
DOI 10.1007/s00165-011-0210-7
BCS © 2011
Formal Aspects of Computing (2013) 25: 801–832

Formal Aspects
of Computing

A calculus of trustworthy ad hoc networks
Massimo Merro and Eleonora Sibilio
Dipartimento di Informatica, Università degli Studi di Verona, Verona, Italy.
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Abstract. We propose a process calculus for mobile ad hoc networks which relies on an abstract behaviour-based
multilevel trust model. The operational semantics of the calculus is given in terms of a labelled transition system,
where actions are executed at a certain security level. We define a labelled bisimilarity over networks parameterised
on security levels. Our bisimilarity is a congruence and an efficient proof method for an appropriate variant of
barbed congruence, a standard contextually-defined program equivalence. Communications in the calculus are
safe with respect to the security levels of the involved parties. In particular, we ensure safety despite compromise:
compromised nodes cannot affect the rest of the network. A non-interference result is also proved in terms of
information flow. Finally, we use our calculus to provide formal descriptions of trust-based versions of both a
routing protocol and a leader election protocol for ad hoc networks.
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1. Introduction

Wireless communication has become very popular in industry, business, commerce and in everyday life. Wireless
technology spans from user applications such as personal area networks, ambient intelligence, and wireless local
area networks, to real-time applications, such as cellular and ad hoc networks.

A Mobile ad Hoc NETwork (MANET) is a self-configuring network of mobile devices (also called nodes)
communicating with each other via radio transceivers. Basically, wireless devices use radio frequency channels
to broadcast messages to the other devices. Ad hoc networks may operate in a standalone fashion, or may be
connected to the larger Internet. They can be used wherever a wired backbone is infeasible and/or economi-
cally inconvenient. In MANETs, due to the limited transmission range of communications, each node seeks the
assistance of its neighbouring nodes in forwarding packets. In order to establish routes between nodes which are
further than a single hop, specially configured routing protocols are engaged. The unique feature of these proto-
cols is their ability to trace routes in spite of a dynamic topology. Routing protocols for MANETs, such as AODV,
DSR and TORA [PeB99, JoM96, PaC01], require persistent cooperative behaviour from the intermediate nodes
that primarily contribute to the route development. These protocols have been developed for networks where all
nodes can faithfully execute them in a munificent manner. However, in real life, such an altruistic stance is difficult
to achieve and, so, these protocols are more often executed by nodes that divert from the basic requirements of
participation.
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MANETs are generally established in open and physically insecure environments where nodes are exposed
to various threats, of which the most interesting and important is node subversion. In this kind of attack, a node
may be reverse-engineered and replaced by a malicious node. A bad (or compromised) node can communicate
with any other node, good or bad. Bad nodes may have access to the keys of all other bad nodes, whom they
can impersonate if they wish. They do not execute the authorised software and thus do not necessarily follow
protocols to identify misbehaviour, isolate other bad nodes, vote honestly or delete keys shared with compromised
nodes.

Lack of a fixed infrastructure, shared wireless medium, cooperative behaviour, and physical vulnerability
are some of the features that make particularly challenging the design of a trust-based scheme for mobile ad
hoc networks. In such trust-based schemes, all nodes in the network independently execute a trust model and
maintain their own assessment concerning other nodes in the network. Each node, based upon its personal
experiences, rewards collaborating nodes for their benevolent behaviour and penalises malicious nodes for their
malevolent conduct. MANETs do not support stable hierarchies of trust relations because trust evidence may be
uncertain and incomplete, and only sporadically collected and exchanged. In fact, when moving around, wireless
devices break links with old neighbours and establish fresh links with new devices. This makes security even
more challenging as the compromise of a legitimate node or the insertion of a malicious node may go unnoticed.
On the other hand, most of the events that are experienced by a node occur within the vicinity of its immediate
neighbours. This helps to establish trust relationships between the neighbours.

Contribution In this paper, we propose a process calculus for mobile ad hoc networks which relies on an abstract
behaviour-based trust model. Our trust model supports both direct trust, to describe monitoring of neighbour
nodes, and indirect trust, when collecting recommendations and spreading reputations. We model our networks
as multilevel systems [BeL76] where each device is associated with a security level depending on its behaviour.
In our calculus, each node is equipped with a local trust store containing a set of assertions. These assertions
supply trust information about the other nodes, according to a local security policy. The calculus is not directly
concerned with cryptographic underpinnings. However, we assume the presence of a hierarchical key generation
and a distribution protocol [DiD08, SBG05]. Thus, messages are transmitted at a certain security level by relying
on an appropriate set of cryptographic keys.

We provide an operational semantics in terms of a labelled transition system. Transitions take the form

M
λ−−→ρ N

to indicate that the network M can perform the action λ, at security level ρ, evolving into the network N . In our
setting, communications are safe up to certain a security level. Thus, a node m transmitting at security level ρ
may only synchronise with nodes at security level ρ or above, according to the local knowledge of both sender
and receivers. We also ensure safety despite compromise, as bad nodes, once detected, may not interact with good
ones. In this manner, bad nodes (recognised as such) are isolated from the rest of the network.

A central concern in process calculi is to establish when two terms have the same observable behaviour.
Behavioural equivalences are fundamental for justifying program transformations. Our program equivalence is
a security variant of (weak) barbed congruence, a branching-time contextually-defined program equivalence.
Barbed equivalences [MiS92] are simple and intuitive but difficult to use due to the quantification on all contexts.
Simpler proof techniques are based on labelled bisimilarities [Mil89], which are co-inductive relations that char-
acterise the behaviour of processes using a labelled transition system. Along the lines of [CrR07], we propose a
labelled bisimilarity, called δ-bisimilarity, parameterised on security levels. Intuitively, two networks are δ-bisim-
ilar if they cannot be distinguished by any observer that can only perform actions at security level at most δ. We
prove that δ-bisimilarity represents an efficient proof method for our barbed congruence.

We use our notion of δ-bisimilarity to prove a non-interference result [GoM82]. Formally, high-level
behaviours can be arbitrarily changed without affecting low-level equivalences, that is equivalences parame-
terised on low security levels. Thus, a network is interference free if its low security level behaviour is not affected
by any activity at high security level.
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Finally, we show that our calculus represents a suitable formal language to describe trust-based routing pro-
tocols for MANETs [PDM04, PMD06, ZZS10]. Initial work on routing in ad hoc networks has considered only
the problem of providing efficient mechanisms for finding paths, without considering security issues. Trust-based
routing represents an emerging effective approach to improve the security of mobile ad hoc networks as opposed
to secure routing protocols, such as SRP [PaH03], Ariadne [HPJ05], endairA [ÁBV06], SAODV [ZaA02], and
ARAN [SLD05], where paths are established by means of cryptographic communications among nodes. Trust-
based schemes can be successfully used for a variety of other protocols. As as example, we provide a trust-based
version of a leader election protocol for MANETs, proposed in [VKT04].

Outline In Sect. 2, we introduce the concepts of trust and reputation; we discuss the trust management systems
for distributed systems and more particularly for MANETs. In Sect. 3, we describe our behaviour-based trust
model. In Sect. 4, we provide both syntax and operational semantics of our calculus. In Sect. 5, we present our
mobility model. In Sect. 6, we prove our safety properties. In Sect. 7, we propose a notion of observational equiv-
alence along the lines of Milner and Sangiorgi’s barbed congruence. In Sect. 8, we propose a labelled bisimilarity
as a proof method for our observations equivalence. More precisely, we prove that our bisimilarity is a congru-
ence and it implies our observational equivalence. In Sect. 9, we use our bisimilarity to prove a non-interference
result. In Sect. 10, we use our calculus to formalise a trust-based version of the AODV routing protocol; we also
provide a trust-based version of the leader election protocol for MANETs [VKT04]. Finally, Sect. 11 is devoted
to conclusions and related work.

2. Background on trust models

In this section, we discuss the notions of trust and reputation in information systems according to the literature.
We then discuss the main key issues when designing trust management systems for mobile ad hoc networks.

2.1. Trust and reputation

The concepts of trust and reputation are firmly routed in sociology and psychology and they are widely used in
computer science.

Trust enables a trustor to reduce uncertainty in its future interactions with a trustee, whose actions may affect
the state of the trustor. Trust is usually represented as a binary relationship between trustor and trustee. Trust for-
malisation has been the subject of several academic works. For instance, in [Gam90] trust is defined as the “belief
or subjective possibility by which an individual A expects that another individual B performs a given action on
which the welfare of A depends”. The author has introduced the dependency of trust from the context, meaning
that it applies to a specific purpose or domain of actions. In these terms, trust may be viewed as a quantitative
value, that is a quantifiable relation between two entities. According to [Gra03], trust is “the quantified belief
by a trustor with respect to the competence, honesty, security and dependability of a trustee, within a specified
context”. In [JGK06] the authors have distinguished between functional and referral trust, and between direct
and indirect trust. Functional trust is the belief in an entity’s ability and willingness to carry out or support a
specific function on which the relying party depends. Referall trust is the belief in an entity’s ability to recommend
another entity with respect to functional trust.

Reputation is defined as the opinion held by the trustor towards the trustee, based both on its past experience
and recommendations of other trustees. A recommendation is simply an attempt at communicating a party’s
reputation from one community context to another. Reputation is an important concept for the trust evaluation,
but it is often confused with trust. Trust represents an active and decisive concept: if one entity trusts another
entity then the latter is allowed to perform certain actions. Reputation may serve as a source of trust; however, it
does not directly define allowed actions.

Reputation usually comes from the context and it does not reflect personal experience of the interested party.
As for trust, there are several possible definitions of reputation. For instance, in [AbH00] reputation is defined
as “the expectation about an individual’s behaviour based on observations of its past behaviour”. In [JIB06]
reputation is proposed as a meaning of building trust; one can trust another based on its good reputation.
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Table 1. Trust framework
m,n ∈ Nodes node name
〈S, <〉 complete lattice
S � {bad, trust, low, high} security level
A ∈ Assertions � Nodes × Nodes × S assertion
T ⊆ ℘(Assertions) trust store
P : ℘(Assertions) → ℘(Assertions) policy function

2.2. Designing trust management systems for MANETs

Decentralised Trust Management Systems [BFL96] define languages for expressing authorisations and access
control policies, and provide trust management engines for determining when a particular request is authorised.
Traditional access control mechanisms [SaS94] are centralised and operate under a closed world assumption in
which all of the parties are known. Trust management systems generalise access control mechanisms by operating
in distributed systems and eliminating the closed world assumption.

Some of the features of MANETs, such as lack of a fixed infrastructure, node mobility, shared wireless
medium, cooperative behaviour, and physical vulnerability, make particularly challenging the design of a trust
management mechanism for them. In MANETs, node connectivity cannot be assured, and thus stable hierarchies
of trust relations cannot be supported. More specifically, trust management systems for MANETs should:

• be decentralised and not based on on-line trusted parties; instead, they should support distributed, cooperative
evaluation, based on uncertain evidence;

• support and exploit the diversity in the roles and the capabilities of the nodes in the deployments by allowing
for flexibility in the trust establishment process;

• support trust revocation in a controlled manner;
• scale to large deployments, be flexible to membership changes and entail acceptable resource consumption.

Trust management systems can be classified into credential-based and behaviour-based systems. Credential-
based trust management systems for MANETs aim at defining mechanisms for pre-deployment of knowledge
on the trust relationships within the network, usually represented by certificates, to be spread, maintained and
managed either independently or cooperatively by the nodes. Trust decisions are mainly based on the provision
of a valid certificate which proves that the target node is considered trusted either by a certification authority or
by other nodes that the issuer trusts. It is generally outside the scope of certificate-based frameworks to evaluate
the behaviour of nodes taking trust decisions on that evaluation.

Behaviour-based systems are often called experience-based as in these models an entity A trusts another entity
B based on its experience on B ’s past behaviour. In behaviour-based trust management systems for MANETs,
each node comes together with an extra component called trust manager. A trust manager consists of two main
components: the monitoring module and the reputation handling module. The first module monitors the behav-
iour of neighbours, while the second one collects/spreads recommendations and evaluates trust information about
other nodes using a local security policy. The continuous work of the trust manager results in a local trust store
T containing the up-to-date trust relations. Although a mechanism that determines the identities of the other
nodes is usually assumed to exist, it is generally outside the scope of behaviour-based trust establishment models
to authenticate other nodes and to determine whether they are legitimate members of the network. The main
objective of behaviour-based models is to isolate those nodes that either act maliciously or selfishly.

Comprehensive surveys of trust management systems for ad hoc networks can be found in [AGS08, RFL09,
BVT09].

3. An abstract trust model for MANETs

In this section, we propose an abstract behaviour-based trust model for MANETs where trust information may
change over time due to mobility, temporary disconnections, recommendations, etc (Table 1). We support node
revocation and spreading of reputations. Repudiable evidence allows bad nodes to falsely accuse good nodes. Thus,
recommendations are always evaluated using a local security policy implementing some appropriate metric.
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Table 2. The syntax

V alues
u ::� v closed value

∣
∣ x variable

Networks :
M ,N ::� 0 empty network

∣
∣ M | N parallel composition
∣
∣ n [P ]T node

Processes :

P ,Q ::� nil termination
∣
∣ σ !〈ũ〉.P multicast sender
∣
∣ σ !〈ũ〉u .P unicast sender
∣
∣ σ ?(x̃ ).P receiver
∣
∣ P + Q nondeterministic choice
∣
∣ [ũ op ũ ′]P ,Q matching
∣
∣ H 〈ũ〉 recursion

The basic components of our model are nodes (or principals), security levels, assertions, policies and trust
stores. We use k , l ,m,n, . . . to range over the set Nodes of node names. As usual in behaviour-based trust mod-
els, node comes together with an extra component called trust manager. We assume a complete lattice 〈S,<〉 of
security levels: bad < trust < low < high. The bad security level is associated with a compromised behaviour. The lowest
security level associated with a trusted behaviour is trust; the low level is associated with more trusted behaviour,
i.e. for handling more sensible data; high stands for the highest trusted behaviour. The metavariable ρ ranges
over security levels in S. The theory in the current paper can be generalised to deal with an arbitrary number of
security levels for data transmission.

Assertions are represented by triples contained in Nodes ×Nodes ×S. An assertion (m,n, ρ) says that a node
m trusts a node n at security level ρ. A local trust store T contains a set of assertions, formally T ⊆ ℘(Assertions).
When a node m (the trustor) wants to know the security level of a node n (the trustee), it simply has to check its
own trust store T . For convenience, we often use T as a partial function of type Nodes → Nodes → S, writing
T (m,n) � ρ when m considers n as a node of security level ρ. If ρ � bad then m considers n to be a compromised
node, and stops any interaction with it. A node can receive new assertions from its neighbours. These assertions
will be opportunely stored in the local trust store by the trust manager, according to a local security policy P .
A security policy P is a function that evaluates the current information collected by a node and returns a set
of assertions consistent with the local policy. Formally, P : ℘(Assertions) → ℘(Assertions). For simplicity, we
assume that all nodes have the same security policy P . Notice that the outcome of the policy function could differ
from one node to another as the computation depends on the local knowledge of nodes.

Messages exchanged among nodes are assumed to be encrypted relying on a hierarchical key generation and
distribution protocol [DiD08, SBG05]. The trust manager may determine a key redistribution when a security
level is compromised. More generally, re-keying [DML03] allows to refresh a subset of keys when one or more
nodes join or leave the network; in this manner nodes are enable to decrypt past traffic, while evicted nodes
are unable to decrypt future traffic. As showed in [SBG05] re-keying may be relatively inexpensive if based on
“low-cost” hashing operators.

4. The calculus

In Table 2, we define the syntax of our calculus in a two-level structure, a lower one for processes and an upper
one for networks. We use letters k , l ,m,n, . . . for node names. The symbol σ ranges over the security levels low

and high, the only ones which are directly used by programmers. We use letters x , y, z for variables, u for values,
and v and w for closed values, i.e. values that do not contain free variables. In particular, values can be names.
We write ũ to denote a tuple u1, . . . , uk of values. For convenience, we sometime use angled brackets to delimit
tuples, by writing 〈u1, . . . , uk 〉 instead of u1, . . . , uk .
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Table 3. Structural congruence

m [P + Q ]T ≡ m [Q + P ]T (Struct Sum Comm)
m [P + (Q + Q ′)]T ≡ m [(P + Q) + Q ′]T (Struct Sum Assoc)
m [P + nil]T ≡ m [P ]T (Struct Sum Zero)
M | N ≡ N | M (Struct Par Comm)
(M | N ) | M ′ ≡ M | (N | M ′) (Struct Par Assoc)
M | 0 ≡ M (Struct Par Zero)
M ≡ M (Struct Refl)
M ≡ N implies N ≡ M (Struct Symm)
M ≡ N ∧ N ≡ O implies M ≡ O (Struct Trans)
M ≡ N implies M | M ′ ≡ N | M ′, for all M ′ (Struct Cxt Par)

Networks are collections of distinct nodes (which represent devices) running in parallel and using channels at
different security levels to communicate with each other. We use the symbol 0 to denote the empty network. We
write n[P ]T for a node named n (denoting its network address) executing the sequential process P , with a local
trust store T . We write M | N for the parallel composition of two sub-networks M and N .

Processes are sequential and live within the nodes. We write nil to denote the skip process. Our communi-
cations mechanism is secure multicast to trusted nodes. The sender process σ !〈ṽ〉.P multicasts the message ṽ
to all neighbours at security level σ , and then continues as P . The unicast sender process σ !〈ṽ〉n .P transmits
the message ṽ to node n at security level σ , and then continues as P . The receiver process σ ?(x̃ ).P listens for
incoming communications at security level σ . Upon reception, the receiver processes evolves into P , where the
variables of x̃ are replaced with the message ṽ . We write {ṽ/x̃ }P for the substitution of variables x̃ with values
ṽ in P , with | x̃ |�| ṽ |. In process [ṽ op w̃ ]P ,Q the metavariable op denotes a binary operator, returning a
boolean, such as �,<,>,≤,≥,∈,⊆. The process [ṽ op w̃ ]P ,Q denotes the “if then else” construct: it behaves as
P if ṽ op w̃ � true, and as Q otherwise. Process P + Q denotes standard nondeterministic choice. In processes
σ ?(x̃ ).P , σ !〈ṽ〉.P and σ !〈ṽ〉n .P the occurrence of process P is said to be guarded . We write H 〈ṽ〉 to denote a
process defined via an equation H (x̃ ) � P , with | x̃ |�| ṽ |, where x̃ contains all variables that appear free
in P . Defining equations provide guarded recursion, since in H (x̃ ) � P the process P may contain only guarded
occurrences of process identifiers. In process σ ?(x̃ ).P variables x̃ are bound in P . This gives rise to the standard
notion of α-conversion and free and bound variables. We assume there are no free variables in our networks. The
absence of free variables in networks is trivially maintained as the network evolves. Given a network M , nds(M )
returns the set of nodes which constitute the network M . Notice that, as network addresses are unique, we assume
that there cannot be two nodes with the same name in the same network. We write

∏
i Mi to denote the parallel

composition of all sub-networks Mi . We write σ !〈ṽ〉 and σ !〈ṽ〉n to mean σ !〈ṽ〉.nil and σ !〈ṽ〉n .nil, respectively.
As usual in process calculi, in Table 3 we define structural congruence, written ≡, to identify processes up to
reordering of parallel and nondeterministic processes.

4.1. The operational semantics

We give the operational semantics of our calculus in terms of a labelled transition system (LTS). We have divided
our LTS in two sets of rules. Table 4 contains the rules to model synchronisations between sender and receivers.
Table 5 contains the rules to model trust management.

Our transitions take the form

M
λ−−→ρ N

to indicate that network M performs action λ, at security level ρ, evolving into network N . By construction, in
any transition of this form ρ will be always different from bad. More precisely, ρ will be equal to low for low-level
security transmissions, and equal to high for high-level security transmissions. If ρ � trust then the transition
models some aspects of trust management, and involves only mutually trusted nodes. The metavariable λ ranges
over the labels m!ṽD,m?ṽD, and τ , where D is a set of nodes. We sometimes write m!ṽn and m?ṽn as an
abbreviation for m!ṽ{n} and m?ṽ{n}, respectively. The label m!ṽD models the transmission of message ṽ ,
originating from node m, and addressed to the set of nodes contained in D. The label m?ṽD represents the
reception of a message ṽ , sent by m, and received by the nodes contained in D. The label τ models internal
actions, which cannot be observed.
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Table 4. LTS-Synchronisation

(MCast)
D :� {n : T (m,n) ≥ σ } D �� ∅
m [σ !〈ṽ〉.P ]T

m !ṽD−−−−−−→σ m [P ]T
(UCast)

T (m,n) ≥ σ

m [σ !〈ṽ〉n .P ]T
m !ṽn−−−−−−→σ m [P ]T

(Rcv)
T (n,m) ≥ σ | x̃ |�| ṽ | m �� n

n [σ ?(x̃ ).P ]T
m?ṽn−−−−−−→σ n [{ṽ/x̃ }P ]T

(RcvEnb)
m �∈ nds(M ) ρ ≥ trust

M
m?ṽ∅−−−−−−→ρ M

(RcvPar)
M

m?ṽD−−−−−−→ρ M ′ N
m?ṽD′

−−−−−−−→ρ N ′

M | N
m?ṽD∪D′

−−−−−−−−−→ρ M ′ | N ′
(Sync)

M
m !ṽD−−−−−−→ρ M ′ N

m?ṽD′
−−−−−−−→ρ N ′ D′ ⊆ D

M | N
m !ṽD−−−−−−→ρ M ′ | N ′

Remark 4.1 Messages exchanged among nodes are assumed to be encrypted using a hierarchical key generation
and distribution protocol [DiD08, SBG05]. Thus, a message transmitted at security level ρ can be decrypted only
by nodes at security level ρ or greater, according to the trust store of both sender and receiver. Moreover, we
assume that messages are always signed by senders.

Let us comment on the rules of Table 4. Rule (MCast) models a multicast transmission of a message ṽ at security
level σ ; the set D contains the destination nodes with security level at least σ , according to the trust store of m.1

Rule (UCast) models a unicast transmission of message ṽ from node m to node n, at security level σ . Rule (Rcv)
models a node n receiving a message ṽ , sent by node m, at security level σ . In this rule, n receives a message
from m only if it trusts m at security level σ . Rule (RcvPar) serves to put together parallel nodes receiving from
the same sender. Rule (RcvEnb) says that every node can synchronise with an external transmitter m. This rule,
together with rule (RcvPar), serves to model message loss. If sender and receiver(s) trust each other then they may
synchronise by applying rule (Sync). In this rule, the condition D′ ⊆ D ensures that only authorised recipients
receive the transmitted value. Rule (Sync) has its symmetric counterpart.

Let us explain the rules in Table 4 with an example.

Example 4.2 Let us consider the network:

M def� k [σ ?(x̃ ).Pk ]Tk

∣
∣ l [σ ?(x̃ ).Pl ]Tl

∣
∣ m[σ !〈ṽ〉.Pm ]Tm

∣
∣ n[σ ?(x̃ ).Pn ]Tn

where Tk (k ,m) ≥ σ,Tl (l ,m) < σ,Tm (m,n) � Tm (m, l ) ≥ σ,Tm (m, k ) < σ and Tn (n,m) ≥ σ . In this
configuration, node m transmits message ṽ at security level σ , being n and l the nodes allowed to receive that
message at that security level. However, since l does not trust m at security level σ , node n is the only node that
may receive the message. Thus, by an applying rules (MCast), (Rcv), (RcvEnb), and (Sync) we have:

M
m !ṽ{l,n}−−−−−−−−→σ k [σ ?(x̃ ).Pk ]Tk

∣
∣ l [σ ?(x̃ ).Pl ]Tl

∣
∣ m[Pm ]Tm

∣
∣ n[{ṽ/x̃ }Pn ]Tn

.

Now, let us comment on the rules of Table 5. We recall that each node comes with a trust manager com-
ponent which is not specified in the syntax. Thus, Table 5 provides the transition rules to model the semantics
of these components. The transmissions described in this table are addressed to all trusted nodes i.e. all nodes
at security level trust. Rule (DTrust) models direct trust. This happens when the monitoring module of a node m,
while monitoring the activity of a trusted node n, detects a misbehaviour of n. In this case, node m executes two
operations: (i) it implements node revocation updating its trust store, according to its local policy; (ii) it multicasts
the corresponding information to inform all trusted nodes about the misbehaviour of n. Rule (SndRcm) describes
indirect trust and models the sending of a recommendation. This may happen, for example, when a node moves
and asks for recommendations on new neighbours. Again, recommendations are addressed to all trusted nodes,
according to the trust knowledge of the recommender. Rule (RcvRcm) models the reception of a recommendation
from a trusted node: a new trust table T ′ is calculated, applying the local policy to T ∪ (m, ṽ ). Rule (Lose) models
loss of trust information. This may happen, for instance, when a node moves, changing its neighbourhood. In
this case, trust information concerning old neighbours should be removed as it cannot be verified any longer.

1 Rule (MCast) may recall the Directed Diffusion approach of [IGE03].
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Table 5. LTS-trust management

(DTrust)
T (m,n) ≥ trust ṽ :� n, bad

T ′ :� P(T ∪ (m, ṽ )) D :� {k : T (m, k ) ≥ trust}
m [P ]T

m !ṽD−−−−−−→trust m [P ]T ′
(SndRcm)

T (m,n) � ρ ṽ :� n, ρ D :� {n : T (m,n) ≥ trust}
m [P ]T

m !ṽD−−−−−−→trust m [P ]T

(RcvRcm)
T (n,m) ≥ trust ṽ :� l, ρ T ′ :� P(T ∪ (m, ṽ ))

n [P ]T
m?ṽn−−−−−−→trust n [P ]T ′

(Lose)
T ′ ⊆ T T ′′ :� P(T ′)
n [P ]T

τ−−→trust n [P ]T ′′

Table 6. LTS-Matching, recursion, parallel composition and summation

(Then)
n [P ]T

λ−−→ρ n [P ′]T ′ ṽ1 op ṽ2 � true

n [[ṽ1 op ṽ2]P ,Q ]T
λ−−→ρ n [P ′]T ′

(Else)
n [Q ]T

λ−−→ρ n [Q ′]T ′ ṽ1 op ṽ2 � false

n [[ṽ1 op ṽ2]P ,Q ]T
λ−−→ρ n [Q ′]T ′

(Rec)
n [{ṽ/x̃ }P ]T

λ−−→ρ n [P ′]T ′ H (x̃ ) def� P

n [H 〈ṽ〉]T
λ−−→ρ n [P ′]T ′

(TauPar)
M

τ−−→ρ M ′

M | N
τ−−→ρ M ′ | N

(Sum)
m [P ]T

λ−−→σ m [P ′]T
m [P + Q ]T

λ−−→σ m [P ′]T

Table 6 contains the standard rules for matching and recursion. It also contains the rule (TauPar) to propagate
τ -actions over parallel components, and the standard rule (Sum) for nondeterministic choice. Rules (TauPar) and
(Sum) have their symmetric counterparts.

Let us show how direct and indirect trust are modelled in our setting with an example.

Example 4.3 Let us consider the network:

M def� k [Pk ]Tk

∣
∣ l [Pl ]Tl

∣
∣ m[Pm ]Tm

∣
∣ n[Pn ]Tn

where Tk (k ,m) ≥ trust,Tl (l ,m) � bad,Tm (m, k ) � Tm (m, l ) � Tm (m,n) ≥ trust, and Tn (n,m) ≥ trust. Now, if
node m observes that node k is misbehaving, then (i) it adds an assertion (m, k , bad) to its local knowledge; (ii)
it multicasts the information to its neighbours. Thus, by an application of rules (DTrust), (RcvRcm), (RcvEnb), and
(Sync) we have

M
m !〈k ,bad〉{k ,l,n}−−−−−−−−−−−−−→trust k [Pk ]T ′

k

∣
∣ l [Pl ]Tl

∣
∣ m[Pm ]T ′

m

∣
∣ n[Pn ]T ′

n
.

Notice that since l does not trust m, only node n and the bad node k receives m’s recommendation. Moreover
the local knowledge of m and n will change, according to their local policy. This is a case of direct trust for m,
and indirect trust for n.

5. Node mobility

In wireless networks, node mobility is associated with the ability of a node to access telecommunication services
at different locations from different nodes. Unlike wired networks, where the main security requirements are
addressed by installing firewalls, in mobile ad hoc networks node mobility introduces new issues related to user
credential management, indirect trust establishment and mutual authentication between previously unknown
and hence untrusted nodes.
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Table 7. LTS-Synchronisation with network restrictions

(MCastR)
D:�{n : T (m,n) ≥ σ } D �� ∅

m [σ !〈ṽ〉.P ]T
m !ṽD−−−−−−→σ ,∅ m [P ]T

(UCastR)
T (m,n) ≥ σ

m [σ !〈ṽ〉n .P ]T
m !ṽn−−−−−−→σ ,∅ m [P ]T

(RcvR)
T (n,m) ≥ σ | x̃ |�| ṽ | m �� n

n [σ ?(x̃ ).P ]T
m?ṽn−−−−−−→σ ,(n,m) n [{ṽ/x̃ }P ]T

(RcvEnbR)
m �∈ nds(M )

M
m?ṽ∅−−−−−−→ρ,∅ M

(RcvParR)
M

m?ṽD−−−−−−→ρ,C1 M ′ N
m?ṽD′

−−−−−−−→ρ,C2 N ′

M | N
m?ṽD∪D′

−−−−−−−−−→ρ,C1∪C2 M ′ | N ′
(SyncR)

M
m !ṽD−−−−−−→ρ,C1 M ′ N

m?ṽD′
−−−−−−−→ρ,C2 N ′ D′ ⊆ D

M | N
m !ṽD−−−−−−→ρ,C1∪C2 M ′ | N ′

For these reasons, node mobility in ad hoc networks has turned to be a challenge for automated verification
and analysis techniques. After the first work on model checking of (stationary) ad hoc networks [BOG02], Nanz
and Hankin [NaH06] have proposed a process calculus where topology changes are abstracted into a fixed rep-
resentation. This representation, called network topology, is essentially a set of connectivity graphs denoting the
possible connectivities within the nodes of the network. Thus, in [NaH06] the topology is not part of the syntax,
but it is a parameter of the operational semantics. A similar approach has been proposed in [GFM09], although
the labelled transition systems and the equivalence relations proposed in the two papers are completely different.
In [NaH06] a transition to the next state is examined for all possible valid graphs (those contained in the network
topology fixed a priori) whereas in [GFM09] a transition is examined for all graphs containing the connections
used in a communication. These connections are called restrictions.

As the reader may have noticed, our calculus does not directly model the network topology neither in the
syntax nor in the semantics. However, it is very easy to modify our labelled transition system to add topology
changes at semantics level. In Table 7 we rewrite the rules of Table 4 in the style of [GFM09]. Rules take the form

M
λ−−→ρ,C M ′

indicating that network M performs the action λ, at security level ρ, under the network restriction C , evolving
into network M ′. Thus, a network restriction C keeps track of the connections which are necessary for the tran-
sition to fire. The rules in Table 5 (as well as those in Table 6) can be rewritten in a similar manner, except for rule
(Lose) in which the network restriction must be the empty set.

Example 5.1 Consider the network appearing in Example 4.2. Then, by applying rules (MCastR), (RcvR), (RcvEnbR),
and (SyncR) we have

M
m !ṽ{l,n}−−−−−−−−→σ,{(n,m)} k [σ ?(x̃ ).Pk ]Tk

∣
∣ l [σ ?(x̃ ).Pl ]Tl

∣
∣ m[Pm ]Tm

∣
∣ n[{ṽ/x̃ }Pn ]Tn

.

The transition is tagged with the network restriction {(n,m)}, as only node n has synchronised with node m.

The reader may have noticed that the rules of Table 7 do not use network restrictions in the premises. As a

consequence, there is a straightforward operational correspondence between a transition
λ−−→ρ and one of the

form
λ−−→ρ,C .

Proposition 5.2

1. M
λ−−→ρ M ′ with λ ∈ {m!ṽD,m?ṽD} iff there exists a restriction C such that M

λ−−→ρ,C M ′ and C ⊆
{(m,n) for all n ∈ D}.

2. M
τ−−→ρ M ′ iff M

τ−−→ρ,∅ M ′.

Proof By transition induction. �
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6. Safety properties

Access control [SaS94] is a well-established technique to provide safety properties ensuring that only principals
with appropriate access rights can access data. In distributed security systems, safety properties ensure that no
forbidden interactions arise [FGM07]. In our setting, safety properties involve security levels, as communications
are parameterised on them. Thus, our safety properties aim at guaranteeing that only authorised nodes receive
sensible information.

We introduce the notion of safety up to a security level to describe when a communication is safe up to a
certain security level. Intuitively, a communication is said to be safe up to a security level ρ if a node transmitting
at level ρ may only synchronise with nodes at level ρ or above, according to the local knowledge of sender and
receivers. This means that all parties involved in a transmission safe up to security level ρ trust each other at that
security level.

The next theorem states that only safe communications are allowed in our calculus.

Theorem 6.1 (Safety preservation)

1. Let M
m?ṽD−−−−−−→ρ M ′ with M ≡ ∏

i ni [Pi ]Ti
and M ′ ≡ ∏

i ni [P ′
i ]T ′

i
.

(a) If P ′
i �� Pi , for some i , then ni ∈ D and Ti (ni ,m) ≥ ρ.

(b) If T ′
i �� Ti , for some i , then ni ∈ D and Ti (ni ,m) ≥ ρ.

2. Let M
m !ṽD−−−−−−→ρ M ′ with M ≡ m[P ]T | ∏

i ni [Pi ]Ti
and M ′ ≡ m[P ′]T ′ | ∏

i ni [P ′
i ]T ′

i
.

(a) If P ′
i �� Pi , for some i , then ni ∈ D,T (m,ni ) ≥ ρ and Ti (ni ,m) ≥ ρ.

(b) If T ′
i �� Ti , for some i , then ni ∈ D,T (m,ni ) ≥ ρ and Ti (ni ,m) ≥ ρ.

Proof By transition induction. See the Appendix for details. �
A similar conformance criterion, called safety despite compromised principals (SDCP), has been proposed in

[FGM07]. According to this criterion, an invalid authorisation decision at a safe node m may arise when some
decision of m logically depends on one or more compromised nodes. A node is said to be compromised (or bad)
when its privileges can be exercised by the attacker. A realistic threat model for a distributed system, such as an
ad hoc network, should include partial compromise, that is the possibility that some of the nodes in the system are
compromised. Partial compromise covers deliberate insider attacks as well as external attackers taking ownership
of insiders’ assets.

In our setting, the SDCP property comes as a consequence of Theorem 6.1, for which trusted nodes never
synchronise with untrusted ones. In this manner, bad nodes (recognised as such) are isolated from the rest of the
network and they cannot affect communications.

Corollary 6.2 (Safety despite compromised nodes)

1. Let M
m?ṽD−−−−−−→ρ M ′ with M ≡ ∏

i ni [Pi ]Ti
and M ′ ≡ ∏

i ni [P ′
i ]T ′

i
. If for some i ,Ti (ni ,m) � bad, then

P ′
i � Pi and T ′

i � Ti .

2. Let M
m !ṽD−−−−−−→ρ M ′ with M ≡ m[P ]T | ∏

i ni [Pi ]Ti
and M ′ ≡ m[P ′]T ′ | ∏

i ni [P ′
i ]T ′

i
. If for some

i ,T (m,ni ) � bad or Ti (ni ,m) � bad, then P ′
i � Pi and T ′

i � Ti .

Proof See the Appendix. �

7. Behavioural semantics

Our main behavioural equivalence between networks is a variant of Milner and Sangiorgi’s (weak) barbed con-
gruence [MiS92] parameterised over security levels. Basically, two terms are barbed congruent if they have the
same observables (called barbs) in all possible contexts, under all possible evolutions. For the definition of barbed
congruence we need two crucial concepts: a reduction semantics to describe how a system evolves, and a notion
of observable which says what the environment can observe in a system.
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From the LTS given in Sect. 4.1 it is easy to see that a network may evolve either because there is a transmission
at a certain security level or because a node loses some trust information. Thus, we define the reduction relation
� between networks using the following inference rules:

(Red1) M
m !ṽD−−−−−−→ρ M ′

M � M ′ (Red2) M
τ−−→trust M ′

M � M ′

We write �
∗ to denote the reflexive and transitive closure of �.

Let us focus on the definition of an appropriate notion of observable. In our calculus, as in CCS [Mil89]
and in π -calculus [MPW92], we have both transmission and reception of messages, although only transmissions
can be observed. In fact, in a broadcasting calculus an observer cannot see whether a given process actually
receives a broadcast synchronisation. In particular, if the node m[σ !〈ṽ〉.P ]T evolves into m[P ]T we do not know
whether some potential recipient has synchronised with m. On the other hand, if a node n[σ ?(x̃ ).P ]T evolves
into n[{ṽ/x̃}P ]T , then we can be sure that some trusted node has transmitted a message ṽ to n at security level σ .

Following Milner and Sangiorgi [MiS92] we use the term “barb” as synonymous of observable.

Definition 7.1 (σ -Barb) We write M ↓σ
n if either M ≡ m[σ !〈ṽ〉.P ]T | N or M ≡ m[σ !〈ṽ〉n .P ]T | N , for some

m,N , ṽ ,P ,T such that n �∈ nds(M ), and T (m,n) ≥ σ . We write M ⇓σ
n if M �

∗ M ′ ↓σ
n for some network M ′.

The barb M ⇓σ
n says that there is a potential transmission at security level σ , originating from M , that may reach

the node n of the environment.
In the sequel, we write R to denote binary relations over networks.

Definition 7.2 (σ -Barb preserving) A relation R is said to be σ -barb preserving if whenever M R N it holds that
M ↓σ

n implies N ⇓σ
n .

Definition 7.3 (Reduction closure) A relation R is said to be reduction closed if M R N and M � M ′ imply there
is N ′ such that N �

∗ N ′ and M ′ R N ′.

As we are interested in weak behavioural equivalences, our definition of reduction closure is given in terms of
weak reductions.

Definition 7.4 (Contextuality) A relation R is said to be contextual if M R N implies that M | O R N | O , for
all networks O such that (nds(M ) ∪ nds(N )) ∩ nds(O) � ∅.

Finally, everything is in place to define our touchstone behavioural equivalence.

Definition 7.5 (σ -Reduction barbed congruence) The σ -reduction barbed congruence, written ∼�σ , is the largest
symmetric relation over networks which is σ -barb preserving, reduction closed and contextual.

8. Bisimulation proof method

The definition of σ -reduction barbed congruence is simple and intuitive. However, due to the universal quan-
tification on parallel contexts, it may be quite difficult to prove that two terms are equivalent. Simpler proof
techniques are based on labelled bisimilarities. In this section, we define an appropriate notion of bisimilarity. As
a main result, we prove that our labelled bisimilarity is a proof-technique for our σ -reduction barbed congruence.

In general, a labelled bisimilarity describes how two terms (in our case networks) can mimic each other’s
actions. As we are interested in weak behavioural equivalences, we have to distinguish between transmissions that
can be observed and transmissions that cannot be observed by the environment. We do that by introducing two
extra rules in the labelled transition system:

(Shh)
M

m !ṽD−−−−−−→ρ M ′ D ⊆ nds(M ) ρ ′≥trust

M
τ−−→ρ ′ M ′ (Obs)

M
m !ṽD−−−−−−→ρ M ′ D′:�D\nds(M ) �� ∅

M
m !ṽ�D′−−−−−−−→ρ M ′
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Rule (Shh) models transmissions that cannot be observed because none of the potential receivers is in the envi-
ronment. Notice that, as in [CrR07], the security level of (non-observable) silent actions is not related to the
transmissions they originate from. Rule (Obs) models a transmission, at security level ρ, of a message ṽ , from a
sender m, that may be received, and hence observed, by the nodes of the environment (i.e. those in D \ nds(M )).
Notice that the rule (Obs) can be applied in a derivation tree only at top-level.

In the sequel, we use the metavariable α to range over the following actions: τ,m?ṽD and m!ṽ�D. Since
we are interested in weak behavioural equivalences, that abstract over τ -actions, we introduce weak actions in a
standard manner: we write �⇒ρ to denote the reflexive and transitive closure of

τ−−→ρ ; the weak transition α��⇒ρ

is an abbreviation for �⇒ρ

α−−→ρ �⇒ρ , while α̂��⇒ρ denotes �⇒ρ if α � τ and α��⇒ρ otherwise.

Definition 8.1 (δ-Bisimilarity) The δ-bisimilarity, written ≈δ, is the largest symmetric relation over networks such

that whenever M ≈δ N and M
α−−→ρ M ′, with ρ ≤ δ, there exists a network N ′ such that N α̂��⇒ρ N ′ and M ′ ≈δ N ′.

This definition is inspired by that proposed in [CrR07]. Intuitively, two networks are δ-bisimilar if they cannot
be distinguished by any observer that can perform actions at security level at most δ.

Remark 8.2 Notice that we can redefine the δ-bisimilarity using a labelled transition system with network restric-
tions as suggested in Sect. 5. However, in Proposition 5.2 we already proved the operational correspondence
between the two labelled transition systems. As a consequence, the resulting bisimilarity would not change.

It is worth noticing that bisimilar networks must have the same set of nodes.

Proposition 8.3 If M ≈δ N , for some δ, then nds(M ) � nds(M ).

Proof By contradiction. Suppose there is a node m such that m ∈ nds(M ) and m �∈ nds(N ). Then, by an

application of rule (RcvEnb) we have N
m?ṽ∅−−−−−→ρ N , for all ρ ≥ trust. Since M ≈δ N there must be M ′ such that

M m?ṽ∅�����⇒ρ M ′, with M ′ ≈ N ′. However, since m ∈ nds(M ), by inspection on the transition rules, there is no
way to deduce such a weak transition for M . �

In the next result we show that our bisimilarity is a congruence. This result allows us to reason on networks
in a modular fashion.

Theorem 8.4 (≈δ is contextual) Let M and N be two networks such that M ≈δ N . Then M | O ≈δ N | O for all
networks O such that (nds(M ) ∪ nds(N )) ∩ nds(O) � ∅
Proof We prove that the relation

S def� {(M | O , N | O) for all O such that M ≈δ N }

is a δ-bisimulation. By case analysis on the transition M | O
α−−→ρ M̂ , with ρ ≤ δ. See the Appendix for details.

�

The previous result is fundamental to prove that the labelled bisimilarity is a sound proof technique for the
σ -reduction barbed congruence.

Theorem 8.5 (Soundness) Let M and N be two networks such that M ≈δ N . Then M ∼�σ N , for σ ≤ δ.

Proof We have to prove that the δ-bisimilarity is σ -barb preserving, reduction-closed, and contextual. The σ -
barb preserving follows because bisimilar networks can mimic each other transmissions. The reduction-closure
follows by definition, while contextuality follows by Theorem 8.4. For details see the Appendix. �
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9. Non-interference

Information flow properties are a particular class of security properties for controlling the information flow
among different entities. The seminal idea of non-interference proposed in [GoM82] aims at assuring that “vari-
ety in secret inputs should not be conveyed to public outputs”. In a multilevel system [BeL76] this property says that
information can only flow from low levels to higher ones. The first taxonomy of non-interference-like properties
has been uniformly defined and compared in [FoG95, FoG97] in the context of a CCS-like process calculus. In
[FoG95, FoG97], processes are divided into high-level and low-level processes, according to the level of actions
they can perform. To detect whether an incorrect information flow (i.e. from high-level to low-level) occurs, a par-
ticular non-interference-like property has been defined, the so-called Non Deducibility on Composition (NDC).
This property basically says that a process is secure with respect to wrong information flows if its low-level
behaviour is independent of changes to its high-level behaviour. Here, we prove a non-interference result using
our notion of δ-bisimilarity. In Definition 9.1 we formalise the concept of high-level behaviour introducing the
notion of high-level network. We recall that actions at security level trust do not depend on the syntax but they
only depend on the trust management component; thus, these actions can fire at any moment of the computation.

Definition 9.1 (δ-high level network) A network H is a δ-high level network, written H ∈ Hδ, if whenever H
λ−−→δ′

H ′ then either (i) δ′ � trust, or (ii) λ � m?ṽ∅ and H ′ � H , or (ii) δ′ > δ. Moreover, H ′ ∈ Hδ.

The non-interference result is stated below. Intuitively, if two δ-bisimilar networks M and N run in parallel
with two trust-bisimilar high-level networks H and K , then the resulting networks M | H and N | K are δ-bisimilar
as well.

Theorem 9.2 (Non-interference) Let M and N be two networks such that M ≈δ N . Let H and K be two networks
such that: (i ) H ,K ∈ Hδ and (ii ) H ≈trust K . Then, M | H ≈δ N | K .

Proof We prove that the relation

S def� {(M | H , N | K ) : H ,K ∈ Hδ, M ≈δ N and H ≈trust K }
is a δ-bisimulation. By case analysis on the transition M | H

α−−→ρ M̂ , with ρ ≤ δ. See the Appendix for details. �

10. Case studies

In this section, we use our calculus to specify a trust-based version of the AODV routing protocol [PeB99], and a
trust-based version of the leader election algorithm for MANETs proposed in [VKT04]. In these two encodings,
both routing paths and leader election are associated with a security level σ of the nodes involved in the procedure.
This is the essence of trust-based distributed algorithms in a multilevel network, where information at a given
security level ρ may only travel along nodes with a security level greater or equal than ρ.

A subnetwork of a network M is said to be a connected component of M if all nodes are connected to each
other via one or more hops. Since we are working in a multilevel scenario we define a σ -connected component as
a connected component where neighbouring nodes trust each other at security level (at least) σ .

Definition 10.1 (σ -connected component) Let M be a network. We say that N is a σ -connected component of
M if

• M ≡ N | M ′, for some network M ′;
• for all m,n ∈ nds(N ) there is a sequence of nodes m1, . . . ,mk ∈ nds(N ), with N ≡ m1[P1]T1

| · · · | mk [Pk ]Tk
|

N ′, such that m � m1,n � mk ,Ti (mi ,mi+1) ≥ σ and Ti (mi+1,mi ) ≥ σ , for 1 ≤ i ≤ k−1.

Our encodings are trust-based versions of AODV and leader election as they both succeed only within a
σ -connected component.
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Fig. 1. The AODV routing protocol

10.1. A trust-based variant of the AODV routing protocol

Ad hoc networks rely on multi-hop wireless communications where nodes have essentially two roles: (i) acting
as end-systems, and (ii) performing routing functions. A routing protocol is used to determine the appropriate
paths on which data should be transmitted in a network. Routing protocols for wireless systems can be classi-
fied into topology-based and position-based. Topology-based protocols rely on traditional routing concepts, such
as maintaining routing tables or distributing link-state information. Position-based protocols use information
about the physical locations of the nodes to route data packets to their destinations. Topology-based protocols
can be divided into proactive and reactive protocols. Proactive routing protocols try to maintain consistent rout-
ing information within the system at any time. In reactive routing protocols, a route is established between a
source and a destination only when it is needed. For this reason, reactive protocols are also called on-demand
protocols. Examples of proactive routing protocols for MANETs are OLSR [CQJ01] and DSDV [PeB94], while
DSR [JoM96] and AODV [PeB99] are on-demand protocols.

In this section, we use our calculus to formalise a trust-based version of the AODV routing protocol.
In the AODV protocol each node maintains a routing table (RT ) containing informations about the routes to

be followed when sending messages to the other nodes of the network. In particular, for each destination node n
a routing table should provide an entry containing the following information:

• the name of the destination node (i.e. n)
• the name of the neighbour node to which to send messages addressed to n
• the number of hops necessary to reach n
• the destination sequence number associated with n, to determine whether the path is up-to-date
• the expiration time for that entry.

Each node maintains also a local history table (HT ) containing pairs of the form (source-name, request-id) to
discard request packets which have already been processed.

In Fig. 1, we report a scheme of the AODV protocol with four nodes: a source s , a destination d and two
intermediate nodes l and m. We also provide a graphical representation of the flow of messages: dashed arrows
denote the multicast of route request packets (rreq), while continuous arrows denote the unicast sending of route
reply packets (rrep). More precisely, suppose the source node s wishes to send a message to the destination
node d . In order to perform the sending, s will look up an entry for d in its routing table. If there is no such an
entry it will launch a route discovery procedure to find a route to d . The protocol works as follows:

• The source s multicasts a route request packet of the form

〈rreq, s, Rid, d , Sseq, Dseq, hc〉.
Here, the fields s and d denote the IP addresses of source and destination, respectively. The field Rid denotes
a request-id, that is a sequence number uniquely identifying the request. The Sseq field contains the source
sequence number, i.e. the current sequence number to be used in routing table entries pointing towards the
source node s . The Dseq field is the destination sequence number containing the latest sequence number received
in the past by the source node s for any route towards the destination d ; this number is 0 if d is unknown to s .
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The hop-count field hc keeps track of the number of hops from the source node to the node handling the
request. Initially, this field is set to 0.

• When the intermediate node l receives the route request, it acts as follows:

– It looks up the pair (s , Rid) in its local history table to verify whether the request has already been pro-
cessed. If this is the case, the request is discarded and the processing stops. Otherwise, the pair is entered
into the local history table, so that future requests from s with the same Rid will be discarded.

– Then, l looks up an entry for d in its routing table. If there is such an entry, with destination sequence
number greater than or equal to the Dseq, then a route reply packet is sent back to the source saying to
use l itself to get to the destination d . Otherwise, it re-multicasts the route request packet with the hc field
incremented by one.

– In any case, l compares the source sequence number Sseq contained in the request with the one appearing
in its routing table associated with node s . If Sseq is more recent (i.e. greater) than the one in the table, l
updates its routing table entry associated with s .

• Node m will repeat the same steps executed by node l and it will re-multicast the route request packet.
• Whenever the destination d receives the route request, it sends to m a unicast reply packet of the form

〈rrep, s, d , Dseq ′, hc, lt〉.
Here, the source address and the destination address are copied from the incoming request, while the destina-
tion sequence number is possibly updated according to d ’s routing table. The hop-count field is set to 0. The
lifetime field contains the time in milliseconds for which nodes receiving the rrep consider the route to be
valid.

• The reply packet then follows the reverse path towards node s increasing the hc field at each hop. Each node
receiving the reply packet will update the routing table entry associated with d if one of the following conditions
is met:

– No route to d is known;
– The sequence number for d in the route reply packet is greater than that stored in the routing table;
– The sequence numbers are equal but the new route is shorter.

In this way, nodes on the reverse route learn the route to d .

Our encoding is a trust-based variant of the original protocol as paths are associated with security levels,
and they are composed only by trusted nodes. As consequence, entries of routing tables and history tables also
contains the security level of paths and requests, respectively.

Trust-based routing schemes generally separate nodes into two possible states: benevolent and malevolent
nodes. In our model, there is no such discrete segregation and all nodes in the network are considered potential
routing candidates based upon their current trust level. Thus, our scheme facilitates best-effort delivery even in
the presence of malicious and selfish nodes. According to our operational semantics, before sending or receiving
a message, a node verifies the security level of the participants. In the protocol, this means that any node implicitly
checks the security level of the neighbours to which it transmits/receives messages. This ensures that both request
messages and reply messages are forwarded on paths of trusted nodes, up to a certain security level.

In our trust-based encoding of AODV, we adopt a few simplifications. More specifically, we do not consider
lifetime fields and route error messages. Lifetime would require a notion of time, while error messages could be
easily modelled. Moreover, node disconnections are modelled using the choice operator of our calculus.

For convenience, we generalise the matching construct as follows:

[(ũ1 op ũ ′
1)lc. . .lc(ũk op ũ ′

k )]P ,Q

where lc is a binary logical operator. Its operational semantics is straightforward. We also assume the fol-
lowing two functions: Dseq(·, ·) and Hcnt(·, ·). These functions take in input a routing table RT and a node
identifier id . In particular, Dseq(RT , id) returns the destination sequence number of the entry for id in RT ,
whereas Hcnt(RT , id) returns the next hop node. In all cases, if there is no entry in RT associated with id , both
functions return the undefined value ⊥. In the sequel, we will use the routing table RT and the history table
H T as partial mappings from node identifiers to tuples of data. We sometimes write RT {id �→ Dseq, hc,nh, ρ}
to denote the routing table RT in which the entry associated with the node id is updated with the information
contained in Dseq, hc,nh and ρ. Similarly, we will write H T {id �→ Rid , ρ} to update a history table.
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Fig. 2. A trust-based encoding of the AODV protocol at security level σ

In Fig. 2 we provide an encoding of a trust-based variant of the AODV protocol in our calculus. Let us explain
it in some detail.

At the beginning, each node can be in one of these two states:

• Source(ids, idd , Sseq, Dseq, Rid, RTs), when a source node initiates the protocol; in this state the node mul-
ticasts a request message;

• Node(id, RT , H T ), when a node is ready to receive a request or a reply message.

While executing the protocol nodes may evolve into one of the following states:

• AwaitReply(ids, idd , Sseq, Dseq, Rid, RTs), the source node waits for the reply message;

• RouteSuccess(ids, idd , RT ), the source node has accepted the route;
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• RRequest(req, ids, idd , Sseq, Dseq, Rid, hc, idp, id, RT , H T ), an intermediate node receives a request mes-
sage;

• RReply(rep, ids, idd , Dseq, hc, nh, idp, id, RT , H T ), an intermediate node receives a reply message;
• SndReply(ids, idd , Dseq, hc, idp, id, RT , H T ), a recipient node (a node that knows a route to the destination)

or the destination node sends the reply message.

The source node s begins in state Source〈ids, idd , Sseq, Dseq, Rid, RTs〉 where ids and idd are the node-ids
of the source and the destination, respectively; Sseq and Dseq are the source and destination sequence numbers,
respectively, and RTs is the routing table of s . In this state, the source node multicasts a route request message of
the form 〈rreq, ids , idd , Sseq+1,Dseq, Rid+1, 0, ids〉. For convenience, the message contains also the node-id
(the last element of the message) of the source in order to facilitate the storing of a new entry in the reverse rout-
ing table. After this transmission, the node evolves into the state AwaitReply〈ids, idd , Sseq, Dseq, Rid, RTs〉,
waiting for a reply message of the form 〈rep, ids, idd , Dseq ′, hc, nh〉.

When the source receives a reply message for its request it checks whether the destination sequence num-
ber of the reply packet is greater than the one stored in its routing table (or the sequence numbers are equal
and the hop counter is smaller). If this is the case the source node accepts the route, evolving into the state
RouteSuccess〈ids, idd , RTs{idd �→ Dseq ′, hc, nh, σ }〉 meaning that the route from ids to idd has been accepted
and the routing table is updated accordingly. Otherwise, the reply is dropped and the node returns into the state
Source〈ids , idd ,Sseq +1,Dseq,Rid +1,RTs〉. In any case, the source node may nondeterministically return into
the state Source〈ids , idd ,Sseq + 1,Dseq,Rid + 1,RTs〉, starting again the protocol (in case the reply message
gets lost).

The other nodes in the protocol may be either intermediate nodes or the destination node. In both cases, they
begin the protocol in the state Node〈id, RT , H T 〉, where id is the identity of the node, RT is the routing table of
node id , and HT is the history table of the node. In this state, the node expects to receive either a route request
message or a route reply message.

A node moves to the state RRequest〈req, ids, idd , Sseq, Dseq, Rid, hc, idp, id, RT , H T 〉 when it receives a
route request. In this state, it first checks its history table to verify whether the request is fresh. Then, it checks
whether it is the destination of the request or a potential recipient of the request, because it knows a “better”
route to the destination. In doing so, it also profits to check the source sequence number of the request to pos-
sibly update its routing table entry pointing to the source node. Then, the node moves into a state SndReply to
send a route reply packet. If the node is not the destination and it does not know a “better” path to reach the
destination, then it re-multicasts the request message, after adding 1 to the hc field. Then, the node moves into
the state Node〈id, RT , H T 〉.

When a node in state Node〈id, RT , H T 〉 receives a route reply message it evolves into the reply state
RReply〈rep, ids, idd , Dseq, hc, nh,idp, id, RT , H T 〉. Here, it carries out checks similar to those appearing in
state AwaitReply.

In state SndReply〈ids, idd , Dseq, hc, idp, id, RT , H T 〉, the node sends a unicast reply message of the form
〈rrep, ids, idd , Dseq, hc+1, id〉 to the previous node in the route path, that is idp . The choice operator allows to
avoid deadlocks in case the previous node becomes suddenly disconnected.

Here, we report an example to explain how the protocol works.

Example 10.2 Let M be the following network:

M def� l [Source〈l ,n,Sseq,Dseq,Rid ,RTl 〉]Tl
|

m[Node〈m,RTm ,HTm 〉]Tm
|

n[Node〈n,RTn ,HTn 〉]Tn

with Tl (l ,m) � Tl (l ,n) � Tm (m, l ) � Tm (m,n) � Tn (n,m) ≥ σ . For convenience we define:

• v1 � 〈rreq, l, n, Sseq+1, Dseq, Rid+1, 0, l〉,
• v2 � 〈rreq, l, n, Sseq+1, Dseq, Rid+1, 1, m〉,
• v3 � 〈rrep, l, n, Dseq ′, 1, m〉,
• v4 � 〈rrep, l, n, Dseq ′, 2, l〉,
where Dseq ′ � Dseq(RTn ,n).
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Here, we report the evolution of M while running the AODV protocol.

M
l !v1{m,n}−−−−−−−−→σ l [AwaitReply〈l ,n,Sseq,Dseq,Rid ,RTl 〉]Tl

|
m[RRequest〈rreq, l ,n,Sseq+1,Dseq,Rid+1, 1, l ,m,RTm ,HTm 〉]Tm

|
n[Node〈n,RTn ,HTn 〉]Tn

def� M1.

Node l starts the protocol multicasting the message v1 and evolving into the state

AwaitReply〈l ,n,Sseq,Dseq,Rid ,RTl 〉
waiting for a reply. Only m receives the message evolving into

RRequest〈rreq, l ,n,Sseq+1,Dseq,Rid+1, 1, l ,m,RTm ,HTm 〉.

M1
m !v2{l,n}−−−−−−−−→σ l [AwaitReply〈l ,n,Sseq,Dseq,Rid ,RTl 〉]Tl

|
m[Node〈m,RTm ,HTm{l �→ Rid+1}〉]Tm

|
n[SndReply〈l, n, Dseq(RTn, n), 0, m, n,

RT {l �→ Dseq(RTn, n), 1, m, σ }, H T {l �→ Rid+1, σ }〉]Tn

def� M2.

We suppose that node m does not have a route entry for the destination n and its source sequence number is
up-to-date. Thus, m multicasts v2 evolving into Node〈m,RTm ,HTm{l �→ Rid+1, σ }〉, waiting for a reply. Node l
ignores the message sent by m and remains in the state AwaitReply〈l, n, Sseq, Dseq, Rid, RTl〉. Node n receives
the request, it verifies to be the destination node and that its entry pointing to the source node is not up-to-date.
In this case, it evolves into the state

SndReply〈l ,n,Dseq ′, 0,m,n, RT {l �→ Dseq ′, 1, m, σ }, H T {l �→ Rid+1, σ }〉.

M2
n !v3m−−−−−−→σ l [AwaitReply〈l ,n,Sseq,Dseq,Rid ,RTl 〉]Tl

|
m[SndReply〈l ,n, Dseq ′, 0,m,n,RT{l �→ Dseq ′, 1,m, σ },

HT{l �→ Rid+1, σ }〉]Tm
|

n[Node〈n,RTn ,HTn 〉]Tn

def� M3.

Node n sends the reply message v3 back to m. We assume that node m correctly receives this message and it
evolves into the state

SndReply〈l ,n, Dseq(RTm ,n), 0,m,n,RT{l �→ Dseq(RTm ,n), 1,m, σ },HT{l �→ Rid+1, σ }〉.

M3
m !v4l−−−−−−→σ l [RouteSuccess〈l ,n,RTl{n �→ Dseq ′, 2,m, σ }〉]Tl

|
m[Node〈m,RTm ,HTm{l �→ Rid+1, σ }〉]Tm

|
n[Node〈n,RTn ,HTn 〉]Tn

.

Finally, node m sends the reply message v4 back to l . Node l receives the message and verifies that the
node-id of the source is the expected ones. Then it accepts the route and evolves into the route-success state
RouteSuccess〈l ,n,RTl{n �→ Dseq ′, 2,m, σ }〉.
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The trust-based nature of our variant of the AODV protocol can be summarised in the following statement.

Proposition 10.3 If a path p is established in a network M by applying the AODV protocol at some security level
σ without changing trust relationships, then the nodes of p constitute a σ -connected component of M .
Proof If trust relationships cannot change then the transition rules of Table 5 cannot fire during the protocol.
The result follows by Theorem 6.1. �

10.2. A trust-based leader election protocol

In [VKT04] the authors propose a leader election protocol to elect as a leader a node of a connected component
of a MANET. The algorithm operates by first “growing” and then “shrinking” a spanning tree rooted at the
node that initiates the election algorithm. We refer to this computation-initiating node as the source node. As we
will see, after the spanning tree shrinks completely, the source node will have adequate information to determine
the most-valued-node and will then multicast its identity to the rest of the nodes in the network. The algorithm
uses three kinds of messages, viz. Election, Ack and Leader. Election messages are used to grow the spanning
tree. When election is triggered at a source node s (for instance, upon departure of its current leader), the node
multicasts an election message. Each node, i , other than the source s , designates the neighbour from which it
first receives an election message as its parent in the spanning tree. Then, each node i multicasts the received
election message. After sending an election message, a node awaits ack messages from its children in the spanning
tree, before sending an ack message to its parent. The ack messages sent to the parents contains leader-election
information based on the ack messages received from children.

Once the spanning tree has completely grown, it shrinks back toward the source. Specifically, once all of i ’s
outgoing election messages have been acknowledged, i sends its pending ack message to its parent node. Tree
shrinkage begins at the leaves of the spanning tree, which are parents to no other node. Eventually, each leaf
receives ack messages for all election messages it has sent. As a consequence, leaves send their pending ack mes-
sages to their respective parents, who in turn send their pending ack messages to their own parents, and so on,
until the source node receives all of its pending ack messages. In a ack message, a node announces to its parent
the node-id and the value of the most-valued-node among all its downstream nodes. Hence, the source node
eventually has sufficient information to determine the most-valued-node from among all nodes in the network.
Once the source node for a computation has received ack messages from all of its children, it then multicasts a
leader message to all nodes announcing the node-id of the most-valued-node.

In Fig. 3 we provide our trust-based encoding of the leader election protocol for MANETs [VKT04]. For
simplicity, in sub-terms of the form σ ?(x̃ ).P we write xi in P to mean the i -th component of x̃ , if this component
is defined, and ⊥ (undefined) otherwise. In the algorithm, nodes periodically use probe and reply messages to
keep track of their neighbours. We do not consider probe and reply messages in our encoding as we can model
the effect of disconnection between nodes using the choice operator. Let us explain more in detail the encoding
of Fig. 3. At the beginning, each node can be in one of these two states:

• Source(id, elec, lid), if the node initiates the protocol;
• Node(id, elec, lid), otherwise.

While the protocol is executed, nodes may evolve into one of the following states:

• AwaitAckInit(id, elec, lid), a starting node waits for ack messages;
• SendLeader(id, elec, lid), a node multicasts a leader message;
• ElectionProcess(id, elec, lid, idp), a node re-multicasts the election message previously received by its par-

ent;
• AwaitAck(id, elec, lid, idp), a node waits for ack messages;
• SendAck(id, elec, lid, idp), a node sends an ack message to its parent;
• LeaderProcess(id, elec, lid, maxid), a node sets its leader parameter to the value received.

The meaning of the parameters of the above states is the following: id is the name of the node; elec indicates
whether the node is part of the election process, thus, elec � 1 if the node is participating in the election process,
elec � 0 otherwise; lid represents the node’s knowledge of the leader; idp is the name of the parent node; maxid
is maximum node-id in the spanning tree rooted at id.
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Fig. 3. An trust-based encoding of the leader election protocol for MANETs at security level σ

A node may send and/or receive election, ack or leader messages. These messages are pairs of the following
shape:
• elecMsg, id meaning an election message sent by node id;
• ackMsg, lid meaning an ack message where lid is the current leader at that stage;
• ldrMsg, lid meaning a leader message where lid is the current node’s knowledge of the leader.

A starting node begins the protocol in the Source〈id, 
, lid〉 state, with lid � id, and multicasts
the message 〈elecMsg, lid〉 moving into the AwaitAckInit〈id , 1, lid〉 state, waiting for the ack message.
In this state the starting node may receive ack messages of the form 〈ackMsg,maxid〉. When this hap-
pens, the node checks the maxid variable contained in the ack message. If maxid ≥ lid then the node
evolves into the AwaitAckInit〈id, elec, maxid〉 state to record the maxid value, otherwise it remains in
AwaitAckInit〈id, elec, lid〉, waiting for other ack messages. In the state AwaitAckInit〈id, elec, lid〉 the
node may also nondeterministically evolves into the SendLeader〈id , elec, lid〉 if no ack messages will be received
anymore. In the SendLeader〈id , elec, lid〉 state a node multicasts a leader message 〈ldrMsg, lid〉 and evolves
into the Node〈id , 0, lid〉 state, waiting for other leader messages sent by its neighbours.
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All the other nodes in the network begin the protocol in the Node〈id , 0, lid〉 state. In this state, they may
receive an election message 〈elecMsg, idp〉 or a leader message 〈leaderMsg, maxid〉. In the first case, they
evolve into ElectionProcess〈id , 1, lid , idp〉, where idp records the id of their parent node, contained in the
election message. In the second case, they evolve into the LeaderProcess〈id , elec, lid ,maxid〉 state, where
maxid is the leader id contained in the leader message. When a node arrives in the election-process state
ElectionProcess〈id , elec, lid , idp〉 state, it multicasts an election message containing its node-id and then evolves
into the state AwaitAck〈id , elec, lid , idp〉, waiting for ack messages. A node in the AwaitAck〈id , elec, id , idp〉
state may either receive ack messages of the form 〈ackMsg, maxid〉 or evolve into the SendAck〈id , elec, lid , idp〉
state to model that no ack messages will be received anymore. When the node receives an ack, it stores the maxi-
mum node-id received with the ack, checking if maxid ≥ lid. A node in the SendAck〈id , elec, lid , idp〉 state may
send to its parent node idp an ack message of the form 〈ackMsg, lid〉 with the current maximum node-id, and
goes into the Node〈id , elec, lid〉 state; otherwise the node may evolve into the SendLeader〈id , elec, lid〉 state.
This last state models the case when a node is disconnected from its parent node. In this case, the node reports
its current leader.

A node in the LeaderProcess〈id , elec, lid ,maxid〉 basically propagates the received leader message by set-
ting its lid parameter to the maxid values received in the leader message. The most interesting case is when
maxid < lid. In this case, either the node was not part of the election process or it did not report the ack message
to its parent nodes, for example because it was disconnected. In both case it multicasts its lid as the maximum
node-id sending a leader message 〈ldrMsg, lid〉 and evolves into Node〈id , 0, lid〉.

Here, we report a running example of the protocol.

Example 10.4 Let M be the following network:

M def� l [Source〈l , 0, l〉]Tl
| m[Node〈m, 0,m〉]Tm

| n[Node〈n, 0,n〉]Tn

with l > m > n and Tl (l ,m)�Tm (m, l )�Tm (m,n)�Tn (n,m)≥σ . Here, we report the evolution M while
running the protocol.

M
l !〈elecMsg,l〉m−−−−−−−−−−−−→σ l [AwaitAckInit〈l , 1, l〉]Tl

|
m[ElectionProcess〈m, 1,m, l〉]Tm

|
n[Node〈n, 0,n〉]Tn

def� M1.

Node l starts the protocol multicasting the election message 〈elecMsg, l〉 evolving into AwaitAckInit〈l , 1, l〉.
Only node m receives the election message and evolves into the state ElectionProcess〈m, 1,m, l〉. Node m has
marked l as its parent node.

M1
m !〈elecMsg,m〉{l,n}−−−−−−−−−−−−−−−→σ l [AwaitAckInit〈l , 1, l〉]Tl

| m[AwaitAck〈m, 1,m, l〉]Tm
|

n[ElectionProcess〈n, 1,n,m〉]Tn

def� M2.

Node m multicasts the message 〈elecMsg,m〉, and evolves into AwaitAck〈m, 1,m, l〉, waiting for ack messages.
Node l ignores the message and remains in AwaitAckInit〈l , 1, l〉, whereas n receives the message and evolves
into ElectionProcess〈n, 1,n,m〉. Again the last parameter m indicates the parent node of n.

M2
n !〈elecMsg,n〉m−−−−−−−−−−−−−→σ l [AwaitAckInit〈l , 1, l〉]Tl

| m[AwaitAck〈m, 1,m, l〉]Tm
|

n[AwaitAck〈n, 1,n,m〉]Tn

def� M3.
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Node n multicasts the election message 〈elecMsg,n〉 and then it evolves into the state AwaitAck〈n, 1,n,m〉,
waiting for ack messages. Node m ignores the message and remains in its state.

M3
n !〈ackMsg,n〉m−−−−−−−−−−−−→σ l [AwaitAckInit〈l , 1, l〉]Tl

| m[AwaitAck〈m, 1,m, l〉]Tm
|

n[Node〈n, 1,n〉]Tn

def� M4.

As n has no children, it will not receive ack messages. Thus, it will eventually evolve into SendAck〈n, 1,n,m〉
sending the ack message 〈ackMsg,n〉 to its parent node m. This message contains the current leader of node n,
that is n itself. After the sending, n evolves into the state Node〈n, 1,n〉, waiting for leader messages.

M4
m !〈ackMsg,m〉l−−−−−−−−−−−−→σ l [AwaitAckInit〈l , 1, l〉]Tl

| m[Node〈m, 1,m〉]Tm
|

n[Node〈n, 1,n〉]Tn

def� M5.

When m receives the message 〈ackMsg,n〉, it checks whether n is greater than its current leader m. As m >
n,m sends the ack message 〈ackMsg,m〉 to its parent l and evolves into the state Node〈m, 1,m〉. The message
〈ackMsg,m〉 contains the current leader of m, that is m itself.

M5
l !〈ldrMsg,l〉m−−−−−−−−−−−→σ l [Node〈l , 0, l〉]Tl

| m[LeaderProcess〈m, 1,m, l〉]Tm
|

n[Node〈n, 1,n〉]Tn

def� M6.

When l receives the message 〈ackMsg,n〉, it checks whether m is greater than its current leader l . As l > m, node
l multicasts the leader message 〈ldrMsg, l〉 and evolves into the state Node〈l , 0, l〉. Node m receives the leader
message and evolves into the state LeaderProcess〈m, 1,m, l〉.

M6
m !〈ldrMsg,l〉{l,n}−−−−−−−−−−−−−→σ l [Node〈l , 0, l〉]Tl

| m[Node〈m, 0, l〉]Tm
|

n[LeaderProcess〈n, 1,n, l〉]Tn

def� M7.

Node m checks whether l is greater than its current leader m. As l > m, then m multicasts the leader message
〈ldrMsg, l〉 with l as its current leader and evolves into the state Node〈m, 0, l〉. When l receives this message, as it
is in Node〈l , 0, l〉 state, it has simply to check whether the received leader corresponds to its current leader. This
is the case, then it remains into Node〈l , 0, l〉 state. When n receives the leader message 〈ldrMsg, l〉, it evolves into
the state LeaderProcess〈n, 1,n, l〉.

M7
n !〈ldrMsg,l〉m−−−−−−−−−−−→σ l [Node〈l , 0, l〉]Tl

| m[Node〈m, 0, l〉]Tm
| n[Node〈n, 0, l〉]Tn

.

Finally, node n verifies that l is greater than its current leader n. Thus, l becomes the current leader of n that
multicasts the leader message 〈ldrMsg, l〉 with current leader l , evolving into the state Node〈n, 0, l〉. The leader
message sent by n is received by m that verifies that l is already its leader. So, it remains in the state Node〈m, 0, l〉.

The trust-based nature of our variant of the leader election protocol can be summarised in the following
statement.

Proposition 10.5 If a node n is elected in a network M by applying the leader election protocol at some security level
σ without changing trust relationships, then the nodes which have participated to its election constitute a σ -connected
component of M .
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Proof If trust relationships cannot change then the transition rules of Table 5 cannot fire during the protocol.
The result follows by Theorem 6.1. �

11. Conclusions and related work

We have proposed a process calculus for mobile ad hoc networks which relies on an abstract behaviour-based
multilevel trust model. Our trust model supports both direct trust, to describe monitoring of neighbour nodes,
and indirect trust, when collecting recommendations and spreading reputations. The operational semantics of
the calculus is given in terms of a labelled transition system, where actions are executed at a certain security level.
As to the behavioural semantics we focus on a trust-based variant of Milner and Sangiorgi’s barbed congru-
ence, a standard contextually-defined program equivalence. We then define a labelled bisimilarity over networks
parameterised over security levels. We prove that our labelled bisimilarity is a sound proof-technique for our
program equivalence. One may wonder whether our labelled bisimilarity is also complete with respect to barbed
congruence. Said in other words, whether barbed congruence has the same discriminating power as bisimilarity.
In general, proving a completeness result for a labelled bisimilarity is rather hard. Nevertheless, we conjecture that
in our setting bisimilarity is also complete. This is because the trust management operational semantics provides
the environment with enough distinguishing power to discriminate, for instance, nodes with the same code, the
same trust table, but different node name: m[nil]T �∼�σ n[nil]T , for m �� n. Here, the trust information sent by the
two nodes m and n can be used by the environment in different manner, according to m’s and n’s reputation.

Then, we have proved that communications in our setting are safe, in a precise sense, with respect to the
security levels of the involved parties. In particular, we guarantee safety despite compromised nodes, meaning
that compromised nodes cannot affect the rest of the network. A non-interference result is also proved in terms
of information flow. Finally, we have demonstrated the practical utility of our calculus by providing a formal
description of trust-based versions of a routing protocol and a leader election protocol for ad hoc networks.

The problem of protecting information and resources in multilevel systems [BeL76] has been extensively
studied using different approaches. For instance, Bodei et al. [BDN01] have applied flow analysis techniques,
Reitman and Andrews [ReA80] have used axiomatic logic, while Volpano and Smith in [VoS98], Boudol and
Castellani [BoC02] and Heintz and Riecke in [HeR98] have focused on type systems for prototypical program-
ming languages. Excellent surveys on information flow properties can be found in [FoG01, RyS99].

In the context of multilevel systems, Crafa and Rossi [CrR07] have introduced a notion of controlled informa-
tion release for a typed version of the π -calculus extended with declassified actions. They have provided various
characterisations of controlled release property, based on typed behavioural equivalence, parameterised on secu-
rity levels, to model observers at a certain security level. Our notion of bisimilarity, parameterised on security
levels, is inspired by theirs. Hennessy has proposed a typed version of the asynchronous π -calculus with I-O
types associated with security levels. Typed versions of may and must equivalences are then used to prove a
non-interference results.

Let us examine now the most relevant related work on process calculi for wireless systems. Nanz and
Hankin [NaH06] have introduced a calculus for Mobile Wireless Networks (CBS�), relying on graph representa-
tion of node localities. The main goal of the paper is to present a framework for specification and security analysis
of communication protocols for mobile wireless networks. Merro [Mer09] has proposed a process calculus for
Mobile Ad Hoc Networks with a labelled characterisation of reduction barbed congruence. Godskesen [God07]
has proposed a calculus for mobile ad hoc networks (CMAN). The paper proves a characterisation of reduc-
tion barbed congruence in terms of a contextual bisimulation. It also contains a formalisation of an attack
on the cryptographic routing protocol ARAN. Singh et al. [SRS10] have proposed the ω-calculus, a conserva-
tive extension of the π -calculus. A key feature of the ω-calculus is the separation of a node’s communication
and computational behaviour from the description of its physical transmission range. The authors provide a
labelled transition semantics and a bisimulation in “open” style. The ω-calculus is then used for modelling both
the AODV routing protocol and the leader election protocol of [VKT04], in an untrusted setting. Ghassemi
et al. [GFM08] have proposed a process algebra for mobile ad hoc networks (RBPT) where, topology changes
are implicitly modelled in the (operational) semantics rather than in the syntax. The authors propose a notion
of bisimulation for networks parameterised on a set of topology invariants that must be respected by equivalent
networks. This work in then refined in [GFM09] where the authors propose an equational theory for an extension
of RBPT. Godskesen and Nanz [GoN09] have proposed a simple timed calculus for wireless systems to express
a wide range of mobility models. All the previous calculi abstract from the presence of interferences. Lanese and
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Sangiorgi [LaS10] have instead proposed the CWS calculus, a lower level untimed calculus to describe interfer-
ences in wireless systems. More recently, Song and Godskesen [SoG10], have proposed a probabilistic calculus
for wireless systems modelling unreliable connection. They have characterised a notion of weak bisimilarity by a
variant of PCTL.

None of the calculi mentioned above deal with trust. Carbone et al. [CNS04] have introduced ctm, a process
calculus which embodies the notion of trust for ubiquitous systems. In ctm each principal is equipped with a
policy, which determines its legal behaviour, formalised using a Datalog-like logic, and with a protocol, in the
process algebra style, which allows interactions between principals and the flow of information from principals
to policies.
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A. Proofs

Proof of Theorem 6.1

1. Let us prove the first part of the statement.

(a) The proof is by induction on why M
m?ṽD−−−−−−→σ M ′. The base cases are when the transition M

m?ṽD−−−−−−→σ

M ′ is obtained by an application of one of the following rule: (Rcv), (RcvEnb). The most interesting case is
the first one. Thus, M � n[σ ?(x̃ ).P ]T ,M ′ � n[{ṽ/x̃ }P ]T ,D � n and T (n,m) ≥ σ , as required.

As to the inductive case, let us suppose the transition M
m?ṽD−−−−−−→σ M ′ id derived by an application of

one of the following rules: (Sum), (RcvPar). We show details only for (RcvPar); the other case is similar. Let

be M
m?ṽD−−−−−−→σ M ′ by an application of rule (RcvPar) with M � M1 | M2 and M ′ � M ′

1 | M ′
2, for

some M1,M2,M ′
1 and M ′

2, because M1
m?ṽD′−−−−−−→σ M ′

1 and M2
m?ṽD′′−−−−−−→σ M ′

2, where D :� D′ ∪ D′′. More
precisely, let

M ≡
∏

i

ni [Pi ]Ti
�

∏

k

nk [Pk ]Tk
|
∏

j

nj [Pj ]Tj

and

M ′ ≡
∏

i

ni [P ′
i ]T ′

i
�

∏

k

nk [P ′
k ]Tk

|
∏

j

nj [P ′
j ]Tj

for appropriate processes and tags, where

M1 � ∏
k nk [Pk ]Tk

M ′
1 � ∏

k nk [P ′
k ]Tk

M2 � ∏
j nj [Pj ]Tj

M ′
2 � ∏

j nj [P ′
j ]Tj

.

If P ′
k �� Pk , for some k or if P ′

j �� Pj , for some j , the result follows by inductive hypothesis.

(b) This case applies only for transitions at level trust. It is proved by induction on M
m?ṽD−−−−−−→trust M ′. The

proof is similar to the previous case.

2. Let us prove the second part of the statement.

(a) The proof is by induction on the transition M
m !ṽD−−−−−−→σ M ′. The base cases are when M

m !ṽD−−−−−−→σ M ′ is
obtained by an application of one of the following rules: rules (MCast), (UCast), (DTrust), or (SndRcm). These
cases are immediate.
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As to the inductive case, let us suppose that M
m !ṽD−−−−−−→σ M ′ is derived by the application of one of

the following rules: (Sum), (Sync). We show details only for rule (Sync); the other case is similar. Thus, let

M
m !ṽD−−−−−−→σ M ′ by an application of rule (Sync), with M � M1 | M2 and M ′ � M ′

1 | M ′
2, for some

M1,M2,M ′
1 and M ′

2, because M1
m !ṽD−−−−−−→σ M ′

1 and M2
m?ṽD′−−−−−−→σ M ′

2 (the converse is similar), with
D :� {n : T (m,n) ≥ σ },D′ ⊆ D. More precisely, let

M ≡ m[P ]T |
∏

i

ni [Pi ]Ti
� m[P ]T |

∏

k

nk [Pk ]Tk
|
∏

j

nj [Pj ]Tj

and

M ′ ≡ m[P ′]T ′ |
∏

i

ni [P ′
i ]T ′

i
� m[P ′]T ′ |

∏

k

nk [P ′
k ]T ′

k
|
∏

j

nj [P ′
j ]T ′

j

for appropriate processes and tags, where

M1 � m[P ]T | ∏
k nk [Pk ]Tk

M ′
1 � m[P ′]T ′ | ∏

k nk [P ′
k ]T ′

k

M2 � ∏
j nj [Pj ]Tj

M ′
2 � ∏

j nj [P ′
j ]T ′

j
.

By inductive hypothesis, if P ′
k �� Pk , for some k , then T (m,nk ) ≥ σ and Tk (nk ,m) ≥ σ . Similarly, by

inductive hypothesis, if T ′
k �� Tk , for some k , then T (m,nk ) ≥ σ and Tk (nk ,m) ≥ σ . By applying the first

part of this theorem, if P ′
j �� Pj , for some j , then Tj (nj ,m) ≥ σ . It remains to prove that T (m,nj ) ≥ σ .

Again, by applying the first part of this theorem, we have nj ∈ D′. As D′ ⊆ D and D :� {n : T (m,n) ≥ σ }
it holds that T (m,nj ) ≥ σ , as required.

(b) This case applies only for transitions at level trust. The proof is by induction on the transitionM
m !ṽD−−−−−−→trust

M ′. The proof is similar to the previous case.
�

Proof of Corollary 6.2
Let us prove the second part of the statement. The first part is simpler. We proceed by contradiction. We prove
that if P ′

i �� Pi or T ′
i �� Ti , for some i , then T (m,ni ) �� bad and Ti (ni ,m) �� bad. Indeed, by Theorem 6.1(2.a)

if P ′
i �� Pi it holds that T (m,ni ) ≥ ρ and Ti (ni ,m)≥ρ and by Theorem 6.1(2.b) if T ′

i �� Ti it holds that
T (m,ni ) ≥ ρ and Ti (ni ,m) ≥ ρ. By construction we know that ρ �� bad. This contradicts the hypotheses. �

Proof of Theorem 8.4
We prove that the relation

S def� {(M | O , N | O) for all O such that M ≈δ N }
is a δ-bisimulation. We proceed by case analysis on why M | O

α−−→ρ M̂ , with ρ ≤ δ.

• Let M | O
m !ṽ�D−−−−−−→ρ M̂ by an application of the transition rule (Obs), because M | O

m !ṽ̂D−−−−−−→ρ M̂ , with
D � D̂ \ nds(M | O) �� ∅. There are the following sub-cases.

– Let M | O
m !ṽ̂D−−−−−−→ρ M̂ by an application of rule (Sync) because M

m !ṽ̂D−−−−−−→ρ M ′ and O
m?ṽD′′−−−−−−→ρ O ′,

with M̂ � M ′ | O ′, D′′ ⊆ D̂ and D′′ ⊆ nds(O). Let D′ � D̂ \ nds(M ). As D � D̂ \ nds(M | O) �� ∅ it

follows that D′ �� ∅. By an application of rule (Obs) we can derive M
m !ṽ�D′−−−−−−−→ρ M ′. As M ≈δ N there

is N ′ such that N m !ṽ�D′�������⇒ρ N ′ with M ′ ≈δ N ′. Since the action m!ṽ�D′ can be generated only by an
application of rule (Obs) this implies that there are N1 and N2 such that

N �⇒ρ N1
m !ṽ ̂D′−−−−−−→ρ N2 �⇒ρ N ′
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with D′ � D̂′ \ nds(N ) �� ∅. We recall that D′′ ⊆ D̂ and D′′ ⊆ nds(O). By node-uniqueness, nds(M ) ∩
nds(O) � ∅. As a consequence,

D′′ � D′′ \ nds(M )
⊆ D̂ \ nds(M )
� D′

� D̂′ \ nds(N )
⊆ D̂′.

Thus, by several applications of rule (TauPar) and one application of rule (Sync) we have

N | O �⇒ρ N1 | O
m !ṽ ̂D′−−−−−−→ρ N2 | O ′ �⇒ρ N ′ | O ′.

It holds that

D̂′ \ nds(N | O) � D̂′ \ nds(N ) \ nds(O)
� D′ \ nds(O)
� D̂ \ nds(M ) \ nds(O)
� D̂ \ nds(M | O)
�� ∅.

Thus, by one application of rule (Obs) we have N | O m !ṽ�D������⇒ρ N ′ | O ′, with (M ′ | O ′,N ′ | O ′) ∈ S, as
required.

– Let M | O
m !ṽ̂D−−−−−−→ρ M̂ by an application of rule (Sync) because M

m?ṽD′′−−−−−−→ρ M ′ and O
m !ṽ̂D−−−−−−→ρ O ′,

with M̂ � M ′ | O ′,D′′ ⊆ D̂ and D′′ ⊆ nds(M ). As M ≈δ N then there is N ′ such that N m?ṽD′′������⇒ρ N ′
with M ′ ≈δ N ′. This implies that there are N1 and N2 such that

N �⇒ρ N1
m?ṽD′′−−−−−−→ρ N2 �⇒ρ N ′.

Then by several applications of (TauPar) and one application of rule (Sync), as D′′ ⊆ D̂, we have

N | O �⇒ρ N1 | O
m !ṽ̂D−−−−−−→ρ N2 | O ′ �⇒ρ N ′ | O ′.

Since M ≈δ N , by Proposition 8.3 it follows that nds(M ) � nds(N ). As a consequence,

D̂ \ nds(N | O) � D̂ \ nds(N ) \ nds(O)
� D̂ \ nds(M ) \ nds(O)
� D̂ \ nds(M | O)
�� ∅.

Thus, by one application of rule (Obs) we have N | O m !ṽ�D������⇒ρ N ′ | O ′, with (M ′ | O ′,N ′ | O ′) ∈ S, as
required.

• Let M | O
τ−−→ρ M̂ by an application of rule (Shh), because M | O

m !ṽD−−−−−−→ρ ′ M̂ , with D ⊆ nds(M | O) and
trust < ρ ′ ≤ δ. There are two sub-cases.

– Let M | O
m !ṽD−−−−−−→ρ ′ M̂ by an application of rule (Sync) because M

m !ṽD−−−−−−→ρ ′ M ′ and O
m?ṽD′′−−−−−−→ρ ′ O ′,

with M̂ � M ′ | O ′,D′′ ⊆ D,D′′ ⊆ nds(O) and D ⊆ nds(M | O). There are two sub-cases.

• Let D ⊆ nds(M ). Then by an application of rule (Shh) we have M
τ−−→ρ M ′. As M ≈δ N , there is N ′ such

that N �⇒ρ N ′, with M ′ ≈δ N ′. By several applications of rule (TauPar) we have N | O �⇒ρ N ′ | O ′,
with (M ′ | O ′,N ′ | O ′) ∈ S, as required.

• Let D � nds(M ). By an application of rule (Obs) we have M
m !ṽ�̂D−−−−−−→ρ ′ M ′, with D̂ � D \ nds(M ) �� ∅.
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As M ≈δ N , there is N ′ such that N m !ṽ�̂D������⇒ρ ′ N ′, with M ′ ≈δ N ′. Since the action m!ṽ�D̂ can be
generated only by an application of rule (Obs) this implies that there are N1 and N2 such that

N �⇒ρ ′ N1
m !ṽD′−−−−−−→ρ ′ N2 �⇒ρ ′ N ′

with D̂ � D′ \ nds(N ) �� ∅. We recall that D′′ ⊆ D and D′′ ⊆ nds(O). By node-uniqueness, nds(M ) ∩
nds(O) � ∅. As a consequence,

D′′ � D′′ \ nds(M )
⊆ D \ nds(M )
� D̂
� D′ \ nds(N )
⊆ D′.

Thus, by several applications of rule (TauPar) and by one application of rule (Sync) we have:

N | O �⇒ρ ′ N1 | O
m !ṽD′−−−−−−→ρ ′ N2 | O ′ �⇒ρ ′ N ′ | O ′.

Notice that

D′ \ nds(N | O) � D′ \ nds(N ) \ nds(O)
� D̂ \ nds(O)
� D \ nds(M ) \ nds(O)
� D \ nds(M | O)
� ∅.

Since D′ ⊆ nds(N | O), by one application of rule (Shh) we have N | O �⇒ρ N ′ | O ′, with (M ′ | O ′,N ′ |
O ′) ∈ S, as required.

– Let M | O
m !ṽD−−−−−−→ρ ′ M̂ by an application of rule (Sync) because M

m?ṽD′′−−−−−−→ρ ′ M ′ and O
m !ṽD−−−−−−→ρ ′ O ′,

with M̂ � M ′ | O ′ and D′′ ⊆ D. As M ≈δ N there is N ′ such that N m?ṽD′′������⇒ρ ′ N ′ with M ′ ≈δ N ′. This
implies that there are N1 and N2 such that

N �⇒ρ ′ N1
m?ṽD′′−−−−−−→ρ ′ N2 �⇒ρ ′ N ′.

Then, by several applications of rule (TauPar) and one application of rule (Sync), as D′′ ⊆ D, we have

N | O �⇒ρ ′ N1 | O
m !ṽD−−−−−−→ρ ′ N2 | O ′ �⇒ρ ′ N ′ | O ′.

Since M ≈δ N , by Proposition 8.3 it follows that nds(M ) � nds(N ). As a consequence,

D \ nds(N | O) � D \ nds(M | O) � ∅.

Thus, by one application of rule (Shh) we have N | O �⇒ρ N ′ | O ′ and (M ′ | O ′,N ′ | O ′) ∈ S, as required.

• Let M | O
τ−−→ρ M̂ by an application of rule (TauPar). This case is easy.

• Let M | O
m?ṽD−−−−−−→ρ M̂ by an application of the transition rule (RcvPar) because M

m?ṽD′−−−−−−→ρ M ′ and

O
m?ṽD′′−−−−−−→trust O ′, with D :� D′ ∪ D′′, M̂ � M ′ | O ′. This case is easy.

�

In order to prove Theorem 8.5 we use the following auxiliary lemmas.

Lemma A.1

1. If M
m !ṽD−−−−−−→σ M ′, where D contains more than one node, then there are N ,P ,T such that M ≡ m[σ !〈ṽ〉.P ]T |

N and D � {n : T (m,n) ≥ ρ}.
2. If M

m !ṽD−−−−−−→σ M ′, with D � n, for some n, then there are N ,P ,T such that M ≡ m[σ !〈ṽ〉.P ]T | N or
M ≡ m[σ !〈ṽ〉n .P ]T | N with T (m,n) ≥ ρ.
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Proof

1. By induction on why M
m !ṽD−−−−−−→σ M ′. The base case is when M

m !ṽD−−−−−−→σ M ′ is obtained by an appli-
cation of one of the following rules: (MCast), (DTrust), (SndRcm). We show the details only for rule (MCast);
the other cases are similar. In this case, M � m[σ !〈ṽ〉.P ]T ≡ m[σ !〈ṽ〉.P ]T | 0, for some P and T , with

D � {n : T (m,n) ≥ ρ}. As to the inductive case, let us suppose that M
m !ṽD−−−−−−→σ M ′ is obtained by an

application of one of the following rules: (Sum), (Sync). We only consider the case for rule (Sync); the other case is

similar. Let M
m !ṽD−−−−−−→σ M ′ by an application of rule (Sync), because M1

m !ṽD−−−−−−→σ M ′
1 and M2

m?ṽD′−−−−−−→σ M ′
2,

and M � M1 | M2 and M ′ � M ′
1 | M ′

2 for some M1,M ′
1,M2,M ′

2 and D′. By inductive hypothesis it holds that
M1 ≡ m[σ !〈ṽ〉.P ]T | N , for some N ,P ,T with D � {n : T (m,n) ≥ ρ}. Thus, M ≡ m[σ !〈ṽ〉.P ]T | N | M2,
as required.

2. By induction on why M
m !ṽn−−−−−−→σ M ′. This case is similar to the previous one.

�

Lemma A.2 1. If M
m !ṽ�D−−−−−−→σ M ′ then M ↓σ

n , for all n ∈ D.

2. If M ↓σ
n then there is a value ṽ and a set of nodes D, with n ∈ D, such that M

m !ṽ�D−−−−−−→σ M ′,
Proof By Lemma A.1 and by Definition 7.1. �
Proof of Theorem 8.5
The preservation of σ -barbs follows by Lemma A.2; the reduction-closure follows by definition, while contextu-
ality follows by Theorem 8.4. �
Proof of Theorem 9.2
We prove that the relation

S def� {(M | H , N | K ) : H ,K ∈ Hδ, M ≈δ N and H ≈trust K }
is a δ-bisimulation. By case analysis on the transition M | H

α−−→ρ M̂ , with ρ ≤ δ.

• Let M | H
m !ṽ�D−−−−−−→ρ M̂ by an application of rule (Obs), with ρ > trust, because M | H

m !ṽ̂D−−−−−−→ρ M̂ . Since

H ∈ Hδ, the transition M | H
m !ṽ̂D−−−−−−→ρ M̂ can be derived only by an application of rule (Sync) because

M
m !ṽ̂D−−−−−−→ρ M ′ and H

m?ṽ∅−−−−−→ρ H , with D � D̂ \nds(M | H ) �� ∅ and M̂ � M ′ | H . Let D′ � D̂ \nds(M ).

As D �� ∅ it follows that D′ �� ∅. Thus, we can apply rule (Obs) to derive M
m !ṽ�D′−−−−−−−→ M ′. As M ≈δ N

there is N ′ such that N m !ṽ�D′�������⇒ρ N ′ with M ′ ≈δ N ′. Since the action m!ṽ�D′ can be generated only by an
application of rule (Obs) there are N1 and N2 such that

N �⇒ρ N1
m !ṽ ̂D′−−−−−−→ρ N2 �⇒ρ N ′

with D′ � D̂′ \ nds(N ) �� ∅. By node uniqueness, since m ∈ nds(N ) it follows that m �∈ nds(K ). Thus,

K
m?ṽ∅−−−−−→ K . By several applications of rule (TauPar) and one application of rule (Sync) we have:

N | K �⇒ρ N1 | K
m !ṽ ̂D′−−−−−−→ρ N2 | K �⇒ρ N ′ | K .

Since H ≈trust K , by Proposition 8.3 it follows that nds(H ) � nds(K ). Hence,

D :� D̂ \ nds(M | H )
� D̂ \ nds(M ) \ nds(H )
� D′ \ nds(H )
� D̂′ \ nds(N ) \ nds(K )
� D̂′ \ nds(N | K ).

As D �� ∅, by one application of rule (Obs) we have N | K m !ṽ�D������⇒ρ N ′ | K , with (M ′ | H , N ′ | K ) ∈ S, as
required.
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• Let M | H
m !ṽ�D−−−−−−→trust M̂ by an application of the transition rule (Obs) because M | H

m !ṽ̂D−−−−−−→trust M̂ ,
with D � D̂ \ nds(M | H ) �� ∅. We have the following possibilities:

– Let M | H
m !ṽ̂D−−−−−−→trust M̂ by an application of the transition rule (Sync) because M

m !ṽ̂D−−−−−−→trust M ′

and H
m?ṽD′′−−−−−−→trust H ′, with M̂ � M ′ | H ′,D′′ ⊆ D̂,D′′ ⊆ nds(H ) and H ′ ∈ Hδ. Let D′ � D̂ \ nds(M ).

As D � D̂ \ nds(M | H ) �� ∅ it follows that D′ �� ∅. As a consequence, we can apply rule (Obs) to derive

M
m !ṽ�D′−−−−−−−→trust M ′. As M ≈δ N , there is N ′ such that N m !ṽ�D′�������⇒trust N ′ with M ′ ≈δ N ′. Since the

action m!ṽ�D′ can be generated only by an application of rule (Obs) there are N1 and N2 such that

N �⇒trust N1
m !ṽ ̂D′−−−−−−→trust N2 �⇒trust N ′

with D′ � D̂′ \ nds(N ) �� ∅. As H ≈trust K and H
m?ṽD′′−−−−−−→ H ′, there is K ′ such that K m?ṽD′′������⇒trust K ′

with H ′ ≈trust K ′ and K ′ ∈ Hδ. This means there are K1 and K2 such that

K �⇒trust K1
m?ṽD′′−−−−−−→trust K2 �⇒trust K ′.

We recall that D′′ ⊆ D̂ and D′′ ⊆ nds(H ). By node-uniqueness, nds(M ) ∩ nds(H ) � ∅. As a consequence,

D′′ � D′′ \ nds(M )
⊆ D̂ \ nds(M )
� D′

� D̂′ \ nds(N )
⊆ D̂′.

Thus, by several applications of rule (TauPar) and one application of rule (Sync) we have

N | K �⇒trust N1 | K1
m !ṽ ̂D′−−−−−−→trust N2 | K2 �⇒trust N ′ | K ′.

Since H ≈trust K , by Proposition 8.3 it follows that nds(K ) � nds(H ). As a consequence,

D � D̂ \ nds(M | H )
� D̂ \ nds(M ) \ nds(H )
� D′ \ nds(H )
� D̂′ \ nds(N ) \ nds(K )
� D̂′ \ nds(N | K ).

As D �� ∅, by an application of rule (Obs) we can derive N | K m !ṽ�D������⇒ρ N ′ | K ′, with (M ′ | H ′,N ′ |
K ′) ∈ S, as required.

– Let M | H
m !ṽ̂D−−−−−−→trust M̂ by an application of the transition rule (Sync) because M

m?ṽD′′−−−−−−→trust M ′ and

H
m !ṽ̂D−−−−−−→trust H ′, with M̂ � M ′ | H ′,D′′ ⊆ D̂,D′′ ⊆ nds(M ) and H ′ ∈ Hδ. As M ≈δ N then there is

N ′ such that N m?ṽD′′������⇒trust N ′ with M ′ ≈δ N ′. This implies that there are N1 and N2 such that

N �⇒trust N1
m?ṽD′′−−−−−−→trust N2 �⇒trust N ′.

Let D′ � D̂ \ nds(H ). As D � D̂ \ nds(M | H ) �� ∅ it follows that D′ �� ∅. By an application for rule

(Obs) we have H
m !ṽ�D′−−−−−−−→trust H ′, with D′ � D̂ \ nds(H ) �� ∅. As H ≈trust K there is K ′ such that

K m !ṽ�D′�������⇒trust K ′, with H ′ ≈trust K ′ and K ′ ∈ Hδ. This implies that there are K1 and K2 such that

K �⇒trust K1
m !ṽ ̂D′−−−−−−→trust K2 �⇒trust K ′
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with D′ � D̂′ \nds(K ). We recall that D′′ ⊆ D̂ and D′′ ⊆ nds(M ). By node-uniqueness, nds(M )∩nds(H ) �
∅. As a consequence,

D′′ � D′′ \ nds(H )
⊆ D̂ \ nds(H )
� D′

� D̂′ \ nds(K )
⊆ D̂′.

Thus, by several applications of rule (TauPar) and one application of rule (Sync), as D′′ ⊆ D̂, we have

N | K �⇒trust N1 | K1
m !ṽ ̂D′−−−−−−→trust N2 | K2 �⇒trust N ′ | K ′.

Since M ≈ρ K , by Proposition 8.3 it follows that nds(M ) � nds(N ). As a consequence,

D � D̂ \ nds(M | H )
� D̂ \ nds(M ) \ nds(H )
� D̂ \ nds(H ) \ nds(M )
� D′ \ nds(M )
� D′ \ nds(N )
� D̂′ \ nds(K ) \ nds(N )
� D̂′ \ nds(N | K ).

As D �� ∅, by one application of rule (Obs) we have N | K m !ṽ�D������⇒ρ N ′ | K ′, with (M ′ | H ′,N ′ | K ′) ∈ S,
as required.

• M | H
τ−−→ρ M̂ by an application of rule (Shh), because M | H

m !ṽD−−−−−−→ρ ′ M̂ , with D ⊆ nds(M | H ). Let

us suppose ρ ′ > trust. Since H ∈ Hρ , the only possibility is that M | H
m !ṽD−−−−−−→ρ ′ M̂ by an application of

rule (Sync) because M
m !ṽD−−−−−−→ρ ′ M and H

m?ṽ∅−−−−−→ H , with M̂ � M ′ | H and m �∈ nds(H ). There are two
sub-cases.

– Let D ⊆ nds(M ). Then by an application of rule (Shh) we have M
τ−−→ρ M ′. As M ≈δ N , there is N ′ such

that N �⇒ρ N ′, with M ′ ≈δ N ′. By several applications of rule (TauPar) we have N | K �⇒ρ N ′ | K , with
(M ′ | H ,N ′ | K ) ∈ S, as required.

– Let D � nds(M ). Then by an application of rule (Obs) we have M
m !ṽ�̂D−−−−−−→ρ ′ M ′, with D̂ � D\nds(M ) �� ∅.

As M ≈δ N , there is N ′ such that N m !ṽ�̂D������⇒ρ ′ N ′, with M ′ ≈δ N ′. Since the action m!ṽ�D̂ can be
generated only by an application of rule (Obs) this implies that there are N1 and N2 such that

N �⇒ρ ′ N1
m !ṽD′−−−−−−→ρ ′ N2 �⇒ρ ′ N ′

with D̂ � D′ \ nds(N ) �� ∅. By node-uniqueness m �∈ nds(K ). By definition of rule (RcvEnb) it follows that

K
m?ṽ∅−−−−−→ K . By several applications of rule (TauPar) and by one application of rule (Sync) we have:

N | K �⇒ρ ′ N1 | K
m !ṽD′−−−−−−→ρ ′ N2 | K �⇒ρ ′ N ′ | K .

Since H ≈trust K , by Proposition 8.3 it follows that nds(K ) � nds(H ). As a consequence,

D′ \ nds(N | K ) � D′ \ nds(N ) \ nds(K )
� D̂ \ nds(K )
� D̂ \ nds(H )
� D \ nds(M ) \ nds(H )
� D \ nds(M | H )
� ∅.
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Thus, by one application of rule (Shh) we have N | K �⇒ρ N ′ | K , with (M ′ | H ,N ′ | K ) ∈ S, as required.

• M | H
τ−−→ρ M̂ by an application of rule (Shh), because M | H

m !ṽD−−−−−−→trust M̂ , with D ⊆ nds(M | H ). This
case is similar to the previous one.

• Let M | O
τ−−→ρ M̂ by an application of rule (TauPar). This case is easy.

• Let M | H
m?ṽD−−−−−−→ρ M̂ with ρ > trust. Since H ∈ Hρ , the only possibility is that M | H

m?ṽD−−−−−−→ρ M ′ | H

by an application of rule (RcvPar) because M
m?ṽD−−−−−−→ρ M ′ and H

m?ṽ∅−−−−−→ρ H (by an application of rule
(RcvEnb)) with M̂ � M ′ | H . This case is easy.

• Let M | H
m?ṽD−−−−−−→trust M̂ by an application of the transition rule (RcvPar) because M

m?ṽD′−−−−−−→trust M ′ and

H
m?ṽD′′−−−−−−→trust H ′, with D :� D′ ∪ D′′, M̂ � M ′ | H ′ and H ′ ∈ Hδ. This case is easy.

�
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