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Abstract. We present a strategy for the automatic generation of test cases from parametrised use case templates
that capture control flow, state, input and output. Our approach allows test scenario selection based on partic-
ular traces or states of the model. The templates are internally represented as CSP processes with explicit input
and output alphabets, and test generation is expressed as counter-examples of refinement checking, mechanised
using the FDR tool. Soundness is addressed through an input–output conformance relation formally defined in
the CSP traces model. This purely process algebraic characterisation of testing has some potential advantages,
mainly an easy automation of conformance verification and test case generation via model checking, without the
need to develop any explicit algorithm.
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1. Introduction

Testing consists in verifying whether the actual system behaviour matches the intended one. Hence, testing is
related to some model (sometimes a mental model) [UPL06], which is the basis for the construction of test cases.
Test cases are then constructed to assess the correctness of particular features of the system. A good set of test
cases is directly related to how adequately the model captures the features of the implementation under test
(IUT). Nevertheless, designing test cases manually can yield inconsistent test cases even if the model is trust-
worthy. Moreover, when the model changes, test cases must be updated and this is not always feasible manually,
mainly when the number of tests grows. So manual craft and execution of tests can be costly and error prone.
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The selection of a good set of test cases and their automation aim at making the testing process more effective,
less susceptible to errors and less dependent on human interaction. The purpose of model-based testing (MBT) is
to use explicit models to automatise testing. Instead of manual design, tests are generated by a tool that processes
the input model. Complementary, the generated tests can be automatically run against an implementation. Con-
formance testing is a kind of MBT whose objective is to check whether an IUT satisfies its specification according
to some defined relation (conformance relation); an inherent assumption is that the class of specifications can
be modelled in some known formalism so that it can be related with the specification model (test hypothesis).
There are several conformance relations [BJK+05] mainly based on formal notations like Finite State Machines
(FSM) and Labelled Transition Systems (LTS). Based on a conformance relation, test cases can be automatically
generated from the model using algorithms [HBB+09] that ensure the satisfaction of properties by the generated
tests (e.g. soundness).

Despite the advances of conformance testing, both in theoretical and practical fields, there are process related
barriers for its wider adoption, such as the introduction of new tools and paradigms in traditional testing flows.
Forcing the users to adopt new tools and formal notations does not seem to work, so user-friendly notations
and interactive tools are necessary to reduce the gap between formal specifications required by MBT tools and
informal specifications adopted in standard testing processes, often described in natural language. A promising
direction to overtake this barrier is to develop domain specific approaches [Ber07].

Due to its convenience and easy to use notation, and adherence to object-oriented development methodolo-
gies, use cases [Gro07] have been adopted as the input model for test generation in many development contexts.
Despite being part of object-oriented development methodologies, use cases can be developed by analysts and
testers who do not have object-oriented programming skills. Very often use cases are the only available require-
ments documentation. Moreover, from use cases it is possible to validate the system in the early stages of the
development, minimising costs.

Particularly, use case templates [CS08] are the standard input models for conformance testing in the Brazil
Test Center (BTC) project [Sam05], a cooperation between the Federal University of Pernambuco and Motorola
Inc., in the context of testing embedded software that run in mobile phones. A use case template is a document
that defines the syntactic elements for authoring use cases and their relationships. It is structured as a set of
features, each one described as a set of use cases. A feature is a clustering of individual requirements that describe
a cohesive, identifiable unit of functionality; often described as input and output events that flow sequentially
between the actors (mainly the user) and the GUI of the IUT. Thus, use case templates are very suitable for the
description of the features to be tested. In BTC, use cases are described in a domain specific language for mobile
applications [Tor06, Lei07]; this is a Controlled Natural Language (CNL), which is a small subset of English
with a fixed grammar. The template has proved suitable [NCT+07] to specify individual features (mobile device
functionalities) as well as several patterns of feature interaction.

Originally, use cases did not have a formal semantics, required for a fully automated test generation and
reasoning about the properties of the generated test cases. However, more recently, several semantics have been
proposed to use cases [CANM08, NFLTJ06, BL02, WP99, HVFR05, SC08] aiming at generating test cases. LTS
and FSM are the main models used as basis to automate test generation from use case models; these are very con-
crete models and often adopted as the operational semantics of more abstract process algebras like CSP [Ros98],
CCS [Mil89] and LOTOS [88089]. Contrasting with operational models (such as LTS or FSM), process algebra
models can naturally evolve to incorporate additional requirements; the operators of a process algebra also allow
complex models to be built from simpler ones in a compositional way. Test generation can take advantage of this
more abstract level to be formalised in terms of the process algebra itself, generating concise, precise and proved
correct solutions.

In BTC, from the use cases, models expressed in the CSP process algebra [Ros98] are automatically constructed
[CS08] and used as input for our CSP based automatic generation approach of test scenarios. In this approach,
instead of developing explicit algorithms, test scenarios are obtained from counter-examples of refinement ver-
ifications using FDR [For05], a model checker for CSP. There is no explicit manipulation of state spaces or
control flow; test selection is captured by CSP test purposes, which are CSP processes that describe the properties
of interest to be captured by the generated tests. In this approach, soundness is established via a conformance
relation, named cspio, which defines the set of observations considered in testing: the implementation must
produce a subset of the outputs for the inputs that are specified. As test hypothesis it is assumed that the class of
implementations to be tested can be specified by some I/O process. Generated test scenarios are used to construct
test cases that are sound with respect to cspio, ensuring that, only incorrect implementations can fail the tests.
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A broad range of features can be described through sequential control flows using the use case templates
from [CS08], as long as data and state aspects are abstracted into events. Those templates do not allow the
explicit specification of data and state. One advantage of such an abstraction is that the templates become sim-
pler. Nevertheless, the price to be paid with this simplification is loosing preciseness about inputs, outputs and
states. In order to be able to describe more elaborate flows, where, for instance, loops controlled by dynamic
changes in the system state are present, we need more powerful use case templates. For testing, one particular
advantage of specifying data is the possibility to select tests based on the current state of the specification. More-
over, data in the model can be used for the automatic generation of precise initial and final states of each test case.
This is very useful for generating test cases automatically as well as to find the optimal test execution ordering to
optimise test setup costs [LISA09].

In this paper, we both improve and extend an initial approach to test case generation based on the CSP process
algebra [NSM08] by taking into account data (inputs, outputs, variables and parameters) in the description of
features, as well as in the selection of test scenarios. As an extension of the template introduced in [CS08], we
propose a parametrised and state based template to capture these new attributes. To keep compatibility with the
original template, new features are included as fields that complement the CNL sentences without changing their
structure. Aligned with UML diagrams, we also improve the original templates with inclusion and extension
relations, which characterise more concisely certain links among use case flows. In our state based approach, con-
ditions in general (and particularly of extension points) can be properly and concretely expressed using variables,
whereas in the original template they would have to be abstracted using events. We also develop an automatic
translation from the proposed templates to CSP. The CSP specification obtained from the use case templates are
what we call I/O processes, formed of ordinary CSP processes together with explicit input and output alphabets.
Such a specification combines processes that model control flows, with those that model state to record the current
values of the use case variables; the latter include simple operations to read and update the state. Based on this
representation, CSP test purposes can describe test scenarios that match particular states of the specification and
can also be used to assess the system state after completing the test scenarios. An advantage of our approach,
based on a process algebra, is modularity: the incremental generation of test scripts, possibly using selection
directives, is essentially the same both for test models that include only control flow and those extended with
state information. As already mentioned, this is possible because such scenarios result from counter-examples
of refinement verifications, without the need to develop any explicit algorithm, unlike approaches based on
more operational models like LTS, which involve the design of new algorithms for addressing model exten-
sions [And07, CANM08]. Another contribution of this paper is a detailed proof of soundness of the derivation
of test cases from test scenarios (Theorem 5.2); although the soundness theorem originally appeared in [NSM08],
its proof has not been previously published. When detailing the proof of the refinement characterisation of cspio
conformance verification (Theorem 5.1) we uncovered a subtle technicality which led to a small correction in
the refinement expression, as detailed later on. Our overall strategy is currently implemented into two separate
tools. The automatic translation from use case templates to CSP is implemented as a component of the TaRGeT
framework. Details of a previous release of TaRGeT (with use case templates restricted to control flows) can be
found in [FNSB10]; the extension to our state-based template is a contribution of the current work. Test case
generation and selection from the CSP model is implemented in a tool called ATG [NSM11], whose extension
to address state-based models is also a contribution of our current work. A current task is to incorporate ATG
into the TaRGeT framework and produce a complete implementation of our overall state-based approach.

Several test generation approaches that input some form of use cases have been proposed, many based on
graphical notations as UML [NS11, WP99, BL02, HVFR05], and some based on natural language descriptions
[BG03, SC08, CS08]. However, none of them considers a natural language representation that mixes control and
state representation, which can be used to select particular scenarios during test generation. Furthermore, none
of these approaches considers formal properties of the generated tests.

An overview of our application domain (mobile device software) is introduced in Sect. 2. The CSP testing
approach for control flow is presented in Sect. 3, which encompasses the translation from the use case templates
to CSP models as well as the use of CSP refinement checking to generate and select test scenarios. This section
also emphasises our proposal for capturing use case inclusion and extension relations in the templates. In Sect. 4
we present the state based use case templates, their CSP representation and the selection of tests that match
particular system states. The theoretical basis is depicted in Sect. 5, which encompasses the CSP characterisation
of conformance testing and shows how to obtain sound test cases from a set of test scenarios in terms of input–
output CSP processes. Section 6 discusses related work, and Sect. 7 concludes and presents topics for ongoing
and future research.
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Fig. 1. Test automation workflow

2. Application domain

The development process of mobile phone software in the BTC project follows an iterative approach, where sets
of functionalities (known as features) are incrementally considered in each development cycle. An example of a
feature is the set of requirements for sending a multimedia message. In general, new features are developed and
tested, firstly, in isolation, and later integrated with other features, giving rise to feature interactions.

Figure 1 presents an overview of the automatic test generation approach in the BTC project. The main inputs
are use case documents that describe the behaviour of the features to be tested, and selection criteria defined in
terms of test purposes, derived from the use case document; the output is a test case suite appropriate for manual
test execution. Another possibility is to generate test scripts and perform automatic test execution. The creation
of scripts is supported by a tool [dPF08] that searches for the scripts stored in a database that can be reused.
Input and output templates obey a Controlled Natural Language (CNL) standard [Tor06, Lei07] that can be
translated to and from CSP. We have developed a tool, Abstract Test Generator (ATG), which plays a central role
in the automation flow; ATG takes as input a CSP test model (which is generated from use cases in CNL [CS08])
and a set of test purposes. Internally, the tool generates a set of test scenarios that satisfy the test purposes; the
user can inform the number of scenarios to be generated. The test scenarios are then used to construct sound
test cases (still expressed as CSP processes). Finally, the test cases are translated back to CNL or translated into
test scripts, yielding the test case suite. Concerning manual execution, the produced conformance tests are run by
manually stimulating the GUI of an implementation under test (IUT), and comparing the obtained results with
the expected ones to define a verdict. Auxiliary tools [MMYS09, LISA09] are used to automatically prioritise and
select a subset of tests from a given test suite by identifying their relevance, and order them to optimize test exe-
cution effort. Complementing functional (conformance) testing with the purpose to find crashes in the software,
test scripts (Java) are used to automatically perform stress testing against the GUI of an IUT [BMAF10]. Still
in this setting, but considering an alternative to testing, it is possible to automatically verify the conformance of
(a model of) the IUT against the test model. This is achieved by comparing the IUT model with the test model
using the FDR tool [SNM09].
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Fig. 2. Important messages mobile feature (F1)

In what follows, we overview the use case documents introduced in [CS08], based on Fig. 2a, b.

Use Cases Documents A use case document is formed of a set of features, each one described as a set of use
cases. A use case has a set of interconnected flows (main, alternative and exception); each flow is a sequence of
steps, and each step has an identifier (Id) that can be referenced (use cases can be shared by different features
and documents). Features and use cases also have unique identifiers. The complete reference for a step has the
form FEATURE ID#UC ID#STEP ID. Moreover, each flow step specifies a user input action (User Action
column), the expected system output in the System Response column, and the condition required to enable the
input action (System State column). It is not mandatory to define both action and response for a step, but at least
one of them must be specified; the condition is optional.

Figure 2a shows the main flow of the use case F1 UC1 of the Important Messages Feature, named F1. Such
a flow specifies the sequence of actions that the user must perform to move a message from a folder to the Impor-
tant Messages folder: go to a folder, select messages and choose the option to move. After moving a message, a
confirmation is displayed and the flow finalises.

The fields From Step and To Step are used to indicate the set of steps from where the flow must start and
continue, respectively. As a default, the main flow uses the constants START (no previous step) and END (no
subsequent step) for these fields. Alternative flows are simply defined by characterising where (From Step) they
can assume control and where they must resume (To Step), with respect to the flows they are referencing. Figure 2b
(top) shows a possible alternative flow for the Important Messages use case. It specifies that after step 2M of the
main flow the action to move selected messages does not succeed: a message notifies the situation that a clean up
is requested; and the flow continues in the first step of the main flow. Since the steps 3M and 1A can perform a
common action at the same time, regardless of system condition (move selected messages), the system response
for such an action is nondeterministically chosen by the system. Still in Fig. 2b (bottom) a different alternative
flow specifies the possibility, after step 1A, to delete messages in the Important Messages folder, and continues in
the main flow. The exception flows are similar to alternative flows, except for representing exceptional behaviours.

3. Testing for control

In this section we introduce our approach to test case generation from CSP models, originally presented in
[NSM08]. This approach is restricted to models with control flow. In the next section we extend this approach to
consider parametrised and state based models, as well as inclusion and extension operations on use case templates.
Its main feature is that test generation and selection are formulated as simple refinement verifications using the
FDR refinement checker.
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3.1. Test models as CSP processes

A process is the central element of a CSP specification. Processes can offer events from �� (the set of all possible
events) to establish communication with the environment or with other processes. The alphabet of a CSP process
P , denoted by αP , with αP ⊆ �, is the set of events it can communicate. The CSP primitive process Stop specifies
a broken process (deadlock), and the primitive Skip a process that communicates a special event � and terminates
successfully.

Although CSP is a very expressive process algebra, and, therefore, convenient to express our theory, there is no
semantic distinction between input and output events in CSP. A model in our theory is a tuple M � (P ,AI ,AO ),
where P is an ordinary CSP process representing the model behaviour, AI the set of input events, and AO the set
of output events, with AI ∩ AO � ∅ and αP ⊆ AI ∪ AO ∪ {�}; this model is called an I/O process.

Basic CSP operators as prefix, external (internal) choice and sequential composition are suitable to model the
control flow of feature use cases. The CSP prefix operator P � ev → Q specifies that event ev is communicated
by P , which then behaves as the process Q . A channel is an important abstraction in CSP for a set of events with
common prefix. Let T be a type and c a channel that can communicate a value of type T (declared as c : T ).
Such a channel declaration represents the set of events {c.x | x ∈ T }, which can be more concisely denoted by
the expression {| c |}. The external choice operator P � Q �R indicates that the process P can behave as Q or
R; the choice is made by the environment. The internal choice operator P � Q 	 R indicates that P can behave
as Q or R; the choice is made non-deterministically by the process. The sequential composition P ; Q behaves
like P until it terminates successfully, when the control passes to Q . Additionally, consider the CSP expression
P � let . . . within Q that behaves as the process Q, whose context is augmented by the local definitions enclosed
in the let . . .within clause. The guarded process b & P behaves as P if b evaluates to true, otherwise as Stop;
formally it is equivalent to the expression if b then P else Stop.

Parallel composition is a very powerful CSP operator. Consider the process P | [X ] | Q that stands for the
generalised parallel composition of the processes P and Q with synchronisation set X . This expression states that
P and Q must synchronise on events that belong to X . Each process can evolve independently for events that are
not in X . Such a composition terminates successfully if, and only if, the left and the right-hand side processes
do terminate. Consider that the notation P � Q represents the interleaving between the processes P and Q . In
such a composition both processes communicate any event freely (no synchronisation), thus being equivalent to
P | [ {} ] | Q .

Consider the replicated construction of CSP
⊕

x : A • F (x ), where
⊕

is a choice or parallel composition
operator, x is a value from set A, and F (x ) any process expression involving x . This construction behaves as the
process F (x1)

⊕ · · · ⊕F (xk ), for A � {x1, . . . , xk }. For instance, the expression for the replicated external choice
� x : A • F (x ) is equivalent to F (x1) � · · · �F (xk ).

Consider the CSP notation P
∖

X that defines a process which behaves like P , communicating all its events,
except the events that belong to X , which become internal (invisible):

∖
stands for the hiding operator.

Let R � {(x1, y1), . . . , (xn , yn )} be a renaming relation whose domain coincides with the alphabet of the
process P . Thus, the CSP process P�R� represents P renamed according to R, that is, P�R� communicates the
events of {y | x R y} whenever P communicates x , provided x ∈ dom(R). Events not in dom(R) are unchanged
in P�R�. For instance, let R1 � {(a, a), (a, b)} and P1 � a → Stop, so P1�R1� � a → Stop � b → Stop. P�R�
can be alternatively represented as P�x1,...,xN /y1,...,yN

�. It is worth noting that renaming can create new behaviour
as our previous example has demonstrated.

Finally, consider the process RUN (s) � � ev : s • ev → RUN (s) that continuously offers the events
from the set s, and P 
 Q which indicates that Q can interrupt the behaviour of P if an event offered by Q is
communicated.
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As an example of the CSP notation, consider the following specification.

F1 UC1 � let
F1 UC1 START � F1 UC1 1M
F1 UC1 1M � goTo → msgsDisp → Skip; (F1 UC1 2M )
F1 UC1 2M � selectMsgs → msgsHighlighted → Skip; (F1 UC1 3M�F1 UC1 1A)
F1 UC1 3M � selMoveToIMOpt → msgMovedToIMDisp → Skip
F1 UC1 1A � selMoveToIMOpt → cleanUpReqDisp → Skip; (F1 UC1 START�F1 UC1 1B )
F1 UC1 1B � selectImpMsgs → msgsHighlighted → Skip; F1 UC1 2B
F1 UC1 2B � cleanUpMsgs → cleanUpPerformed → Skip; F1 UC1 START

within F1 UC1 START

This process is obtained by applying the translation approach [CS08] to the main and alternative flows of the use
case of the Important Messages Feature (Fig. 2). For conciseness, we abbreviate the event names that represent
the elements of the use case templates. The CSP process that models a use case, like F1 UC1 above, is defined
in terms of several auxiliary processes, one for each step flow, whose name is suffixed with the respective step
id, including START . The process F1 UC1 behaves like the process F1 UC1 START , which itself invokes the
process that captures the first step flow, and so on. In general, the process that models the start of the flow is a
choice between the first steps of the flows that start from it (references in the From step field).

The CSP process for each of the other steps is modelled as a sequence of CSP events encoding the step action
and response, respectively, which prefixes the successful termination of the step (Skip). Analogously to the start
step, if the step continues through other steps it is sequentially composed with its continuation. For instance, the
process F1 UC1 1M models the sequence of action and response of the step 1M (Fig. 2a), which is composed
with the subsequent step of the flow (F1 UC1 2M ). Continuing the flow, the process F1 UC1 2M models the
behaviour of step 2M whose continuation is the choice between the subsequent step flow (3M) and step 1A of
the first alternative flow (Fig. 2b): F1 UC1 3M �F1 UC1 1A. The step 3M does not have a continuation, thus
it ends with successful termination.

The process F1 UC1 1A models the step 1A of the first alternative flow. Its continuation is the choice between
the start process and the step 1B of the second alternative flow (F1 UC1 START �F1 UC1 1B ). Finally, the
processes F1 UC1 1B and F1 UC1 2B model the behaviour of the steps 1B and 2B of the second alternative
flow. The former process leads to the second, and the continuation of the second is the start process of the main
flow.

Finally, the I/O process of the Important Messages feature use case is the triple F � (F1 UC1,AIF ,AOF
),

where the alphabet sets AIF and AOF
contain the input and output events, respectively, and are defined as follows.

AIF � {goTo, selectMsgs, selMoveToIMOpt, selectImpMsgs, cleanUpMsgs}
AOF

� {msgsDisp,msgsHighlighted ,msgMovedToIMDisp, cleanUpReqDisp,msgsHighlighted,

cleanUpPerformed}

Semantic Models for CSP Trace semantics is the simplest model for a CSP process. Our test generation approach
is solely based on this model. The traces of a process P , given by T (P ), correspond to the set of all possible
sequences of events P can communicate.

Consider that P and Q are two CSP processes, and that the event � does not belong to �. Also, s1
� s2 stands

for the concatenation of sequences s1 and s2, 〈e〉 is a sequence containing the element e and #s yields the size
of the sequence s. The notation s

∖
X yields the subsequence of s resulting from removing the events from the

set X .
Definition 1 presents the traces for CSP primitive processes as well as for the CSP operators used in this work.

A complete definition for all CSP operators can be found in [Ros98].
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Definition 1 (Trace semantics of processes). Let P and Q be CSP processes and � the set of all specified events.

T (Skip) � {〈〉, 〈�〉}
T (Stop) � {〈〉}
T (a → P ) � {〈〉} ∪ {〈a〉 � s | s ∈ T (P )}
T (P �Q) � T (P ) ∪ T (Q)
T (P 	 Q) � T (P �Q)
T (P ; Q) � (T (P ) ∩ �∗) ∪ {s � t | s � 〈�〉 ∈ T (P ) ∧ t ∈ T (Q)}
T (P

∖
X ) � {s � � − X | s ∈ T (P )}

T (P/s) � {t | s � t ∈ T (P )}
T (P 
 Q) � T (P ) ∪ {s � t | s ∈ T (P ) ∩ �∗ ∧ t ∈ T (Q)}
T (P | [X ] | Q) � ⋃{s | [X ] | t | s ∈ T (P ) ∧ t ∈ T (Q)}

All processes include the empty trace (〈〉). The Skip process produces the event � to indicate successful ter-
mination, and Stop communicates no visible events. All non-empty traces of a → P are prefixed by a. Internal
and external choices are not distinguished in the traces model. Both result in the union of the traces of the two
operands. The traces of the sequential composition of two processes are the ones of the first process, but removing
� by (T (P ) ∩ �∗), and those formed of the concatenation of these traces with the ones produced by the second
process. The traces resulting from hiding a set of events is given by preserving only those events that are not in X
(s � � − X ), where the notation t � A stands for the restriction of the sequence t to the elements of the set A. If
s � t is a trace of P , then t is a trace of P/s. The traces of P 
 Q are those of P plus non-termination traces of
P (� �∈ �), augmented with the traces of Q . The semantics of parallel composition uses an operator on traces
(s | [X ] | t) which takes into account the synchronisation traces and all possible forms of interleavings between
the traces of the two processes operating in parallel. The behaviour of the parallel composition is that the events
from the synchronisation set must evolve together; other events can evolve independently. Below is the formal
definition for the parallel composition of traces that is used in the definition of parallel composition of processes.
Consider that s, t ∈ �∗, x is a member of the set X , and y is a member of � − X .

s | [X ] | t � t | [X ] | s
〈〉 | [X ] | 〈〉 � {〈〉}
〈〉 | [X ] | 〈x 〉 � ∅
〈〉 | [X ] | 〈y〉 � {〈y〉}
〈x 〉 � s | [X ] | 〈y〉 � t � {〈y〉 � u | u ∈ 〈x 〉 � s | [X ] | t}
〈x 〉 � s | [X ] | 〈x 〉 � t � {〈x 〉 � u | u ∈ s | [X ] | t}
〈x 〉 � s | [X ] | 〈x ′〉 � t � ∅ if x �� x ′

〈y〉 � s | [X ] | 〈y ′〉 � t � {〈y〉 � u | u ∈ s | [X ] | 〈y ′〉 � t}
∪{〈y ′〉 � u | u ∈ 〈y〉 � s | [X ] | t}

For instance, according to the definitions above T (RUN (A)) equals A∗, which is the set of sequences formed
of events from A, including the empty sequence.

It is possible to compare the traces semantics of two processes by refinement verification using one of the
CSP refinement checking tools, such as FDR [For05], PAT [SLD08] or ARC [PY96]. In this work we use FDR
because of its maturity and its notation CSPM [Sca98], a machine-readable dialect of CSP that was developed
as the input language for FDR and the CSP Process Explorer [For11]. CSPM combines the CSP process algebra
with a functional language.

A process Q refines a process P in the traces model, say P �τ Q, if and only if T (Q) ⊆ T (P ). If the
refinement does not hold, FDR yields a trace (the shortest counter-example), say ce, such that ce ∈ T (Q)
but ce �∈ T (P ). For instance, F1 UC1 3M �F1 UC1 1A �τ F1 UC1 1A holds, since T (F1 UC1 1A) is a
subset of T (F1 UC1 3M �F1 UC1 1A). However, the relation Skip �τ accept .1 → Stop does not, since
〈accept .1〉 ∈ T (accept .1 → Stop) but 〈accept .1〉 �∈ T (Skip). Thus, the trace 〈accept .1〉 is a counter-example for
the last refinement expression above.

Other more elaborate semantic models of CSP are the failures and the failures-divergences models. The former
captures nondeterminism and deadlock situations, whereas the latter captures livelocks as well. See [Ros98] for
further details.
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3.2. Test scenario generation

Given a test model S and a safety property �, we can obtain the traces of S that satisfy � (for example, traces
from S that lead to a successful termination). We call these traces test scenarios, say ts, when � describes some
test selection criteria. A test scenario is the central element used to construct a CSP test case. This section shows
how to generate test scenarios as counter-examples of refinement verifications.

Consider the set MARK � {accept .n} for n ∈ N, the alphabet of mark events used in our test generation
approach. Let S be the process that specifies the model we want to select tests from, then we define S ′ to be S with
the addition of mark events after test scenarios that satisfies �. The idea is to perform refinement verifications
of the form S �τ S ′ that generate the test scenarios as counter-examples. Then, S ′ is defined in such a way
that for all test scenarios ts ∈ T (S ) that satisfy �, there is a trace ts � 〈m〉 ∈ T (S ′), such that m ∈ MARK
and MARK ∩ αS � ∅. As a consequence ts � 〈m〉 �∈ T (S ), so the relation S �τ S ′ does not hold and the
counter-examples are traces of the form ts � 〈m〉. The shortest test scenario, say ts1, is retrieved by FDR when
S �τ S ′ does not hold.

Let �(ts) be a predicate that evaluates to true iff ts ∈ T (S ) satisfies �. Then, the expression below formalises
the relation between the traces of S and those of S ′.

∀ ts | �(ts) • ∃m : MARK • ts � 〈m〉 ∈ T (S ′) − T (S )

The difference between the traces of S ′ and those of S is formed of test scenarios satisfying � extended with
a suffix 〈m〉. In other words, if �(ts) then ts � 〈m〉 belongs to the set of counter-examples of S �τ S ′, and
vice-versa.

To illustrate the proposed approach, we show how to generate a set of test scenarios (ts ∈ T (S )), which lead
the test model to successful termination. Consider the process ACCEPT (id ) � accept .id → Stop that is used
to mark test scenarios by communicating the mark event accept .id (accept .id ∈ MARK ). Thus, we define S ′ as
the process (S ; ACCEPT (i )). This process inserts marks (accept .i ) after each successful termination of S . As
a consequence, the verification of the relation (S �τ S ′) yields as counter-examples test scenarios that lead the
specification to successful termination (if they exist).

For example, checking the relation F1 UC1 �τ F1 UC1; ACCEPT (1) using FDR results in the shortest
counter-example, as displayed below.

F1 UC1 ts1 � 〈goTo,msgsDisp, selectMsgs,msgsHighlighted , selMoveToIMOpt,msgMovedToIMDisp,

accept .1〉
The above trace (ignoring the mark event accept .1) is the shortest successful termination test scenario to F1 UC1.
It corresponds to the main use case flow of the Important Messages Feature (Fig. 2a).

To obtain from S subsequent test scenarios lengthier than a test scenario ts1, we use the function Proc that
receives as input a sequence of events and generates a process whose maximum trace corresponds to the input
sequence. Formally, Proc(s) � if (s �� 〈〉) then head (s) → Proc(tail (s)) else Stop, such that head (s) and tail (s)
are functions that yield the head and the tail of a non-empty sequence s, respectively. For instance, Proc(〈a, b, c〉)
yields the process a → b → c → Stop. The reason for using Stop, rather than Skip, is that Stop does not
generate any visible event in the traces model, while Skip generates the event �.

The second counter-example is generated from S using the previous refinement, but with the process formed
by the counter-example ts1 (Proc(ts1)) as an alternative to S on the left-hand side: S �Proc(ts1) �τ S ′. As
T (S �Proc(ts1)) is equivalent to T (S ) ∪ {ts1}, ts1 cannot be a counter-example of the second refinement itera-
tion. Thus, if the refinement does not hold again, then we have ts2 as the counter-example.

The iterations can be repeated until the desired set of test scenarios is obtained (for instance, a fixed number
of tests is generated). In general, the n + 1th test scenario can be generated as a counter-example of the following
refinement.

S �Proc(ts1) �Proc(ts2) � · · ·�Proc(tsn ) �τ S ′ (1)

Continuing the selection of successful termination traces of F1 UC1, checking the relation F1 UC1�Proc
(F1 UC1 ts1) �τ F1 UC1; ACCEPT (1) yields a second counter-example.

F1 UC1 ts2 � 〈goTo,msgsDisp, selectMsgs,msgsHighlighted , selMoveToIMOpt, cleanUpReqDisp,

goTo,msgsDisp, selectMsgs,msgsHighlighted , selMoveToIMOpt,msgMovedToIMDisp, accept .1〉



450 S. Nogueira et al.

The above trace is another successful termination test scenario for F1 UC1. It corresponds to the behaviour
of the first alternative flow of the Important Messages feature (Fig. 2b (top)) followed by the main flow. Since
the CSP model for the feature has infinite traces leading to successful termination, we can always increase the
expression to generate lengthier test scenarios.

In a test generation approach based on refinement counter-examples, it is not possible to directly measure
the coverage of the specification structure. Remarkably, if each input and output event of a use case is uniquely
identified in the CSP model, the coverage of the use case steps can be measured by looking into the events of the
generated test scenarios. However, the number of states and transitions that a set of counter-examples covers can
be measured if we consider the transition set of the operational model for the specification process (LTS).

3.3. Test scenario selection

Although successful termination can itself be used as a selection criteria, as illustrated in the previous section,
this section shows a more flexible strategy for selecting a set of test scenarios from a test model S based on
the concept of a test purpose TP , also described as a CSP process. A CSP test purpose is based on the notion
introduced in [LdBB+01]: a test purpose is a partial specification describing the characteristics of the desired
tests. More concretely, it specifies the traces (safety property) that the generated test scenarios must have. The
definition below formalises the concept.

Definition 2 (CSP Test Purpose). Let TP and S be CSP processes, m an event from MARK , and X ⊆ (αS )∗
a subset of the traces constructed from αS . The process TP is a test purpose for S if it is deterministic and
∀ t : T (TP ) • (t ∈ X ) ∨ (t �∈ X ∧ t � t ′ � 〈m〉 ∧ t ′ ∈ X ).

The traces of TP belong to X or end with a mark event: removed the mark event the resulting trace belongs to
X .

To ease the task of writing TP in CSP following Definition 2, we provide a set of primitive processes that can
be combined to design possibly more elaborate test purposes.

The primitive ANY (evset : P αS ,next) � � ev : evset • ev → next performs basic selection. It selects
the events offered by the specification that belong to evset . If any of these events is communicated, it behaves as
next . Otherwise, it deadlocks.

The process UNTIL(αS , evset : P αS ,next) = RUN (αS − evset) 
 ANY (evset,next) selects all sequences
offered by the specification events until it engages in some event that belongs to evset . In [NSM11] one can find
a comprehensive list of primitives.

The following is an example of a test purpose TP1 that is used to select scenarios from F1 UC1. The objec-
tive of TP1 is to select from F1 UC1 test scenarios whose final output is a message confirming that the selected
important message is moved to the folder (msgMovedToIMDisp); this must happen after the user has performed
a cleanup action (cleanUpMsgs).

TP1 � UNTIL(αUC1 , {cleanUpMsgs},UNTIL(αUC1 , {msgMovedToIMDisp},ACCEPT (1)))

The process TP1 offers the events of αUC1 until it engages in cleanUpMsgs. Next, it offers the events of αUC1 until
it engages in msgMovedToIMDisp, when it behaves as ACCEPT (1) that inserts the mark event accept .1.

Based on the test scenario generation approach from the previous subsection, one can select test scenarios
for a given CSP test purpose TP by defining the process S ′ (here referred to as PP (S ,TP )) as the parallel prod-
uct of S with a test purpose TP with synchronisation set αS : PP (S ,TP ) � S | [αS ] | TP . The process TP
synchronises in all events offered by S until the test purpose matches a test scenario, when TP communicates
an event mark ∈ MARK . At this point, the process TP deadlocks and, consequently, PP (S ,TP ) deadlocks as
well. This makes the parallel product to produce traces ts � 〈mark〉, where ts is a test scenario. If S does not
contain scenarios specified by TP , no mark event is communicated, the parallel product does not deadlock and
the relation S �τ PP (S ,TP ) holds.

The parallel product of the test purpose TP and the I/O process M � (P ,AI ,AO ) is PP (M ,TP ) � P
| [AI ∪ AO ] | TP . The refinement relation that yields test scenarios is P �τ PP (M ,TP ). Considering again our
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example, the shortest test scenario from F that matches TP1 is obtained from a counter-example of the relation
F1 UC1 �τ PP (F ,TP1), where PP (F ,TP1)�F1 UC1 | [AIF∪AOF

] | TP1. The counter-example is given below.

F1 UC1 TP1 ts1 � 〈goTo,msgsDisp, selectMsgs,msgsHighlighted , selMoveToIMOpt,
cleanUpReqDisp, selectImpMsgs,msgsHighlighted,cleanUpMsgs, cleanUpPerformed ,

goTo,msgsDisp, selectMsgs,msgsHighlighted , selMoveToIMOpt,msgMovedToIMDisp, accept〉
Further test scenarios that satisfy a given test purpose can be generated incrementally as explained in the previous
section.

4. Testing for data

The testing selection approach introduced in the previous section is restricted to control flow. No notion of state
is taken into account. As a major contribution of this paper, use case templates and test case generation and
selection are extended with an explicit notion of state. Use cases are extended with constructions for state update,
input, output and parameterisation. Moreover, documents become more structured, by allowing use cases to be
related through inclusion and extension mechanisms from UML 2.0 [Gro07]. The document structure is compo-
sitionally translated to CSP processes. The CSP specification combines processes that model control flows with
those that model state to record the current values of the use case variables; the latter include special events to
read and update the state. Based on such a structured specification, CSP test purposes can describe test scenarios
that match particular states of the specification. The test selection approach described in the previous chapter is
extended to consider the current values of use case variables.

4.1. State based use cases

Before introducing the new use case template, we present a refactoring of the Important Messages Feature. Such
a refactoring is the running example of this chapter.

Refactoring the Example Recall from Sect. 2 (Fig. 2) that the Important Messages Feature includes a single
use case which, therefore, does not use inclusion and extension relations. Figure 3 represents the same system,
although with a more structured use case model with inclusion and extension relations among use cases.

Fig. 3. Important messages—use case diagram
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The selection of messages is a very common flow, potentially included by other use cases. We have created
a use case (UC1-Select Messages) that describes the selection of messages (Fig. 3). The use case UC1 is defined
as the two first steps of the main flow of the previous UC1 (Fig. 2a). The use case UC2 (Move Messages to
the Important Messages folder) is defined as the last step of the main flow, and the first alternative step of the
previous UC1 (Fig. 2a). The use case UC2 includes UC1. According to UML [Gro07], the use case that includes
another is called the including use case (base behaviour), and the one that is referenced is called inclusion (or
included use case). In our example, UC2 is the including use case and UC1 is the inclusion.

An extension point is a place mark inside the use case flow, labelled by a name, which allows extensions to
add behaviour (optionally) to that point by referring to the label. As in our example, while moving messages it
is also possible to (optionally) delete them (clean up); UC2 has an extension point labelled Clean up. The use
case UC3 (Delete Important Messages) extends UC2 in the extension point Clean up and its flow is defined as
the last step of the alternative flow of use case UC1 (Fig. 2b-bottom). As the extension point has an explicit state
condition, it must be evaluated to decide whether the extension flow must be included or not in the extended use
case. Let important be a state variable representing the current set of messages stored in the Important Messages
folder. Thus, the behaviour of UC3 is added into UC2 if the cardinality of the set of important messages is greater
than zero (#important > 0). It is worth emphasising that this conditional behaviour extension can be properly
captured only with a notion of state, as illustrated by this example. The use case that is extended by others is
called the extended use case (base behaviour), and the one that extends it is called extension. For instance, in our
example UC3 is the extension and UC2 is the extended use case.

An including use case can refer to many inclusions, and an inclusion can be referred to by several base use cases
(many-to-many relationship). The same multiplicity applies to the extension relation. However, cyclic dependence
between use cases is prohibited.

An actor is another important concept when describing use cases in UML. It represents an entity outside
the system that interacts with the system. In our domain, it is often the user that interacts with the GUI of
the implementation. Use cases that are associated with an actor are said to be active. An active use case is an
independent functional unit that initiates its behaviour as soon as the first interaction of the actor is performed.
As an example, in the use case diagram in Fig. 3, the use cases UC2 and UC3 are activated by the User (actor).
Thus they are performed as independent functional units. We call auxiliary the use cases that are not active. An
auxiliary use case is a dependent functional unit that performs the specified behaviour as a consequence of its
relation (inclusion or extension) with some active use case. In our example, UC1 is an auxiliary use case that
cannot be performed independently. It is performed only if UC2 is.

Data Definition Using the refactored example we present the new document template. We start by presenting how
to define data in the document.

Figure 3 shows an expression that specifies the condition for the Use Case UC3 to extend UC2. So far, we
have assumed the variable important was already declared and initialised. Now we show how to define data
elements as types, constants, parameters and state variables. Data definitions can be shared among the use cases
belonging to the same feature (feature scope), or be local to a use case (local scope).

In the use case document, types and expressions are written in a functional style similar to that available in
CSPM [Sca98]; this eases the reading and understanding of the translation into CSPM . We explain the notation
on demand. Nevertheless, in order to increase the practical appeal of the approach, we have developed a notation
closer to natural language and a parser and translation into CSPM [Bez11]; the integration of this notation into
the ATG tool is a current work topic.

Often the types declared in the use case document are related to concepts in the scope of the requirements to
be tested. Figure 4a exhibits data definitions valid for the scope of the Important Messages Feature. The types
Natural and Message are declared using distinct constructors. The constructor nametype is used to associate a
type expression with a name. In our example, the set comprehension representing the range of integers from 0
to 2 ({0..2}) is associated with the name (type) Natural. The constructor datatype is used to associate a type
name with atomic values, or values prefixed by a tag followed by a dot. Thus, the values for the Message type
are natural numbers prefaced with M. Constants are defined by associating a name with a value expression. As
an example, the constant that represents the maximum number of messages stored in the Important Messages
Folder (MAX) is assigned the constant value 2.
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Fig. 4. Important messages feature in the new template

Parameters and variables are very useful for the specification of features. Use case parameters are use case
references to values defined outside the use case specification. A possible use of a parameter is to abstract data
values that have a same treatment in the use case (for instance, moving a message to a message folder has the same
behaviour regardless the name of the folder). Use case state variables are variables that are explicitly declared as
part of the user interface and the state of the feature to be tested (for example, number of messages selected in
the phone interface).

Parameters and state variables are declared using the syntax that follows. A parameter declaration has the
form [PName], where PName is the parameter name. The values a parameter can take are defined before the doc-
ument is instantiated. The parameter can be of any type allowed to be referenced in the use case document. Each
instantiation of a use case takes a unique value for each parameter to which it refers. In Fig. 4a the parameter
FNAME defines the name of the source folders from where the messages can be moved to the Important Messages
folder. The last declaration of a data element we present is that for state variables. The declaration of a state
variable has the form var VName:Type = Init, where the tag var precedes the variable name (VName), its type
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(Type) and initial value (Init). The expressions for type and initial value of a use case can be defined with
primitives and constructors from CSPM , in addition to the user defined types. The variables folder, selected
and important are declared in Fig. 4a (top) with the same type, the powerset of values of the Message Type.
These variables record, respectively, the messages kept in a source folder (folder), the messages selected to be
moved (selected) and the messages stored in the Important Messages folder (important). The source folder is
initialised with two messages, the selected message with no messages, and the Important Messages Folder with a
single message.

Use Case Specification Provided all the necessary types, parameters and variables have been declared, we explain
how to textually specify use cases possibly involving input, output and state variables. Figure 4 shows the use
case document that specifies the use cases introduced in Fig. 3.

In the original version of the template, presented in the previous section, the fields From Step and To Step
are used to simulate inclusion and extension relations. Instead, in the proposed template, relationships among use
cases are specified with the fields Includes, Extension points and Extends. The possibility to relate the use
cases through inclusion and extension relationships contributes to better structuring the document and making
use case specifications more concise.

The field Includes indicates where the behaviour of the included use cases will be added in the including
use case. As an example, in Fig. 4b UC1 is included after the START step of UC2. Consider i1, . . . , ik the list
of inclusions. Each inclusion ix (1 ≤ x ≤ k ) has the form uc list@s, where uc list � uc1, . . . , ucw is a list of
identifiers of the included use cases, and s is the step id after which the list of use cases will be added.

The field Extension points defines the extension points of a use case. For instance, in Fig. 4b UC2 defines
an extension point labelled Clean up after the step 1A. Extensions associated with such an extension point will
assume control after the step 1A and resume before its continuation (START step). Extension point declarations
are separated by commas. Let ep1, . . . , epk be the list of extension points of a use case. Each extension point epx

(1 ≤ x ≤ k ) has the form e : s, where e is the extension point label (unique in the list), and s is the step id after
which the behaviour of an extension use case associated with e will be added.

The field Extends specifies the extension points where an extension use case adds behaviour. As an example,
Fig. 4c shows that UC3 extends UC2 in the extension point Clean up provided the Important Messages Folder
is not empty (#important > 0). Consider ext1, . . . , extw the list of extensions originated from a use case. Each
extension extx (1 ≤ x ≤ w ) is a tuple of the form (cx , ucx@ex ), where cx represents the (optional) condition for
the extension, and ucx@ex the extension point ex in the extended use case ucx where the behaviour is added.

As it can be seen in the running example (Fig. 4), use cases can only be related through inclusion and extension
relations. As a consequence, the From Step and To Step fields become exclusive for referring to flow steps that
are local to the use case. Furthermore, in the document template, an auxiliary use case has its title tagged with
the suffix <<auxiliary>>, as exemplified by use case UC1 (Fig. 4a).

A state based use case can later be instantiated individually for each value of its parameters. The form for
introducing a parameter PAR is by referring to its name enclosed within the token $ (that is, $PAR$). For instance,
the specification of UC1 is parametrised by FNAME (Fig. 4a). One can observe that the steps of the use case UC1
in Fig. 4a differ in steps 1M and 2M from the corresponding steps in Fig. 2a. Particularly, the references to the
Inbox Folder, in Fig. 2a, were replaced by a reference to the FNAME parameter. Such a generalisation is possible
since the specification for selecting messages is the same, regardless of the folder in which it is performed (for
instance, Inbox or Outbox).

Another important facility provided by the new template are constructions to describe input, output, guard
and state update, as a complement to the textual description. These constructions are essential to describe more
elaborate flows, as those controlled by the dynamic changes in the system state. For example, UC2 (in Fig. 4b)
states that the alternative flow can be repeated indefinitely, as far as the number of messages to be moved exceeds
the limits. This could not be precisely specified without an explicit notion of state. For keeping compatibility with
the original template, in the new template data fields are enclosed between square brackets and are not part of
the CNL sentences. Hence, the proposed template extensions have no impact on the CNL standard [Tor06]. The
new data fields are the following.
Inputs are supplied by actors and associated with the step action. For instance, the input x in step 2M of UC1

represents the set of (non-empty) messages selected by the user in the source folder. Formally, this input takes
a value from the set P(folder) − {∅}. The general form for the inputs is the list ?i1 : S1, . . . , ?ik : Sk , where
ix is the input name (unique in the step) and Sx the expression that defines the set of values ix can take, for
1 ≤ x ≤ k . Inputs are used in the same sequence they are defined, so an input iz can reference values from
iw , provided z > w .
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State guard is a condition on the values of variables; it is defined as a boolean expression placed in the system
state column. For instance, in the UC2 step 1M the guard #(important ∪ selected) ≤ MAX specifies the
condition to move the select messages to the Important Messages folder: the cardinality of the union of the
Important messages and the selected messages must not exceed the maximum capacity of the Important Mes-
sages Folder. If the condition is false, the step is not performed and the use case does not progress from the step.

Variable assignments specify an update in the system state after the finalisation of a step. For instance, in the
step 2M of the UC1 the input x is assigned to the set of selected messages, whereas the other variables
(folder and important) remain unchanged. A sequence of assignments is allowed, as, for instance, the
assignments in the step 1M of UC2 that update the values of the variables folder and important. The
general form for the sequence of assignments is v1 :� e1, . . . , vk :� ek , where vx is a variable and ex an
expression whose value is assigned to vx , for 1 ≤ x ≤ k . Variables that are not in the sequence are assumed
unchanged.

Output values are associated with the system response. For instance, !#(important ∪ selected) - MAX is
the output expression in step 1A of the use case UC2 that completes the system response message by cal-
culating the number of messages that exceed the maximum capacity of the Important Messages Folder. The
general form is the list of output expressions !e1, . . . , !ek .

Once all elements of the new template have been introduced, we can explain the complete specification for
the Important Messages feature in Fig. 4. The auxiliary use case UC1 specifies the selection of messages from a
source folder whose name is parametrised (FNAME). The second step of this use case updates the set of selected
messages with the messages that are input. The use case UC2 includes UC1 after the START step, and defines an
extension point named Clean up. The main flow of UC2 specifies the successful attempt of moving the selected
messages to the Important Messages Folder. After moving the messages, the selected messages are removed from
the source folder and added into the target. On the other hand, the alternative flow of UC2 specifies the unsuc-
cessful attempt to move messages. The guard of step 1A is a complement for that of step 1M, so they are mutually
exclusive. If the guard of step 1A holds, then a message is displayed indicating that a cleanup is required so that
the selected messages can be moved; the least number of messages to be deleted is indicated. The use case UC3
extends UC2 in the Clean up extension, if there is some message in the Important Messages Folder. This use
case defines a local variable named selected that is initialised with an empty set. If a local variable has the same
name as a global (overloading) variable, references to the variable name will refer to the local one. In UC3 the
messages selected from the Important Messages Folder are assigned to a local variable (step 1M), and the same
selected messages are deleted from that folder.

4.2. Overview of the CSP model

This section presents the CSP model for the proposed state-based use case template. Figure 5 displays the struc-
ture of the CSP model for the Important Messages Feature presented in Fig. 4. The process System models the
behaviour of a set of features of an application, and reflects the document structure. Basically, for each document
feature a CSP process is generated. In our example, the single feature F1 gives rise to a process with the same
name. Accordingly, each use case of a feature is modelled by a process. As originally conceived, CSP processes
do not have an explicit notion of variable or state. A simple alternative to model state information is through
process parameters. Another alternative, adopted in this work, is to simulate a memory as a separate process.
Such a process keeps the state of variables and enables others to read and modify the values by synchronising in
common events [Ros98, RH07]. Likewise, if the feature contains variables, additionally to the use case processes,
another process is created to specify the feature state; this process plays the role of a memory that is global to all
feature use cases. A memory process keeps variable values and allows control flow processes to read from and
write to the memory. In our example, F1 is formed of three use case processes (UC1, UC2 and UC3) and one
additional process to model the feature memory (F1 MEM). If a use case does introduce any variable its model
reduces to the process that specifies its flow (for instance, UC1 is just UC1 FLOW). Otherwise, the model is the
parallel composition of the flow and the memory processes (for instance, UC3 is defined by the composition of
UC3 FLOW and UC3 MEM). Flow and memory processes communicate through special events that enable
reading (get) and updating the memory (set). Such events are shared among flow and memory processes. A use
case memory is only accessed by the use case flow, while a feature memory is shared among the feature use cases.

This modular structure has allowed us to devise an incremental strategy to translate the templates into CSP
processes. As another advantage we could easily extend the test selection approach, originally designed to control
flow processes, to consider particular states of the model.
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Fig. 5. Important messages model with get ′ events

Fig. 6. CSP model for types, constants and variables

In the sequel we incrementally present the translation from templates to CSP processes. This translation is
illustrated by our running example. The CSP notation used includes a few elements from CSPM : constructors
for declaring types and channels. Apart from these elements the models are represented using the CSP notation,
which provides an easier reading.

4.3. Types, constants and variables

We start with the translation of types, constants and variables declared in the template into CSP. The general rule
for the names in the CSP model is that elements valid in the scope of a feature f are prefixed with f , and those
valid in the scope of a use case uc of the feature f are prefixed with f uc . In this way we avoid eventual name
clashing in the CSP model.

Data elements declared in Fig. 4a are translated into the specification depicted in Fig. 6. The CSP model for
types and constants (lines 1–3) is a straightforward translation of the data declarations: the names are prefixed to
indicate the scope of the elements. Moreover, type identifiers are preceded with the character t . Each parameter
is translated similarly to a type, but the specific values (instantiation) are left open for the user to provide. The
parameter for our example is translated into the nametype nametype tF1 FNAME � {. . .} (line 5) which must
be completed before the document instantiation.
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Fig. 7. CSP model for memory

Lines 7–9 of Fig. 6 depict the CSP model for the variables, for a type that is the union of all introduced types,
and for the memory of the Important Messages Feature. Each variable declared in the document (in the scope of
a feature or local to a use case) is enumerated in the datatype Var . In the specification above the datatype Var
enumerates four variables: the first three in the scope of the feature (F1 folder, F1 selected and F1 important),
and the last one (F1 UC3 selected) in the scope of the use case UC3 (see Fig. 4c). Furthermore, each variable
type is enumerated in the datatype Type, whose purpose is to represent the union of all the relevant types of
state variables; this is then used as the type of the variables placed in the memory. The structure of Type eases
the representation of a very simple abstract memory in CSP, which treats uniformly variables of different types,
as can be seen in the next section. Each type is declared by a tag that identifies the type and the separator ‘.’
followed by the set of values for the type. The datatype Type produces values in the form typeTag .typeValue,
which are denominated tagged values. In the specification fragment above, Type enumerates the (single) type of
the variables declared in the Important Messages feature. This variable is tagged with the identifier F1 Messages
and values in the superset of message sets. The value F1 Messages.{} is a trivial example of a tagged value from
Type, and represents the empty set of messages. From now on, whenever we refer to the value of a variable we
implicitly refer to its tagged value.

The initial memory environment of a feature f , say bf MEMinit, maps the variables in the scope of f with
their respective initial (tagged) values. The mapping of the variables to their values is specified as the set of tuples
of the form (variable, tagged valued). In lines 11–13 of Fig. 6, bF1 MEMinit is the initial binding for the three
variables in the scope of the Important Messages Feature. The binding of variables local to a use case (for instance,
the binding of the variable F1 UC1 selected from UC3) is specified analogously and exemplified later.

4.4. Memory model

Figure 7 shows the CSP specification for the memory model. The CSP channels get and set (line 1) are used to
allow read and write access to the memory. These channels are able to communicate the pairs (variable, tagged
value) whose values come from the already defined datatypes Var and Type, respectively. Based on these channels
we can define the process that models a memory.

There are several alternatives for representing state information in CSP, ranging from a centralised map
(which associates variables with their respective values) to an interleaving of processes, each one concerned with
the store of a single variable. As discussed in [Ros11], the latter has the advantage of a possible concurrent access,
and turns out to be a very efficient solution regarding FDR analyses. Particularly, the interleaving model helps
the compression algorithms built in FDR to minimise the state space while analysing interleaved CSP models.
This is an important issue to consider, since parallel composition leads to exponential growth in the space state.
Therefore we adopted this approach for the purpose of an efficient analysis. Nevertheless, currently, we model
only sequential applications. Concurrent applications (for example, several use case processes running in parallel)
are discussed as a topic for future work. Consider the function tag(tag .val ) that yields the tag of a value tag .val ,
and, the function range(type) that yields the set of values of type type. The memory process for a single variable
(memory cell) is depicted in lines 3–5 of Fig. 7. The non-terminating recursive process Mcell (.) carries the variable
v and its current value val as process parameters.
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It behaves as the choice between the process

get !v !val → Mcell (v , val )

(whose prefix offers the current value of v and recurses) and the process

set !v?val ′ → Mcell (v , val ′)

that accepts a new value val ′ for v and recurses with this new value.
The memory process is the interleaving among memory cells (see the replicated construction of CSP in

Sect. 3.1), each one representing a variable with its corresponding value from an initial binding (line 7 of Fig. 7).
The read/write access to a particular variable is performed independently of the others, as already explained. This
parametrised process can be instantiated considering the particular state space of a use case or feature model. For
instance, the process F1 MEMORY � Memory(bF1 MEMinit) is the memory model of Important Messages
Feature, which enables the reading and the writing of the variables folder , selected and important .

4.5. Flow and memory composition

The design of the processes that specify the use case flows is directly influenced by the way they are composed
with memory processes. Thus, before showing the details of the CSP model for the use case flows we show how
they are composed with the memory.

A use case process, say uc, has a subprocess for its control part, say uc FLOW , possibly parametrised by a list
of parameters, say uc params, as well as by the list of extension points defined in the use case, say uc extensions.
The behaviour of the use case UC is modelled in CSP as the parallel composition of its control part (uc FLOW )
and its memory, say uc MEMORY , with synchronisation on the events from memory, say αuc MEMORY . The
alphabet of the memory is internal to control and memory processes, so they are hidden. Consequently, get and
set events are synchronised between the flow and the memory processes and are invisible to the environment.
When a use case process involves a parametrised flow process, it must also be parametrised.

Because the memory process (uc MEMORY ) is a recursive, non-terminating process, its direct composition
with a flow process would also lead to non-termination; a parallel composition successfully terminates only when
all its argument processes do terminate. Since we want to preserve the termination of flows (represented in CSP
with the Skip process), we need to force the composition of flow and memory to terminate whenever the flow does.
Consider the special event success that is not in the alphabet of the memory, neither in the use case alphabet. Such
an event is used to define the process END � success → Skip, which communicates success and then terminates
successfully (Skip). The following CSP process models the behaviour of the use case UC . It terminates whenever
the flow does.

uc(parameters, extensions) �
(uc FLOW (uc params, uc extensions); END

| [αuc MEMORY ∪ {success}] |
(uc MEMORY 
 END))

∖
(αuc MEMORY ∪ {success})

In the process above whenever the flow terminates with success (on the left-hand side of the parallel compo-
sition) it behaves as the END process, which is success → Skip. Because success is in the synchronisation
alphabet of the parallel composition, the event success can only be communicated if the same event is offered
on the right-hand side of the parallel composition, and vice-versa. At this point, the only possible behaviour
for uc MEMORY 
 END is success → Skip. As a consequence, the resulting behaviour of the composition
becomes (success → Skip)

∖ {success}; since the only visible event is hidden (success) it is equivalent to Skip
meaning the the entire parallel composition terminates.

4.6. Use case model

Recall from Sect. 3.1 that the use case control flow is modelled as a CSP process, composed
of locally defined processes, one for each step. Now we augment this representation to consider the new ele-
ments added to the template. Let uc START be the process that models the start step, and uc s the one that
models a step s. The following description represents the constituents of the process that models the flow of the
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use case UC.

uc FLOW (uc params, uc extensions) � let
uc START � inclusions(start params);

continuations st
uc s � inclusions(s i params);

readVars → condition & inputs →
action(s a params) →
response(s r params) →
outputs → updateVars → Skip;
(s extensions �Skip); continuations s
. . .

within uc START

The process that models the start step behaves as the inclusions in the start step, represented by the process
inclusions, which is sequentially composed with the process that models the continuations of this step, given by
the process continuations st . Likewise, the CSP process for any other step (uc s) behaves initially as the process
inclusions and finally as continuations s. The default behaviour for the continuation st process is the first step
of the main flow. If there are steps coming from the start step, the behaviour is modelled as the choice of the
first step with those that follow after the start step. Similarly, the default behaviour of continuations s is the
subsequent step in the flow (if it exists). If there are steps coming from the step s, the behaviour is modelled as the
choice of the subsequent step with those that follow after the step s. In between inclusions and continuations s
the behaviour is sequentially modelled by the following: readVars reads from memory the referenced variables,
condition models the step condition, inputs models the step inputs, action models the step action, response mod-
els the step response, outputs models the step outputs, updateVars models variable assignments, and s extensions
models the extension points in step s. The constituents named readVars, inputs, outputs and updateVars are
meta-elements representing sequences of prefix events. The extensions for the use case steps are grouped into
parameters in the uc FLOW process (uc extensions). By default, the first step of the use case main flow comes
from the start step.

According to the UML 2.0 specification [Gro07], the including use case can see the inclusions and may depend
on their effects. Hence, in our CSP model the behaviour of the included use cases comes after the step indicated
in the feature document and before the subsequent step. On the other hand, the extended use case cannot see the
extensions, so the extensions are parametrised. As system conditions now use state variables, their values must be
read in advance from the process memory. Furthermore, the system condition enables or blocks the step action,
consequently the step condition comes before the step action.

Included use cases (inclusions s) and action/response (action and response) can be defined in terms of
parameter values, and are parametrised. The lists start params , s i params , s a params and s r params spec-
ify, respectively, the parameters that are referenced in the inclusions of the start step, in the inclusion of the step
s, and in the action and response of the step s. The parameter lists for the use case steps are grouped into a single
parameter, uc params, in the uc FLOW process.

Now we explain each element of a use case flow incrementally based on the use cases in Fig. 4.

Action and Response Similarly to Sect. 3.1, the action and the system response of a step are modelled as events.
We further explain how actions and responses are modelled by using our running example. The complete CSP
model for the use case UC1 (see Fig. 4a) is shown in Fig. 8.

A step action or response is represented by a CSP event that can communicate (input or output) values
specified in the respective step. In CSP, events associated with values are obtained by instantiating channel com-
munication. Therefore, channel declarations must be introduced before we can model actions and responses in
terms of events. For instance, if we need to represent a step action sa as an event sa.v1.v2. . . . .vk we need to
introduce the channel declaration channel sa : ti . . . . .tk , where tx is the set of values that sa can communicate
in the x th position, for 1 ≤ x ≤ k . For instance, the channels for the use case UC1 in Fig. 4a are depicted in lines
1–4 of Fig. 8. The channels goTo, msgsDisp, selectMsgs and msgsHighlighted specify actions and responses of
the steps 1M (two first channels) and 2M (two last channels), which communicate the values of the parameter
F1 FNAME (folder name).
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Fig. 8. CSP model for UC1

Consider the rule to define continuations is the same presented in Sect. 3.1. Hence, the flow process of the use
case UC1 (lines 8–22 of Fig. 8) is parametrised by FNAME and has three subprocesses: the first models the start
step (F1 UC1 START ) and continues as the process of step 1M; the second models the step 1M (F1 UC1 1M ),
which is also parametrised by FNAME and continues as the process of the step 2M; the third is the model of the
step 2M, which is detailed in the sequel. Since UC1 does not have local variables (thus no memory), the process
F1 UC1(FNAME ) is equivalent to its flow process (line 24 of Fig. 8).

Variable Reading As already mentioned, variable values are kept by memory processes. Consequently, before they
can be used they must be put in scope. For instance, the step 2M of the use case UC1 refers to the value of the
variable folder in the input field, thus this variable must be put in the context of the step 2M, as shown in line 15
of Fig. 8.

As already seen, a use case process is composed in parallel with its memory process (if it has local variables). In
addition, the use case processes are in parallel with the process that represents the feature memory (with synchro-
nisation set formed of get and set events). In our example, the process F1 UC1 does not have a local state, but it
is composed in parallel with the feature memory process F1 MEM to form the feature model of F1 (presented
later). The prefix get !F1 folder?folder : range(F1 Message) → communicates values of the type F1 Messages.
Since this communication synchronises with the process that represents the feature memory, which offers an event
get !F1 folder !value, such that value is the current value for the variable F1 folder , the value bound to folder is
the current value of the variable F1 folder . As a result of this synchronisation, the free occurrences of the name
folder in the process F1 UC1 2M are replaced by the current value of F1 folder .

In general, the reading of a list of distinct variables, say var1, . . . , vark , is modelled as

get !var1?var1 → · · · → get !vark ?vark

The order in which the variables are read does not matter because they are used only after all of them are in
context. Therefore, the reading can alternatively be modelled in parallel, but the sequential model is suitable for
our application and turns out to be more efficient for analysis. Of course, this is valid because we are dealing only
with sequential applications, as already explained. The extension for dealing with concurrency is discussed as a
topic for future work.
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Continuing the translation of the step 2M we have the CSP model for the input value x; see Fig. 4a.
Input The values for an input variable are directly specified in CSP by a channel, which is used to specify the
environment option for a particular value inside the range of the input. As an example, the values for the input
x in step 2M of UC1 are defined by the channel in F1 UC1 1A x specified in line 6 of Fig. 8.

According to the channel in F1 UC1 1A x , the values of the input x are those of F1 Messages. Each expres-
sion in the use case document translated to CSP deals with the value part of tagged values. Let value(Type.v ) be
the function that retrieves the value component (v ) of a tagged value. Such a channel is used to model the input
of the process F1 UC1 2M . The lines 16–17 of Fig. 8 specify the input x, the action of selecting messages and
the respective response (messages are highlighted). The value of x is a non-empty subset of messages from the
value of folder; it is read from the environment and put in the context of the process F1 UC1 2M . This enables
subsequent elements to use the value associated with x. The action and response are parametrised by FNAME.

The list of inputs has the form ?i1 : S1, . . . , ?ik : Sk . Consider type(exp) the function that yields the type (tag)
of the expression exp, and, that the variables referred to by the expression are already in the context of the step
process. Also consider the function val (exp) that yields the current value of exp. Thus, the CSP model for the list
of inputs in a step s is

in s i1?i1 : {type(S1).v | v ∈ val (S1)} →
· · · →
in s ik ?ik : {type(Sk ).v | v ∈ val (Sk )}

where in s ix .val is an event originated from the channel

channel in s ix : range(type(Sx ))

for 1 ≤ x ≤ k .

Variable Update Due to the representation of variables as memory processes, the CSP model for assigning a value
to a variable is very similar to the one for reading. However, while in the case of reading the use case process
gets the value from memory, an assignment, represented by the event set, indicates that the communicated value
must update the value of the communicated variable identifier. As an example, consider the last two lines of the
step process F1 UC1 2M (lines 19–20 of Fig. 8). The communication that prefixes the successful termination
updates the variable x with the set of selected messages (F1 selected ). The auxiliary event mem update indicates
the finalisation of a sequence of assignments; it does not belong to the input neither to the output events of the
CSP model. Such an event is used in the selection of test scenarios based on memory states, as discussed in the
next section.

In general, the CSP model for a sequence of assignments v1 :� e1, . . . , vk :� ek is

set !v1!type(v1).val (e1) →
. . . →
set !vk !type(vk ).val (ek ) →
mem update → Skip

Similarly to variable reading the order in which the variables are updated does not matter, as we are dealing only
with sequential processes.

Inclusion and Step Condition Let i1, . . . , ik be the list of use cases included in some step uc s. The CSP model
for the inclusions is the sequential composition i1; . . . ; ik . As an example, consider the partial translation of the
use case UC2 presented in Fig. 9. The process flow of the use case UC2 (F1 UC2 FLOW ) is parametrised by
FNAME as well as by the use case extension (F1 UC2 CleanUp). Its start step includes the use case UC1 that is
sequentially composed with the continuations of the step, the choice: F1 UC2 1M �F1 UC2 1A.

An advantage of representing state explicitly is that we can model conditions as expressions on state variables
(condition), which provides a more accurate representation than abstracting state conditions as CSP events, which
is the case with the restricted model presented in Sect. 3. Furthermore, it also allows us to perform test selection
based on particular states of interest. Hence the sentences that represent the system state in the use case template
are used here exclusively for documentation and are not part of the CSP model.
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Fig. 9. CSP model for UC2—first part

Fig. 10. CSP model for UC2—last part

Let guard be the state guard specified in the system condition of a step s. The model for the system condition of
s is val (guard ) and the guarded process val (guard ) & action → . . . behaves as the subsequent processes action →
. . . if the required state is true, otherwise, it deadlocks (Stop). For instance, the CSP model for the step 1M of UC2
in Fig. 9 initially places the referred variables (important, selected and folder) in the context using get events,
and the subsequent behaviour is guarded by the state guard #(value(important) ∪ value(selected )) ≤ F1 MAX .
If the guard holds, the subsequent action and response are performed and the system state is updated accordingly.

Output The specification of outputs is very similar to that of inputs. The values for an output are directly specified
in CSP by a channel, which is used to communicate the value of an output expression.

Consider the remaining part of the CSP model for UC2 depicted in Fig. 10. As an example of output, the values
for the output of the step 1A of UC2 are defined by the channel out1 F1 UC2 1A (line 1 of Fig. 9). In the step 1A
(lines 21–29 of Fig. 10), firstly, the referenced variables are read from memory; the subsequent behaviour is guarded
by the expression #(value(important) ∪ value(selected )) > F1 MAX . In sequence, after communication of the
step action and response, the output expression #(value(important) ∪ value(selected )) − F1 MAX is communi-
cated, indicating the number of messages that need to be deleted in order to allow moving the selected messages.



Test generation from state based use case models 463

The CSP model for the list of outputs !e1, . . . , !ek of the use case step uc s is

out1 uc s !val (e1) →
. . .

outk uc s !val (ek ) →
where for each output outx there is a channel

channel outx uc s : type(ex )

for 1 ≤ x ≤ k .

Extension Point Let {ep1, . . . , epk } be the set of extension points defined in the step uc s. Since the extensions
added to a same extension point are performed individually, the CSP model for the extension points is given by

(� e : {ep1, . . . , epk } • e) �Skip

If there is no extension associated with the extension points, the behaviour of epx (1 ≤ x ≤ k ) is equivalent to
Stop, and the behaviour of the above process reduces to Skip. The CSP model for the extensions, particularly the
choice with Skip, shows that extensions are additional branches in the step behaviour, so the step behaviour can
always continue without performing extensions. Let ext be an extension point of the use case uc, in the feature f.
The parameter f uc ext is used for referencing ext in the control flow of the process f uc FLOW . As an example,
observe the fragment of the CSP model for UC2 in lines 28–34 of Fig. 10. In this fragment of the step 1A, the
parameter F1 UC2 CleanUp represents the behaviour of a use case that extends the use case UC2 in the Clean
up extension point. Subsequently, the step 1A continues as the start step (F1 UC2 START ). Finally, since the
use case F1 UC2 has no local state, it is equivalent to its flow: F1 UC2 FLOW (FNAME ,F1 UC2 CleanUp).

Extension We have presented the CSP model for extension points, now we show how the extensions and their
associations with extension points are modelled. First we show the CSP model for the use case UC3 depicted in
Fig. 4c, which is our example of use case extension. This model is presented in Fig. 11.

The channel in F1 UC3 1M x defines the values for the input x in the step 1M of UC3. The start pro-
cess F1 UC3 START is simply modelled by its continuation (F1 UC3 1M ). The process for the step 1M
(F1 UC3 1M ) reads the set of important messages from memory (variable important), inputs a value in x (a
non-empty subset of messages from important messages), communicates the step action and response, updates the
set of selected messages (variableselected) and continues as step 2M. The process for the step 2M (F1 UC3 2M )
reads the variables important and selected, communicates the step action and response, updates the variable
important and finishes.

The process F1 UC3 has, in addition to the flow, a memory process that models the local variable selected
(see lines 25–32 of Fig. 12).

The model for the extension is first defined, and later connected to the extended use case. For instance, the
model for the extension the use case UC3 performs in the extension point Clean up of the use case UC2 is pre-
sented in lines 34–36 of Fig. 12. The process F1 UC3 Ext F1 UC2 Cleanup reads the variables referenced in
its condition (F1 important) and behaves as F1 UC3 if the extension condition holds (the Important Messages
Folder is not empty). This process represents the behaviour of the extension itself, which is not yet connected
into the extension point Clean up in the use case UC2. In the use case diagram in Fig. 3, this process represents
the circle of UC3 and the outgoing arrow, which is associated with a note containing the extension point to be
connected and the required condition. In the CSP model, the connection of such an arrow with the use case
UC2 is modelled as the process F1 UC3 Ext F1 UC2 Cleanup as an instance of the extension parameters
(uc extensions) in the process F1 UC2, that is F1 UC2(FNAME ,F1 UC3 Ext UC2 Cleanup). This replace-
ment specifies that the behaviour of the extension point Clean up in UC2 can be that of UC3, if the condition
extension condition holds (#important > 0). This replacement (connection) is performed in every occurrence
of the process F1 UC2 in the CSP model.
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Fig. 11. CSP model for UC3—first part

Fig. 12. CSP model for UC3—last part

The CSP model for an arbitrary list of extensions is as follows. Consider ext1, . . . , extw the list of extensions
the use case uc performs. The CSP model of an extension extx � (cx , ucx@ex ) performed by uc is

uc Ext ucx ex (uc params, uc extensions) �
readVarsx → conditionx &

uc(uc params, uc extensions)

for 1 ≤ x ≤ w . The meta-element readVarsx models the reading of the variables referenced in the condition cx ,
and the expression conditionx models cx . They are modelled in the same way as readVars and condition of the
use case flow, which were presented above.
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Consider the function extensions(uc, ep) � {uc′ Ext uc ep}, which yields the set of CSP processes that
model the extensions of the use case uc in the extension point ep, and the process connection(uc, ep), defined as
� e : extensions(uc, ep) • e, which behaves as the choice among the extensions of uc in the extension point ep.
Moreover, consider that ep1, . . . , epk is the list of extension points of the use case uc. The signature of the use
case process after connecting extensions into the respective extension points is

uc(uc params, connection(ep1), . . . , connection(epk ))

Use Case I/O process The complete model for a use case is given by an I/O process. Let uc be the CSP process
that models a use case uc, AIUC

its input alphabet and AOUC
its output alphabet. Additionally, actions(UC )

represents the events that models the actions of the use case UC, inputs(UC ) the inputs, responses(UC ) the
responses and outputs(UC ) the outputs. The tuple MUC � (UC ,AIUC

,AOUC
) is the I/O process for UC, such

that AIUC
� actions(UC ) ∪ inputs(UC ) and AOUC

� responses(UC ) ∪ outputs(UC ). For instance, the I/O
process of the use case UC2 is

AIUC2 � {selMoveToIMOpt}
AOUC2 � {msgMovedToIMDisp, cleanUpReqDisp} ∪ {| out1 F1 UC2 1A |}
MUC2 � (F1 UC2(FNAME ,F1 UC3 Ext UC2 Cleanup),AIUC2 ,AOUC2 )

4.7. Feature model

The model for a feature is obtained by combining the feature active use cases with the feature memory. Let
aucs(f ) � {uc1, . . . , ucK } be the set of processes that models the active use cases of the feature f . Additionally,
consider that extensions are connected with extension points. The following CSP process models the behaviour of
the feature f , where it is assumed that the parameters for each use case process is a subset of that for the feature.

f (f parameters) �
((uc1(uc1 params) � · · · � ucK (ucK params)); END

| [αf MEMORY ∪ {success}] |
(f MEMORY 
 END))

∖
(αf MEMORY ∪ {success})

It is the parallel composition between the choice among the processes that model the active use cases of the
feature and the feature memory. Identically to a use case model, the special event success and the process END
are used to force the successful termination of the feature behaviour whenever an active use case does terminate.
For instance, the following process models the Important Messages Feature.

F1(FNAME ) �
((F1 UC2(FNAME ,F1 UC3 Ext UC2 Cleanup) �F1 UC3)

| [| aF1 MEM ∪ {success} |] |
(F1 MEMORY 
 END))

∖
aF1 MEM ∪ {success}

On the left-hand side of the parallelism above, the feature F1 is modelled as a choice between the processes that
model the active use cases (F1 UC2 and F1 UC3). Note that the process F1 is parametrised by the folder name
(FNAME).

Feature I/O process Consider that ucs(f ) represents the set of use cases (active or not) of the feature f. Let f be
the process that models the feature f. The I/O process for this feature is

Mf � (f ,AIf ,AOf
)

where

AIf �
⋃

uc ∈ ucs(f )
AIuc

AOf
�

⋃

uc ∈ ucs(f )
AOuc

For instance, the I/O process of the feature F1 is

MF1 � (F1(FNAME ),AIMUC1
∪ AIMUC2

∪ AIMUC3
,AOMUC1

∪ AOMUC2
∪ AOMUC3

)
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4.8. System model

Feature processes are composed to model the document behaviour. With the rich repertoire of CSP operators,
features can be combined using any process composition operation. Here we consider a common situation in
our application domain where features offer alternative services as user actions. Therefore, we model the system
behaviour as the choice among all the feature processes. The extension to deal with concurrent applications is
briefly discussed in the concluding section, as a topic for future work. Let features � f1, . . . , fk be the set of
features contained in the document, and, params(f ) � p1, . . . , pw the function that yields the list of parameters
of the feature process f . The CSP model for the use case document is specified as the process.

S (params(f1), . . . , params(fk )) � � f : features • f

The behaviour of the process S (. . .) is the choice among the feature processes. This process is parametrised by
the parameters of the features. For instance, the process that models the sample document presented in Fig. 4,
with the singleton feature F1, is

S (F1 FNAME ) � F1(F1 FNAME )

An instance of the document behaviour is obtained by giving concrete values to the parameters of the pro-
cess S . In the Important Messages Feature, the values for FNAME are Inbox and Outbox. Thus, we define
nametype tF1 NAME � {Inbox ,Outbox }, where the names Inbox and Outbox are introduced by the datatype

datatype F1 NAME � Inbox | Outbox

For instance, the following process models an instantiation of the sample document.

System � S (Outbox )

System I/O process Considering that features represents the set of features of a document, the I/O process for the
document is

M � (System,AI ,AO )

where

AI �
⋃

f ∈ features
AIf

AO �
⋃

f ∈ features
AOf

For instance, the following I/O process models the sample document introduced in this chapter

M � (System,AIF1 ,AOF1 )

4.9. State based test selection

The generation and selection of tests based on specific states is similar to that presented in Sects. 3.2 and 3.3; this
is an advantage of using a more abstract framework for test case generation, particularly the CSP process algebra
with refinement notions, which allows us to refrain from designing explicit generation algorithms. The essential
difference, nevertheless, is that now we consider a state based input model, whose structure is the composition of
flow and memory processes. This section shows how we can benefit from such a structure to select test scenarios
that cover specific states of the model.

Before showing how to perform test selection of particular states, we show that we can generate and select
test cases from a state based model with the same approach presented in Sect. 3.2. Let M � (System,AI ,AO ) be
an I/O process that models a system based on the introduced feature and use case template, and let TP be a test
purpose for System. As already said, the event mem update is communicated by the control flow and is useful in
the construction of test purposes that select particular states of the model. Consider that such an event belongs
to the control alphabet of System, say αcontrol , such that αcontrol ⊆ αSystem and αcontrol ∩ (AI ∪ AO ) � ∅.
Consequently, this event is not part of a test scenario, and it is hidden from the process used as the input for test
generation (System), as well in the parallel product. Thus, the parallel product between System and TP (defined
in Sect. 3.3) is the same as before, but extending the synchronisation set with the event mem update:

PP (System,TP ) � (System | [AI ∪ AO ∪ αcontrol ] | TP )
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The refinement expression that can yield test scenario as counter-examples becomes

System
∖

αcontrol �τ PP (System,TP )
∖

αcontrol

As an example, we can select from the process System the test scenarios that match the test purpose TP2, which
differs from TP1 (see Sect. 3.3) only in the alphabets.

TP2 � UNTIL(αSystem , {cleanUpMsgs},UNTIL(αSystem , {msgMovedToIMDisp},ACCEPT (1)))

The parallel product of System and the test purpose TP2 is PP (System,TP2), which is used in the following
refinement relation.

System
∖

αcontrol �τ PP (System,TP2)
∖

αcontrol

Checking this relation with FDR yields as counter-example the test scenario that follows.

System TP2 ts1 � 〈goTo.Outbox ,msgsDisp.Outbox , in F1 UC1 2M x .F1 Messages.{M .1,M .0},
selectMsgs.Outbox ,msgsHighlighted .Outbox , selMoveToIMOpt, cleanUpReqDisp, out1 F1 UC2 1A.1,

in F1 UC3 1M x .F1 Messages.{M .2}, selectImpMsgs,msgsHighlighted,cleanUpMsgs,
cleanUpPerformed , goTo.Outbox ,msgsDisp.Outbox , in F1 UC1 2M x .F1 Messages.{M .0},
selectMsgs.Outbox ,msgsHighlighted .Outbox , selMoveToIMOpt,msgMovedToIMDisp, accept .1〉

This scenario is the shortest one that matches TP2; removing the parameters, inputs and outputs it reduces to
F1 UC1 TP1 ts1 (defined in Sect. 3.3).

Now we show how to benefit from the structure of the model to select particular states. This can be performed
by allowing the test purpose process to access the variable values that are communicated by the memory processes
through get events. If such events were not hidden in the composition of memory and use case processes they
would be offered by the process System, and the test purpose process, which is composed with the System pro-
cess in the parallel product, could synchronise on them to read variable values, identically to the way processes
representing use case flows access and update variable values in the memory. However, due to the synchronous
communication semantics of CSP, the synchronisation of the test purpose in get events would obligate the control
flow and memory processes (in the System process) to synchronise in get events whenever the test purpose did,
and vice-versa. As a consequence, the parallel composition of control flow, memory and test purpose processes
would block whenever the three processes were not ready to get involved in a multisynchronisation. To avoid
such a blocking, we use independent events, named get ′, for the test purpose to access variable values. Differently
from get events, get ′ events are not hidden and are offered by the System process. The get ′ events allow the test
purpose to read variables independently of the control flow processes. Figure 5 depicts the structure of the process
System with get ′ events. The mem update event is also used by the test purpose to select specific states, so it is
also visible.

Let MEM be a memory process. We clone the get events (and keep the set events) of MEM with the expression
MEM � get .∗ , get .∗ / get .∗ , get ′.∗ �, where .∗ represents the variable values. Such a renaming keeps the get events
(renaming it by itself) and creates a copy (get ′). As already shown, the get events are hidden in the composition
of memory with use case processes, however the copies remain visible (get ′). For instance, the process F1 MEM
is replaced by F1 MEM � get .∗ , get .∗ / get .∗ , get ′.∗ � in the definition of the process F1. As a consequence of the
hiding in the expression of F1, the events get .F1 Messages.v become internal to the process F1 and the events
get ′.F1 Messages.v remain visible.

From this point on assume that every memory process is renamed to communicate get ′ events. In our example,
the processes F1 UC3 MEM and F1 MEM are replaced by their renamed versions. As a consequence of such a
renaming, get ′ events, as well as the mem update event, also belong to the control alphabet of the process System
(αcontrol ). Once get ′ events belong to αSystem , they can be used to construct CSP test purposes for System (see
Definition 2). Using the control alphabet a test purpose process can match the states of interest, in addition to
input and output events, and communicate the mark event when the combination of state and traces is reached.
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The following process is an example of a test purpose that can read variable values to match specific states of
System.

TP3 � get ′!F1 selected?selected →
get ′!F1 important?important →
if ((#(value(selected )) + #(value(important))) �� F1 MAX ) then

UNTIL(aS , {msgMovedToIMDisp},ACCEPT (1))
else

UNTIL(aS , {mem update},TP3)

Initially, the test purpose TP3 reads from the feature memory (F1 MEMORY ) two variables: the set of selected
messages (selected) and the set of messages in the Important Messages Folder (important). If the cardinality
of selected messages plus the cardinality of the important messages equals the maximum capacity of the folder
(F1 MAX ), the test purpose continues the selection until it finds the system response that indicates selected
messages are moved (msgMovedToIMDisp), and communicates a mark event. Otherwise, if the sum is different,
the test purpose recurses just after a memory update is found.

According to the new definition for the parallel product presented in this section, mem update and get ′ events
belong to the synchronisation set of the parallel composition of the model and TP3. If the test purpose TP3 re-
cursed without looking for a memory update, the input model would not progress in the parallel product, because
the test purpose would offer only get ′ events, which block the communication of other events of the model process.
Consequently, the test purpose would read the variables only in the states of the model reached after the empty
trace. This is the main reason why we need the mem update event: it allows the input model to progress to a new
memory state and notify the test purpose of such a change. This is not particular to the test purpose TP3; in any
test purpose that looks for particular states, the mem update event is looked for (UNTIL(aS , {mem update}, . . .)
whenever the test to assess some state fails and the test purpose recurses to search again for the same state.

The parallel product of System andTP3 isPP (System,TP3); it is used to select test scenarios in the refinement
relation.

System
∖

αcontrol �τ PP (System,TP3)
∖

αcontrol

The verification of the above refinement with FDR yields the following counter-example.

System TP3 ts1 � 〈goTo.Outbox ,msgsDisp.Outbox , in F1 UC1 2M x .F1 Messages.{M .0},
selectMsgs.Outbox ,msgsHighlighted .Outbox , selMoveToIMOpt,msgMovedToIMDisp, accept .1〉

This scenario describes the situation where the user goes to the Outbox folder and selects one message to be
moved to the Important Messages Folder. Since the sum of the selected set with the current number of messages
on the Important Messages Folder does not exceed the capacity of the target folder (in fact is the maximum
number allowed to move), the message is moved.

Using get ′ events it is also possible to read variables from local memories (as, for instance, the variable
F1 UC3 selected), in the same way the feature memory is accessed.

4.10. Test scenario final state

In addition to the selection of test scenarios that match particular states, it is also possible to trace the variable
states in the specification after performing test scenarios. Such an information is very useful to define the system
state after the test execution. Initial and final states can be used to document the pre and post states of the
generated tests. A possible usage of pre and post states is to find the optimal test execution ordering to reduce
the setup cost during test execution. In [LISA09] we introduce an algorithm to order a set of test cases based on
their pre and post states.

The post state of a test scenario can be easily achieved by modifying the process expression for the test purpose
and that for the refinement verification. The test purpose is modified to assess the variables in the features scope
after the last event of the test scenario is found. The variable values represent the test final conditions. Moreover,
the expression for the refinement verification is modified (both on the left and on the right-hand sides) to hide
only mem update events, keeping visible get ′ events. As a consequence, the counter-examples yielded by the
verification will exhibit get ′ events, in addition to input and output events. In fact, since get ′ events are control
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events they are not part of the test scenario, so they are removed from the counter-example traces. However, since
the get ′ events after the last event represent final conditions they are used to document the test final conditions,
whereas the other occurrences of get ′ are simply discarded.

We illustrate this with the test purpose TP ′
3, a modified version of TP3.

TP ′
3 � get ′!F1 selected?selected →

get ′!F1 important?important →
if ((#(value(selected )) + #(value(important))) �� F1 MAX ) then

UNTIL(aS , {msgMovedToIMDisp},TP ′
3 END(1))

else
UNTIL(aS , {mem update},TP ′

3)

The main difference between TP3 and TP ′
3 is that the latter replaces ACCEPT by TP ′

3 END, which we denom-
inate test purpose finalisation. Basically, the behaviour of TP ′

3 END is to look for memory updates, read the
specification variables and behave as ACCEPT . The specification for TP ′

3 END is as follows.

TP ′
3 END(id ) � UNTIL(aS ,mem update,

get ′!F1 folder?v0 →
get ′!F1 selected?v1 →
get !F1 important?v2 →
ACCEPT (id ))

If the last event of the generated test scenarios is followed by an update event (set), the initial behaviour of the test
purpose finalisation is to look for the mem update event. It is demanded to assure that the effects produced by
the test scenario are accomplished before the variables are traced. This is the case of the process TP ′

3 END, which
looks for mem update because the effects of moving a message (msgMovedToIMDisp) are to remove messages
from a source folder and put them in the hot messages folder. By synchronising on that event the immediate mem-
ory updates are taken (see Variables Update in Sect. 4.6). Then, this process assesses the three feature variables
and behaves as ACCEPT (1).

The refinement expression that generates tests and reads the final state of the test scenarios is the following.

System
∖ {mem update} �τ PP (System,TP ′

3)
∖ {mem update}

The verification of the above refinement with FDR yields the following counter-example.

System TP ′
3 ts1 � 〈get ′.F1 selected .F1 Messages.{}, get ′.F1 important .F1 Messages.{M .2},

goTo.Outbox ,msgsDisp.Outbox , in F1 UC1 2M x .F1 Messages.{M .0}, selectMsgs.Outbox ,

msgsHighlighted .Outbox , get ′.F1 selected .F1 Messages.{M .0}, get ′.F1 important .F1 Messages.{M .2},
selMoveToIMOpt,msgMovedToIMDisp, get ′.F1 folder .F1 Messages.{M .1},
get ′.F1 selected .F1 Messages.{M .0}, get ′.F1 important .F1 Messages.{M .2,M .0}, accept .1〉

Let filter (s,X ) be a function that filters a trace s by removing the events from the set X and keeping the oth-
ers. Formally, filter (s,X ) � s � � − X . Removing the control and mark events from the above trace we have
exactly System TP3 ts1 � filter (System TP ′

3 ts1, αcontrol ∪ {accept .1}), which is the test scenario we are inter-
ested on. Furthermore, the last three occurrences of get ′ in System TP ′

3 ts1 trace the final state after executing
System TP3 ts1. That is, the source folder has a unique messages M .1, the moved message is M .1 and the
important messages folder keeps the set of messages {M .2,M .0}.

Potentially, the state based test selection approach presented in this section can be applied to select tests in
CSP models that represent other kinds of systems and have a similar structure to that of our memory process.

A potential advantage of our testing theory entirely based on a process algebra is abstraction, modularity and
reuse. As illustrated in this section, the same test case generation strategy, with only alphabet adaptations, could
be used to generate and select tests both for control flow processes as well as for state based ones. This contrasts
with approaches based on more operational models, such as those for LTS [JJ05, CJRZ01] where specific, and
substantially distinct algorithms, are developed for control and state based testing.
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5. Sound test cases

In conformance testing, a basic requirement for the generated test cases is that they do not reject correct imple-
mentations; they must be sound. In this section we show that our test case generation strategy always produces
sound test cases, which is another important contribution of our work.

CSP Input–Output Conformance To address soundness, conformance testing [Tre99] requires the definition of an
implementation relation between the domain of specifications and that of implementations. In our work, elements
of such domains are expressed as I/O processes. Thus, to present our definition for such a relation we assume
as test hypothesis [CG07] that there is an I/O process which specifies an implementation under test, say IUT .
From now on, we consider the general model for an implementation the I/O process IUT defined as the tuple
(PIUT ,AIIUT

,AOIUT
), and the general model for an specification the I/O process S defined as (PS ,AIS ,AOS

).
We also assume that implementations are always able to accept any input from the alphabet (input enabled)

and always produce some output after some input (output enabled). In practice, it is not common to have input
enabled implementations. Nevertheless, since implementations are stimulated through some test driver (test script
in automatic execution or by a tester in manual execution) input enabledness can be achieved by considering the
combination of the implementation and the test driver, which discards the input events that are not enabled on
the implementation. In our domain of mobile applications the GUI constantly displays outputs, even if no input
is performed, so output enabledness is a natural property of this kind of application.

Input enabledness and output enabledness are formalised by the two following definitions. An I/O process is
input enabled when the inputs communicated after each of its traces is the same as its input alphabet. Consider
that the function initials(P ) � {a | 〈a〉 ∈ T (P ) } yields the set of events offered by the process P . Below is the
formal definition of an input enabled I/O process.

Definition 3 (Input enabled I/O process). Let M � (PM ,AI ,AO ) be an I/O process. Then, M is input enabled iff
∀ t : T (PM ) • AI ⊆ initials(PM /t)

An implementation is output enabled when we can always find an output event. Below is the formal definition
of an output enabled I/O process.

Definition 4 (Output enabled I/O process). Let M � (PM ,AI ,AO ) be an I/O process. It is output enabled iff
∀ t : T (PM ); ∃ i : AI , o : AO • o ∈ initials(PM /t � 〈i〉)
Our implementation relation cspio (CSP Input–Output Conformance), formalised in Definition 5, is the basis
for our generation of sound CSP test cases. Consider that the function out(M , s) gives the set of output events
of the process component of the I/O process M , PM , after the trace s. Formally, out(M , s) � if s ∈
T (PM ) then initials(PM /s) ∩ AOM

else ∅. The relation cspio establishes that any output event observed
in an implementation model IUT is also observed in the specification S , after any trace of S . In this case,
IUT cspio S .

Definition 5 (CSP input–output conformance). Consider IUT � (PIUT ,AIIUT
,AOIUT

) an implementation model
and S � (PS ,AIS ,AOS

) a specification, such that AIS ⊆ AIIUT
and AOS

⊆ AOIUT
. Then

IUT cspio S ≡ ∀ s : T (PS ) • out(IUT , s) ⊆ out(S , s)

Theorem 5.1 below captures cspio using process refinement. The proof is presented in Appendix A.

Theorem 5.1 (Verification of cspio). Let IUT � (PIUT ,AIIUT
,AOIUT

) be an implementation model, and S �
(PS ,AIS ,AOS

) a specification, with AIS ⊆ AIIUT
and AOS

⊆ AOIUT
. Then IUT cspio S holds iff the following

refinement holds.

PS �τ (PS 
 ANY (AOIUT
,Stop)) | [AIIUT

∪ AOIUT
] | PIUT

The intuition for this theorem is as follows. First we give the intuition why new inputs on PIUT are allowed by
the above expression. Consider an input event that occurs in PIUT , but not in PS . On the right-hand side of the
refinement, the parallel composition cannot progress through this event, so it is refused. Because refused events
are not recorded in the traces model, such refused events are not in the traces of the right-hand side process;
So, new PIUT inputs are allowed by the above refinement, as such events will not belong to the traces of the
left- nor of the right-hand side process of the above expression. Now we give the intuition why new outputs (for
a common trace) are not allowed. The objective of the interruption with the process ANY (AOIUT

,Stop) is to
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avoid that the right-hand side process refuses output events that the implementation can perform but PS cannot.
Thus, ANY (AOIUT

,Stop) allows that such outputs be communicated to PIUT . Finally, if PIUT can perform such
output events, then they appear in the traces of the right-hand side process, which falsifies the traces refinement.

In summary, the expression on the right-hand side captures new inputs performed by PIUT generating dead-
lock from the trace where the input has occurred, in such a way that any event that comes after is not part of
the traces. Also, it keeps in the traces all the output events of PIUT for common traces with PS , allowing a
comparison in the traces model.

When detailing the proof of Theorem 5.1 (as presented in Appendix A.1) we have uncovered a subtle techni-
cality with respect to a previous characterisation of the Theorem [NSM08], which used interleaving in place of
interruption on the right-hand side process. The expression with interleaving let the implementation synchronise
with an output offered by the process ANY (AOIUT

,Stop) and the specification process to progress after that. This
makes the refinement expression not to hold in particular situations where the implementation communicates
new inputs after a common prefix of the specification. Obviously, new implementation inputs are allowed by
cspio, thus it is a false counter-example. The change from interleaving to the interruption operator removed
such an issue.

As an example, consider the I/O process S1 � (PS1, {i1}, {o1}) is a sample specification, and the I/O pro-
cesses IUT1 � (PIUT1, {i1}, {o1, o2}) and IUT2 � (PIUT2, {i1}, {o1, o2}) are candidate implementations (input
enabled and output enabled). Below are the specifications for PS1, PIUT1 and PIUT2.

PS1 � i1 → o1 → PS1

PIUT1 � i1 → (o1 → PIUT1
�

i1 → (o2 → PIUT1
�

PIUT1))

PIUT2 � i1 → (o1 → PIUT2
�o2 → PIUT2
�PIUT2)

We can mechanically verify, using a tool such as FDR, the expressions IUT1 cspio S1 and IUT2 cspio S1
using the refinement in Theorem 5.1. One then finds out that the first relation holds and the second does not.
Despite the fact that the implementation IUT1 performs an output (o2) that is not in the specification S1, such
an output happens after traces that are not in T (S1), for instance, the trace 〈i1, i1〉. According to Definition 5,
any behaviour of IUT1 after new traces is allowed. However, because out(IUT2, 〈i1〉) � {o1, o2} is not a subset
of out(S1, 〈i1〉) � {o1}, the trace 〈i1〉 is a counter-example for IUT2 cspio S1.

In practice, if we know IUT we can verify IUT cspio S by checking the relation in Theorem 5.1 directly, as
illustrated above. This is equivalent to generating all the traces of S and exercising them against the implemen-
tation according to cspio. However, normally we do not know IUT and the number of traces of S is infinite.
Therefore, we need to exercise the implementation with a selected subset of test cases and look for possible
violations of IUT cspio S during the test execution.

Test Case and Soundness Before defining a sound test case, we need to state what is the meaning of a test case and
its execution.

A test case, say TC , is an I/O process generated from a specification S which interacts with an implementation
IUT to indicate whether the implementation conforms to the specification according to cspio. Test outputs stim-
ulate the implementation, and the implementation responses stimulate the test, so the test and implementation
alphabets are inverted to model the opposite directions in the communication. Formally, let S be the model for
the specification and IUT be that for the implementation, such that AIS ⊆ AIIUT

and AOS
⊆ AOIUT

. A test
case TC � (PTC ,AITC

,AOTC
∪ VER) generated from S to test IUT is an I/O process, which inputs events

from AITC
⊆ AOIUT

, and outputs events from AOTC
⊆ AIS ∪ VER, with VER � {pass, fail , inc}, such that

VER ∩ (AIIUT
∪ AOIUT

) � ∅. The constraints over test case alphabets follow directly from the definition for
cspio (Definition 5) and alphabet inversion: test inputs are contained in the implementation outputs because
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implementations can produce more outputs than the specification; and a test case outputs only specification
inputs because a test case is obtained from the specification alphabet.

The execution of a test TC against an implementation IUT , say EX (IUT ,TC ), is captured by the parallel
composition PIUT | [AIIUT

∪AOIUT
] | PTC . Such an execution can yield a verdict event communicated by the test

case, which behaves as one of the following processes: PASS � pass → Stop to express when the test passes in
the execution, INC � inc → Stop for an inconclusive execution, and FAIL � fail → Stop for a failed execution.

Let EXEC be the CSP model for a test execution. The presence of a verdict event v ∈ VER in the traces of
the test execution EXEC can be easily verified with the refinement.

EXEC
∖

(AIIUT
∪ AOIUT

) �τ v → Stop

On the left-hand side of the above expression, input and output events are hidden from the execution process, so
the unique events communicated are verdicts. Consequently, if the refinement holds, the trace 〈v〉 belongs to the
traces of the execution and v is a possible verdict; otherwise, if it does not hold, the trace 〈v〉 is not in the traces
of the execution, so the verdict v never happens.

As an example of such a verification, we define the test case TC0 � (PTC0 , {o1, o2}, {i1}) generated from S1
to test IUT1, such that PTC0 � i1 → (o1 → PASS � o2 → FAIL). Let EXEC1 � EX (IUT1,TC0) be the test
execution of TC0 against IUT1. Using the above refinement we have the expression EXEC1

∖ {i1, o1, o2} �τ

pass → Stop, which can be checked with FDR to confirm that pass is a possible verdict for the execution
of TC0 against IUT1. However, fail is not a possible verdict. This can be confirmed verifying the expression
EXEC1

∖ {i1, o1, o2} �τ fails → Stop, which does not hold. On the other hand, the execution of TC0 against
IUT2 can lead to a fail. This can be confirmed verifying that the expression EX (TC0, IUT2)

∖ {i1, o1, o2} �τ

fail → Stop holds.
Soundness is stated as: if the test execution leads to a fail verdict then the implementation does not conform

to the specification. A CSP test suite is sound if all its tests are also sound. As already seen, a CSP test execution
of a test TC with an implementation IUT fails when the test execution EX (IUT ,TC ) has the event fail as part
of at least one of its traces. A formalisation of soundness is as follows.

Definition 6 (Sound test case). Let IUT be an implementation I/O process, S the specification, TC a test case
I/O process and EXEC � EX (IUT ,TC ) the execution of TC against IUT . Then TC is a sound test case if the
following holds.

〈fail〉 ∈ T (EXEC
∖

(AIIUT
∪ AOIUT

) ) ⇒ ¬(IUT cspio S )

In other words, a sound test case does not generate false fails. For instance, the test case TC0 is a sound test
case, because it does not fail when run against a valid implementation according to cspio (for instance, IUT1).
Furthermore, if the same test case fails (for instance, when it runs against IUT2, as discussed previously), we are
sure the implementation under test does not conform to the specification S1, according to cspio.

Constructing Sound Test Cases We now show how to construct the process component (PTC ) of a test case TC
from a test scenario ts generated from a specification S to test IUT . The resulting test case is able to detect
invalid implementations according to cspio. First, we create an annotated trace (atrace) obtained from ts that
records the output events offered by the specification in the point each test scenario event is offered. Formally,
atrace � 〈 (ev1, outs1), . . . , (ev#ts , outs#ts )〉, where evi is the i th element of ts and outsi is the set of output
events (different from evi ) after the specification performs the trace 〈ev1, . . . , evi−1〉, such that outsi � if (evi ∈
AO ) then (out(S , 〈ev1, . . . , evi−1〉)−{evi }) else ∅, for 1 ≤ i ≤ #ts and 〈ev1, . . . , evi−1〉belongs to the prefixes of ts .

The function TC BUILDER(atrace) yields the process component of a sound test case constructed from an
annotated trace atrace.

TC BUILDER ( 〈〉 ) � PASS

TC BUILDER ( 〈(ev , outs)〉 � tail ) � SUBTC ( (ev , outs) ); TC BUILDER(tail )

where

SUBTC ( (ev , outs) ) � ev → Skip �

(ev ∈ AOS
& ANY (outs − {ev}, INC ) �ANY (AOIUT

− outs, FAIL ))
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The process TC BUILDER(atrace) recursively behaves like the process SUBTC for each pair (ev , outs) of atrace
and yields the process PASS when the last element of atrace is reached. The goal of the process SUBTC is to
create the body of the test. Its primary behaviour is to offer the event ev to the implementation and to end
with success (Skip) after communicating it. If ev is a test output (implementation input), it is communicated
to the implementation and the test fragment ends with success—the implementation is always ready to accept
inputs (input enabledness). However, if ev is a test input (implementation output), the process must be ready
to synchronise with any output response of PIUT —the test cannot block implementation outputs. If the PIUT

response matches ev , the test synchronises on this event and finishes with success. Otherwise, if the implemen-
tation output does not match ev , the test must be ready to accept this output and decide whether the execution
fails or is inconclusive. In case the PIUT communicates an event that belongs to outs − {ev}, the test reaches
the verdict inconclusive since the PIUT response is not exactly the one expected by the test scenario (ev ), but
it is an output produced by the specification. Otherwise, if the PIUT communicates an output event not in the
specification, which means that the event belongs to AOIUT

− outs, the implementation does not cspio conform
to the specification, so the test reaches the verdict fail.

Theorem 5.2 (TC BUILDER is sound). Let S � (PS ,AIS ,AOS
) be a specification, ts a test scenario from S and

IUT � (PIUT ,AIIUT
,AOIUT

) an implementation model, such that AIS ⊆ AIIUT
and AOS

⊆ AOIUT
. If atrace is an

annotated trace obtained from ts, then TC � (TC BUILDER(atrace),AITC
,AOTC

) is a sound test case, such
that AITC

� AOIUT
and AOTC

� AIS .

The proof of Theorem 5.2 is presented in Appendix A. To exemplify a sound test case, we use a prefix of the
test scenario System TP2 ts1 extracted from the specification M � (System,AI ,AO ) to test an implementa-
tion with the same alphabet of M and build the process TC1 � TC BUILDER (atrace ts1), where atrace ts1
� 〈(goTo.Outbox ,∅), (msgsDisp.Outbox ,∅), (in F1 UC1 2M x .F1 Messages.{M .1,M .0},∅), (selectMsgs.
Outbox ,∅), (msgsHighlighted .Outbox ,∅), (selMoveToIMOpt, ∅), (cleanUpReqDisp,∅), (out1 F1 UC2 1A.1,
∅)〉. The resulting process is

TC1 � goTo.Outbox → Skip;

(msgsDisp.Outbox → Skip
�ANY (AO − {msgsDisp.Outbox },FAIL));

in F1 UC1 2M x .F1 Messages.{M .1,M .0} → Skip;
selectMsgs.Outbox → Skip;

(msgsHighlighted .Outbox → Skip
�ANY (AO − {msgsHighlighted .Outbox },FAIL));

selMoveToIMOpt → Skip;

(cleanUpReqDisp → Skip
�ANY (AO − {cleanUpReqDisp},FAIL));

(out1 F1 UC2 1A.1 → PASS
�ANY (AO − {out1 F1 UC2 1A.1},FAIL));

The process TC1 tests whether the implementation performs the scenario in which the user tries to move messages
from the Outbox to the Important Messages Folder without success, due to space limitation in the target folder.
The test passes if the whole test scenario is observed in the test execution, and it fails if the implementation
produces some output that is not in the test scenario and is not foreseen by the specification (for instance, the
implementation response cleanUpReqDisp after the test output msgsDisp.Outbox ).
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Fig. 13. CNL Test case for TC1

There is no inconclusive verdict in the test TC1 because there are no alternative outputs in the process specifica-
tion System for the test scenario System TP2 ts1. As an example of an inconclusive verdict, consider the atraces
for a prefix of the test scenario F1 UC1 TP1 ts1 to test an implementation with the same alphabet of the I/O pro-
cess F introduced in Sect. 3.1, say atraces ′ � 〈(goTo,∅), (msgsDisp,∅), (selectMsgs,∅), (msgsHighlighted ,∅),
(selMoveToIMOpt,∅), (cleanUpReqDisp, {msgMovedToIMDisp})〉. Due to the non-deterministic behaviour
of the specification process F1 UC1, the implementation is permitted to produce any output of the set
{cleanUpReqDisp,msgMovedToIMDisp} after the user selects to move a message (selMoveToIMOpt). Hence, the
test case process TC2 � (TC BUILDER(atraces ′),AIF ,AOF

) leads to an inconclusive behaviour if the imple-
mentation produces an output event msgMovedToIMDisp, while the test waits for the output cleanUpReqDisp.

According to Theorem 5.2 TC1 is a sound test case. To illustrate the last phase of the automation workflow
presented in Sect. 2 (Fig. 1), we present the CNL representation for the sound test case TC1, presented in Fig. 13
in a tabular representation that is suitable for manual test execution. It encloses the id, objective, initial conditions,
steps and final conditions for the test case. It is a simplification of the format used in the BTC project, which
includes additional fields. The objective field for TC1 can be automatically generated by including a description
for each use case flow. The TaRGeT tool concatenates the descriptions for the use cases covered by the test
scenario and outputs the content for the test objective. Similarly, the tool can produce the content for the initial
conditions by concatenating the content of the ‘System State’ field for the use case steps covered by the test
scenario. In Fig. 13, the initial conditions are generated from the initial value for the variables. The steps 1, 2 and
3 were obtained from the mapping of of CSP events back into CNL sentences. The test final conditions are filled
with the information obtained from the test scenario final state.

6. Related work

Test Generation from Use Cases Many test generation approaches that input some form of use cases have been
proposed. Many approaches adopted graphical representation for the use cases [NS11, NFLTJ06, RG99, BL02,
WP99]. For instance, [WP99] describes a method, based on equivalence partition for testing multi-panel systems
(systems with a form based interface). Control flow is specified by a graph that models the possible transitions
between use cases. Test generation consists in finding the sequence of use cases and respective input values that
are able to cover the structure of the model. In this approach the test model represents only input data and the
navigation flows through the forms. Differently from our approach, system outputs are not explicitly represented
and there is no explicit notion of state.
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The approaches more related to ours are those that output textual test cases to test the system through the
GUI [HVFR05, Goi10, BG03, SC08]. The work in [HVFR05] inputs UML activity diagrams that represent
textual use cases and outputs textual test cases to be executed against the system interface. In the diagram, ste-
reotypes are used to distinguish input actions from system responses, and to associate data to input actions; also,
sub-diagrams can be included. Input data and guards are specified using TSL (test specification language). Test
generation consists in visiting the transitions of a directed graph extracted from the activity diagram. By default,
all transitions and data partitions are covered by the generated tests, but the user can prioritize the activities and
data to be covered. Nevertheless, activity diagrams can be partially obtained from textual use cases, the test model
is the activity diagram, not a use case specification. In addition, such a model does not allow the specification of
variables nor output values, and the test postconditions are not automatically generated.

The author in [Goi10] introduces TSD (Test Script Diagram), a diagrammatic representation for use cases,
which allows the specification of flows, loops, input data and sub-diagrams. Types are defined as equivalence
classes to be associated with the input variables. Textual use cases are semi-automatically translated to TSD and
tests are automatically generated from TSD diagrams. The generated tests are suitable for manual test execution.
The selection of tests is based on the priority of the elements, which is assigned to each element during modelling.
Unlike our approach, [Goi10] does not specify state variables, and the only type is the enumeration of values.

The works reported in [BG03, SC08, SC08] use natural language to specify use cases. The method presented
in [BG03] derives test scenarios from requirement structures as product line use cases (PLUCs), written in natural
language and designed to express product line variabilities. Use cases are parametrised with tags; the instantiation
of tags to values is described with constraints. Environment conditions and inputs are split into categories (as
in the category partition method [OB88]), whose values are defined within a test specification. A test scenario is
the instantiation of each tag of the use case combining the constraints and the test specification. In opposition
to our approach, use case flows do not have a precise semantics.

The approach described in [SC08] is closely related to ours, since it uses natural language for the specification
of use cases, maps use cases to a formal model (FSM) and generates textual test cases. In this approach the appli-
cation domain is specified by the user with UML and the steps are written using a concrete syntax that refers to
domain concepts and attributes, according to the format introduced in [Som06]. Use cases are translated to FSM
and test scenarios are generated by traversing the FSM based on structural coverage constraints. Similarly to
our use case template, the use case format follows a well defined syntax and allows the specification of step flows,
conditions, operations and use case relationships. On the other hand, there is no notion of input, parameter or
output, nor a test selection criteria based on specific states of the underlying model. Additionally, data is restricted
to basic types (natural, boolean and enumeration), while in our approach user defined data types are allowed.

Another similar approach concerning both the input model and the test model generation is [CT08], which
presents a tool that assists the specification of requirements with the purpose of generating test cases using our
test generation approach. Objects and interfaces to be tested are introduced textually as requirements (formed of
sentences) and used to define user scenarios (flows) that are described as use cases. Requirements and use cases
are written in a particular CNL, which defines structure and syntax of requirements and use cases. Through
meta-model transformations, requirements and scenarios are translated to CSP processes that are used as the
input for our test generation approach. Excluding the CNL and the concepts of objects and interfaces, the use
case format is the same as that which we have adopted. Nonetheless, the use case description supports only control
flows, lacking data and parameters; as a consequence, the test generation cannot select specific scenario states of
the model.

In summary, none of the existing approaches consider a natural language representation that mixes control
and state representation, which can be used to select particular scenarios during test generation. Furthermore,
none of the cited works addresses the formal properties of the generated tests like soundness of generated test
cases.

Input–Output Models and Conformance Tretmans [Tre96, TB99] outlines a formal testing theory and tool that
is based on IOLTS (Input–Output LTS) models and on the implementation relation named ioco. Our relation
cspio is similar to ioco; both use input and output events to define conformance. However, ioco is formulated
in terms of IOLTS, while cspio is defined in terms of the CSP denotational semantics. The relation ioco con-
siders quiescent behaviours, that we currently forbid by assuming that implementations are both input enabled
and output available. As already explained, this assumption is reasonable in our application domain. On the
other hand, Theorem 5.1 allows provably correct conformance verification using FDR. For ioco, there is an
algorithm [WW08] to check conformance, but its soundness has not been addressed.
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Jard et al. [JJ05] present the TGV tool that is able to select test cases based on test purposes. Clark
et al. [CJRZ01] present the STG tool that generates symbolic test cases [RBJ00] based on the combination
of symbolic specification and test purpose. Like TGV and STG, ATG uses test purpose as the selection criteria
for test generation. However, ATG inputs CSP models, while those tools input LTS based models; TGV inputs
IOLTS (Input–Output LTS) models whereas STG inputs IOSTS (Input–Output Symbolic Transition Systems)
models. Both IOSTS and CSP state based models can specify inputs and outputs as well as define and manipulate
data. Furthermore, both models are suitable for test selection based on specific states, and generate test cases with
data. However, in contrast to our approach, which generates tests using refinement verifications on processes, the
approaches in [JJ05, CJRZ01] manipulate a concrete model and define explicit algorithm to generate test cases.

Spec Explorer [VCG+08] is a model based testing tool for object-oriented reactive systems that inputs Abstract
State Machines (ASM) models written in the Spec# notation (model programs) to automatically generate test
cases for components developed in the Microsoft .NET framework. Model programs are symbolic partial descrip-
tions of the system behaviour (potentially infinite) split into input and output method invocations. The test selec-
tion is based on state space exploration that is optimised by both automatic and user oriented techniques that
restrict the number of states to be considered. Spec Explorer is a mature tool with a lot of documentation and
support, although the MBT approach of Spec Explorer was designed for white-box testing, while our approach
aims at black-box testing. Moreover, the testing theory of Spec Explorer is based on a different conformance
relation that is named alternating refinement [AHKV98].

Test Generation Based on CSP A common characteristic of the existing approaches for test generation based on
CSP [PS97, Sch99, CG07] is that the adopted conformance relations do not distinguish input and output events.
Furthermore, test cases are not generated to verify particular scenarios of the specification, so test purposes are
not considered. Peleska and Siegel [PS97] introduce a methodology for specification, design and verification of
fault-tolerant systems that allows different formal methods to be combined. Based on Henessys’s testing the-
ory [Hen88], they proposed a set of conformance relations that can be characterised as CSP refinement relations
and be mechanised with the FDR tool. Alternatively to mechanised conformance verification, they defined a
(possibly infinite) set of test cases whose successful execution against the implementation corresponds to a proof
of conformance. Cavalcanti and Gaudel [CG07] state the testability hypothesis for CSP and characterise the set
of complete test cases with respect to their implementation relation that is based on traces and failures refine-
ment of CSP. The execution of the test cases aims at showing the implementation is a valid CSP refinement for
the specification. Mechanisation of the test cases is not addressed. Scheneider [Sch99] defines a partition that
classifies refusable and nonrefusable events, and high-level and low-level events, for the purposes of specifying
fault-tolerance systems with CSP. The focus is on the characterisation of testing relations that are able to show
equivalence of processes based on the observation of events. The relations can be mechanically verified with
refinement, but no approach for test generation is proposed.

Representation of State in CSP It is well known that CSP does not have variables despite they can be simulated
using recursive, parametrised, processes and parallel composition [Ros98]. For instance, Roscoe [Ros11] intro-
duces a compiler that inputs a program coded in a simple shared variable language and outputs CSP processes
representing the program; generated processes are analysed with FDR to verify properties of the program execu-
tion (for instance, deadlock freedom). Basically, each program (thread) is translated into a corresponding CSP
process that represents the control flow, and each variable in the program (possibly shared among threads) is
translated into a process that keeps the variable state. The processes that model thread control flows and the
ones that represent variable states are composed in parallel and synchronise on special channels that enable the
threads to read from and write to variables. This is very similar to our composition of processes that model use
cases and memories. However, in [Ros11] the variables are restricted to integers and booleans, whereas the types
of the use case variables are defined by the user. Moreover, our memory processes represent the variables in a
more concise manner dealing with the different types in a uniform way. This avoids the creation of a particular
channel for each type, as is done in [Ros11].

Colvil et al. [CH09] introduce an extension of CSP to allow state based behaviour named CSPσ . This enables
the declaration of local and shared variables, which can be nested in different levels (hierarchical state) and
includes constructs for testing and updating the variables. Since the state of our use cases is hierarchically con-
structed considering two levels of scope (use case and feature), we could use this approach to model the use case
documents as well. However, the traces semantics of such an extension is not yet defined, thus, so far, one cannot
mechanically verify traces refinements in CSPσ , which is the basis for our test generation strategy. On the other
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hand, as stated in [CH09], for any specification written in CSPσ there is an equivalent on in CSP. From this point
of view, the composition of control flow and memory processes can be seen as a pattern in CSP for modelling the
access and the update of variables declared in two levels (but could be easily generalised to an arbitrary hierarchy.)

PAT [SLD08] is a CSP model checker that inputs CSP# [SLDC09], a specification language that combines
process algebraic expressions with variable declarations. It is optimised for the analysis of processes that share
common variables and allows LTL model checking [EEC+04] in addition to process refinement checking. Differ-
ently from CSPM , CSP# has a semantic model for shared variables so avoids the need for memory processes that
simulate variables. Furthermore, contrasting with FDR, which expands all the specification states before starting
an exhaustive checking on the states, PAT implements on-the-fly and partial order reduction techniques that can
avoid the complete expansion of the state space and the exhaustive checking of the states. Hence, the usage of PAT
can potentially improve the efficiency of our test generation approach if it is used in place of FDR. Nonetheless,
CSP# does not support many features of CSPM like functional programming, set comprehension and implicit
process environment. Thus, the representation of sets and use case inputs become verbose. Moreover, in PAT it is
not possible to use the functions we have introduced to specify test purposes and sound test cases, since PAT does
not offer a functional sublanguage like FDR does. Despite the particularities between CSPM and CSP#, both
languages enable the expression of CSP processes. The choice of CSPM is mainly due to the convenience of its
syntax, which maps the use case elements in a very straightforward manner. Therefore, PAT and FDR have com-
plementary facilities, and a deeper comparative analysis of their advantages and disadvantages for supporting
our approach still needs to be done.

7. Conclusions

This paper introduced an automatic test generation approach that inputs use cases structured as document
templates and described with textual sentences that follow a controlled natural language standard. Document
templates are extended to allow include and extension relations between use cases and to include data elements
as user defined types, variables and parameters. Data elements can be used in the feature descriptions to spec-
ify control flow behaviour and describe explicit input and output values. The extension does not interfere with
the original natural language standard because data elements are included as annotations. In the same way the
document is extended, we show incrementally how the mapping from use cases to CSPM is improved to cope
with the new elements of the document. This is easily achieved by modelling variables as memory processes with
read and write operations, which are composed with the processes that represent the use case control flow. The
syntactic structure of the memory model enables the extension of CSP test purposes to describe test scenarios
that match particular states of the use cases in addition to particular traces. Test scenarios are generated using the
FDR refinement checker tool to verify traces refinement expressions. Refinement counter-examples are the test
scenarios of interest and the input for the construction of sound test cases. A function, TC BUILDER, is defined
to yield a sound test case for a given test scenario. Soundness is addressed according to the cspio conformance
relation, which defines the class of valid implementations for the I/O process that specifies the features behaviour.
Alternatively, for contexts where the implementation model is known, we devised a refinement expression that
can be automatically checked by FDR and asserts whether an implementation conforms to a given specification.

As already discussed, there are several related approaches to generate test cases from use cases, to repre-
sent variables in CSP and to generate test cases considering particular traces and scenarios. However, to our
knowledge, a distinguishing feature of our approach is generating test cases from the combination of a natural
language representation that combines control and state representation, selection of particular scenarios during
test generation and formal properties of the generated tests, like soundness, apart from an automated and sound
strategy to check conformance based on process refinement in the CSP traces model.

Adopting the proposed template, simple use cases can be combined to construct more elaborate patterns of
behaviour using constructors that relate use case steps (from and to steps) as well as complete use cases (inclusion
and extension relations). Such constructors allow very succinct, accurate and high level descriptions of the system
to be tested, refraining the specifier from knowing the underlying CSP formal model.

Although the design of the proposed use case templates has been motivated by the mobile devices domain,
they can be used to describe other domains of applications, which can be modelled in terms of features (for
instance, desktop applications). The same applies to the test generation approach that considers particular states
of the model (Sect. 4.9), provided the model represents variables as processes and uses channels to read and update
the variables. Apart from the selection of particular states, the generation and selection approaches (Sect. 3) do
apply to any input–output CSP model that obeys the relevant alphabet restrictions.
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An important aspect to emphasise is the extensibility of our approach, particularly when migrating from a
test generation strategy that addressed only control to the one considering state. While the templates and the
corresponding CSP models were substantially extended to capture data, surprisingly, perhaps, the test generation
strategy, based on counter-examples of refinement checking, was entirely reused. This contrasts with approaches
based on more operational models [JJ05, CJRZ01] where an explicit algorithm is developed to address each facet.

Another distinguishing feature of our approach, as already mentioned, is a strategy for automatic conformance
verification, as captured by Theorem 5.1. We have further investigated this issue and proved some composition-
ality results for conformance verification. Particularly, we found out that, if the specification is input complete,
cspio is a compositional relation for all CSP operators.

The notation of CSPM was used as the syntax for defining data in the use case document, although it is not
very user friendly. One ongoing work [Bez11] is to define a natural language syntax suitable for the specification
and manipulation of use case data. Such a syntax combined with that of [Tor06] enables one to define state based
use cases entirely in natural language. A similar syntax can be defined to express CSP test purposes in natural
language, making the usage of formal methods totally transparent to the user.

So far we have explored only sequential features that do not share data. An immediate improvement is to con-
sider concurrent features with data sharing. In principle, the adaptation of the templates and the translation into
CSP to support parallelism will impact only the CSP model of variable access and the composition of features.
Since features, in our current model, would allow variables to be composed in parallel, memory read and write
operations will consider that variables can be accessed in any order which can lead to race conditions. Therefore,
some mutual exclusion mechanism must be included, and flow and memory models would be adapted to control
the access to the memory, in a similar way as reported in [Ros11].

Allowing data sharing among distinct features can be achieved by including a memory process that keeps
global values and synchronises with the composition of features (see Sect. 4.8), similarly to the proposed solution
for features and use case memories. Likewise, the template constructs for the specification of global data would
be the same used to declare data local to features and use cases. Actually, we do not foresee the need of any
modification in the test generation or selection strategies to handle these extensions.

Our overall strategy is currently implemented into two separate tools. The automatic translation from use case
templates to CSP is implemented as a component of the TaRGeT [FNSB10] framework. Test case generation
and selection from the CSP model is implemented in a tool called ATG [NSM11]. A current task is to incorporate
ATG into the TaRGeT framework.

Because the FDR tool enumerates data, which easily leads to state space explosion, we plan to apply the
abstraction approach in [MBS02, DFM09] to automatically transform infinite CSP models into finite ones with
behaviour preservation. Preservation of safety behaviour is enough for our models because our entire approach
is based on the CSP traces model. A complementary approach is to specify the state based use cases in CSP# and
adapt our approach to be run in the PAT model checker. Potentially, the partial order reduction and on-the-fly
techniques implemented in the PAT will improve the efficiency of our test generation approach when compared
to the FDR tool.

Apart from dealing with control and state, we also plan to extend our approach with time aspects. In this
direction, a tool like PAT seems to be a promising alternative to explore, as it already supports modelling and
analysis involving time.
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A. Proofs

A.1. Proof of Theorem 5.1

The following Lemmas are auxiliary to the proof of Theorem 5.1.

Lemma A.1 (Traces of ANY(.))

T (ANY (evset,next)) � {〈〉} ∪ {〈e〉 � t | e ∈ evset ∧ t ∈ T (next)}
Proof

T (ANY (evset,next))
� [ def. ANY (.) ]

T (� ev : evset • ev → next)
� [ def. � x : A • F (x ) and evset � {e1, . . . , ek }]

T (e1 → next � · · · � ek → next)
� [ def. T (P �Q)]

T (e1 → next) ∪ · · · ∪ T (ek → next)
� [ def. T (a → P )]

{〈〉} ∪ {〈e1〉 � t | t ∈ T (next)} ∪ · · · ∪ {〈〉} ∪ {〈ek 〉 � t | t ∈ T (next)}
� [ set comprehension]

{〈〉} ∪ {〈e〉 � t | e ∈ evset ∧ t ∈ T (next)}
Lemma A.2 (Initials of P interrupted). Let P be a CSP process, and A a set of events. Then

initials((P 
 ANY (A,Stop))/s) � initials(P/s) ∪ {a ∈ A | s ∈ T (P ) ∩ �∗}
Proof

initials((P 
 ANY (A,Stop))/s)
� [ from Defs. of T (P/s) and initials(P ) ]

{e | s � 〈e〉 ∈ T (P 
 ANY (A,Stop))}
� [ def. T (P 
 Q) ]

{e | s � 〈e〉 ∈ T (P ) ∪ {t � w | t ∈ T (P ) ∩ �∗ ∧ w ∈ T (ANY (A,Stop))}}
� [ set comprehension ]

{e | s � 〈e〉 ∈ T (P )} ∪
{e | s � 〈e〉 ∈ {t � w | t ∈ T (P ) ∩ �∗ ∧ w ∈ T (ANY (A,Stop))}}

� [ Lemma A.1 and T (Stop) ]

{e | s � 〈e〉 ∈ T (P )} ∪
{e | s � 〈e〉 ∈ {t � w | t ∈ T (P ) ∩ �∗ ∧ w ∈ {〈〉} ∪ {〈a〉 | a ∈ A}}}

� [ set comprehension ]

{e | s � 〈e〉 ∈ T (P )} ∪
{e | s � 〈e〉 ∈ {〈〉 � w | w ∈ {〈a〉 | a ∈ A}} ∪

{t � w | t ∈ T (P ) ∩ �∗ ∧ t �� 〈〉 ∧ w � 〈〉} ∪
{t � w | t ∈ T (P ) ∩ �∗ ∧ t �� 〈〉 ∧ w ∈ {〈a〉 | a ∈ A}}}

� [ set comprehension ]

{e | s � 〈e〉 ∈ T (P )} ∪
{e | s � 〈e〉 ∈ {〈〉 � w | w ∈ {〈a〉 | a ∈ A}}} ∪
{e | s � 〈e〉 ∈ {t � w | t ∈ T (P ) ∩ �∗ ∧ t �� 〈〉 ∧ w � 〈〉}} ∪
{e | s � 〈e〉 ∈ {t � w | t ∈ T (P ) ∩ �∗ ∧ t �� 〈〉 ∧ w ∈ {〈a〉 | a ∈ A}}}
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� [ set comprehension ]

{e | s � 〈e〉 ∈ T (P )} ∪
{e | s � 〈〉 ∧ e ∈ A} ∪
{e | s � 〈e〉 ∈ T (P ) ∩ �∗} ∪
{e | s ∈ T (P ) ∩ �∗ ∧ e ∈ A}

� [ A ⊆ B ≡ A ∪ B � B and T (P ) ∩ �∗ ⊆ T (P ) ]

{e | s � 〈e〉 ∈ T (P )} ∪
{e | s � 〈〉 ∧ e ∈ A} ∪
{e | s ∈ T (P ) ∩ �∗ ∧ e ∈ A}

� [ A ⊆ B ≡ A ∪ B � B and 〈〉 ∈ T (P ) ∩ �∗ ]

{e | s � 〈e〉 ∈ T (P )} ∪
{e | s ∈ T (P ) ∩ �∗ ∧ e ∈ A}

� [ def. of initials(P/s) ]
initials(P/s) ∪ {e | s ∈ T (P ) ∩ �∗ ∧ e ∈ A}

� [ set comprehension ]
initials(P/s) ∪ {a ∈ A | s ∈ T (P ) ∩ �∗}

The proof of Theorem 5.1.

Theorem 5.1 (Verification of cspio). Let IUT � (PIUT ,AIIUT
,AOIUT

) be an implementation model, and S �
(PS ,AIS ,AOS

) a specification, with AIS ⊆ AIIUT
and AOS

⊆ AOIUT
. Then IUT cspio S holds iff the following

refinement holds.

PS �τ (PS 
 ANY (AOIUT
,Stop)) | [AIIUT

∪ AOIUT
] | PIUT

Proof

PS �τ (PS 
 ANY (AOIUT
,Stop)) | [AIIUT

∪ AOIUT
] | PIUT

� [ definition of �τ ]
T ((PS 
 ANY (AOIUT

,Stop)) | [AIIUT
∪ AOIUT

] | PIUT ) ⊆ T (PS )
� [ AIS ⊆ AIIUT

, AOS
⊆ AOIUT

, T (P | [αP ∪ αQ ] | Q) � T (P || Q) ≡ αP ⊆ αQ

and T (P || Q) � T (P ) ∩ T (Q) ]
T (PS 
 ANY (AOIUT

,Stop)) ∩ T (PIUT ) ⊆ T (PS )
� [ definition ⊆ ]

∀ s • s ∈ T (PS 
 ANY (AOIUT
,Stop)) ∩ T (PIUT ) ⇒ s ∈ T (PS )

� [ holds when sequence is empty or neither ]
〈〉 ∈ T (PS 
 ANY (AOIUT

,Stop)) ∩ T (PIUT ) ⇒ 〈〉 ∈ T (PS ) ∧
∀ s, x • s � 〈x 〉 ∈ T (PS 
 ANY (AOIUT

,Stop)) ∩ T (PIUT ) ⇒
s � 〈x 〉 ∈ T (PS )

� [ traces property ∀P • 〈〉 ∈ T (P ) ]
true ⇒ true ∧
∀ s, x • s � 〈x 〉 ∈ T (PS 
 ANY (AOIUT

,Stop)) ∩ T (PIUT ) ⇒
s � 〈x 〉 ∈ T (PS )

� [ ∧ elimination ]
∀ s, x • s � 〈x 〉 ∈ T (PS 
 ANY (AOIUT

,Stop)) ∩ T (PIUT ) ⇒
s � 〈x 〉 ∈ T (PS )

� [ def. initials(.) and T (P/s) ]
∀ s, x • x ∈ initials((PS 
 ANY (AOIUT

,Stop))/s) ∩ initials(PIUT/s) ⇒
x ∈ initials(PS/s)
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� [ Lemma A.2 ]
∀ s, x • x ∈ (initials(PS/s) ∪ {a ∈ AOIUT

| s ∈ T (PS ) ∩ �∗}) ∩
initials(PIUT/s) ⇒ x ∈ initials(PS/s)

� [ ∩-dist-∪ ]
∀ s, x • x ∈ (initials(PS/s) ∩ initials(PIUT/s)) ∪

({a ∈ AOIUT
| s ∈ T (PS ) ∩ �∗} ∩ initials(PIUT/s)) ⇒

x ∈ initials(PS/s)
� [ def ∪ ]

∀ s, x • x ∈ initials(PS/s) ∩ initials(PIUT/s) ∨
x ∈ {a ∈ AOIUT

| s ∈ T (PS ) ∩ �∗} ∩ initials(PIUT/s) ⇒
x ∈ initials(PS/s)

� [ A ∨ B ⇒ C ≡ A ⇒ C ∧ B ⇒ C ]
∀ s, x • x ∈ initials(PS/s) ∩ initials(PIUT/s) ⇒ x ∈ initials(PS/s) ∧

x ∈ {a ∈ AOIUT
| s ∈ T (PS ) ∩ �∗} ∩ initials(PIUT/s) ⇒

x ∈ initials(PS/s)
� [ x ∈ A ∩ B ⇒ x ∈ A ≡ A ∩ B ⊆ A ≡ true ]

∀ s, x • true ∧
x ∈ {a ∈ AOIUT

| s ∈ T (PS ) ∩ �∗} ∩ initials(PIUT/s) ⇒
x ∈ initials(PS/s)

� [ ∧ elimination ]
∀ s, x • x ∈ {a ∈ AOIUT

| s ∈ T (PS ) ∩ �∗} ∩ initials(PIUT/s) ⇒
x ∈ initials(PS/s)

� [ predicate logics ]
∀ s : T (PS ) ∩ �∗; x • x ∈ AOIUT

∩ initials(PIUT/s) ⇒
x ∈ initials(PS/s)

� [ def out(.) ]
∀ s : T (PS ) ∩ �∗; x • x ∈ out(IUT , s) ⇒ x ∈ initials(PS/s)

� [ set theory ]
∀ s : T (PS ) ∩ �∗ • out(IUT , s) ⊆ initials(PS/s)

� [ � � AIIUT
∪ AOIUT

and initials(PS ) ⊆ � ]
∀ s : T (PS ) ∩ �∗ • out(IUT , s) ⊆ initials(PS/s) ∩ (AIIUT

∪ AOIUT
)

� [ ∩-dist-∪ ]
∀ s : T (PS ) ∩ �∗ • out(IUT , s) ⊆ (initials(PS/s) ∩ AIIUT

) ∪
(initials(PS/s) ∩ AOIUT

)
� [ def. out(.) ]

∀ s : T (PS ) ∩ �∗ • out(IUT , s) ⊆ (initials(PS/s) ∩ AIIUT
) ∪ out(S , s)

� [ AIIUT
∩ AOIUT

� ∅ and set theory ]
∀ s : T (PS ) ∩ �∗ • out(IUT , s) ⊆ out(S , s)

� [ because � �∈ out(M , s) ]
∀ s : T (PS ) • out(IUT , s) ⊆ out(S , s)

� [ Definition 5 ]
IUT cspio S

�
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A.2. Proof of Theorem 5.2

The following Lemmas are auxiliary to the proof of Theorem 5.2.

Lemma A.3 (Traces of SUBTC(.)). Let S � (PS ,AIS ,AOS
) be a specification I/O process. The traces of the

auxiliary process SUBTC ((e, outs)), defined in Sect. 5, is

T (SUBTC ((e, outs)) � {〈〉, 〈e〉, 〈e,�〉} ∪{ev � t | ev ∈ outs − {e} ∧ t ∈ {〈〉, 〈inc〉} ∧ e ∈ AOS
}

∪{ev � t | ev ∈ AOI UT − outs ∧ t ∈ {〈〉, 〈fail〉} ∧ e ∈ AOS
}

Proof

T (SUBTC ((e, outs)))
� [ def. SUBTC (.) in Sect. 5 ]

T ( e → Skip � e ∈ AOS
& (ANY (outs − {e}, INC ) � ANY (AOIUT

− outs, FAIL )))
� [ defs. T (P �Q) ]

T (e → Skip) ∪ T (e ∈ AOS
& (ANY (outs − {e}, INC ) �ANY (AOIUT

− outs, FAIL )))
� [ def. b & P ]

T (e → Skip)∪
T (if (e ∈ AOS

) then ANY (outs − {e}, INC ) � ANY (AOIUT
− outs, FAIL ) else Stop)

� [ def. of T (if (b) then P else Q) and T (Stop) ∪ T (P ) � T (P ) ]
T (e → Skip)∪
{t | t ∈ T (ANY (outs − {e}, INC ) � ANY (AOIUT

− outs, FAIL )) ∧ e ∈ AOS
}

� [ def. T (P �Q) ]
T (e → Skip)∪
{t | t ∈ T (ANY (outs − {e}, INC )) ∪ T (ANY (AOIUT

− outs, FAIL )) ∧ e ∈ AOS
}

� [ set comprehension ]
T (e → Skip)∪
{t | t ∈ T (ANY (outs − {e}, INC )) ∧ e ∈ AOS

}∪
{t | t ∈ T (ANY (AOIUT

− outs, FAIL )) ∧ e ∈ AOS
}

� [ Lemma A.1, def. T (e → Skip), def. T (INC ) and def. T (FAIL) ]
{〈〉, 〈e〉, 〈e,�〉} ∪
{〈ev〉 � t | ev ∈ outs − {e} ∧ t ∈ {〈〉, 〈inc〉} ∧ e ∈ AOS

}∪
{〈ev〉 � t | ev ∈ AOIUT

− outs ∧ t ∈ {〈〉, 〈fail〉} ∧ e ∈ AOS
}

Lemma A.4 (Traces of TC BUILDER(.)). Let S � (PS ,AIS ,AOS
) be a specification I/O process, ts �

〈e1, . . . , e#〉 a test scenario from S , such that #ts > 0. Moreover, atrace � 〈(e1, outsts
1 ), . . . , (e#ts , outsts

#ts )〉
is an annotated trace obtained from ts then T (TC BUILDER(atrace)) is

{〈〉} ∪ {〈ev〉 � t | ev ∈ outs1 − {e1} ∧ t ∈ {〈〉, 〈inc〉} ∧ e1 ∈ AOS
} ∪

{〈ev〉 � t | ev ∈ AOIUT
− outs1 ∧ t ∈ {〈〉, 〈fail〉} ∧ e1 ∈ AOS

} ∪
{〈e1〉 � t | t ∈ T (TC BUILDER(tail (atrace)))}

Proof

T (TC BUILDER(atrace))
� [ def. TC BUILDER(.) in Sect. 5 ]

T (SUBTC ((e1, outs1)); TC BUILDER(tail (atrace)))
� [ def. T (P ; Q) ]

T (SUBTC ((e1, outs1))) ∩ �∗ ∪
{s � t | s � 〈�〉 ∈ T (SUBTC ((e1, outs1))) ∧ t ∈ T (TC BUILDER(tail (atrace)))}

� [ according to Lemma A.3 we have s � 〈�〉 ∈ T (SUBTC ((e1, outs1))) ≡ s � 〈e1〉 ]
T (SUBTC ((e1, outs1))) ∩ �∗ ∪
{〈e1〉 � t | t ∈ T (TC BUILDER(tail (atrace)))}
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� [ Lemma A.3 and {t � 〈�〉} ∩ �∗ � {t} ]

{〈〉} ∪ {〈ev〉 � t | ev ∈ outs1 − {e1} ∧ t ∈ {〈〉, 〈inc〉} ∧ e1 ∈ AOS
} ∪

{〈ev〉 � t | ev ∈ AOIUT
− outs1 ∧ t ∈ {〈〉, 〈fail〉} ∧ e1 ∈ AOS

} ∪
{〈e1〉 � t | t ∈ T (TC BUILDER(tail (atrace)))}

Recalling from Sect. 5, outsi is the set of output events offered by the specification process component PS after
the prefix 〈ev1, . . . , evi−1〉 of a test scenario ts � 〈ev1, . . . , ev#ts〉, out(S , 〈ev1, . . . , evi−1〉). Moreover, consider
that sufixes(s) is the function that yields the suffixes of sequence s defined as

sufixes(〈〉) � {〈〉}
sufixes(〈e〉 � t) � {〈e〉 � t} ∪ sufixes(t)

In Lemma A.5, we use the notation outst
i to denote the outputs produced by the specification process component

after a suffix t � 〈e1, . . . , ei−1〉 of ts (t ∈ sufixes(ts)), formally,

outst
i � if ((∃ s • s � t � ts) ∧ t �� 〈〉) then

if (t � ts) then outsi

else out(S , s � 〈e1, . . . , ei−1〉)
else ∅

This function is an extension of outsi to consider suffixes of a test scenario ts . It is equivalent to outsi if the suffix
equals to the test scenario.

Lemma A.5 (Failure traces of a test case). Let S � (PS ,AIS ,AOS
) be a specification I/O process and let AS (ts)

be a function that yields atrace � 〈(e1, outs1), . . . , (e#ts , outs#ts )〉, the annotated sequence obtained from the
test scenario ts � 〈e1, . . . , e#ts〉 of PS . Moreover, consider prefixes(s) is the function that yields the prefixes of
sequence s defined as

prefixes(〈〉) � {〈〉}
prefixes(t � 〈e〉) � prefixes(t) ∪ {t � 〈e〉}

Then

∀ t : T (TC BUILDER(AS (ts))) | t � VER � 〈fail〉 •
t � s � 〈o, fail〉 ∧ s ∈ prefixes(ts) − {ts} ∧ o ∈ AOIUT

− outsts
#s+1

Proof

The proof for ts � 〈〉 is trivial.

≡ [ ∀ t | P (t) • Q(t) ≡ ∀ t • P (t) ⇒ Q(t) ]
t ∈ T (TC BUILDER(〈〉) • t � VER � 〈fail〉 ⇒

t � s � 〈o, fail〉 ∧ s ∈ prefixes(〈〉) − {〈〉} ∧ o ∈ AOIUT
− outs 〈〉

#s+1

≡ [ TC BUILDER(〈〉) � PASS and T (PASS ) ]
t ∈ {〈〉, 〈pass〉} • t � VER � 〈fail〉 ⇒

t � s � 〈o, fail〉 ∧ s ∈ prefixes(〈〉) − {〈〉} ∧ o ∈ AOIUT
− outs 〈〉

#s+1

≡ [ predicate logics ]
〈〉 � VER � 〈fail〉 ⇒

t � s � 〈o, fail〉 ∧ s ∈ prefixes(〈〉) − {〈〉} ∧ o ∈ AOIUT
− outs 〈〉

#s+1

∧
〈pass〉 � VER � 〈fail〉 ⇒

t � s � 〈o, fail〉 ∧ s ∈ prefixes(〈〉) − {〈〉} ∧ o ∈ AOIUT
− outs 〈〉

#s+1
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≡ [ def. of s � X ]

false ⇒ t � s � 〈o, fail〉 ∧ s ∈ prefixes(〈〉) − {〈〉} ∧ o ∈ AOIUT
− outs 〈〉

#s+1

∧
false ⇒ t � s � 〈o, fail〉 ∧ s ∈ prefixes(〈〉) − {〈〉} ∧ o ∈ AOIUT

− outs 〈〉
#s+1

≡ [ predicate logics ]
true

For #ts > 0 we prove using induction. The base case is ts � 〈e1〉.
≡ [ ∀ t | P (t) • Q(t) ≡ ∀ t • P (t) ⇒ Q(t) ]

t ∈ T (TC BUILDER(AS (〈e1〉))) •
t � VER � 〈fail〉 ⇒ t � s � 〈o, fail〉 ∧ s ∈ prefixes(〈e1〉) − {〈e1〉} ∧ o ∈ AOIUT

− outs 〈e1〉
#s+1

≡ [ ts � 〈e1〉 ≡ outs 〈e1〉
i � outsi ]

t ∈ T (TC BUILDER(AS (〈e1〉))) •
t � VER � 〈fail〉 ⇒ t � s � 〈o, fail〉 ∧ s ∈ prefixes(〈e1〉) − {〈e1〉} ∧ o ∈ AOIUT

− outs#s+1

≡ [ def. AS (.) and Lemma A.4 ]

t ∈ {〈〉} ∪ {〈ev〉 � t ′ | ev ∈ outs1 − {e1} ∧ t ′ ∈ {〈〉, 〈inc〉} ∧ e1 ∈ AOS
} ∪

{〈ev〉 � t ′ | ev ∈ AOIUT
− outs1 ∧ t ′ ∈ {〈〉, 〈fail〉} ∧ e1 ∈ AOS

} ∪
{〈e1〉 � t ′ | t ′ ∈ T (TC BUILDER(〈〉))} •

t � VER � 〈fail〉 ⇒ t � s � 〈o, fail〉 ∧ s ∈ prefixes(〈e1〉) − {〈e1〉} ∧ o ∈ AOIUT
− outs#s+1

≡ [ defs. TC BUILDER(〈〉) and T (PASS ) ]

t ∈ {〈〉} ∪ {〈ev〉 � t ′ | ev ∈ outs1 − {e1} ∧ t ′ ∈ {〈〉, 〈inc〉} ∧ e1 ∈ AOS
} ∪

{〈ev〉 � t ′ | ev ∈ AOIUT
− outs1 ∧ t ′ ∈ {〈〉, 〈fail〉} ∧ e1 ∈ AOS

} ∪
{〈e1〉 � t ′ | t ′ ∈ {〈〉, 〈pass〉〉}} •

t � VER � 〈fail〉 ⇒ t � s � 〈o, fail〉 ∧ s ∈ prefixes(〈e1〉) − {〈e1〉} ∧ o ∈ AOIUT
− outs#s+1

≡ [ (x ∈ A ∪ B • P (x ) ⇒ Q(x )) ≡ ((x ∈ A ∧ P (x )) ⇒ Q(x )) ∧ ((x ∈ B ∧ P (x )) ⇒ Q(x )) ]

t ∈ {〈〉} ∧ t � VER � 〈fail〉 ⇒
t � s � 〈o, fail〉 ∧ s ∈ prefixes(〈e1〉) − {〈e1〉} ∧ o ∈ AOIUT

− outs#s+1

∧
t ∈ {〈ev〉 � t ′ | ev ∈ outs1 − {e1} ∧ t ′ ∈ {〈〉, 〈inc〉} ∧ e1 ∈ AOS

} ∧ t � VER � 〈fail〉 ⇒
t � s � 〈o, fail〉 ∧ s ∈ prefixes(〈e1〉) − {〈e1〉} ∧ o ∈ AOIUT

− outs#s+1

∧
t ∈ {〈ev〉 � t ′ | ev ∈ AOIUT

− outs1 ∧ t ′ ∈ {〈〉, 〈fail〉} ∧ e1 ∈ AOS
} ∧ t � VER � 〈fail〉 ⇒

t � s � 〈o, fail〉 ∧ s ∈ prefixes(〈e1〉) − {〈e1〉} ∧ o ∈ AOIUT
− outs#s+1

∧
t ∈ {〈e1〉 � t ′ | t ′ ∈ {〈〉, 〈pass〉}} ∧ t � VER � 〈fail〉 ⇒

t � s � 〈o, fail〉 ∧ s ∈ prefixes(〈e1〉) − {〈e1〉} ∧ o ∈ AOIUT
− outs#s+1
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≡ [ set comprehension and def. s � X ]

false ⇒ t � s � 〈o, fail〉 ∧ s ∈ prefixes(〈e1〉) − {〈e1〉} ∧ o ∈ AOIUT
− outs#s+1

∧
false ⇒ t � s � 〈o, fail〉 ∧ s ∈ prefixes(〈e1〉) − {〈e1〉} ∧ o ∈ AOIUT

− outs#s+1

∧
t ∈ {〈ev〉 � t ′ | ev ∈ AOIUT

− outs1 ∧ t ′ ∈ {〈〉, 〈fail〉} ∧ e1 ∈ AOS
} ∧ t � VER � 〈fail〉 ⇒

t � s � 〈o, fail〉 ∧ s ∈ prefixes(〈e1〉) − {〈e1〉} ∧ o ∈ AOIUT
− outs#s+1

∧
false ⇒ t � s � 〈o, fail〉 ∧ s ∈ prefixes(〈e1〉) − {〈e1〉} ∧ o ∈ AOIUT

− outs#s+1

≡ [ propositional logics ]

t ∈ {〈ev〉 � t ′ | ev ∈ AOIUT
− outs1 ∧ t ′ ∈ {〈〉, 〈fail〉} ∧ e1 ∈ AOS

} ∧ t � VER � 〈fail〉 ⇒
t � s � 〈o, fail〉 ∧ s ∈ prefixes(〈e1〉) − {〈e1〉} ∧ o ∈ AOIUT

− outs#s+1

≡ [ set comprehension ]

t � 〈ev〉 ∨ t � 〈ev , fail〉 ∧ ev ∈ AOIUT
− outs1 ∧ e1 ∈ AOS

∧ t � VER � 〈fail〉 ⇒
t � s � 〈o, fail〉 ∧ s ∈ prefixes(〈e1〉) − {〈e1〉} ∧ o ∈ AOIUT

− outs#s+1

≡ [ s ∈ prefixes(〈e〉) − {〈e〉} ≡ s � 〈〉 ]

t � 〈ev〉 ∨ t � 〈ev , fail〉 ∧ ev ∈ AOIUT
− outs1 ∧ e1 ∈ AOS

∧ t � VER � 〈fail〉 ⇒
t � 〈o, fail〉 ∧ o ∈ AOIUT

− outs1

≡ [ ∧ −dist− ∨ ]

(t � 〈ev〉 ∧ ev ∈ AOIUT
− outs1 ∧ e1 ∈ AOS

∧ t � VER � 〈fail〉) ∨
(t � 〈ev , fail〉 ∧ ev ∈ AOIUT

− outs1 ∧ e1 ∈ AOS
∧ t � VER � 〈fail〉) ⇒

t � 〈o, fail〉 ∧ o ∈ AOIUT
− outs1

≡ [ 〈ev〉 � VER � 〈fail〉 ∧ ev ∈ AOIUT
≡ false ]

false ∨
(t � 〈ev , fail〉 ∧ ev ∈ AOIUT

− outs1 ∧ e1 ∈ AOS
∧ t � VER � 〈fail〉) ⇒

t � 〈o, fail〉 ∧ o ∈ AOIUT
− outs1

≡ [ propositional logics ]

t � 〈ev , fail〉 ∧ ev ∈ AOIUT
− outs1 ∧ e1 ∈ AOS

∧ t � VER � 〈fail〉 ⇒
t � 〈o, fail〉 ∧ o ∈ AOIUT

− outs1

≡ [ P ∧ Q ⇒ P ]

true

For the inductive case (ts � 〈e1〉 � ts ′), we have.

t ∈ T (TC BUILDER(AS (〈e1〉 � ts ′))) ∧ t � VER � 〈fail〉
≡ [ def. AS (.) and Lemma A.4 ]

t ∈ {〈〉} ∪ {〈ev〉 � t ′ | ev ∈ outs1 − {e1} ∧ t ′ ∈ {〈〉, 〈inc〉} ∧ e1 ∈ AOS
} ∪

{〈ev〉 � t ′ | ev ∈ AOIUT
− outs1 ∧ t ′ ∈ {〈〉, 〈fail〉} ∧ e1 ∈ AOS

} ∪
{〈e1〉 � t ′ | t ′ ∈ T (TC BUILDER(AS (ts ′)))} ∧ t � VER � 〈fail〉
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≡ [ (x ∈ A ∪ B ∧ P (x )) ≡ (x ∈ A ∧ P (x )) ∨ (x ∈ B ∧ P (x )) ]
t ∈ {〈〉} ∧ t � VER � 〈fail〉
∨
t ∈ {〈ev〉 � t ′ | ev ∈ outs1 − {e1} ∧ t ′ ∈ {〈〉, 〈inc〉} ∧ e1 ∈ AOS

} ∧ t � VER � 〈fail〉
∨
t ∈ {〈ev〉 � t ′ | ev ∈ AOIUT

− outs1 ∧ t ′ ∈ {〈〉, 〈fail〉} ∧ e1 ∈ AOS
} ∧ t � VER � 〈fail〉

∨
t ∈ {〈e1〉 � t ′ | t ′ ∈ T (TC BUILDER(AS (ts ′)))} ∧ t � VER � 〈fail〉

≡ [ (〈〉 � VER � 〈fail〉) ≡ (〈ev〉 � VER � 〈fail〉 ∧ ev ∈ AOIUT
) ≡

(〈ev , inc〉 � VER � 〈fail〉 ∧ ev ∈ AOIUT
) ≡ false ]

false
∨
false
∨
t ∈ {〈ev〉 � t ′ | ev ∈ AOIUT

− outs1 ∧ t ′ ∈ {〈〉, 〈fail〉} ∧ e1 ∈ AOS
} ∧ t � VER � 〈fail〉

∨
t ∈ {〈e1〉 � t ′ | t ′ ∈ T (TC BUILDER(AS (ts ′)))} ∧ t � VER � 〈fail〉

≡ [ propositional logics ]

t ∈ {〈ev〉 � t ′ | ev ∈ AOIUT
− outs1 ∧ t ′ ∈ {〈〉, 〈fail〉} ∧ e1 ∈ AOS

} ∧ t � VER � 〈fail〉
∨
t ∈ {〈e1〉 � t ′ | t ′ ∈ T (TC BUILDER(AS (ts ′)))} ∧ t � VER � 〈fail〉

≡ [ set comprehension ]
t � 〈ev〉 ∨ t � 〈ev , fail〉 ∧ ev ∈ AOIUT

− outs1 ∧ e1 ∈ AOS
∧ t � VER � 〈fail〉

∨
t � 〈e1〉 � t ′ ∧ t ′ ∈ T (TC BUILDER(AS (ts ′))) ∧ t � VER � 〈fail〉

≡ [ ∧ −dist− ∨ ]
(t � 〈ev〉 ∧ ev ∈ AOIUT

− outs1 ∧ e1 ∈ AOS
∧ t � VER � 〈fail〉) ∨

(t � 〈ev , fail〉 ∧ ev ∈ AOIUT
− outs1 ∧ e1 ∈ AOS

∧ t � VER � 〈fail〉)
∨
t � 〈e1〉 � t ′ ∧ t ′ ∈ T (TC BUILDER(AS (ts ′))) ∧ t � VER � 〈fail〉

≡ [ 〈ev〉 � VER � 〈fail〉 ∧ ev ∈ AOIUT
≡ false ]

false ∨
(t � 〈ev , fail〉 ∧ ev ∈ AOIUT

− outs1 ∧ e1 ∈ AOS
∧ t � VER � 〈fail〉)

∨
t � 〈e1〉 � t ′ ∧ t ′ ∈ T (TC BUILDER(AS (ts ′))) ∧ t � VER � 〈fail〉

≡ [ propositional logics ]
t � 〈ev , fail〉 ∧ ev ∈ AOIUT

− outs1 ∧ e1 ∈ AOS
∧ t � VER � 〈fail〉

∨
t � 〈e1〉 � t ′ ∧ t ′ ∈ T (TC BUILDER(AS (ts ′))) ∧ t � VER � 〈fail〉

⇒ [ p ∧ q ⇒ p ]
t � 〈ev , fail〉 ∧ ev ∈ AOIUT

− outs1

∨
t � 〈e1〉 � t ′ ∧ t ′ ∈ T (TC BUILDER(AS (ts ′))) ∧ t � VER � 〈fail〉
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⇒ [ e1 ∈ (AIIUT
∪ AOIUT

) ∧ VER ∩ (AIIUT
∪ AOIUT

) � ∅ ∧ 〈e1〉 � t ′ � VER � 〈fail〉 ⇒
t ′ � VER � 〈fail〉 ]
t � 〈ev , fail〉 ∧ ev ∈ AOIUT

− outs1

∨
t � 〈e1〉 � t ′ ∧ t ′ ∈ T (TC BUILDER(AS (ts ′))) ∧ t ′ � VER � 〈fail〉

⇒ [ induction hypothesis ]
t � 〈ev , fail〉 ∧ ev ∈ AOIUT

− outs1

∨
t � 〈e1〉 � t ′ ∧ t ′ � s � 〈o, fail〉 ∧ s ∈ prefixes(ts ′) − {ts ′} ∧ o ∈ AOIUT

− outsts ′
#s+1

≡ [ sequence comprehension and def. of outsts
i ]

t � 〈ev , fail〉 ∧ ev ∈ AOIUT
− outs1

∨
t � 〈e1〉 � s � 〈o, fail〉 ∧ s ∈ prefixes(ts ′) − {ts ′} ∧ o ∈ AOIUT

− outs 〈e1〉�ts ′
#s+2

≡ [ sequence comprehension, def. outsts
i and def. prefixes(.) ]

t � 〈ev , fail〉 ∧ ev ∈ AOIUT
− outs1∨

t � s � 〈o, fail〉 ∧ s ∈ prefixes(〈e1〉 � ts ′) − ({〈e1〉 � ts ′} ∪ {〈〉}) ∧ o ∈ AOIUT
− outs 〈e1〉�ts ′

#s+1

≡ [ sequence comprehension and def. prefixes(.) ]

t � s � 〈o, fail〉 ∧ s ∈ prefixes(〈e1〉 � ts ′) − {〈e1〉 � ts ′} ∧ o ∈ AOIUT
− outs 〈e1〉�ts ′

#s+1

The proof of the Theorem 5.2.

Theorem 5.2 (TC BUILDER is sound). Let S � (PS ,AIS ,AOS
) be a specification, ts a test scenario from S and

IUT � (PIUT ,AIIUT
,AOIUT

) an implementation model, such that AIS ⊆ AIIUT
and AOS

⊆ AOIUT
. If atrace is an

annotated trace obtained from ts, then TC � (TC BUILDER(atrace),AITC
,AOTC

) is a sound test case, such
that AITC

� AOIUT
and AOTC

� AIS .

Proof

〈fail〉 ∈ T (EX (IUT ,TC )
∖

AIIUT
∪ AOIUT

)
� [ definition EX (.) ]

〈fail〉 ∈ T ( (PIUT ‖ [AIIUT
∪ AOIUT

] | TC BUILDER(atrace) )
∖

AIIUT
∪ AOIUT

)
� [ definition P | [X ][Y ] | Q in [Ros98], page 68 ]

〈fail〉 ∈ T ( (PIUT | [AIIUT
∪ AOIUT

| αTC BUILDER(atrace)] | TC BUILDER(atrace) )
∖

αIUTCSP
)

� [ αTC BUILDER ⊆ AIIUT
∪ AOIUT

∪ VER ]
〈fail〉 ∈ T ( (PIUT | [AIIUT

∪ AOIUT
| AIIUT

∪ AOIUT
∪ VER] | TC BUILDER(atrace) )

� [ definition P
∖

X in [Ros98], page 84 ]
〈fail〉 ∈ T ( (PIUT | [αIUTCSP

| αIUTCSP
∪ VER] | TC BUILDER(atrace) ) �

(AIIUT
∪ AOIUT

∪ VER) − AIIUT
∪ AOIUT

)
� [ set theory ]

〈fail〉 ∈ T ( (PIUT | [AIIUT
∪ AOIUT

| AIIUT
∪ AOIUT

∪ VER] | TC BUILDER(atrace) )) � VER
� [ definition T (P | [X | Y ] | Q) in [Ros98], page 60]

〈fail〉 ∈ {s ∈ (AIIUT
∪ AOIUT

∪ VER)∗ | (s � AIIUT
∪ AOIUT

) ∈ T (PIUT ) ∧
(s � (AIIUT

∪ AOIUT
∪ VER)) ∈ T (TC BUILDER(atrace))} � VER

� [ definition ∈ ]
∃ s | s ∈ (AIIUT

∪ AOIUT
∪ VER)∗ ∧ s � AIIUT

∪ AOIUT
∈ T (PIUT ) ∧

s � (AIIUT
∪ AOIUT

∪ VER) ∈ T (TC BUILDER(atrace)) • s � VER � 〈fail〉
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⇒ [ Lemma A.5 and
(∃x | P (x ) ∧ Q(x ) • R(x )) ∧ (∀ x | Q(x ) ∧ R(x ) • S (x )) ⇒ ∃x | P (x ) ∧ S (x ) ]

∃ s | s ∈ (AIIUT
∪ AOIUT

∪ VER)∗ ∧ s � AIIUT
∪ AOIUT

∈ T (PIUT ) ∧
s � s ′ � 〈o, fail〉 ∧ s ′ ∈ prefixes(ts) − {ts} ∧ o ∈ AOIUT

− outsts
#s ′+1

≡ [ outsts
i � outsi ]

∃ s | s ∈ (AIIUT
∪ AOIUT

∪ VER)∗ ∧ s � AIIUT
∪ AOIUT

∈ T (PIUT ) ∧
s � s ′ � 〈o, fail〉 ∧ s ′ ∈ prefixes(ts) − {ts} ∧ o ∈ AOIUT

− outs#s ′+1

⇒ [ ∧-elimination ]

∃ s | s � AIIUT
∪ AOIUT

∈ T (PIUT ) ∧ s � s ′ � 〈o, fail〉 ∧ s ′ ∈ prefixes(ts) − {ts} ∧
o ∈ AOIUT

− outs#s ′+1

⇒ [ def. s � X ]

∃ s | s ∈ T (PIUT ) ∧ s � s ′ � 〈o〉 ∧ s ′ ∈ prefixes(ts) − {ts} ∧ o ∈ AOIUT
− outs#s ′+1

⇒ [ ts ∈ T (PS ) ∧ s ′ ∈ prefixes(ts) − {ts} ⇒ s ′ ∈ T (PS )]

∃ s | s ∈ T (PIUT ) ∧ s � s ′ � 〈o〉 ∧ o ∈ AOIUT
− outs#s ′+1 ∧ s ′ ∈ T (PS )

⇒ [ o ∈ AOIUT
− outs#s ′+1 ⇒ o ∈ AOIUT

∧ o �∈ outs#s ′+1 ]

∃ s | s ∈ T (PIUT ) ∧ s � s ′ � 〈o〉 ∧ o ∈ AOIUT
∧ o �∈ outs#s ′+1 ∧ s ′ ∈ T (PS )

≡ [ def. outsi ]

∃ s | s ∈ T (PIUT ) ∧ s � s ′ � 〈o〉 ∧ o ∈ AOIUT
∧ o �∈ out(PS , s ′) ∧ s ′ ∈ T (PS )

⇒ [ predicate logics ]

∃ s ′ : T (PS ) • s ′ � 〈o〉 ∈ T (PIUT ) ∧ o ∈ AOIUT
∧ o �∈ out(S , s ′)

� [ definitions initials(.) and P/s ]
∃ s ′ : T (PS ) • o ∈ initials(PIUT/s ′) ∧ o ∈ AOIUT

∧ o �∈ out(S , s ′)
� [ definition out(.) ]

∃ s ′ : T (PS ) • o ∈ out(IUT , s ′) ∧ o �∈ out(S , s ′)
� [ ⊆-definition ]

∃ s ′ : T (PS ) • out(IUT , s ′) � out(S , s ′)
� [ predicate logics ]

¬∀ s ′ : T (PS ) • out(IUT , s ′) ⊆ out(S , s ′)
� [ Definition 5 ]

¬ (IUT cspio S ) �
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