
DOI 10.1007/s00165-012-0251-6
BCS © 2012
Formal Aspects of Computing (2013) 25: 3–35

Formal Aspects
of Computing

Checking noninterference in Timed CSP
A. W. Roscoe and Jian Huang
Department of Computer Science, Oxford University, Parks Road, Oxford OX1 3QD, UK

Abstract. A well-established specification of noninterference in CSP is that, when high-level events are appropri-
ately abstracted, the remaining low-level view is deterministic. This is not a workable definition in Timed CSP,
where many processes cannot be refined to deterministic ones. We argue that in fact “deterministic” should be
replaced by “maximally refined” in the definition above. We show how to automate the resulting timed nonin-
terference check within the context of the recent extension of FDR to analyse a discrete version of Timed CSP,
and how an extended theory of digitisation has the potential both to create more accurate specifications and to
infer when processes are noninterfering in the more usual continuous-time semantics.

Keywords: CSP, Timed CSP, Noninterference, Refinement

1. Introduction

Noninterference, a concept introduced by Goguen and Meseguer in [GoMe82], is a topic in the theory of com-
puter security: it analyses whether information can flow between users of a system through their joint use of it.
In the classic set up there is a high level user (say Hugh) and a low level one (Lois): we might well want to ask
whether or not information can pass from Hugh to Lois. Thus noninterference is an asymmetric condition: we
might not mind Hugh learning about Lois’s activities.

In a practical setting it might be much harder to guard against situations where Hugh is actively trying to
pass information to Lois using whatever feature of the system he can (something usually called a covert channel),
as opposed to Lois spying on an unknowing Hugh. However, without knowing exactly what Hugh might do,
proving the absence of information flow in the second scenario is the same as the in the first.

Noninterference is a wonderful specification for theorists to play with, because it exercises the nuances of
their semantic models—something that will be well illustrated in the present paper. Given that semantic models
tend to be based on things that observers at some level of abstraction can see about processes, it seems natural
to pose the question of how one would couch noninterference by giving Lois the same powers of observation
as the model, though restricted to her own interface with the system. So while refining a semantic model may
be irrelevant to many practical specifications, this is rarely if ever true of noninterference because we can always
imagine a more discerning Lois or spy.

Correspondence and offprint requests to: A. W. Roscoe, E-mail: Bill.Roscoe@cs.ox.ac.uk

4 A. W. Roscoe, J. Huang

Goguen and Meseguer’s specification was in terms of machines that strictly alternate inputs and outputs,
and on each cycle have an input, then an output, with each of its users. Process algebras like CSP offer a rather
more flexible way of describing how processes look, and since they are essentially ways of describing interaction,
quickly became an important focus of noninterference research. Initial characterisations in process algebras (for
example [All91, GCu92, Rya91]) had much in common with those of [GoMe82], but later ones such as those of
Roscoe, Woodcock and Wulf [RWW96, Ros95], and Focardi and Gorrieri [FoGo94] made much more use of the
particular expressive qualities of process algebras. It is in this world that the present paper sits.

Different types of semantics (whether process algebra or otherwise) give different perspectives on noninter-
ference. If the semantic model we are using does not capture some notion of behaviour that Lois might observe,
then any specification of noninterference based on that model is not going to capture information about Hugh’s
actions that she can see in that way. One obvious possibility is time. Neither standard input/output semantics
of sequential programs nor most process algebras pay any attention to how long our system takes to perform
its operations, or the wait between one communication and the next. Therefore none of the formulations of
noninterference in the papers cited above can identify timing channels, one of the most common types of covert
channel. The formulations we give in this paper are designed for exactly that purpose.

A further important question is whether or not we try to distinguish different sorts of nondeterminism—unpre-
dictable behaviour by the system—from one another. Nondeterminism can either protect against information
flow or allow it. If what Lois sees covers the same nondeterministic range no matter what Hugh does it is impos-
sible for her to deduce anything definitively about his actions, but on the other hand what he does (for example
his timing) might affect the resolution of the nondeterminism in her view.

The relationship between refinement, nondeterminism and noninterference has generated considerable debate
over the years. In particular one needs to be careful not to describe a system as secure and yet find it has inse-
cure refinements—an instance of the so-called refinement paradox. Morgan and McIver have written about this
issue—mainly in the context of imperative programs [Mor06, McIMo10], for example, by introducing shadow
variables that assert unrefinable ignorance. We will find in this paper that there seems to be a greater need in
Timed CSP than in the original CSP for ways of determining whether or not nondeterministic programs, possibly
not maximal in the conventional refinement order, satisfy noninterference.

In this paper we will show that the determinism-based specification of noninterference has to be altered sub-
tly in the world of Timed CSP. But before we can demonstrate that, we need to build quite a lot of background
knowledge.

The rest of this paper is therefore structured as follows. We first recall the CSP and Timed CSP languages. We
then introduce and analyse the continuous and discrete semantic models we use for Timed CSP, deriving some
new structural properties. A further background section recalls the functionality of FDR including its new timed
capabilities. Section 5 recalls the definition of noninterference from [RWW96, Ros95], and shows that it does not
work in the same form in the standard semantics for Timed CSP (which uses a continuous model of time) or the
corresponding model using discrete time. We then show how a revised formulation of the basic principles allows
us to capture what is required.

The theory of digitisation [Oua01, Oua02] allows us to relate the behaviour of Timed CSP processes in discrete
and continuous time. We investigate the implications of this for systems modelled in the continuous models of
Timed CSP, and show that one can provide results about the noninterference properties of a process’s continu-
ous semantics by analysing a suitable discrete semantics. To do this we establish some generalised results about
digitisation.

The discrete-time form of Timed CSP has recently [ALOR12] been implemented in the CSP refinement checker
FDR [Ros94]. We show that the reformulated definition of noninterference can be implemented directly in that,
though not so directly as the untimed variant, since it cannot use FDR’s built-in determinism check. By applying
this to some relatively simple case studies, we see some of the types of timing channels that can arise in shared-use
systems and some strategies for avoiding these.

Checking noninterference in Timed CSP 5

There is a great deal of literature on noninterference in untimed contexts, but less in timed ones. In Sect. 9 we
compare our work with what seem to be the two most similar: the presentation in [FGM00, FGM03] of nonin-
terference in the context of a tock-CSP like process algebra called tSPA, and formulations of noninterference for
timed automata in [BFST02, BaTe03]. Perhaps surprisingly, the second of these turns out to be closer, technically,
to ours.

Finally, we contemplate potential application areas of timed noninterference analysis, including Cloud
security.

The reader will discover that some of the constructions and arguments contained in this paper are complex.
To keep them as simple as possible we make a number of assumptions:

1. The alphabet � over which we build processes is finite.
2. We only consider finitely nondeterministic CSP and Timed CSP: given the first assumption this just means

that all uses of nondeterministic choice � are over finite sets.
3. While we frequently use termination (�) and sequential composition in building process descriptions, the pro-

cesses we test for noninterference will never terminate. We therefore ignore the complications of termination
when defining and analysing the semantic models and in formulating noninterference conditions.

The present paper has its origins in the doctoral research of the second author [Hua10], some of which
relating to discrete Timed CSP was reported in [HuRo06]. His thesis examined a variety of timed models of
CSP-like processes and explored how established noninterference theories extended to them. We are now able to
extend the parts of [Hua10] on discrete and continuous Timed CSP by proving relationships between them, and
implementing decision procedures for them in FDR.

2. The language of CSP and Timed CSP

CSP is a language which describes patterns of communication in some alphabet� of actions that are handshaken
between the process and its environment. There are additional actions �, a signal for successful termination and
τ , an invisible action representing internal progress within a process. In the original “untimed” treatment of CSP
these patterns of communication include the order of actions, which sets are offered and maybe the ways in which
possibilities branch, but not the exact times these things happen.

The following is a brief introduction to the main parts of the language: much more complete explanations
can be found elsewhere [Ros97, Sch00, Ros10].

There are process constants representing important patterns of communication: STOP is a process that does
nothing, while SKIP just terminates. div just diverges by performing τ s for ever. RUNA is always ready to perform
any event from A ⊆ � while CHAOSA can always both accept and refuse any event from A.

There are operators for introducing communications: a → P and ?x : A → P(x) allow an individual member
or choice of actions from�. P � Q makes the choices of both P and Q available to the environment, while P � Q
allows the process to select which of P and Q to behave like.

We can put processes in parallel that influence each other by synchronising on some of their events from �:
P ‖

A
Q makes them synchronise on the events they perform in A, P A‖B Q makes them synchronise in A ∩ B,

while P ||| Q just lets them run freely.
P \ A represents P running but with all events in A hidden: turned into τ s. P[[R]] applies the relation R ⊆ �×�

(usually assumed to be total on the events P uses) to P’s actions: whenever P performs a, P[[R]] gives the environ-
ment the choice of all the b such that a R b.

CSP provides three ways of one process handing over to another P; Q runs them in sequence: P until it
terminates via � and then Q. P � Q allows Q to interrupt P by performing any visible event, while P�A Q runs
P until it performs any action in A ⊆ �, at which point Q starts.

There are also indexed versions of a number of these operators, and in many contexts we use infinitary ver-
sions of the choice operators. Recursive definitions are used in a rich variety of ways, including defining infinite
families of processes in mutual recursions. CSP is therefore a very rich language and is capable of describing
many patterns representing both implementations and specifications.

6 A. W. Roscoe, J. Huang

In this paper we will use the “blackboard” style of the operators used above, but in fact our implementations
of the ideas in this paper are all in the ASCII version of CSP, known as CSPM which combines ASCII versions
of the above operators with a Haskell-like functional programming language.

Timed CSP [Ree88, ReRo88, Sch00] does not need much more description because it is the same language
given a timed interpretation. In our treatment there is only one new construct: WAIT t behaves exactly like SKIP
but takes the non-negative time t before it terminates (�). As implemented in FDR it gives the programmer the
option to assign a non-negative completion time to each event a ∈ �: in a → P and ?x : A → P(x) there are
et(a) time units between the occurrence of the event a (assumed to be instantaneous) and the following process
starting up. The other main principle underlying the timing is that we assume that as soon as any event is enabled
in a process (either because like τ it needs no collaboration from the environment, or because the environment
does allow it) some event does happen. This is the principle of maximal progress.

Some versions of Timed CSP include explicit time-out and timed interrupt operators: P �t Q offers initial
choices of P for time t and then lets Q take over if P has not communicated; P �t Q makes Q take over after
time t even if P has communicated (unless P has terminated). But since both of these can be defined in terms of
WAIT and other operators, we will not regard these as primitive operators here.

• P �t Q 	 (P � (WAIT t; timeout → Q)) \ {timeout} where timeout is a new event with et(timeout) 	 0.
• P �t Q 	 (P � (WAIT t; interrupt → Q)) \ {interrupt} where interrupt is a new event with et(interrupt) 	 0.

Note how both these constructions depend on maximal progress: as soon as the fresh event becomes available it
happens, forcing either resolution of the � or an interrupt.

The natural timed interpretations of the processes div, RUNA and CHAOSA all breach an important principle
of Timed CSP: they allow an infinite number of events in a finite time. Timed CSP assumes to the contrary that
processes only perform a finite number in any finite interval. What we assume in this paper is any complete Timed
CSP system has this property: it can sometimes be useful to use RUNA and CHAOSA in these programs as long
as they synchronise all their actions with a process that does have the no-Zeno property.

We will find in this paper that it is frequently useful to restrict Timed CSP so that all delays introduced by
language constructs are integers. In other words, et(a) ∈ N and, in WAIT t, t ∈ N. The language subset satisfying
this restriction will be termed integer Timed CSP.

3. Semantic models

CSP, and similarly Timed CSP, are distinguished by the fundamental role that abstract behavioural models play
in their semantics. These models, sets of observations that can be made of the process under consideration, must
both be congruences (i.e. you can calculate the value of any operator applied to its arguments from the values of
the arguments) and each have a theory that allows us to construct a fixed-point semantics for recursion. These
requirements tell us that there is a denotational semantics for the language over it. Each such model yields a theory
of refinement that is defined by P
 Q if and only if P 	 P � Q or equivalently P ⊇ Q: Q refines P if Q has less
observable behaviours than P.

Refinement is generally identified, conceptually, with reduction in nondeterminism. The richer the language
of behaviours captured by a given model, the better this analogy is. (Timed) CSP contexts are always monotonic
with respect to refinement: P
 Q ⇒ C[P]
 C[Q].

There are invariably two quite distinct ways of calculating the semantics of any process P defined in (Timed)
CSP in such a model M. One can either do so via the denotational semantics entirely within M, or one can take
the operational semantics of P and formally observe the relevant sets of behaviours. It is always a requirement
that these two views co-incide: this is what it means for a semantics to be operationally congruent, and all the
semantics discussed in this paper have that quality. Full operational1 and denotational semantics for Timed CSP
can be found in [Sch00].

1 The operational semantics of Timed CSP [Sch00] has three types of action: the usual visible and τ actions, and timed evolution P
t

� Q.
Maximal progress means that a state with a τ action cannot also have a non-zero timed evolution. Timed evolution is dense and deterministic,

in the sense that if P
t1+t2
� R then there is Q such that P

t1
� Q and Q

t2
� R; and P

t
� Q ∧ P

t
� Q′ implies Q 	 Q′. They have the property

that if P
a−→ R and P

t
� Q then there exists R′ with Q

a−→ R′. Thus any set of events that is offered continues to be offered until some
action (visible or τ) occurs.

Checking noninterference in Timed CSP 7

Semantic models are given healthiness conditions, which characterise which sets of behaviours can reasonably
be reckoned to be descriptions of processes. They generally, in fact, capture which2 sets of behaviours are images
the operational semantics. The semantic model is defined to be the collection of sets of the relevant sort(s) of
behaviour that satisfy the healthiness conditions.

The most standard model of untimed CSP is the failures-divergences model N alluded to above in which each
process is represented as a pair (F ,D) of sets of behaviours. F comprises failures, namely combinations (s,X) of
a finite trace s and a set X that the process can refuse in a stable state after s. D is the set of traces on which it can
diverge, namely engage in an infinite consecutive sequence of τ actions. The model is divergence strict, namely if
s ∈ D then sˆt ∈ D and (sˆt,X) ∈ F for all t and X : this does not imply that the process can really perform all
these extra behaviours, but rather than we choose not to know whether it can or not and simply assume they are.

Aside from these divergence-closure conditions, the observation that if (s,X) is a failure then so is (s,Y) for
Y ⊆ X and the property that the set of all traces {s | (s,X) ∈ F } is nonempty and closed under prefix, there is
one further healthiness condition that characterises which pairs (F ,D) represent realistic processes. That is

F3 (s,X) ∈ F ∧ Y ⊆ {a | (sˆ〈a〉,∅) �∈ F } ⇒ (s,X ∪ Y) ∈ F

In other words, whenever our process refuses a set X it must also refuse (if offered) an extension of X by events
that are never possible after s. F3 ensures that the process has enough traces to be consistent with its refusal sets.

With exception of additional properties that are used to govern the behaviour of the special event � represent-
ing successful termination (which we ignore, for simplicity, in this paper), these properties completely determine
N over any given alphabet �. This model has many important properties, one of which is that (given the CSP
language described in [Ros10]) fully abstract with respect to deciding whether any process is deterministic in the
following sense:

• A deterministic process (F ,D) is divergence free (i.e. D 	 ∅)
• It never has the choice whether to accept or refuse any event (i.e. if (sˆ〈a〉,∅) ∈ F then (s, {a}) �∈ F), which is

equivalent to saying that the failures (s,X) are exactly the ones forced from the set of traces by the property
F3 above.

This concept of determinism is one that relates to how a process can be observed rather than its internal
construction. For example the operational semantics of the process ((a → b → a → STOP) � b → STOP) \ {a}
branch, so one cannot be certain what state one is in after any trace, but no matter what happens a b followed
eventually by STOP occurs.

As you would expect from our discussion earlier, the deterministic processes are precisely the refinement-max-
imal processes in N .

A wide range of other models of untimed CSP are described in [Ros10], but N is the most important with
respect to specifying noninterference.

The combination of the principle of maximal progress and the need to make models compositional under
the CSP hiding operator (which turns visible actions into τ s that are forced before time passes P \ X can only
let time pass when P refuses the whole of X , so it follows that whatever model we are using for P must give us
this information) makes the range of models for Timed CSP more restricted than for untimed. It is necessary
to record the set of events refused at every point in a behaviour where time advances: time can only advance in
P \ X in states where the whole of X is refused by P. Divergence is a much reduced issue, since thanks to the
no-Zeno assumption any divergence is necessarily spread over infinite time—which when we are modelling time
simplifies things greatly. In fact divergence will not be considered in the models we use in this paper.

2 As shown in [Ros10], for example, this characterisation tends to be exact in the world of untimed CSP provided one allows oneself to use
complex infinite mutual recursions and sometimes infinite nondeterminism. We are not aware of similar results for Timed CSP. We suspect
that one route to proving them will be the quasi-deterministic processes discussed later in this paper.

8 A. W. Roscoe, J. Huang

In the case of continuous time this means that we have to record refusals as a subset of�×R
+ to accompany

timed traces which attach a time in R
+ (the non-negative real numbers) to each event, where the times increase,

not necessarily strictly, through the trace. In fact, timed refusals are unions of sets of the form X × [t1, t2) where
0 ≤ t1 < t2 < ∞—refusal tokens. [t1, t2) is a half-open interval that contains t1, all x with t1 ≤ x < t2 but not t2.
This corresponds to the idea that if an event happens at time t then the refusal recorded at that time is the set of
events refused at the same time after the event. So in a → P, there will be behaviours in which a occurs at time
1, all events other than a are refused in the interval [0, 1) and, on the assumption that the event a takes time δ to
complete, all events including a are refused in the interval [1, 1 + δ).

So the Timed Failures model consists of sets of pairs of the form (t,ℵ), where t is such a timed trace,3 and ℵ is
such a timed refusal. First introduced in [ReRo88], there have been a number of variants of this model over the
years, the main points of difference being:

(1) Is causality permitted between simultaneous events: can one have the timed trace 〈(a, 1), (b, 1)〉 but not the
timed trace 〈(b, 1), (a, 1)〉?

(2) Can an event take zero time: in a → b → P can the b happen at the same time as the a? (This question is
very closely linked to the previous one: if the answer to this one is “yes”, then the first must also be answered
affirmatively.)

(3) Does recursion take time to unfold or not: is μ p.F (p) equivalent to WAIT δ; F (μ p.F (p)) for some δ > 0
or just F (μ p.F (p))?

(4) How is the assumption of no-Zeno behaviour enforced? This says that only finitely many actions can occur
in a finite time.

(5) Is information included about stability? This is the dual of divergence: the time after which no further
internal actions occur without a visible one having occurred first.

(6) Can traces s and timed refusals ℵ extend through all time or must they be finite? In either case they are
always restricted so that up to any finite time they only have finitely many events or are the union of finitely
many refusal tokens.

[Oua01, Oua02] and [Sch00] agree on most of these points, and give the same equivalence over Timed CSP
restricted to finitely nondeterministic constructs. We agree with them on all of them except the one where they
differ, which is the last. So the answers to all but that question will be (1) yes; (2) yes; (3) no; (4) usually restricting
recursions to ones which are time guarded, never starting a recursive call until some delay of at least δ > 0 has
been introduced by the context of the call; and (5) no.

On point (6) we will restrict to finite traces but allow timed refusals extending through all time. They will,
however, be restricted so that only finitely many refusal tokens A × [t1, t2) in the union yielding an ℵ have t1 < T
for any fixed T . Both these decisions make later constructions easier, but under our assumption of finite nonde-
terminism do not change the expressive power of the model: the infinite timed refusal (s,ℵ) (for finite timed trace
s) belongs to a process if and only if (s,ℵ � t) for every t > 0. (The ⇒ direction of this does not depend on finite
nondeterminism.)

The axiom that coincides with F3 is more complex both because it deals with the richer structure of timed
failures and because it captures the temporal concept of no instantaneous withdrawal or NIW: if a process cannot
refuse an event up to a given time, then it can perform it at that time. The intuition here is that if event a was
offered before time t when some internal event x occurred that removed the option of a, then a was a valid option
to x at the point where it occurred and so could have happened instead. This property is important to the theory
of digitisation and will play a major role in this paper. In this paper we will call it the continuous forcing axiom
CF.

(s,ℵ) ∈ P ⇒ ∃ℵ′ ⊇ ℵ.∀ t.∀ a.
(¬∃ε > 0.{a} × [max{end(s � t), t − ε}, t + ε) ⊆ ℵ′) ⇒ (s � tˆ〈(a, t)〉,ℵ′ � t) ∈ P

This says that whatever timed refusal ℵ is actually observed by an experimenter alongside the timed trace s,
there is an extension ℵ′ which records all the events the process would have refused (if offered) alongside the trace
s through all time. The fact that these are all the refused events means that it must perform all actions that are
either not in the set or have been withdrawn from the offer at the present instant.

3 There is a summary of some of the notation of timed traces and timed refusals at the end of this paper.

Checking noninterference in Timed CSP 9

This is intuitive except for the italicised last clause, which says that actions are still possible at the moment of
withdrawal. We can give this the following operational explanation. Suppose our process is in operational state
P giving rise to a refusal. Suppose it has the set of actions A immediately available. A cannot include τ , which
would force something to happen immediately so no refusal would be apparent in P. Then the process will not
be refusing anything in A, and will not do so until state P is left. The only way in which the process can start
refusing a ∈ A without a visible action happening is if a τ becomes enabled in P at some later time t and occurs,
leading (either directly or after further τ s at the same time) to a state P′ where both τ and a are impossible. Here
τ can happen when it becomes enabled at t. But the whole of A, including a, are available as alternatives to τ at
the exact time t. So the process can both perform a at time t and (through the alternative behaviour) refuse it
after the same timed failure has been observed through 0, t).

The NIW property comes about because reaching a particular time in the operational semantics enables new
actions in addition to existing ones, rather than representing a complete change in state. It is more a consequence
of the assumed operational model than the language of Timed CSP. If we had a language or operational model in
which reaching a time can (of itself) disable previously available actions (and we will see such a language, though
not for continuous time, in Sect. 9) then we would use a version of CF without NIW. This would be the same
except that the interval [max{end(s � t), t−ε}, t +ε) would be simplified to [t, t +ε). Many of the more interesting
(or difficult, depending on your point of view) features of the rest of this paper would then not apply. We will
gain more insight into this issue in Sect. 9.

The only other properties required to define the timed failures model are the following

NE A process is non-empty, specifically containing (〈〉,∅).
IC Whenever (sˆs′,ℵ) ∈ P and ℵ′ ⊆ ℵ � begin(s′), then (s′,ℵ′) ∈ P, including the case where s′ 	 〈〉 and

so begin(s′) 	 ∞. The process is thus implication closed: if the presence of timed failure (s,ℵ) implies the
presence of (s′,ℵ′) then the set of behaviours representing it always respects this. (This corresponds to both
the prefix-closure of traces and subset-closure property of refusals in the untimed failures models.)

NZ For each P there is a bound on how many events it can perform in any finite time:

∀ t. ∃n.s ∈ traces(P) ⇒ #s � t ≤ n

Our assumptions of finite alphabet and finite nondeterminism make this last property unproblematic. This
is a version of the no-Zeno assumption.

The (continuous) timed failures model FT will be the set of all sets P of timed failures satisfying all of the
above.

A corresponding model FDT exists for discrete time: where time is measured in discrete units, separated by
some marker such as an event tock representing the regular passage of time.4 FDT and variants have been studied
and described in [Oua01, Oua02, OuWo03, LoOu06, Hua10, Ros10]. In Timed CSP the processes do not commu-
nicate this event: you should think of it as a clock in the hands of an external observer. The discrete timed failures
model has behaviours that consist of a trace consisting of events including tock, including a refusal set of events
before each tock and at the end. None of the refusal sets include tock. Another equivalent presentation (which
we will not be using in this paper, but can help to explain the model’s structure) is as a sequence of failures (s,X)
where there is a notional tock between each consecutive pair. For consistency with the continuous treatment
above, in this paper we will assume that the behaviour is infinite but contains only finitely many non-tock events.
[Thus it contains a record of refusals at all integer times.]

The events between two consecutive tocks are thought of as occurring at one of a discrete series of “moments”,
and the refusal set records what is refused at the point time advances, exactly in the spirit of the continuous timed
failures model.

Because of this structure in which all behaviours have infinitely many tocks, the usual empty trace 〈〉 or (〈〉,∅)
representing a process doing nothing is replaced by � 	 〈∅, tock〉ω: where time passes for ever but nothing is
seen to be refused.

4 In this paper the alphabet of events � will not contain tock, which is treated as an additional action.

10 A. W. Roscoe, J. Huang

While the complete Timed CSP language can be given a compositional semantics over FT, to have a semantics
over FDT a program needs to use only integer delays in WAITs, event timings and any other places where a delay
is introduced. In other words it must be an integer Timed CSP program as defined earlier.

FDT also has the NIW property: if an event cannot be refused before a tock, then it is possible after the tock.
Intuitively, the withdrawal of the offer of some event a after a tock occurs because the tock enables some τ that
changes the state. But since τ is after the tock, a is possible also up to that same point after tock. The property
analogous to CF is the discrete forcing axiom DF:

s ∈ P ⇒ ∃ s′ ⊇ s.∀ a.
s′ 	 s1ˆ〈X , tock〉ˆs2 ∧ a �∈ X ⇒ (s′ˆ〈a〉ˆ� ∈ P ∧ s′ˆ〈X , tock, a〉ˆ� ∈ P)

Here, s ⊆ s′ means that the traces (of ordinary events and tocks) in the two behaviours are the same, and that
each refusal in s is a subset of the one at the corresponding point in s′.

DF can be paraphrased as saying that each observed behaviour of P must have arisen from an actual behaviour
of the underlying machine performing the same trace, where the complement of the refusal at each tock were the
events being offered at that point. Each such event could therefore occur either before or (because of NIW) after
the tock.

We can think of s′ being a complete behaviour that the the axiom forces as an extension of s, just as in the
continuous case.

There are, naturally, analogues of the other three axioms of FT:

NED � ∈ P

ICD Whenever sˆs′ ∈ P and s′′ has the same sequence of events as s, and with its refusals point-wise subsets of
those of s, then s′′ ∈ P.

NZD For each P there is a bound on how many events it can perform in any finite time:

∀ t. ∃ .n.s ∈ traces(P) ⇒ #s � t ≤ n

where here s � t means the prefix of s up to its tth tock.

As in the continuous case, we can create a version of DF without NIW for languages where this does not hold:
the final conjunct s′ˆ〈X , tock, a〉ˆ� ∈ P would be deleted on the RHS of the implication.

In both FT and FDT, the no instantaneous withdrawal property gets in the way of the idea of determinism. If
we continue to identify determinism with processes being unable, after any given trace, both to accept and refuse
any event, it is clear that no process that ever withdraws an offer can be deterministic.

Definition 3.1 [ReRo99] A timed process is said to be quasi-deterministic when any visible event that occurs at
time t either is the first to occur at that time and has not been refused in an interval up to t, or is not refused at t.
Specifically:

• Over FT, if (sˆ〈(a, t)〉,ℵ) ∈ P then either t > 0 and end(s) < t and for all ε > 0 we have (s,ℵ � t ∪ {a} × [t −
ε, t)) �∈ P or for all ε > 0 we have (s,ℵ � t ∪ {a} × [t, t + ε)) �∈ P.

• Over FDT, if sˆ〈a〉ˆs′ ∈ P then either s has the form
s′′ˆ〈X , tock〉 and s′′ˆ〈X ∪ {a}, tock, {a}, tock〉ˆ� �∈ P or sˆ〈{a}, tock〉ˆ� �∈ P.

In each model, the first case allows a process to be quasi-deterministic even though there are traces after
which an event can both be accepted and refused thanks to NIW. The following lemma gives characterisations
of processes that are not quasi-deterministic.

Lemma 3.1 (i) Over FT the process P is non-quasi-deterministic if and only if it has a behaviour (s,ℵ) such that
one of the following applies:

(a) There exist a and t2 > t1 	 end(s) such that both (sˆ〈(a, t1)〉,ℵ � t1) and (s,ℵ ∪ {a} × [t1, t2)) are in P.
(b) There exist a and t3 > t2 > t1 ≥ end(s) such that both (sˆ〈(a, t2)〉,ℵ � t2) and (s,ℵ ∪ [t1, t3)) are in P.

Checking noninterference in Timed CSP 11

(ii) Over FDT the process P is non-quasi-deterministic if and only if it has a behaviour sˆ� such that one of the
following applies:

(c) s does not end in tock, and both sˆ〈a〉ˆ� and sˆ〈{a}, tock〉ˆ� belong to P.
(d) s has the form s′ˆ〈X , tock〉, and both sˆ〈a〉ˆ� and s′ˆ〈X ∪ {a}, tock, {a}, tock〉ˆ� are in P.

Proof. We show that failure of quasi-determinism implies one of the situations in the Lemma. Cases (a) and (c)
relate to events a that occur either at time 0 or where another event has already occurred at the same time. These
mean that NIW is not in force and only the second disjunct of the respective definition of quasi-deterministic
can apply. In the continuous case we set t1 	 t and t2 	 t + ε, where ε is the example denying the “for all” in the
second part of the FT part of Definition 3.1 for (s,ℵ � t)

Cases (b) and (d) relate to events that happen at time occupied by no previous events and which is > 0,
meaning that we can have observed what was refused before the present time and after any previous events. In
these cases the definitions of quasi-determinism tell us that one of two things happen. In the continuous case,
again choose ε from the relevant part of Definition 3.1. Setting t1 	 t − ε, t2 	 t and t3 	 t + ε, each of the two
disjuncts implies that (s,ℵ ∪ {a} × [t1, t3)) �∈ P, since the timed refusal in each is a subset of ℵ ∪ {a} × [t1, t3). In
the discrete case, the second disjunct sˆ〈{a}, tock〉ˆ� �∈ P implies the first, meaning that the first (which is what is
needed for (d)) holds.

The fact that (a) or (b), and respectively (c) or (d) mean a process is not quasi-deterministic in FT or FDT is
also elementary. �

Some simple examples are:

• (WAIT 1 � a → STOP); STOP, which in either model can either perform a or refuse it at time 1 is quasi-
deterministic.

• On the other hand

((WAIT 1 � a → STOP); STOP) � (WAIT 1; ((a → STOP) � (b → STOP)) \ b)

is not because behaviours in which a on the RHS of � occurs after the refusal of a at any point in [0, 1)
(continuous model) or before the first tock (discrete model) have neither of the alternative properties.

Over the continuous model FT, quasi-determinism exactly captures the concept of refinement maximality.5

Theorem 3.1 Over FT a process P is refinement maximal (i.e. Q � P ⇒ Q 	 P) if and only if it is quasi-
deterministic.

Proof. The proof of this rests on the structural axiom CF quoted above. In fact (as we will show) both quasi-
determinism and refinement maximality are equivalent to the following:

(∗) ∀(s,ℵ) ∈ P. ∃!ℵ′.ℵ′ ⊇ ℵ.(s,ℵ′) ∈ P ∧ ∀ t ≥ 0.∀ a.
(s � tˆ〈a〉,∅) �∈ P ⇔ (∃ .ε > 0.[max{end(s � t), t − ε}, t + ε) ⊆ ℵ′)

In other words, there is a unique (i.e. ∃!) timed refusal ℵ′ associated with every trace with the property that the
trace can be extended at any time by any event just when that event has either just been withdrawn in ℵ′ or is not
refused in ℵ′. ℵ′ is thus the only possible complement of the set of events the process actually offers through the
trace.

Note that the uniqueness of ℵ′ means that, for any fixed s, we are certain to get the same ℵ′ for any ℵ such
that (s,ℵ) ∈ P. So in particular every ℵ must be a subset of the one generated by (*) for (s,∅).

If P does satisfy the above then it is straightforwardly quasi-deterministic. It is maximally refined because if
(s,ℵ) ∈ P −P′ for some refinement P′ then either s ∈ traces(P′) or not. If so we get a contradiction because the ℵ′
given for s in P′ by CF necessarily omits some {a} × [t1, t2) ⊆ ℵ where no event in s appears in the given interval.
CF then implies that s � t1ˆ〈(a, (t1 + t2)/2)〉 is a trace of P′ even though it cannot be one of P. We can thus infer
that the ℵs associated with each trace s of P′ are the same as those for s in P. So we must have s �∈ traces(P′) and
that there is therefore some shortest trace sˆ〈(a, t)〉 in P but not in P′. That also gives a contradiction since the
trace sˆ〈(a, t)〉 is implied by CF applied to trace s.

5 It was not equivalent to maximality in [ReRo99] because that paper used the concept of stability discussed above.

12 A. W. Roscoe, J. Huang

For any process P ∈ FT one can construct a refinement P′ satisfying property (*) by induction on the length
of trace: we start with ℵ〈〉 chosen by CF for (〈〉,∅). The length 1 traces are then just those implied by (〈〉,ℵ〈〉)
under CF. Each such trace s 	 〈(t, a)〉 gives an ℵs implied by CF from (s,ℵ〈〉 � t) where it can be assumed that
ℵs � t 	 ℵ〈〉 � t. We then simply continue this process inductively for longer and longer traces, and finally identify
P′ with the set of all (s,ℵ) such that the trace s is generated at some point in this process and ℵ ⊆ ℵs.

P′ satisfies property (*) by construction. It is necessarily equal to P if the latter is refinement maximal,
demonstrating that maximality implies (*).

If P is quasi-deterministic, then P′ omits no behaviour of P: if it did then this behaviour would differ from
those picked for P′ after some shortest trace s on which they agree. Whether the extra behaviour were a refusal
token {a} × [t1, t2) or event (a, t) after s, it would contradict quasi-determinism using arguments similar to the
above.

This concludes the proof of Theorem 3.1. �

The equivalence shown above to (*) establishes the following corollary.

Corollary 3.1 A quasi-deterministic process in FT is completely determined by its traces. In other words, if P and Q
are quasi-deterministic and have the same set of traces, then P 	 Q.

It is natural to expect, given the above, that quasi-determinism corresponds to refinement maximality over
FDT as well, but it is not true. Consider the processes

P1 	 a → STOP

P2 	 ((a → STOP) � WAIT 1); (WAIT 1; a → STOP)

Over the continuous model these are not comparable in the refinement order: in fact they are both quasi-deter-
ministic and therefore maximal. Note in particular that there are traces that the first process has but the second
does not, for example 〈(a, 1.5)〉.

However over the discrete model every trace of P1 ({〈〉} ∪ {〈(a, n)〉 | n ∈ N}) is also one of P2: the trace 〈(a, 1)〉
is present by NIW. However the first has less refusals since it does not have the behaviour 〈∅, tock, {a}, tock〉ˆ�
which the second does. Therefore P2 is not maximal even though it satisfies the definition of quasi-determinism
over FDT.

In order to be refinement maximal over FDT, any withdrawal of an offer must be for at least two time units.

Theorem 3.2 Over FDT, a process is refinement maximal if and only if it is quasi-deterministic and satisfies the
following:

• If sˆ〈a〉ˆ� and sˆ〈{a}, tock〉ˆ� both belong to P, then sˆ〈{a}, tock, {a}, tock〉ˆ� ∈ P.

In other words, if a is withdrawn at time t then it must be withdrawn for two time units.

Proof. We establish “only if” first, then “if”.
Assume that sˆ〈a〉ˆ� and sˆ〈{a}, tock〉ˆ� are in P but sˆ〈{a}, tock, {a}, tock〉ˆ� is not. We must show that P is not

maximal. This follows because the absence of the last of these behaviours forces sˆ〈{a}, tock, a〉ˆ� ∈ P and hence
sˆ〈∅, tock, a〉ˆ� ∈ P. Similarly, if s′ˆ〈X ∪ {a}, tock〉ˆv is any behaviour which forces the presence of sˆ〈{a}, tock〉ˆ�
(with s′ having the same events as s but possibly larger refusals) then necessarily s′ˆ〈X ∪{a}, tock, {a}, tock〉ˆ� �∈ P
(for the presence of this behaviour would imply the presence of sˆ〈{a}, tock, {a}, tock〉ˆ�). So s′ˆ〈X , tock, a〉ˆ� ∈ P.

This means that P remains a process if we delete all its behaviours which imply the presence of sˆ〈{a}, tock〉ˆ�
under axiom ICD. In other words, we can remove the one-step refusal of a in the same way that we did in the
example earlier when observing that P1 refines P2 over FDT. P cannot have been refinement maximal, since we
have deleted a non-empty set of behaviours from it.

For the “if” half of the result we have to show that a process which is quasi-deterministic with the two-step
gap property set out in the statement of this result is maximal. If it were not, there would be some behaviour s
that could be removed (probably along with others) and have it remain a process. We show this is impossible by
induction on the (by definition of FDT) finite number of non-tock events in s. What we actually prove by induc-
tion on this number of events is the non-existence of such an s together with (i) the fact that that the behaviour
generated by axiom DF for a trace of each length is unique, and (ii) that the only non-tock events that can occur
after such a trace are the ones whose presence is demanded by DF. So structurally the proof is closely related to
the one from the continuous model.

Checking noninterference in Timed CSP 13

Consider first the behaviour f� which witnesses a complete refusal forced under DF from the null behaviour
� in a refinement P−s of P without s. We can similarly “force” the removable behaviour s in P to get fs.

By construction fs and f� both satisfy the conditions of the RHS of DF but are different (for fs implies s
under ICD but f� does not). They will therefore respectively be of the forms eˆ〈X , tock〉ˆd1 and eˆ〈Y , tock〉ˆd2
for some (possibly empty) common prefix e and X/Y being the first places at which they differ. Without loss of
generality (for the rest of this argument is symmetric in the use of fs and f�) assume that there is some a ∈ X −Y .
Necessarily, then eˆ〈a〉ˆ� and eˆ〈{a}, tock〉ˆ� are both in P. So, by assumption, sˆ〈{a}, tock, {a}, tock〉ˆ� ∈ P also.
(1)

Since eˆ〈Y , tock〉ˆd2 satisfies the RHS of DF, it also follows that eˆ〈Y , tock, a〉ˆ� ∈ P (though the NIW aspect
of DF) and hence also eˆ〈∅, tock, a〉ˆ� ∈ P. (2)

The combination of (1) and (2) contradicts the quasi-determinism of P, with s′′ 	 e in that definition.
What we have in fact established here is that there is a unique extension of the null behaviour � under the

assumptions of the Theorem, namely (i) for this base case. (ii) follows because the refusals in the discrete definition
of quasi-determinism must be contained in those of the unique f�, meaning that the only initial visible events to
occur are those forced by f�.

We have thus established that under the conditions of the Theorem, the behaviour of a process up to and
including the first visible action is completely determined: it has no choice over what to offer. As in the continuous
case, the step case of the recursion then just repeats the same arguments for the behaviours that extend a given
sˆ〈a〉 up to and including the next visible event. This then completes the proof. �

So if we were to model the Timed CSP process

((a → STOP) � WAIT 1); (WAIT 1; a → STOP)

in a domain where one time unit between tocks is 0.5 of the one used to measure WAITs we would get a refine-
ment-maximal process, since a is withdrawn for 2 of the shortened tock-units.

4. The functionality of FDR

FDR is a model checker which by now has many features. That relevant to this paper is its ability to check for
two properties of processes: refinement over a variety of models, and determinism. These are well known and
well documented for untimed CSP. For that, the main models for calculating refinement are traces, failures and
failures-divergences, the last two being equivalent for divergence-free processes.

As set out earlier, determinism means the combination of divergence freedom and the process never having
both the trace sˆ〈a〉 and the failure (s, {a}) (i.e. it can perform s and then refuse to perform any member of the
set {a}.) As well as the natural determinism check over the failures-divergences model N , FDR can also attempt
to perform a check (over the stable failures model F) which ignores potential divergence. For divergence-free
processes this always gives the same result, but there is a use relevant to this paper where divergence is sometimes
possible and makes FDR fail to produce an answer. See Sect. 5 below.

All the above is well known for untimed CSP and discussed fully in [Ros10], but new capabilities allow it
to do these things in the context of integer Timed CSP as defined earlier. This extension to CSP is reported
in [ALOR12], and allows the user to mix, in a single script, integer Timed CSP and “tock-CSP”, namely the
language of untimed CSP in which the passage of time units is represented via the event tock that is included in
programs like the members of�. In fact FDR’s implementation of Timed CSP works by translating that language
to a special form of tock-CSP that is semantically equivalent to it over FDT.6

In running both Timed CSP and tock-CSP, FDR requires the user to apply an operator that gives internal
events τ priority over the passage of time via tock. This operator is

pri(P) 	 priority(P, {}, {tock})
in the priority notation used by FDR. This is needed to achieve maximal progress as described above.

6 The full tock-CSP language does not have a semantics over FDT, but the dialect used for this translation does.

14 A. W. Roscoe, J. Huang

FDR can perform refinement checks between Timed CSP processes, where time is represented via the tock
event, using all the usual models that it supports (traces, failures etc). These are frequently the most appropriate
models for comparing a complete Timed CSP process against a specification—these are often written in tock-
CSP—but it is important to remember that most of them are not congruences for Timed CSP: one cannot for
example infer over Timed CSP that P
T Q ⇒ C[P]
T C[Q] for a Timed CSP context C[·].

FDR is also capable of checking refinement in FDT between integer Timed CSP programs, which is compo-
sitional. At present this is done by using the refusal testing model embedded within FDR and a transformation
on the Timed CSP processes it generates, but it may be implemented directly in future versions. It is not directly
relevant to the substance of this paper, but does make compositional checking of security properties possible.
Since the security properties we shall define are refinement closed, it follows that if we can establish that C[P]
satisfies one of them (for C[·] a Timed CSP context (integer in the discrete cases)) and P
 Q in the appropriate
timed failures model, then C[Q] satisfies the same property.

5. Noninterference via determinism?

This ability to characterise a deterministic process even though its internal construction includes nondeterministic
choice is the key to the definition of noninterference in [RWW96, Ros95, Ros97]. Almost all (the notable exception
being the untimed traces model) of the behavioural models of CSP and Timed CSP enable this naturally. Given
a process P with two users whose disjoint alphabets H and L partition its own, we can say that a process P can
transmit no information from H to L if AH (P) is deterministic, where AH (P) abstracts away the behaviour of a
most nondeterministic user who might control H (which should be equivalent to the nondeterministic choice of
all such users). We consider all of the things the high level might do on its side of P, take the nondeterministic
choice of all of them, and specify that the low level user’s view must be deterministic despite that.

This is a very elegant definition, but (as with every other definition of noninterference over complex behaviours
that we are aware of) it is not perfect:

• It only captures information flow that is visible in the patterns of behaviour recorded in the model being used:
so if we are using the failures-divergences model a process can pass this specification despite having timing
channels. (However, as remarked in [Ros06], this definition is insensitive to which of a large class of untimed
models for concurrency is used.)

• It does not distinguish between nondeterminism that is causally linked to the actions of H and that which
is intrinsic to P’s behaviour. Even nondeterminism that is built in to help conceal H behaviour from L will
mean that P is deemed insecure. Thus the definition is only exact for deterministic P; for nondeterministic
P it is conservative in the sense that it never deems an insecure process secure, but might say a secure one is
insecure. (As discussed in [Ros97], for example, the class of models in which N rests are simply incapable of
making the necessary distinctions when P is nondeterministic.) Thus our conditions do not suffer from the
refinement paradox—they are closed under refinement—at the penalty of treating all nondeterminism visible
to L as bad.

In this paper we are addressing the first of these problems. To handle the second without admitting insecure
processes as secure would require much more operational and intensional models of processes. We will discuss
this further in Sect. 9.

The abstraction used should capture all the ways in which P can be influenced by the process interacting
with it in H . If this interaction follows the standard CSP model then potentially that user can not only select
which H action is picked when several are made available, but also whether one is selected at all. In this case the
correct abstraction to use is lazy abstraction, defined7 over the stable failures model F (in which the divergence
component of N is replaced by one of finite traces) by

LH (P) 	 (P ‖ CHAOSH) \ H

(The use of N with this formulation creates problems because it can introduce divergence that is not appropriate.)

7 A different definition of lazy abstraction was used for defining noninterference in [RWW96, Ros95], namely P ||| RUNH . Determinism
of this gives an equivalent definition of noninterference, but the one quoted here (taken from [Ros97]) is superior for other purposes. The
interleaving definition would cause problems in the timed world because the result of applying it would breach the no-Zeno requirement.

Checking noninterference in Timed CSP 15

An alternative form of abstraction called mixed abstraction is used when H is partitioned into two sets HD
and HS , where the user is assumed to be able to delay the first but not the second, which are signals from process
to user.

LHS
H (P) 	 (P ‖ CHAOSHD) \ H

In this paper we will concentrate on lazy abstraction, but everything we do would work under an analogous
treatment of mixed abstraction.

So the untimed definition of noninterference on which our work in this paper will be based is the following.

Definition 5.1 The process P is said to be lazily independent of H over the failures-divergences model N if LH (P)
is deterministic.

Numerous examples of how this definition works in characterising information flow can be found in [Ros95,
RWW96, Ros97], as can results such as the demonstration that a deterministic process P is equivalent to the
independent parallel composition PH ||| PL where PL 	 LH (P) and PH 	 LL(P) if and only if both these
processes are deterministic. In other words P is separable if and only if P is lazily independent of both L and H .

This immediately suggests that the way to check if a finite-state untimed process satisfies this is to ask FDR
if LH (P), formulated using CHAOSH as above, is deterministic. However it is not quite as simple as that, since
the check can be subverted by the same divergences (resulting from infinite sequences of hidden H actions in P)
that mean the definition does not work in N . In fact these divergences can even subvert a determinism check
carried out in the stable failures model F , since FDR’s algorithm to do that does not always work on a divergent
process—see [Ros97]. As remarked there, one reliable method for doing this is the pair of checks

• P ‖
H

STOP deterministic (over N)

• P ‖
H

STOP
F (P ‖
H

CHAOSH) \ H

The truth of this pair of checks together is equivalent to LH (P) being deterministic, and do not allow an infinite
sequence of H actions to cause a problem.

A second reliable method is to replace FDR’s built-in check for determinism by a method that can be imple-
mented directly in terms of the tool’s refinement checking capabilities, namely to compare two copies of the
process P being checked and forcing the second to follow exactly every trace that the first follows. If it never
diverges and this always succeeds then P is deterministic, otherwise it is not. Since we will be adapting this idea
(originally due to Lazić [Laz99]) later in this paper, we realise it below in a way easily implemented in FDR. Here
clunk is an event that the process P does not use itself and E 	 � − {clunk}:

CReg 	 x?E → clunk → CReg

Clunking(P) 	 P ‖
E

CReg

Test 	 x?E → x → Test

RHS(P) 	 ((Clunking(P) ‖
{Clunk}

Clunking(P)) ‖
E

Test) \ {clunk}
LHS 	 STOP � x?E → x → LHS

The use of clunk keeps the two copies of P within one event of each other, so that each pair of events between
consecutive clunks come one from each copy. Test forces the two to follow the same trace. The specification LHS
allows anything this RHS(P) might do except for one process being unable to follow the other’s lead causing
deadlock, or P diverging.

LHS
FD RHS(P) is then true if and only if P is deterministic, and if
FD is replaced by
F we get a test for
the failures model version of determinism that is not vulnerable to the issue described above. Therefore applying
the above to the CHAOSH formulation of LH (P) gives our second reliable test of lazy independence.

16 A. W. Roscoe, J. Huang

The intuition of the deterministic low-level abstraction implying absence of information seems equally valid
in Timed CSP, and indeed any of the checks for it listed above works as least as well in the discrete version
implemented in FDR. Indeed the no-Zeno assumption implies that the simple formulation using the direct
FDR failures or failures/divergences determinism check is guaranteed to work as hiding high-level events cannot
introduce divergent behaviour.

(P ‖
H ∪ {tock}

TCHAOSH) \ H

can be tested for determinism where TCHAOSH is the tock-CSP process

TCHAOSH 	 tock → TCHAOSH � (STOP �?x : � → TCHAOSH)

and P has been translated into tock-CSP by FDR. (Bear in mind in this definition that tock �∈ �.)
Note that TCHAOS violates the no-Zeno assumption, but that if P satisfies it then so does the construction for

lazy abstraction above: in P ‖
H∪{tock}

TCHAOSH , the composed TCHAOSH cannot perform an infinite number

of events in a finite time unless P does.
If the lazy abstraction of a Timed CSP process P is deterministic, then this does imply absence of information

flow, at least information flow measurable in the model being considered. The fact that no process which ever
withdraws an offer is deterministic thanks to NIW represents a major problem for this definition.

Given our analysis in Sect. 3, we should contemplate modifying our definition so that it is deemed free of
information flow if the abstraction is either refinement maximal or quasi-deterministic. Over the continuous
model FT these are the same thing, but it is as well to ask which if either is in principle the right answer.

If we believe that the model M we are using records all the observations that Lois might make are the ones
recorded in whatever semantic model we are using, then the right answer appears to be “maximally refined”. For
we know that the observations she can make will be those possible for some process PH in M, depending on how
the high-level user Hugh chooses to behave. Whatever Hugh does will be a refinement of the least refined process
he can be. So if Lois’s view is already maximally refined for the least refined Hugh, nothing he can do can change
her view. This gives us a much stronger guarantee than simply saying that Lois’s view is independent of Hugh’s
behaviour, because it also allows for possible variability in the system P’s.

We illustrate this with an example: suppose LEAK is any process that passes information from Hugh to Lois,
for example

LEAK 	 hugh?x → lois!x → LEAK

Now suppose that M is any process with alphabet L (implying that LH (M) 	 M such that M
 LH (LEAK).
Then if P 	 M � LEAK then Lois’s view of the combination of P and Hugh will be equivalent to M no matter
what process with alphabet H we pick for Hugh. Nevertheless the system P is allowed to behave like LEAK which
is not secure. In fact, because M never communicates with Hugh, the latter knows that anything he communicates
to P will immediately be sent to Lois.8

In this example M 	 LH (P) will not be maximally refined (because LH (LEAK) is not), meaning that P does
not satisfy our lazy independence property. Thus insisting that LH (P) is maximally refined shows that neither
Hugh’s decisions or the ways in which P can behave as a more refined process can affect Lois’s view.

All this is, of course, very similar to the justification of the determinism-based definition of noninterference,
which is not surprising. Where maximally refined processes are not deterministic this new definition requires
the knowledge that whatever nondeterminism that remains cannot be resolved by whatever Hugh does and
whatever internal decisions are made in P. In other words, whatever nondeterminism remains in a maximally
refined process must remain in the mechanism that Lois observes. With this caveat, we can express the following
re-characterisation of noninterference.

8 If different instances of Hugh combined with P produce different answers, this is concrete evidence that information be passed through
P, so we can certainly use such comparisons to search for covert channels. It is just that such a comparison cannot easily be justified as a
complete test for information flow. We will discuss this issue further in Sect. 9.

Checking noninterference in Timed CSP 17

Generalised characterisation of noninterference Suppose we have a semantic model in which refinement coincides
with the reduction of the visible nondeterminism that can be resolved by implementation decisions. Then if the
abstraction AH (P) characterises how P appears to L in the presence of the most nondeterministic conceivable
behaviour in H , we can deem P to be independent of L if AH (P) is maximal in the refinement order.

It is consistent with this principle that there can be a discrete-time process with quasi-deterministic abstraction
that allows information flow from H to L, and we can construct one as follows. Recall P1 and P2 as defined before
Theorem 3.2. With tock-time unit 1, with a an event in L and h an event in H and b a further event, where both
h and b take the same time (say d) to complete, we can then define:

R 	 (h → P2 � b → P1) \ {b}
This process is certain to perform either h or the hidden b in the first time step, and if Lois ever sees a refused
after the delay d but before a has occurred, then she will know h has occurred. The natural lazy abstraction of R
is just WAIT d ; P2, which is quasi-deterministic.

So we have concrete evidence that quasi-determinism of the abstraction over discrete models does not always
mean absence of information flow, and a powerful argument that under certain assumptions the refinement max-
imality of the abstraction does guarantee it. Nevertheless we will find in Sect. 6 that quasi-determinism over
discrete models can be useful nevertheless.

5.1. Abstraction over timed failures

In order to give substance to the specifications of noninterference implied above, we must formulate abstraction
over the continuous and discrete timed failures models. We concentrate on lazy abstraction but remark that mixed
abstraction poses no problems other than getting the lazy part of it right: high level actions that cannot be delayed
by Hugh are still hidden.

We start with FDT. We want LH (P) to represent how P looks to an observer unable to see alphabet H on the
assumption that there is a user interacting with P in H with the full capability of offering subsets of events to the
process that vary (a) when an event occurs and (b) with time.

Simply translating the untimed formulation to Timed CSP:

(P ‖
H

CHAOS−
H) \ H where

CHAOS−
H 	 STOP � ?x : H → CHAOS−

H

brings a number of problems.

• If some events in H take more than 0 time to complete, CHAOS−
H defined like this is not as general as it should

be since it cannot immediately follow up such an event with another, even though we can imagine Hugh as a
parallel process that can. The natural way to solve this problem is to define CHAOS−

H in an environment where
all events take zero time.

• If some events in H take 0 time (which they will if we follow the solution above) then the recursion for
CHAOS−

H is not time guarded and the process can perform an infinite number of events in a finite time. This
means that CHAOS−

H is not a proper Timed CSP process. However it is still reasonable to regard the parallel
composition P ‖

H
CHAOS−

H as one since CHAOS−
H can perform no more actions than P does. So this is more

of an apparent problem than a real one, just as in the tock-CSP formulation of lazy abstraction above in terms
of TCHAOSH .

• More subtly, imagine the situation where the CHAOS−
H process defined above has resolved its nondetermin-

istic choice in the first time step, but no H action occurs before the first tock. The operational semantics of
CSP give it no way of changing its mind for the second time step. At the level of timed failures, the semantics
of this CHAOS−

H does not contain the behaviour 〈H, tock, h〉ˆ� for h ∈ H . It is because this definition is
deficient in this way that we have given it the superscript −.

18 A. W. Roscoe, J. Huang

An efficient definition that does work (still subject to the assumption that events in it take zero time, and that
it must be put in parallel with a no-Zeno process) is

CHAOSA
H 	 (?x : H → CHAOSA

H) � (WAIT 1; CHAOSA
H)

where � is the asymmetric choice operator that initially offers the choice of the events of its left-hand argu-
ment with a τ that takes it to its right-hand argument. (P � Q is equivalent to (P � a → Q) \ {a} for an
event a not appearing in either P or Q.) Thus CHAOSA

H can perform any sequence of H events in a given
time unit but may at any time opt not to perform any more before the next tock. This version never offers
events from H in a stable state, which could be problematic in some contexts, but will not be when events
from H are hidden as they are in abstraction: that explains the superscript A (for abstraction).

So our definition of lazy abstraction over FDT will be

LH (P) 	 (P ‖
H

CHAOSA
H) \ H

which gives us our first concrete timed definition of noninterference.
It is also possible to use the tock-CSP process TCHAOSH defined earlier, which is also able to change its

decisions about whether or not to offer H events each tock. In FDR is is equivalent to do the latter to an integer
Timed CSP process when it has been translated to tock-CSP, or to apply the discrete Timed CSP definition before
that translation.

Definition 5.2 A process defined in integer Timed CSP is 1-independent of H if LH (P) (defined as above) is
maximally refined in FDT.

The reason for the 1 in this name will become apparent in Sect. 6. In examining examples of timed noninter-
ference we will largely restrict ourselves to examples which satisfy untimed noninterference, such as

P 	 l → l → P � h → LS where
LS 	 l → LS

This, seemingly, just offers the event l ∈ L for ever, possibly interrupted by a single h ∈ H after an even number
of ls. Since l is always on offer this satisfies the untimed definition of noninterference in the usual direction, but
note that L can pass information to H by choosing an odd or even number of ls. So over untimed CSP, LH (P) is
deterministic and LL(P) is nondeterministic.

For the definition of this P to be time guarded, we need l to take non-zero time to complete. However LH (P)
is only maximally refined over FDT if h takes zero time, for otherwise there is a period after h when l is refused in
a way in which it would not have been it h had not happened. So for example the abstraction will have the behav-
iours 〈l〉ˆ� and 〈{l}, tock〉ˆ� if h take more than 0 time to complete. That would not be compatible with being
maximally refined. On the other hand, if h does take time 0 (so that P is willing to communicate l immediately
after h), the abstraction is equivalent to LS.

This example teaches us an expected lesson: if H and L share access to a sequentially defined process P,
considerable care is necessary to eliminate all timing channels from H to L.

It is also interesting to note that if h takes one time unit then LH (P) is quasi-deterministic even though non-
maximal, but that if either h takes at least two units, or we use the model FDT with the tock unit 0.5, then it is not
quasi-deterministic.

We will see further examples of timed noninterference analysis later.
The problem with defining abstraction over the continuous model FT is that time moves forward continuously

rather than discretely. The process CHAOSA
H depends crucially on there being a next time at which things happen.

The best way of defining lazy abstraction over FT is as a primitive operator over this model:

LH (P) 	 {(s \ H,ℵ ∪ ℵ′) | (s,ℵ) ∈ P ∧ ℵ′ ⊆ H × [0,∞)}
In other words P is allowed to perform any behaviour at all, but any offers in H it makes are not visible to the
outside world. The assumption here is that at times when ℵ does not contain the whole of H , the abstracted copy
of H is allowed to refuse any such events that P offers. It is interesting to contrast this with the definition of
hiding which insists that P is always forced to perform as many H events as it can—namely when time progresses
the whole of H is hidden:

P \ H 	 {(s \ H,ℵ) | (s,ℵ ∪ H × [0,∞)) ∈ P}

Checking noninterference in Timed CSP 19

It should not be too hard to see that our discrete time definition of LH (P) using CHAOSA
H can be re-written

in a form similar to the continuous one above. There is a strong reason to code the discrete definition directly
in the Timed CSP notation that does not apply in the continuous case, namely that the discrete model has been
implemented in FDR.

Definition 5.3 A process defined in (general) Timed CSP is lazily independent of H over FT if LH (P) (defined as
above) is maximally refined, or equivalently quasi-deterministic, in FT.

This continuous definition gives the same results for the simple process P that we studied in the discrete case
above, namely that is free of H to L information flow if and only if h takes zero time.

An obvious question we can ask at this stage is whether the two definitions always coincide like this for integer
Timed CSP. Unfortunately the answer to this is “no”, with the problem arising because of the distinction between
maximally refined and quasi-deterministic processes over FDT.

We saw above that halving the time interval to 0.5 can turn our first example of a quasi-deterministic process
that is not maximal into a maximal one. We might ask if a similar transformation might work in general, or
provide a bridge between the continuous and discrete definitions: might it be the case that an integer Timed CSP
is continuously noninterfering if and only if it is with a discrete interpretation with a 0.5 tock, or perhaps for a
1/n tock for other n that is either fixed or process dependent? The answer to this is no, as we show below, though
a rather similar question will have positive answer in Theorem 6.3.

To build the counter-example to the question above, we remark first that that any process actually constructed
as the parallel composition of two processes PL and PH with alphabets respectively L and H , not communicating
at all, is unable to pass information from H to L or vice versa: P 	 PL ||| PH . Both our definitions of lazy
abstraction give LH (P) 	 PL (as is also the case in untimed CSP: see [Ros97]), and so the question of whether
our definitions of noninterference are satisfied by such a P comes down to whether PL is maximally refined
when interpreted in the discrete and continuous models respectively. If our two definitions of noninterference
coincided, or if they did for some 1/n tock, then they would have to agree on this question also. We therefore
construct a process which is maximal in the continuous time model but in no discrete one, no matter how large
n is chosen in picking tock to be of length 1/n.

Assume both l1 and l2 are low level events that take time 0 to complete.

PL 	 (Q1 ||| Q2) ‖
{l2}

(l2 → STOP) where

Q1 	 (l1 → ((l2 → STOP) � WAIT 1); STOP)

Q2 	 WAIT 4; l2 → STOP

PL offers l2 for one time unit after l1 occurs, and the offer is then withdrawn. However a second and indistin-
guishable offer of l2 is always made at time 4 unless the other one has been taken up first. Note that the parallel
composition with l2 → STOP ensures that only one l2 can occur in total, meaning that if both l2s are available
at the same time, the nondeterminism over which occurs has no visible consequences.

Over the continuous model this process is quasi-deterministic and hence maximal: the offer of l2 is withdrawn
if l1 occurs early enough and later reappears thanks to Q2. Over the discrete model it is still quasi-deterministic
but not maximal in the case where the gap between the end of the first offer and time 4 is one tock. Decreasing
the interval between the tocks to 0.5 (or any other reciprocal) does not help here as it did in an earlier example,
because the event l1 can always happen at the time that will leave the gap at one tock.

So for this example no time interval for tocks that makes the WAITs in the program an integer multiple of it
will make this PL maximal.

If we regard the continuous semantics as definitive and the discrete ones as approximations, it is comforting to
note that the discrete model of noninterference appears to differ only in the direction of being more conservative.
We will be able to justify this formally in the next section thanks to digitisation.

20 A. W. Roscoe, J. Huang

6. Digitisation: playing with time

The theory of digitisation was introduced by Henzinger, Manna and Pnueli in [HMP92] as a way of proving
properties about continuous systems (specifically, timed automata) by analysing discrete approximations. It was
adapted for Timed CSP by Ouaknine [Oua01, Oua02] who showed that one can prove certain properties of
systems over the continuous model FT by demonstrating analogous properties of discrete approximations. In
particular he showed that every integer Timed CSP program has the property of being closed under digitisation
and therefore refines any specification that is closed under inverse digitisation (certain, but not all integer Timed
CSP programs) if and only if the refinement holds over FDT.

In this section we will examine how properties such as quasi-determinism and noninterference behave under
digitisation. Our objective will be to find a way of verifying that an integer Timed CSP program is lazily inde-
pendent of H by analysis over FDT.

In order to make the following analysis easier we will assume that the only sources of time delays in our pro-
grams are integer WAIT statements: one can recode delays that occur when events happen or recursion unfolds
into this form if required.

We characterise digitisation as the application of certain sorts of transformations that change the times of the
actions (visible, invisible and evolutions through time) that occur in process’s execution in standardising way but
which preserve the validity of the execution. They are formalised in terms of the operational semantics of Timed
CSP defined by Schneider in [Sch00]. Our characterisation is slightly more general than that in [Oua01, Oua02],
because we need the possibility of retiming to non-integers for our later applications, but its intuition and proof
details are essentially the same as Ouaknine’s.

Before introducing digitisation we consider more general retimings of operational semantics: monotonic (but
not necessarily strictly so) mappings from R

+ to itself intended to preserve the validity of operational semantics
when applied to the beginning and end of all times of operational semantic transitions. Such transitions are
visible and invisible actions, which are instantaneous, and timed evolutions such as P t

� Q whose end is t after
its beginning.

One cannot arbitrarily re-time such behaviours because of maximal progress: an event that happens at the
time a τ action becomes available can only be re-timed to the moment the corresponding τ becomes available
in the transformed behaviour. A retiming is valid if this it true. Given our assumption that WAITs are the only
source of delays, the only way in which a τ (or any other action) can become available through a time evolution
is when a WAIT expires somewhere within the program.

We restrict our attention to integer periodic retimings φ which map each integer time to itself, and which map
each n + x (for 0 < x < 1) to n + φ(x) (with φ(x) necessarily being in the closed interval [0, 1]). The fact that we
are considering only integer Timed CSP means that if we retime the start of a WAIT n from k + x to k +φ(x) then
the end of it is retimed from k + x + n to k + φ(x) + n, which is of course the time that our WAIT n ends when its
start is retimed. In general a Timed CSP term that does not immediately have a τ can evolve through any time
up to and including the first moment a WAIT statement within it elapses. So one can prove (following [Oua01])
via a combination of structural induction on a term with mathematical induction on the number of actions and
time evolutions that have occurred that:

• After k steps the original and retimed programs are in the same state except for the exact times remaining on
non-zero WAITs. If the remaining time is zero on a WAIT in the original, then it also is in the retimed one.
A non-zero time remaining on a WAIT in the original program can become zero in the retimed one when
the original program’s time and the time when that WAIT expires map to the same value. In this case the
original behaviour certainly has an action between these two times, so the retimed one has an action at the
same (retimed) moment.

• The original and retimed programs have exactly the same set of actions available except where the retimed
version has a WAIT retimed to 0 as discussed above, in which case the retimed one has an additional τ . Time
evolutions are available up to and including the minimum remaining time on any WAIT each of the original
and retimed states respectively contain.

• In any case (i) any action that the original performs now is valid in the retimed state (ii) if the retimed process
is obliged by maximal progress to perform an action now then the retimed behaviour contains an action at
the same time.

• If the present time is t and the original and retimed programs have a WAIT that elapses respectively in times
x and y, then φ(t + x) 	 t + y.

Checking noninterference in Timed CSP 21

We can conclude:

Theorem 6.1 1. An integer periodic retiming φ is valid on an integer Timed CSP program P.
2. If (s,ℵ) is in the FT representation of P, then so is (φ(s), φ(ℵ)), where φ acts on the times of events and the

end points of the half-open intervals during which ℵ is constant. (Note that if ℵ includes some X × [x, y) where
φ(x) 	 φ(y) then φ(ℵ) retains no “memory” of this since [φ(x), φ(y)) is then empty.)

The proof of the second part of this result follows from the fact that the value of a process in FT can be
obtained by formally observing the execution paths through the operational semantics. The transformation on
the execution path created by an allowable retiming φ has exactly the stated effect on the timed failures observable
of that path.

We define a digitisation to be an integer periodic retiming whose image in any interval [n, n + 1] is finite. In
other words, a digitisation transforms all of the actions in a behaviour to ones that happen at members of a
pre-determined discrete set of times.

Ouaknine, in developing the above ideas, concentrates on digitisations that map every time t to the integer
above or below it, and specifically [t]ε for 0 < ε ≤ 1 that maps n + x to n or n + 1 depending on whether x < ε
or x ≥ ε. For our purposes we need a little more flexibility. Identify [t]ε with [t]〈ε〉 and allow the subscript, in
general, to be any finite, nonempty and strictly monotonic sequence of numbers in the range (0, 1].

Definition 6.1 [t]〈ε(1),...,ε(n)〉 is the retiming that maps r + x (r ∈ N, 0 ≤ x < 1) to r if x < ε(1), to r + 1 if x ≥ ε(n)
and to r + m

n if ε(m) ≤ x < ε(m + 1) for 1 ≤ m < n.

In the following, frac(x) is defined to be the unique number 0 < y ≤ 1 such that x−y is an integer. So in particular
frac(n) 	 1 for n ∈ N. �x� is the greatest integer less than or equal to x: its integer part. The following technical
lemma, which follows directly from the definition above, is needed for the proof of Lemma 6.2 below.

Lemma 6.1 Suppose frac(x) 	 ε(i) for 1 ≤ i ≤ n. Then

(i) If y < x then [y]〈ε(1),...,ε(n)〉 < [x]〈ε(1),...,ε(n)〉.
(ii) �x� < [x]〈ε(1),...,ε(n)〉
Lemma 6.2 If 0 ≤ t0 < t1 · · · < tn are n + 1 values in R

+ in order, then we can choose 0 < ε1 < · · · < εk ≤ 1 for
some k ≤ n such that [·]〈ε1,...,εk〉 maps t0, . . . , tn to distinct values, necessarily separated by at least 1

k .

Proof. Arrange the values frac(t0), . . . , frac(tn) into sorted order and remove any duplicates, obtaining a list
〈ε0, ε1, . . . , εk〉 for some k ≤ n + 1.

We consider the following cases: when k ≤ n and when k 	 n + 1. In the first, at least two of the ti have the
same fractional part. Note that any such pair (being at least 1 apart) map to different values under any integer
periodic retiming. In this case we can simply let the digitisation be [·]〈ε1,...,εk〉. What we have to show is that this
maps all the ti to distinct values. By monotonicity, if this fails there must be a consecutive pair ti and ti+1 that
map to the same value. This is impossible because, unless frac(ti) 	 frac(ti+1) (the case we have already shown
map to distinct values), the fractional parts of [ti] and [ti+1] are themselves distinct and included amongst the εi,
so Lemma 6.1 (i) applies.

In the second case we know that the fractional parts of all the ti are different. In this case let ε be the sequence
〈ε0, ε1, . . . , εk〉 with frac(t0) (which is not necessarily ε0) deleted. This list thus contains frac(ti) for every i > 0.
Suppose that [·]ε maps two (without loss of generality) consecutive ti to the same value. These cannot be t0 and
t1 because either

• t0 and t1 have the same integer part and frac(t0) < frac(t1) and frac(t1) is a member of ε so Lemma 6.1 (i)
applies, or

• [t0]ε ≤ �t1� < �t1�ε The strict inequality here is because frac(t1) is a member of ε, and thanks to Lemma 6.1 (ii).

This completes our proof. �

We will require this result for n 	 2, where there are three times t0 < t1 < t2, and the resulting retiming
separates them by intervals of at least 1

2 . In the case where n 	 1 the result captures the essential property of
digitisation with a single parameter and which maps all numbers to integers; we will use this a number of times.

22 A. W. Roscoe, J. Huang

Ouaknine establishes a crucial connection between the discrete and continuous semantics of integer Timed
CSP. It is easy to see a relationship between FDT behaviours and integer FT behaviours—ones where everything
(i.e. events and changes in ℵ) happens at an integer time—given one of the former s we map it to ψ(s) 	 (u,ℵ),
calculated as follows:

• s takes the form s0ˆ〈X1, tock〉ˆs1ˆ〈X2, tock〉ˆ · · · where each si is a finite trace in �∗, Xi ⊆ � and all but
finitely many si are empty. Let ui have the same events as si but with each event paired with i: for example if
s3 	 〈a, a, b〉 then u3 	 〈(a, 3), (a, 3), (b, 3)〉.

• Define u to be the concatenation of all the ui (i.e. u0ˆ · · · ˆur where ur is the last non-empty ui).
• Define ℵ 	 ⋃∞

i	1 Xi × [i − 1, i).

Thus ψ(s) is a timed failure that is a natural model for s.

Theorem 6.2 [Oua01] For any integer Timed CSP process P, the integer behaviours in its FT semantics are exactly
ψ(s) as s ranges over its FDT semantics.

It is clear that the continuous time semantics of any Timed CSP program P are isomorphic9 to those of kP
for k ≥ 1 an integer, which is the same program except that all WAIT n are transformed to WAIT (kn) provided
we scale all behaviours of kP by dividing all the times by k. Since kP is an integer Timed CSP program if P is,
we can deduce the following lemma. Here a half integer FT behaviour is one where all events and changes in ℵ
occur either at integers or n + 1

2 for an integer n.

Lemma 6.3 For any integer Timed CSP process P, the half-integer behaviours in its FT semantics are exactly the
scalings by 1

2 of ψ(s) as s ranges over the FDT semantics of 2P.

This is exactly the result we need to create a decision procedure for noninterference defined over FT.

Theorem 6.3 I. An integer Timed CSP process P that is lazily independent over FT (i.e. has a quasi-deterministic
lazy abstraction) has a quasi-deterministic lazy abstraction over FDT.

II. An integer Timed CSP process P is lazily independent of H (judged over FT) if and only if LH (2P) is quasi-
deterministic when judged over FDT (or equivalently if LH (P) is quasi-deterministic when judged over FDT in
which the length of one tock is 0.5).

Proof. We first prove I.
If LH (P) is not quasi-deterministic over FDT then one of conditions (c) and (d) from Lemma 3.1 (ii) applies.

From this, and the definition of LH , we get two cases:

• If (c) (the case where the behaviour visible to L prior to the nondeterminism does not end in tock) then for
some L event l, P has behaviours over FDT of the forms s1ˆ〈l〉ˆ� and s2ˆ〈{l}, tock〉ˆ� where deleting the H
events in s1 and s2 leaves the behaviour s. Without loss of generality (because of IC) we assume that all the
pre-tock refusals in these are ∅. Theorem 6.2 then tells us that P has the FT behaviours (ψ(s1)1, {l}× [n, n+1))
and (ψ(s2)1ˆ〈(l, n)〉,∅) where there are n tocks in each of s, s1 and s2 and ψ(s)1 takes the non-tock events in s
and makes a timed trace by attaching the number of tocks preceding each as its time.
Here ψ is the map defined earlier from FDT behaviours to integer FT ones, so ψ(s)1 extracts just the timed
trace from this.
The definition of LH over FT then tells us that LH (P) has the behaviours (ψ(s)1, {l} × [n, n + 1)) and
(ψ(s)1ˆ〈(l, n)〉,∅), meaning it is not quasi-deterministic since it is easy to see that end(ψ(s)1) 	 n by con-
struction and therefore case (a) of Lemma 3.1 (i) applies to the continuous semantics of LH (P).

• The second case is where (d) applies. A very similar argument then shows that (b) applies to the continuous
semantics of LH (P).

We can deduce that LH (P). This completes the proof of I.

9 Here, the term “isomorphic” can be understood either in terms of transition systems or in terms of FT. In the first case, it is clear that there
is a bijection β from the states of the operational semantics of P to those of kP, in which, for states U and V , U

x−→ V for x ∈ {τ }∪� if and

only if β(U)
x−→ β(V), and where U

t
� V if and only if β(U) k×t

� β(V) for t ≥ 0. In the case of FT, the timed failures of kP are obtained
from those of P by multiplying all the times in the timed traces and refusals by k. This plainly provides a definition of kP as an operator over
FT, and we will use it like that occasionally.

Checking noninterference in Timed CSP 23

This implies that if LH (2P) is quasi-deterministic in FT then it is in FDT, which establishes one of the two
implications required for II. The fact that LH (2P) being quasi-deterministic is equivalent to LH (P) having that
property (by Lemma 6.3 and the easy result that (over FT) LH (2P) 	 2LH (P)).

So we need prove that if LH (P) is quasi-deterministic over FDT then it is over FT. Assuming that LH (P) is not
quasi-deterministic over FT gives us the two options of Lemma 3.1 (i), of which the second is more interesting.

• In case (b), we can assume that δ has been chosen sufficiently small so that, in the two behaviours (s1ˆ〈(l, t)〉,∅)
and (s2, {l} × [t − δ, t + δ)) that P must have for some l ∈ L with s1 \ H 	 s2 \ H and end(s1 \ H) < t, no
event of s1 or s2 occurs in [t − δ, t + δ) except at t. We can also assume that δ ≤ 1

2 .
We can now invoke Lemma 6.2 with t0 	 t−δ, t1 	 t and t2 	 t +δ to get a valid digitisation of integer Timed
CSP that maps these three times to three consecutive (thanks to δ ≤ 1

2) members of the series 〈 n
2 | n ∈ N〉.

Applying this to (s1ˆ〈(l, t)〉,∅) and (s2, {l} × [t − δ, t + δ)) and then scaling by 2 tells us that 2P has behav-
iours (s′

1ˆ〈(l, t′)〉,∅) and (s′
2, {l} × [t′ − 1, t′ + 1)) where all events occur at integer times, t′ is an integer, and

s′
1 \ H 	 s′

2 \ H . Theorem 6.2 and the definition of lazy abstraction over FDT then tells us that LH (2P) is
not quasi-deterministic over FDT. [Note that both s′

1 and s′
2 can have some events happening at the image of

t under the digitisation.]
• The case where (a) applies is simpler than the above because we can consider an interval [t, t + δ) rather than

[t − δ, t + δ), and so only two points are involved in the digitisation, meaning that we do not need the factor
of 2.

This completes the proof of Theorem 6.3. �

This result is very powerful in the context of noninterference since it tells us that a particular discrete model,
which observes an integer Timed CSP process only at discrete times, is sufficient to prove that there is no infor-
mation flow to an observer who can observe it at any and all times.

It suggests the following discrete definition of noninterference:

Definition 6.2 For k ∈ N − {0, 1}, we define the integer Timed CSP P to be k-lazily independent of H if kP is
quasi-deterministic when judged in FDT.

The multiplier 2 in the formulation and proof of Theorem 6.3 could have been replaced by any integer k ≥ 3,
with the choice of ti (i > 2) being arbitrary at the point where Lemma 6.2 is used. This means that P’s lazy
independence of H , judged over FT is equivalent to P being k-lazily independent of H for every k > 1. Thus all
these conditions are equivalent to each other:

Theorem 6.4 For integer Timed CSP, the conditions k-lazy independence are all equivalent for k ≥ 2.

The second part of Theorem 6.3 is not true without the multiplier 2. Consider P3 	 P1 � P2, where P1 and
P2 are defined before Theorem 3.2. Setting L 	 {a} and H 	 ∅ (so that LH (P3) 	 P3 in both models), we know
that the the discrete abstraction is equivalent to P2 and quasi-deterministic. The continuous one, on the other
hand, can perform a at time 1.5 and refuse it over the interval [1, 2).

The example given in Sect. 5.1 of a process PL which is quasi-deterministic over all models, but not maximal
in any discrete one (which is equivalent to kPL not being maximal in FDT for any k > 0) tells us something rather
unexpected about the discrete characterisations of noninterference. This is that processes (such as PH ||| PL for
any PH that only communicates in H) can be k-independent (k > 1) without LH (kP) being maximal in FDT. This
seems at odds with the analysis given earlier that non-maximality leads to information flow. This is not in fact
an issue because LH (kP) is maximal amongst the images of kP′ as P′ varies over integer Timed CSP processes.

The reason for the doubling of the “metronome” in the discrete approximation used to decide quasi-deter-
minism derives from needing a discrete witness to the three distinct times that exemplify one sort of failure of
quasi-determinism. It it worth noting that if we restrict ourselves to processes that never withdraw offers (so quasi-
determinism and determinism are the same) then it is not necessary to use the doubling, because we can decide
whether or not the continuous semantics of an integer Timed CSP process are deterministic using the natural
rather than doubled discrete model. This is because the failure of a continuous process being deterministic shows
up (after the timed trace s) in two times end(s) ≤ t1 < t2 where both sˆ〈(a, t1)〉 ∈ traces(P) and (s, {a} × [t1, t2)) is
a timed refusal. This means that it is not necessary to use the extended form of digitisation we used above, and
in fact we get the following.

24 A. W. Roscoe, J. Huang

Theorem 6.5 For an integer Timed CSP process P:

(a) P is deterministic in the continuous semantics if and only if it is deterministic in the ordinary discrete semantics.

(b) LH (P) is deterministic over FT if and only its discrete semantics is deterministic over FDT.

Here, (a) is a trivial consequence of (b)—one can set H 	 ∅. The proof of (b) follows the structure of that of
Theorem 6.3 II except that, since the failure of determinism is witnessed by a timed trace, a visible event and two
(rather than three) distinct points in time, there is no need to use the multiplier 2 as Lemma 6.2 can be used for
n 	 1.

We stated, at the end of Sect. 5, that 1-lazy independence appeared to be more conservative than the continuous
time definition. We are now in a position to justify this.

Theorem 6.6 If P is an integer Timed CSP process that is 1-lazily independent, then it is lazily independent when
judged over FT.

Proof. We know that such a P has LH (P) both quasi-deterministic over FDT and with the property that any
withdrawal of an offer extends to at least two time units, as defined in the statement of Theorem 3.2. Suppose it
was not quasi-deterministic over FT. Then again we have to consider the two options of Lemma 3.1 (i). The first
(where the offending event a happens at time 0 or immediately after another) implies non-quasi-determinism of
LH (P) over FDT relatively straightforwardly: if (sˆ〈(a, t)〉,ℵ � t) and (s,ℵ ∪ {a} × [t, t + δ)) are the offending pair
of behaviours with δ chosen small enough that in the second behaviour P has no action in the interval (t, t + δ),
the digitisation [·]frac(t+δ) maps them to a pair of integer behaviours which (thanks to Theorem 6.2) prove the
existence of a pair of discrete behaviours of LH (P) satisfying the conditions in Lemma 3.1 (c).

It is when the offending continuous behaviours satisfy the conditions of Lemma 3.1 (b) (so the offending
event happens after an interval when nothing has occurred) that we need the extended withdrawal quality of
LH (P) over FDT. Without loss of generality (as argued below thanks to the healthiness conditions of FT and the
congruence between operational and denotational semantics) we can assume that the FT behaviours of LH (P)
that deny its quasi-determinism are (sˆ〈(a, t)〉,∅) and (s, {a} × [t1, t2)) where

(i) t1 < t < t2

(ii) t1 ≥ end(s)

(iii) t2 ≤ t + 1

(iv) Subject to constraints (i), (ii) and (iii), [t1, t2) is the maximal interval derived from some operational behav-
iour of LH (P) which, after s, refuses a and performs no visible actions during [t1, t2).

To construct t1 and t2, take any behaviour of LH (P) with trace s and which refuses a in an interval [t − δ, t + δ)
for t − δ ≥ end(s). P will then have (sP, {a} × [t − δ, t + δ)) for some sP with sP \ H 	 s, and a behaviour β of its
operational semantics to witness this, where β extends forward in time to t + 1. There may, be nonempty intervals
during [end(s), t + 1) − [t − δ, t + δ) where β offers a. Delete these and let [t1, t2) be the remaining component
that contains t.

We need to consider two sub-cases:

(a) Where t1 	 end(s), and so a is refused through the interval [end(s), t2).

(b) Where t1 > end(s), and so P (and hence also LH (P)) offered a for an interval ending at t1.

In case (a), consider the digitisation [·]frac(t2). This certainly maps t and t2 to consecutive integers, and maps t1 and
t to integers that may or may not be distinct. In the case that [t1]frac(t2) < [t]frac(t2) we get case (d) of Lemma 3.1
for the corresponding discrete behaviour. If [t1]frac(t2) 	 [t]frac(t2) we find that the digitisations of (sˆ〈(a, t)〉) and
(s, {a} × [t1, t2)) yield case (c) of Lemma 3.1 as the a occurs at end(s′) (s′ being the digitised version of s).

In case (b), we contemplate two further sub-cases: where t − t1 ≥ 1 and where t − t1 < 1. In the first of these
we can use the same digitisation as in (i), because now [t1]frac(t2) < [t]frac(t2) < [t2]frac(t2) and we get case (d) of
Lemma 3.1. If t − t1 < 1, consider the digitisation [·]frac(t). This is guaranteed to map t1 and t to consecutive inte-
gers, but may map t and t2 to the same value. We know that each of (sˆ〈(a, t1)〉,∅), (s, ˆ〈(a, t)〉) and (s, {a}× [t1, t2))
is a behaviour of LH (P), from which we can conclude that each of s′ˆ〈a〉ˆ�, s′ˆ〈∅, tock, a〉ˆ� and sˆ〈{a}, tock〉ˆ�
is a discrete behaviour of LH (P).

Checking noninterference in Timed CSP 25

At last we can use the two-tock withdrawal property of this abstraction that forms part of the characterisa-
tion of maximality in Theorem 3.2. We use this to conclude from the first and third of these behaviours that
sˆ〈{a}, tock, {a}, tock〉ˆ� is also a discrete behaviour of LH (P). Together with the second of the behaviours at the
end of the previous paragraph, this proves that LH (P) is not quasi-deterministic over FDT.

Thus, by a rather complex case analysis, we can conclude that if P is not lazily independent over FT, then it
is not 1-lazily independent. �

7. Deciding noninterference using FDR

It is possible to test for both quasi-determinism and refinement maximality over FDT, using FDR.

7.1. Deciding quasi-determinism

We deal first with quasi-determinism, developing a variant of Lazić’s test for determinism. As in that, we compare
two copies of a process, this time checking that for every visible action a the first copy of a process P performs,
a second one either cannot refuse it after the same trace or a occurred immediately after a tock and the second
copy was unable to refuse a prior to the corresponding tock.

We therefore have to keep two copies of P running—say P1 and P2 where P1 performs actions and P2 has to
prove for each one that it cannot refuse them appropriately. From the description above it is clear that P2 has to
follow the same trace—including tocks—as P1 but that it has sometimes to be at an earlier time than P1. Namely,
when P1 performs an event after tock, we have to test whether P2 can refuse it before, and if so after exactly the
same tock. Therefore P1 and P2 are not synchronised on tock: in fact the latter can be 0, 1, and sometimes 2 tocks
behind P1.

We can immediately deduce that the check we devise to check for this is not going to be constructed in Timed
CSP, but rather in tock-CSP with multiple tock events. As with the check for determinism that we are adapting,
our check will take the form:

LHS
F RHS(P)

where RHS(P) this time consists of two copies renamed so that they give different names to tock, and where they
strictly alternate their non-tock events. The two copies are put in a testing harness, and because of the nature of
the latter we give the “follower” copy of P two separate names for tock. Overall

RHS(P) 	 �((first(P) ‖
{turn1,turn2}

second(P)) \ {turn1, turn2}) ‖
Events

QDTest

first(P) 	 P[[tock1/tock]] ‖
E

FReg

second(P) 	 P[[tock2, tock2′
/tock, tock]] ‖

E
SReg

FReg 	 ?x : E → turn2 → turn1 → FReg
SReg 	 turn2 →?x : E → turn1 → SReg

where QDTest is a testing process and � a priority operator that we will describe below. Events is the set of all
visible events, both � and the various flavours of tock used here. The synchronisation with and between FReg
and SReg ensures that the two copies strictly alternate non-tock events, with first(P) performing the first.

The testing process has the following states:

QDTest 	 ?x : E → x → QDTest
� tock1 → QDTest′

� STOP
QDTest′ 	 tock1 → tock2 → QDTest′

�?x : E → QDTest′′(x)
� STOP

QDTest′′(x) 	 (x → STOP � tock2′ → x → QDTest)
� tock2 → x → QDTest

26 A. W. Roscoe, J. Huang

These are explained:

• The tester is in state QDTest when first(P) and second(P) have performed equal numbers of tocks, and their
non-tock traces are equal. Necessarily this is when the most recent communication of first(P) was not tock1,
because the tester deliberately then holds second(P) back.

• QDTest′ is when the two have performed equivalent traces except that first(P) has moved ahead by one tock1,
which was the most recent event it has performed. If first(P) again performs tock1 then second(P) must
perform (as it will certainly be able to) tock2 so it is still one behind. If first(P) performs any other event x
then we must check that second(P) obeys the refusal requirements on it, and moves to QDTest′′(x) to check
this.
Neither of theses first two states insists that first(P) is able to do anything—hence the inclusion of STOP in
the nondeterministic choice.

• QDTest′′(x) is when second(P) has fallen behind first(P) by tock followed by x. It now has to do two things:
check that second(P) offers (i.e. cannot refuse) x either before or after its next tock, and also ensure that the
tester is in the right state to check P’s behaviour on longer traces. The latter happens automatically in other
states, but requires more care here.
For the first of these tasks, it must create an error state when second(P) can refuse x both before and after
P’s tock on the same execution. This is not possible using a non-prioritised check over stable failures model
F . It could have been done with the refusal testing model RT , but in this presentation we use priority.
The left-hand branch of the � in QDTest′′(x) is responsible for this part of the check. It initially offers either x
or tock2′ to second(P), overall we apply the priority operator� to the system, which is defined to give tock2′
lower priority than every other action, all others being equivalent. That means that tock2′ can only happen
when x is refused by second(P).
If x does occur in that state then second(x) has passed the test created when first(P) performed x. However
the two copies of P have performed different traces (tock and x in opposite orders) and so are permitted to
behave differently. We therefore do not carry on with the test from this point on: hence this trace leads to
STOP in QDTest′′(x) (and the LHS process we define below).
If tock2′ has occurred then second(x) fails the test unless it accepts x in its post-tock2′ state. However if it
does perform the x we can carry on the check because the two P’s have now performed the same trace.
If we were simply to have done the above, then some future behaviours of P would not get tested. These are
the ones where x is guaranteed to be available in second(P) before tock2′, for the priority relation then means
that second(P) never performs it after. This problem is solved by the second branch of QDTest′′(x)’s �. That
offers just tock2 rather than the choice of tock2′ and x, which brings second(P) into a state where

– If is not obliged to be able to perform x.
– However we know that in at least one execution it can perform x after tock2, since after all the other

copy of P has already performed x on the same trace.

So we can carry out the continuing test on this branch, confident in the knowledge that P’s behaviour after
all possible traces will now be explored.

The reason why we have used tock2 and tock2′ is so the specification can tell which of the two testing branches
has been followed. If tock2′ has occurred it will insist that x is offered while after tock2 it will not.

It is interesting to note that we have carried out two separate tests on second(P) by using the � operator
between processes that perform them.

The specification against which this is checked in F is then

LHS 	 STOP � (?x : E → x → LHS) � (tock1 → LHS′)

LHS′ 	 STOP � (tock1 → tock2 → LHS′) � (?x : E → LHS′′(x))

LHS′′(x) 	 (x → STOP) � (tock2′ → x → LHS) � (tock2 → (STOP � x → LHS))

Here, the states correspond in an obvious way to the states of QDTest. This specification is guaranteed to be trace
refined by RHS since QDTest refines it, so the only way it can fail is when the required offers are not made. These
correspond to the various failures of quasi-determinism discussed above.

Checking noninterference in Timed CSP 27

So we may test an integer Timed CSP process P for independence over FT by running the check

LHS
F RHS(pri((CHAOSA
H ‖

H
2P) \ H)

where 2P and CHAOSA
H are as described above. Here pri is the time-priority function that represents the boundary

between Timed CSP (inside it) and tock-CSP (outside it).

7.2. Maximality over FDT

The check set out in the previous section is all that is required to test for all our noninterference conditions other
than 1-lazy independence. For that, in addition to quasi-determinism, we need to check the two-step withdrawal
property. Specifically, we want to be able to flag as non-maximal processes which have behaviours of the forms
sˆ〈a〉ˆ� and sˆ〈{a}, tock, a〉ˆ�.

This requires a Lazić-style check comparing two copies of P with the same overall shape as the one in the last
section, but slightly simpler as we do not have to allow one of the copies of P to move a tock ahead of the other.
Overall

RHS′(P) 	 �′((((first′(P) ‖
{turn1,turn2,tock}

second ′(P)) \ {turn1, turn2}) ‖
E∪{tock}

MaxTest) \ E)

first′(P) 	 (P ‖
Events

TCHAOSE) ‖
E

FReg

second ′(P) 	 P ‖
E

SReg

with FReg and SReg as before and E the set of non-tock events used by P.
Here, the first copy of P is put in parallel with TCHAOSE to ensure that, under the outermost hiding of

E, it can still do the same timed traces as P: maximal progress does not force any of this copy’s actions since
TCHAOSE can delay them.

The role of MaxTest is to copy what the first instance of P does to the second, and if the second refuses one
of these communications for a time unit the offer is still made after the next tock. We get an error if the action
then occurs.

MaxTest 	 tock → MaxTest
	 ?a : E → MaxTest′(a)

MaxTest′(a) 	 a → MaxTest′′
� tock → a → error → STOP

MaxTest′′ 	 tock → MaxTest
	 �?x : E → x → MaxTest′′

Here, error is a new event outside E. The priority operator �′ is just the usual time priority operator pri that
gives priority to internal actions over tock. All actions of RHS′(P) other than tock and error become τ thanks
to the hiding.

error can happen just when, after the two copies of P have performed the same trace, the first copy performs
an action and the second refuses it for the rest of the same time unit, but then accepts the action after one further
tock. The fact that the second copy must refuse the event to get this far is guaranteed by pri 	 �′.

To check for error all we need to do is to see if RHS′(P) trace-refines TOCKS 	 tock → TOCKS.
A quasi-deterministic process P over FDT will satisfy TOCKS
T RHS′(P) is and only if it is maximal in the

same model.

7.3. Pragmatics

Running two copies of an implementation process in parallel to check for noninterference properties is potentially
expensive since it means that in the worst case the state space of RHS(P) is quadratic in that of P. We can reduce
this problem by using either or both of the following techniques.

28 A. W. Roscoe, J. Huang

• We can use an FDR compression operator on P before applying RHS to it. Because the definition of RHS
involves priority, this must be a compression that is valid inside the FDR prioritise operator: at the time of
writing, by far the best option is (divergence-respecting) weak bisimulation wbisim as described in [Ros10].
wbisim is a recent addition to FDR.

• Following the first of the two alternatives presented earlier for reliably checking LH (P)’s determinism over
untimed models, we can break the check for the abstraction’s quasi-determinism over FDT into the same two
parts:

(a) P ‖
H

STOP is quasi-deterministic

(b) P ‖
H

STOP
 LH (P) where refinement is judged over FDT.

This is attractive because in the absence of any H actions, the process being checked here for quasi-determin-
ism is potentially significantly smaller than LH (P), of which only one copy is used in (b).

In the case studies below, we will find that making (a) above true is sometimes challenging. In that case (b)
alone makes (as discussed earlier) a useful but incomplete weak check for noninterference.

8. Case studies

In this section we present two related case studies, one of a sequential process and one of a parallel system. Both
are intended to multiplex high and low level communications through a common medium. They indicate potential
sources of timing channels in shared systems as well as possible cures. Throughout this section we assume that
events take unit time to complete: et(a) 	 1 for all a ∈ �.

8.1. Sequential shared medium

In both our examples we will imagine (as in the corresponding untimed examples in Section 12.4 of [Ros97]), that
Hugh is sending messages to Henry and Lois is sending them to Leah

The following is a simple sequential process that communicates such messages:

TM(C) 	 send?x : (S − {x | (x,m′) ∈ C})?m → TM(C ∪ {(x,m)})
� (�(x,m)∈C

rec!dual(x)!m → TM(C − {(x,m)})
where Leah and Lois, and Hugh and Henry are two pairs of duals and the initial value of C is just ∅. C contains
the data presently in the medium: pairs of the sender x and the message being sent to dual(x). As untimed CSP the
above definition would be equivalent to the interleaving of two separate one-place buffers, one at each security
level, and would satisfy every conceivable independence condition between H and L.

This is not true for Timed CSP unless the delays attached to H events are 0 (meaning that the process would
be capable of behaviour violating the no-Zeno requirement). In reality the sharing of a resource like this is always
likely to create a timing channel: the fact that Hugh is sending Henry a message will delay Lois from sending one
to Leah if that takes any time at all. This is a simple example of the most common sort of timing channel: L sees
the timing effects of H ’s consumption of system resources.

Our timed noninterference check easily identifies this problem. Note that checking it with all event times set
to 2 is equivalent to checking 2TM(∅) because there are no other sources of delay in this program.

One way of preventing information flow though systems is partitioning whatever resource gives rise to a
potential channel between the levels. We can do this in the present example by only permitting high and low
events at disjoint sets of times in such a way that whenever a high-level event occurs its delaying effect is over by
the time that L might again perform an event.

With a process like TM we can imagine either redesigning it to a sequential process with the above quality,
or modelling an operating system component that schedules access to it. We can realise the latter by building a
scheduler that is placed in parallel with our system, synchronising on all events, which in different phases makes
and withdraws offers in L and H . Assume there are constants LO, LB, HO, HB representing the length of the
offer of low events, the break after this before high events are allowed, and the same two for high. Then we can

Checking noninterference in Timed CSP 29

create our scheduler:

LOW 	 (?x : L → STOP) � WAIT LO); WAIT LB;
((μ p.?x : H → p) � WAIT HO); WAIT HB; LOW

Putting this in parallel with TM creates a process lazily independent of H provided that HB ≥ 1.
Note that we have allowed an arbitrary number of H-actions, and only one L-action, per time slot. That is

because allowing multiple L actions creates nondeterminism itself by interaction with the scheduler: when some
action is just becoming available when the time-out fires, it may or may not be offered. One can handle this in
one of two ways:

• If we were to replace ?x : L → STOP by μ p.?x : L → p above the system would satisfy only the weaker
noninterference specification

P ‖
H

STOP
 LH (P)

but this is not an absolute guarantee of independence.
• We can allow multiple phases of L actions for each of H .

Both of these are illustrated in the file that implements this case study.

8.2. Parallel implementation

There are various proposals in Section 12.4 of [Ros97] for how to solve the same shared channel problem in an
untimed context using a network where, in addition to the channel itself, there are processes which act as interme-
diaries between it and each of the four users. Some of these failed and some succeeded. One which succeeded was
using flow control to ensure that the central medium never gets blocked: Leah’s and Hugh’s terminal processes
do not accept a second input until they receive an acknowledgement that the first has been delivered.

TLois 	 send .lois?x → in.lois!x → out.lois.Ack → TLois

THugh 	 send .hugh?x → in.hugh!x → out.hugh.Ack → THugh

TLeah 	 out.leah?x : T → rec.leah!x → in.leah.Ack → TLeah

THenry 	 out.henry?x : T → rec.henry!x → in.henry.Ack → RHenry

Medium 	 in?s?x → out!dual(s)!x → Medium

The terminal processes use the same external channels as the sequential model above, namely send and rec, but
use the new channels in and out to communicate with the internal process Medium. In the complete model, in
and out are hidden, so as in the first example, H will consist of the send and rec events with high-level users, and
similarly for L.

This combination satisfies any reasonable untimed noninterference condition, but interpreted as Timed CSP
it does not satisfy our timed ones for much the same reasons as above.

There are at least two ways one might set about putting this right:

(i) The whole ought to satisfy noninterference if we replace the Medium process above with a process that
satisfies timed independence.

(ii) We could set out to find a solution which addresses the timing of the system as a whole.

The first of these represents sound design, and can reasonably be argued whenever (as in our case) the processes
interacting with a noninterfering core are non-interacting (i.e. separated) parallel processes.

This can be realised by replacing Medium with the process derived in the previous section (subject to changing
its channel names to in and out), and provided the system is actually constructed in this way this would lead to
a secure system. It does not (at least composed in the way we did) lead to a system which satisfies the timed lazy
independence property, because (like one plausible solution we discussed in the previous section) it fails to be
quasi-deterministic even when H does nothing at all. It did, however, satisfy the weak noninterference condition
P ‖

H
STOP
 LH (P) as in the earlier case.

30 A. W. Roscoe, J. Huang

The solution we found that looks at overall system design was based on the fact that we need the time it takes
to transport a message from Lois to Leah to be deterministic and independent of H activity, and similarly the
time from delivery at Leah until Lois next being able to send another. One way of achieving this is to allow the low
processes in effect, the right to book a time at which their message will be delivered and ensure that the medium
is not used by anything else at that time.

An easy way of enabling this is to modify the medium so that it accepts every message twice and only delivers
on the second occasion.

BM 	 in?x?m → in!x!m → out!x!m → BM

The assumption here is that we will ensure that the second input by BM from L will be at a time that depends
deterministically on whatever action by Lois or Leah instigated it, even though the first input may not be.

We can achieve this by the following re-programming of the terminal processes above into Timed CSP, where
D and D′ are suitably chosen delays.10

TLoisT 	 send .lois?x →
((in.lois!x → SKIP) ||| (WAIT(D); in.lois!x → SKIP));
out.lois.Ack → TLoisT

TLeahT 	 out.leah?x : T → rec.leah!x →
((in.leah.Ack → SKIP) ||| (WAIT D; in.leah.Ack → SKIP)); TLeahT

THughT 	 send .hugh?x → in.hugh!x → in.hugh!x →
out.hugh.Ack → WAIT D′; THughT

THenryT 	 out.henry?x : T → rec.henry!x → in.henry.Ack →
in.henry.Ack → WAIT D′; THenryT

The point about this is that the delays WAIT D′ in the high-level processes must create the guarantee that within
D − 1 units of starting to try to communicate with the medium, they succeed. One example that works within
our timing assumptions is D 	 4, D′ 	 1.

The result then satisfies the full timed lazy independence specification.
The approach here differs from the one in the previous section in that there is no pre-arranged partition of the

resource that the two levels share (i.e. the central medium process), but rather we ensure that the low level process
can always get hold of enough of it relative to the reduced and delayed transmission that our model permits to
it. The exact share of the central resource that L obtains is then concealed from L itself.

An interesting consequence of this style is that no offer made to L is ever withdrawn in this construction. So
in fact whenever the timing is chosen to make the abstracted system quasi-deterministic it is also deterministic.
In this case, as observed earlier, we can infer the continuous result from the discrete one without doubling the
metronome.

9. Other approaches to timed noninterference

There is not nearly as much literature on timed theories of noninterference as there is on untimed theories. We
will here discuss two approaches to timed noninterference that appear reasonably close to ours.

Foccardi, Gorrieri and Martinelli have extended their own approach to untimed noninterference to timed
process algebras in [FGM00, FGM03], much as we have here and in [HuRo06]. They consider only discrete
time semantics. Analysis of the relationship of their conditions to ones of our type was previously presented
in [HuRo06, Hua10], and detailed analysis of the connections between the corresponding untimed conditions
can be found in [For99, FRR99]. Below we summarise the comparison with the present paper.

The timed process algebra they present (tSPA) is based on CCS, but in terms of time modelling is closer to
tock-CSP than to discrete Timed CSP. It is like the former in that the time event (which they term tick) is included

10 It is important to realise that the terminal processes are, in this example, integral components of the system—which certainly is not
noninterfering without them. These delays are chosen by the system implementer to ensure both noninterference and the right balance of
performance for the two levels. For example with all events set to take 1 time unit to complete, D 	 4 and D′ 	 1 eliminate all information
flow from H to L, but not in reverse, as illustrated in the accompanying CSP file partimex.csp.

Checking noninterference in Timed CSP 31

explicitly like tock. They modify the choice operator in the same way as is done when modelling Timed CSP in
tock-CSP (previously proposed, for example, in [Oua01, Sch00]), namely having time not resolve a choice and
impose the property (related to this modification) of time determinacy11 which is not in general true in tock-CSP
through it is in discrete Timed CSP. We remark that the condition of being weakly timed alive that they define,
and which is required for their noninterference definitions, is true of discrete Timed CSP processes in general. (It
is not true in general of tSPA or tock-CSP processes.) It follows that the noninterference conditions of [FGM03]
can be tested unconditionally on discrete Timed CSP via the latter’s operational semantics.

The fact that tick is included explicitly in tSPA means that, like tock-CSP, it does not have the property NIW.
This because, unlike in Timed CSP, processes react directly to “clock” signals: the process a.TICKS + TICKS
(where TICKS 	 tick.TICKS is analogous to the tock-CSP process TOCKS) will withdraw the offer of a on the
first tick.

Therefore if we the extract discrete timed failures from a weakly timed alive tSPA process by observing the
timed LTS, the resulting set will be in the expanded version of FDT with the weakened DF (without NIW) that
we envisaged earlier. We believe that the appropriate noninterference property in the philosophy espoused by
this paper would be that the lazy abstraction is deterministic, since in the expanded model we should re-establish
the connection between maximality and determinism. Being weakly timed alive would be just as important as
in [FGM03], since lazy abstraction would not make sense without it. We leave these hypotheses for analysis in
future work. Noninterference in terms of the determinism of an abstraction has been studied in the similar setting
of tock-CSP in [Hua10].

In common with their work on untimed calculi, the authors of [FGM00, FGM03] choose LTS-based specifi-
cations of noninterference based on the idea of comparing the views of a low-level user when different high-level
users are present. They have two levels of specification: the stronger NDC states that, given a process P and a set
of events H , the encapsulated composition of P with every possible process with events H are equivalent. The
difficulty of verifying this leads to the weaker SNNI which is the property that hiding H events in P leads to a
process that is equivalent to restricting (i.e. preventing) H events.

The chosen notion of equivalence in [FGM03] is timed bisimulation (meaning weak bisimulation over a timed
LTS), leading to conditions tBNDC (the main specification) and a pair of approximations in terms of SNNI ,
namely the more liberal property tBSNNI and tSBSNNI, which is defined to mean that every reachable state of
P satisfies tBSNNI. tSBSNNI is a more restrictive property than tBNDC.

As is the case in the untimed world [For99] it has been shown [Hua10] that our definitions of noninterference
imply tSBSNNI. For untimed conditions, Huang conjectures an analogue of the untimed theorem (from [For99])
that for deterministic processes, the abstraction-based properties he considers are equivalent to tSBSNNI. (Both
Huang and Forster bridge this gap via the intermediate property of Strong Local Noninterference, which is a
strengthening of (t)SNSNNI .)

There is a philosophical difference between the style of conditions proposed in the present papers and those
of [FGM00, FGM03]. This has already been well documented in [HuRo06, For99, FRR99]. Our conditions, being
closed under refinement, neither admit as secure processes that have insecure refinements nor ones where H has
the opportunity to resolve nondeterminism in L’s view provided that L gets the same range of nondeterminism
in any case. tBNDC can, in some circumstances, allow both sorts of process. So, for example, the Timed CSP
process

P 	 h?x → l!x → WAIT 1; P
�0 (�x∈T

l!x → WAIT 1; P)

(with all events taking 0 time to complete and T being the finite type associated with the channels h and l) satisfies
tBNDC even though every item communicated by H is transmitted directly to L. We can imagine H sending a
message statistically by sending whichever member of T he wishes repeatedly, and L recording the one she hears
most often.

This process can be refined by making the second line

�0 l!c → WAIT 1; P

for c a fixed member of T , where the insecurity is indisputable since H can pass a clear-text message to L provided
he avoids using c. Of course tSPA has no theory of refinement, but this example shows that tBNDC is inconsistent

11 Time determinacy means that a process can have at most one successor under the tick action in its LTS.

32 A. W. Roscoe, J. Huang

with the Timed CSP view of refinement as it suffers from the refinement paradox, and in any case allows some
processes whose security is debatable.

This must be balanced against the reasonable criticism of our conditions that they exclude processes that
display nondeterminism (or here, more accurately, behaviour that is not refinement maximal) to L, even when
there is no causal link to what H might have done. We believe that in order to develop a theory of noninterference
with neither deficiency one would require models (abstract, operational or both) in which the causes and nature
of nondeterminism were much more explicit than in traditional models of concurrency. In particular, one would
need ways to distinguish between potentially refinable nondeterminism, nondeterminism that is introduced by
the actions of H , and nondeterminism that is intrinsic to the operation of P and cannot be refined.

The second piece of work that we compare ours with is that of Barbuti, de Francesco, Santone and Te-
sei [BFST02, BaTe03] on noninterference in the world of timed automata [AlDi94]. They choose a basic model
of noninterference that is closely related to NDC, except that they parametrise it with the maximum rate of H
actions permitted. Timed automata have explicit clocks rather than WAIT n statements or ticks or tocks. They
do not assume maximal progress, but rather (in this presentation) an eventual progress condition. We find it
interesting that the form of timed automata in these papers excludes the idea of a state invariant (a condition
on clocks that must apply in a given state). The latter is closely related to maximal progress, since it can force
actions to occur, and also to the concept of a time-stop, namely a state in which time cannot progress and which
is therefore self-contradictory. Time-stops are a phenomenon of tock-CSP and other timed calculi, but not of the
original language of Timed CSP or the one used in this paper. They have been introduced into some versions of
Timed CSP, for example the one of [OuWo03], where it was demonstrated that finite-state Timed CSP, extended
in this way and also encompassing one unboundedly nondeterministic construct and the construct DIV , meaning
infinitely many τ actions at one time, has equivalent expressive power to finite-state closed timed ε-automata.

Here, closed means that all clock constraints are closed, and so use non-strict inequalities ≤ rather than
allowing both ≤ and <. So in particular, if a constraint is met by a series of times tn that converge to a given
time t∗, then the constraint holds at t∗ too. The automata of [OuWo03] have non-urgent invisible transitions ε, as
in [BFST02, BaTe03], but do have invariants. The theory of digitisation which we have used in the present paper,
was originally created for closed timed automata. The authors of [OuWo03] assert

Timed CSP appears to be the most general modelling formalism yielding processes closed under digitisation (and thus amenable to digitisation
techniques), making it a prime candidate for the practical formal analysis of real-time systems.

It is therefore reasonable to believe that the Timed CSP language of the present paper (without time-stops)
must be close in expressive power to the invariant-free language of automata in [BaTe03], provided the latter is
restricted to the case of closed clock constraints. Timed automata with closed clock constraints naturally satisfy
the full form of the CF axiom (with NIW), since an action cannot be available at all times before time t without
also being available at time t, at least under the no-Zeno assumption made in [BaTe03]. We therefore believe both
that the noninterference specifications proposed in this paper will apply essentially unchanged to the natural
abstractions of closed timed automata into the continuous model FT, and that our development of a digitisation
theory in Sect. 6 is likely to be extensible to this alternative arena.

The relationship between the abstraction-based maximality condition and the one in [BaTe03] is likely to
resemble that discussed earlier in this section between timed lazy independence and tBNDC. Since the one
of [BaTe03] asserts that the behaviour of a system with H-action banned is equivalent to the behaviour with
them allowed (at no more than a given rate), there is also a striking similarity with the second part (b) of our
factorisation of lazy (timed) noninterference into two parts at the end of Sect. 7.3. But that must be the subject
of future work.

The idea of creating noninterference conditions in which the high-level user is restricted to a particular rate
of events is an interesting one and would be easy to incorporate within the framework of this paper by using a
modified form of lazy abstraction: CHAOSA(H) would be replaced by a process that had such a restriction built
in.

10. Conclusions

We have shown in this paper how definitions of noninterference previously developed for untimed CSP can
be adapted to Timed CSP. In doing so we have given new insights into the structures of both the discrete and
continuous timed failures models and in particular their refinement-maximal members.

Checking noninterference in Timed CSP 33

We have developed the idea that, where refinement corresponds to reduction of nondeterminism, specifying
that the low-level abstraction is maximally refined (i.e. as deterministic as possible) is the right specification of
noninterference in some circumstances, including the timed models.

Ouaknine’s theory of digitisation for Timed CSP has been generalised, and we were able to show that in order
to establish continuous-time noninterference for integer Timed CSP, it is sufficient to do so for a discrete model
in which the time step tock is 0.5 of the units used to represent delay in the program under consideration.

More generally, we have shown how to map any behaviour of an integer Timed CSP process with n + 1 events
happening at distinct times, to another in which these times remain distinct but are now of the form k

n for k ∈ N.
This suggests that one might use digitisation to establish the equivalence of the existence of such behaviours over
FT, for integer Timed CSP process P, and the existence of them over FDT for nP. This remains a topic for future
work, as does the possibilities of our refined notion of digitisation for Timed Automata.

We were able to create FDR checks which decide our noninterference conditions for finite-state processes, and
applied them to some simple case studies. From these case studies we can conclude that timed noninterference
can be decided, at least on small examples, quickly and efficiently.

It was impressed on us, in creating case studies, that creating Timed CSP systems that act deterministically or
quasi-deterministically is not always easy. This should not be surprising when a number of self-timed (as opposed
to clock-driven) systems interact, but is of course an issue when our noninterference condition expects us to
eliminate most or all nondeterminism from systems with no high-level behaviour (formalised as P ‖

H
STOP).

We have showed how a weaker noninterference specification (in fact identical in structure to the fault tolerance
specification proposed in [Ros97], and similar to the noninterference condition proposed for timed automata
in [BaTe03]) can apply in such circumstances. We have found it able to capture timing channels that exist in
systems, but unfortunately there are situations where information flow will not be captured. Further practical
research is needed on how frequently the strong noninterference specification has to be weakened in this way.
This might necessitate further theoretical work in understanding for which sorts of system it, or some variant,
might be sufficient. A good alternative, investigated in [Hua10, HuRo06], might be timed variants of Forster’s
Local Noninterference (LNI) conditions [For99, FRR99]. Further research would be needed to understand these
over continuous Timed CSP and to implement timed versions of these in FDR. Some theory akin to those
of [Mor06, McIMo10] may also be possible, though the question of what one must be ignorant of seems rather
less tangible in the world of process algebras as opposed to models based on assignable state.

Section 9 showed that in all likelihood our conditions would make sense in the world of timed automata, with
further work required to formalise the connections.

We believe that noninterference analysis will become increasingly important thanks to the advent of Cloud
computing, in which software and data belonging to multiple parties use common hardware. When two appli-
cations, one of which may be specifically designed for gathering information, are sharing an implementation
platform, it will be necessary for security to show that information cannot leak from one to the other.

In addition to the type of conditions presented in this paper that ban information flow completely, there is
also the need for ones that bound the capacity of any channel from high to low. Of course in a timed context we
have the possibility of measuring this in bits per second.

Resources

FDR can be downloaded from http://www.cs.ox.ac.uk/projects/concurrency-tools/. Version 2.94 contains all the
features used in this paper such as the Timed CSP implementation. Example files for FDR containing examples
and case studies from this paper can be found together with the pre-print of this paper at http://www.cs.ox.ac.uk/
people/publications/personal/Bill.Roscoe.html.

http://www.cs.ox.ac.uk/projects/concurrency-tools/
http://www.cs.ox.ac.uk/people/publications/personal/Bill.Roscoe.html
http://www.cs.ox.ac.uk/people/publications/personal/Bill.Roscoe.html

34 A. W. Roscoe, J. Huang

Notation of timed traces and failures

The following notation, used in this paper, is derived from the literature of Timed CSP and applies to the con-
tinuous model FT.

(a, t) (a ∈ �, t ∈ R
+) a timed event

timed trace: a finite sequence of timed events 〈(ai, ti) | i ∈ 〈0 . . . n − 1〉〉 where i < j ⇒ ai ≤ tj .
X × [t1, t2) (X ⊆ �, 0 ≤ t1 < t2 < ∞) a refusal token.
ℵ a timed refusal: union of refusal tokens subject to only finitely many starting before any given t.
(t,ℵ) timed failure: s a timed trace and ℵ a timed refusal.
s � t the sequence of all (timed) events in the trace s up to and including those at t.
ℵ � t 	 ℵ ∩ (� × [0, t)) the refusals in ℵ up to and not including those at t.
end(s) the last time appearing in s, or 0 if s 	 〈〉.
begin(s) the first time appearing in s, or ∞ if s 	 〈〉.
sˆt concatenation.

Acknowledgments

We are grateful to Joël Ouaknine for discussions on discrete Timed CSP and digitisation, to Phil Armstrong for
implementing Timed CSP in FDR and to Long Nguyen for comments. This paper was greatly improved thanks
to comments from anonymous referees. The work reported in this paper was partially supported by grants from
EPSRC and ONR.

References

[All91] Allen PG (1991) A comparison of non-interference and non-deducibility using CSP. Proc CSFW. IEEE
[AlDi94] Alur R, Dill DL (1994) A theory of timed automata. Theor Comput Sci 126(2):183–235
[AHR12] Armstrong P, Hopcroft PJ, Roscoe AW (2012) Fairness analysis through priority. Forthcoming
[ALOR12] Armstrong PJ, Lowe G, Ouaknine J, Roscoe AW (2012) Model-checking Timed CSP. Forthcoming HOWARD (H. Barringer

festschift), Easychair (pub)
[BFST02] Barbuti R, Francesco ND, Santone A, Tesei L (2002) A notion of non-interference for timed automata. Fundam Inform

51:1–11
[BaTe03] Barbuti R, Tesei L (2003) A decidable notion of timed non-interference. Fundam Inform 54:137–150
[FoGo94] Focardi R, Gorrieri R (1994) A classification of security properties for process algebras. J Comput Secur 3:5–33
[FGM00] Focardi R, Gorrieri R, Martinelli F (2000) Information flow analysis in a discrete-time process algebra. CSFW-13, IEEE
[FGM03] Focardi R, Gorrieri R, Martinelli F (2003) Real-time information flow analysis. Sel Areas Commun 21:20–34
[For99] Forster R (1999) Noninterference properties for nondeterministic processes. Oxford University DPhil thesis
[FRR99] Forster R, Reed GM, Roscoe AW (2000) The successes and failures of behavioural models. In: Millenial perspectives in

computer science. Palgrave
[GoMe82] Goguen JA, Meseguer J (1982) Security policies and security models. In: Proceedings of IEEE symposium on security and

privacy
[GCu92] Graham-Cumming J (1992) The formal development of secure systems. Oxford University DPhil thesis
[HMP92] Henzinger TA, Manna Z, Pnueli A (1992) What good are digital clocks? In: Proceedings of the nineteenth international

colloquium on automata, languages, and programming (ICALP 92), vol 623. Springer/LNCS, Berlin, pp 545–558
[Hua10] Huang J (2010) Extending non-interference properties to the timed world. Oxford University DPhil thesis
[HuRo06] Huang J, Roscoe AW (2006) Extending non-interference properties to the timed world. In: Proc ACM SAC
[Laz99] Lazić RS (1999) A semantic study of data independence with applications to model checking. Oxford University DPhil thesis
[LoOu06] Lowe G, Ouaknine J (2006) On timed models and full abstraction. ENTCS 155:497–519
[McIMo10] McIver AK, Morgan CC (2010) The thousand-and-one cryptographers. Reflections on the work of C.A.R. Hoare. Springer,

Berlin
[Mor06] Morgan CC (2006) The shadow knows: refinement of ignorance in sequential programs. Proc MPC LNCS 4014
[Oua01] Ouaknine J (2001) Discrete analysis of continuous behaviour in real-time concurrent systems. Oxford University D.Phil thesis
[Oua02] Ouaknine J (2002) Digitisation and full abstraction for dense-time model checking. TACAS Springer LNCS
[OuWo03] Ouaknine J, Worrell JB (2003) Timed CSP = closed timed epsilon-automata. Nord J Comput 10:99–133
[Ree88] Reed GM (1988) A uniform mathematical theory for real-time distributed computing. Oxford University DPhil thesis
[ReRo88] Reed GM, Roscoe AW (1988) A timed model for communicating sequential processes. Theor Comput Sci 58:249–261
[ReRo99] Reed GM, Roscoe AW (1999) The timed failures-stability model for CSP. Theor Comput Sci 211:85–127
[Ros94] Roscoe AW (1994) Model checking CSP. In: A classical mind: essays in honour of C.A.R. Hoare. Prentice Hall

Checking noninterference in Timed CSP 35

[Ros95] Roscoe AW (1995) CSP and determinism in security modelling. Proceedings of IEEE symposium on security and privacy
[Ros97] Roscoe AW (1997) The theory and practice of concurrency. Prentice Hall
[Ros06] Roscoe AW (2006) Confluence thanks to extensional determinism. ENTCS 162:305–309
[Ros10] Roscoe AW (2010) Understanding concurrent systems. Springer, Berlin
[RWW96] Roscoe AW, Woodcock JCP, Wulf L (1996) Non-interference through determinism. J Comput Secur 4(1):27–53
[Rya91] Ryan PYA (1991) A CSP formulation of non-interference and unwinding. Cipher Winter 1991. IEEE Press
[Sch00] Schneider SA (2000) Concurrent and real-time systems: the CSP approach. Wiley, New York

Received 18 January 2012
Accepted in revised form 25 May 2012 by Peter Höfner, Robert van Glabbeek and Ian Hayes
Published online 29 June 2012

	Checking noninterference in Timed CSP
	Abstract
	1 Introduction
	2 The language of CSP and Timed CSP
	3 Semantic models
	4 The functionality of FDR
	5 Noninterference via determinism?
	5.1 Abstraction over timed failures

	6 Digitisation: playing with time
	7 Deciding noninterference using FDR
	7.1 Deciding quasi-determinism
	7.2 Maximality over mathcal FDT
	7.3 Pragmatics

	8 Case studies
	8.1 Sequential shared medium
	8.2 Parallel implementation

	9 Other approaches to timed noninterference
	10 Conclusions
	Acknowledgments
	References

