,EN 3})

∧RQ ′ � (RQ\(ch,−)̂〈(ch, exp(y))〉)\(ch1,−)̂〈(ch1, exp1(y))〉
))

where, y � π1(last(last(last(tr1)))). �.

Next we can consider message input via a specific channel ch??w , which can be considered as assigning the
value on the channel.

If w is a shared variable, then

ch??w �df Skip ; sassign(w , ch)

If w is a local variable, then

ch??w �df Skip ; lassign(w , ch)

3.3. Event notification

Now we consider the immediate event notification notify(e�0). First, we give the definition for formula
InstEApp(e).

InstEApp(e) �df H

⎛

⎜

⎝true �
⎛

⎜

⎝

¬wait ′ ∧ len(tr2′ − tr2) � 0 ∧
len((tr2′ − tr2)[0]) � 0 ∧

(tr2′ − tr2)[0][0] � 〈(e, 1)〉 ∧
same(tr1, ttr ,X ,RQ,EN 2,EN 3)

⎞

⎟

⎠

⎞

⎟

⎠

Formula InstEApp(e) indicates that event e is attached to the end of trace variable tr2 without macro or micro
time advancing. The two formulae “len(tr2′−tr2) � 0” and “len((tr2′−tr2)[0]) � 0” indicate that neither macro
time nor micro time will advance. The attaching behaviour is expressed using formula “(tr2′−tr2)[0][0] � 〈(e, 1)〉”.

Next we give the definition for formula EveUpd0(e).

EveUpd0(e) �df H

(

true �
(¬wait ′ ∧ same(tr1, tr2, ttr ,X ,RQ)

∧EN 2′ � f 1(EN 2, e)
∧EN 3′ � g1(EN 3, e)

))

where f 1(A, e) �df {x | x ∈ A ∧ x �� e}
g1(A, e) �df {(x ,T ) | (x ,T ) ∈ A ∧ x �� e}
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We describe EveUpd0(e)’s purpose. For immediate event notification notify(e�0), after event e is attached to the
end of the trace variable, two set type variables EN 2 and EN 3 need to be modified due to the attachment of event
e to trace variable tr2. This modification is reflected by the two functions f 1(A, e) and g1(A, e). Event e needs
to be removed from EN 2, whereas the pairs concerning event e also need to be removed from EN 3.

notify(e�0) can then be defined

notify(e�0) �df Skip ; InstEApp(e) ; EveUpd0(e)

Now we consider the definition of notify(e�1). It generates event e and this event e will be active after one
micro time unit. Firstly we can give the definition for function EveUpd�(e). It models the behaviour that event e
needs to be added to EN 2, while removing the event e related pairs from EN 3. This is reflected by the functions
f 2 and g2.

EveUpd�(e) �df H

(

true �
(¬wait ′ ∧ same(tr1, tr2, ttr ,X ,RQ)

∧EN 2′ � f 2(EN 2, e)
∧EN 3′ � g2(EN 3, e)

))

where f 2(A, e) �df A ∪ {e}
g2(A, e) �df {(x ,T ) | (x ,T ) ∈ A ∧ x �� e}

Different from notify(e�0), the execution of notify(e�1) only makes the changes for variable EN 2 and EN 3, while
leaving other variables unchanged. The update of EN 2 and EN 3 is reflected by the two functions f 2 and g2.
Then notify(e�1) can be defined

notify(e�1) �df Skip ; EveUpd�(e)

For the definition of notify(e#T ), we first give the definition for formula EveUpd#((e,T )) below.

EveUpd#((e,T )) �df H

(

true �
(¬wait ′ ∧ same(tr1, tr2, ttr ,X ,RQ)

∧EN 2′ � f 3(EN 2, e,T )
∧EN 3′ � g3(EN 2,EN 3, e,T )

))

where

f 3(A, e,T ) �df A
g3(A,B , e,T )

�df

⎧

⎪

⎨

⎪

⎩

B ∪ {(e,T )} if e �∈ A ∧ ∀T1 ∈ N • (e,T1) �∈ B
B if e ∈ A or ∃T1 ∈ N • T1 ≤ T ∧ (e,T1) ∈ B
B\{(e,T3) | ∃T3 ∈ N • if ∃T2 ∈ N • T2 > T ∧ (e,T2) ∈ B

(e,T3) ∈ B} ∪ {(e,T )}

The behaviour of macro time event notification notify(e#T ) is mainly represented by the two functions f 3 and
g3 via formula EveUpd#((e,T )). Macro time event notification does not affect EN 2. However, it affects EN 3,
which can be dealt with in several cases shown above.

The behaviour of function g3(EN 2,EN 3, e,T ) can be classified into three cases. The first expresses the case
that EN 2 does not contain event e and EN 3 does not contain event e related pairs. Then the result of this macro
time event notification simply adds the pair (e,T ) to EN 3. The second expresses the case that either e is already
in EN 2 or there exists event e related pairs whose macro time stamp is not greater than T in EN 3. For this case,
EN 3 remains unchanged. Furthermore, if there exist event e related pairs whose macro time stamp is greater
than T , then EN 3 needs to be modified. For this case, event e related pairs need to be removed from EN 3, and
the pair (e,T ) needs to be added.
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Then notify(e#T ) can be defined as below:

notify(e#T ) �df Skip ; EveUpd#((e,T ))

Finally we consider the event cancel statement cancel (e). The cancellation is mainly represented by formula
EveUpd0(e).

cancel (e) �df Skip ; EveUpd0(e)

3.4. Event waiting

This section considers the semantics of the event waiting statement. Firstly, we give some preliminary definitions.

attach �df H

⎛

⎜

⎜

⎜

⎝

true �

⎛

⎜

⎜

⎜

⎝

¬wait ′ ∧ ttr � null ∧
same(tr2,X ,RQ,EN 2,EN 3) ∧
tr1′ � tr1 � ttr � null ∨ last(y) � ttr �

( y ′ � ŷ〈(ttr , 1)〉 ∧
len(tr1′ − tr1) � 0 ∧
len((tr1′ − tr1)[0]) � 0

)

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

where y � last(last(tr1)) and y ′ � last(last(tr1′)) in the above formula. The trace variable tr1 is in the form of
three dimensional structure. Here y stands for the one dimensional trace for variable tr1 at the last macro time
and micro time point. Formula y ′ � ŷ〈(ttr , 1)〉 indicates that snapshot 〈(ttr , 1)〉 is attached to the end of y . The
purpose of the behaviour of attach is to append the contribution stored in ttr to the end of trace variable tr1.

Next we define update(RQ), which is used to generate events from sequence RQ . The generated events will
be appended to the end of trace variable tr2. update(s) can be defined as

if s � 〈〉, then update(s) �df II
otherwise,

update(s) �df H

⎛

⎝true �
⎛

⎝

¬wait ′ ∧ s ′ � tail (s) ∧
(
∨

i∈{1,2,3} CompAtt(s, i ) ) ∧
same(tr1, ttr ,X ,EN 2,EN 3)

⎞

⎠

⎞

⎠ ; update(s)

where tail (s) stands for the sequence s but the first element.
Here, CompAtt(s, op) can be defined as:

(1) if op � 1, then

CompAtt(s, op)
�df ttr (π1(head (s))) < π2(head (s)) ∧ y ′ � ŷ〈(pe(π1(head (s))), 1)〉 ∧
ttr ′ � ttr [π2(head (s))/π1(head (s))]

(2) if op � 2, then

CompAtt(s, op)
�df ttr (π1(head (s))) > π2(head (s)) ∧ y ′ � ŷ〈(ne(π1(head (s))), 1)〉 ∧
ttr ′ � ttr [π2(head (s))/π1(head (s))]

(3) if op � 3, then

CompAtt(s, op)
�df ttr (π1(head (s))) � π2(head (s)) ∧ (tr2′ � tr2) ∧ (ttr ′ � ttr )

where, y ′ � last(last(tr2′)) and y � last(last(tr2)) in the above definition. Here head (s) stands for the first
element of sequence s .
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The behaviour of CompAtt(s, op) is to generate the exact event based on the two values recorded in ttr and
the first element of trace s for the corresponding channel. If the first value is less than the second, a positive
edge event on the channel will be generated. Inversely a negative edge event will be generated. Further, if the two
values are the same, no event will be generated. We use “op � 1”, “op � 2” and “op � 3” to distinguish these
three cases.

For update(RQ), the consideration for the update needs to go through all the pairs in sequence RQ . For each
pair, the update might generate events which will be added to the end of the trace variable tr2.

Now we consider the semantics for the triggering of a single event wait(et). There are two event triggering
cases. The first case is the self-triggering case; i.e., the event is triggered by the process itself, which indicates that
the event is generated by the most recently completed atomic action. We use formula selftrig(et) to represent this
case. In this case, the update based on sequence RQ needs to be executed, as well as attaching the result of the
recent completed atomic action. It should also need to be judged whether the current situation belongs to the
self-triggering case, which is described by formula selfjudge.

selftrig(et) �df Skip2 ; update(RQ) ; (ttr �� null ) ∧ attach ; selfjudge(et)

where:

Skip2 �df InstEnv2 � ttr � null � II

and

InstEnv2 �df H
(

true �
(¬wait ′ ∧ ttr ′ � π1(last(last(last(tr1))))

∧ same({tr1, tr2,X ,RQ,EN 2,EN 3})
))

and

selfjudge(et) �df H
(

true �
(¬wait ′ ∧ last(last(last(tr2))) � (et, 1)

∧ same(tr1, ttr ,X ,RQ,EN 2,EN 3)

))

The second case is the environment triggering case; i.e., an event is generated by the environment and this
event triggers the waiting behaviour. For this case, the update based on sequence RQ and the attachment for
the recent atomic action need to be executed. Then the process waits for the environment to generate the event
which can trigger the current waiting command. The whole behaviour can be partitioned into two phases. The
first one is the waiting period described by formula await(et), during which the environment can generate events
and these events cannot trigger our waiting command. The second phase is the triggering behaviour, described
by formula trig(et).

await(et)
�df Skip2 ; update(RQ) ;
(ttr � null ∨ last(last(last(tr2))) �� (et, 1)) ∧ attach ; aawait(et)

and

aawait(et) �df H

⎛

⎝true �
⎛

⎝

∀i , j • et �∈ π1((tr2′ − tr2)[i ][j ]) ∧
∧

x∈{tr1,tr2} Env (x ′ − x ) ∧
same(RQ,X , ttr ,EN 2,EN 3)

⎞

⎠

⎞

⎠

trig(et) �df H

(

true �
( Instenv (tr2′ − tr2) ∧

last(last(last(tr2′ − tr2))) � 〈(et, 0)〉 ∧
same(tr1, ttr ,RQ,EN 2,EN 3)

))

We can define

wait(et) �df selftrig(et) ∨ (await(et) ; trig(et))
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Next we consider the semantics of compound event “or”. Let

selfjudge(ori∈I {eti}) �df H
(

true �
(¬wait ′ ∧ same(tr1,X , ttr ,EN 2,EN 3)

∧ (
∨

i∈I last(last(last(tr2))) � (eti , 1) )

))

aawait(ori∈I {eti}) �df H

⎛

⎝true �
⎛

⎝

∀i , j , k • eti �∈ π1((tr2′ − tr2)[j ][k ]) ∧
∧

x∈{tr1,tr2} Env (x ′ − x ) ∧
same(RQ,X , ttr ,EN 2,EN 3)

⎞

⎠

⎞

⎠

trig(ori∈I {eti}) �df H

(

true �
( Instenv (tr2′ − tr2) ∧
∨

i∈I ( last(last(last(tr2′ − tr2))) � 〈(eti , 0)〉 ) ∧
same(tr1, ttr ,RQ,EN 2,EN 3)

))

We can define

wait(ori∈I {eti })
�df selftrig(ori∈I {eti }) ∨ ( await(ori∈I {eti }) ; trig(ori∈I {eti}) )

For time delay statements, we first consider the � delay (micro time delay).

hold�(0) �df H
(

true �
(¬wait ′ ∧ ∧

x∈{tr1,tr2} Instenv (x ′ − x ) ∧
same(ttr ,X ,RQ,EN 2,EN 3)

))

phase� �df H

⎛

⎜

⎜

⎜

⎝

true �

⎛

⎜

⎜

⎜

⎝

same(ttr ,X ,RQ,EN 2,EN 3)∧
∧

x∈{tr1,tr2} len(x ′ − x ) � 0∧
⎛

⎝

(tr1′ � tr1 ∧ tr2′ � tr2) � wait ′ �
(∧

x∈{tr1,tr2} (len((x ′ − x )[0]) � 1∧
len((x ′ − x )[0][0]) � 0 ∧ len((x ′ − x )[0][1]) � 0)

)

⎞

⎠

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

hold�(0) stands for the environment behaviours at the current micro time point, i.e., the environment can generate
new states and new events at the current micro time point. phase� purely represents the one unit micro time
advancing, ie., there are no new generated states and events during the pure micro time advancing.

Next we introduce formula Wupd�. Wupd� indicates that a sequence of events will be attached to the end
of trace tr2 at the current time point. These sequences are the permutations of all the events recorded in EN 2,
expressed using formula “permu(EN 2)”.

Wupd� �df H

⎛

⎜

⎜

⎜

⎝

true

⎛

⎜

⎜

⎜

⎝

¬wait ′ ∧ len(tr2′ − tr2) � 0 ∧
len((tr2′ − tr2)[0]) � 0 ∧

π1((tr2′ − tr2)[0][0]) ∈ permu(EN 2) ∧
π2((tr2′ − tr2)[0][0]) ∈ 1∗ ∧

same(ttr , tr1,X ,RQ,EN 3) ∧ EN 2′ � ∅

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

where permu(A) stands for the set containing all permutations of set A.
Based on the above formalizations for UpdAtt , hold�(1) and Wupd�, we can give the definition for wait(�1).

wait(�1) �df UpdAtt ; hold�(0) ; phase� ; Wupd�

where UpdAtt �df Skip2 ; update(RQ) ; attach.
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Next we consider the semantics of macro-time delay. Firstly, we introduce formula hold#(n). It models the
behaviour that macro time can advance n time units. If time has not advanced n units, the process is still at
the waiting state. Otherwise, the process is at the terminating state. During the time advancing period, only the
environment can generate new states or new events.

hold#(n) �df H

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

true �

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

wait ′ ∧ len(tr1′ − tr1) < n ∧ Env (tr1′ − tr1) ∧
len(tr2′ − tr2) < n ∧ Env (tr2′ − tr2) ∧
same(ttr ,X ,RQ,EN 2,EN 3)
∨
¬wait ′ ∧ len(tr1′ − tr1) � n ∧ Env (tr1′ − tr1) ∧
len(tr2′ − tr2) � n ∧ Env (tr2′ − tr2) ∧
same(ttr ,X ,RQ,EN 2,EN 3)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The formula phase# purely represents the one unit macro time advancing, ie., there are no new generated
states and events during the pure macro time advancing.

phase# �df H

⎛

⎜

⎜

⎜

⎝

true �

⎛

⎜

⎜

⎜

⎝

same(ttr ,X ,RQ,EN 2,EN 3) ∧
⎛

⎜

⎜

⎝

(tr1′ � tr1 ∧ tr2′ � tr2) � wait ′ �
⎛

⎝

∧

x∈{tr1,tr2} (len(x ′ − x ) � 1∧
len((x ′ − x )[0]) � 0 ∧ len((x ′ − x )[0][0]) � 0∧
len((x ′ − x )[1]) � 0 ∧ len((x ′ − x )[1][0]) � 0)

⎞

⎠

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

After n macro time units elapse, new events need to be attached to the end of trace tr2 at the current micro time
point. These events are taken from the pairs in EN 3 whose time stamp is n. We use Wupd#(n) to model these
behaviours.

Wupd#(n) �df H

⎛

⎜

⎝true �
⎛

⎜

⎝

len(tr2′ − tr2) � 0 ∧ len((tr2′ − tr2)[0]) � 0 ∧
π1((tr2′ − tr2)[0][0]) ∈ permu({e | (e,n) ∈ EN 3}) ∧
π2((tr2′ − tr2)[0][0]) ∈ 1∗ ∧ same(tr1, ttr ,X ,RQ,EN 2) ∧
EN 3′ � {(e,T ) | (e,n + T ) ∈ EN 3}

⎞

⎟

⎠

⎞

⎟

⎠

Based on the above definitions, we can define macro-time delay.

wait(n) �df UpdAtt ; hold#(n − 1) ; phase# ; Wupd#(n)

3.5. Parallel composition

For defining parallel composition, we first provide several merge functions.

pmerge(s, t, u) �df

⎛

⎜

⎜

⎜

⎜

⎜

⎝

π1(s [0..len(t) − 1]) � π1(t [0..len(t) − 1]) ∧
π1(s [0..len(t) − 1]) � π1(u[0..len(t) − 1]) ∧
( π2(u[0..len(t) − 1]) � π2(s [0..len(t) − 1])+

π2(t [0..len(t) − 1]) ) ∧
2 �∈ π2(u[0..len(t) − 1]) ∧

len(u) � len(s)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

where 〈i1, ... , in 〉 + 〈j1, ... , jn 〉 �df 〈(i1 + j1), ... , (in + jn )〉
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A snapshot is expressed as a pair (σ, f ). The first two lines indicate that the sequence of the states (or events) for
a parallel process is the same as the sequence of states (or events) for its two components. The third and fourth lines
calculate the control flag sequence of a parallel process, which is the addition of the two control flag sequences of
the two components of a parallel process. These two lines inform that any state contributed by a parallel process
is actually the contribution by one of its components. They also indicate that any state (or event) contributed by
the environment of a parallel process cannot be the contribution of either of its components. For the fifth line,
the notation “π2(u[0..len(t) − 1])” stands for the control flag projection sequence for sequence u of a parallel
process. Hence, “2 �∈ π2(u[0..len(t) − 1])” means that 2 does not appear in the sequence π2(u[0..len(t) − 1]),
which indicates that any state contributed by a parallel process cannot be contributed by both of its components.

pmerge(s, t, u) is to merge two sequences s and t , the result is stored in sequence u. Here, s and t are one-
dimensional sequences; i.e., the sequence of type tr1 (or tr2) at some micro time points. For pmerge(s, t, u), the
length of sequence s is greater than or equal to the length of sequence t .

Next we introduce merge(s, t, u), which merges two sequences s and t into one single sequence. Its definition
is based on the above pmerge function. For merge(s, t, u), there are no length restrictions on sequences s and t .
If len(s) > len(t), function pmerge(s, t, u) is called. The rest elements of s will be directly added to the current
sequence u. If len(s) � len(t), only function pmerge(s, t, u) is called. On the other hand, if len(t) > len(s),
function pmerge(t, s, u) is called. The rest elements of t will be directly added to the current sequence u.

merge(s, t, u) �df

⎛

⎜

⎜

⎜

⎜

⎝

len(s) > len(t) ⇒
(

pmerge(s, t, u)∧
u[len(t)..len(s) − 1] � s [len(t)..len(s) − 1]

)

∧
len(s) � len(t) ⇒ pmerge(s, t, u) ∧
len(s) < len(t) ⇒

(

pmerge(t, s, u)∧
u[len(s)..len(t) − 1] � t [len(s)..len(t) − 1]

)

⎞

⎟

⎟

⎟

⎟

⎠

Now we introduce additional merge behaviour. Pmerge(s, t, u) merges two sequences s and t into one single
sequence u, where the types of these sequences are of tr1 and tr2. Similarly, the length of s is also greater than
or equal to the length of t .

Pmerge(s, t, u)

�df ∀i • 0 ≤ i ≤ len(t) − 1 ⇒
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

len(s [i ]) > len(t [i ]) ⇒

⎛

⎜

⎜

⎝

∀j • 0 ≤ j ≤ len(t [i ]) − 1 ⇒
merge(s [i ][j ], t [i ][j ], u[i ][j ]) ∧

u[i ][len(t [i ])..len(s [i ]) − 1] �
s [i ][len(t [i ])..len(s [i ]) − 1]

⎞

⎟

⎟

⎠

∧

len(s [i ]) � len(t [i ]) ⇒
(∀j • 0 ≤ j ≤ len(t [i ]) − 1 ⇒

merge(s [i ][j ], t [i ][j ], u[i ][j ])

)

∧

len(s [i ]) < len(t [i ]) ⇒

⎛

⎜

⎜

⎝

∀j • 0 ≤ j ≤ len(s [i ]) − 1 ⇒
merge(t [i ][j ], s [i ][j ], u[i ][j ]) ∧

u[i ][len(s [i ])..len(t [i ]) − 1] �
t [i ][len(s [i ])..len(t [i ]) − 1]

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Based on Pmerge(), we introduce Merge(s, t, u). It has similar behaviours as function merge(s, t, u). The
difference is that the types of sequence s and t here are of tr1 and tr2.

Merge(s, t, u) �df

⎛

⎜

⎜

⎜

⎝

len(s) > len(t) ⇒
(

Pmerge(s, t, u) ∧
u[len(t)..len(s) − 1] � s [len(t)..len(s) − 1]

)

∧
len(s) � len(t) ⇒ Pmerge(s, t, u) ∧
len(s) < len(t) ⇒

(

Pmerge(t, s, u) ∧
u[len(s)..len(t) − 1] � t [len(s)..len(t) − 1]

)

⎞

⎟

⎟

⎟

⎠
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Finally we introduce the merge operator ⊗ for two behaviours P and Q . Its definition is based on the above
Merge function. Function Merge(tr1P , tr1Q , tr1) merges the two traces tr1 of both P and Q and the resulted
trace is the tr1 trace of the whole system. The behaviour of Merge(tr2P , tr2Q , tr2) is to generate the tr2 trace
of the whole system from its two components.

P ⊗ Q

�df ∃tr1P , tr2P , tr1Q , tr2Q , ttrP , ttrQ ,EN 2P ,EN 3P ,EN 2Q ,EN 3Q ,RQP ,RQQ •
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

P [tr1P , tr2P , ttrP ,RQP ,EN 2P ,EN 3P/

tr1, tr2, ttr ,RQ,EN 2,EN 3] ∧
Q [tr1Q , tr2Q , ttrQ ,RQQ ,EN 2Q ,EN 3Q/

tr1, tr2, ttr ,RQ,EN 2,EN 3] ∧
Merge(tr1P , tr1Q , tr1) ∧
Merge(tr2P , tr2Q , tr2) ∧
RQ ′ � 〈〉 ∧ EN 2′ � ∅ ∧
EN 3′ � EN 3P ∪ EN 3Q

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

We are now ready to define the denotational semantics for P ‖ Q by considering the divergent, waiting and
terminating behaviours of P ‖ Q .

• It stays at a waiting state if either component does so.

wait(P ‖ Q)) �df ( wait(P ) ⊗ wait(Q) ∨ wait(P ) ⊗ ter (Q) ∨
ter (P ) ⊗ wait(Q) )

• It terminates when both components complete their execution.

ter (P ‖ Q) �df ( ter (P ) ⊗ ter (Q) )

• It behaves chaotically when either component is divergent.

div (P ‖ Q)
�df ( div (P ) ⊗ div (Q) ∨ div (P ) ⊗ wait(Q) ∨ div (P ) ⊗ ter (Q) ∨
div (Q) ⊗ wait(P ) ∨ div (Q) ⊗ ter (P ) )

3.6. Algebraic laws for sequential programs

Algebra is well-suited for direct use by engineers in symbolic calculation of parameters and the structure of an
optimal design [HHH+87, HH98]. This section aims to explore a set of algebraic laws for SystemC. These laws
can be verified with respect to the semantics given in the above subsections.

For assignment, conditional, iteration, nondeterministic choice and sequential composition, our language
enjoys similar algebraic properties as those reported in [He94, HH98]. In the following, we shall only focus on
novel algebraic properties for sequential programs of SystemC. We leave the investigation for parallel expansion
laws in the next section by introducing an extra operator named “guarded choice” with location status.
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3.6.1. Channel statements

The behaviour of the channel input statement ch??v is to assign the current value of ch to variable v , which
has no effect on channel ch. So the algebraic laws associated with channel input statements are similar to those
associated with assignments.

The channel output statement is executed during the evaluation phase of a delta-cycle. The new value will not
be available to be read until the next delta-cycle.

L1 ch!!exp ; S � S ; ch!!exp

where S ∈ {Skip, ch??x , notify(e�0), notify(e�1), notify(e�T ), cancel (e) }
If multiple channel output statements occur to the same channel, the last statement executed determines the

new value of the channel. Law L2 reflects this fact. Here we also give proof of this law.

L2 ch!!exp ; ch1!!exp1 ; ch!!exp ′ � ch1!!exp1 ; ch!!exp ′, where ch �� ch1.

Proof

LHS
� {Def of Channel Output}

Skip ; RqUpdate(ch, exp) ; Skip ; RqUpdate(ch1, exp1) ; Skip ; RqUpdate(ch, exp ′)
� {Def of Skip}

Skip ; RqUpdate(ch, exp) ; II ; RqUpdate(ch1, exp1) ; II ; RqUpdate(ch, exp ′)
� {Corollary 2.10}

Skip ; RqUpdate(ch, exp) ; RqUpdate(ch1, exp1) ; RqUpdate(ch, exp ′)
� {Lemma 3.2 and Let y � π1(last(last(last(tr1))))}

Skip ; H

⎛

⎝true �
⎛

⎝

¬wait ′ ∧ same({tr1, tr2, ttr ,X ,EN 2,EN 3})
∧RQ ′ � ((RQ\(ch,−)̂〈(ch, exp(y))〉)\(ch1,−)̂〈(ch1, exp1(y))〉)

\(ch,−)̂〈(ch, exp ′(y))〉

⎞

⎠

⎞

⎠

� {Calculus on RQ and RQ ′}

Skip ; H

(

true �
(¬wait ′ ∧ same({tr1, tr2, ttr ,X ,EN 2,EN 3})

∧RQ ′ � (RQ\(ch1,−)̂〈(ch1, exp1(y))〉)\(ch,−)̂〈(ch, exp ′(y))〉
))

� {Lemma 3.2 and Def of Channel Output}
Skip ; RqUpdate(ch1, exp1) ; RqUpdate(ch, exp ′)

� {Def of Skip}
Skip ; RqUpdate(ch1, exp1) ; Skip ; RqUpdate(ch, exp ′)

� {Def of channel output}
RHS �

From L1 and L2, we can have:

• For each channel, at most one output statement takes effect in an atomic action.

3.6.2. Event statements

Events are used to synchronize concurrent processes. Therefore, the execution order between statements dealing
with events and statements dealing with variables and channels can be swapped in an atomic action.

L1 S1; S2 � S2; S1, where
S1 ∈ {notify(e�0),notify(e�1),notify(e�T ), cancel (e)},
S2 ∈ {Skip, x :� exp, ch??x , ch!!exp}
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The effect of delayed notifications does not occur immediately, so the order of delayed notifications on different
events can be changed in an atomic action.

L2 notify(eDT1) ; notify(fDT2) � notify(fDT2); notify(eDT1)

where DT1 ∈ {�0,�1, �T }, DT2 ∈ {�1, �T }
An immediate notification can override the pending notification on the same event.

L3 notify(eDT ); notify(e�0) � notify(e�0), where DT ∈ {�1, �T }
Only pending notifications can be cancelled. At any moment, at most one pending notification can exist for one
event.

L4 (1) notify(e�0); cancel (e) � notify(e�0)
(2) notify(eDT ); cancel (e) � cancel (e)
(3) cancel (e); cancel (e) � cancel (e)

where DT ∈ {�1, �T }
More than one delayed notification on the same event override each other and the one scheduled to occur earlier
overrides that scheduled to occur later. Delta-cycle delayed notifications are scheduled to occur earlier than timed
notifications.

L5 (1) notify(eDT1); notify(eDT2) (2) notify(e�T1); notify(e�T2)
� notify(eDT2); notify(eDT1) � notify(e�T2); notify(e�T1)
� notify(e�1) � notify(e�T1)

where T1 ≤ T2, DT1,DT2 ∈ {�1, �T } and (DT1 � �1) ∨ DT2 � {�1}.
From the above laws, we can have:

• For each event, at most one delta-cycle delayed notification takes effect during one delta-cycle.

• For each event, at most one timed delayed notification takes effect during one simulation time unit.

4. Algebraic derivation of denotational semantics

4.1. Location status and types of guarded choice

Example 4.1 Let P � I ‖ J , I � A1 ‖ A2 and J � A3 ‖ A4, where Ai � notify(ei�0) ; notify(fi�0) ; ui :�
ui + 1 ; vi :� vi + 2 (i � 1, 2, 3, 4). Figure 2 is the graph that illustrates the structure of P .

The behaviour of Ai forms an atomic action. If notify(ei�0) in A1 is scheduled, Ai (i � 2, 3, 4) cannot be
scheduled until the completion of the execution of the statements in A1. In order to support the parallel expansion
laws, we introduce the concept of locality (i.e., location status). For example, if notify(ei�0) is scheduled, we want
the expansion laws to correctly indicate the next behaviour should be notify(f1�0), i.e., all notify(ei�0) (i � 2, 3, 4)
cannot be scheduled at this moment.

In order to solve this, now we assign a label for each edge. If it is the left edge, the label is 1, otherwise the
label is 2. For every point, its thread sequence is the label sequence from the root of the tree to the considered
point. This sequence can index the exact component an instantaneous is due to. For example, if the instantaneous
action is due to process A1, the thread sequence is 〈1〉̂〈1〉. Further, if the instantaneous action is due to process
A2, the thread sequence is 〈1〉̂〈2〉. �

Now we introduce the concept of location status for a program, which is one of the following two forms:

(1) index , which can be 〈〉 or a non-empty thread sequence.

(2) null , which indicates a process is at the state, where the atomic action completes its execution. Further, the
environment can get the chance to perform its instantaneous action.
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P

A1 A2 A3 A4

I J 

1 2 

1 2 1 2 

Fig. 2. Indexing tree

For the aim of linking the various semantics of SystemC, we introduce the concept of guarded choice. A
guarded choice is composed of a set of guarded components. The introduction of guarded choice is to support
the parallel expansion laws. Guarded choice can be formalized with location status (i.e., tag), which is defined as
below.

Definition 4.2 (1) h (P , tag) is a guarded component if it can be one of the forms below. Here, b is a Boolean
condition and index can be 〈〉 or a non-empty thread sequence.

V (P , index ), wait(e) (P , null ), #1 (P , null ), �1 (P , null )

where V can be one of the following forms:

b&(x :� e), ch!!exp, ch??v ,

notify(e�0),
notify(e�1), notify(e�−1), notify(e#T )

(2) []{h1 (P1, tag1), . . . , hn (Pn , tagn )} is a guarded choice if every element hi (Pi , tagi ) is a guarded
component. �

In the above definition, the guarded component V (P , index ) indicates that the instantaneous action V will
be executed. After the execution, the subsequent program P will be at the location status index . For the event
waiting component (i.e., wait(e) (P , null )) and delay guarded component (i.e., #1 (P , null ) and �1 (P , null )),
after the firing of event guard or time elapsing, the subsequent behaviour should be the location status null .

Guarded choice can be divided into five types. The first type of guarded choice is composed of some instanta-
neous actions including assignment, channel output, channel input, and event notifications. Which one is selected
to execute is nondeterministic. Its following behavior is described at the location status index .

(type-1) []i∈I {bi&(xi :� ei ) (Pi , indexi )}[][]j∈J{chj !! expj (Qj , indexj )}
[][]k∈K {chk ?? vk (Rk , indexk )}[][]l∈L{notify(elx ) (Tl , indexl )}

The second type of guarded choice is only composed of a set of event guard components. Assume that all the
guard events are different from each other. Any can be fired when the corresponding event happens. After the
event guard is fired, its subsequent behavior is at the location status null .

(type-2) []i∈I {wait(ei ) (Pi ,null )}
The third type of guarded choice has one delta-cycle time delay (i.e., one micro time delay) or one macro time

delay component. After the elapsing of the corresponding one time unit, the following behavior will be described
as P at the location status null .

(type-3) (1) []{�1 (P ,null )}
(2) []{#1 (P ,null )}
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The fourth type of guarded choice is composed of a set of instantaneous action components and a set of
event guard components. The whole process waits for any of the event guards to be triggered and any of the
instantaneous actions can also have chances to be scheduled.

(type-4) []i∈I {bi&(xi :� ei ) (Pi , indexi )}[][]j∈J{chj !! expj (Qj , indexj )}
[][]k∈K {chk ?? vk (Rk , indexk )}[][]l∈L{notify(elx ) (Tl , indexl )}
[][]m∈M {wait(em )(Sm ,null )}

The fifth type of guarded choice is composed of a set of event guard components and a time delay component.
The process waits for any of the event guards to be fired at the current time point. Time will elapse one delta-cycle
time unit or one macro time unit when there are no more event guards to be triggered.

(type-5) (1) []i∈I {wait(ei ) (Pi ,null )}[][]{�1 (Q,null )}
(2) []i∈I {wait(ei ) (Pi ,null )}[][]{#1 (Q,null )}

4.2. Algebraic semantics for parallel construct

In this section we explore the algebraic laws for SystemC. We mainly focus on the laws for parallel composition.
Parallel composition is symmetric and associative. As our parallel model is an interleaving model, the laws
below indicate how a parallel process can be sequentialized. Our algebraic laws below are expressed in the form
(P , tag) � (Q, tag), indicating that programs P and Q behave the same at the location status tag . For simplicity,
(P , tag) � (Q, tag) is also written as P �tag Q .

Firstly we define two functions par(P ,Q) and par1(P ,Q, i , index ), which can reduce the number of parallel
expansion laws by covering several cases at the same time. We use ε to stand for the empty process.

par(P ,Q) �df

{

(ε, null ) if P � ε and Q � ε
(P ‖ Q, null ) otherwise

par1(P ,Q, i , index ) �df

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(ε, null ) if P � ε and Q � ε (1)
(ε ‖ Q, null ) if P � ε and Q �� ε and i � 1 (2)
(P ‖ ε, null ) if P �� ε and Q � ε and i � 2 (3)
(P ‖ Q, 〈1〉̂index ) if P �� ε and i � 1 (4)
(P ‖ Q, 〈2〉̂index ) if Q �� ε and i � 2 (5)

For par1(P ,Q, i , index ), it stands for the parallel composition of P ‖ Q at the corresponding location status.
Here, i is used to indicate which thread is active, where “1” (or “2”) indicate that the left component (or the right
component) is active, and index stands for the location status of the active component. The main purpose is to
calculate the exact location status of P ‖ Q at different cases. If P and Q are both empty processes, P ‖ Q is also
empty and its location status is null . The first line represents this case. For P ‖ Q , if the left (or right) hand side
completes a sequence of instantaneous actions and becomes empty, the whole process should still be written in
the form of parallel composition and the location status is null . The second line and third line represent this case.
Furthermore, if one component of P ‖ Q is executing instantaneous actions and has not reached to the empty
state, the location status of P ‖ Q is expressed as 〈i〉̂index . The fourth line and fifth line represent this case.

The parallel expansion laws are grouped into the following three types:

• The first type is that the parallel process is at the location status null . This indicates that the parallel process
is at the initial state and is ready to perform its actions, or one thread of the parallel process completes its
atomic action. In this case, any thread of the parallel process can get the chance to perform its atomic action.
This type of laws are expressed with the name (par-i-j). The notation (par-i-j) stands for the parallel expansion
laws whose two parallel components are of guarded choice type i and guarded choice type j .
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• The second type is that the parallel process is at the location status 〈1〉̂index or 〈2〉̂index . This indicates
that one parallel part is at the state of executing an instantaneous action. The whole parallel process is also
at the state of executing this instantaneous action. This case can be expressed by the law with name (par-II )
(see page 26).

• One special case is that one component of a parallel process is empty. This type of laws are expressed with
name (par-III -i) (see page 26), where i stands for the guarded choice type that another component of the
parallel process is with.

In the following algebraic laws, Ui and Vj stand for the instantaneous actions and t can be �1 or #1. Now we
study the first type of parallel expansion laws. The first five laws below stand for the case that the first component
of a parallel process is of type one.

If the second component of a parallel process is a guarded choice of a set of instantaneous actions, the
behavior of the parallel process can be described as the guarded choice of a set of instantaneous components.
The behavior after the selected instantaneous action is the parallel composition of the subsequent process with
the other parallel branch. This case is expressed in law (par-1-1).

(par-1-1) Let P �null []i∈I {Ui (Pi , indexi )} and Q �null []j∈J{Vj (Qi , indexj )}
Then P ‖ Q
�null []i∈I {Ui par1(Pi ,Q, 1, indexi )} [] []j∈J{Vj par1(P ,Qj , 2, indexj )}

If the second component of a parallel process is an event-guarded choice, the behavior of the parallel process
can be described as the guarded choice of a set of instantaneous actions and a set of event guard components.
This case is expressed in law (par-1-2).

(par-1-2) Let P �null []i∈I {Ui (Pi , indexi )} and Q �null []j∈J{wait(ej ) (Qj ,null )}
Then P ‖ Q
�null []i∈I {Ui par1(Pi ,Q, 1, indexi )}[][]j∈J{wait(ej ) par(P ,Qj )}

If the second component of a parallel process is the time delay guarded choice, only the instantaneous actions
can have a chance to be scheduled. This is expressed in law (par-1-3).

(par-1-3) Let P �null []i∈I {Ui (Pi , indexi )} and Q �null []{t (R,null )}
Then P ‖ Q �null []i∈I {Ui par1(Pi ,Q, 1, indexi )}

If the second component is a guarded choice comprised of a set of instantaneous actions and a set of event-
guarded components, instantaneous actions from both parts can have chances to be scheduled. The event guards
can also have chances to be fired. This is expressed in law (par-1-4).

(par-1-4) Let P �null []i∈I {Ui (Pi , indexi )} and
Q �null []j∈J{Vj (Qj , indexj )}[][]k∈K {wait(ek ) (Rk ,null )}

Then P ‖ Q
�null []i∈I {Ui par1(Pi ,Q, 1, indexi )}[][]j∈J{Vj par1(P ,Qj , 2, indexj )}

[][]k∈K {wait(ek ) par(P ,Rk )}
If the second component is a guarded choice comprised of a set of event-guarded components and the time

delay component, the instantaneous actions from the first parallel component can be scheduled. Meanwhile, event
guards from the second parallel component can also have chances to be fired. However, as the first component
has instantaneous behaviors initially, the whole system cannot make time advance initially.

(par-1-5) Let P �null []i∈I {Ui (Pi , indexi )} and
Q �null []j∈J{wait(ej ) (Qj ,null )}[][]{t (R,null )}

Then P ‖ Q
�null []i∈I {Ui par1(Pi ,Q, 1, indexi )}[][]j∈J{wait(ej ) par(P ,Qj )}

The next four laws stand for the case that the first component of a parallel process is of type two. If the second
parallel component is also a guarded choice of a set of event guard components, the scheduling rule is arranged
in the form of three types of guarded choice. The first and the second are composed of a set of event guard
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components of one parallel branch, where events are different from those in another parallel branch respectively.
The behavior after the triggered event guard is the parallel composition of the subsequent process with another
parallel part. The third type of guarded choice describes the common guard event of the two parallel parts and
the subsequent behavior is defined by the parallel composition of the corresponding following processes. This
case is illustrated in law (par-2-2).

(par-2-2) Let P �null []i∈I {wait(ei ) (Pi ,null )} and Q �null []j∈J{wait(fj ) (Qj ,null )}
Let E � {ei | i ∈ I }, F � {fj | j ∈ J }, I ′ � {i | ei ∈ E ∧ ei �∈ F },

J ′ � {j | fj ∈ F ∧ fj �∈ E }, IJ � {(i , j ) | i ∈ I ∧ j ∈ J ∧ ei ∈ E ∧ fj ∈ F ∧ ei � fj }
Then P ‖ Q
�null []i∈I ′ {wait(ei ) par(Pi ,Q)}[][]j∈J ′ {wait(fj ) par(P ,Qj )}

[][](i,j )∈IJ{wait(ei ) par(Pi ,Qj )}
If the second parallel part is in the form of the third, fourth or fifth type of guarded choice, the whole system

can be expressed in the expansion laws shown in the following three cases.

(par-2-3) Let P �null []i∈I {wait(ei ) (Pi ,null )} and Q �null []{t (R,null )}
Then P ‖ Q �null []i∈I {wait(ei ) par(Pi ,Q)}[][]{t par(P ,R)}

(par-2-4) Let P �null []i∈I {wait(ei ) (Pi ,null )} and
Q �null []j∈J{Vj (Qj , indexj )}[][]k∈K {wait(fk ) (Rk ,null )}

Then P ‖ Q
�null []j∈J{Vj par1(P ,Qj , 2, indexj )}[][]i∈I ′ {wait(ei ) par(Pi ,Q)}

[][]k∈K ′ {wait(fk ) par(P ,Rk )}[][](i,k )∈IK {wait(ei ) par(Pi ,Rk )}
(par-2-5) Let P �null []i∈I {wait(ei ) (Pi ,null )} and

Q �null []j∈J{wait(fj ) (Qj ,null )}[][]{t (R,null )}
Then P ‖ Q
�null []i∈I ′ {wait(ei ) par(Pi ,Q)}[][]j∈J ′ {wait(fj ) par(P ,Qj )}

[][](i,j )∈IJ{wait(ei ) par(Pi ,Qj )}[][]{t par(P ,R)}
Now we consider the parallel expansion laws for the case that the first component of a parallel process is of the

third type of guarded choice (i.e., time delay component). This can be illustrated in the next three laws shown in
(par-3-3), (par-3-4) and (para-3-5). If the second component of a parallel process is also time delay, law (par-3-3)
can be expressed in the following three laws representing the parallel composition of various time forms.

(par-3-3-1) Let P �null []{�1 (R,null )} and Q �null []{�1 (S ,null )}
Then P ‖ Q �null []{�1 par(R,S )}

(par-3-3-2) Let P �null []{�1 (R,null )} and Q �null []{#1 (S ,null )}
Then P ‖ Q �null []{�1 par(R,Q)}

(par-3-3-3) Let P �null []{#1 (R,null )} and Q �null []{#1 (S ,null )}
Then P ‖ Q �null []{#1 par(R,S )}

If the second component is comprised of a set of instantaneous actions and a set of event-guarded components,
for the whole system, instantaneous actions can be scheduled. The event guards can also have chances to be fired.
Time cannot advance initially. This is expressed in law (para-3-4).

(par-3-4) Let P �null []{t (R,null )} and
Q �null []i∈I {Vi (Qi , indexi )}[][]j∈J{wait(ej ) (Rj ,null )}

Then P ‖ Q
�null []i∈I {Vi par1 (P ,Qi , 2, indexi )}[]{[]j∈J{wait(ej ) par (P ,Rj )}
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If the second component is comprised of a set of event-guarded components and the time delay component,
all the event guards can have chances to be fired. Furthermore, time can also advance initially. As the time delays
in the first and second component of a parallel process can each have two types, the time delay type of the parallel
process can be expressed by using the defined function par2. Law (par-3-5) can illustrate this case.

(par-3-5) Let P �null []{t (R,null )} and
Q �null []j∈J{wait(ej ) (Qj ,null )}[][]{tS (S ,null )}

Then P ‖ Q �null []j∈J{wait(ej ) par (P ,Qj )}[]par2(P ,Q2)

In the above law, Q2 stand for the second guarded choice of Q . Function par2(P2,Q2) can be defined as
below.

Let P2 �null []{t1 (P ′, null )} and Q2 �null []{t2 (Q ′, null )}
Then

par2(P2,Q2) �df

{

[]{t1 par(P ′,Q ′)} if t1 � t2 � �1 ∨ t1 � t2 � #1
[]{t1 par(P ′,Q)} if t1 � �1 ∧ t2 � #1
[]{t2 par(P ,Q ′)} if t1 � #1 ∧ t2 � �1

The next two laws stand for the case that one component of a parallel process belongs to the form of the
fourth type of guarded choice. If the second component of a parallel process also belongs to the fourth type of
guarded choice, the instantaneous actions from both components can be scheduled. On the other hand, the event
guards from both components can also have chances to be fired and the firing can have three cases. This can be
illustrated in law (para-4-4).

(par-4-4) Let P �null []i∈I {Ui (Pi , indexi )}[][]j∈J{wait(ej ) (Rj ,null )}
Q �null []k∈K {Vk (Qk , indexk )}[][]l∈L{wait(fl ) (Rl ,null )}

Then P ‖ Q
�null []i∈I {Ui par1 (Pi ,Q, 1, indexi )}[][]j∈J ′ {wait(ej ) par (Rj ,Q)}

[][]k∈K {Vj par1 (R,Qk , 2, indexk )}[][]l∈L′ {wait(el ) par (P ,Rl )}
[][](j ,l)∈JL{wait(ej ) par (Pj ,Rl )}

If the second component of a parallel process belongs to the fifth type of guarded choice, the analysis is similar.
As the first component of the parallel process has instantaneous actions initially, the whole system cannot make
time advance initially. This is illustrated in law (par-4-5).

(par-4-5) Let P �null []i∈I {Ui (Pi , indexi )}[][]j∈J{wait(ej ) (Rj ,null )}
Q �null []k∈K {wait(fk ) (Qk ,null )}[][]{t (S ,null )}

Then P ‖ Q
�null []i∈I {Ui par1 (Pi ,Q, 1, indexi )}[][]k∈K ′ {wait(fk ) par (P ,Qk )}

[][]j∈J ′ {wait(ej ) par (Rj ,Q)}[][](j ,k )∈JK {wait(ej ) par (Rj ,Qk )}
The law below stands for the case that both of the two components of a parallel process belong to the form

of the fifth type of guarded choice. Events from both of the two parallel components can have chances to be
fired. The firing can be classified into three cases. Meanwhile, time can also advance initially, which is specified
by function par2.

(par-5-5) Let P �null []i∈I {wait(ei ) (Pi ,null )}[][]{tR (R,null )}
Q �null []j∈J{wait(fj ) (Qj ,null )}[][]{tS (S ,null )}

Then P ‖ Q
�null []i∈I {wait(ei ) par (Pi ,Q)}[][]j∈J{wait(ej ) par (P ,Qj )}

[][](i,j )∈IJ{wait(ei ) par (Pi ,Qj )}[]par2(P2,Q2)
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Further, if one parallel part is at the state of the execution of an instantaneous action and another parallel part
is of any form. Then the whole process continues the execute of the instantaneous action. The case is expressed
in law (par-II ).

(par-II ) Let P �index []{U (P ′, index )}
Then P ‖ Q �〈1〉̂index []{U par1(P ′,Q, 1, index )}

Q ‖ P �〈2〉̂index []{U par1(Q,P ′, 2, index )}
The following five laws stand for the case that one component of a process is empty. Another component can

be of any forms.

(par-III -1) Let P �null []i∈I {Ui (Pi , indexi )}
Then P ‖ ε �null []i∈I {Ui par1(Pi , ε, 1, indexi )}
ε ‖ P �null []i∈I {Ui par1(ε,Pi , 2, indexi )}

(par-III -2) Let P �null []i∈I {wait(ei ) (Pi , null )}
Then P ‖ ε �null []i∈I {wait(ei ) par(Pi , ε)}

ε ‖ P �null []i∈I {wait(ei ) par(ε,Pi )}
(par-III -3) Let P �null []{t (P ′, null )}

Then P ‖ ε �null []{t par(P ′, ε)}
ε ‖ P �null []{t par(ε,P ′)}

(par-III -4) Let P �null []i∈I {Ui (Pi , indexi )}[][]j∈J{wait(ei ) (Qj , null )}
Then P ‖ ε �null []i∈I {Ui par1(Pi , ε, 1, indexi )}

[][]j∈J{wait(ej ) par(Qj , ε)}
ε ‖ P �null []i∈I {Ui par1(ε,Pi , 2, indexi )}

[][]j∈J{wait(ej ) par(ε,Qj )}
(par-III -5) Let P �null []i∈I {wait(ei ) (Pi , null )} [] {t (Q, null )}

Then P ‖ ε �null []i∈I {wait(ei ) par(Pi , ε)} [] {t par(Q, ε)}
ε ‖ P �null []i∈I {wait(ei ) par(ε,Pi )} [] {t par(ε,Q)}

4.3. Head normal form

Now we assign every program P a head normal form at location status tag , expressed in the form HF ((P , tag)).
Our consideration for deriving denotational semantics from algebraic semantics is based on the concept of head
normal form. The head normal form HF ((P , tag)) is to make one step forward expansion for program P at the
location status tag .

For an instantaneous action, its location status is null or 〈〉. The location status for the remaining process
(the empty process) after the first step expansion is an empty sequence.

(1) HF ((v :� e, tag)) �df ( []{true&(v :� e) (ε, 〈〉)}, tag )

HF ((Skip, tag)) �df ( []{true&(x :� x ) (ε, 〈〉)} , tag )

where tag � null or 〈〉.

(2) HF ((X , tag)) �df ( []{X (ε, 〈〉)} , tag )

where tag � null or 〈〉.
X can be ch??v , ch!!exp, notify(e�0), notify(e�1), notify(e#T ).

HF ((cancel (e), tag)) �df ( []{notify(e�−1) (ε, 〈〉)}, tag )
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For conditional statement, the selection for the satisfactory and unsatisfactory cases can be modeled as the
Skip behavior. Similar analysis can also be applied to iteration.

(3) HF ((P � b � Q, tag)) �df ( []{b&x :� x (P , 〈〉), ¬b&x :� x (Q, 〈〉)}, tag )

HF ((b ∗ P , tag)) �df ( []{b&x :� x (P ; b ∗ P , 〈〉)}, ¬b&x :� x (ε, 〈〉)}, tag )

The head normal form of P ; Q mainly depends on the head normal form of P .

(4) Assume HF ((P , tag)) � ( []i∈I {Xi (Pi , tagi )}, tag )

Then HF ((P ; Q, tag)) �df ( []i∈I {Xi (seq(Pi ,Q), tagi )}, tag )

where, seq(X ,Y ) �df

{Y if X � ε

X ; Y otherwise

Below is the definition for the head normal form of time delay and event guard.

(5) HF ((�1, tag)) �df ( []{�1 (ε,null )}, tag )

HF ((#1, tag)) �df ( []{#1 (ε,null )}, tag )

HF ((#T , tag)) �df ( []{#1 (#(T − 1),null )}, tag ), where T > 1.

HF ((wait(e), tag)) �df ( []{wait(e) (ε,null )}, tag )

For a parallel process, it can be at the location status null or index . The definition of the head normal form
for a parallel process is based on its location status.

(6) HF ((P ‖ Q,null )) �df (T ,null )
where, T is the result by applying the above parallel expansion laws of HF ((P ,null )) and HF ((Q,null )) at
the location status null .

HF ((P ‖ Q, index )) �df (T , index )
where T is the result by applying the above parallel expansion laws at the location status index .

The above head normal forms can be used in deriving the operational semantics from algebraic semantics for
SystemC.

Example 4.3 Let P1 � v1 :� 1 ; ; notify(e2�1); notify(e3#3),
P2 � v2 :� 2 ; notify(f2�1); notify(f3#3),
Q1 � wait(e2); wait(e3), Q2 � wait(f2); wait(f3)

Consider the head normal form for program P , where (P1 ‖ P2) ‖ (Q1 ‖ Q2).
For program P , its head normal form can be described as:

HF ((P ,null ))
� ( []{v1 :� 1 ((P11 ‖ P2) ‖ (Q1 ‖ Q2), 〈1〉̂〈1〉),

v2 :� 2 ((P1 ‖ P21) ‖ (Q1 ‖ Q2), 〈1〉̂〈2〉),
wait(e2) ((P1 ‖ P2) ‖ (wait(e3) ‖ Q2), null ),
wait(f2) ((P1 ‖ P2) ‖ (Q1 ‖ wait(f3)), null ) }

,null )

where P11 � notify(e2�1); notify(e3#3), P21 � notify(f2�1); notify(f3#3)
Further,

HF (((P11 ‖ P2) ‖ (Q1 ‖ Q2), 〈1〉̂〈1〉))
� ( []{notify(e2�1) ((notify(e3#3) ‖ P2) ‖ (Q1 ‖ Q2), 〈1〉̂〈1〉)}
, 〈1〉̂〈1〉 )
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HF (((notify(e3#3) ‖ P2) ‖ (Q1 ‖ Q2), 〈1〉̂〈1〉))
� ( []{notify(e3#3), ((ε ‖ P2) ‖ (Q1 ‖ Q2), 〈1〉̂〈1〉)}
, 〈1〉̂〈1〉 )

The analysis of the head normal forms for other programs above is similar. �

4.4. Deriving denotational semantics from algebraic semantics

In Sect. 3, we defined the denotational semantics for each statement of SystemC. In this section we explore the
derivation of denotational semantics from algebraic semantics for SystemC. The derivation strategy is explored.
Our approach is based on the head normal form of each process, i.e., we have five types of guarded choices.
Let

C (tag) �df

{

ttr � null if tag � null
ttr �� null if tag � index

We use the notation A((P , tag)) to represent the derived denotational semantics from algebraic semantics for
program P at the location status tag . Further, the notation A(P ) stands for the the derived denotational semantics
from algebraic semantics for program P . In Sect. 3, we defined the denotational semantics for SystemC. We use
the notation D(P ) to represent the defined denotational semantics for program P .

If the head normal form of a process belongs to the first type, its denotational semantics can be described as the
semantics of the instantaneous action followed by the denotational semantics of the corresponding subsequent
process at the new location state. The notation D(b&xi :� e) stands for the defined denotational semantics of
x :� e at Boolean condition b.

(1) If HF ((P , tag)) � ( []i∈I {bi&(xi :� ei ) (Pi , indexi )}
[][]j∈J{chj !! expj (Qj , indexj )}
[][]k∈K {chk ?? vk (Rk , indexk )}
[][]l∈L{notify(elx ) (Tl , indexl )}
, tag )

then

A((P , tag)) �df C (tag) ∧
⎛

⎜

⎝

∨

i∈I ( D(bi&xi :� ei ) ; A((Pi , indexi )) )
∨∨j∈J ( D(chj !!expj ) ; A((Qj , indexj )) )
∨∨k∈K ( D(chk ??vk ) ; A((Rk , indexk )) )
∨∨l∈L( D(notify(elx )) ; A((Tl , indexl )) )

⎞

⎟

⎠

If the head normal form of a process belongs to the second type, its behaviour can be divided into two cases.
The first case indicates that one of the events can be self-fired. The second case indicates that none of the events
can be self-fired. Then the process will wait for any of the events to be fired. During the waiting period, none of
the events can be fired. After that, one of the events will get fired. For the above two cases, if one event is fired,
the subsequent behaviour will be the corresponding process at the location status null .

(2) If HF ((P , tag)) � ( []i∈I {wait(ei ) (Pi ,null )}, tag )
then

A((P , tag)) �df C (tag) ∧
(

∨

i∈I (selftrig(ei ) ; A((P ,null )))
∨

(await(e) ;
∨

i∈I (trig(ei ) ; A((Pi ,null )) ) )

)

where e �df ori∈I {ei }
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Now we consider the case that the head normal form of a process belongs to the third type. The time delay can
be divided into two cases; i.e., micro-time and macro-time. The process first behaves the same as the corresponding
one unit time delay. After that, the behaviour can be expressed as the subsequent behaviour of the process at the
location status null .

(3) If HF ((P , tag)) � []{�1 (P ,null )},
then A((P , tag)) �df C (tag) ∧ (D(�1) ; A((P ,null )))
If HF ((P , tag)) �df []{#1 (P ,null )}
then HF ((P , tag)) �df C (tag) ∧ (D(#1) ; A((P ,null )))

If the head normal form of a process belongs to the fourth type. The analysis can be divided into two cases.
The first case indicates that one of the events can be fired. The second case indicates that none of the elements
can be self-fired. The process waits for any events to be fired and one of the events will be fired during the waiting
period. The waiting period will not let macro and micro time advance. Finally, either any instantaneous action
will be scheduled or one event will be fired.

(4) If HF ((P , tag)) � ( []i∈I {Ui (Pi , indexi )}
[][]j∈J{wait(ej )(Qj ,null )}

, tag )

then

A((P , tag))

�df C (tag) ∧

⎛

⎜

⎜

⎝

∨

j∈J (selftrig(ej ) ; A((Qj ,null ))
∨

await(e) ∧ hold�(0) ;
(∨

i∈I (D(Ui ) ; A((Pi , indexi ))) ∨
∨

j∈J (trig(ei ) ; A((Qj ,null )))

)

⎞

⎟

⎟

⎠

where e �df orj∈J{ej }
If the head normal form of a process belongs to the fifth type, the analysis can be proceeded according to the

time delay type. If the time delay is micro time, the analysis can be divided into three cases. The first case indicates
that one of the events gets self-fired. The second and third case indicates that none of the events are self-fired. The
process will wait for any event to be fired. During the waiting period none of these events will be fired and the
waiting period is one micro time unit long. The second case indicates that one event will be fired without micro
time advancing. For the third case, time will advance one micro time unit.

(5) If HF ((P , tag)) � ( []i∈I {wait(ei ) (Pi ,null )}[][]{�1 (Q,null )}
, tag )

then

A((P , tag)) �df C (tag) ∧

⎛

⎜

⎜

⎜

⎝

∨

i∈I (selftrig(ei ) ; A((P ,null )))
∨
(await(e) ∧ hold�(0) ;

∨

i∈I (trig(ei ) ; A((Pi ,null ))))
∨
(await(e) ∧ hold�(0) ; phase� ; A((Q,null )))

⎞

⎟

⎟

⎟

⎠

where, e �df ori∈I {ei }
Further, for the fifth type of guarded choice, we explore the case where the time delay is macro. This analysis

can also be divided into three cases, which are similar to micro time. For the second and third cases, the holding
behaviour will change from hold�(0) into hold#(0). For the third type, time advancing will change from micro
time into macro time.
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If HF ((P , tag)) � ( []i∈I {wait(ei ) (Pi ,null )}[][]{#1 (Q,null )}
, tag )

then

A((P , tag)) �df C (tag) ∧

⎛

⎜

⎜

⎜

⎝

∨

i∈I (selftrig(ei ) ; A((Pi ,null )))
∨
(await(e)hold#(0) ;

∨

i∈I (trig(ei ) ; A((Pi ,null ))))
∨
(await(e) ∧ hold#(0) ; phase# ; A((Q,null )))

⎞

⎟

⎟

⎟

⎠

where e �df ori∈I {ei }
Based on the above definitions, we now have a way to calculate the denotational semantics from algebraic

semantics for SystemC.

Definition 4.4 (Calculating Denotational Semantics from Algebraic Semantics)

A(P ) �df

{

A((P ,null )) if P is parallel process
A((P ,null )) ∨ A((P , 〈 〉)) otherwise

�

We know that parallel composition can only appear as the outermost construct. Therefore, the calculation of
denotational semantics from algebraic semantics can be divided into two cases, i.e., parallel process and sequence
process. For a parallel process, the calculation of denotational semantics can only be at the location status null .
For a sequential process, the calculation of denotational semantics can be at the location status null and 〈 〉.

For the definition of A(P ), we know that it is based on the head normal form. As the calculation of head
normal form is in the form of one step expansion. Hence, our methodology for calculating the denotational
semantics from algebraic semantics is limited to finite programs.

5. Related work

This paper has applied Unifying Theories of Programming (abbreviated as UTP ) in formalising the denotational
semantics for SystemC. The UTP approach has been successfully applied in studying the semantics and algebraic
laws of programming languages, including probabilistic programming, object-oriented programming, real-time
systems, etc.

Probabilistic systems have been investigated using denotational [MM04] and operational [DGJP04]
approaches. The probability guarded command language (PGCL) is an extension of the guarded command
language with probabilistic choice. Its denotational semantics was formalized by He [HSM97] using the UTP
approach. A set of algebraic laws was achieved based on denotational semantics. Further, Bresciani and Butterfield
explored a theory of designs [BB13b, BB12, BB13a] based on distributions over the state space and studied the
denotational semantics for PGCL. Healthiness conditions have been explored for probabilistic programs based
on the concept of distributions over the state space. The UTP approach has been applied in object-oriented
designs by He and his colleagues [HLL06]. A denotational semantics has been defined for an object-oriented
language. A refinement calculus has also been explored. These refinement laws indicate the essential principles of
object-oriented design. Cavalcanti et al. [CWW13] proposed the safety-critical Java memory model, where safe
and predictable dynamic memory management was explored. The semantics was formalized in the UTP frame-
work. Circus is a specification language which can define data and behavioural aspects of systems [WC01, WC02].
Oliveira et al. [OCW09, OCW13] provided a new denotational semantics for Circus and mechanized the semantics
in a theorem prover ProofPower-Z, which supports automatic proof of refinement laws. Sherif et al. introduced



Formal aspects of computing: submissions 163

CircusTime, a timed extension of Circus [SCHS10]. Its semantics was also explored by using UTP approach. A
framework for validation of timed properties was provided, which was based on FDR, the CSP model checker.

This paper explored the denotational semantics for SystemC. Compared with the above UTP applications,
as a system-level modelling language, SystemC not only has real-time and shared-variable features, but also
possesses novel features such as delayed notifications, notification cancelling, notification overriding and delta-
cycle. Therefore, the UTP approach for studying the denotational semantics for SystemC is challenging.

Several efforts have been made to define the formal semantics of SystemC. Müller et al. presented a simulation
semantics [RHG+01] in the form of Abstract State Machines [BS03]. That semantics covers method, thread, and
clocked thread behavior as well as their interactions with the simulation kernel process. Gawanmeh et al. [GHT04]
extended the work in [RHG+01] to deal with more complex components of SystemC, including primitive and
hierarchical channels, SystemC design rules and a SystemC simulator. A denotational semantics for a synchronous
subset of SystemC was proposed by Salem in [Sal03], where the update and the evaluate phases were formalized
using two function domains. Habibi and Tahar presented a semantics of the main part of SystemC in terms of
fixpoint [HT05]. The soundness and correctness of the semantics of basis class SC Module has been proved w.r.t. to
a trace semantics of a whole SystemC program. Cimatti et al. have developed a software model checker KRATOS
[CMNR10, CGM+11], which can verify safety properties in the form of program assertions. The approach relies
on the translation from SystemC designs to sequential C programs. Recently, Zeng and Zhang [ZZ13] presented
an executable semantics for a subset of SystemC in guarded assignment systems. The semantics was applied in
verification based on the symbolic model checker VERDS [Zha]. We have also provided an operational semantics
for SystemC [PZHJ06]. Based on the operational semantics, bisimulation has been studied for the language by
introducing some aspects of reasonable abstractions.

For the study of the linking theory of semantics, Hoare and He have studied the derivation of operational
semantics from the algebraic semantics [HH93, HH98]. An operational semantics of CSP [Hoa85] was derived,
based on CSP’s algebraic laws according to a derivation strategy (called the action transition relation). An
operational semantics of Dijkstra’s Guarded Command Language (GCL) was also derived based on GCL’s
algebra according to the derivation strategy (called the step relation). The total correctness of the derived GCL’s
operational semantics was also discussed in [HJS97]. Recently, Hoare proposed a challenging research topic of the
semantic linking between algebra, denotations, transitions and deductions [Hoa11, HvS12, HvSM+14]. Various
familiar operational calculi have been derived from the algebraic semantics [vSH13]. Compared with the above
explorations, this paper studied the linking theory between the denotational semantics and algebraic semantics
for SystemC. Our approach is to derive denotational semantics from algebraic semantics. We introduced the
concept of guarded choice and provided a full set of parallel expansion laws.

6. Conclusion

Compared with traditional programming languages, SystemC possesses several novel features, including delayed
notifications, notification cancelling, notification overriding and delta-cycle. In this paper we studied its denota-
tional semantics via the concept of Unifying Theories of Programming [HH98]. The timed model was formalized
in a three dimensional structure. A set of algebraic laws has been studied, especially those which can represent
the novel features of SystemC. These laws can be verified via our denotational model.

Meanwhile we also studied the calculation (i.e., derivation) of denotational semantics from algebraic semantics
for SystemC. We introduced the concept of guarded components and guarded choice. We systematically explored
a full set of parallel expansion laws for SystemC. Our derivation approach is based on the introduction of head
normal form. Based on the concept of head normal form, we provided the strategy for deriving denotational
semantics from algebraic semantics. Program equivalence can also be explored by using the derived denotational
semantics.

For the future, we are continuing to work on the unifying theories [HH98, Zhu05] for SystemC. We plan
to embed the achievements of the denotational semantics in the framework of PVS [OSRSC99a, SORSC99,
OSRSC99b] or ProofPower [Jon92, OCW09, OCW13] to support the mechanical proof of the algebraic laws. The
embedding of the derivation approach of generating denotational semantics from algebraic semantics in PVS is
also challenging and we aim to support automatic verification based on the UTP approach.
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Appendix

Here we use the producer and consumer program to illustrate the syntax of a subset of SystemC proposed in
Sect. 2, For better illustrating the concept of channel update and delta-cycle, we use channels for communication
inter processes. For simplicity, channel array is introduced, which has the same usage as individual channel. In
addition, for simplicity, we take one assumption that every two continuous values on one output channel are
different. The program code is shown as below:

System = Consumer || Producer
Consumer = true *{ ch num ?? num0;

wait(pe(ch num)) �num0=0� skip;
ch first ?? first0;
ch data[first0] ?? c0;
ch num !! num0-1;
ch first!!first0+1%MAX;
wait(pe(ch num) | ne(ch num));

}
Producer = true *{ ch num ?? num1;

wait(ne(ch num)) �num1=MAX� skip;
ch first ?? first1;
ch data((first1+num)%MAX)!!c1;
ch num !! num1+1;
wait(pe(ch num) | ne(ch num));

}

Here, notation b*P stands for while b do P, and P�b�Q stands for if b then P else Q. For producer
and consumer example, the program based on SystemC 2.0 can be found at [Swa], which is contributed by Stuart
Swan.

The meanings of each channel and variable are shown below:

• ch num: the data number in the current buffer area, expressed in the form of a channel, its initial value is 0.
• ch first: the position of the new value in buffer area, expressed in the form of a channel, it initial value is 0.
• ch data: the buffer area, expressed in the form of channel array.
• MAX: capacity of the buffer area.
• num0, num1, first0,first1,c0,c1: local variables, and c1 holds the data to be put into buffer area.
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