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Abstract. We describe a simple and efficient algorithm for proving the termination of a class of loops with
nonlinear assignments to variables. The method is based on divergence testing for each variable in the cone-of-
influence of the loop’s condition. The analysis allows us to automatically prove the termination of loops that
cannot be handled using previous techniques. We also describe a method for integrating our nonlinear termination
proving technique into a larger termination proving framework that depends on linear reasoning.
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1. Introduction

Throughout the history of program verification (e.g., [Tur49, Flo67, Hoa69]) the task of proving a program correct
has been decomposed into the tasks of proving correctness if the program terminates, and separately proving
termination. Proving termination is clearly undecidable, but thanks to considerable research progress, a variety
of practical techniques can now automatically prove termination of many loops that occur in practice. These
automatic techniques, however, are temperamental. While most provers can, for example, prove the termination
of

if (x > 3) {
while (x < y) {

x = x + x;
}

}
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until now, no automatic tool could prove the termination of a nonlinear example like

if (x > 3) {
while (x < y) {

x = pow(x,3) - 2*pow(x,2) - x + 2;
}

}

This paper outlines a proof procedure for cases of this sort. Our intention for this proposed procedure is for it to
be combined with existing termination analysis techniques—thus leading to more robust termination provers.

The failure of previous automated tools to handle the above example is somewhat surprising, as a human can
quickly see that for large enough x , repeated iteration of the loop will make x diverge to infinity, thus guaranteeing
loop termination. Exactly how large an initial value of x is large enough, though, requires a bit of thought and
some algebra. But if we have a method to quickly prove that loop variables diverge, we can harness that fact to
help prove termination.

Our proposed technique is based on such divergence testing: the transition system of each program variable is
independently examined for divergence to plus- or minus-infinity. The approach is limited to loops containing only
polynomial update expressions with finite degree, allowing highly efficient computation of certain regions that
guarantee divergence. Like any automated termination prover, our technique cannot handle all loops. However,
it is fast, it is sound, and it can prove termination in cases that previously could not be handled or could be
handled only by a much more expensive analysis. Our hope is that, in practice, this restricted analysis (and some
extensions) will handle the termination of the majority of loops in which a nonlinear analysis is required. In our
investigations, we have found that this simple type of nonlinear loop appears in industrial numerical computations
and nonlinear digital filters. Such loops can also be found in the code that handles multi-dimensional matrices
and nonlinear time-outs.

2. Termination by divergence

This section starts with some basic definitions. Then, we proceed with the definition and examples of regions of
guaranteed divergence, a key concept in the paper. Section 2.3 explains how we test for divergence. Section 2.4
presents how we use the divergence information to prove termination, and gives the overall algorithm.

2.1. Basic definitions

Two types of variables are differentiated by our analysis—symbolic constants and induction variables. The sym-
bolic constants are not modified in the loop body and the set of symbolic constants will be denoted as S.
Individual symbolic constants will be represented with capital letters X ,Y ,Z and are assumed to be bounded
on both sides (e.g. −32 ≤ X ≤ 32). The set of variables V that are modified within the loop body will be
called the set of induction variables. The induction variables will be denoted by lower-case letters x , y, z . Both
types of variables are considered to be rationals. We will assume that the loop condition is a conjunction of a
finite number of (in)equality relations of the form φ �� 0, where ��∈ {<,>,≤,≥,�}, and the constraints on
φ are given below. Each induction variable x is updated within the loop. The update expression is of the form
x � f (x ) + X , where f (x ) is a univariate finite degree polynomial with constant rational coefficients and X is
a symbolic constant that represents the cumulative effect of all the symbolic constants in the expression. The
polynomial f (x ) will be called an update function. The initial value of x , before entering the loop, will be denoted
as x0. Let x+ stands for the result (e.g., ±∞, some constant, a cycle, etc.) obtained by applying f infinitely many
times to x (informally, · · · f ◦ f ◦ f (x )). Let f 2 � f ◦ f be a composition of f with itself. The value obtained by
applying f 2 to x infinitely many times will be denoted as x++. The set of univariate polynomials with constant
coefficients over Q (the set of rationals) will be denoted as Q[x ], while the set of multivariate polynomials over
Q as Q[V ]. Let support of an expression, denoted supp (ψ), be the finite set of names in a logical expression ψ ,
e.g. supp (x · y + z > 0) � {x , y, z }.

The algorithm described in this paper is designed such that it can be used as a sub-procedure within a larger
termination proving framework, such as Berdine et al. [BCC+07] or that of Cook et al. [CPR06]. These termination
provers convert the termination problem for a program with an arbitrary control-flow graph into a sequence of
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well-foundedness queries for relations composed as the conjunction of inequalities, or simple loops. These tools
then find a termination argument for the whole program based on the arguments drawn from these simple loops.
Numerous techniques can be used to prove the well-foundedness of these simple loops. Our goal in this paper is
to provide support for nonlinear reasoning when trying to prove the well-foundedness of these simple loops. Our
technique handles simple loops with the following properties:

1. A set of bound constraints B ⊆ {v �� q | v ∈ V ∪ S ∧ q ∈ Q} over symbolic constants and induction vari-
ables represents the initial conditions. Symbolic constants must be from a closed finite interval. These restric-
tions make it easy to check for intersection between the initial conditions and a region that guarantees loop
divergence, computed in Sect. 2.2. Relaxing these restrictions is possible if using a more expressive represen-
tation of the set of possible initial states, e.g., if we allowed 
�, the algorithm could track a finite disjunction
of convex regions to represent the initial conditions.

2. There are no data or control dependencies between induction variables, i.e., the dependency relation is an
antichain. In other words, all update statements within the loop body must be executable in parallel. (Symbolic
execution and other analysis/optimization techniques can, of course, be used to eliminate false dependencies
between induction variables.) This restriction allows our technique to analyze the divergence each induction
variable separately, greatly simplifying the analysis.

3. The loop condition is a relation of the form φ �� 0 such that each φ is a finite degree multivariate polynomial
from Q[V ∪ S]. Only the constant term (i.e. the one associated with the exponent zero) is allowed to be a
symbolic constant (or a linear function of symbolic constants). This restriction is for expository convenience.
In Sect. 2.4, we present an extremely simple algorithm for safely determining termination under this restric-
tion. If more sophisticated computer algebra software is available, then this restriction can be relaxed (as
we will see in our experimental results). Also, in practice, loop conditions are often conjunctions of multiple
relations; if any conjunct can be proven to be eventually false, the loop must terminate. (Disjunction is more
difficult, which is why we disallow 
� in loop tests.)

4. Update functions fi are univariate polynomials of finite degree from Q[xi ]. This restriction is needed because
our technique uses algebraic properties of polynomials. If some numerical imprecision is acceptable, we could
generalize our method to non-polynomial update functions by using numerical root-finding techniques in
Sect. 2.2.

5. Given a linear function g : Sn → Q of symbolic and numeric constants, each assignment can have the
form xi ← fi (xi ) + gi (Y1,Y2, . . . ). The second term can be represented with a single symbolic constant Xi

because symbolic constants do not change within the loop. It is assumed that the symbolic constant Xi can
take any value between the worst case min and max values of the replaced symbolic constant expression
gi (Y1,Y2, . . . ). This restriction allows efficient computation of a safe termination test for all possible values
of the symbolic constant.

If a loop in the sequence does not fit into this criteria, then other techniques must be used in order to establish
well-foundedness.

A loop with such properties will be called a NAW (nonlinear antichain while) loop. The properties of the NAW
loop enable us to analyze the limit behavior of each induction variable independently. Given the limit behavior
of each induction variable v ∈ supp (φ), we try to prove that the left-hand side value of the loop condition will
eventually cross the given bound, terminating the loop. Obviously, it suffices to consider only the variables that
are in the cone-of-influence of the loop condition. Standard slicing techniques [Tip95] can be used to remove the
unnecessary code. We will assume that the NAW loops have been preprocessed so as to eliminate assignments to
variables that are not in the cone-of-influence of the loop condition.

Several examples are given in Fig. 1. The generic form of the NAW loop 1a starts with range constraints for
induction variables and symbolic constants. The range constraints can be computed by range analysis, which
is a simple forward dataflow analysis [CC77]. The left column (Fig. 1b,1d,1f) contains examples of loops that
are not NAW loops. The loop condition of 1b does not fit the NAW loop requirements because the symbolic
constant Y is from a half-open interval. The other two loops in the same column are not NAW loops either, as
the symbolic constant B is used in a non-constant term (Fig. 1d) and the induction variable x (Fig. 1f) depends
on the induction variable n. The right column contains three examples of NAW loops. Examples 1(3) and 1d are
adapted from previous work [Cou05].
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(a)

(b) (c)

(e)(d)

(f) (g)

Fig. 1. General NAW-form together with some examples

The overall divergence analysis algorithm takes a loop condition φ, a set of bound constraints B, and a set of
update functions fi , and indicates either that it cannot prove termination, or that it can prove termination, with
a mapping from induction variables to limits that demonstrates that the loop condition must eventually become
false. The algorithm has three main steps. The first task is a fast analysis to find regions where iterated application
of the update functions fi can easily be proven to diverge. Once some “regions of guaranteed divergence” have
been found, the next task, divergence analysis, tries to find the limit behavior of each induction variable. Finally,
termination analysis conservatively uses the limit behaviors to prove that the loop condition must be violated
eventually, which proves termination.

2.2. Regions of guaranteed divergence

Definition 1 (Stable point). A value x is a stable point if x � f (x ). If x0 is a stable point, then x � x0 is a loop
invariant.

Definition 2 (Region of guaranteed divergence (RGD)). A region of guaranteed divergence of an update function
f is a (possibly unbounded) interval such that iterated application of f to any element from the interval diverges.
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Fig. 2. f (x ) � x 3 − 2x 2 − x + 2. Quadrants are denoted by the Roman numerals I,II,. . .

A brief synopsis of our approach is as follows. We use a fast polynomial factoring algorithm [Kal82,
LHWLL82] to compute the stable points of the update function. Let rmin and rmax denote the minimal and
maximal stable points. Then, depending on characteristics of the update function, we conclude that (−∞, rmin)
and/or (rmax,∞) (subject to some side conditions) are RGDs.1 We can strengthen the analysis by applying the
update function a finite number of times (currently exactly once in certain cases) before checking to see if the
induction variable has entered an RGD. We now present the details.

The shape of the update function determines how the RGD is computed. Update functions are univariate
polynomials that can be drawn in the two-dimensional Cartesian coordinate system, which has four quadrants,
numbered counter-clockwise from the top right (Fig. 2). In the limit, finite degree polynomials diverge in two out
of four quadrants. The pair of quadrants in which the function diverges determines the shape of the curve. Our
analysis case splits on the four possible shapes:

Case 1: Divergence in quadrants I and III The update function must have odd degree and positive leading coef-
ficient. This is the most straightforward case. If the degree is greater than 1, then (−∞, rmin) and (rmax,∞)
are both RGDs, because the update function must have a slope greater than 1 in those regions (Fig. 2). If
the degree of the update function is 1 (linear), then the key is the leading coefficient (the slope) of the update
function. If the slope is strictly greater than 1, we have the same RGDs as above (with rmin � rmax). If the slope
is strictly less than 1 (and it must be greater or equal to 0), then there is no RGD—the iteration converges to
the stable point. If the slope is exactly 1, then all of (−∞,∞) is an RGD (except in the degenerate case when
the update function is the identity function).

Case 2: Divergence in quadrants I and II The update function must have even degree and positive leading coeffi-
cient. If there are no stable points, all of (−∞,∞) is an RGD. Otherwise, as in Case 1, (rmax,∞) is an RGD.
Unlike Case 1, we cannot say anything about (−∞, rmin). However, because f diverges in quadrant II, if we
know there exist sufficiently small values x0, such that f (x0) > rmax, and hence in an RGD. In particular, let
r ′min be the smallest solution of f (x ) � rmax. Then for all x < r ′min, we know that f (x ) > rmax, so

(−∞, r ′min

)

is also an RGD.
Case 3: Divergence in quadrants III and IV The update function must have even degree and negative leading coef-

ficient. This is the dual of Case 2. If there are no stable points, (−∞,∞) is an RGD. Otherwise, the region
(−∞, rmin) is an RGD, as is the region

(
r ′max,∞

)
, where r ′max is the largest solution of f (x ) � rmin.

Case 4: Divergence in quadrants II and IV The update function must have odd degree and negative leading coef-
ficient. This is the most complex case because when iterated application of the update function diverges, it
will alternate sign on each iteration. Happily, in this case, f 2 � f ◦ f is an update function that follows Case
1. So, we compute the stable points of x � f 2(x ) instead, and analyze f 2 as in Case 1.

In this paper, we prove termination by divergence of induction variables. In general, the termination analysis can
be much smarter. For example, if an induction variable always cycles or converges to a constant, the termination
analysis might exploit that knowledge for the termination proof.

1 In floating-point arithmetic, the RGDs must be safely under-approximated. This is done by rounding the computed stable points to reduce
the size of the RGD, i.e., rounding rmax toward∞, and rmin toward −∞.
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Table 1. Real roots of the update function f (x ) � x

Equations Roots Quadrants

x � x 3 − 2x 2 − x + 2 −1.170086 . . ., 0.688892 . . ., 2.481194 . . . I,III

Example: The polynomial plotted in Fig. 2 will serve as our working example. Since the update function has
degree 3 and positive leading coefficient, it diverges in the quadrants I and III. Therefore, we compute the stable
points from x � f (x ). By solving x � x 3 − 2x 2 − x + 2, we get rmin � −1.1700086 . . . and rmax � 2.481194 . . .,
which we can round conservatively (for brevity here, to two decimal places) to get RGDs of (−∞,−1.18), where
iterated function application diverges towards −∞, and (2.49,∞), where iteration diverges towards∞. If range
analysis tells us that x0 > 2.49 in the loop below:

while (x < 10) {
x = pow(x,3) - 2*pow(x,2) - x + 2;

}

then the induction variable x diverges towards +∞ and therefore will eventually overshoot the given bound in
the loop condition. Alternatively, if x0 < −1.18, then x diverges towards −∞ and the loop certainly doesn’t
terminate. For x0 ∈ (−1.18, 2.49), our analysis makes no attempt to determine the outcome. Indeed, if x0 � 0, x
will cycle through the set {0, 2} taking values {0, 2, 0, 2, 0, 2, . . .}.

An important question is what happens when the constant term2 in the polynomial f (x ) is a symbolic constant.
Let’s assume a symbolic constant 0 ≤ Z ≤ 30, the previously given loop condition, and the assignment x =
pow(x,3) - 2*pow(x,2) - x + 2 + Z. The entire curve in Fig. 2 can shift upwards by Z . The divergence
analysis is the same, but the shift caused by symbolic constants must be taken into account.

Definition 3 (Safe region of guaranteed divergence (SRGD)). A safe region of guaranteed divergence of an update
function f with symbolic constant Z from a closed finite interval is a (possibly unbounded) interval such that
iterated application of f + Z to any element from the interval diverges for all possible values of Z .

Because this definition quantifies over all possible values of Z , it takes into account the effect of worst-case shifts
of the polynomial caused by the symbolic constant. Fortunately, because we restrict symbolic constants to closed
finite intervals, it is easy to compute SRGDs:

Lemma 1 Let f be any legal update function, except that f must not be of the form f (x ) � x +c for some constant c.
Let Z be a symbolic constant from a closed finite interval [Zmin,Zmax]. The intersection of the corresponding RGDs
of f + Zmin and of f + Zmax are SRGDs.

Proof The result follows immediately from the fact that the values of largest and smallest roots change monoton-
ically with Z , so we need compute RGDs for only the endpoint values of the interval bounding Z . For example,
if f falls under Case 1 (odd degree with positive leading coefficient), then increasing Z will decrease the value of
rmax, the largest root of f (x ) + Z � x . The other cases are similar. (The only exception to this reasoning is when
f (x ) � x + c for some constant c. In this case, if Z can be equal to −c, then all values are roots and there is no
RGD or SRGD; otherwise, there are no roots, and the entire interval (−∞,+∞) is an SRGD.) �

Going back to our working example, Z can shift the entire curve by Z ∈ [0, 30]. If the shift is equal to 30, by
solving x 3−2x 2−2x +32 � 0, we get a single real root−2.7990 . . ., yielding RGDs (−∞,−2.80) and (−2.79,∞).
From the previous analysis, we know that (−∞,−1.18) and (2.49,∞) were RGDs when Z � 0. Thus, the safe
RGDs are the intersection of these two shifts, yielding (−∞,−2.80) and (2.49,∞) as safe RGDs.

Computing safe RGDs doubles the amount of work. However, due to the efficiency of our algorithm, the
computational overhead is negligible compared to the benefits of being able to handle some degree of non-
determinism. In order to keep the exposition simple, in the rest of the paper, we will not explicitly discuss the safe
regions. The algorithm and the proofs can be trivially extended to handle them.

2 By definition of NAW loops, only the constant term of the update function is allowed to be a symbolic constant.
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2.3. Divergence analysis

Once we have RGDs, if any, for all update functions, we can test whether we can easily prove divergence for each
induction variable. The basic computation is whether the range bound on the initial value of some induction
variable x0 is wholly contained in an RGD. If so, the induction variable must diverge eventually.

In a general, more elaborate computation of RGDs, in which we apply the update function a bounded number
of times in order to compute more RGDs, we would tag each RGD with whether it leads to divergence to +∞,−∞,
or alternating ±∞. In our current, fast-and-lightweight implementation, however, we determine the direction
of divergence easily by checking, for an arbitrarily chosen point x in the RGD, whether f (x ) > x , which gives
divergence to +∞, or f (x ) < x , which gives divergence to −∞:

Case 1 (Quadrants I,III) We label an induction variable as diverging if the bound constraints of the initial value
of the induction variable are contained in an RGD. We determine the direction of divergence by checking
whether f (x ) < x or f (x ) > x for an arbitrarily chosen point x in the RGD.

Case 2 (Quadrants I,II) We label an induction variable as diverging if the bound constraints of the initial value
of the induction variable are contained in an RGD. Divergence is always to +∞.

Case 3 (Quadrants III,IV) We label an induction variable as diverging if the bound constraints of the initial value
of the induction variable are contained in an RGD. Divergence is always to −∞.

Case 4 (Quadrants II,IV) We label an induction variable as diverging if the bound constraints of the initial value
of the induction variable are contained in an RGD. Divergence is always to alternately ±∞.

2.4. Termination analysis

Once we have determined the divergence behavior of the induction variables, the remaining task is to compute a
limit of the multivariate polynomial in the loop condition. Note that we cannot compute this limit by haphazardly
applying the limits computed for each variable independently, or by focusing only on the highest-degree terms
in the polynomial. For example, consider the loop in which one induction variable (y) changes much faster than
the others:

while (y - pow(x,2) > 100) {
y = pow(y,10) + 1000;
x--;

}

Obviously, x → −∞ and y → +∞. Considering only the highest-degree term −x 2 in the loop condition would
incorrectly compute that the left side of the condition diverges towards −∞ and that the loop terminates.

However, given the restrictions on the loop condition we imposed in Sect. 2.1, it is easy to compute a safe,
conservative evaluation of the loop condition given the information we have. Essentially, the computation is a
trivial abstract interpretation [CC77] of the loop condition, where the induction variables have values in the
abstract domain {−∞,+∞,±∞,⊥}, depending on the result of the divergence analysis (where the abstract value
⊥ denotes no information about the divergence behavior; and ±∞ denotes that the induction variable diverges,
with alternating sign on each iteration). For example, for the preceding loop, we would assign x � −∞ and
y � +∞ based on the divergence analysis in Sect. 2.3. Then, we would evaluate x 2 � +∞, and y − x 2 �
+∞− (+∞) � ⊥. Since ⊥ > 100 is not provably false, we do not claim termination. By expanding the abstract
domain (e.g., to indicate different growth rates, convergence to constants, etc.), we could improve the accuracy
of the termination analysis.

Conveniently, in our prototype implementation, none of this was needed. Symbolic algebra packages are read-
ily available, and computing the limit behavior of a multivariate polynomial is a commonly supported operation.
Our prototype implementation used Maple [Map04], and we simply fed the result of our divergence analysis to
the package and asked it to try to evaluate the limit behavior of the loop condition. The additional power of
Maple also allowed us to handle an example (Fig. 3c) whose termination condition did not obey the restrictions
in Sect. 2.1. (This example could also have been handled correctly by the abstract interpretation described above.
It is difficult to characterize precisely the limitations of Maple or other computer algebra packages, so in this
paper, we have kept our presentation to a more restricted formalization.)
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2.5. Algorithm summary, soundness, and efficiency

The outline of the overall algorithm is given in Algorithm 1.

Algorithm 1 ZigZag

Find the RGDs for each induction variable � Section 2.2
For each induction variable determine its divergence behavior � Section 2.3
if the loop condition is

φ < 0 and φ evaluates to +∞, or � “evaluates” as in Section 2.4
φ ≤ 0 and φ evaluates to +∞, or
φ ≥ 0 and φ evaluates to −∞, or
φ > 0 and φ evaluates to −∞, or
φ � 0 and φ evaluates to −∞ or +∞, or
φ �� 0 and φ evaluates to ±∞

then
return TRUE � The loop terminates

else
return FALSE � Can’t prove termination

end if

Note that the algorithm does not execute the loop, but soundly abstracts the limit behavior of the induction
variables, substitutes the computed limits in the loop condition expressions, and determines whether the loop
condition is TRUE or FALSE. The TRUE outcome implies that the loop terminates.

Lemma 2 If the initial value of an induction variable x0 is in an RGD, and f (x0) > x0, then x+ diverges to +∞. (For
a Quadrant II,IV update function f , the lemma checks f 2(x0) > x0 instead, and concludes x++ diverges to +∞.)

Proof. As usual, we case-split on the shape of the update function f :

Case 1 (Quadrants I,III) When there are two RGDs, they are (−∞, rmin) and (rmax,+∞). Only in the latter region
is f (x ) > x , and the inequality holds throughout the region. Since rmax is the largest stable point, and f (x )
is always greater than x , we have x+ diverging to +∞. When all of (−∞,∞) is the RGD, then f (x ) is linear
with leading coefficient 1 and a non-zero additive constant, so if f (x ) > x , then divergence to +∞ is obvious.

Case 2 (Quadrants I,II) When there are two RGDs, they are
(−∞, r ′min

)
and (rmax,+∞). For the RGD

(rmax,+∞), the same argument as in Case 1 applies. For the RGD
(−∞, r ′min

)
, we recall that r ′min was the small-

est solution of f (x ) � rmax. Since in this case, limx→−∞ f (x ) � +∞, we know that ∀x ∈ (−∞, r ′min

)
. f (x ) >

rmax. Therefore, after one iteration, the induction variable will map to the (rmax,+∞) RGD, and hence diverge
to +∞ as well.
When there is only the single RGD (−∞,∞), then f (x ) > x for all x . Furthermore, since f is a finite-degree
polynomial, f (x ) − x ≥ ε for some ε > 0. So, on each iteration, the induction variable must increase by at
least ε, and hence diverges to +∞.

Case 3 (Quadrants III,IV) This is analogous to Case 2.

Case 4 (Quadrants II,IV) In this case, f is an odd-degree polynomial with a negative leading coefficient. Therefore,
f 2 � f ◦ f will have odd degree as well, but with a positive leading coefficient, which means f 2 falls under
Case 1. �

Lemma 3 If the initial value of an induction variable x0 is in an RGD, and f (x0) < x0, then x+ diverges to−∞. (For
a Quadrant II,IV update function f , the lemma checks f 2(x0) < x0 instead, and concludes x++ diverges to −∞.)

Proof. The proof is the same (mutatis mutandis) as for Lemma 2. �
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Table 2. Results of experiments using ZigZag on both hand-crafted and Terminator-produced NAW-loops. The symbol � indicates that
ZigZag was able to prove the loop terminates. The symbol � means that ZigZag hasn’t been able to prove termination

Loop a b c d e f

Time (s) 0.03 0.03 0.02 0.03 0.03 0.03
Result � � � � � �

Lemma 4 If the abstract evaluation of the loop condition, performed as described in Sect. 2.4, evaluates to FALSE,
the loop must terminate.

Proof. The loop condition is a conjunction of comparisons of the form φ �� 0, where ��∈ {<,>,≤,≥,�}.
Only if some conjunct provably must become false does the overall condition abstractly evaluate to FALSE. In
that case, during program execution, that conjunct in the loop condition must eventually become false at some
iteration, making the loop terminate.

We assume standard, conservative evaluation with the abstract domain. Therefore, if we conclude φ evaluates
to +∞, −∞, or ±∞, we know that φ must diverge in the positive direction, negative direction, or alternating
sign on each iteration, respectively. We evaluate the loop condition to be FALSE only when the condition is of the
form:

φ < 0 and φ evaluates to +∞, or
φ ≤ 0 and φ evaluates to +∞, or
φ ≥ 0 and φ evaluates to −∞, or
φ > 0 and φ evaluates to −∞, or
φ � 0 and φ evaluates to −∞ or +∞, or
φ �� 0 and φ evaluates to ±∞.

In each case, the divergence of φ forces the condition to eventually be false at some iteration. �
Theorem 1 From Lemmas 2, 3 and 4, it follows that the proposed algorithm is sound, i.e., it will never falsely report
that a loop terminates if it doesn’t.

Complexity. Univariate (and multivariate) polynomials with rational coefficients can be factored in polynomial

time O(n12 + n9(log |f |3)), where n is the degree of the polynomial f and
∣
∣∑

i aiX i
∣
∣ �

√(∑
i a2

i

)
using a well-

known LLL algorithm [Kal82, LHWLL82]. Each additional test can be performed by evaluating the update
function at specific points, hence these tests are performed in time linear with the size of the update polynomial.
The simple, abstract evaluation of a multivariate polynomial f ∈ Q[V ] over our abstract domain can also be
computed in linear time. Therefore, the overall complexity of the analysis is polynomial. The number of induction
variables is in general small and the experiments confirm that the computational cost of the approach is negligible.

Experiments. To test our approach, we have prototyped our analysis in Maple [Map04]. Our prototype, called
ZigZag, is designed to accept inputs of the form described in Fig. 1a. We ran ZigZag on both hand-crafted and
real-life examples of linear and nonlinear NAW loops given in Fig. 3. Because of nonlinearity, tools which are
restricted to linear cases, such as RankFinder, can’t handle most of these loops.

Our initial results are encouraging (see Table 2). Note that performance is currently not an issue—all examples
are handled in less than 0.03 s. ZigZag was able to prove that all the loops, except for the last one, terminate.
The last loop does not terminate because the induction variable x diverges towards −∞, and therefore the loop
condition never evaluates to FALSE.
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(e) (f)

(a) (b)

(c) (d)

Fig. 3. Examples of NAW loops used for testing our approach. The symbol “· · · ” indicates where program slicing has been performed. For
the examples 3a–e our algorithm reported TRUE (i.e., the loop provably terminates), whereas for the example 3f the algorithm reported
FALSE(i.e., could not prove termination).

3. Progress measure abstractions

Our goal is to integrate the procedure proposed in the previous section, ZigZag, within a larger termination
proving framework, such as Terminator [CPR06]. The difficulty here is that tools such as Terminator use
explicit ranking functions i.e. maps from the program state space into a well-ordered set) found from analyzing
simple loops when constructing termination arguments for the whole program. This whole-program termination
argument is then checked using other static analysis techniques. But ZigZag does not produce an explicit ranking
function. Furthermore, tools like Terminator do not support nonlinear program commands and thus convert
them into coarse linear abstractions. Thus, even if we find a ranking function, the whole-program check will likely
still fail due to the coarse abstractions used for nonlinear commands.

In this section, we describe a method for producing additional linear measures based on our termination
analysis that can be used as annotations in the original program. The idea is to annotate the program with progress
measures proved to exist. These progress measures are updated using only linear commands. Our procedure is
called αZigZag. The procedure, when passed a path π and a program P attempts to prove the path π to be
terminating, and then produces a new program that is an abstraction of P , which can be used to prove properties
such as safety and termination. This new program contains fresh variables used as progress measures. The control
flow graphs of the two programs are identical. The resulting abstraction can then be passed directly to a tool like
Terminator.

Consider any finite path segment through the control-flow graph G of a program, which—when unrolled,
interpreted in G , and converted into static single assignment form [CFR+91]—can be represented as a conjunction
of inequalities. Tools such as RankFinder [PR04], PolyRank [BMS05a, BMS05b, BMS05c], and ZigZag can
be used to prove that relations like these are well-founded, meaning that a progress measure can be tracked on
each execution of the path segment.



Proving termination of nonlinear command sequences 399

We assume a set Cmd of syntactic commands (assignments, assumptions, etc.), which are interpreted as
relations between program states before and after execution of a command. Hence, a command c ∈ Cmd denotes
a relation from 2St×St, where St is the set of states.

Programs are viewed as control-flow graphs (CFG, e.g., [Muc97]) where the vertices are program locations
labeled with commands. Our formulation of a CFG slightly differs from the standard representation to simplify
the presentation: all control-flow is achieved by nondeterministic jumps, and branch guards are represented
with assumptions. Thus, control-flow statements (if, while, . . . ) are represented with non-deterministic edges and
assume statements, instead of branch statements and deterministic edges used in the standard definition of CFGs.

We will assume that a program G is a rooted vertex-labeled directed graph (L,LG ,E), where L is the set of
program locations, LG is the labelling function of type L→ Cmd, and E ∈ 2L×L is the set of nondeterministic
jump edges between program locations. We assume that 1 ∈ L is the start location of the CFG. A path π is a
possibly infinite sequence of program locations π � l0 → l1 → · · · , such that (li , li+1) ∈ E. For such a path π , we
write πi for li . Path segments are contiguous subsequences of paths. Let π be a finite path segment of G that forms
the cycle in a lasso candidate counterexample to termination, and let ρπ be the binary relation on states which is
the composition of the statements at vertex: ρπ � LG (π0) ; LG (π1) ; · · · ; LG (πn ) . Suppose that ZigZag has
proved the well-foundedness of ρπ . In this case we can construct an abstraction of G in which a progress measure
decreases on each pass over π , and in which the progress measure is nondeterministically assigned to a new value
whenever the program executes a statement not in π that modifies a variable of the ranking function found by
our well-foundedness checker.

Let fv (c) be the set of free (program) variables occurring in the command c. Then, let W be the variables the
ranking function depends on—if we only know of the existence of a ranking function then it is sound to assume
that W depends on all the variables in the path: W � fv (π ) � ⋃

i fv (LG (πi )). We will model the ranking function
with a fresh variable m. Given the path π � π0 −→ · · ·πn we can construct a new linear abstraction in which the
progress measure m has been instrumented in along that path. This abstraction uses a fresh variable a to track
where the execution has been. Values of a are pairs of a location and an index into the path where a � (−1,−1)
indicates that execution has strayed from the path. Since paths may visit a particular location more than once,
the index part of a is necessary to uniquely identify points on the path. The construction of the abstraction
is found in Algorithm 2. In essence, the abstraction that is constructed represents an automaton that accepts
contiguous sub-executions that follow π . Each time π is followed, the progress measure m is decremented. If the
execution leaves the path π and enters a program location that could affect the value of the ranking function, the
progress measure’s value is lost. The procedure constructs a new control-flow graph with labeling function LA

which annotated at locations � with update relations where variables with a s suffix are used to represent the
previous state. We assume fresh variables i and m. The variable 	 is used to construct the new relation which is
eventually stored in LA (l ).

Proposition 1 (Soundness). If π is a finite path segment of G then αZigZag(G, π ) is a sound abstraction with respect
to termination of G .

Proof. (Sketch) The abstraction produces a program with an identical control-flow graph in which only new
variables are read/written. The only relation introduced that could potentially remove executions allowed by the
original program is introduced by this case (due to the inequality m > 0):
	 ← 	 ∨ (as � (πn ,n) ∧ a � (−1,−1) ∧m > 0 ∧m � ms − 1)

This clause could only remove transitions in the case where π is executed infinitely often and in which the paths
followed between passes through π have no effect on the ranking function proving π ’s well-foundedness. Thus
these executions would not exist in G (due to the fact that ρπ is well-founded). �
Example. Consider the example in Fig. 4, and the path through this loop that goes repeatedly into the if branch
with the nonlinear assignment (ignoring the line numbers that do not have assignment statements or assume
statements): π � 3 → 5. In this case, ρπ is the binary relation on states (where y is used as the mathematical
variable representing the value stored in n and y ′ represents the new value of n after the assignment): ρπ � (y ′ �
y2 ∧ 1 < y ′ ∧ y ′ < b). ZigZag can prove the well-foundedness of ρπ , meaning that we can construct a transition
relation which monitors G ’s execution and decrements a progress measure m when the path is executed. Figure 5
illustrates how this is done. Note that a standard termination prover—such as Terminator—can then prove the
termination of the resulting program.
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Algorithm 2 αZigZag: ZigZag-based path abstraction procedure. The procedure constructs a control-flow graph
annotated with update relations where variables with a s suffix are used to represent the previous state. We
assume fresh variables i and m.

input: a program G
input: finite path segment π � π0 −→ · · ·πn

A :� G � Initialize A

if ¬ZigZag(π ) then � Try to prove ρπ well-founded using nonlinear well-foundedness prover
return A

end if

W :� support of ranking function or fv (π ) if the support is not known

for all l ∈ L do
if ∃i . l � πi ∧ 0 ≤ i ≤ n then

for all i s.t. l � πi ∧ 0 ≤ i ≤ n do
	 ← FALSE
if l � πi ∧ i > 0 then

	 ← as 
� (πi , i ) ∧ a � (−1,−1)
end if
if l � π0 then

	 ← 	 ∨ (a � (π1, 1) ∧m � ms )
end if
if l � πi ∧ 0 < i < n then

	 ← 	 ∨ (as � (πi , i ) ∧ a � (πi+1, i + 1) ∧m � ms )
end if
if l � πn then

	 ← 	 ∨ (as � (πn ,n) ∧ a � (−1,−1) ∧m > 0 ∧m � ms − 1)
end if

end for
else

	 ← a � (−1,−1)
if LG (l ) does not modify a variable in W then

	 ← 	 ∧m � ms

end if
end if
LA (l )← LA (l ) ∧	

end for
return A

Fig. 4. An example while loop. As explained earlier, the assumption on line 3 represents the loop guard. Each iteration of the loop either
squares the contents of n or increments the counter j. The termination condition of the loop obviously involves reasoning about non-
linearities. The function nondet() is assumed to be nondeterministic value introduction (i.e. a proof of correctness will have to consider all
possible cases of nondet()’s result)
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Fig. 5. Output of αZigZag π G (Algorithm 2) where the program G is from Fig. 4 and π � 3 → 5. Variables with the s suffix store the
previous state

4. Related work

A number of techniques are available for proving termination of programs (e.g., [Cou05, PR04, CS02, Tiw04,
BMS05a, CMMU03, GTSKF04, CT99, LJBA01, LSS97, SSS97, CPR06, CPR05]). With the exception of a few
cases [BCHR07, BMS05a, Cou05], these tools are all limited to linear arithmetic.

This paper extends our previous work [BCHR07] with a more in-depth algorithmic description, together with
new details on how ZigZag can be combined within a larger termination proving framework.

Bradley et al.’s [BMS05a] analysis supports nonlinear multipath polynomial programs. Their algorithm is
based on building finite difference trees for expressions. In some cases that we can handle (see Fig. 3a–e for
examples) this can’t be done as the trees are infinite.

Cousot’s [Cou05] general framework for termination proving supports the synthesis of ranking functions
from nonlinear loops. First, the standard Floyd-style verification conditions are abstracted into a (user-chosen)
parametric form. If it is still possible to prove termination within the parametric abstraction, then verification
reduces to solving for the parameters. The constraints on the parameters are then further abstracted to a con-
junction of inequalities by Lagrangian relaxation, which can in turn be solved using semidefinite programming,
if the constraints are quadratic. The framework is general and can handle interactions between variables that our
analysis cannot. On the other hand, semi-definite programming is limited to quadratic functions, so the frame-
work can handle polynomial updates of higher degree only if they can be expressed (or further conservatively
approximated) by a sum of squares. Furthermore, the framework depends on extensive numerical computation,
making it vulnerable to numerical errors and complicating its use in practice. (For example, a synthesized rank
function in Cousot’s paper [Cou05] is actually non-monotonic when n is large, apparently due to numerical errors
in the solver, or perhaps a transcription error somewhere in the process.)3

3 The error occurs in Example 9, where the synthesized rank function is reported as r (n, i, j ) � (7.024176×10−4)n2 +(4.394909×10−5)ni−
(2.809222×10−3)nj +(1.533829×10−2)n+(1.569773×10−3)i2 +(7.077127×10−5)ij +(3.093629×101)i−(7.021870×10−4)j 2 +(9.940151×
10−1)j + (4.237694). This is for a nested loop:



402 D. Babić et al.

In Sect. 3, we proposed a method of adding new variables which track facts proved by ZigZag. The idea
of tracking additional information with new variables for the purpose of proving termination is not new (e.g.
[BBH+06, MBCC07] ). The difference here is in what is tracked: we are using new variables to track if specific
paths are taken, whereas previous techniques have been used to track artifacts such as the sizes of lists.

5. Conclusion

We have described an automatic tool, called ZigZag, that can be used to prove the termination of loops with
nonlinear assignments to variables. ZigZag uses divergence testing on variables that are relevant for proving loop’s
termination. ZigZag can automatically prove the termination of loops that are not supported with previously
reported techniques.

Future work ZigZag could be extended in several directions. In addition to divergence, x+ might also converge
to a stable point. The analysis can be extended to handle such cases, for example:

while (x > 0.5) {
x = 0.8 * x;

}

This is just an application of the Banach fixed point theorem [DG03]. Since this is a well-known result, we do
not consider it explicitly in our approach.

For low-order polynomials (which have only a small number of real roots) with only constant coefficients, the
analysis could search for RGDs (or regions of guaranteed convergence) in an iterated application of the update
function f k � f ◦ · · · ◦ f , which is simply a higher-order polynomial. This extension would make the analysis
much more powerful, as currently our analysis only finds the most apparent RGDs. Since most of the nonlinear
functions that appear in practice are low-order polynomials, this might be an interesting direction for the future
research.

We are currently investigating methods for supporting interdependent induction variables. Another possible
extension is to allow nonlinear functions of symbolic constants in update functions. Finding minimums and
maximums of such functions is NP-complete in general.
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