
DOI 10.1007/s00165-014-0305-z
BCS © 2014
Formal Aspects of Computing (2015) 27: 53–77

Formal Aspects
of Computing

Integrating stochastic reasoning into Event-B
development
Anton Tarasyuk∗, Elena Troubitsyna and Linas Laibinis
Åbo Akademi University, Joukahaisenkatu 3-5, 20520 Turku, Finland

Abstract. Dependability is a property of a computer system to deliver services that can be justifiably trusted.
Formal modelling and verification techniques are widely used for development of dependable computer-based
systems to gain confidence in the correctness of system design. Such techniques include Event-B—a state-based
formalism that enables development of systems correct-by-construction. While Event-B offers a scalable approach
to ensuring functional correctness of a system, it leaves aside modelling of non-functional critical properties, e.g.,
reliability and responsiveness, that are essential for ensuring dependability of critical systems. Both reliability,
i.e., the probability of the system to function correctly over a given period of time, and responsiveness, i.e., the
probability of the system to complete execution of a requested service within a given time bound, are defined as
quantitative stochastic measures. In this paper, we propose an extension of the Event-B semantics to enable sto-
chastic reasoning about dependability-related non-functional properties of cyclic systems. We define the require-
ments that a cyclic system should satisfy and introduce the notions of reliability and responsiveness refinement.
Such an extension integrates reasoning about functional correctness and stochastic modelling of non-functional
characteristics into the formal system development. It allows the designer to ensure that a developed system
does not only correctly implement its functional requirements but also satisfies given non-functional quantitative
constraints.

Keywords: Event-B, Refinement, Probabilistic reasoning, Reliability, Responsiveness, Cyclic systems, Markov
processes

1. Introduction

Formal methods—the mathematically-based approaches that provide the developers with rigorous ways to design
and analyse systems—are extensively used in the design of dependable computer-based systems. Such methods
include Event-B [Abr10, Abr96]—a formalism derived from the B Method [Abr05] to facilitate development
of reactive and distributed systems. Event-B is a rigorous, state-based framework supporting the correct-by-
construction system development. When developing a computer-based system in Event-B, we start from an
abstract specification that defines the essential behaviour and properties of the system under construction. Via
a number of correctness preserving model transformations—refinement steps, the abstract specification is trans-
formed into a specification that is close to the desired implementation. In the development process, correctness
of each refinement step is verified by proofs.

Correspondence and offprint requests to: A. Tarasyuk, E-mail: anton.tarasyuk@abo.fi

54 A. Tarasyuk at al.

Formal development in Event-B allows us to ensure that a resulting detailed specification adheres to its abstract
counterpart, i.e., it guarantees that the services provided by the system are functionally correct. However, to ensure
dependability, it is essential to guarantee that the system is not only functionally correct but also satisfies a number
of non-functional constraints. Usually such constraints are defined probabilistically. Currently, non-functional
dependability-related system requirements are abstracted away in the process of system refinement. Yet, it would
be desirable to re-use the created formal models for evaluating the impact of the chosen design decisions on the
given non-functional requirements. Hence there is a clear need for integration between modelling of functional
and non-functional system requirements.

In this paper, we extend the Event-B framework to enable stochastic modelling of reliability and responsiveness
of cyclic systems. Reliability is the probability of the system functioning correctly over a given period of time
under a given set of operating conditions [ALRL04, Vil95, O’C95], while responsiveness is the likelihood that
the system successfully completes a service delivery within a certain time bound [TRF03, CS88]. These properties
are dual in the sense that reliability can be defined as a probabilistic measure of the system staying operational
during a certain time period, while responsiveness is a probabilistic measure of the system termination within
a certain period of time. We rely on the notion of iteration as a discrete unit of time defining the unified time
scale for cyclic systems, i.e., the systems that iteratively execute a predefined sequence of computational steps.
We formally define the conditions that should be verified to ensure that the system under construction is indeed
cyclic.

To enable explicit probabilistic reasoning about reliability and responsiveness, we propose a pragmatic
approach to evaluating the impact of various possible refinement alternatives on system dependability. We advo-
cate a dependability-explicit development process in which construction of a formal model of the functional
system behaviour is intervened by stochastic evaluation of chosen design decisions on dependability. Such an
approach aims at improving predictability in the system design by allowing the designers to assess the target
system characteristics from the early development stages.

To facilitate stochastic assessment using Event-B models, we introduce a new language construct—the quan-
titative probabilistic choice—and define the semantics of the extended Event-B models. We show that, in the
case of fully probabilistic systems, the underlying model of a probabilistically-enriched Event-B specification is
a discrete-time Markov chain [KS60]. Moreover, in the case of the systems that contain both probabilistic and
demonic behaviour, this model becomes a Markov decision process [Put05, Whi93].

To enable reliability- and responsiveness-explicit development in the probabilistically-augmented Event-B, we
strengthen the notion of refinement by requiring that a refined model, in addition to being a proper functional
refinement of its more abstract counterpart, also satisfies a number of quantitative constraints. These constraints
ensure that the refined model improves (or at least preserves) the current system reliability and/or responsiveness.
These additional constraints are derived from the fundamental properties of discrete-time Markov chains and
Markov decision processes. We also compare the proposed definitions of probabilistic Event-B refinement with
the traditional approach to probabilistic program refinement (see [MM05] for instance) and demonstrate by
an example that the refinement conditions stipulated by the traditional approach are generally too strong for
reasoning about such system properties as reliability and responsiveness. We believe that our work establishes
sound mathematical foundations for integrating logical reasoning about functional correctness and probabilistic
analysis of critical system properties.

The paper is structured as follows. In Sect. 2 we overview our formal framework—Event-B and discuss several
advances in applying the framework to the development of dependable systems. In Sect. 3 we introduce the notion
of cyclic systems, formulate the conditions required to verify their cyclic nature, and formally define the notion of
a system iteration and its properties. In Sect. 4 we introduce the probabilistic choice operator and give an example
of a probabilistic Event-B model. In Sects. 5 and 6 we present the strengthened notion of Event-B refinement
for both fully probabilistic systems and systems with nondeterminism. In Sect. 7 we summarise the presented
approach to stochastic reasoning in Event-B. Finally, in Sects. 8 and 9 we overview the related work in the field
and give some concluding remarks.

Integrating stochastic reasoning 55

2. Introduction to Event-B

Event-B [Abr10] is a formal framework derived from the B method [Abr05] to model parallel, distributed and
reactive systems. The Rodin platform [Rod] provides tool support for modelling and formal verification by
theorem proving in Event-B.

Event-B employs a top-down refinement-based approach to system development. The development starts
from an abstract system specification that models the most essential behaviour and properties. Each refinement
step introduces a representation of more detailed requirements into the system model. This results in elaborating
on the data structures, dynamic behaviour and properties of the model. The logical consistency of system models
and correctness of refinement steps are verified by mathematical proofs.

2.1. Event-B language

In Event-B, a system specification is defined using the notion of an abstract state machine. An abstract state
machine encapsulates the model state, represented as a collection of model variables, and defines operations on
this state via machine events . The occurrence of events together with the associated state changes represents the
system behaviour.

Usually, an Event-B machine has an accompanying component called context . A context component can
include user-defined carrier sets (types) as well as constants and their properties, which are given as a list of model
axioms. In a most general form, an Event-B model can be defined as follows.

Definition 1 An Event-B model is a tuple (C,S,A, υ,Σ, I, E, Init), where:

• C is a set of model constants;
• S is a set of model sets (types);
• A is a set of axioms over C and S;
• υ is a set of model variables;
• Σ is the model state space, which is defined by all possible valuations of the model variables υ;
• I is the model invariant defined as a state predicate, i.e., I ∈ Σ → Bool ;
• E is a non-empty set of model events, where each event e belonging to E is defined as a binary state relation,

i.e., e ∈ Σ × Σ → Bool ;
• Init is a predicate defining an non-empty set of model initial states.

The model variables υ are strongly typed by the constraining predicates specified in the invariant I and
initialised by the values satisfying the predicate Init . Furthermore, I may define other important properties that
must be preserved by the system during its execution.

While specifying an event, we rely on the following syntax:

e �̂ any a where Ge then Re end,

where e is the event name, a is a list of local variables of the event, and Ge is the event guard—a model state
predicate Ge ∈ Σ × Γ → Bool . Here Γ is the collective type of the event local variables. The event action
Re ∈ Γ ×Σ ×Σ → Bool is defined as a relation expressing the relationship between the values of local variables,
the system states before, and the system states after event execution.

The event guard Ge defines the conditions under which such an execution can be performed, i.e., when
the event is enabled . If several events are enabled at the same time, any of them can be chosen for execution
nondeterministically.

The event action Re is usually specified as a parallel composition of state assignments. These assignments
can be either deterministic or nondeterministic. A deterministic assignment x :� E (x , y), where x , y ⊆ υ, has
the standard syntax and meaning. A nondeterministic assignment is denoted either as x :∈ S , where S is a set
of values, or x :| P (x , y, x ′), where P is a predicate relating the initial values of variables x and y to some final
value of x , denoted as x ′. As a result of such non-deterministic assignments, the variables x can get any value
either belonging to S or according to P .

If an event does not have local variables, it can be described simply as

e �̂ when Ge then Re end.

Here Ge is of the type Σ → Bool , and Re is of the type Σ × Σ → Bool .

56 A. Tarasyuk at al.

2.2. Event-B semantics: model events

Essentially, an event e of the form when Ge then Re end is a relation describing the corresponding state transfor-
mation from σ to σ ′, such that

e(σ, σ ′) � I(σ) ∧ Ge (σ) ∧ Re (σ, σ ′).

Here we treat the model invariant I as an implicit event guard. Note that, due to the possible presence of
nondeterminism, the successor state σ ′ is not necessarily unique.

An event e of the form any a where Ge then Re end is defined as follows:

e(σ, σ ′) � ∃a · I(σ) ∧ Ge (σ, a) ∧ Re (a, σ, σ ′).

We can always rewrite the guard predicate Ge (σ, a) into Gev (σ) ∧ Gea (σ, a), where Gev ∈ Σ → Bool is a
condition on the global state, and Gea ∈ Σ × Γ → Bool is a predicate constraining the values of the local event
variables. Then the above definition is equivalent to

e(σ, σ ′) � I(σ) ∧ Gev (σ) ∧ (∃a · Gea (σ, a) ∧ Re (a, σ, σ ′)).

It is easy to see that such an event is a special case of the simple event form, with the guard Gev (σ) and the action
(λ(σ, σ ′) · ∃a · Gea (σ, a) ∧ Re (a, σ, σ ′)). Without loss of generality, from now on we will consider only events
of the simple form when Ge then Re end.

In other words, the semantics of a single model event is given as a binary relation between pre- and post-states
of the event. To clarify this relationship, we define two functions before and after of the type E → 2Σ in a way
similar to [Ili11, TTL12]:

before(e) � {σ ∈ Σ | I(σ) ∧ Ge (σ)} and after(e) � {σ ′ ∈ Σ | ∃σ ∈ Σ · I(σ) ∧ Ge (σ) ∧ Re (σ, σ ′)}.
The latter definition can be also rewritten as follows:

after(e) � {σ ′ ∈ Σ | ∃σ ∈ Σ · σ ∈ before(e) ∧ Re (σ, σ ′)}.
One can see that, for a given event e ∈ E and any state σ ∈ Σ , e is enabled in σ if and only if σ ∈ before(e).
To reason about the event execution starting from a particular pre-state σ , we also introduce a single-state

version of the function after:

afterσ (e) � {σ ′ ∈ Σ | I(σ) ∧ Ge (σ) ∧ Re (σ, σ ′)}.
We can lift the above functions before and after for any set of the given events E , E ⊆ E :

before(E) �
⋃

e∈E

before(e) and after(E) �
⋃

e∈E

after(e).

In the special case when E � E , the resulting set before(E) contains all the states when the modelled system is
operational, i.e., when at least one event is enabled. Correspondingly, the complement of before(E) gives us those
system states that, once reached, put the system into deadlock:

deadlocks(E) � Σ \ before(E).

The semantics of model events also allows us to define the notion of an execution trace of the modelled system.

Definition 2 (Execution trace) For any Event-B model we define its execution trace, tr, as a sequence of system
states

< σ0, . . . , σi , σi+1, . . . >

such that

(1) σ0 ∈ Init ;
(2) ∀ i ∈ N · σi , σi+1 ∈ tr ⇒ ∃e ∈ E · σi ∈ before(e) ∧ σi+1 ∈ afterσi

(e).

Finally, we define the set tracesM as a set containing all the execution traces of the Event-B model M .

Integrating stochastic reasoning 57

2.3. Event-B semantics: initial model

The semantics of an entire Event-B model is completed by formulating a number of conditions—proof obligations ,
expressed in the form of logical sequents. In this paper we consider only the most important proof obligations
that should be verified for the initial and refined models. The full list of proof obligations can be found in [Abr10].

In this paper we will heavily rely on the semantic functions before and after defined above. To keep our
formalisation consistent and concise, we formulate all the presented proof obligations in terms of these functions.

The initial Event-B model should satisfy the event feasibility and invariant preservation properties. For each
event e, its feasibility means that, whenever the event is enabled (in some particular state σ), its next-state relation
is well-defined, i.e., there exists some reachable after-state:

A, σ ∈ before(e) � ∃σ ′ · σ ′ ∈ afterσ (e) (FIS)

Each event e of an Event-B model should also preserve the model invariant:

A, σ ′ ∈ after(e) � I(σ ′) (INV)

Since the initialisation event has no initial state and guard, its invariant preservation proof obligation is simpler:

A, Init(σ ′) � I(σ ′) (INIT)

2.4. Event-B semantics: refinement

Each Event-B refinement step typically introduces new variables and events into a more abstract model. The
introduced new events correspond to stuttering steps that are not visible at the abstract level. The old, abstract
model events may be also refined to reduce their nondeterminism and provide access to the new variables.

Moreover, Event-B formal development supports data refinement, allowing us to replace some abstract vari-
ables with their concrete counterparts. In that case, the invariant of a refining machine is extended (conjuncted)
with a so called gluing invariant that formally defines the relationship between the abstract and concrete vari-
ables. Informally, it “glues” the state of the present machine to that of a (more) abstract machine being refined.
A gluing invariant is used to prove simulation relationship between two machines, as formally defined in the
refinement proof obligations presented below. For more details about using a gluing invariant in the Event-B
refinement process, see [Abr10].

Let Σa , Ia and Ea be respectively the state space, invariant, and events of the abstract model. Similarly, let
Σc , Ic and Ec be respectively the state space, invariant, and events of the (concrete) refined model. Finally, let J
be a gluing invariant between Σa and Σc . To verify correctness of a refinement step, we need to prove a number
of proof obligations for the refined model.

The first three proof obligations focus on the connection between the abstract events and their concrete refined
versions. Let us assume that an abstract event ea ∈ Ea is refined by a concrete event ec ∈ Ec .

The first proof obligation states that the refined event ec should stay feasible:

A, Ia (σa), J (σa , σc), σc ∈ before(ec) � ∃σ ′
c · σ ′

c ∈ afterσc
(ec) (REF FIS)

The guard of the refined event ec can be only strengthened in a refinement step:

A, Ia (σa), J (σa , σc), σc ∈ before(ec) � σa ∈ before(ea) (REF GRD)

The refined event ec should preserve the concrete invariant Ic . Moreover, its “execution” cannot be contra-
dictory to that of the abstract event ea :

A, Ia (σa), J (σa , σc), σ ′
c ∈ afterσc

(ec) � Ic(σ ′
c) ∧ ∃σ ′

a · σ ′
a ∈ afterσa

(ea) ∧ J (σ ′
a , σ ′

c) (REF INV)

To verify that all the concrete events (both old and new) do not introduce additional deadlocks into the model,
we need to prove relative deadlock freedom:

A, σa ∈ before(Ea), J (σa , σc), Ic(σc) � σc ∈ before(Ec) (REF DLF)

58 A. Tarasyuk at al.

Finally, we should demonstrate that the new events do not collectively diverge, i.e., they eventually return
control to the old events. This is typically achieved by providing a natural number state expression (variant) and
showing that each new event decreases it. Let nvar ∈ Σc → N be the provided variant expression. Let also e ∈ ̂Ec

be a new concrete event, where ̂Ec ⊂ Ec is a set of new events of the refined model. Then the non-divergence proof
obligation for the event e can be presented as follows:

A, σ ′
c ∈ afterσc

(e) � nvar (σ ′
c) < nvar (σc) (REF VAR)

The Event-B refinement process allows us to gradually introduce implementation details, while preserving
functional correctness during stepwise model transformation. The model verification effort, in particular, auto-
matic generation and demonstration of the required proof obligations, is significantly facilitated by the provided
tool support—the Rodin platform.

Event-B facilitates correct-by-construction development of critical systems. However, to ensure system
dependability, we should guarantee that the system is not only functionally correct but also meets desired non-
functional requirements to system reliability, safety, responsiveness, etc. Since many of these properties depend
on time, in the next section we will demonstrate how reliance on the notion of iteration allows us to implicitly
introduce a model of time into Event-B specifications of cyclic systems. In its turn, it sets a scene for stochastic
reasoning about critical system properties.

2.5. Development of dependable systems by refinement

Event-B facilitates the correct-by-construction development of dependable systems. In particular, it provides
the system developers with a powerful mechanism for structuring complex system requirements and systematic
reasoning about the system behaviour at different levels of abstraction. Moreover, various dependability-related
aspects of the system behaviour can be modelled and verified in the Event-B refinement process. Over the recent
years, a significant experience has been gained in refinement-based development of dependable systems from vari-
ous domains. In particular, a significant contribution to establishing a formal dependability-explicit development
process has been done within the EU projects RODIN [ROD04] and DEPLOY [DEP08].

Dependability is a multi-facet system characteristic that puts an emphasis on different system properties
depending on the nature of an application. A number of modelling patterns, refinement strategies and integrated
modelling techniques have been proposed to formally define and verify various aspects of dependability, and in
particular fault tolerance.

Fault tolerance mechanisms are introduced into the system design to mask or mitigate the effect of compo-
nent failures on the system-level services and, per se, maximise system reliability. Since system components are
inherently unreliable, i.e., their behaviour might deviate from the nominal one during system functioning, coping
with faults is important for ensuring dependability. In the formal dependability-explicit development, modelling
the failure behaviour constitutes an intrinsic part of the specification at all levels of abstraction. It allows us to
explicitly model non-deterministic failure occurrence and introduce the required fault tolerance mechanisms by
refinement. Such an approach enables building large-scale fault tolerant systems with complex hierarchical fault
tolerance mechanisms.

Essentially, while introducing fault tolerance mechanisms by refinement, we define the means for mitigating
non-deterministic occurrence of faults. Hence, we resolve or reduce inherent nondeterminism of the specification.
Usually there are several ways to achieve it, i.e., there are different alternative implementations of fault tolerance.
Each of them is a valid refinement of the specification under consideration, i.e., each alternative is equivalent from
the correctness point of view. Yet they might be different from the point of view of the non-functional requirements.
Since these non-functional requirements often could be only evaluated probabilistically, it is desirable to enable
evaluation of the refinement alternatives to optimise such design decisions throughout the development process.
If there is a specific non-functional property of interest, we can consider such a formal development to be driven
by this property.

Such an evaluation might not be required at each refinement step, since a particular refinement step could
elaborate on the nominal system behaviour or refine the abstract data structures, i.e., it might not impact the
non-functional system characteristics. On the other hand, when a refinement step introduces a representation of
redundant component or computation re-execution, an assessment of the non-functional characteristics would
give the designers an immediate feedback on appropriateness of the chosen design with respect to certain target
characteristics.

Integrating stochastic reasoning 59

In this paper, we aim at proposing a practical solution for integrating assessment of the non-functional
characteristics of dependable systems, especially reliability and responsiveness, into the refinement process in
Event-B. Since these properties depend on time, in the next section we will demonstrate how reliance on the
notion of iteration allows us to implicitly introduce a model of time into Event-B specifications of cyclic systems.
In its turn, it facilitates stochastic modelling of quantitative dependability properties.

3. Modelling of cyclic systems in Event-B

There is a large class of systems that exhibit a cyclic behaviour, i.e., the systems that iteratively execute a predefined
sequence of steps. Typical representatives of cyclic systems are control and monitoring systems. For instance, one
iteration of a control system usually includes reading the sensors that monitor the controlled physical processes,
processing the obtained sensor values, and finally setting the actuators according to a predefined control algo-
rithm. In principle, the system could operate in this way indefinitely. However, unforeseen conditions in the
operating environment or component failures may affect the normal system functioning and lead to a shutdown.

3.1. The Event-B structure and control flow of a cyclic system

Let us start by describing the desired structure and control flow properties of cyclic systems we aim to model
in Event-B. After completing computations performed at each iteration, the status of a cyclic system should be
re-evaluated to decide whether it can continue its operation. Moreover, some actions may be needed to initiate a
new iteration.

Therefore, it is convenient to split a formal model of a cyclic system into three groups of events. The first two
groups, called IN and OUT , model the system behaviour at the beginning and the end of each system iteration
respectively. These actions may include some necessary calculations as well as controlling actions to initialise and
finalise a system iteration. The last group, called e0, models the internal computations of a cyclic system that may
be conducted within a single iteration.

Without losing generality, from now on we will treat all such groups of events as single events IN , e0, and
OUT (because they can always be merged into the corresponding single events, see, e.g., [Abr10]). Thus, each
iteration of the modelled cyclic system can be represented by the following control flow on model events:

IN −→ e0 −→ OUT .

During the Event-B refinement process, any of the events IN , OUT and e0 can be refined. For simplicity, in
this paper we assume that refinement will focus on elaborating the computation modelled by e0. This reflects the
refinement style that is frequently adopted in Event-B: the detailed representation of an algorithm is introduced in
a number of new events e1, e2, . . . , en preceding e0. In other words, these events model intermediate calculations
on new data structures necessary to produce the system result in e0. Then the control flow of a single iteration of
a refined system looks as follows:

IN −→ e1, . . . , en −→ e0 −→ OUT .

Note that we do not restrict in any way the execution order of the new events e1, e2, . . . , en , i.e., any event
branching or looping is possible. However, according to the Event-B semantics, e1, e2, . . . , en are not allowed to
diverge (see the proof obligation rule REF VAR), i.e., the new events will eventually return control to the event
e0.

3.2. Formal requirements for cyclic systems

Let us now formally define requirements imposed on the abstract and refined Event-B models of a cyclic system.
Similarly to Sect. 2, we denote by E the set of all model events. Moreover, let ̂E be all the new model events
introduced during the refinement process. In other words,

̂E � {e1, e2, . . . , en } and E � {IN , e0,OUT } ∪ ̂E .

Next we formulate a number of formal requirements that a model of a cyclic system has to satisfy. These prop-
erties can be generated and verified as additional proof obligations for a particular model under consideration.

60 A. Tarasyuk at al.

Since the properties proved for an Event-B model are preserved for any of its refinements, it is often sufficient to
verify these additional proof obligations for the newly introduced events only.

{σ ∈ Σ | Init(σ)} ⊆ before(IN) (1)

after(IN) ⊆ before(e0) ∪ before(̂E) (2)

after(̂E) ⊆ before(̂E) ∪ before(e0) (3)
after(e0) ⊆ before(OUT) (4)
after(OUT) ⊆ before(IN) ∪ deadlocks(E) (5)
∀e, f ∈ {IN ,OUT , e0} · e �� f ⇒ before(e) ∩ before(f) � ∅ (6)

∀e ∈ {IN ,OUT } · before(e) ∩ before(̂E) � ∅ (7)

The requirement (1) states that the system initialisation should enable the event IN . The requirements (2)–(5)
stipulate the desired execution order of the involved model events, informally presented in the control flow given
above. Specifically, the event IN must be followed by the event e0 or any of the new model events [the requirement
(2)]. The new events may loop or terminate by enabling e0 [the requirement (3)]. The event e0 is followed by the
event OUT [the requirement (4)]. Finally, the event OUT may enable a start of a new iteration by the event IN
or put the whole system into a deadlock [the requirement (5)].

The last two requirements (6) and (7) stipulate that the guards of the events IN ,OUT and e0 as well as
IN ,OUT and any new event from ̂E should be disjoint, i.e., they cannot be enabled at the same time. This allows
us to guarantee that the presented control flow is strictly followed.

The presented formulation of additional proof obligations ensuring a specific control flow of events is inspired
by the approach given in [Ili11].

3.3. Example: abstract Event-B model of a cyclic system

In this section we present an example of modelling a simple cyclic system in Event-B. It can be easily shown that
the modelled system satisfies the given cyclic system requirements (1)–(7).

Our example is a simple monitoring system that consists of a sensor, which produces certain measurements,
and a controller, which periodically reads the sensor outputs. The controller analyses each reading to detect
whether the sensor functions properly or it has failed. If no fault is detected, the system outputs the obtained
sensor reading and continues to iterate in the same way. This behaviour constitutes the fully operational state of
the system. However, if the controller detects a sensor failure then the system enters the degraded state, during
which the sensor may recover. In this state the controller keeps periodically reading the sensor outputs to detect
whether it has recovered. The system can stay in the degraded state for a limited period of time (we assume it
cannot exceed 3 iterations). If sensor recovers from its failure within the allowed time limit, the system gets back
to the fully operational state and its normal function is resumed. Otherwise, the system aborts.

Figure 1 shows an abstract Event-B model (machine CS) of such a cyclic system. For the sake of simplicity,
we omit a representation of the output produced by the system, while the sensor behaviour is abstractly modelled
by nondeterministically changing its status. The variable phase models the phases that the system goes through
within one iteration: first reading the sensor, then detecting a sensor failure, and finally either outputting some
sensor reading or aborting. The variable st models the sensor status. When st � 1, the sensor is operational.
Otherwise, i.e., when st � 0, it has failed. The value of the variable cnt corresponds to the number of successive
iterations when the sensor remains faulty. The unrecoverable system failure occurs when the cnt value exceeds 3.
In this case the variable phase gets the value abort and the system deadlocks.

We will use the model CS and its refinements as the running example of this paper.

3.4. Observable states and iterations

While reasoning about quantitative properties of a cyclic system, we are usually interested in the number of
iterations that the system can perform before it terminates. This observation allows us to focus only on those

Integrating stochastic reasoning 61

Machine CS
Variables st, phase, cnt
Invariants st ∈ {0, 1}, phase ∈ {in, det, out, abort}, cnt ∈ N

Events

Initialisation =̂
begin

st, phase, cnt := 1, in, 0
end

IN =̂
when

phase = in
then

st :∈ {0, 1}
phase := det

end

e0 =̂
when

phase = det
then

cnt :| (st = 1 ⇒ cnt′ = 0) ∧ (st = 0 ⇒ cnt′ = cnt + 1)
phase := out

end
OUT =̂
when

phase = out
then

phase :| phase′ ∈ {in, abort} ∧ (phase′ = in ⇔ cnt ≤ 3)
end

Fig. 1. Event-B model of a cyclic system

system states where a system iteration starts and finishes. We call such system states observable. We also distinguish
an important subset of the observable states called operational states. Usually, essential properties of the system
(such as dependability, performance and safety properties) can be guaranteed only while the system stays in the
operational states.

Definition 3 (Observable states). For Event-B models satisfying the requirements (1)–(7), we define the observable
system states as a set containing all the states where an iteration of a cyclic system may start or finish, i.e.,

Σobs � before(IN) ∪ after(OUT).

From the requirement (5), we can also conclude that

Σobs ⊆ before(IN) ∪ deadlocks(E). (8)

Since before(IN) ∩ deadlocks(E) � ∅, (8) also suggests that the set of observable states can be partitioned
into two disjoint subsets of operational and non-operational (or terminating) states:

Σobs � Σop ∪ Σnop,

where Σop � before(IN) and Σnop � after(OUT) \ before(IN) ⊆ deadlocks(E).

States that are not in Σobs are called unobservable. Intuitively, introduction of the system observable states
Σobs means that, for the external observer of a cyclic system, the core part of a cyclic system is a “black box”
and only starting and ending points of iterations are visible. Moreover, since in this paper we aim at stochastic
reachability analysis of cyclic systems, we assume that the set Σ is finite.

Before we formally define the notion of an iteration for the proposed generalised Event-B model of a cyclic
system, let us to formulate one useful lemma.

Lemma 1 If an Event-B model satisfies the requirements (1)–(7), all the model events from {e0} ∪ ̂E are defined on
unobservable system states only, i.e.,

∀e ∈ {e0} ∪ ̂E · (before(e) ∪ after(e)) ∩ Σobs � ∅.

Proof We only show the proof for the event e0. The corresponding proof for any e such that e ∈ ̂E is similar.
From the requirement (6), we immediately have that

before(e0) ∩ before(IN) � ∅.

Moreover, by the definition of deadlocks(E), the following is true:

before(e0) ∩ deadlocks(E) � ∅.

From these two propositions and the property (8), we have

before(e0) ∩ Σobs � ∅. (9)

62 A. Tarasyuk at al.

Similarly, from the requirements (4) and (6), we can conclude that

after(e0) ∩ before(IN) � ∅.

From the requirement (4) and the definition of deadlocks(E), we also get

after(e0) ∩ deadlocks(E) � ∅.

From the last two propositions and the property (8), we have

after(e0) ∩ Σobs � ∅. (10)

Finally, from (9) and (10), we conclude that

(before(e0) ∪ after(e0)) ∩ Σobs � ∅.

�
Each iteration of a cyclic system maps the current operational system state σ ∈ Σop into a subset of Σobs .

The resulting set of states represents all possible states that can be reached due to the system nondeterministic
behaviour. Formally, we can define it as follows:

Definition 4 (Iteration) An iteration of a cyclic system M is a total function mapping the set of operational states
to the powerset of observable system states

iter ∈ Σop → 2Σobs ,

such that, for any subsequent observable states σ and σ ′ in some system execution trace tr ∈ tracesM , the
following holds

σ ′ ∈ iter (σ).

Theorem 1 If an Event-B model satisfies the requirements (1)–(7), the modelled system is cyclic and its iteration
function iter can be defined on all the system operational states.

Proof Let us first consider the case when ̂E � ∅.
In that case, the requirements (1)–(7) guarantee that the system repeatedly executes the events IN , e0, and

OUT in the fixed order. Moreover, Lemma 1 states that the intermediate states, i.e., the pre- and post-states of
the event e0, are unobservable. This means that we can treat the events IN , e0, and OUT as a single event

IN ; e0; OUT ,

where “;” denotes the relational composition operator.
Then we can define the function iter as

iter (σ) � afterσ (IN ; e0; OUT),

for any σ ∈ before(IN).
In the case of ̂E �� ∅, we rely on the proof obligation (REF VAR), which states that the new events cannot

diverge. This allows us to represent the overall execution of the new events as a single composite event (ê)∗, where
ê � ⋃

e∈̂E e and ∗ denotes the transitive relational closure operator.
Moreover, the requirements (1)–(7) guarantee that the system is now repeatedly executed as a composite event

IN ; (ê)∗; e0; OUT ,

when Lemma 1 again enforces that all the intermediate states from the constructed set
⋃

e∈{e0}∪̂E
(before(e) ∪ after(e))

are unobservable. �
Similarly as above, we can now define the function iter as

iter (σ) � afterσ (IN ; (ê)∗; e0; OUT),

for any σ ∈ before(IN). �

Integrating stochastic reasoning 63

Essentially, Theorem 1 postulates that, no matter what refinement steps are taken, the Event-B refinement
process will preserve the cyclic nature of a given system, provided that the formulated requirements (1)–(7) are
verified. This means that we can use the notion of a system iteration as a discrete unit of time defining the unified
time scale for any Event-B machine in the refinement chain.

The given requirements for modelling cyclic systems defined above narrow down the class of considered
Event-B models. However, this makes such models amenable for integrating stochastic reasoning about the
system behaviour. To achieve this goal, we first propose a semantic extension of the Event-B language.

4. Stochastic modelling in Event-B

Hallerstede and Hoang [HH07] have extended the Event-B framework with a new operator—qualitative
probabilistic choice, denoted ⊕|. This operator assigns new values to state variables with some positive but gener-
ally unknown probability. The proposed extension aims at introducing into Event-B the concept of “almost-certain
convergence”—probabilistically certain termination of new event operations introduced by model refinement. The
new operator can only replace a nondeterministic choice (assignment) statement in the event actions. It has been
shown that any probabilistic choice statement always refines its demonic nondeterministic counterpart [MM05].
Hence such an extension is not interfering with the established refinement process.

In our previous work [TTL10b], we have proposed extending the Event-B modelling language with
quantitative probabilistic choice, also denoted ⊕|. The introduced operator allows us to represent a precise prob-
abilistic information about how likely a particular choice should be made. In other words, it behaves according
to some known probabilistic distribution. The quantitative probabilistic choice (assignment) has the following
syntax

x ⊕| x1 @ p1; . . . ; xn @ pn , where ∀i ∈ 1..n · 0 < pi ≤ 1 and
n

∑

i�1

pi � 1.

It assigns to the variable x a new value xi with the corresponding probability pi . Similarly to Hallerstede and
Hoang, we have restricted the use of the new probabilistic choice operator by introducing it only to replace the
existing demonic one. Therefore, we can rely on the Event-B proof obligations to guarantee functional correctness
of a refinement step. Moreover, the probabilistic information introduced in new quantitative probabilistic choices
can be used to stochastically evaluate certain non-functional system properties as well as their preservation during
the refinement process.

To illustrate the proposed extension, in Fig. 2 we present a probabilistic refinement of the abstract machine
CS. In CS, a possible sensor failure and its recovery are modelled nondeterministically. In PCS, we refine the event
IN by two events IN1 and IN2, separating the cases of detecting a sensor failure and its recovery. Moreover, we
replace nondeterministic assignments to the sensor status by probabilistic ones. Here, the non-zero constants f
and r represent the probabilities of sensor’s failure and recovery correspondingly. According to the theory of
probabilistic refinement [MM05], the machine PCS is a refinement of the machine CS.

The proposed probabilistic choice operator allows us to introduce a specific probabilistic information into
Event-B models and, as a result, model (at least some subset of) probabilistic systems. Our goal, however, is to
integrate stochastic reasoning into the entire Event-B development process. In the next section we will show how
the notion of Event-B refinement can be strengthened to quantitatively demonstrate that the refined system is
“better” (e.g., more reliable or responsive) than its abstract counterpart.

5. Modelling fully probabilistic cyclic systems

In this section we present a theoretical basis for formal verification of probabilistic cyclic systems in Event-B. We
rely on the structure and properties for cyclic systems introduced in Sect. 3.

64 A. Tarasyuk at al.

Machine PCS
Variables st, phase, cnt
Invariants st ∈ {0, 1}, phase ∈ {in, det, out, abort}, cnt ∈ N

Events
Initialisation =̂
begin

st, phase, cnt := 1, in, 0
end

IN1 =̂
when

phase = in ∧ st = 1
then

st ⊕| 0 @ f ; 1 @ (1−f)
phase := det

end
IN2 =̂
when

phase = in ∧ st = 0
then

st ⊕| 1 @ r; 0 @ (1−r)
phase := det

end

e0 =̂
when

phase = det
then

cnt :| (st = 1 ⇒ cnt′ = 0) ∧ (st = 0 ⇒ cnt′ = cnt + 1)
phase := out

end

OUT =̂
when

phase = out
then

phase :| phase′ ∈ {in, abort} ∧ (phase′ = in ⇔ cnt ≤ 3)
end

Fig. 2. Cyclic system: introducing probabilities

5.1. Probability distribution

Since an Event-B model is essentially a state transition system, we can simulate its execution by producing a tree
of reachable states. Each path in such a tree corresponds to one operational trace, while tree branching occurs
due the presence of nondeterminism in an Event-B model. If we replace a particular nondeterministic choice by a
probabilistic one, we essentially attach concrete weights (probabilities) to separate branches, reflecting how likely
a particular branch will be chosen for execution.

Based on that, we can distinguish between two types of modelled systems—fully probabilistic systems, i.e.,
the systems containing only probabilistic branching, and the systems that behave both probabilistically and
nondeterministically. The absence of nondeterminism in a fully probabilistic system additionally imposes a certain
restriction on its initialisation event. Specifically, it can be either deterministic or probabilistic assignment.

Let us first consider fully probabilistic systems. The quantitative information present in a probabilistic Event-
B model allows us to lift the notion of the system state to that of a probabilistic distribution over the system
state:

Definition 5 (Probability distribution). For the system observable state space Σobs , the set of distributions over
Σobs is

Σobs �̂
{

� ∈ Σobs → [0, 1] |
∑

σ∈Σobs

�(σ) � 1

}

.

Each iteration of a fully probabilistic cyclic system maps some initial operational state to a subset of Σobs

according to some probabilistic distribution, i.e., we can define a single iteration of a probabilistic cyclic system
as a total function

piter ∈ Σop → Σobs .

There is a simple connection between the iteration iter of a cyclic system and its probabilistic counterpart
piter—if some state σ ′ can be reached from a current state σ by piter with a non-zero probability then it is also
reachable by iter :

∀ σ ∈ Σop, σ ′ ∈ Σobs · piter (σ)(σ ′) > 0 ⇒ σ ′ ∈ iter (σ).

For any state σ ∈ Σop , its distribution �σ (where �σ �piter (σ)) is calculated from probabilistic choice statements
present in a model. However, once the system terminates, it stays in a terminating state forever. This means that,
for any state σ ∈ Σnop , its distribution �σ is such that �σ (σ) � 1 and �σ (σ ′) � 0, if σ ′ �� σ .

Integrating stochastic reasoning 65

5.2. Definition of quantitative refinement

While developing a complex software system, the designer often should define critical non-functional constraints,
such as required dependability or performance properties. These constraints explicitly describe the desired para-
meters of the system functioning and must be then taken into account during the development process. In this
paper we focus on reasoning about two such constraints—system reliability and responsiveness (response time).

Often, it is not possible to formally guarantee that the system always satisfies a desired critical property.
However, we can still assess the probability that the property is preserved by the system at a certain moment.
Currently, Event-B does not explicitly support the notions of time and probability. In the previous sections we
proposed a general approach for modelling cyclic systems in Event-B, where the progress of time is modelled
by system iterations. Moreover, we proposed the semantic extension of the modelling language that allows us to
augment Event-B models with probabilistic information about the system behaviour. Based on this information,
we can strengthen the notion of Event-B refinement by additionally requiring that refined models meet reliability
and responsiveness requirements with a higher probability.

Let us first consider system reliability. In engineering, reliability is generally measured by the probability that
an entity X can perform a required function under given conditions for the time interval [0, t]:

R(t) � P{X not failed over time [0, t]}.
Hence, for cyclic systems, reliability can be expressed as the probability that the system remains operational
during a certain number of iterations. Let X (t) be a function that returns the system state after t-th iteration,
where t ∈ N, and X (0) is an initial system state such that X (0) ∈ Σop . Since any system iteration may start from
only an operational system state, it holds that ∀t > 1 · X (t) ∈ Σop ⇒ X (t − 1) ∈ Σop , i.e., if the system is
operational after t iterations then it has remained operational for all previous iterations as well. Then we can
formally define the system reliability as follows:

R(t) � P{X (t) ∈ Σop}.
It is straightforward to see that this property corresponds to the standard definition of reliability given above.
Thus, while modelling a cyclic system, we can strengthen the notion of Event-B refinement from the reliability
point of view in the following way:

Definition 6 (Reliability refinement) Let Ma and Mc be two probabilistic Event-B models of cyclic systems. More-
over, let Σa

op and Σc
op be the sets of operational states of Ma and Mc correspondingly. Then we say that Mc is a

reliability refinement of Ma if and only if

1. Mc is an Event-B refinement of Ma (Ma � Mc), and

2. ∀ t ∈ N
+ · P{Xa (t) ∈ Σa

op} ≤ P{Xc(t) ∈ Σc
op}. (11)

The second condition essentially requires that the system reliability cannot decrease during the refinement
process.

Dually, for a cyclic system that terminates by providing some particular service to the customers, our goal is
to assess the probability that this service will be provided during a certain time interval t . This property can be
expressed as the probability that there exist such value i ∈ 1..t that X (i) ∈ Σnop . Clearly, for any j > i , it holds
that X (j) ∈ Σnop . Hence the probability that the system will terminate during the time interval [0, t]:

Q(t) � P{X (t) ∈ Σnop}.
Therefore, from the responsiveness point of view, we can strengthen the definition of Event-B refinement by also
requiring that the refined system should be at least as responsive as the abstract one:

Definition 7 (Responsiveness refinement) Let Ma and Mc be two probabilistic Event-B models of cyclic systems.
Moreover, let Σa

nop and Σc
nop be the sets of non-operational states of Ma and Mc correspondingly. Then we say

that Mc is a responsiveness refinement of Ma if and only if

1. Mc is an Event-B refinement of Ma (Ma � Mc), and

2. ∀ t ∈ N
+ · P{Xa (t) ∈ Σa

nop} ≤ P{Xc(t) ∈ Σc
nop}. (12)

66 A. Tarasyuk at al.

The second condition essentially requires that the system responsiveness cannot decrease during the refinement
process.

Remark If the second, quantitative refinement condition of Definitions 6 and 7 holds not for all t , but for some
interval t ∈ 1..T , T ∈ N

+, we say that Mc is a partial reliability (responsiveness) refinement of Ma for t ≤ T .

In practice, the refinement conditions (11) and (12) usually hold for specific values of probabilistic char-
acteristics of system components, often only for a limited time interval. The length of the interval for which
the quantitative refinement must be preserved is defined by the intended operation time of the system under
development. For instance, such a standard fault-tolerance scheme as triple modular redundancy is implemented
(and, consequently, is a valid refinement of a single-module system) only if, during the intended operation time,
the reliability of the single-module system is greater than 0.5. Hence in practice we usually rely on the partial
quantitative refinement (Remark 5.2). For more details about probabilistic modelling and reliability assessment
of various fault-tolerance schemes in Event-B, see [TTL10a].

5.3. Verification of quantitative refinement

To verify the first refinement condition of Definitions 6 and 7, we rely on the proof obligation rules that we
discussed in Sect. 2. The tool support for Event-B—the Rodin platform—provides us with a means for generating
and proving of all the required proof obligations, including the formalised requirements (1)–(7) for cyclic systems
given in Sect. 3. However, it lacks the functionality needed to quantitatively verify refinement conditions (11) and
(12). In this subsection we give a theoretical background that allows us to express the probabilistic reachability
properties (11) and (12) in terms of the operational and non-operational states of cyclic systems.

Let us now consider in detail the behaviour of some fully probabilistic cyclic system M . We assume that the
initial system state σ is determined by some probability distribution �0 over the set of operational states Σop

(which also covers the case of deterministic initialisation). After its first iteration, the system reaches some state
σ ′ ∈ Σobs with the probability �σ (σ ′). At this point, if σ ′ ∈ Σnop , the system terminates. Otherwise, the system
starts a new iteration and, as a result, reaches some state σ ′′ with the probability �σ ′(σ ′′), and so on. This process
is completely defined by its state transition matrix PM . More precisely, given that the state space Σobs is finite,
we can enumerate it, i.e., assume that Σobs � {σ1, . . . , σn }, and define elements of the n × n transition matrix
PM as

∀ i , j ∈ 1..n ·PM (σi , σj) �̂ �σi
(σj) �

⎧

⎨

⎩

piter (σi)(σj) if σi ∈ Σop,

1 if σi ∈ Σnop and i � j ,
0 if σi ∈ Σnop and i �� j .

In its turn, this matrix unambiguously defines the underlying Markov process—the absorbing discrete-time
Markov chain [KS60], with the set of transient states Σop and the set of absorbing states Σnop . The state transition
matrix of a Markov process together with its initial state allows us to calculate the probability that the defined
Markov process, after a given number t of steps, will be in some particular state σ . Using the transition matrix
PM , we now can assess reliability and responsiveness of Event-B models as follows:

Proposition 1 The reliability refinement condition (11) is equivalent to

∀ t ∈ N
+ · ∑

σ∈Σa
op

(

[�a
0] · P t

Ma

)

(σ) ≤
∑

σ∈Σc
op

(

[�c
0] · P t

Mc

)

(σ),

where Σa
op and Σc

op are the sets of operational states of the systems Ma and Mc respectively, [�a
0] and [�c

0] are the
initial state distribution row-vectors, and P t is the matrix P raised to the power t .

Proof Let us first consider the DTMC Ma . The vector [�a
0] · P t

Ma
is a state probability vector of the chain

Ma after t steps [KS60]. Hence by summing all the entries of this vector that correspond to the operational
system states, we obtain the overall probability that the system is operational after t iterations. Then, clearly,
RMa

(t) �
∑

σ∈Σa
op

(

[�a
0] · P t

Ma

)

(σ). Similarly, RMc
(t) �

∑

σ∈Σc
op

(

[�c
0] · P t

Mc

)

(σ), which proves Proposition 1.

�

Integrating stochastic reasoning 67

Machine RPCS
Variables st1, st2, phase, cnt

Invariants st1, st2 ∈ {0, 1}, phase ∈ {in, det, out, abort}, cnt ∈ N, st = 0 ⇔ st1 + st2 = 0
Events

Initialisation =̂
begin

st1, st2, phase, cnt := 1, 1, in, 0
end

IN12 =̂
when

phase = in ∧ st1 = 1 ∧ st2 = 1
then

st1 ⊕| 0 @ f ; 1 @ (1−f)
st2 ⊕| 0 @ f ; 1 @ (1−f)
phase := det

end
IN12 =̂
when

phase = in ∧ st1 = 1 ∧ st2 = 0
then

st1 ⊕| 0 @ f ; 1 @ (1−f)
st2 ⊕| 1 @ r; 0 @ (1−r)
phase := det

end
IN13 =̂
when

phase = in ∧ st1 = 0 ∧ st2 = 1
then

st1 ⊕| 1 @ r; 0 @ (1−r)
st2 ⊕| 0 @ f ; 1 @ (1−f)
phase := det

end

IN2 =̂
when

phase = in ∧ st1 = 0 ∧ st2 = 0
then

st1 ⊕| 1 @ r; 0 @ (1−r)
st2 ⊕| 1 @ r; 0 @ (1−r)
phase := det

end

e0 =̂
when

phase = det
then

cnt :| (st1 + st2 > 0 ⇒ cnt′ = 0) ∧ (st1 + st2 = 0 ⇒ cnt′ = cnt + 1)
phase := out

end

OUT =̂
when

phase = out
then

phase :| phase′ ∈ {in, abort} ∧ (phase′ = in ⇔ cnt ≤ 3)
end

Fig. 3. Cyclic system: probabilistic reliability refinement

Proposition 2 The responsiveness refinement condition (12) is equivalent to

∀t ∈ N
+ · ∑

σ∈Σa
nop

(

[�a
0] · P t

Ma

)

(σ) ≤
∑

σ∈Σc
nop

(

[�c
0] · P t

Mc

)

(σ),

where Σa
nop and Σc

nop are the sets of terminating states of the systems Ma and Mc respectively, [�a
0] and [�c

0] are
the initial state distribution row-vectors, and P t is the matrix P raised to the power t .

Proof Similar to Proposition 1. �
To illustrate the use of our definitions of quantitative refinement in practice, let us revisit our simple example.

In order to increase the reliability of our monitoring system, we implement a simple redundancy scheme by
adding another (hot spare) sensor to the system. The machine RPCS (Fig. 3) is a result of refining the machine
PCS by introducing such a hot spare sensor. In the refined specification, we replace the sensor st by two identical
sensors st1 and st2. The probabilistic characteristics of these sensors are the same as those of st . The model gluing
invariant st � 0 ⇔ st1 + st2 � 0 describes the refinement relationship between the corresponding abstract and
concrete variables, i.e., the system would output the actual sensor readings only if no more than one sensor has
failed.

Even for such simple models it is not trivial to find analytical representations of the reliability functions of
PCS and RPCS. However, for some specific values of probabilistic parameters f and r , it is relatively easy to check
whether the probabilistic Event-B model RPCS is a valid (partial) refinement of PCS (according to Definition 6
and Remark 5.2). For instance, Fig. 4 gives a comparison of the reliability functions RPCS and RRPCS for the
specific case when f � 10−3 and r � 0.8, and for the time interval T � 5 · 107. The quantitative analysis was
done using the PRISM probabilistic symbolic model checker [KNP11]. It is easy to see that the use of the hot
spare redundancy scheme significantly increases the system reliability. In this particular case, the function RRPCS

decreases very slowly and for T � 5 · 105 its value is still very close to 1 (0.99995, to be more precise).

68 A. Tarasyuk at al.

Fig. 4. Case study: reliability refinement for f � 10−3 and r � 0.8

Let us now explain how probabilistic refinement from the reliability point of view differs from the traditional
approach to probabilistic program refinement [MM05]. If we fix the number of system iterations t , the Event-B
models PCS and RPCS can be considered as deterministic probabilistic programs according to [MM05]. More
precisely, they can be viewed as two loops that can either terminate after t iterations in some state σ ∈ Σop or
deadlock after reaching some state σ ′ ∈ Σnop .

Let us define the set of operational states of PCS as Σop � {σ0, σ1, σ2, σ3}, where σ0 is a fully operational
state (st � 1, cnt � 0), while σk , for k � 1, 2, 3, are transient states (st � 0, cnt � k). Similarly, for RPCS,
Σop � {σ 0

0 , σ 1
0 , σ 2

0 , σ1, σ2, σ3}, where σ 0
0 , σ 1

0 and σ 2
0 are fully operational states (st1 � 1, st2 � 1, cnt � 0),

(st1 � 1, st2 � 0, cnt � 0) and (st1 � 0, st2 � 1, cnt � 0) related to σ0 by data refinement, while σk , for
k � 1, 2, 3, are degraded states (st1 � 0, st2 � 0, cnt � k). The set of non-operational states Σnop consists of a
single state σ4, where σ4 is (st � 0, cnt > 3) for PCS, or (st1 � 0, st2 � 0, cnt > 3) for RPCS. This set corresponds
to a non-terminating state ⊥ in terms of [MM05].

Let P (σ, σ ′) be the probability that a program terminates in σ ′ after its execution starts from σ . Note that both
programs PCS and RPCS have a single (feasible) initial state—σ0 and σ 0

0 correspondingly, i.e., ∀ σ ∈ Σop, σ ′ ∈
Σ · σ �� σ0 (σ �� σ 0

0) ⇒ P (σ, σ ′) � 0. For simplicity, let P (σ0, σ
′) � p(σ ′) and P (σ 0

0 , σ ′) � q(σ ′). Then,
according to [MM05], the probabilistic program refinement PCS � RPCS is defined as follows:

PCS � RPCS ⇔ p(σ0) ≤
2

∑

i�0

q(σ i
0) ∧ (∀ k ∈ {1, 2, 3} · p(σk) ≤ q(σk)).

Let us now consider the case when t � 1. Then p(σ0) � 1 − f , p(σ1) � f ,
∑2

i�0 q(σ i
0) � 1 − f 2, q(σ1) � f 2

and, finally, p(σ2) � p(σ3) � q(σ2) � q(σ3) � 0. Clearly, according to this definition, neither PCS � RPCS nor
RPCS � PCS holds (as p(σ0) ≤ ∑2

i�0 q(σ i
0) and p(σ1) ≥ q(σ1)).

It is easy to show that the traditional definition of probabilistic program refinement always implies the prob-
abilistic refinement proposed in this paper (Definition 6 and Definition 7), yet its conditions are generally too
strong for reasoning about such system properties as reliability and responsiveness. The example presented above
is a quite typical refinement step for formal development of dependable systems. The refined model introduces a
fault tolerance mechanism that does not only increases the system probability to stay in fully operational states
as well as decreases the probability of a system failure, but also reduces the probability that the system goes to
or remains in some degraded (but still operational) state. In other words, in our refinement we consider the set
of operational states Σop as the whole and only concern with the overall probability that the system stays within
this set, no matter in which particular state. In contrast, in the traditional approach to probabilistic program
refinement, all the operational states are “equally important”, meaning that, for each operational state, the

Integrating stochastic reasoning 69

refinement relation can only increase the probability to terminate in this state by correspondingly decreasing the
probability of system failure (non-termination).

The presented simple example demonstrates how we can incorporate formal reasoning about system reliability
into the refinement process in Event-B. Since system responsiveness is the (mathematically) dual property, it can
be modelled and verified in a similar way. In the next section we generalise our approach to the systems that
combine both nondeterministic and probabilistic behaviour.

6. Modelling probabilistic cyclic systems with nondeterminism

It is not always possible to give precise probabilistic information for all nondeterministic choices in a specification
of a cyclic system. As a result, system models often contain a mixture of nondeterministic and probabilistic choices,
making reasoning about such systems more complicated. In this section we offer our solution to this problem,
which is a generalisation of our approach presented in Sect. 5.

6.1. Generalised definition of quantitative refinement

For a cyclic system containing both probabilistic and nondeterministic choices, we define a single iteration as a
total function

npiter ∈ Σop → 2Σobs ,

i.e., this function maps a given observable operational state, σ ∈ Σop , into a set of distributions over the observ-
able state space Σobs . The resulting set of distributions is built for all possible combinations of nondeterministic
choices (i.e., execution traces) of a single system iteration.

Similarly as in the case of a fully probabilistic system, there is a simple connection between the iteration iter
of a cyclic system and its nondeterministic-probabilistic counterpart npiter . Specifically, if some state σ ′ can be
reached from a current state σ with a non-zero probability according to some distribution from npiter (σ) then
it is also reachable by iter :

∀ σ ∈ Σop, σ ′ ∈ Σobs · (∃�σ ∈ npiter (σ) ·�σ (σ ′) > 0) ⇒ σ ′ ∈ iter (σ).

Now let us consider the behaviour of some nondeterministic-probabilistic cyclic system M in detail. We can
assume that the initial system state σ belongs to the set of operational states Σop . After its first iteration, the
system nondeterministically chooses some distribution�σ fromnpiter (σ) and then, according to this distribution,
reaches some state σ ′ with the non-zero probability �σ (σ ′). At this point, if σ ′ ∈ Σnop , the system terminates.
Otherwise, the system starts a new iteration. It is easy to see that the behavioural semantics of a nondeterministic-
probabilistic cyclic system in Event-B is defined by a Markov decision process with the absorbing set Σnop

[Put05, Whi93].
Nondeterminism has the demonic nature in Event-B [BvW98], i.e., we do not have any control or information

about which branch of execution will be chosen. Therefore, while reasoning about system reliability and respon-
siveness, we have to consider the worst-case scenario by always choosing the “worst” of available distributions.
From the reliability and responsiveness perspective, it means that, while evaluating these properties of a prob-
abilistic cyclic system with nondeterminism, we need to obtain the lowest bound of the performed evaluation.
Therefore, we re-formulate the definitions of the reliability and responsiveness refinement for probabilistic cyclic
systems as follows:

Definition 8 (Reliability refinement). Let Ma and Mc be two nondeterministic-probabilistic Event-B models of
cyclic systems. Moreover, let Σa

op and Σc
op be the sets of operational states of Ma and Mc correspondingly. Then

we say that Mc is a reliability refinement of Ma if and only if

1. Mc is an Event-B refinement of Ma (Ma � Mc), and

2. ∀ t ∈ N
+ · Pmin{Xa (t) ∈ Σa

op} ≤ Pmin{Xc(t) ∈ Σc
op}, (13)

where Pmin{X (t) ∈ Σop} is the minimum probability that the system remains operational during the first t
iterations.

70 A. Tarasyuk at al.

Definition 9 (Responsiveness refinement) Let Ma and Mc be two nondeterministic-probabilistic Event-B models of
cyclic systems. Moreover, let Σa

nop and Σc
nop be the sets of non-operational states of Ma and Mc correspondingly.

Then we say that Mc is a responsiveness refinement of Ma if and only if

1. Mc is an Event-B refinement of Ma (Ma � Mc), and

2. ∀t ∈ N
+ · Pmin{Xa (t) ∈ Σa

nop} ≤ Pmin{Xc(t) ∈ Σc
nop}, (14)

where Pmin{X (t) ∈ Σnop} is the minimum probability that the system terminates during the first t iterations.

Remark If the second, quantitative refinement condition of Definitions 8 and 9 holds not for all t , but for some
interval t ∈ 1..T , T ∈ N

+, we say that Mc is a partial reliability (responsiveness) refinement of Ma for t ≤ T .

6.2. Verification of generalised quantitative refinement

To evaluate the worst-case reliability and responsiveness for probabilistic systems with nondeterminism, we have
to calculate the minimum probabilities participating in (13) and (14). Let us assume that some cyclic system M
is in an operational state σ , while npiter maps σ to the finite set of distributions �σ � {�1

σ ,�2
σ , . . . }. If we want

to evaluate the worst-case reliability of the system for this iteration, we just have to choose the distribution that
maps σ to the set of operational states with the minimal probability, i.e., the probability min�∈�σ

∑

σ ′∈Σop

�(σ ′).
Similarly, to evaluate the worst-case responsiveness of the system, we have to choose the distribution that maps
σ to the set of terminating states with the minimal probability, i.e., the probability min�∈�σ

∑

σ ′∈Σnop

�(σ ′).
However, when the goal is to evaluate the worst-case stochastic behaviour of the system within a time interval
[0, t], where t > 1, the calculation process of the resulting minimal probability becomes more complex. Indeed,
because of the presence of nondeterminism, we cannot simply rely on the calculated minimal probability for t
iterations when calculating it for t + 1 iterations.

Let us first consider evaluation of system reliability. We define the worst-case reliability as a function r (t, σ),
the arguments of which are the number of system iterations t and some initial state σ . For now, we assume that
the initial system state σ is deterministically defined. Later we consider more general cases when σ is given by
some initial probability distribution or nondeterministically. The function r (t, σ) returns the minimal value of
the reliability function R(t) over all possible state distributions.

The definition of r (t, σ) is recursive. Two basic cases define the function values for the terminating (absorbing)
states and the zero number of iterations respectively:

σ ∈ Σnop ⇒ ∀t ∈ N · r (t, σ) � 0 and σ ∈ Σop ⇒ r (0, σ) � 1.

Generally, for σ ∈ Σop , we can recursively define the function r (t, σ) in the following way:

∀t ∈ N
+, σ ∈ Σop · r (t, σ) � min

�∈�σ

∑

σ ′∈Σop

�(σ ′) · r (t − 1, σ ′).

Such an approach for defining an “absorbing” function is often used in the works based on Markov decision
processes with absorbing sets (see [HW03] for instance). Note that the recursive function application essentially
traverses all the possible operational state transitions and, based on that, operational state distributions, and then
finds the minimal probability of the system staying operational.

Similarly, the stochastic evaluation of system responsiveness is based on the recursive function q(t, σ). It
returns the minimal probability of the system terminating within the time interval [0, t], when starting in the
observable state σ . The basic cases are

σ ∈ Σnop ⇒ ∀t ∈ N · q(t, σ) � 1 and σ ∈ Σop ⇒ q(0, σ) � 0.

Integrating stochastic reasoning 71

Generally, for σ ∈ Σop , we can recursively define the function q(t, σ) in the following way:

∀t ∈ N
+, σ ∈ Σop · q(t, σ)

� min
�∈�σ

⎡

⎣

∑

σ ′∈Σop

�(σ ′) · q(t − 1, σ ′) +
∑

σ ′∈Σnop

�(σ ′)

⎤

⎦ � min
�∈�σ

∑

σ ′∈Σobs

�(σ ′) · q(t − 1, σ ′).

Now we are ready to revisit our definitions of reliability and responsiveness refinement for probabilistic cyclic
systems with nondeterminism. For such a cyclic system M , let us define column-vectors r t

M and q t
M with the

elements r t
M (σ) � r (t, σ) and q t

M (σ) � q(t, σ) respectively. Now, assuming that the initial state of the system is
not defined deterministically but given instead by some initial state distribution, we can formulate two propositions
similar to Propositions 1 and 2 of Sect. 5:

Proposition 3 Let us assume that the initial system state is defined according to some probability distribution. Then
the reliability refinement condition (13) is equivalent to

∀t ∈ N
+ · [�a

0] · r t
Ma

≤ [�c
0] · r t

Mc
,

where [�a
0] and [�c

0] are the initial state distribution row-vectors for the systems Ma and Mc respectively.

Proof Directly follows from our definition of r t
M . �

Proposition 4 Let us assume that the initial system state is defined according to some probability distribution. Then
the responsiveness refinement condition (14) is equivalent to

∀t ∈ N
+ · [�a

0] · q t
Ma

≤ [�c
0] · q t

Mc
,

where [�a
0] and [�c

0] are the initial state distribution row-vectors for the systems Ma and Mc respectively.

Proof Directly follows from our definition of q t
M . �

In Sect. 5 we considered the machine initialisation is to be either deterministic or probabilistic. However,
for the systems that contain both probabilistic and nondeterministic behaviour, we can also assume that we do
not have precise information about the system initial state, i.e., the initialisation action is of the following form:
σ :∈ S , where S ⊆ Σop . In this case we can formulate the following two propositions:

Proposition 5 Let us assume that the initial system state is defined nondeterministically. Then the reliability refine-
ment condition (13) is equivalent to

∀t ∈ N
+ · min

σ∈Sa

r (t, σ) ≤ min
σ∈Sc

r (t, σ),

where Sa and Sc are the sets of possible initial states for the systems Ma and Mc respectively.

Proof Directly follows from our definition of r (t, σ) and properties of the demonic nondeterminism. �

Proposition 6 Let us assume that the initial system state is defined nondeterministically. Then the responsiveness
refinement condition (14) is equivalent to

∀t ∈ N
+ · min

σ∈Sa

q(t, σ) ≤ min
σ∈Sc

q(t, σ),

where Sa and Sc are the sets of possible initial states for the systems Ma and Mc respectively.

Proof Directly follows from our definition of q(t, σ) and properties of the demonic nondeterminism. �
We can also easily show that the proposed approach for modelling of probabilistic systems with nondeter-

minism is a generalisation of the approach presented in the previous section. Indeed, let us assume that we do
not have any nondeterministic choices in our system. This means that, for any state σ , the set �σ is a singleton
set, i.e., ∀σ ∈ Σop · �s � {�σ }. Then

r (t, σ) � min
�∈�σ

∑

σ ′∈Σop

�(σ ′) · r (t − 1, σ ′) �
∑

σ ′∈Σop

�σ (σ ′) · r (t − 1, σ ′) � R(t)

72 A. Tarasyuk at al.

Machine NPCS
Variables st, phase, cnt
Invariants st ∈ {0, 1}, phase ∈ {in, det, out, abort}, cnt ∈ N

Events
Initialisation =̂
begin

st, phase, cnt := 1, in, 0
end

IN1 =̂
when

phase = in ∧ st = 1
then

st ⊕| 0 @ f ; 1 @ (1−f)
phase := det

end

IN21 =̂
when

phase = in ∧ st = 0
then

st ⊕| 1 @ r1; 0 @ (1−r1)
phase := det

end

IN22 =̂
when

phase = in ∧ st = 0
then

st ⊕| 1 @ r2; 0 @ (1−r2)
phase := det

end
e0 =̂
when

phase = det
then

cnt :| (st = 1 ⇒ cnt′ = 0) ∧ (st = 0 ⇒ cnt′ = cnt + 1)
phase := out

end
OUT =̂
when

phase = out
then

phase :| phase′ ∈ {in, abort} ∧ (phase′ = in ⇔ cnt ≤ 3)
end

Fig. 5. Cyclic system: combining probabilities with nondeterminism

and

q(t, σ) � min
�∈�σ

∑

σ ′∈Σobs

�(σ ′) · q(t − 1, σ ′) �
∑

σ ′∈Σobs

�σ (σ ′) · q(t − 1, σ ′) � Q(t).

Moreover, for fully probabilistic systems, we can easily prove (by induction) that

∀t ∈ N, σ ∈ Σop · r (t, σ) + q(t, σ) � 1.

To demonstrate the use of our extended definitions of quantitative refinement, let us revisit our simple example.
Figure 5 shows a model that refines the cyclic system PCS, yet combines both nondeterministic and probabilistic
behaviour. Here we refine the event IN2 of PCS by two events IN21 and IN22 that respectively model sensor
recovery according to two different recovery procedures (i.e., two different repairmen). The choice between the
active repairmen is modelled nondeterministically as IN21 and IN22 are always enabled simultaneously.

Once the sensor fails, the we have to assume that the “demon” follows the worst-case scenario strategy and,
therefore, always chooses the worst repairman to repair the sensor, i.e., the event with the probability of recovery
min{r1, r2}, while the better repairman is totally ignored. This observation gives some intuition about the demonic
nature of nondeterminism in Event-B. Furthermore, since the event IN1, which models the sensor failure, is the
same in both machines, to prove that NPCS is a valid refinement of PCS (according to Definition 8), it is enough
to guarantee that in NPCS the sensor has the better recovery mechanism comparing to that of PCS. Clearly, this
is true if and only if r ≤ min{r1, r2}.

7. Discussion

In this paper, we have proposed a pragmatic approach to integrating stochastic reasoning into the formal devel-
opment of dependable systems in Event-B. This work builds mainly on the experience in the development of
dependable systems gained within the EU projects RODIN [ROD04] and DEPLOY [DEP08]. These projects
have made a significant contribution into establishing the formal dependability-explicit development process
based on Event-B refinement.

Via abstraction, proof and incremental correctness-preserving refinement, Event-B allows us to build and
verify models of large-scale systems. The confidence in the system design that is achieved by such a formal
approach makes a significant contribution into achieving system dependability. However, ensuring dependability
requires not only functional correctness but also satisfaction of the given non-functional characteristics. For

Integrating stochastic reasoning 73

instance, to certify a dependable system, it is often required to demonstrate that the probability of a dangerous
failure is sufficiently low, the system reliability meets the required target, etc. Though such an evaluation could
be conducted at the final stage of the development process, the cost of redevelopment can be significant if the
desired characteristics are not achieved.

We argue that the approach proposed in this paper allows us to weave the probabilistic evaluation into the
formal system development from the early design stages. It results in a more predictive development process,
which enables continuous monitoring of the progress towards achieving the desired dependability attributes as
well as allows the designers to optimise certain design decisions.

Since reliability and responsiveness are functions of time, in this paper we first had to address the problem of
representing time in Event-B. Instead of modelling time explicitly, i.e., as an intrinsic part of an Event-B model,
we have decided to reason about time implicitly by relying on the notion of a system iteration. This decision
was motivated by several reasons. Firstly, the current approaches to modelling time in Event-B are not well-
suited for bridging Event-B machines and discrete-time Markov processes. For instance, the approach by Iliasov
et al. [ILT+12] relies on building an additional model view (called the process view) in a dedicated modelling
language and, hence, makes it hard to relate probabilistic Event-B and the process view models. Moreover, there
is currently no automatic tool support for verification of timed systems in Event-B. The approach proposed by
Butler et al. [BF02] significantly complicates the system model and hence raises the question of scalability. As a
result, we have decided to narrow down the class of modelled systems to cyclic systems and rely on the notion of
an iteration as a discrete unit of time defining the system time scale. We have also formally defined the verification
conditions ensuring that the initial abstract model as well as all subsequent refined models preserve the cyclic
system behaviour.

To enable stochastic reasoning in Event-B, we have introduced the quantitative probabilistic choice operator
into the modelling language and also defined the quantitative refinement conditions that a refined model should
satisfy. These conditions ensure that responsiveness and reliability are improved (or at least preserved) in the
refinement process, as postulated in Definitions 6 – 9. The resulting integration of stochastic reasoning about the
non-functional system properties with the modelling and verification of the system functionality facilitates the
formal development process in Event-B. Indeed, it supports early assessment of the chosen design decisions and
possible design alternatives with respect to the non-functional critical properties. Our approach to verification of
quantitative model refinement is based on time-bounded reachability analysis of the underlying Markov processes.

In our work, we have aimed at finding a practical engineering solution to assessing dependability properties
throughout the formal system development by refinement. The main goals that we have pursued were applicability
of the proposed technique and possibility to re-use constructed Event-B models. To ensure applicability, we have
had to address three main issues—scalability, simplicity and availability of automatic toolsupport .

In this paper, we focus on studying formal basis of integrating probabilistic reasoning into Event-B via bridging
it with discrete-time Markov processes. We argue that, since our probabilistic extension is rather conservative, the
scalability of the presented approach is characterised by the scalability of the Event-B method and the developer’s
choice of a suitable technique for analysis of Markov processes. The accumulated experience in industrial use of
Event-B within the EU projects RODIN and DEPLOY has shown that the refinement approach offers a powerful
tool for mastering system complexity. On the probabilistic side, to handle complexity posed by the size of the
state space of large-scale systems, we can employ such techniques as lumping and probabilistic bisimulation (see,
e.g., [KS60, LS91] for fully probabilistic systems and [Han95, SL95] for nondeterministic probabilistic systems).

The small running example of the paper was used merely to illustrate the proposed approach. We believe that
large case studies that employ our continuous-time probabilistic extension of Event-B [TTL12] to some extent also
demonstrate the scalability of the approach proposed in this paper. Thus, in [TPT+12] we have undertaken a formal
modelling of a satellite subsystem. At a certain stage of the refinement process, we introduced two alternative
architectures for implementing fault tolerance—a duplicated architecture with a dynamic reconfiguration and a
triplicated architecture. They both were fulfilling the same functional requirements but had different reliability
and performance characteristics. The probabilistic analysis has allowed us to optimise the system design, i.e., to
establish that even with the lower degree of redundancy the target reliability and performance parameters can
be achieved. A similar study was performed in the context of fault tolerant multi-robotic systems [TPTL13]. We
have assessed several alternative architectures to find the optimal balance between the likelihood of successful
completion of the mission, the degree of redundancy, and system performance. In the future we plan to validate

74 A. Tarasyuk at al.

the applicability of the approach presented in this paper by performing complex case studies from different
industrial domains.

To address the second issue, we proposed a new definition of reliability refinement. In contrast to the traditional
definition of probabilistic refinement, we do not require from the designers to establish a refinement relation to
prove each refinement step. Instead, one can reuse the probabilistically augmented Event-B specifications and
employ the existing automated techniques for analysis of Markov models to compute the system reliability
for specific values of the system’s probabilistic characteristics and, therefore, to check the preservation of the
quantitative refinement. Moreover, as we have already mentioned, in practice it is usually enough to check
the partial refinement condition for a particular time bound specified by the intended operation time of the
system.

To address the third issue, we can rely on the Rodin Platform [Rod]—an open extendable environment for
modelling and verification in Event-B. Openness and extendability of the platform allow us to build a tool
support—a dedicated plug-in that would facilitate the calculations presented in Sects. 5 and 6. The theoreti-
cal research described in this paper can be seen as a basis for creating such a tool. The approach proposed in
this paper demonstrates how to conduct dependability assessment based on Event-B models. We have aimed
at maximising the reuse of the created formal models and hence proposed a simple solution that requires aug-
menting the Event-B models with probabilistic information but does not require creating dedicated models for
probabilistic reasoning. Indeed, the most time consuming and error-prone part of the probabilistic reliability
assessment is the creation of an adequate system model. However, within our approach this part is taken care
by the Event-B refinement process. Our experiments [TPT+12, TTL12, TPTL13] with the PRISM probabilistic
symbolic model checker [KNP11] show that such models can serve as an input for probabilistic model check-
ing. In its turn, it offers the system developers a highly automated solution to the quantitative evaluation of
dependability.

8. Related work

Hallerstede and Hoang [HH07] have proposed an extension of the Event-B framework to model the probabilistic
system behaviour. Specifically, they introduce the qualitative probabilistic choice operator to reason about almost
certain termination. This operator is used to bound demonic nondeterminism, and to facilitate proving conver-
gence of the new events in Event-B models. In particular, they apply this technique to resolve the contention
problem in Fireware protocol. In [YH10], Yilmaz and Hoang also successfully apply the qualitative probabilistic
reasoning in Event-B to formalise the Rabin’s choice coordination algorithm. The use of the qualitative proba-
bilistic choice is currently supported by the Rodin tool [EBW]. However, the presented approach is not suitable for
quantitative evaluation of system properties, since the introduced operator does not contain explicit probabilistic
information.

The topic of probabilistic formal modelling has been extensively explored by Morgan et al. in the context
of probabilistic refinement calculus [MM05]—an extension of the standard refinement calculus. The introduced
notion of probabilistic data refinement has been used, among other things, for assessment of system dependability
(see [MMT98, MM05], for instance). Here, probabilistic programs are modelled using expectation transformers
and probabilistic data refinement is verified via simulation between datatypes. In [Tro99], a similar approach is
taken to enable reasoning about reliability in probabilistic action systems [ST96]—the extension of the action sys-
tems that combine both probabilistic and nondeterministic behaviour. However, proving simulation that implies
data refinement between datatypes is an extremely difficult problem, which immediately raises the scalability issue.
Moreover, the majority of non-functional system attributes, including those of dependability, explicitly depend
on time. However, to the best of our knowledge, the notion of time is not defined in the probabilistic refinement
calculus. The difference between these approaches to definition of probabilistic refinement and the one proposed
in the current paper is addressed in Sect. 5.3.

Incorporation of probabilities into formal program semantics has also been investigated within the Unifying
Theories of Programming (UTP) framework [HS06, BB12, SZ13]. In [BB12], the authors present an encoding
of the semantics of the probabilistic guarded command language (pGCL) in UTP. The main contribution is
a proposal to model pGCL programs as predicate transformers, where predicates are defined over probability
distributions on before- and after-states. The proposed formulation also allows them to define a generic choice
construct, covering conditional, nondeterministic and probabilistic choices. A long-term goal of this work is to
develop a probabilistic extension of the Circus language, which is a fusion of Z, CSP, and refinement calculus. In
[SZ13], the authors extend their previously developed theory of reversible computation by adding probabilistic

Integrating stochastic reasoning 75

choice. They also adapt and enhance the classical calculus of expectation transformers of McIver and Morgan
[MM05] to enable reversible computations. Interactions of nondeterministic choice and probabilistic choice as
well as feasibility and probabilistic choice are investigated as well. Similarly as in [MM05], probabilistic programs
are identified with their convex closures, while refinement on such programs is defined as containment within
these closures. In contrast to these approaches, we focus on formal modelling and refinement of probabilistic
programs with respect to specific quantitative system characteristics (such as reliability and responsiveness),
which are dependent on time. Our definition of probabilistic refinement allows redistribution of probabilities
within the targeted operational states, provided that the overall probability of being in such states increases
(decreases).

In [Rao95], Rao has proposed a generalisation of the UNITY formalism [CM88] that enables reasoning about
probability and parallelism. Specifically, he generalises the weakest precondition semantics of UNITY to define
a new predicate transformer—the weakest probabilistic precondition transformer. Relying on this extension,
he also generalises certain relations of the UNITY to make them amenable for reasoning about probabilistic
(parallel) programs. In particular, the new probabilistically leads-to relation allows for defining probabilistic
progress properties. Similarly to the approach taken in [HH07], Rao does not aim at computing any kind of
probabilistic measures but rather reasons about the progress properties that are attained with probability one.
The proposed methodology has proved its worth in constructing and proving probabilistic algorithms [Rao95].

A connection between probabilistic reasoning and program refinement has been investigated by Meinicke
and Solin [MS10]. The authors introduce a refinement algebra for reasoning about probabilistic program trans-
formations. In particular, they investigate the data and atomicity refinement rules for probabilistic programs and
explore the difference between probabilistic and non-probabilistic programs. They reason about the probabilis-
tic program transformations without introducing a probabilistic choice operator or other explicit probabilistic
attributes. Our approach is rather different from the one by Meinicke and Solin. We introduce the quantita-
tive probabilistic choice operator, which explicitly defines concrete probabilistic values for different choices. The
introduced probabilistic information is used to verify quantitative non-functional properties of the system and
their preservation by refinement. Otherwise, we rely on the existing Event-B refinement framework to guarantee
correctness of model transformations.

Ensuring a specific control flow within Event-B models have been investigated in [STW10]. The authors
explore how process algebra descriptions can be defined alongside Event-B models and, in particular, how CSP
can be used to provide explicit control flow for an Event-B model. Moreover, the methodology is proposed to
construct models in a certain way to ensure the desired control flow and avoid possible deadlocks. The approach
can be considered as complementary to ours. We are not interested in constructing formal models with the
required control flow per se, but rather focus on verifying that given arbitrary models satisfy essential properties
of cyclic systems.

9. Conclusions

In this paper we have proposed a pragmatic approach to integrating the stochastic reasoning about dependability
(in particular reliability and responsiveness) of cyclic systems into the formal development by refinement in
Event-B. We have made a number of technical contributions. Firstly, we have formally defined the conditions
that should be verified to ensure that the system under construction has a cyclic behaviour. Secondly, we have
proposed an extension of the Event-B language with the quantitative probabilistic choice construct and defined
the proof semantics for the extended framework. Finally, we have demonstrated how to define reliability and
responsiveness as the properties of extended Event-B models and integrate explicit stochastic reasoning about
non-functional system properties into the Event-B refinement process.

The main novelty of our work is in establishing theoretical foundations for reasoning about probabilistic
properties of augmented Event-B models. This result has been achieved by constraining the structure of considered
Event-B models and consequently reducing the reasoning about time-dependent properties in general to the
reasoning about these properties in terms of iterations. Since cyclic systems constitute a large class of critical
systems, we believe that the imposed restrictions do not put significant limitations on the applicability of the
proposed approach, yet at the same time allow us to represent the system models as discrete-time Markov chains
or Markov decision processes. This, in its turn, enables the use of the well-established theory of Markov processes
to verify time-bounded reachability properties.

76 A. Tarasyuk at al.

References

[Abr96] Abrial J-R (1996) Extending B without changing it (for developing distributed systems). In: Habiras H (ed) First Conference
on the B method, pp 169–190

[Abr05] Abrial J-R (2005) The B-Book: assigning programs to meanings. Cambridge University Press, Cambridge
[Abr10] Abrial J-R (2010) Modeling in Event-B. Cambridge University Press, Cambridge
[ALRL04] Avizienis A, Laprie J-C, Randell B, Landwehr CE (2004) Basic concepts and taxonomy of dependable and secure computing.

IEEE Trans. Dependable Secur Comput 1(1):11–33
[BB12] Bresciani R, Butterfield A (2012) A UTP semantics of pGCL as a homogenous relation. In: IFM 2012. Springer, Belin, pp

191–205
[BF02] Butler M, Falampin J (2002) An approach to modelling and refining timing properties in B. In: Refinement of critical systems

(RCS)
[BvW98] Back RJR, von Wright J (1998) Refinement calculus: a systematic introduction. Springer, Berlin
[CM88] Mani Chandy K, Misra J (1988) Parallel program design: a foundation. Addison-Wesley, USA
[CS88] Chu WW, Sit C-M (1988) Estimating task response time with contentions for real-time distributed systems. In: Real-Time

Systems Symposium. IEEE Computer Society, pp 272–281
[DEP08] DEPLOY (2008) Industrial deployment of system engineering methods providing high dependability and productivity. IST

FP7 IP Project. Online at http://www.deploy-project.eu/
[EBW] Event-B and Rodin Documentation Wiki. Qualitative probability plug-in. Online at http://wiki.event-b.org/index.php/Event-

B_Qualitative_Probability_User_Guide.
[Han95] Hansson H (1995) Time and probability in formal design of distributed systems. Elsevier, London
[HH07] Hallerstede S, Hoang TS (2007) Qualitative probabilistic modelling in Event-B. In: Davies J, Gibbons J (eds) IFM 2007,

Integrated Formal Methods. Springer, Berlin, pp 293–312
[HS06] He J, Sanders JW (2006) Unifying probability. In: Proceedings of First International Symposium on Unifying Theories of

Programming, UTP 2006. Springer, New York, pp 173–199
[HW03] Hinderer K, Waldmann T-H (2003) The critical discount factor for finite Markovian decision processes with an absorbing set.

In: Mathematical methods fo operations research. Springer, Berlin, pp 1–19
[Ili11] Iliasov A (2011) Use case scenarios as verification conditions: Event-B/Flow approach. In: SERENE 2011, Software Engi-

neering for Resilient Systems. Springer, Berlin, pp 9–23
[ILT+12] Iliasov A, Laibinis L, Troubitsyna E, Romanovsky A, Latvala T (2012) Augmenting Event-B modelling with real-time verifi-

cation. In: FormSERA 2012, Formal Methods in Software Engineering: Rigorous and Agile Approaches. IEEE Press, New
York, pp 51–57

[KNP11] Kwiatkowska M, Norman G, Parker D (2011) PRISM 4.0: Verification of probabilistic real-time systems. In: CAV’11, Inter-
national Conference on Computer Aided Verification. Springer, Berlin, pp 585–591

[KS60] Kemeny JG, Snell JL (1960) Finite Markov chains. D. Van Nostrand Company, Princeton, NJ
[LS91] Larsen KG, Skou A (1991) Bisimulation through probabilistic testing. In: Information and Computation 94, pp 1–28
[MM05] McIver AK, Morgan CC (2005) Abstraction, refinement and proof for probabilistic systems. Springer, New York
[MMT98] McIver AK, Morgan CC, Troubitsyna E (1998) The probabilistic steam boiler: a case study in probabilistic data refinement.

In: International Refinement Workshop, ANU, Canberra. Springer, Berlin
[MS10] Meinicke L, Solin K (2010) Refinement algebra for probabilistic programs. Form Asp Comput 22:3–31
[O’C95] O’Connor PDT (1995) Practical reliability engineering. 3rd edn. Wiley, Toronto
[Put05] Puterman M (2005) Markov decision processes. Discrete stochastic dynamic programming. Wiley, Toronto
[Rao95] Rao JR (1995) Extension of the UNITY methodology: compositionality, fairness and probability in parallelism. Springer,

Berlin
[Rod] Rodin Platform. Integrated Development Environment for Event-B. Online at http://www.event-b.org/
[ROD04] RODIN: Rigorous Open Development Environment for Complex Systems. (2004) IST FP6 STREP project. Online at http://

rodin.cs.ncl.ac.uk/
[SL95] Segala R, Lynch N (1995) Probabilistic simulations for probabilistic processes. Nord J Comput 2(2):250–273
[ST96] Sere K, Troubitsyna E (1996) Probabilities in action systems. In: Nordic Workshop on Programming Theory
[STW10] Schneider S, Treharne H, Wehrheim H (2010) A CSP approach to control in Event-B. In: IFM 2010. Springer, Berlin, pp

260–274
[SZ13] Stoddart B, Zeyda F (2013) A unification of probabilistic choice within a design-based model of reversible computation. Form

Asp Comput 25:107–131
[TPT+12] Tarasyuk A, Pereverzeva I, Troubitsyna E, Latvala T, Nummila L (2012) Formal development and assessment of a reconfig-

urable on-board satellite system. In: SAFECOMP 2012. Springer, Berlin, pp 210–222
[TPTL13] Tarasyuk A, Pereverzeva I, Troubitsyna E, Laibinis L (2013) Formal development and quantitative assessment of a resilient

multi-robotic system. In: SERENE 2013. Springer, Berlin, pp 109–124
[TRF03] Trivedi K, Ramani S, Fricks R (2003) Recent advances in modeling response-time distributions in real-time systems. In:

Proceedings of the IEEE 91(7):1023–1037
[Tro99] Troubitsyna E (1999) Reliability assessment through probabilistic refinement. Nord J Comput 6(3):320–342
[TTL10a] Tarasyuk A, Troubitsyna E, Laibinis L (2010) From formal specification in Event-B to probabilistic reliability assessment.

In: DEPEND 2010. IEEE Computer Society, Los Alamitos, CA, pp 24–31
[TTL10b] Tarasyuk A, Troubitsyna E, Laibinis L (2010) Towards probabilistic modelling in Event-B. In: IFM 2010, Integrated Formal

Methods. Springer, Berlin, pp 275–289

http://www.deploy-project.eu/
http://wiki.event-b.org/index.php/Event-B_Qualitative_Probability_User_Guide
http://wiki.event-b.org/index.php/Event-B_Qualitative_Probability_User_Guide
http://www.event-b.org/
http://rodin.cs.ncl.ac.uk/
http://rodin.cs.ncl.ac.uk/

Integrating stochastic reasoning 77

[TTL12] Tarasyuk A, Troubitsyna E, Laibinis L (2012) Formal modelling and verification of service-oriented systems in probabilistic
Event-B. In: IFM 2012, Integrated Formal Methods. Springer, Berlin, pp 237–252

[Vil95] Villemeur A (1995) Reliability, availability, maintainability and safety assessment. Wiley, New York
[Whi93] White DJ (1993) Markov decision processes. Wiley, New York
[YH10] Yilmaz E, Hoang TS (2010) Development of Rabin’s choice coordination algorithm in Event-B. ECEASST, 35

Received 24 April 2013
Revised 28 October 2013
Accepted 22 May 2014 by Michael J. Butler
Published online 11 July 2014

	Integrating stochastic reasoning into Event-B development
	Abstract
	1 Introduction
	2 Introduction to Event-B
	2.1 Event-B language
	2.2 Event-B semantics: model events
	2.3 Event-B semantics: initial model
	2.4 Event-B semantics: refinement
	2.5 Development of dependable systems by refinement

	3 Modelling of cyclic systems in Event-B
	3.1 The Event-B structure and control flow of a cyclic system
	3.2 Formal requirements for cyclic systems
	3.3 Example: abstract Event-B model of a cyclic system
	3.4 Observable states and iterations

	4 Stochastic modelling in Event-B
	5 Modelling fully probabilistic cyclic systems
	5.1 Probability distribution
	5.2 Definition of quantitative refinement
	5.3 Verification of quantitative refinement

	6 Modelling probabilistic cyclic systems with nondeterminism
	6.1 Generalised definition of quantitative refinement
	6.2 Verification of generalised quantitative refinement

	7 Discussion
	8 Related work
	9 Conclusions
	References

