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Abstract. As ubiquitous computing becomes a reality, its applications are increasingly being used in business-
critical, mission-critical and even in safety-critical, areas. Such systems must demonstrate an assured level of
correctness. One approach to the exhaustive analysis of the behaviour of systems is formal verification, whereby
each important requirement is logically assessed against all possible system behaviours. While formal verification
is often used in safety analysis, it has rarely been used in the analysis of deployed pervasive applications. Without
such formality it is difficult to establish that the system will exhibit the correct behaviours in response to its
inputs and environment. In this paper, we show how model-checking techniques can be applied to analyse the
probabilistic behaviour of pervasive systems. As a case study we apply this technique to an existing pervasive mes-
sage-forwarding system, Scatterbox. Scatterbox incorporates many typical characteristics of pervasive systems,
such as dependence on sensor reliability and dependence on context. We assess the dynamic temporal behaviour
of the system, including the analysis of probabilistic elements, allowing us to verify formal requirements even
in the presence of uncertainty in sensors. We also draw some tentative conclusions concerning the use of formal
verification for pervasive computing in general.
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1. Introduction

Pervasive or ubiquitous computing covers a very broad class of systems that are mobile, dynamic, and can sense
their physical and digital environments and adapt their behaviour accordingly. Such systems are often autono-
mous, distributed and concurrent, and involve humans, intelligent software agents and computational artifacts
in the system together [DSNH10]. Their requirements are becoming steadily more complex, involving a great
diversity in types of services [WPBF02], such as multimedia, display, communication and automation services,
as well as multiple co-operating (or not) users.

Developing software for pervasive scenarios is difficult; developing software whose behaviour can be guar-
anteed is even more challenging. Even failures in systems that are ephemeral to users’ experiences erode trust
and acceptance; however, as pervasive systems become more mission- and even safety-critical, the need for hard
guarantees on adaptive behaviours increases dramatically. It is therefore timely to study the application of formal
verification to pervasive systems development, in particular to guarantee that a system demonstrates the correct
behavioural adaptations in all circumstances.
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While formal verification is increasingly used in the analysis of safety-critical systems, it has rarely been used
in the analysis of pervasive applications (see Sect. 8). Such verification presents challenges not regularly encoun-
tered in more traditional systems. Critically, pervasive systems are presented with large degrees of uncertainty in
terms of their sensor inputs, their assumptions about user behaviour, and their use of context. This means that,
while there may be a notionally “correct” behaviour in each circumstance—whose selection we can verify—there
remains a probabilistic element to the system’s overall behaviour deriving from the unreliability of the system’s
inputs and inferences. Since it is well-known that the uncertainties of these aspects cannot be engineered away
completely, we must therefore quantify the reliability we can expect from the system given these uncertainties: in
given circumstances, what is the likelihood that the system will exhibit a different behaviour to that expected?

In this paper, we study the formal verification of the probabilistic behaviour of pervasive systems. We show
how probabilistic model-checking can be applied to analyse the probabilistic behaviour of a pervasive system:
specifically, a pervasive message-forwarding system called Scatterbox [KSC+08], which incorporates many typical
characteristics of sophisticated pervasive systems, including sensors, uncertainty, context-handling, user interac-
tion and communication [DN05] (see Sects. 3 and 4). By verifying not only the dynamic and temporal aspects
of the system (formally modelled in Sect. 5), but also its probabilistic behaviours (see Sect. 6), we are able to
analyse formal requirements even in the presence of uncertainty in sensor accuracy, user behaviour, and context
identification. This allows us not only to say whether the system is “correct” or not, but to also quantify how
reliable we expect it to be given its use of unreliable components (Sect. 7).

The formal characterisation of pervasive systems serves two distinct purposes. Classical notions of exhaus-
tive analysis of correctness are appropriate for the commissioning (and even certification where appropriate) of
pervasive and other sensor-driven systems. Perhaps more importantly, however, probabilistic model-checking
approaches can help designers uncover undesirable properties of a system that, due to the uncertain nature of the
world, are impossible to avoid by the system as designed. This can then be used as a tool for re-design, to reduce
the potential for such occurrences to an acceptable level.

The contributions of this work are threefold. Firstly, we present what we believe to be the first analysis of
the probabilistic behaviour of a viable pervasive system, including a quantitative understanding of the effects of
uncertain sensor input and inference. This analysis is realistic, both in the sense of being applied to an imple-
mented and deployed system, and in the sense of dealing quantitatively with the engineering limitations on sensor
precision and accuracy that all such systems will continue to face. Secondly (and conversely), we demonstrate that
pervasive systems lie within the remit of existing formal methods by applying a known method to a previously
under-addressed problem domain. In doing so, we demonstrate the broad utility of probabilistic formal methods.
Thirdly, we highlight areas in which formal approaches to pervasive systems analysis and design may be improved
with reference to a realistic target system analysed with a realistic method. These observations have applications
to sensor networks and other embedded sensor-driven systems.

2. Formal verification

Formal verification describes a family of techniques for exhaustively analysing the logical correctness of a system.
The essence of formal verification is to analyze a logical requirement (typically stated in temporal logic) against
all possible behaviours of the system in question.

In the case of deductive verification, this involves proving that a formula capturing all the possible system
behaviours always implies a formula describing the logical requirement. Unfortunately, this deductive process
is often difficult and might well require human intervention. The more popular approach at present is that of
algorithmic verification. Here, a structure (such as a finite-state automaton) describing all possible system execu-
tions is exhaustively checked against the required logical properties. Specifically, the core algorithmic verification
technique of model-checking [CGP99] is widely used. Model-checking has come to prominence in recent years
as it provides fast, automated, and relatively easy to use verification techniques. These, in turn, are embodied
within tools that are widely available, such as NuSMV [CCGR99], SPIN [Hol03], UPPAAL [BLL+95], and
Kronos [BDM+98].
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Fig. 1. Scatterbox system architecture

Such tools are based on the analysis of essentially temporal behaviours, for example properties such as

AFfulfilled

meaning that within all executions (A), then the condition fulfilled will eventually (F) be true. It is important
to note that such formal verification goes well beyond standard testing techniques, providing a comprehen-
sive mathematical analysis of all the possible system behaviours [CGP99, BK08]. However, although standard
model-checking is a strong way to assess temporal/dynamic properties, within pervasive and ubiquitous systems
we ought to do more. Specifically, we need to take into account the inherent uncertainty within such systems.
There is uncertainty about sensor accuracy, uncertainty about the veracity of schedule information, uncertainty
about the speed of execution of components, uncertainty about the reliability of communication, etc. Crucially,
there is uncertainty about exactly which context any particular component is in at a specific moment in time.
Thus, any formal verification of the logical properties of such systems should take at least some of these into
account during the verification process.

For this reason, we will here use a probabilistic model checking tool. The most widely used tool currently
is Prism [HKNP06]. This is a probabilistic model checker, which provides support for analysis of various dif-
ferent probabilistic structures such as Discrete-Time Markov Chains (DTMC) and Markov Decision Processes
(MDP). Probabilistic models are described in the Prism modelling language, a state-based language, and prop-
erties are specified in the logic PCTL1 [HJ94]. This language then allows us to verify properties such as “what is
the probability that ‘fulfilled’ will occur on an execution path?”

As we will see, this gives us additional possibilities to specify relevant properties.

3. Scatterbox: a message delivery system

Scatterbox [KSC+08] is a message forwarding system, which has been designed to serve as a test bed for context-
aware computing in a pervasive environment. It provides a content-filtering service to its users by forwarding
relevant messages to their mobile phones. The user’s context is derived both by tracking his/her location and by
monitoring his/her daily schedule. This context data is analysed, and situations are identified that indicate the
user’s level of interruptability. As messages arrive, Scatterbox forwards them to the subscribed users provided
each user’s available context suggests they are in a situation where they may be interrupted. Scatterbox consists
of the following components, as shown in Fig. 1:

• Construct, a distributed, fully decentralised platform supporting the construction of context-aware, adaptive,
pervasive and autonomous systems;

• Bluetooth and calendar sensors which provide Scatterbox with contextual data;
• an e-mail handler that interacts with an e-mail server to access a user’s e-mail and determine an e-mail’s impor-

tance and relevance to the user context;

1 Prism also supports Continuous-Time Markov Chains, but then uses a different logic for verification.
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Fig. 2. Scatterbox message forwarding component

• a situation reasoner that takes these context data and determines whether or not the user is interruptible, and
whether a particular message is relevant enough to be forwarded to the user; and

• the message delivery component, which sends relevant messages to the user via either Bluetooth or SMS depend-
ing on the distance.

Scatterbox’s e-mail handler connects to the user’s e-mail server as an IMAP client. Throughout the day, it
downloads all unread messages and extracts information from them that will be used by Scatterbox’s reasoning
component to determine their importance. If Scatterbox decides to forward a message to the user’s mobile device,
the transmission is done through SMS or Bluetooth’s Push protocol, which allows a file to be transferred between
devices. If a user’s Bluetooth device is in range of a Bluetooth-enabled node, a message can be routed to that node
and pushed to the mobile device (see Fig. 2). When it arrives on the user’s handset, the user has the opportunity
to accept or reject the message.

4. Scatterbox message processing

Scatterbox combines the perceived level of interruptability of a user with the importance of the incoming e-mail
to decide whether an incoming message should be forwarded or not.

Consider the following scenario. Bob is a postgraduate student. He is currently in a scheduled meeting with his
supervisor. This meeting is recorded in Bob’s calendar, and his phone is detected via Bluetooth in his supervisor’s
office. During the meeting, Bob receives three e-mails, two from colleagues, and one from Alice, his wife.

As this is an important meeting, Bob should only be notified of extremely important messages, while others
can wait. The importance of a message is categorised as a range between 0 and 1, and is determined by 4 factors.
The correspondence, the conversation status (FWD, RE: etc), the subject, and the message itself. As each of the
e-mails described in Table 1 arrives, their importance is determined. The first e-mail is given a low importance,
suggesting it is unlikely to ever be sent to Bob. The second mail is immediately given higher priority, not only as
it is from Alice, Bob’s wife, but because the subject contains keywords such as “urgent”. The last e-mail comes
from a colleague, but is a direct reply to an e-mail regarding a paper deadline, thus giving it more importance.
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Table 1. Importance of an incoming e-mail is calculated from sender and subject

From Subject Importance

Colleague A FWD: Funny joke 0.1
Alice Urgent! Call me! 0.9
Colleague B Re: Paper deadline 0.6

The interruptability of a user is discretised in a similar way to incoming e-mails, using a range from 0 to 1. The
determination of interruptability is made in Scatterbox by analysing the user’s location, situation participants,
and calendar keywords (meeting, lunch etc. . .). The weights of each criterion can be externally defined, allowing
different weights to be applied to different aspects. In this example scenario, Bob’s location is away from his desk,
in the company of his supervisor and has a calendar event called “meeting” scheduled. Bob is therefore given
a low interruptability threshold, in this case “0.3”. The decision to forward a message to a user is then based
on two factors. The interruptability of a user and the importance of a message. These two numbers are simply
multiplied together. A threshold value, defined in an external properties file, dictates how sensitive Scatterbox is
to alerting a user. For example, in the Bob’s scenario, the threshold value is 0.2.

Using this threshold value, and multiplying the interruptability by the current message importance, we get
0.03, 0.27 and 0.18 respectively for each of the e-mails in Table 1. Bob is alerted of the second e-mail, while
Scatterbox stores the unsent messages until Bob’s situation changes, and the calculation can be redone.

5. Formally modelling scatterbox

To evaluate Scatterbox’s effectiveness in using context to determine which messages to forward and which mes-
sages not to forward, and the accuracy of these messages, a number of scenarios have been assessed. All these
verifications have been carried out in a university domain, and the typical users were research students and staff.
We have defined the following contexts which are typical and common for most of the users:

• HOME, denoting that the user is at home;
• OFFICE, denoting that the user is in his/her office;
• OTHER OFFICE, denoting that the user in his/her colleague’s office;
• MEETING, denoting that the user is in a meeting;
• LECTURE, denoting that the user is in a lecture;
• SEMINAR, denoting that the user is in a seminar;
• LUNCH, denoting that the user is having lunch;
• TEA, denoting that the user is having a tea break;
• TOILET, denoting that the user at the toilet;
• SPORT, denoting that the user in the sports centre;
• UNKNOWN, denoting that the user’s context cannot be determined with the available sensor information.

We begin, in Fig. 3, by modelling a simple user behaviour. Since user movement might be different for each user,
the generic model has non-deterministic transitions between all contexts. For example, the user might move from
HOME to any other context. In Fig. 3, we only show transitions from HOME to other contexts. Actually, any
transition is allowed between any pair of contexts. In Fig. 3 we also show how long a user might stay in a context.
For example, if the user is in either MEETING, LECTURE, or SEMINAR, then it stays in that context for an
hour; if the user is in LUNCH, then it will stay at least half an hour; if the user is in TEA, then it will leave
that context in 10 min; etc. All the timing information was extracted from the user data obtained from statistics
generated by the real system usage. As seen in Fig. 3, a user’s exact interruptability, denoted by ‘intr’, is assigned
to a value in each transition.2 The interruptability values are user-specific, and are defined by users. Based on the
statistics derived from real Scatterbox users, we assume that

• intr � 0.2, if the user is in either LECTURE;
• intr � 0.3, if the user is in either SEMINAR or MEETING;
• intr � 0.4, if the user is in SPORT or TOILET;

2 The assignments to intr are normally done at the nodes. But in Fig. 3 we show them at the transitions for illustration purposes.
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Fig. 3. Simple model of user movement

• intr � 0.5, if the context is UNKNOWN;
• intr � 0.8, if the user is in either TEA, LUNCH, OFFICE or OTHER OFFICE;
• intr � 0.9, if the context is HOME;

Within Fig. 3, note that each context, such as MEETING, can lead on to every other context. We have indicated
this within the figure, but have only expanded all the transitions for the HOME context.

The model of user movement in Fig. 3 denotes the average behaviour of Scatterbox users in a university
domain based on statistics. Figure 3 is a general model for the users. It does not follow the exact movement of
one particular user, because all the transitions are non-deterministic. The model does not force a particular trace.
For example, after the LECTURE, one user might go to LUNCH, and the other user might go to OFFICE, all
of which are expressed in the model. Actually, the movement and location of individual users does not affect our
analysis, because the correctness of the system does not depend on individual user movements, it rather depends
on how the system successfully determines the user interruptability and importance level of messages. Therefore,
Fig. 3 could also be changed to reflect a particular user’s behaviour, if necessary.

We remark that the exact interruptability level and the level that Scatterbox perceives might be different. If
the accuracy of location sensors are high, then the user context can be gathered more accurately, and thus the
perceived interruptability levels become closer to the exact levels. In the next section, we will analyse how the
sensor accuracy, and therefore the context gathering accuracy, affects the accuracy of the Scatterbox system.
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Fig. 4. Simple model of a user calendar

Fig. 5. Model of e-mail retrieval

In Fig. 4 we model the user’s calendar. Here, each user might have a different calendar entry because of the
non-deterministic choices between entries. It is important to note that the calendar model in Fig. 4 and the user
movement in Fig. 3 are synchronised by having the same action labels on the transitions.3 For example, if the
transition from HOME to LECTURE is triggered in Fig. 3, then through the same label lecture the transition
from NO ENTRY to LECTURE is activated in Fig. 4. We remark that the exact synchronisation is only possible
if the user calendar is 100 % accurate, so it is expected that the user follows his/her scheduled activities. However,
in real-life a user’s calendar does not always coincide with the user’s movement. So, the synchronisation depends
on the calendar accuracy.

In Fig. 5 we model the e-mail retrieval behaviour. When a new e-mail arrives, the e-mail handler component
determines its importance level, and assigns a value to it, from {0, 0.1, 0.2, . . . , 0.9, 1}. In Fig. 5 this is shown by
the assignments to ‘imp’. The non-deterministic transitions imply that a newly arrived e-mail can be at any impor-
tance level. In this way, we simulate the arrival of an arbitrary e-mail. This allows us to analyse the behaviour of
the Scatterbox system for any message type. It is important to mention that the Scatterbox’s perception of e-mail
importance level depends on the e-mail handler’s accuracy in classifying e-mails. That is, the exact importance

3 In PRISM transitions can be labeled with actions. The actions can be used to to trigger several modules to make transitions synchronously
(i.e. simultaneously). When modules are combined (using the standard CSP parallel composition), synchronisation is applied over all common
actions.
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Fig. 6. Model of Scatterbox’s beliefs about user interruptability, message importance and calendar information

level and the level that Scatterbox perceives might vary according to the e-mail handler’s performance. In the
following section we will formally analyse how the accuracy of e-mail classification affects the message forwarding
behaviour of Scatterbox.

We now turn our attention to modeling the Scatterbox’s perceived user interruptability, the perceived message
importance and the perceived calendar information. In Fig. 3 the interruptability levels, denoted by intr, are the
exact interruptability levels determined by the exact user movement. But the interruptability that the Scatterbox
system perceives depends on the performance of the context acquisition process (i.e. accuracy of the sensors).
We therefore distinguish between the exact interruptability and the Scatterbox’s belief about interruptability,
as these two might have different values. In the first part of Fig. 6 we show how the system’s belief about the
interruptability assigned according to the context acquisition accuracy. For example, the figure shows that if the
user is in the context LECTURE, where intr � 0.1, then the perceived interruptability B intr is assigned to 0.1
with a probability of q1; assigned to 0.2 with a probability of q2, and so on; finally, B intr is assigned to 1.0 with
a probability q10. Given that A is the accuracy of the context acquisition process (where 0 ≤ A ≤ 100), q1 is
calculated as A/100. Also, we have that q2 + · · ·+q10 � 1−q1. If the accuracy of the context acquisition process
is 100 %, then q1 is calculated as 1, and the perceived interruptability B intr is assigned to 0.1 with probability 1.

In Fig. 5, imp denotes the exact importance level of the e-mail received. However, Scatterbox’s perceived impor-
tance level, i.e. belief concerning the importance level, might be different because the system’s belief depends on
the performance of the e-mail handler component. We therefore distinguish between the exact importance imp
and the perceived importance B imp. In Fig. 6 we illustrate how B imp is assigned to values. For example, if an
e-mail arrives with importance 0.1, then B imp is assigned to 0.1 with a probability r1, assigned to 0.2 with a
probability of r2, and so on. Given that B is the accuracy of the e-mail handler component (where 0 ≤ B ≤ 100),
r1 � B/100 and r2 + · · · + r10 � 1 − r1.
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Fig. 7. Scatterbox model

Finally, we plot the perceived calendar entry of the user in Fig. 6. Similarly, if the user’s calendar entry shows
LECTURE, then the perceived calendar information B s is assigned to LECTURE with a probability of s1,
assigned to SEMINAR with a probability of s2, and assigned to MEETING with a probability of s3. Given that
the accuracy of the calendar sensors are C (where 0 ≤ C ≤ 100), we have that s1 � C /100 and s2 + s3 � 1 − s1.

We can now talk about the overall operation of the Scatterbox system. We first provide various abbreviations:

F1 .� (B intr × B imp ≥ Threshold);
F2 .� (B intr × B imp < Threshold & s1 = UNKNOWN);
F3 .� (B intr × B imp < Threshold & s1 �� UNKNOWN);
F4 .� (B intr × B imp < Threshold);
F5 .� (s1 = LECTURE | MEETING | TEA | TOILET | SEMINAR | LUNCH | SPORT | UNKNOWN);
F6 .� (s1 = OFFICE | OTHER OFFICE | HOME).

We use discrete-time probabilistic timed automata to model the behaviour of the system. Probabilistic timed auto-
mata (PTA) are a formalism used for modelling systems whose behaviour exhibits non-deterministic, real-time
and probabilistic characteristics [KNSS02].4 PTA are an extension of timed automata [AD94], one of the most
prominent formalisms for the formal verification of real-time behaviour. PTA are in general defined on dense time
models because the clocks of PTA are real-valued variables. However, some studies [KNSS02, KNPS06], show
that for a large class of real-time verification problems, correctness can be established using bounded integer-time
models instead of dense-time models. In this paper, we follow the same approach and consider a discrete model
of time.

The Scatterbox system operates as follows (see Fig. 7): When an e-mail arrives, the e-mail handler component
downloads it within t1 s. The e-mail handler then determines the importance level that Scatterbox perceives, and
assigns it to the e-mail. This is done within t2 s. The situation reasoner queries Construct to get the available
context data, which were obtained by Construct through sensors, and from the data it derives the user context. By

4 While various definitions of PTAs can be found, we here use the definition of [KNSS02].
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using this context information, the perceived interruptability of the user is determined. This process is executed
within t3 s. Since Scatterbox has calculated the message importance level and the user interruptability level, it can
now decide whether to forward or not to forward the message. If the multiplication of the user interruptability
and message importance is greater and equal to the threshold value (expressed as F1), then Scatterbox forwards
the message within t4 s. If the result of the multiplication is less than the threshold value and the user context
is UNKNOWN (expressed as F2), then the system consults the user calendar to check whether it includes any
information about the user context, and it then updates the user interruptability according to the entry in the
calendar information. This process is carried out within t5 s. If the multiplication of the user interruptability and
message importance is less than the threshold and the user context is other than UNKNOWN (expressed as F3),
then the system does not forward the message and decides to wait for t6 s. Unless the total waiting time exceeds
t7 s, it checks the context information every t6 s. The message forwarding component forwards a message the user’s
mobile device through either Bluetooth or SMS. If the user is in either OFFICE, OTHER OFFICE, or HOME
(expressed as F6), then the message is sent through Bluetooth within t8 s. If the user is in either MEETING,
LECTURE, SEMINAR, LUNCH, TEA, TOILET, SPORT, or UNKNOWN, then the message is sent through
SMS within t9 s. The probabilities of the communication error for Bluetooth and SMS are p1 and p2, respectively.

Each model in Figs. 3, 4, 5, 6 and 7 is modelled as a Prism module. The overall probabilistic model is con-
structed as the parallel composition of these modules. Namely, all modules are combined using the standard CSP
parallel composition to construct the overall system model. This process is done automatically by PRISM.

6. Formally verifying the scatterbox system

We now turn to the formal verification of properties of the Scatterbox system. We first translated all the transition
systems in the previous section into the Prism input language and then provided the properties to be analysed in
the logic PCTL. Through Prism we are then able to automatically verify that the required properties are true on
the system model.

PCTL is an extension of the branching temporal logic CTL. Apart from the usual operators from classical
logic such as ∧ (and), ∨ (or) and ⇒ (implies), PCTL has the probabilistic operator P∼p [.], where p ∈ [0, 1] is a
probability bound and ∼ is one of <, ≤, ≥, or >. Two forms of path formulas α are allowed: Xφ is true in a state
of a path, if, and only if, φ is satisfied in the next state; and φ1U≤kφ2 is true if, and only if, φ2 satisfied within k
time-steps and φ1 is true up until that point. Path formulas can occur only within the scope of the probabilistic
operator. Intuitively, a state s of a model satisfies P∼p [α] if, and only if, the probability of taking a path from s
satisfies α in the interval specified by ‘∼ p’. As an example, the property that “the probability of F eventually
being true is greater than p” can be expressed in PCTL as follows: P>p [true U≤∞F ].

We now present the results from running Prism on our earlier model with different properties and parame-
ters. The parameters used in these experiments are as follows: t1 � t2 � t3 � t4 � t5 � t6 � t8 � t9 � 30 and
t7 � 300 s. We also take the communication accuracy as being 99 %. i.e. p1 � p2 � 0.99. Below we present the
verification results that we obtained.

We first analyse how the context acquisition accuracy affects the correctness of Scatterbox. The context acqui-
sition accuracy mainly depends on the accuracy of the location sensors. If location sensors cannot monitor the
user location accurately, then the situation reasoner will generate misleading context information. This will result
in an incorrect user interruptibility level (see Fig. 6), and the accuracy of message forwarding behaviour will be
reduced.

The correctness of action selection (i.e. forward or wait) is informally stated as “the probability of deciding on
an action correctly”. This property can be written in the PCTL language as the following formula, �:

P�?�((s � Forward) ⇒ (intr × imp ≥ Thr)) ∧ �((s � Wait) ⇒ (intr × imp < Thr))

which queries the probability of the following:
it is always the case that if it is decided to forward a message, then the multiplication of the exact user interruptibility level and the exact
message importance must be greater than or equal to the threshold value, but if it is decided not to forward the message, this multiplication
must be less than the threshold value.

Here, ? is regarded as query by Prism, and it returns the probability calculated. We know that the decision to
forward was taken based on the perceived user interruptibility B intr and perceived importance level B imp.
Namely, we check whether this is also the case with the exact interruptibility intr and importance level imp. The
property � clearly checks the probability of Scatterbox deciding on an action at the appropriate times. If this
probability is high, then we can be more confident about the Scatterbox deciding on an action correctly.
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Fig. 8. Probability of correctness (�) vs. context acquisition accuracy

We verified the correctness property with respect to different context acquisition accuracies. The result is
shown in Fig. 8. Prism plots the probability values p for the range of 0–100 of the accuracy values, which denote
the accuracy level of location sensors. As we can see, if the context acquisition accuracy increases, then the prob-
ability of Scatterbox deciding on an action at the appropriate time increases. From these results we can conclude
that correctness is very sensitive to the context acquisition accuracy, and thus the sensor accuracy. Note that in
Fig. 8 we assumed the message classification accuracy and calendar accuracy are both 100 %.

In Fig. 9 we analyse how the accuracy of the e-mail classification of the e-mail handler component affects
the correctness. Intuitively, if the e-mail classification cannot be correctly determined, then the importance levels
cannot be assigned correctly. This will reduce the correct action selection within the Scatterbox system. This
behaviour can be observed in Fig. 9, where we verify the correctness property � with respect to e-mail classifi-
cation performance of the e-mail handler component. As can be seen, this probability is directly affected by the
performance of the e-mail handler component. Note that, in Fig. 9, we assumed the context acquisition accuracy
and calendar accuracy are 100 %.

In Fig. 10 we analyse how the calendar accuracy affects the correctness property �. According to this figure,
the probability of deciding on a correct action increases if the accuracy of the calendar increases. This increase
in probability is not as significant as it was in Figs. 8 and 9, because Scatterbox queries the calendar information
only if there is no context information available. So we can expect that the Scatterbox system does not frequently
query the calendar information, and therefore the calendar accuracy does not affect correctness as much as the
context acquisition accuracy and message classification accuracy do. In Fig. 10 the context acquisition accuracy
and message classification accuracy are assumed to be 100 %.

It is worth mentioning that in Figs. 8, 9 and 10 the probabilities of correctness reach a maximum of 0.95. This
is because, although the context acquisition accuracy is 100 %, after the Scatterbox system decides on an action
(forward or wait), the user might change the CONTEXT, reducing the correctness accuracy.

Figures 8, 9 and 10 check correctness according to one variable at a time. We also carried out verification
experiments where we checked the correctness according to the context acquisition accuracy and message clas-
sification accuracy at the same time. Figure 11 shows the results as a 3D surface map. Using this figure we can
easily check the correctness at different combination values.

Above we have shown that we can analyse the probabilistic elements of the system. In Prism, we can verify
many other interesting properties, e.g. safety, liveness, real-time, etc. In order to show the usability of probabilistic
model checking we verified the properties described in Table 2. Here, we consider multiple combined accura-
cies, i.e. we assume that the accuracy of context acquisition, message classification and calendar sensor is 75 %.
Similarly, we could consider any arbitrary accuracy level.
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Fig. 9. Probability of correctness (�) vs. accuracy of the e-mail handler

Fig. 10. Probability of correctness (�) vs. calendar accuracy

Before explaining the properties in more detail, we remark that the verification result returned by Prism is
calculated at (single) initial state of the model. But, “since Prism in fact usually has to compute values for all
states simultaneously, Prism properties can be customised to obtain different results, which is done using filters
[Pri11].” The filters are denoted by the following notation:

filter(op, prop, states)

where op denotes a filter operator, e.g. min, max, avg, etc., prop denotes a Prism property, and states denotes a
set of states over which filter is applied. For example, filter(op, P �?[♦ “deadlock” ], s � 1) returns the average
probability value of reaching a “deadlock” state starting from any state which satisfies s � 1. For illustration
purposes, in Table 2, we denote filter(avg, prop, states) as prop{states}.
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Fig. 11. Probability of correctness (�) vs. context acquisition accuracy and message classification accuracy

Table 2. Further sample properties of scatterbox

Prop. Informal and formal specification Prism vrf.

1 Probability of an arbitrary message eventually being delivered
P�?[♦(s � Delivered)]{s � Receive} 0.68

2 Probability of an arbitrary message remaining undelivered
P�?[♦(s � Undelivered)]{s � Receive} 0.32

3 Probability of a message tagged as ‘important’ being delivered
P�?[♦(s � Delivered)]{s � Receive ∧ imp ≥ 9} 0.88

4 Probability of an arbitrary message being delivered within 200s
P�?[♦≤200(s � Delivered)]{s � Receive} 0.60

5 Probability of an arbitrary message being delivered in 400s
P�?[♦≤400(s � Delivered)]{s � Receive} 0.68

6 Probability of an ‘important’ message being delivered within 200s
P�?[♦≤200(s � Delivered)]{s � Receive ∧ imp ≥ 9} 0.83

7 Probability of an ‘important’ message being delivered within 400s
P�?[♦≤400(s � Delivered)]{s � Receive ∧ imp ≥ 9} 0.88

8 Probability of an ‘unimportant’ message being delivered
when the user is in an uninterruptible context
P�?[♦(s � Delivered)]{s � Receive ∧ imp ≤ 3 ∧ intr ≤ 3} 0.11
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Table 3. Verification experiments

Property Verification Property Verification

Memory (GB) Time (s) Memory (GB) Time (s)

1 2.1 787 5 2.1 671
2 2.1 765 6 2.0 112
3 2.1 785 7 2.1 676
4 2.0 111 8 2.1 766

In Table 2 we gradually refine the queries. Prop. 1 analyzes delivery of an arbitrary message. As the verifica-
tion result shows the probability of an arbitrary message eventually being delivered is 0.68. This is because this
message might be at any importance level (Note that Prop. 2 is the counterpart of Prop. 1). If we consider an
‘important message’ (denoted as imp ≥ 9), the probability of being delivered should increase. Indeed, Prop. 3
verifies that the probability increases from 0.68 to 0.88. Properties 1 and 3 specify ‘eventuality’ without imposing
any time bound. We expect that if we restrict that the message should be delivered within a certain amount of
time, the probability should decrease. Prop. 4 shows that if we assume the message should be delivered in 200 s,
the probability reduces to 0.60. If we allow more time for the delivery, we expect that the probability should
increase. Indeed, Prop. 5 shows that if we increase the time bound to 400 s, the probability increases to 0.68.
Prop. 4 and 5 assume arbitrary messages. If we consider ‘important’ messages, the probability should increase,
as Prop. 6 and 7 verify. Prop. 8 shows that the delivery of an ‘unimportant’ message (denoted as imp ≤ 3) is very
unlikely when the user is in an uninterruptible context (denoted as intr ≤ 3).

Clearly the properties in Table 2 are only indicative of the sort of properties which could be proved, but they
still illustrate important temporal effects that are implicit in Scatterbox’s rule base, but which are only made
explicit by formal verification.

Experiments with Prism were run on a 2.4 Ghz Core 2 Duo computer with 6 GB RAM running Mac OS
10.5.7. Table 3 illustrates the statistics of the verification experiments in Table 2. As seen in the table, the memory
used is just above 2.0GB, and the execution time is in the range of 700s. Here, we also note that the state space
of the Scatterbox model is 1.2 × 108 and the number of transitions is 2.6 × 109. The model is constructed in 4 s.
In Prism, we could also extract Boolean answers. This is achieved by replacing the question mark in the query
P�? with a bound expression, e.g. P≥0.1. In this case, we would receive a YES or NO answer instead of receiving
an actual probability.

In the verification experiments above, the state space and the number of transition are in the level of 109.
The number of parallel components and non-deterministic actions, in general, scales up the state space, but in
our case there are only a few parallel components with non-deterministic transitions. Therefore, this is not the
only reason for the scalability issue. We modeled the user behaviour according to the statistics obtained from real
usage of the system. Since user movements are different for each user, the generic model has non-deterministic
transitions between all contexts. We also included timing information for each context that users stay in. This
level of modelling unavoidably scales up the state space and the transition matrix.

From this we conclude that if a context-aware system requires modelling the exact user behaviour, scalability
will be an issue even for small systems. This problem, however, can be partially treated. First of all, we can use
different scales for time information to scale down the resulting state space. Second, we can use a more abstract
representation of the user behaviour model by combining contexts which have close interruptibility level. In this
way, the user movement will be between context groups rather than individual contexts. Applying these two partial
treatments to the Scaterbox model reduces the resulting state space approximately 2–3 orders of magnitude.

Another useful approach treating the scalability is to use a population approach, which can be applied if indi-
vidual modelling of each variable in the system is not required or avoided. Namely, if there are many identical,
independent processes, the population approach allows us to abstract away from low-level probabilistic details
and so just consider global population behaviour. It is simply applied using variables as counters to count the
number of agents in the corresponding states. [KNP08, KDF12] shows that the state space of the resulting model
reduces dramatically, e.g. in the level of 9–10 orders of magnitude in some cases.

In this paper, we did not apply these workarounds, because the model construction times (in the level of
seconds) and verification times (in the level of minutes) were still in the reasonable bounds despite the sizes of
the state space and transition matrix. We also did not want to deviate from the collected user data.
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7. Verifying pervasive systems

Although we have only carried out detailed verification on one pervasive application, we suggest that the approach
considered here could weel be applicable to a wider range of pervasive systems. Below we provide our reasons
for such optimism.

Uncertainty. As stated in many publications on pervasive systems, for example [DN05, DSNH10], the modelling
of uncertainty is a vital element in the detailed analysis of pervasive applications. As we have shown within our
case study, uncertainty of many aspects can be modelled and verified: sensor accuracy; user behaviour; context
categorization. The use of probabilistic formal verification now gives a general and increasingly powerful tool
for tackling such uncertainty through a wide range of pervasive systems.

Analysis. It is clear that pervasive systems must be analyzed before being deployed in important, or even critical,
areas. Just carrying out basic testing is unlikely to be sufficient to achieve this. Tests only represent individual
scenarios and such tests are often chosen to examine the most likely causes of error. Formal verification, on the
other hand, provides a much more comprehensive analysis technique. It allows us to examine all scenarios and so
we can not only ask “does this scenario lead to an error?”, as is typical in testing, but can also ask “what scenario
can lead to an error?”. This provides the developer with the tools to find many errors, often in unexpected areas.

Ubiquity. Although we have tackled just one application, the architecture and components we have modelled
and verified are very typical of many pervasive applications. Most such systems have networks of sensors, com-
munication mechanisms, context modelling processes, and control involving decisions based on both context
and communication. As shown earlier in the paper, these components are all modelled as separate probabilistic
entities within the verification approach. This not only leads us to contend that the analogous nature of many
pervasive applications will allow us to use similar modelling and verification approaches, but we also believe that
building a toolkit of verifiable models for such architectural components is a route towards the wider analysis of
pervasive systems.

Modelling. The development of automata representing the key components of the system, such as sensing, com-
munication, and context acquisition, appears relatively straightforward. However, one potentially difficult aspect
concerns providing the probabilities used in these automata. Where do these come from? How do we know they
are plausible? We are fortunate with Scatterbox in that, since the system is already deployed, substantial data
concerning real usage is available. From this data we can extract probabilistic models of a range of “typical”
behaviours, which then form the basis for our user models, etc. Similarly, we have significant data on the error
margins within sensors, etc. If no data is available on some aspect of the system, then model checking allows us
to leave out specific probabilistic values and so effectively consider all arbitrary choices. This non-determinism
means that any combination possible must be verified; this is general, but costly. Thereafter, any refinements
available will help restrict the possibilities that need to be considered. Thus, whether we have specific data about
the system or not, formal verification can still be applied.

Thus, while we have verified only a selection of properties of a single pervasive system, we believe that many
pervasive systems could be analyzed in a similar way. We must also emphasize that such an analysis allows us
to assess not just whether the system is correct or not, with respect to some formal requirements, but to quantify
how likely it is to work correctly, given (bounded) uncertainty in the environment. This aspect allows the system
designer to tune their pervasive application to have ‘acceptable’ levels of correctness given the range of error
predicted in devices. For example, consider Property 8 from Table 2. Here, there is the undesirable property
of an unimportant message being delivered when the user is in an uninterruptible context. According to our
verification, this will occur with 11 % probability. The designer might well feel that this is too much and so might
change parameters in the system, incorporate better models of the world, or introduce more accurate components
(sensors) to reduce this. Subsequent probabilistic model-checking will show that the probability of the undesirable
property occurring has been reduced. For example, if we increase the accuracy of context acquisition, message
classification and calendar sensors from 75 to 90 % and re-run the verification experiments, the result of Prop. 8
reduces to 0.04. In this case, we are able to decrease the likelihood of undesirable properties.

However, we must also emphasize that efficiency and scalability can sometimes be an issue with (probabilistic)
model-checking tools. If this turns out to be the case, then there is much work on abstraction that might well
be exploited. For example, if large numbers of, essentially identical, sensors are to be modelled then counting
abstractions are a well established rounte to simplified verification problems.
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8. Related work

Although there have been some attempts at modelling pervasive systems [CFJ03, HI04, SB05, Sim07, WZGP04],
there has been relatively little work on formalising and even verifying aspects of pervasive and ubiquitous sce-
narios. As described earlier, formal verification has rarely been used in the analysis of pervasive systems. Work
in [CSRR09] describes a formalism to model context-aware web services, and provides some algorithms to verify
context-aware web services against some qualitative properties such as “non-determinism, liveness of states and
rules, and absence of blocking states”. However, this does not target probabilistic and temporal properties. We
believe these aspects to be essential for analyzing pervasive systems that incorporate some (and often many) unre-
liable hardware components. [ACD+09] analyzes a pervasive home-care application; but that paper only presents
the specification of the system properties and actual verification is not performed. Meanwhile [CGU09], studies
the modelling and verification of context-aware systems whose models are defined in terms of rule sets. That
paper considers a case study of an event driven health-care system; but the properties studied are very limited
in the sense that it only considers checking redundancy within the rule set using SAT-solvers. Many important
characteristics of pervasive systems such as temporal behaviours, uncertainty, etc. are omitted. In [BBD+06] bi-
graphical reactive systems are used to model certain aspects of pervasive computing. In [WBB06] a programming
paradigm is suggested for pervasive applications based on ambient calculus. And, in [RC08], a formal model is
proposed for describing pervasive computing environments based on ambient calculus and an associated ambient
logic. Both Coronato and Pietro [CDP11] and Boytsov and Zaslavsky [BZ13], provide frameworks for formal
specification and verification different to ours, while a forthcoming journal special issue [BCC+12] promises to
provide a snapshot of the state of the art in this area. Very recently [LZD+12], has carried out a very similar work
to ours. The authors propose a formal framework which captures main aspects of pervasive systems, such as con-
text-awareness, concurrent communications, layered architecture, etc. They identify and formally specify several
critical properties of pervasive systems, such as deadlock-freeness, guaranteed services, security, inconsistency
etc., in suitable logics. They also apply their approach to a pervasive nursing home system.

There are other probabilistic model checkers in the literature, such as MRMC [KKZ05], YMER [You05] and
VESTA [SVA05]. YMER and VESTA are statistical model checkers, so we do not prefer using them to to be
able verify all system behaviour, which cannot not be analysed by statistical model checkers. We have not used
MRMC, because it does not support discrete-time MDPs. Also [JKO+07], shows that Prism outperforms MRMC
for large models.5 This is mainly due to the fact that the overhead calculation of Prism for generating MTBDDs to
represent the transition matrix is compensated in large models. MRMC has recently been improved with a better
memory management and implementation of the sparse matrices and support for bisimulation minimization
[KZH+11]. We therefore expect some improvement in performance on large models. Note that there have been
some improvements in Prism as well, e.g. symmetry reduction. We do not provide an evaluation of the recent
versions of these tools, as the authors do not have any empirical data to compare their performances.

Recently, a new model checker has been introduced to analyze hierarchical probabilistic real-time systems
[SLS+11]. The modeling language called PRTS is used to specify these systems, which in turn are used to generate
finite state MDPs. PRTS has been implemented in the model checking framework PAT which provides a user
interface to edit, simulate and verify PRTS models. Through some experiments the authors show that the tool
outperforms Prism in dense-time. In analysing low-level properties, e.g. communication and security protocols,
we think PTRS could be more advantageous because of its efficiency in dense-time, and its support for hierarchical
systems.

9. Conclusion

In this paper we have studied the formal verification of a deployed pervasive system. We assessed dynamic and
temporal behaviour of the system and analysed the impact of probabilistic elements within the overall behaviour.
We therefore verified formal requirements even in the presence of unavoidable uncertainty in sensors, calendar
information, communications, context accuracy, and so on. Our analysis has shown that model-checkers such
as Prism can be useful in verifying these aspects of pervasive applications. Furthermore, we believe that the
techniques we have applied here can be used in analysing probabilistic behaviour of other pervasive systems, and
potentially more general sensor-driven adaptive systems.

5 [JKO+07] actually shows that models up to a few million states MRMC mostly performs better than Prism ; but for larger models Prism
performs better.
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Any pervasive system is inherently probabilistic, and as programmers we have a relatively under-developed
ability to program with uncertain information. The impact of uncertainty combined with rule-based decision-
making on a system’s external behaviour remain implicit in the rule and code structure. Without proper analysis
it is impossible to be sure that a system will demonstrate the appropriate properties across all possible evolutions.
Formal verification provides more confidence than is possible through testing or simulation. By using a probabi-
listic method we are able to quantify the expected reliability of a system even in the face of unreliable components.

There are two key problems that occur in all such approaches: (1) what properties do we verify; and (2) where
do the probabilities come from. The first of these remains a problem with all formal analysis techniques and,
clearly, significant work must be done in capturing the requirements of the system in a formal and logical way.
We have been able to avoid the usual problems of (2) by tackling an actually deployed system. Since Scatterbox is
in use, data is available through which we are able to give ‘justifiable’ probability values. Similarly, the potential
error ranges of sensors and communications can be extracted through practical use. While all these values can
never be perfect, their basis in real activity gives us some confidence that the results of our analysis are relevant.

In this paper we mainly focused on high-level properties, such as action selection accuracy and message deliv-
ery. As a future research direction we intend to extend our work with low-level analysis of the system. We want
to analyse the communication and security protocols, to be able to check properties such as “a message sent to
the user A can never be delivered to user B”. More broadly, we are currently exploring the extensions needed to
formal methods in order to demonstrate properties such as stability in the face of small perturbations, with a
view to allowing the verification of the next generation of sensor-driven adaptive systems.
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