
DOI 10.1007/s00165-010-0170-3
BCS © 2010
Formal Aspects of Computing (2011) 23: 465–512

Formal Aspects
of Computing

From control law diagrams to Ada via Circus
Ana Cavalcanti1, Phil Clayton2,3 and Colin O’Halloran2

1 University of York, York, UK. E-mail: Ana.Cavalcanti@cs.york.ac.uk
2 Systems Assurance Group, QinetiQ, Malvern, UK
3 Veonix, Worcester, UK

Abstract. Control engineers make extensive use of diagrammatic notations; control law diagrams are used in
industry every day. Techniques and tools for analysis of these diagrams or their models are plentiful, but verifica-
tion of their implementations is a challenge that has been taken up by few. We are aware only of approaches that
rely on automatic code generation, which is not enough assurance for certification, and often not adequate when
tailored hardware components are used. Our work is based on Circus, a notation that combines Z, CSP, and a
refinement calculus, and on industrial tools that produce partial Z and CSP models of discrete-time Simulink
diagrams. We present a strategy to translate Simulink diagrams to Circus, and a strategy to prove that a parallel
Ada implementation refines the Circus specification; we rely on a Circus semantics for the program. By using a
combined notation, we provide a specification that considers both functional and behavioural aspects of a large
set of diagrams, and support verification of a large number of implementations. We can handle, for instance,
arbitrarily large data types and dynamic scheduling.

Keywords: Z, CSP, Simulink, Refinement

1. Introduction

Control systems can be conveniently specified diagrammatically; in particular, engineers are comfortable with
control law diagrams. In the avionics and automotive sectors, at least, the use of Matlab’s Simulink [Mat] for
drawing and simulation is standard; it also includes facilities for automatic code generation.

Since safety-critical applications often involve control systems, the validation of control law diagrams has
been of great interest: numerical modelling and simulation are the techniques routinely used. Formal analysis,
due to the typical complexity and scale of diagrams, is a major challenge; it is not unusual for a diagram to have
hundreds of pages. Verification of a diagram’s implementation is no simpler.

Existing work is mostly concerned with properties of the specification or design of a control system [Tiw02,
FK04, JH05, DBCHP03] described by a diagram. They are valuable contributions, in that they extend the
restricted static analysis capabilities of tools like Simulink. The work in this paper, on the other hand, provides a
complementary facility: proof of correctness of code, as opposed to validation of requirements or designs. More
precisely, we present a technique to prove that a (parallel) implementation of a diagram satisfies the functional
and behavioural properties that it defines. For that, we define a formal model for discrete-time single-rate Simu-
link diagrams suitable for reasoning based on refinement, a formal model for Ada programs [Bar05] written in
a subset of this language similar to SPARK Ada and with a particular architecture, and a verification strategy
based on the application of refinement laws to compare them.

Correspondence and offprint requests to: A. L. C. Cavalcanti, E-mail: Ana.Cavalcanti@cs.york.ac.uk

466 A. L. C. Cavalcanti et al.

Fig. 1. Verification strategy

As far as we know, ClawZ [ACOS00] is the only effort on formal verification of implementations of control
laws. This is a translator from Simulink diagrams to specifications written in a version of Z [WD96] implemented
in the theorem prover ProofPower [KAW96]. The Z specifications are used to define refinement conjectures that
connect a diagram and an Ada subprogram (procedure or function); they are proved using tools integrated with
ProofPower [AC05]. We have measured experiments in the context of industrial applications that show a reduction
factor between two and a half and four and a half in the human effort required for establishing acceptance when
the ClawZ approach and tools are used. There is a cost reduction of 20% in relation to conventional development
and verification of safety–critical systems in the area of avionics.

In this paper, we build on ClawZ to specify more complete models of diagrams: we capture their inherent
parallelism, as well as functionality. We also establish correctness of the scheduler (as well as the procedures and
functions). All this is achieved with the same high level of automation of ClawZ.

The Matlab semantics for Simulink is given implicitly by its simulator. Many works provide a formal seman-
tics of various properties of diagrams; there are results using automata [Tiw02], the data-flow language Lustre
[CCM+03], asynchronous processes [JZW+00], Hoare logic [BHM03], and timed formalisms [CD06], to cite a
few. What we provide here is not just yet another formal model for Simulink. Our semantics distinguishes itself
in that it is appropriate for refinement-based reasoning, and, therefore, program verification.

The use of code generators is appealing, and they are the basis of several development approaches advocated
by works on analysis of Simulink models [KS02, GHOS06]. When code correctness and certification are an issue,
however, the use of code generators does not provide enough assurance; verification of the generator or of the
generated code is needed. The frequent updates to generators make the cost of their verification prohibitive. In
any case, requirements imposed by the target hardware often mean that complex tailored algorithms need to be
used, instead of automatically generated code; experience in the automotive industry, for example, is reported in
[RB01]. Here, we pursue a cost-effective approach to code verification.

What we present is a sound and practical approach to prove correctness of implementations of control dia-
grams. In our technique, the formalisms are hidden from engineers, as the verification strategy is amenable to
high levels of automation that ensure practicality. We use a refinement technique based on Circus [CSW03], a
combination of Z and CSP. With an integrated approach, we significantly extend the class of diagrams that can
be modelled, and program properties that can be verified.

We provide a strategy to translate the output of an extended version of ClawZ and a graph model that captures
the data-flow of the diagram to a Circus specification; Fig. 1 summarises our approach. In addition, we present
a verification technique for parallel Ada implementations based on the result of the translation. Effectively, the
translation defines a Circus semantics for discrete-time Simulink diagrams; it is a suitable starting point for
reasoning based on refinement.

From control law diagrams to Ada via Circus 467

Using Circus, we capture the functionality and concurrency of a diagram, including features related to
conditional execution and order of interactions. Moreover, the Circus specification can capture the behaviour of
the system over any number of cycles. With a Circus model, scheduling and the data operations can be verified
jointly, and so we can cater for sophisticated dynamic scheduling policies. Since we do not rely on model checking,
there are no restrictions on the size of data types.

With Circus, separate analyses of programs to cover functionality and scheduling independently are not
needed. Our approach to verification is based on a Circus model of the Ada program, and a refinement strategy
based on Circus laws. We establish the correctness of both the sequential subprograms, and the overall paral-
lel behaviour. For the subprograms, we reuse the well-established verification technique based on ClawZ and
ProofPower [CC06], but we cover all the properties verified using ClawZ and much more.

The technique presented here is specific for Ada programs use a specific architecture commonly used in
embedded control systems where time is critical and processing resources are limited. The approach, however,
can be adapted to different architectural patterns. In addition, there are no assumptions about the structure of
the diagrams, and the verification is entirely compositional.

In practice, many of the changes to the requirements of control systems involve tuning of values of variables;
they have no impact on the structure of the diagrams or programs, which tend to be stable. The tactics of refine-
ment and proof are independent of particular values and can be reused directly. Structural changes to diagrams
and programs have more of an impact, but since our approach is based on refinement, and so, compositional,
the cost of the effort entailed by the change is proportional to its size.

The existing experience with ClawZ improves our confidence in the suitability of the Circus semantics. In
addition, the availability of tools simplifies the mechanisation of the generation of Circus models. We have already
implemented a tool that works with ClawZ, and generated models for industrial examples [ZC09]. In [CCO05],
we presented an initial version of the semantics; here we formalise an improved and extended version. Most
importantly, we explain how the semantics can be used to prove programs correctness.

In the next section, we present a brief introduction to Simulink diagrams. In Sect. 3 we describe ClawZ and
Circus. Our translation strategy which defines a Circus semantics for discrete-time Simulink diagrams is pre-
sented in Sect. 4. Section 5 discusses the Circus models for Ada programs. The refinement strategy is presented
in Sect. 6. Finally, in Sect. 7 we briefly address related work, and in Sect. 8, we summarise our results, and discuss
future work. Appendix A formalises a graph model of diagrams. Appendix B gives Circus refinement laws of
general interest used in our technique.

2. Control law diagrams

In a control law diagram, systems are modelled by directed graphs of blocks connected by wires. Roughly speak-
ing, wires carry signals, and blocks represent functions that determine how outputs are calculated from the
inputs. In a continuous-time model, signals vary continuously; in a discrete model, signals are sampled at fixed
time intervals, so that input and output take place in cycles. Blocks can be themselves defined by diagrams, and
so large diagrams typically have a hierarchical structure.

A simple example of a Simulink diagram is presented in Fig. 2; it specifies a PID (Proportional Integral
Derivative) controller. This is a simple feedback mechanism that is, however, in widespread use in real control
applications. Its main purpose is the correction of an error in some measured value. Typically, the value of the
error is obtained using a sensor, and correction is achieved by outputting information used to regulate an actu-
ator. For example, a temperature controller obtains the amount by which it may be too hot or too cold, and
indicates how the source of heat should be regulated. This is calculated as the weighted sum of the correction
actions indicated by three different methods: proportional, integral, and derivative. The first method produces
a correction proportional to the error; the integral value takes the history of errors into account; and finally the
derivative correction value considers the rate of change in the error. The controller reads the error and outputs
the correction over and over again at predefined intervals.

In our example, the inputs of the PID controller are the error E, and the weights, Kp, Ki, and Kd, for the
proportional, integral, and derivative values. Annotations indicate the branches that calculate the correction
according to the Derivative, Proportion, and Integral methods.

Inputs and outputs of the diagram are represented by rounded blocks containing numbers. Each block has a
name, and in the case of the inputs and outputs, the blocks are named after them. In our example, we have input
blocks E, Kp, Ki, and Kd, and one output block, Y.

468 A. L. C. Cavalcanti et al.

Derivative

Integral

Proportion
1
Y

Sum

Sp

Si

Sd

Integrator

Int

Differentiator

Diff

4
Kd

3
Ki

2
Kp

1
E

Fig. 2. PID (proportional integral derivative) controller

1

Out1

z

1

Unit Delay

Sum

1

In1

Fig. 3. PID differentiator

Typically, a block takes some input signals and produces some outputs according to a function determined by
the kind of block in question. Different block shapes and annotations inside the blocks give a visual indication of
their functionality. The circle is a sum block. The block with a × symbol are product blocks. There are libraries
of basic blocks in Simulink, and they can also be user-defined.

In our example, the blocks enclosing names, that is, the blocks named Diff and Int, are subsystems. The names
in (the rectangles that represent) the blocks, Differentiator and Integrator, respectively, are just annotations that
give an indication of the functionality of the subsystems. They are defined by other diagrams named after the
blocks. For example, the diagram Diff is presented in Fig. 3.

Blocks can have state. For instance, blocks labelled 1/z are unit delay blocks: they store the value of the input
signal, and output the value stored in the previous cycle. In each cycle, the output of a diagram depends on the
values of the inputs and of the state in the blocks, if any, but other factors may be relevant.

For example, subsystems may be conditionally executed: an action subsystem has an activate input and is
executed when it is true; an enabled subsystem has an enabling input and is executed when its value is greater
than zero. When a subsystem is not executed, its outputs are not calculated, and can either be held or reset to an
initial value. Any state in blocks within the subsystem is held until the subsystem is about to be executed again,
at which point the state can be modified, held, or reset to an initial value.

Merge blocks take a number of inputs and produce one output: the most recently calculated input. Typically,
the inputs are connected to conditionally executed subsystems, and in each cycle only one of them produces a
calculated output. This is the output produced by the merge block. If none of the inputs are calculated in a cycle,
then the merge block repeats its previous output.

ClawZ uses Z to provide a relational model for blocks, which covers state, but not concurrency and the
behaviour of conditionally executed subsystems and merge blocks.

From control law diagrams to Ada via Circus 469

3. ClawZ and Circus

This section describes the notation (Circus) and tool (ClawZ) used in our work. In particular, we explain how
ClawZ defines a semantics for diagrams; it is a partial semantics, in that it covers only block functionality.

3.1. ClawZ

As already mentioned, ClawZ is a tool suite for verification of Ada programs against Simulink diagrams. It
provides a self-contained formal account of the functionality of the blocks of a diagram, and of the diagram itself
using Z. Verification is based on refinement, with conjectures built in terms of the Z specifications.

The essence of the semantics of a diagram is defined by three elements: the functionality embedded in the
Simulink block library, the way in which library blocks are used and connected by wires in the diagram, and the
time model. Timing features are not covered in ClawZ and in our work: we assume a discrete-time model, so
that the system specified has a cyclic behaviour, in which at each cycle it reads some inputs and produces some
outputs. This is the model used in software implementations of control systems.

In specifying the semantics of a diagrammatic notation, the first concern is perhaps the definition of a linear
abstract representation. This is already provided by Simulink, which represents diagrams as a list of block speci-
fications in a structured ASCII file, the mdl file. Each specification refers to a basic block in the Simulink library
or to a user-defined block specified by another diagram, and records information like inputs and outputs, initial
value of the state, if any, and so on. The reference to the block library is an implicit specification of functionality,
and the information about inputs and outputs defines a graph structure.

The formal semantics of the basic blocks and, more importantly, of subsystem blocks defined by diagrams
(involving basic blocks and, possibly, further subsystem blocks) is defined by ClawZ as Z schemas. It describes
how the outputs of the blocks are calculated from its inputs, and perhaps some state information. This gives a
more complete view of the diagram functionality than its (linear) Simulink representation. For this reason, it is
a convenient starting point to construct a Circus model of the diagram.

Formally, ClawZ implements a function which, given a diagram, and the name of one of its blocks, gives a
formal characterisation of that block as a set of bindings (records). Typically, this set is defined by a schema. In
other words, the Z specification provided by ClawZ does not follow the traditional style in which schemas are
used to define the state of the system, and its operations. Instead, the specification uses schemas as one of the
fundamental type constructors of Z; blocks (and diagrams) are record types defined by schemas in Z.

An implicit parameter of the semantic function defined by ClawZ, which we call ClawZ itself, is the formali-
sation of the Simulink block library. It provides a record type definition for each block. For example, the block
Sum in Fig. 3 is an instance of a sum block that negates its second input; in effect, this is a subtraction. Its model
in the ClawZ library is the schema below.
Z

Sum PM
In1 ?, In2 ? : R

Out1 ! : R

Out1 ! � In1 ? −R In2 ?

The notation adopted here is the Z dialect of ProofPower, which is very close to the Z standard; we point out the
few differences as needed. The Z that precedes the schema above is used by ProofPower to distinguish Z para-
graphs from definitions in HOL or SML. The components of the schema are components (fields) of the records
in the set that characterises the block. For the inputs, we have components In1 ?, In2 ? and so on, depending on
the number of inputs of the block. Similarly, for the outputs, we have components Out1 !,Out2 !, and so on. The
block in our example has two inputs and one output.

A theory of real numbers for Z is available in ProofPower; above, we declare the components of the schema
to be of type real. The predicate uses a difference operator (−R) for real numbers to define the output. The set
defined by Sum PM contains all the bindings with components In1 ?, In2 ?, and Out1 ! whose values are of type
real, and are related as described in the predicate.

470 A. L. C. Cavalcanti et al.

Some blocks require a parameter upon instantiation. For example, a unit delay takes the initial value of its
state. In this case, it is formalised as a (possibly generic) function using an axiomatic description. The generic
parameter is the type X of the state, input, and output. The function takes a binding with a single component
X0 and yields a set of bindings that characterises the unit delay block. The type of the bindings in this set is
defined by an unnamed horizontal schema [In1?, initial state, state, state ′,Out1! : X] with an empty predicate
part. The value of X0 is used to initialise the state.
Z

[X]
UnitDelay g : [X0 : X] → P [In1 ?,initial state,state,state ′,Out1 ! : X]

∀ pars : [X0 : X] •
UnitDelay g pars � [In1 ?,initial state,state,state ′,Out1 ! : X |

initial state � pars.X0 ∧ Out1 ! � state ∧ state ′ � In1 ?]

The function is generic because unit delay blocks work on several types of signals: real numbers, vectors, and so
on. The value X0 of the argument record is used to initialise the intial state components of the bindings in the
resulting set. In general, the bindings in the set that characterises a block with a state includes, besides input and
output components, the three extra components initial state, state, and state ′. They record the value of the state
when the system starts its execution, the value of the state at the beginning of the current cycle, and the value of
the state at the end of the cycle, respectively.

In practical terms, given a diagram, ClawZ produces a Z specification that characterises each of its blocks, as
well as the whole diagram. As an example, part of the output of ClawZ for the PID diagram in Fig. 2 is presented
in Fig. 4. The name of a block in the Z specification includes, besides that explicitly indicated in the diagram, the
name of the subdiagram in which the block occurs, and the name of the diagram itself. For instance, the Sum
block in the subdiagram Diff (Fig. 3) is defined by the schema pid Diff Sum.

This schema, as well as those for the Sd and Sum blocks in the top diagram, that is, pid Sd and pid Sum,
are specified directly in terms of library definitions: Sum PM presented above and others. For the UnitDelay
block, as discussed above, the definition in the Z library is a function; in a particular model it is applied to an
appropriate argument to define a set of bindings. In our case, the argument is a binding X0 �̂ 0 e 0 with a single
component X0 whose value is the real number 0, written 0 e 0 in ProofPower.

The schema pid defines the top diagram; it declares the inputs and outputs of the system, and an extra com-
ponent for each of the blocks at this level, that is, Diff, Int, Sd, Si, Sp, and Sum. The names of the input and
output components are still generic, that is, In1 ?, In2 ?, and so on, and Out1 !. This ensures that the model of
a top diagram is similar to that of a subsystem diagram or even of a block; such uniformity is beneficial for
reasoning. The types of the block components are the sets of bindings that specify them. The predicate of pid ,
which is omitted for the sake of conciseness, specifies how the inputs and outputs of the diagram and of each of
the blocks are connected. The type U is a universal type in ProofPower.

The definition of Diff is similar to that of the top diagram in pid . It is a schema that declares the inputs and
outputs, and each of the blocks in the diagram Diff. The predicate, which is similar to that of pid , equates, for
instance, the inputs of the Sum block to the input of the diagram and the output of the Unit Delay block. It also
defines that the output of the diagram is that of Sum. The repeated equality UnitDelay .In1 ? � Sum.In1 ? � In1 ?
is not part of the Z standard notation, but is accepted in ProofPower; it is a shorthand for the conjunction of
UnitDelay .In1 ? � Sum.In1 ? and Sum.In1 ? � In1 ?. Similarly, the predicate of the pid schema is a conjunction
of equations that reflect the wiring in Fig. 2.

In summary, the inputs of a diagram or of a block are modelled as components In1 ?, In2 ?, and so on; simi-
larly, outputs have conventional names Out1 !, Out2 !, and so on. If the block has a state, there are components
state, state ′, and initial state to record its value at the beginning and at the end of the cycle, and at the begin-
ning of the first cycle. The other components, if any, represent blocks; for each block in the top diagram or in a
subsystem diagram, there is a component. The predicate is a conjunction of equalities that specify how the inputs
and outputs are connected.

The ClawZ model of a diagram specifies the functionality of all of its blocks, over one cycle of execution.
It does not, however, capture the graph structure of the diagram, and so does not have an explicit record of
opportunities for parallelisation. This is addressed by the Circus model proposed here.

From control law diagrams to Ada via Circus 471

Fig. 4. ClawZ output for the PID (ProofPower notation)

3.2. Circus

This is a language for refinement; Circus includes specification constructs from Z and Morgan’s refinement cal-
culus [Mor94], CSP constructs to model communication and concurrency, and guarded commands, including
assignments and conditionals. It is distinctive in that it mixes (Z) data operations and (CSP) constructs for com-
munication and parallelism in a flexible way. Events are not attached to state changes: when an event happens,
there is no implicitly associated state change. State changes have to be explicitly specified, just like they are in
programming languages. (This approach is in contrast with that adopted in other combinations of CSP with a
state-based notation [TS99, Fis00]). Moreover, refinement can be carried out compositionally.

Like in Z, a Circus program is a sequence of paragraphs, but they also include channel and process declara-
tions. Figure 5 gives an example: a factorial calculator that uses a memory register.

472 A. L. C. Cavalcanti et al.

Fig. 5. Example of a simple Circus specification

Communications are events, just like in CSP. In our example, we first of all declare a few channels. The channel
disp does not have a type, and so it is used just for synchronisation: to request the memory register to output
its value through the channel out of type N. The channels set , add , and mult also have type N; they are used to
update the memory using the communicated value.

A process encapsulates state and exhibits behaviour. An explicit definition of a process is a sequence of para-
graphs; the specifications of Mem and Fact in Fig. 5 are examples. A distinguished paragraph introduces the
state schema in the style of Z; in the case of Mem, this is the Register schema with the single component r of
type N, but Fact is stateless. Encapsulation means that the state is local; interaction with the process is only via
communications through channels.

At the end of an explicit definition, a main action specifies the behaviour of the process. Actions are defined
using a combination of Z (state) operations, CSP constructs, and guarded commands.

In Mem, the main action is recursive; it repeatedly offers the choice of interaction over any of the channels
set , add , mult , and disp. Communication over set takes an input value x , which is assigned to r ; the input set?x
declares x as a local variable whose scope is the assignment or, in more general terms, the action prefixed by the
input communication. Similarly, the input prefixing add?x → r :� r + x declares the local variable x for use in
the assignment r :� r + x . The value communicated over add is assigned to x and used to increment the register.
For the sake of example, we specify the state update that corresponds to an input over mult using a Z schema
Prod , instead of simply using r :� r ∗ x . The style of definition of Z state operations is standard, and the input
variable x ? of Prod is linked to the local variable x declared by the input communication. Finally, we observe
that interaction on disp does not lead to any state operation; instead, it is a request for the output of the value of
r through the channel out .

In the case of Fact , the main action is also recursive: it repeatedly accepts a request to calculate the factorial
of a natural number n, after which it sets the memory, uses it to calculate the factorial, and requests that the
output is displayed. The extra channel calc is declared just before the definition of Fact .

Typically, a process definition includes several paragraphs to specify actions that are combined in the main
action to define the behaviour of the process. In our simple examples, we have, the action Prod in the process
Mem, and the action FCalc in the process Fact . The latter is a parametrised action with parameter n of type
N; it uses the initialised register to calculate the factorial of n. A conditional determines if it should terminate
immediately, if n � 0, or multiply the value of the register by n before recursing, if n > 0. The basic action Skip
terminates immediately without changing the state.

Like actions, processes can also be combined using CSP operators: sequence, choice, parallelism, hiding, and
others. Parallelism is alphabetised just like in CSP: we can either define a synchronisation set or the alphabet of
the parallel processes or actions. A synchronisation set contains the channels on which the parallel processes (or
actions) need to synchronise; communications on all other channels occur independently. If, on the other hand,

From control law diagrams to Ada via Circus 473

we use the alphabetised parallel operator, for each parallel process or action, we define an alphabet; in this case,
the process (or action) can only communicate on a channel c if it is in its alphabet, and needs to synchronise with
all other processes or actions that also have c in their alphabet.

In our example, we define the process System as the parallel composition of Mem and Fact . We use the
interface parallel operator, and define the alphabets of Mem and Fact . Since we leave add out of the alphabet of
Mem, it cannot communicate over this channel, although such communications may be helpful in other uses of
Mem. Synchronisation is required for the channels in the intersection of the alphabets; in our example, they are
set , mult , and disp. These are internal channels used only for communications between the components of the
system; therefore, they are hidden in the definition of System. In summary, our system takes inputs over calc,
and produces outputs using out ; all other channels are hidden, and communications over them are not visible to
the environment of System.

In the case of a parallelism of actions, there is a concern about conflicting access to state components (and
local variables). For that reason, the parallel operators for actions define partitions of the variables in scope. For
example, the composition of actions A1 and A2 using the alphabetised parallel operator with a synchronisation
set cs is written A1 |[ns1 | cs | ns2]| A2, where ns1 and ns2 are disjoint sets of names of variables in scope. Both
A1 and A2 have access to the initial value of all variables; however, A1 can only modify those named in ns1, and
A2 can only modify those in ns2. Figure 5 presents a parallelism between processes, but not between actions. An
example of action parallelism is provided in the next section (Fig. 10).

A refinement calculus and strategy is available for Circus [CSW03]. The strategy aims at calculating concur-
rent implementations from centralised specifications. Here, we provide a few novel refinement laws, which are
clearly marked in Appendix B, and a strategy tailored to the verification of Ada implementations with respect to
models of diagrams. In this case, we aim at removing the massive parallelism in the models.

4. Translation strategy

We formalise the Circus model of a diagram as a function [[d]]C that takes the linear representation of a diagram
d and provides a Circus specification. In this section, we present the definition of this function; the meta-notation
that we use to describe the Circus specification is based on the Z and Circus mathematical and action notations.
When there is the possibility of ambiguity, to differentiate the occurrences of symbols of the meta-notation from
those of the target Circus specification, we use a sans-serif font for the meta-notation.

There are two intermediary models that we extract from d in order to define the Circus model. The first is the
Z model defined by ClawZ; formally this is the result of applying the ClawZ function described in the previous
section to d . In fact, we consider a few extensions to ClawZ to cater for a larger number of blocks. They, however,
do not interfere with the structure of the model already described.

The second model of the diagram captures its structure as a graph. It is described in Sect. 4.1 below, and
formalised in Appendix A. Section 4.2 describes the channels used in the Circus specification. Modelling of
blocks is the subject of Sect. 4.3. Finally, in Sect. 4.4 we explain how the models of the blocks are used to define
a Circus model for the diagram. As detailed in the sequel, in the Circus model of a diagram, blocks, as well as
the diagram itself, are defined as processes.

For clarity, we present the definition of [[d]]C in an incremental way, with the various paragraphs of the
Circus specification interspersed with comments and examples. We start the definition below, where we use a let
clause to name the results of applying the ClawZ and DF functions to d .

[[d]]C � let clawz � ClawZ(d); df � DF(d) •
As already said, the function ClawZ is that defined by ClawZ. The function DF defines a graph that captures the
data flow in d . It is specified in the next section.

4.1. Graph model

To provide an accurate Circus model of a diagram, we use a graph model that captures its data flow. It is formally
specified in Appendix A; here we illustrate the graph structure by means of examples.

The function DF associates a diagram to a record (binding) that registers the diagram name (in a field spec),
the names of its inputs and outputs , and a mapping blocks that associates each of its blocks, identified by their
names, to information about its wiring. The type Graph defined in Appendix A defines the set of such records.
The range of the mapping blocks is specified using the type BlockWiring . Part of the record for the PID diagram,

474 A. L. C. Cavalcanti et al.

Fig. 6. Graph model for the PID

(a) (b)

Fig. 7. Independent flows of execution

that is, DF(d), where d is the Simulink textual representation of the PID, is in Fig. 6. In this case, the name of the
diagram is PID , the inputs are E , Kp, Ki , and Kd , and the output is Y . Each block is associated to its wiring
information; in Fig. 6, we present the wiring for Si , Diff , and Sum.

The inputs and outputs of the diagram are named after its input and output blocks. The internal wires are
named after the block that produces it as an output, using suffix out , if there is only one output, or out1, out2
and so on, if there is more than one output. For clarity of the model, however, when the output of a block is
connected to an output port, we name the channel after the output. In our example, the output of the Sum block,
for instance, is named Y , after the output of the diagram, rather than Sum out .

The wiring of a block is defined by a binding that records its inputs (inps), outputs (outs), and the depen-
dencies between them, that is, the flows of execution. To explain the need to model flows of execution, we first
consider the diagram in Fig. 7a. It has two inputs I1 and I2, and three outputs 01, 02, and 03. The subsystem
block SS is defined by the diagram in Fig. 7b. If we considered only the diagram in Fig. 7a, we could say that
SS takes two inputs and produces two outputs. Inspection of Fig. 7b, however, reveals that O2 can be provided
only once both inputs are available, but O1 can be determined from just I1. So, a model that defines that SS can
output O1 only once both I1 and I2 are input is too restrictive. The graph model, therefore, needs to record that
SS has two (independent) flows of execution: one that calculates O1 and another that calculates O2. For O2,
both inputs are required, but not for O1.

In principle, each output determines a potentially independent flow of execution that calculates it, but a group
of outputs may all be part of a single flow. Typically, the calculations involved in the definition of the value of
each output are different, but they may, for example, depend on exactly the same inputs. Therefore, the flows are
recorded as a function from sets of outputs to a binding (of type Flow as defined in Appendix A) that records
information about the flow of execution that determines these outputs.

From control law diagrams to Ada via Circus 475

2

Out2

1

Out1

else { }
Out1

If Action 2

if { }
Out1

If Action 1

u1
if(u1)

else

If

1

In1

Fig. 8. If action subsystems

Relevant information about a flow determines its required inputs (rinps). For the block SS in Fig. 7a, for
instance, the required inputs for the flow {O2 } is {I 1, I 2 }, but for {O1 }, it is {I 1 }.

To cater for action and enabled subsystems, we also need to record whether or not a flow of execution is
always enabled. As an example, we consider the diagram in Fig. 8. A basic If block takes the input In1; if it is
greater than 0, then the first output is true, which is represented by 1 in Simulink, otherwise the second output
is 1. These outputs are connected to the action ports of two action subsystems.

The output of an action subsystem depends on whether the value provided in its action port is 1 or not, that
is, on whether the subsystem is enabled or not. The graph model for such a subsystem block, therefore, needs to
record, for each of the flows defined by its outputs, the name of the action port. For If Action 1, we have a single
flow {Out1}, and its enabling port is just If out1. (As explained in Appendix A, formally, this is recorded in the
field enabled of the record of type Flow that models the flow as esigs({If out1}).)

Finally, we need to record whether the output of a flow of execution depends on the order of its required
inputs. This is necessary to cater for merge blocks, which take a number of inputs and output the latest calculated
one. The characterisation of a merge block with two inputs is as follows.

〈| inps �� 〈 In1, In2 〉,
outs �� 〈Out1 〉,
flows �� {{Out1 }
→ 〈| enabled �� always, ordered �� true, rinps �� {In1, In2 } |〉 } |〉

Intuitively, a merge block combines its inputs into a single output whose value is equal to the most recently
computed, that is, updated, input. Even inputs that are not updated need to be provided (communicated), before
the output is available. So, above the value of rinps for the single flow {Out1 } includes both inputs.

In our example, as indicated in Fig. 6, the blocks are very simple: they have one flow, which is always enabled,
and whose output does not depend on the input order. Blocks like Diff represent a diagram, but from the point
of view of the PID, it is just a block; its internal communications are abstracted away.

In the previous examples involving subsystem blocks, the information about their flows can be extracted by
an analysis of the structure of the diagrams that define them. Even basic blocks, however, can have interesting
flows of execution. For example, the unit delay block can produce outputs before it receives (all) the inputs. To
construct the graph model of a diagram, we, therefore, need a library that records information about the basic
blocks that compose diagrams, just like in ClawZ.

We consider, for instance, the diagram in Fig. 9, which defines the Int block of the PID diagram (see Fig. 2). In
constructing the model of this diagram, we need the information that the output of Unit Delay is available before
its input is received. The input is the output of a Sum block that takes the output of Unit Delay itself as input.
A model for the diagram that requires all inputs of all blocks to be provided before their outputs are produced
would, therefore, incorrectly allow for a deadlock.

476 A. L. C. Cavalcanti et al.

1

Out1

z

1

Unit Delay

Sum

1

In1

Fig. 9. PID integrator

Since Unit Delay is a basic block, however, to determine the immediate availability of its output, we need to
resort to recorded information about such blocks. Its characterisation is as follows; the input is named In1, and
the output Out1. As in ClawZ, this is just a convention; when blocks in diagrams are considered, the proper
names of the inputs and outputs have to be determined in accordance with the wiring.

〈| inps �� 〈 In1 〉,
outs �� 〈Out1 〉,
flows �� {{Out1 }
→ 〈| enabled �� always, ordered �� false, rinps �� ∅ |〉 } |〉

Its only input is not required by its only flow {Out1 }, so the value of its rinps field is the empty set.
It is the graph model of a diagram that identifies, for instance, the channels declared and used in its Circus

model. This is described in detail in the next section.

4.2. Channels

The Circus specification of a diagram first declares all signals as channels; for that, the information in the fields
inputs, outputs, and each of the fields outs in the blocks fields of df is used.

channel df.inputs, df.outputs, {B : Block • df.blocks(B).outs } : U

Even though df.inputs is a set of signals, we use it above to denote a list of the signals in this set; the same comment
applies to df.outputs and to the set of sequences df.blocks(B).outs of signals: one for each block B of the diagram.
The type Block contains the valid block names; Appendix A gives the formalisation of the df model. All these
signals are declared as channels of type U.

We also declare a synchronisation channel end cycle; after taking all its inputs and producing all its outputs,
each process representing a block of a diagram waits to synchronise on end cycle before proceeding to the next
cycle. In this way, the behaviour of all block processes are kept in phase.

channel end cycle

In this paper, we only consider single-rate diagrams; for multi-rate diagrams, we will explore the timed version
of Circus named Circus Time [SCJS10].

The Circus specification corresponding to the PID, for example, starts as follows.

channel E ,Kp,Ki ,Kd ,Y ,Si out,Diff out, Int out,Sd out,Sp out : U

channel end cycle

Next, the Circus specification includes the ClawZ library, which is used in clawz. There is then a process for each
block, and at the end, the definition of the diagram; the are defined in the following sections.

4.3. The blocks

The model of a block is a single centralised process defined explicitly, independently of whether the block is
simple, like Sd, or a subsystem, like Diff. This process lifts the clawz model, which is based on type definitions, to
Circus actions. For each block B in dom df.blocks, we define a Circus process also called B.

process B �̂ begin

From control law diagrams to Ada via Circus 477

Fig. 10. Circus process for the block Diff

We consider a block whose flows are always enabled and do not depend on the order of the inputs.
The state of B includes a component for each component named state used in the definition of B in clawz.

state B State
clawz(B) h(def1) state, . . ., clawz(B) h(defn) state : U

To determine the names defi used in the definition of the state components of B State, we consider the signature
of the ClawZ definition clawz(B). As already said, this is a set of bindings. Its signature, therefore, is the power set
of a schema type, or more plainly, of a record type defined by listing the record fields and respective (maximal)
types. For example, the schema pid Diff (in Fig. 4) characterises the PID Diff block. Its signature is the powerset
of the schema type defined below.

[In1?,Out1! : A; Sum : [In1, In2?,Out1! : A]; UnitDelay : [In1?,Out1!, initialstate, state, state ′ : A]]

The type A is the given set of values used in number systems. Because the above signature has a component
UnitDelay whose type is a schema with a component called state (as defined by UnitDelay g in the ClawZ
library) the process Diff (see Fig. 10) has a state component pid Diff UnitDelay state.

478 A. L. C. Cavalcanti et al.

We specify a function stateN , which, given a schema type S , defines the set of sequences of component names
that can be used to select a (sub)component of S whose type is itself a schema with a component named state.
For the schema type above, stateN identifies the set containing the sequence 〈UnitDelay〉.

We define stateN (S) in terms of a function stateT (s,T), which applies to Z (maximal) types T , rather than
just schema types S . The Z types include given sets, power sets, cartesian products, and schemas. The first param-
eter s of stateT is a sequence of component names. Formally, state(S) is defined as stateT (〈 〉,S), and intuitively,
s is the sequence of names that can be used to select a component of S that has type T .

We provide an inductive definition for stateT (s,T) based on the structure of types T in Z.

Definition 4.1

stateT (s,TN) � stateT (s, P T) � stateT (s,T1 × T2) � ∅

stateT (s, [i • ci : Ti] � {s }, if ∃ i • ci � state

stateT (s, [i • ci : Ti] �
⋃

i • stateT (s � 〈ci 〉,Ti), if ¬ ∃ i • ci � state

We use TN to stand for a type name, that of a given set, and T , T1, T2, and Ti to stand for arbitrary type descrip-
tions. For given sets, power sets, and cartesian products, stateT gives the empty set of selector sequences: given
sets have no components, and, in a model of a block, we do not have other blocks arranged in a power set or a
cartesian product. What we do have is blocks directly inside other blocks. In our example, for instance, pid Diff
is the model of a block that includes as components models of other blocks. In the case of the component Sum,
it is a block without state, but in the case of UnitDelay , we do have a state. Correspondingly, in the definition of
stateT , we consider schema types [i • ci : Ti] which include components ci of type Ti . If any of the names ci
is state, then the sequence s is identified as a selector for a schema type with a state component. Otherwise, we
consider each of the components ci individually. For each of them, we consider the result of recursively applying
stateT to the sequence obtained by appending ci to s , and to the type Ti of ci . The result is the distributed union
of the sets of selector sequences so obtained.

The sequences of names in stateN (clawz(B)) are exactly the sequences defi used above to construct the names
of the state components of the process B as specified above. The name h(defi) used in the declaration of the
state schema B State is the -separated list of the names in defi. The simple definition of the syntactic function
h is omitted. For our example, the name of clawz(B) is pid Diff and, since the result of applying state to its
signature is just the singleton sequence 〈UnitDelay〉, the name of the state component is pid Diff UnitDelay .
We observe that such names always identify a definition of the model of a block.

After the state declaration, we include clawz(B). In our example, the schema pid Diff , as well as the schemas
pid Diff Sum and pid Diff UnitDelay used in the specification of pid Diff , are included. They were
originally presented in Fig. 4, as part of the ClawZ output.

The initialisation of the state is based on the clawz(B) specification.

Init
B State ′

∃b : clawz(B) h(defi) • clawz(B) h(defi) state ′ � b.initial state

A state component clawz(B) h(defi) state, corresponding to the component named state of the bindings in
the set clawz(B) h(defi), is initialised with the value of the component initial state of the bindings in this set.
In Init , we identify a binding b of type clawz(B) h(defi); its value for initial state defines the initial value of
clawz(B) defi state. For instance, if clawz(B) h(defi) is a type that models a unit delay block, like in our exam-
ple, clawz(B) h(defi) is a set whose bindings all have the same value for initial state: that specified in the linear
representation of the diagram. In Fig. 10, the definition of the Init schema is a very direct instantiation of its
characterisation above; clawz(B) h(defi) is pid Diff UnitDelay .

The definition clawz(B) specifies the state changes resulting from the execution of B as well as its outputs,
but clawz(B) is not an operation over the state B State: it is a type. We define a schema Calculate B that lifts
clawz(B) to a data operation on B State. It includes the input and output variables In1?, In2?, Out1!, Out2!,
and so on, of clawz(B), following the standard Z style of specifying data operations. In Calculate B, we identify
a binding b of type clawz(B) using the input values in Ini? to determine the value of the Ini? components of b,
and the state components to determine the value of the corresponding .state components of b. The new value
of the state and the outputs are defined by b.

From control law diagrams to Ada via Circus 479

Calculate B
�B State
Ini?,Outj! : U

∃b : clawz(B) •
b.Ini? � Ini? ∧ b.d (defi).state � clawz(B) h(defi) state ∧
b.d (defi).state ′ � clawz(B) h(defi) state ′ ∧ b.Outj! � Outj!

If B State has a component clawz(B) h(defi) state, it is because clawz(B) has a component that can be selected
usingdefiwith state and state ′ components. This justifies the references above to b.d (defi).state and b.d (defi).state ′.
The result of d (defi) is the .-separated list of the names in defi.

If clawz(B) does not involve any such component defi, then the set of bindings specified by Calculate B is
actually the same as that specified by clawz(B). In this case, Calculate B has only the Ini? and Outj! components
of clawz(B), and its predicate is reduced to ∃b : clawz(B) • b.Ini? � Ini? ∧ b.Outj! � Outj!. It is simple to prove
that, for every binding c of type [Ini?,Outj! : U], we have that c ∈ clawz(B) if, and only if, c ∈ Calculate B. The
argument can proceed as follows.

c ∈ Calculate B

⇔ ∃b : clawz(B) • b.Ini? � c.Ini? ∧ b.Outj! � c.Outj! [definition of Calculate B]
⇔ ∃b : clawz(B) • b � c [property of bindings]
⇔ c ∈ clawz(B) [one-point rule]

In our example, the schema Calculate Diff lifts pid Diff to an operation over Diff State. For that, we estab-
lish a correspondence between the state and state ′ components of the bindings in the component UnitDelay of
pid Diff and the state components pid Diff UnitDelay state and pid Diff UnitDelay state ′.

Each flow in a block calculates some of the outputs Outj!. For each flow identified by a set f of signals in the
domain of df.blocks(B).flows we define an action Execute Nf , where Nf is a unique name determined by the set
f. It can be, for instance, formed by a list of the elements in f; that is a unique name, since the flows of a block
produce disjoint outputs. In our example, as shown in Fig. 6, the block Diff has a single flow that calculates the
value output through the channel Diff out . We, therefore, define an action Execute Diff out .

An Execute Nf action uses a schema Calculate Nf that defines the values of the outputs in f. It is specified
in terms of Calculate B using the schema calculus: we hide the final value of the state, any inputs that are not
required and outputs that are not produced, and conjoin the result with � B State so that the state is not modified.
The schema � B State specifies that the values of the state components are preserved.

Calculate Nf �̂ (Calculate B \ (αB State ′, nrinps, npouts)) ∧ �B State

where nrinps � {Ini? | df.blocks(B).inps(i) �∈ df.blocks(B).flows(f).rinps }
npouts � {Outj! | df.blocks(B).outs(j) �∈ f }

We use αS to denote a list of the components of a schema S . The set nrinps contains the names Ini? of the
components that represent the inputs of B, as defined by df, that are not required for the flow f. As a slight abuse
of notation, we refer to this set in a hiding, where a list of its elements is required. The same comment applies to
npouts, which contains the names Outj! of the outputs of B that are not produced by f.

In our example, we have defined the schema Calculate Diff out , which calculates the value of the output
Diff out of the block, but does not change pid Diff UnitDelay state. All inputs are required and the single
output of the block is produced, so only the state component is hidden.

The action Execute Nf takes the required inputs, and then calculates and produces the outputs of f.

Execute Nf �̂

⎛

⎜

⎜

⎝

var rinps : U •
⎛

⎝

|||(inp, Ini) : crinps • (inp?x → Ini :� x , {Ini });
(

var pouts : U •
Calculate Nf ; |||(out,Outj) : cpouts • (out!Outj → Skip, {})

)

⎞

⎠

⎞

⎟

⎟

⎠

where rinps � {Ini | df.blocks(B).inps(i) ∈ df.blocks(B).flows(f).rinps }
pouts � {Outj | df.blocks(B).outs(j) ∈ f }
crinps � {(inp, Ini) | inp ∈ df.blocks(B).flows(f).rinps ∧ df.blocks(B).inps(i) � inp }
cpouts � {(out,Outj) | out ∈ f ∧ df.blocks(B).outs(j) � out }

480 A. L. C. Cavalcanti et al.

First, Execute Nf declares variables Ini to record the values of the required inputs: those in the set characterised
by rinps. Namely, we declare Ini when the i-th input is required by f. Once again we refer to a set, in this case
rinps, to denote a list of its elements, in this case in the variable declaration. Similarly, to calculate the outputs,
Execute Nf declares the variables in the set pouts; it contains the name Outj whenever the j-th output is produced
by f. In Execute Diff out , there is one input variable In1, and one output variable Out1.

The inputs of a block can be received in interleaving, that is, in an arbitrary order, through each of the channels
inp corresponding to an input required by f. The set crinps contains the pairs (inp, Ini) where inp is a channel
that corresponds to a required input of f, and i, used to form the name Ini, is the position of that input of B. In
Execute Nf , actions inp?x → Ini :� x that take an input x through the channel inp and assign it to the local
variable Ini are interleaved. This is formalised as an iterated interleaving over all pairs (inp, Ini) in crinps. The
name Ini is used to define the name partition of the interleaved action, as required by the interleaving operator
for actions to enforce absence of conflict in the access to state components and local variables (see Sect. 3.2). We
use the pair (inp?x → Ini :� x , {Ini }) to describe that each interleaved action inp?x → Ini :� x is associated with
the partition {Ini }.

Similarly, outputs are sent in interleaving through the channels out in f. The value output through such a
channel out is that in Outj, where j is the position of the corresponding output in B. The value of Outj is defined
by the schema Calculate Nf . The pairs (out,Outj) are the elements of the set cpouts. The interleaved actions do
not change any state components or local variables, so their name partitions are empty. In our example, there
is only one input and one output, so in Execute Diff out the interleaving is reduced to a single prefixing. The
required input is E ; as the only input, its position is 1, so the corresponding variable in rinps is In1. The only
output is Diff out , with corresponding variable Out1.

After the specification of all the actions Execute Nf , an action Flows combines them in parallel.

Flows �̂ ‖ f : dom df.blocks(B).flows • (Execute Nf , df.blocks(B).flows(f).rinps, {})
The alphabets of each of the parallel actions Execute Nf are the required inputs of f. This means that any inputs
that are required by more than one flow are shared by synchronisation. There are no shared outputs. The flows do
not change any of the state components, so each of the parallel actions Execute Nf are associated to the empty
set {} of variable names in the parallelism. Above, we describe each of a parallel actions as a triple, containing the
action, and its associated alphabet and name set. Since in Diff there is only one flow, in Fig. 10, the parallelism
in the action Flows is reduced to the action Execute Diff out .

The schema Calculate B is also used to define a schema Calculate B State as specified below; it defines the
new value of the state after the execution of the block B.

Calculate B State �̂ Calculate B \ (Outj)

where j ∈ 1 . . #df.blocks(B).outs

In Calculate B State all output variables Outj of Calculate B are hidden. An example is presented in Fig. 10: the
action Calculate Diff State, which is defined in terms of Calculate Diff by hiding Out1!.

The action StateUpdate that updates the state takes all the inputs in df.blocks(B).inps in interleaving. Like in
Execute Nf , appropriate variables are declared to record inputs, but all inputs are required.

StateUpdate �̂
⎛

⎝

var Ini : U •
(|||(inp, Ini) : cinps • (inp?x → Ini :� x , {Ini });

Calculate B State;

)

⎞

⎠

where cinps � {(inp, Ini) | inp � df.blocks(B).inps(i) }
In our example, we declare an action StateUpdate which takes the only input through E and executes the action
specified by Calculate Diff State to update the state.

As explained previously, the main action at the end of the process definition specifies its behaviour. For B, it
is as shown below. It starts with the initialisation, and recursively proceeds in parallel to execute each of the flows
and update the state, before synchronising on end cycle. The flows proceed independently, but a block can only
start a new cycle when all the flows, (and all the blocks of the diagram) have finished.

• Init ; μX • (Flows |[{} | rInps | {αB State }]| StateUpdate); end cycle → X
end

From control law diagrams to Ada via Circus 481

The flows do not update the state, and so the action Flows is associated with the empty set {} of variable names;
on the other hand, StateUpdate is associated with the set αB State including all state components. The synchro-
nisation set rInps contains all the inputs required by at least one flow of B. This is because, when an input is
received, it needs to be made available to the flows that require it and to the action that updates the state, and so
they all synchronise to receive the shared input.

rInps �̂
⋃

{| f : dom df.blocks(B).flows • df.blocks(B).flows(f).rinps |}

As already observed, not all inputs are necessarily required by a flow. Therefore, if we took the range of
df.blocks(B).inps as the synchronisation set, we would be too restrictive. If a block has no state, the recursion in
the main action only executes Flows followed by the synchronisation on end cycle.

4.4. The diagram

As already indicated, our Circus model abstracts from specific timing aspects of a Simulink diagram; it ignores,
for instance, definitions of sampling periods and step sizes that determine the length of the cycle size. Instead, we
use synchronisation (on the channel end cycle) to make sure that the calculations embedded in the blocks are
kept in step and, therefore, take the correct inputs and specify the expected outputs. In this context, the time-based
block diagram semantics is reduced to that of a data flow chart [Mat].

Accordingly, to define the semantics of a Simulink diagram, we use basically the CSP standard approach
to modelling networks of components [Hoa85]. As explained above, each box (block) is modelled as a process,
and each line (wire) is modelled as a channel. To give the semantics of the network (diagram), we therefore use
the parallel composition of the block processes, with the synchronisation sets defined by the channels in their
interface. (In CSP terminology, these block diagrams are called connection diagrams.)

The synchronisation required by the parallelism in the model of a network of processes determines the pos-
sible flows of execution for the diagram. A connection is modelled by a synchronisation on the same channel. In
the case of our model, the channels are those that represent inputs and outputs of the diagram, and those named
after the outputting block with the out suffix.

For the PID, for example, synchronisation ensures that the input taken through the channel E is shared by the
processes Diff , Sp, and Si . On the other hand, since these processes do not synchronise with each other on any
other of their data channels, their subsequent execution is independent. Each block process recurses to proceed
with the next cycle of calculations; to make sure that they all finish (and start) a new cycle together, we require
that they synchronise on end cycle.

Finally, we hide all channels that represent internal wires, rather than inputs and outputs. From the point
of view of the user of the control system modelled by the diagram, data flowing in these wires is invisible. In
fact, they are just a modelling device used to specify the system as a control law diagram. By regarding them as
internal channels, we are providing a specification that encapsulates the structure of blocks. In practical terms,
this means that, in an implementation, we do not need to have a separate process for each block; refinement can
lead to combination and splitting of blocks.

Precisely, the Circus model for the whole diagram is a process called df.spec defined as the parallel execution
of all the block processes as specified below.

process df.spec �̂ (‖B : dom df.blocks • (B, αB)) \ (Signal \ (df.inputs ∪ df.outputs))
where αB � ran df.blocks(B).inps ∪ ran df.blocks(B).outs ∪ {|end cycle|}

The alphabet αB of each block B includes its inputs and outputs, and end cycle. Signal is the set of all chan-
nels that correspond to wires in the diagram: all except end cycle. Therefore, the set defined above as Signal \
(df.inputs ∪ df.outputs) includes all channels that represent neither an input nor an output of the diagram: they
correspond to the wires that connect blocks.

For the PID diagram, the Circus model is the process defined below.

482 A. L. C. Cavalcanti et al.

process PID �̂
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Si {|E ,Ki ,Si out, end cycle |}
||

Diff {|E ,Diff out, end cycle |}
||

Int {|Si out, Int out, end cycle |}
||

Sd {|Kd ,Diff out,Sd out, end cycle |}
||

Sp {|E ,Kp,Sp out, end cycle |}
||

Sum {|Sd out,Sp out, Int out,Y , end cycle |}

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

\ {|Si out,Diff out, Int out,Sd out,Sp out |}

As hinted above, the processes Si , Diff and Sp, for example, are required to synchronise on the input channel
E that they share, and on end cycle. This is exactly the intersection of their alphabets. Similarly, the internal
channel Diff out is in the alphabet of both Diff and Sd ; so, these processes are required to synchronise on
Diff out and end cycle. All the out channels are hidden.

By modelling the wiring via channels, and allowing the definition that an output can be produced (that is,
communicated) before an input is received, we can cope with feedback loops. More specifically, in such a case,
the input and output are modelled by parallel actions. History is kept in the state.

As said before, typically a diagram is hierarchical, in the sense that some blocks may be themselves defined
by other diagrams. In general, at the top level we have a diagram with a single block that takes all the inputs
and produces all the outputs of the system. If we use this single-block diagram to generate a Circus model, we
obtain a single process encapsulating the ClawZ output. This is the most adequate model for the verification
of a sequential implementation: we basically use the current ClawZ technique [CC06]. On the other hand, if we
have a parallel implementation as a target, we should work with a Circus model of the diagram that defines the
top-level block (and remove parallelism as needed, as explained in Sect. 6).

In our example, we use the parallel Circus model presented in Sect. 4 for the diagram in Fig. 2, because we
have a parallel implementation as a target. Since the implementation of the Diff block, for example, is sequential,
we do not need to use the alternative parallel model that would be generated by the translation of its diagram in
Fig. 3. In this parallel model of Diff, there would be, for instance, a channel Unit Delay out corresponding to
the communication between the Unit Delay and the Sum blocks in Fig. 3. This parallel model of Diff would be
architecturally more elaborate than its sequential implementation. Since Unit Delay out is internal, this parallel
model would be equivalent to the sequential model provided in Fig. 10 for Diff, but the latter is more adequate
for our verification.

As already indicated, our simple example does not illustrate parallel flows in blocks, but parallelism does show
up in the diagram model, reflecting the fact that the three correction actions can be calculated independently. The
PID model is appropriate in both size and complexity to illustrate the main concepts and strategies involved in
our verification technique. In the next section, we present an implementation of our PID, before discussing how
we can prove that such implementation is correct.

5. Ada programs and their Circus models

The only realistic design for a system like the PID is a sequential implementation, because this is a very simple
and small control system. In this case, to prove its correctness, we do not need Circus: the current technique
based on ClawZ is enough. To illustrate the application of our refinement technique, however, we consider a par-
allel implementation, whose architecture is representative of those commonly used in embedded control systems
where time is critical and processing resources are limited. The use of more powerful microprocessors reduces
the need for concurrency for performance reasons; however, fault-tolerant architectures still require concurrent
master/slave implementations. The growing requirement for multiple linked control systems (such as a flight,
engine, and fuel control systems) means that overall system control still requires concurrent implementations as
that presented in the sequel for our simple PID example.

From control law diagrams to Ada via Circus 483

Exec_0 Exec_3Exec_2Exec_1

Task_1 Task_2 Task_3

PID Discrete

Fig. 11. Architecture of the Ada implementation

Fig. 12. Ada code of Exec 3 and Task 3

Typically, the cycle of the diagram is broken down into time frames, and schedulers determine the subpro-
grams that are executed in each time frame. For our PID example, we have an Ada implementation in which the
cycle is broken into two frames. In complex applications, the use of frames is slightly more complicated than this,
with the need for major and minor time frames, but using a single kind of time frame is enough to illustrate the
principles of our verification technique.

Our implementation comprises four main programs Exec 0, Exec 1, Exec 2, and Exec 3, which execute
concurrently. The notion of main program is not part of the Ada model of concurrency. In fact, the Ada multi-
threading facilities are not used in the implementations that we consider: the main programs are Ada procedures
that are executed by different processors. Figure 11 presents the architecture: we use ellipses to distinguish the
procedures that correspond to the main programs; the double bars indicate that they run in parallel. Each of
them initialises a few variables, and loops; the body of the loop executes for the duration of a time frame, and
schedules part of its functionality.

We present in Fig. 12 the code for the procedure Exec 3. It uses an Ada package Timing, which declares
constants that characterise the frame, and variables like Start Time and End Time, which are used to define the
time to start and to finish the computations of a frame. Another package, Task 3, implements the scheduling
for Exec 3. After executing the initialisation procedure of Task 3, that is, Task 3.Init, the procedure Exec 3
loops: at the start of each frame, it carries out the scheduled tasks, as defined in the procedure Task 3.Step, and
waits until the end of the frame to proceed.

The package Task 3 is also presented in Fig. 12. It uses another package F Sch that declares a frame counter
Cur F. It also uses a package PID, which implements the functionality of the blocks. The initialisation proce-
dure of Task 3, named Init, initialises the state of the Diff block using the procedure Init Derivative of the
package PID, which we present in Fig. 13. In the procedure Step, Task 3 schedules Calc Derivative, also a
procedure of the PID package, in the first frame of every cycle; it carries out the calculations of the Diff and Sd
blocks. The implementation of PID uses one further package, Discrete which provides procedures of general
interest to calculate differentials and integrals.

484 A. L. C. Cavalcanti et al.

Fig. 13. Ada code of PID

The main programs Exec 1, Exec 2, and Exec 3 are all associated with a frame scheduler: Task 1, Task 2,
or Task 3. They are depicted in Fig. 11, where we use squares to indicate that they are Ada packages; they are
connected to the procedures that use them. The procedure Exec 0 only maintains timing information: it updates,
for example, Start Time, End Time, and Cur F. Synchrony between the main programs is maintained by the
use of delay until commands, which all rely on the values of the shared variables Start Time and End Time
to determine the right time to start and end a frame.

In practice, Exec 0 corresponds to an ASIC timer that regulates the execution of time frames. The procedure
Exec 1 implements the blocks Sp and Sum; Exec 2 implements the blocks Si and Int; finally, Exec 3, as already
discussed, implements the blocks Diff and Sd.

To summarise, our verification strategy is for Ada implementations whose architecture can be characterised
by: (1) the number of frames in which the cycle is broken; (2) the number of Exec procedures that define parallel
processes; (3) the set of procedures that implement the functionality of a group of blocks; and (4) the allocation
of these procedures to frames defined by each of the Task packages. This architectural pattern, in our experience,
is characteristic of applications developed in military avionics.

At the moment, ClawZ can verify the correctness of only the procedures that implement block functionality.
Our strategy covers their coordinated use in the way just explained. As a side effect, it ensures that any assump-
tions taken as preconditions for the verification of a procedure are discharged. This is achieved with the same
level of automation of ClawZ, which has already proved to be acceptable in an industrial setting.

To prove that an implementation of a diagram is correct, we use the Circus model of the diagram constructed
as discussed in the previous section, a Circus model of the Ada program, and an algebraic refinement strategy.
Most of the model of the program can be calculated automatically using a Circus semantics for (a subset of)
Ada, that is, a semantics that characterises Ada programs using Circus specifications. The only hurdle is that,
as explained above, scheduling is based on shared variables that record time periods (like Start Time and End
Time) and on a delay command. This can be handled directly by Circus Time [SJCS05, She06], the timed exten-
sion of Circus, but here we use synchronisation on end cycle and on an extra channel frame. Therefore, we do
not need the variables Start Time and End Time used in the program.

The Circus model of the program contains a process for each Exec procedure; the structure of packages is not
preserved in these processes. In our example, we have four processes that define the parallel programs. Inputs and
outputs are communicated through the channels defined in the model of the diagram. Moreover, shared variables
in the program have their values communicated through internal channels: we declare an extra channel for each
shared variable. In our example, we have two shared variables D and I that are declared in the specification of
PID (see Fig. 13); so we declare two extra channels, Dsh and Ish, that are used to communicate the values of D
and I that are shared by the task packages.

From control law diagrams to Ada via Circus 485

Fig. 14. Circus model of Exec 0

Fig. 15. Circus model of Exec 3

The model for the Exec procedure that represents the timer is determined by the number of frames of each
cycle. In our example, this is the process that models Exec 0; it is shown in Fig. 14. The process Exec0 keeps track
of the number cur f of the current frame, which corresponds to the Ada variable Cur F. In every frame, Exec0
outputs this number through the channel frame, and at the end of the second frame synchronises on end cycle.
This captures the interpretation of the timing variables in terms of the channels frame and end cycle. The type
FrameIndex is used (in the program and in its model) to number the frames.

The models for the other Exec procedures are similar, but they take into account the allocation of procedures
to frames, and the sharing of variables. The state components are the variables that are used directly or indirectly
by the Exec procedure. The actions are in direct correspondence with the procedures that it allocates. The main
action defines the behaviour of the process as defined in the Exec procedure itself. We present the model of Exec 3
in Fig. 15; it is derived by flattening Exec 3, Task 3, PID, and Discrete. Jointly, they declare and use variables
Error, Kd, Diff Mem, and D. They also define procedures Init Derivative, Diff, Calc Derivative, and
Step. As shown in Fig. 12, the Exec 3 procedure, after the initialisation, iterates indefinitely executing the
procedure Step.

Like the procedure Step, the action Step captures the functionality of a time frame. It finds out the index
of the current frame using the channel frame. In the first frame of a cycle, the derivative is calculated using the
procedure Calc Derivative. In the model, the relevant inputs are taken in interleaving before the corresponding
action Calc Derivative is called. This is based on a correspondence between the program variables and the wires
of the diagram: in our example, between Error and E , and Kd and Kd .

As further discussed in the next section, our technique requires an analysis of the diagram and the program
to establish not only how program variables correspond to wires, but also how procedures correspond to blocks.
This activity is part of the ClawZ verification process, and therefore, we have evidence that it is acceptable in
practice. Controlled experiments inside QinetiQ have indicated a reduction factor between two and a half and
four and a half in the cost of establishing acceptance using ClawZ. Overall, the reduction when compared to
conventional verification of safety-critical avionics systems is of 20%. Moreover, the correspondence between the
wires of the diagram and the channels of its Circus model is direct.

486 A. L. C. Cavalcanti et al.

In Step, the value x taken from the channel E is stored in the state component Error , and the value taken from
Kd is stored in the state component of the same name. As mentioned above, the inputs are taken in interleaving.
The interleaved action that takes input from E has write access to Error , and the action that takes input from
Kd has write access to the variable Kd .

Since D is a shared variable that is calculated by Exec3, its value is communicated in the second frame. For
that, the internal channel Dsh is used. This value is read by the process Exec1 as shown below. The modelling of
the use of shared variables as communications is very simple: we identify the frames that write and the frames that
read the variables. If we identify a frame in which a variable is both written and read, we have already identified
a potential problem in the program, and there is no need to proceed with the verification: the potential racing
has to be eliminated. Otherwise, we insert the required read and write communications over the internal channel
that represents the variable.

To further illustrate the technique, we consider the model of Exec 1, in which the Step procedure collects the
values of the shared variables, and produces an output at the end of the cycle.

Step �̂ frame?f →

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

if (f � 1) →
(

((E ?x → Error :� x) ||[{Error } | {Kp }]|| (Kp?x → Kp :� x));
Calc Proportion

)

[] (f � 2) →
(

((Ish?x → I :� x) ||[{I } | {D }]|| (Dsh?x → D :� x));
Calc Output ;
Y !Position → end cycle → Skip

)

fi

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The actions Calc Proportion and Calc Output correspond to procedures of the same name that implement the
functionality of the blocks Sp and Sum; they are in the package PID. The program variables I and D become state
components of Exec1. They are shared variables in the program, but are set here using the values communicated
via the internal channels Ish and Dsh.

The model of the complete Ada program is given by the parallel composition of the processes that model
the Exec procedures. The alphabet of the processes are defined by all the channels that they use; frame and the
channels representing shared variables are hidden. In our example, we have the process AdaPID below.

process AdaPID �̂

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Exec0 {| frame, end cycle |}
||

Exec1 {| frame,E ,Kp, Ish,Dsh,Y , end cycle |}
||

Exec2 {| frame,E ,Ki , Ish, end cycle |}
||

Exec3 {| frame,E ,Kd ,Dsh, end cycle |}

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

\ {| frame,Dsh, Ish |}

In the design of the Ada programs that we consider here (see Fig. 11), there is no explicit use of the concurrency
facilities of Ada. Concurrency is achieved using mechanisms external to the language. Basically, there is a main
program for each processor used in the system implementation. As shown above, the Circus model captures the
parallel execution of these programs.

Our example program is representative of real applications, in particular in its treatment of cycles, scheduling,
and sharing. With the Circus model of the PID diagram presented in the previous section, and the Circus model
of the Ada program just described, we are now in a position to establish correctness.

6. Refinement strategy

The existing refinement strategy for Circus [CSW03] is concerned with the development of concurrent imple-
mentations from centralised specifications; it is based on algebraic laws of refinement in the style of [Mor94], for
example. The scenario in the verification of implementations of control law diagrams is different. The diagrams
present massive opportunities for parallelism, and our model is a parallel composition of blocks. Implementations,
on the other hand, usually provide sequential algorithms to implement groups of blocks.

Many of the existing refinement laws of Circus are still useful, but we need extra laws. In addition, since the
specification (model of the diagram) is highly structured, we can provide guidance, and therefore automation,
in the application of the laws, if we have a particular implementation architecture in mind, and can identify

From control law diagrams to Ada via Circus 487

the correspondence between components of that architecture and the diagram. In this paper, we consider the
program architecture identified in the previous section.

We present a refinement strategy for proving that a Circus model of a diagram, PID in our example, is refined
by the Circus model of a parallel Ada implementation, AdaPID in our example. The strategy prescribes the
application of a number of Circus refinement laws. The semantics of Circus [OCW09] is based on Hoare and
He’s unifying theories of programming. This model and its mechanisation in ProofPower [OCW07] are the basis
for the proof of soundness of the laws. Soundness of our strategy follows from the soundness of the individual
refinement laws used. They are presented in Appendix B, with the novel laws marked.

In the refinement strategy, we have three aims: (1) collapse the parallelism of the specification to match the
architecture of the implementation; (2) prove the correctness of the implementation of the functionality of the
blocks; and (3) follow a uniform approach that can be automated by tactics of refinement expressed using a tactic
language like that presented in [OCW03]. The strategy comprises the following four phases.

NB Normalise blocks For each block, refine the corresponding Circus process in the diagram model to write its
main action in a normal form: a recursion that iteratively executes an action that captures the behaviour of a
cycle as an interleaving of inputs, followed by output calculations and state update, followed by an interleaving
of outputs, and synchronisation on end cycle. The successful completion of this phase confirms that the blocks
can be implemented sequentially; only syntactic checks are required.

BJ Blocks join Collapse the parallelism between the processes of the blocks that are implemented by a single
procedure in the Ada program, and then between the processes that represent procedures that are handled by a
single scheduler. The success of this phase confirms that the architecture of the implementation is appropriate,
in the sense that it groups blocks and procedures that can be implemented sequentially. Again, only syntactic
checks are raised by the law applications.

Pr Procedures For each of the processes created in phase BJ, introduce the action in the model of the program
that specifies the corresponding procedure, and prove that the calculations of the outputs and the state updates
can be refined by a call to that action. This requires proof of a number of verification conditions, which can be
discharged using the existing ClawZ tools (with a very high level of automation).

Sc Scheduler Refine the process that corresponds to the system to get the main programs. Success guarantees
that the scheduling of the procedures is correct; only syntactic checks are required.

In the following sections, we discuss refinement strategies for each of these phases.
As mentioned before, the application of our strategy requires the identification of the correspondence between

the architectures of the diagram and of the implementation. Namely, for each Ada procedure, we identify the
blocks that it implements. We also establish the correspondence between the wires and state information in the
diagram with the program variables. The identification of these correspondences is already part of the ClawZ
technique; this requirement does not impair scalability. Finally, we determine the number of frames used in the
implementation, for each main program, we identify the procedures that it schedules, and, for each procedure
that implements block functionality, the number of the frame to which it is allocated; it is trivial to retrieve this
information from the model of the program, or from the program itself.

6.1. Phase NB: normalise blocks

To normalise the model of a block we (a) remove the parallelism between the actions that model the flows of
execution and the state update, and (b) promote the local variables of the main action to state components. This
is only possible if all the flows require all the inputs. If not, then there is at least one flow that may produce its
outputs before all the inputs arrive; for these, a sequential implementation that waits for all the inputs is not
correct: a parallel implementation that decouples the production of (some) outputs from the arrival of all inputs
is required. If the implementation under verification implements the block sequentially, the failure of this phase
of the refinement strategy indicates that problem.

If, on the other hand, we have a parallel implementation for the block functionality, then the centralised
model of the block is an inadequate starting point for the application of our refinement strategy. In this case,
if the architecture of the implementation is related to that of the diagram of the block, then, as said before, we
should use the model of this diagram for verification. If not, the existing Circus refinement strategy can be used.

488 A. L. C. Cavalcanti et al.

Fig. 16. Refinement strategy: phase NB

Fig. 17. Block configurations

In our experience, it is almost always possible to relate the architecture of an implementation to a diagram, in
the sense that we can map procedures and main programs to the blocks that they implement and schedule. As
highlighted above, our strategy explores this relationship.

Precisely, in this phase, we tackle blocks whose flows are combined as in Fig. 17, Configuration (4). (In par-
ticular, in the main action of the block processes, the state update is combined in this way with the flows.) In these
cases, the refinement steps in Fig. 16 succeed, when applied to the main actions of the processes that model the
blocks: all but the one that models the diagram. Each step is supported by refinement laws listed in Appendix B;
we discuss here just the novel and specific laws.

We use the main action of Diff (Fig. 10) reproduced below to illustrate the refinement steps.

Init ;
⎛

⎜

⎜

⎜

⎜

⎜

⎝

μX •

⎛

⎜

⎜

⎜

⎝

⎛

⎝

var In1 : U •
(

E ?x → In1 :� x ;
var Out1 : U • Calculate Diff out ; Diff out !Out1 → Skip

)

⎞

⎠

|[{} | {|E |} | {pid Diff UnitDelay state}]|
var In1 : U • E ?x → In1 :� x ; Calculate Diff State

⎞

⎟

⎟

⎟

⎠

;

end cycle → X

⎞

⎟

⎟

⎟

⎟

⎟

⎠

For clarity, we apply a copy-rule to eliminate all references to action names: Law (copy-rule-action). After that,
we apply the steps of refinement as explained below.

1. Synchronise inputs. Since all flows require all inputs, as does the state update, all parallel actions in the body
of the recursion declare local variables to hold each of the input values, and take all of them in interleaving.
(In our example, an interleaving is not needed because we have a single input.) In this step, we extract from

From control law diagrams to Ada via Circus 489

the parallelism the variable declarations and the interleaving using a version of Law (var-int-par-join) below,
which considers in detail the case of two inputs.

Law[var-int-par-join]
(

(var x1 : T1; x2 : T2 • (c?x → x1 :� x ||[{x1} | {x2}]|| d?y → x2 :� y); A1)
|[ns1 | {c, d} ∪ cs | ns2]|

(var x1 : T1; x2 : T2 • (c?x → x1 :� x ||[{x1} | {x2}]|| d?y → x2 :� y); A2)

)

�
(

var x1 : T1; x2 : T2 •
(c?x → x1 :� x ||[{x1} | {x2}]|| d?y → x2 :� y); (A1 |[ns1 | {c, d} ∪ cs | ns2]| A2)

)

provided {x1, x2} ∩ (ns1 ∪ ns2) � ∅

This law emphasis that if a variable is not in the name set of a parallel action, then any use that it makes of
that variable has only a local effect. If, as above, we have two parallel actions that declare local variables x1 and
x2, then we can, instead, declare these variables before the parallelism, as long as x1 and x2 are not included in
the name sets of the parallel actions. This is guaranteed by the proviso of the law. In this case, just as before,
both parallel actions have access to the initial values of the variables, and any changes that they make are not
visible. Moreover, Law (var-int-par-join) establishes that, since the parallel actions initialise x1 and x2 in the
same way, then this initialisation also can be extracted from the parallelism. In general, such extraction can
change the value of x1 and x2 beyond the parallelism, when in fact its changes to these variables are, as already
said, originally visible only locally. Since in this case, however, the scope of x1 and x2 finishes right after the
parallelism, this is not a concern.

For Diff , we have the following result after applying a simplified version of Law (var-int-par-join).

Init ;
⎛

⎜

⎜

⎜

⎜

⎜

⎝

μX •

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎝

var In1 : U •
⎛

⎜

⎝

E ?x → In1 :� x ;
(var Out1 : U • Calculate Diff out ; Diff out !Out1 → Skip

|[{} | {|E |} | {pid Diff UnitDelay state}]|
Calculate Diff State

)

⎞

⎟

⎠

⎞

⎟

⎟

⎟

⎠

;

end cycle → X

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎠

We do not have an interleaving of inputs, but extract from the parallelism the declarations of In1 and the
corresponding initialisations using the value input through E .

2. Expand the scope of the output variables. Since there are no repeated declarations of output variables, because
each output is handled by a single flow, we can expand the scope of the blocks that introduce the Outj variables,
and join the resulting nested blocks. This can be achieved by applying Laws (var-exp-par), (var-exp-seq) and
(join-blocks). For Diff , the result is as follows.

Init ;

⎛

⎜

⎜

⎜

⎜

⎜

⎝

μX •

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎝

var In1,Out1 : U •
⎛

⎜

⎝

E ?x → In1 :� x ;
(Calculate Diff out ; Diff out !Out1 → Skip

|[{Out1} | {|E |} | {pid Diff UnitDelay state}]|
Calculate Diff State

)

⎞

⎟

⎠

⎞

⎟

⎟

⎟

⎠

;

end cycle → X

⎞

⎟

⎟

⎟

⎟

⎟

⎠

3. Isolate the input processing. To remove the remaining parallelism, the schemas that process the inputs to define
the values of the outputs and the state updates are extracted by the repeated application of Law (par-seq-step).
For our example, we obtain the result below.

Init ;
⎛

⎜

⎜

⎜

⎜

⎜

⎝

μX •

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎜

⎝

var In1,Out1 : U •
⎛

⎜

⎜

⎜

⎝

E ?x → In1 :� x ;
Calculate Diff out ; Calculate Diff State;
(Diff out !Out1 → Skip

|[{Out1} | {|E |} | {pid Diff UnitDelay state}]|
Skip

)

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎠

; end cycle → X

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎠

490 A. L. C. Cavalcanti et al.

Since Calculate Diff out does not change the state, it cannot interfere with Calculate Diff State, which does
use the state components; therefore, the proviso of Law (par-seq-step) is satisfied.

4. Introduce interleaving of outputs. In the remaining parallelism, none of the inputs are taken, but the channels
are in the synchronisation set are exactly the input channels. We can, therefore, turn the parallelism into an
interleaving, using Law (par-inter). We can also use Law (inter-unused-name) to empty the name sets of the
resulting interleaving, since there are no update operations left.

Init ;

⎛

⎜

⎝μX •
⎛

⎜

⎝

⎛

⎜

⎝

var In1,Out1 : U •
(E ?x → In1 :� x ;

Calculate Diff out ; Calculate Diff State;
(Diff out !Out1 → Skip ||[{} | {}]|| Skip)

)

⎞

⎟

⎠; end cycle → X

⎞

⎟

⎠

⎞

⎟

⎠

The output on Diff out is now in interleaving, rather than in parallel, with Skip, and therefore, we do not
need to indicate a synchronisation set, in this case {|E |}, anymore.

5. Simplify the interleaving. Due to the processing of the state, that does not produce any output, one of the
interleaved actions is always Skip. We remove it using a unit law for interleaving: Law (inter-unit). In our
example, this removes the interleaving altogether, because Diff has only one output; in general, we are left with
an interleaving of the outputs (of the block).

Init ;

⎛

⎜

⎝μX •
⎛

⎜

⎝

⎛

⎜

⎝

var In1,Out1 : U •
(E ?x → In1 :� x ;

Calculate Diff out ; Calculate Diff State;
Diff out !Out1 → Skip

)

⎞

⎟

⎠; end cycle → X

⎞

⎟

⎠

⎞

⎟

⎠

6. Extend the scope of the variable declarations to the outer level. For that, we use standard variable block laws:
Laws (var-exp-seq) and (var-exp-rec).

⎛

⎜

⎜

⎜

⎝

var In1,Out1 : U •
⎛

⎜

⎝ Init ;

⎛

⎜

⎝μX •
⎛

⎜

⎝

E ?x → In1 :� x ;
Calculate Diff out ; Calculate Diff State;
Diff out !Out1 → Skip;
end cycle → X

⎞

⎟

⎠

⎞

⎟

⎠

⎞

⎟

⎠

⎞

⎟

⎟

⎟

⎠

7. Turn the input and output variables into state components. This is possible because they are local to the whole
main action. Law (main-var-state), which justifies this step, applies to a complete basic process, rather than
to actions. For our example, the resulting main action is as follows.

Init ;
⎛

⎜

⎝μX •
⎛

⎜

⎝

E ?x → In1 :� x ;
Calculate Diff out ; Calculate Diff State;
Diff out !Out1 → Skip;
end cycle → X

⎞

⎟

⎠

⎞

⎟

⎠

The variables In1, and Out1 are now state components of Diff .

In our example, the processes corresponding to the blocks Si, Sd, Sp, and Sum do not have a state, and have only
one flow of execution. We, therefore, after Step (1), proceed to Step (7), because there are no parallel actions in
their main action to be handled. For the process Int , which corresponds to the remaining block Int, the verification
is very similar to that illustrated above for Diff .

6.2. Phase BJ: blocks join

In this phase, we need information about the Ada procedures that implement block functionality, namely, the
blocks that they implement, and about the procedures handled by each scheduler. For our example, investigat-
ing the program Exec 3, we identify Calc Derivative, the procedure that implements the functionality of the
blocks Diff and Sd. The other procedures in Exec 3 do not implement blocks: the procedure Init Derivative
is a state initialisation, Diff is used in Calc Derivative, and Step is part of the scheduler in Exec 3.

From control law diagrams to Ada via Circus 491

Table 1. PID: correspondence between procedures of the Ada program and blocks of the diagram

Procedure Blocks Scheduler Frame

Calc Proportion Sp Exec 1 1
Calc Output Sum Exec 1 2
Calc Integral Si, Int Exec 2 1
Calc Derivative Diff, Sd Exec 3 1

Fig. 18. Refinement strategy: phase BJ

In considering the program Exec 2, we also find a Calc Integral procedure which implements the blocks
Si and Int. Finally, the main program Exec 1 has procedures Calc Proportion, which implements the block
Sp, and Calc Output, which implements the block Sum. Table 1 gives a summary of the kind of information
about the procedures that needs to be collected for our example.

This refinement phase tackles, first, each of the procedures that implement more than one block. For each of
them, we consider the processes that model the blocks that they implement: we remove, in the process that defines
the diagram, the parallelism between these processes. As a result, we create a single process for each procedure.
For that, we consider two blocks at a time, and proceed as shown below, and summarised in Fig. 18. Afterwards,
with the collection of processes now in correspondence with the procedures of the implementation, we proceed
in much the same way to group the processes that correspond to procedures scheduled by a single task (main
program). At the end, we have a process for each of the schedulers.

492 A. L. C. Cavalcanti et al.

To illustrate the steps of this phase, we consider the Calc Derivative procedure, that is, we join the processes
Diff and Sd , which model Diff and Sd. In our example, we also need to tackle the procedure Calc Integral,
and we proceed in a similar way. (Later, we consider the procedures Calc Proportion and Calc Output, or
equivalently, the blocks Sp and Sum, because they are both scheduled by Exec 1.)

1. Create a single process. This is achieved using the definition of process parallelism [OCW09]. It describes
P1 |[cs]| P2 as a basic process whose state includes all the components of P1 and P2 and whose main action
is the parallel composition of the main actions A1 of P1 and A2 of P2. If there are clashes in the names of
the state components (or any other definitions) of P1 and P2, they are resolved by renaming. The name sets
associated to A1 and A2 in the parallelism are the state components of P1 and P2. For Calc Derivative, we
create a process DiffSd ; its main action is as follows.
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎝ Init ;

⎛

⎜

⎝μX •
⎛

⎜

⎝

E ?x → pid Diff In1 :� x ;
Calculate Diff out ; Calculate Diff State;
Diff out !pid Diff Out1 → Skip;
end cycle → X

⎞

⎟

⎠

⎞

⎟

⎠

⎞

⎟

⎠

|[{pid Diff UnitDelay state, pid Diff In1, pid Diff Out1 } |
{|Diff out, end cycle|} |

{pid Sd In1, pid Sd In2, pid Sd Out1 }]|
⎛

⎜

⎜

⎜

⎜

⎜

⎝

μX •

⎛

⎜

⎜

⎜

⎜

⎜

⎝

(Kd?x → pid Sd In1 :� x
||[{pid Sd In1 } | {pid Sd In2 }]||

Diff out?x → pid Sd In2 :� x

)

;

pid Sd ;
Sd out !pid Sd Out1 → Skip;
end cycle → X

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The Ini and Outj variables in the state are renamed when the processes are joined to avoid clashes. They are
prefixed with the name of the diagram and of the process, and since these are unique, the new names of the
variables are also unique. The parallelism requires synchronisation on the intersection of the alphabets of
the original processes: in our example, the channels Diff out and end cycle. The parallel actions have write
access to the state components of the corresponding original processes.

2. Extract initialisations. The initialisations are not implemented in parallel. They are carried out before the
scheduling of the procedures that implement block functionality starts, or, in other words, before the program
enters the cyclic behaviour defined by the diagram. Therefore, in this step, we remove the initialisations from
the parallelism using Law (par-seq-step).

3. Extract the synchronisation on end cycle. For that, we use the fixed-point Law (rec-sync).

Law[rec-sync]

(μX • A1; c → X) |[ns1 | {| c |} ∪ cs | ns2]| (μX • A2; c → X)
�
μX • (A1 |[ns1 | cs | ns2]| A2); c → X

provided c �∈ usedC (A1,A2); wrtV (A1) ∩ usedV (A2) � ∅; and wrtV (A2) ∩ usedV (A1) � ∅.

The first proviso ensures that in the parallelism of recursive actions, the channel c is only used at the end of
the bodies A1; c → X and A2; c → X of each recursion. The set usedC (A) contains the channels used by
the action, or list of actions, A. The synchronisation on c ensures that the recursions proceed in lock-step.
This law states that we can establish the lock-step by considering a single recursive action in which A1 and A2
are executed in parallel in each iteration. There is, however, a concern about the use of data. As an example,
we consider the case in which A1 uses a variable x that is modified by A2. Since the recursions never finish,
the parallelism of the recursions never finishes. Therefore, A1 never has access to the modified value of x ;
before the parallelism finishes, A1 only has access to the initial value of x (or to any modifications that A1
makes itself). On the other hand, in the context of the single recursion, in each iteration, A1 would take the
value of x resulting from the execution of A2 in the previous iteration. In this case, the parallelism starts and
finishes at each iteration. The same concern applies to A2 in relation to A1. The second and third provisos,
however, establish that the variables that are possibly modified by A1 are not used by A2, and vice-versa. We
use wrtV (A) to refer to the set of variables whose values can potentially be changed by the action (or list

From control law diagrams to Ada via Circus 493

of actions) A, and usedV (A) to refer to the set of variables that are used by A. Formal definitions of all the
syntactic functions used here can be found in [Oli06].
Proceeding with our example, after this step, we get the following parallel main action.

Init ;

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

μX •

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(E ?x → pid Diff In1 :� x ;
Calculate Diff out ; Calculate Diff State;
Diff out !pid Diff Out1 → Skip

)

|[{pid Diff UnitDelay state, pid Diff In1, pid Diff Out1 } |
{|Diff out |} |

{pid Sd In1, pid Sd In2, pid Sd Out1 }]|
⎛

⎜

⎜

⎜

⎝

(Kd?x → pid Sd In1 :� x
||[{pid Sd In1 } | {pid Sd In2 }]||

Diff out?x → pid Sd In2 :� x

)

;

pid Sd ;
Sd out !pid Sd Out1 → Skip

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

;

end cycle → X

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The parallelism of recursions becomes a recursive parallel action, with the synchronisation on end cycle
outside the parallelism, which no longer requires synchronisation on this channel.

Remove the parallelism The steps required to achieve this objective depend on the way in which the blocks
are arranged. Also, collapsing parallelism is not always possible: we combine blocks connected in sequence. (As
said before, if we have more than two blocks to combine, we collapse two at a time.)

The configurations presented in Fig. 17 cover all the cases. In the first three, the final output, that is, the
output of the second block, depends on all outputs of the first block. The communications of the outputs of the
first block to the second one are internal, and can be eliminated. Configuration (4) involves no internal channels
and, therefore, the removal of the parallelism is simpler: we extract the common interleaving of inputs using a
variation of Law (var-int-par-join), and then we proceed as in Steps (3) and (4) of phase NB. Proceeding with our
example, we observe that the blocks Diff and Sd are connected according to Configuration (2) of Fig. 17, so we
carry out the steps illustrated below.

4. Evaluate the synchronisation entailed by the internal communications. Highly specialised, but similar, laws
justify this step. For each configuration, we have one law, and variations that take into account the different
number of inputs and outputs. The law used in this step for our example is presented below. It is useful when
the first block has one output, represented by the communication c1, which requires synchronisation with
one of the two interleaved inputs of the second block.

Law[par-out-inp-inter-exchange]

(A1; c1 → Skip) |[ns1 | {| c1 |} | ns2]| ((c1 → A2 ||[ns3 | ns4]|| c2 → A3); A4)
�
(A1; c1 → A2 ||[ns1 ∪ ns3 | ns4]|| c2 → A3); A4

provided c1 �� c2; c1 �∈ usedC (A1,A2,A3,A4);
ns3 ∪ ns4 ⊆ ns2; wrtV (A1) ⊆ ns1; wrtV (A2) ⊆ ns3; and wrtV (A4) ⊆ ns2.

The provisos guarantee that the only use of c1 is that explicitly indicated. In this case, an application of Law
(par-out-inp-inter-exchange) evaluates the synchronisation: the communication is joined with the processing
of the communicated value in A2, and the parallelism is removed. All that remains is an interleaving (of
inputs); since A4 is not concerned with the communications in question, it is kept out of the interleaving. The
provisos guarantee that the removal of the parallelism does not make changes that used to be local to become
global. For example, if ns3 and ns4 are contained in ns2, then the changes to the variables of ns3 and ns4 that
are possibly carried out by A2 and A3 were not masked by the removed parallelism, and are not affected.
Similarly, it is required that the changes that can be carried by A1, A2, and A4 were not masked. For A3, the
name set ns4 is used in both the original parallelism and in the remaining interleaving, so we do not need to
impose any further restrictions.

Straightforward generalisations of Law (par-out-inp-inter-exchange) handle cases in which there are sev-
eral interleaved output communications, instead of just c1, as long as all these outputs are matched to an input
in the parallel action. Several extra inputs to the second block, instead of just c2, can also be easily handled.

494 A. L. C. Cavalcanti et al.

Finally, the simplification of Law (par-out-inp-inter-exchange) for the case in which there is no extra input
c2 to the second block is also trivial.
In our example, the internal communication is through Diff out ; the result is as follows.

Init ;
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

μX •

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎜

⎝

(E ?x → pid Diff In1 :� x ;
Calculate Diff out ; Calculate Diff State;
Diff out !pid Diff Out1 → pid Sd In2 :� pid Diff Out1

)

||[{pid Diff UnitDelay state, pid Diff In1, pid Diff Out1, pid Sd In2 } |
{pid Sd In1 }]||

Kd?x → pid Sd In1 :� x

⎞

⎟

⎟

⎟

⎟

⎟

⎠

;

pid Sd ;
Sd out !pid Sd Out1 → Skip ;
end cycle → X

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The evaluation of the communication defines the input value; in our example, the input value x used in
pid Sd In2 :� x is determined to be the output value pid Diff Out1.

5. Remove internal communications. As mentioned, the communication over Diff out is internal to this pro-
cess. This channel was used for communication between the processes Diff and Sd , but these have now been
collapsed into the single process DiffSd , and Diff out is only used inside this process.

For each such internal communication arising from the evaluation in the previous step, we basically use
the hiding distribution laws to localise the hiding of the internal channel around the prefixing with the com-
munication, in preparation to eliminate it. The hiding is originally in the process that defines the diagram
model (see Sect. 4.4). It is, first of all, localised around the process created in this phase; in our example,
DiffSd . For that, we use the process version of Law (hid-join) to isolate the hiding of the internal channel,
and (a version for the right number of parallel processes of) Law (hid-par-dist). Afterwards, the hiding can
be moved to the main action using the definition of hiding for processes: the resulting process is obtained by
applying the hiding to the main action. Finally, the hiding can be pushed in towards the prefixing with the
internal communication using distribution laws of hiding (for actions). To conclude, we apply Law (hid-step)
to remove the communication.

For our example, as a result of all this, the communication over Diff out is removed, and only the assign-
ment in the original prefixing stays. It captures the communication between the blocks Diff and Sd. Since the
inputs and outputs of both blocks are now modelled as components of the state of the new process DiffSd ,
there is no longer a need for a communication.

6. Sequentialise assignments. If there were several internal communications, Step (5) leaves us with an interleav-
ing of assignments. We transform the interleaving into a sequence of assignments using Law (inter-seq). In
DiffSd , there is only one internal communication.

7. Introduce interleaving of inputs. As illustrated by our example, we are left with an interleaving that may include
more than just the inputs. The calculation of outputs, state updates, and the assignments from Steps (5) and
(6) may be in the interleaving. We need to simplify it as follows.

(a) Keep just the inputs in the interleaving, by removing all calculations, updates, and assignments using Law
(inter-seq-extract-snd) exhaustively. This leaves just prefixings of assignments to input variables in the
interleaving. For our example, the result is below.

Init ;

⎛

⎜

⎝μX •
⎛

⎜

⎝

(

E ?x → pid Diff In1 :� x ||[. . .]|| Kd?x → pid Sd In1 :� x
)

;
Calculate Diff out ; Calculate Diff State;
pid Sd In2 :� pid Diff Out1; pid Sd ;
Sd out !pid Sd Out1 → Skip ; end cycle → X

⎞

⎟

⎠

⎞

⎟

⎠

For conciseness, we omit the name sets in the interleaving; they do not change.

(b) Leave in the name sets only the input variables; Law (inter-unused name) can be used for that. In our
example, we remove pid Diff UnitDelay state, pid Diff Out1, and pid Sd In2 from the first name
set. The second name set already contains only the right input variable.

From control law diagrams to Ada via Circus 495

Fig. 19. Main action of the process DiffSd—end of phase BJ

(c) Flatten the interleaving using associativity (Law (inter-assoc)). For our example, this is not needed because
we have just two inputs. For DiffSd , the resulting main action is shown in Fig. 19. The communication
over Diff out has become internal, and so it has been replaced with an assignment. Inputs are taken
in interleaving from E and Kd , the calculations of Diff and Sd are performed, and the output of Sd is
produced, before a synchronisation on end cycle.

As already said, the DiffSd process so obtained corresponds to the Ada procedure Calc Derivative. We also
join the processes Si and Int to produce a process SiInt that corresponds to the procedure Calc Integral. The
process Sp models the block Sp and already corresponds to the procedure Calc Proportion. Similarly, Sum
corresponds to the procedure Calc Output. So, all processes correspond to procedures.

Now, we need to consider the schedulers. The parallelism between the processes that model procedures handled
by the same scheduler also needs to be collapsed. We proceed much in the same way as above for the removal of
parallelism between the processes that model blocks implemented by the same procedure. The idea is that a set
of blocks implemented by a single procedure can be seen as a virtual block (now that it is modelled by a single
process). Figure 20 uses dashed boxes to indicate the virtual blocks of the PID; some of the virtual blocks are
actual blocks, namely, those implemented by a procedure on their own.

As mentioned before, Exec 1 schedules two procedures: Calc Proportion and Calc Output (which imple-
ment the blocks Sp and Sum). Therefore, in this phase, we also join the processes Sp and Sum, following the
same steps above, to produce a process SpSum. The corresponding (virtual) blocks are connected according to
Configuration (2) in Fig. 17, so the refinement steps are really similar, but we do not apply Step (7) in Fig. 18. At
the end of Step (6), for SpSum, we obtain the main action below.
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

μX •

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

((E ?x → pid Sp In1 :� x) ||[. . .]|| (Kp?x → pid Sp In2 :� x)) ;
Calculate Sp out ; pid Sum In2 :� pid Sp Out1

)

{pid Sp In1, pid Sp In2, pid Sp Out1, pid Sum In2}
|||

(Sd out?x → pid Sum In1 :� x) {pid Sum In1}
|||

(Int out?x → pid Sum In3 :� x) {pid Sum In3}

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

;

Calculate Sum out ;
Sum out !pid Sum Out1 → Skip

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

;

end cycle → X

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

What we have as a result of the refinement is that the interleaving of inputs of the resulting process includes also
calculations of outputs and state updates. In our example, the calculation of the output of the block Sp is inside
the interleaving. The calculation of the output of Sum, on the other hand, is after the interleaving. We do not
join these calculations, which is the objective of Step (7) in Fig. 18, because, even though they are scheduled in
sequence (by the same scheduler), they are implemented by different procedures. Instead, we handle the input
of values of the shared variables that needs to be joined with the processing of these inputs. For the case of the
process SpSum, we proceed as follows.

7. Group input of shared variables. As explained in Sect. 5, in the model of the Ada program, the shared variables
are output after they are calculated, and input when needed. We have, therefore, one internal channel for each
shared variable. In the diagram model, these channels are already present: the shared variables correspond to
wires in the diagram, which are modelled by channels. For our example, we have the shared variables I and
D, which correspond to the channels Int out and Sd out (see Fig. 22).

At this stage, the outputs through these channels already take place after the calculations of the values of
the shared variables. In Fig. 19, for example, we have the output through Sd out after the sequence of data
operations carried out in the process DiffSd to calculate the output of the block Sd (or more precisely, of the
virtual block including Diff and Sd).

496 A. L. C. Cavalcanti et al.

Fig. 20. PID controller: virtual blocks that correspond to procedures

What we need to do in this step is to collect the corresponding inputs before the calculations that use the
shared variables. In the main action of SpSum shown above, for example, we observe that the input of the
shared variables (through Int out and Sd out) are interleaved with those of the system inputs (through E
and Kp). Since, however, channels corresponding to shared variables are internal, we can split the interleaving
to input the value of the shared variables afterwards separately. This is achieved with a version for two inputs
of Law (inter-split) below.

Law[inter-split]

((A1; c → A2) |[ns1 | {| c |} ∪ cs | ns2]| ((A3 ||[ns3 | ns4]|| c → A4); A5)) \ {| c |}
�
((A1; c → A2) |[ns1 | {| c |} ∪ cs | ns2]| (A3 ; (c → A4); A5)) \ {| c |}

provided c �∈ usedC (A1,A3,A5); usedC (A2,A4) � ∅;
wrtV (A3) ⊆ ns3,wrtV (A4) ⊆ ns4, usedV (A4) ∩ wrtV (A3) � ∅.

In this law, we have one internal communication c that occurs only where explicitly shown, as guaranteed
by the first two provisos. In the first parallelism, the second parallel action engages in c in interleaving with
another action A3. This law states that we can extract c (and its associated action A4) from the interleaving.
The point is that the communication c is internal, and we are free to choose the order in which it takes place,
as long as that does not block other actions.

Potentially, sequentialising c → A4 can hold up interaction between A2 and A3, which is no longer possible,
but the second proviso guarantees that A2 is just a data operation. It does not use any channels, and so it
does not interact with A3. Another potential problem is the fact that, without the interleaving, A4 can take
place only when A3 is finished. Again, the second proviso guarantees that A4 is just a data operation, so that
this does not matter: the moment in which A4 takes place is not visible.

We also guarantee that the elimination of the interleaving does not make changes that are originally local
to A3 and A4 to become global. In other words, every variable changed by A3 is in the name set ns3, so that
none of these changes are masked by the interleaving. Similarly, we require that all variables changed by A4
are in ns4. Finally, without the interleaving, A4 has access to the final value of the variables changed by A3.
The last proviso guarantees, however, that A4 does not use any of these variables.

For our example, as already explained, SpSum takes the inputs through Int out and Sd out in inter-
leaving with the inputs through E and Kp. The channels Int out and Sd out , however, are internal. So, we
can apply a version of Law (inter-split) with two internal communications (in interleaving) to get the result
shown in Fig. 21.

From control law diagrams to Ada via Circus 497

Fig. 21. Main action of the process SpSum - end of phase BJ

In fact, strictly speaking, to take advantage of Law (inter-split), we need to localise the hiding of the chan-
nels Sd out and Int out in the main action of SpSum. As explained in Step (5) of Fig. 18, we can do this by
applying versions of Laws (hid-join) and (hid-par-dist) (for the right number of channels) and the definition
of process hiding. After applying Law (inter-split), however, we move the hiding back out, using the same
laws (in the opposite direction).

To conclude, at the end of this phase, the process PID is as follows.

process PID �̂

⎛

⎜

⎜

⎜

⎝

SiInt {|E ,Ki , Int out, end cycle |}
||

DiffSd {|E ,Kd ,Sd out, end cycle |}
||

SpSum {|Sd out,E ,Kp, Int out,Y , end cycle |}

⎞

⎟

⎟

⎟

⎠

\ {| Int out,Sd out |}

The only internal channels remaining are Int out and Sd out .

6.3. Phase Pr: procedure introduction

The phases NB, BJ, and Sc verify the (parallel) architecture of the implementation. This phase, on the other hand,
focusses on the functionality of the procedures. We refine all basic processes (produced in the previous phase)
with the objective of using the action models of the Ada procedures to carry out the calculations of outputs and
state updates, instead of the schemas of the diagram model.

We use the information about how wires and state in the diagram are matched to the program variables. In our
example, we have that the program variables Diff Mem, I, P, Kp, Error, Ki, D, and Position, for instance, which
are used in the main program Exec 3, correspond to the wires of the diagram as shown in Fig. 22. In particular,
we observe that the input E is called Error, the output Y is called Position, and Diff Mem corresponds to the
state component of Diff, which is the state of its unit delay block.

As explained in detail in Sect. 4, the variables of the Circus model of the diagram correspond to wires and
state components of the diagram. Therefore, with the information that relates the diagram to the program, we get
a correspondence also between the variables of the Circus model of the diagram and the program variables. In
our example, for the process DiffSd , we have the following correspondence: Error corresponds to pid Diff In1,
Kd to pid Sd In1, Diff Mem to pid Diff UnitDelay state, and D to pid Sd Out1. This correspondence,
however, does depend on the particular process being refined. For example, while in DiffSd the variable Error
corresponds to pid Diff In1, in the process SpSum, it corresponds to pid Sp In1.

Moreover, we observe that a variable corresponding to an internal wire may correspond to two model variables
in the same process. This occurs if the originally parallel processes that model the blocks connected by the wire
have been collapsed. In our example, the program variable P, for instance, corresponds to the model variables
pid Sp Out1 and pid Sum In2 of the process SpSum.

For processes that correspond to procedures, this issue is handled by the ClawZ toolset (using a tool based on
symbolic execution of specifications [AC05]). For processes that correspond to schedulers, we always associate
the program variable with the input variable of the model. In our example, since SpSum corresponds to the
scheduler in Exec 1, we associate P with pid Sum In2. This reflects the fact that, when joining processes like
Sp and Sum in the previous refinement phase, we reduce their communication to an assignment to the input
variable. It is that input variable that is used in the program.

Figure 23 describes the refinement steps to be carried in this phase. We need to consider the main action
of all the processes, and, for each them, identify the contiguous sequences of data operations, that is, schemas
and assignments. These are the specifications of the procedures that implement block functionality or perform
initialisation operations. For the processes that correspond to procedures, we find one or two groups of data
operations: the initialisation, and the procedure specification.

498 A. L. C. Cavalcanti et al.

Fig. 22. PID controller: correspondence with program variables

Fig. 23. Refinement strategy: phase Pr

For example, in the main action of DiffSd (see Fig. 19), we have the operation Init on its own, which is an ini-
tialisation operation implemented by the procedure Init Derivative, and the sequence below, which specifies
the procedure Calc Derivative.

Calculate Diff out ; Calculate Diff State; pid Sd In2 :� pid Diff Out1; pid Sd

For a process that corresponds to a scheduler, we find a group of data operations for each of the procedures
that it schedules. The order in which we find them is determined by the order in which the procedures are
scheduled in the program. For the SpSum process (see Fig. 21), for example, we find the group of data opera-
tions Calculate Sp out ; pid Sum In2 :� pid Sp Out1 corresponding to the (specification of the) procedure
Calc Proportion, and Calculate Sum out , corresponding to Calc Output.

Proceeding with our example, we consider the process DiffSd and, more precisely, its specification of Calc
Derivative as shown above to explain and illustrate the refinement steps in Fig. 23.

1. Introduce a definition for the Ada procedure(s) that implement(s) the operations, in terms of the model variables.
In the process DiffSd , we introduce an action that corresponds to the procedure Calc Derivative, and for
that we need to introduce an action corresponding to the procedure Diff as well. Since Diff does not refer
to program variables, its definition is just the action Diff in Exec3 (see Fig. 15), which is part of the model of
the Ada program that we are verifying. For Calc Derivative, the definition is the action call below, which
differs from that in Exec3 for Calc Derivative in that it uses the model variables, instead of the program
variables Error, Kd, Diff Mem, and D.

Diff (pid Diff In1, pid Sd In1, pid Diff UnitDelay state, pid Sd Out1)

From control law diagrams to Ada via Circus 499

Fig. 24. Process DiffSd—end of phase Pr

The introduction of a new action into a process is trivial, and is justified by Law (action-intr).
2. Establish that the data operations are refined by a call to the new action. In our example, we prove the refinement

below.
⎛

⎜

⎝

Calculate Diff out ;
Calculate Diff State;
pid Sd In2 :� pid Diff Out1;
pid Sd

⎞

⎟

⎠ � Calc Derivative

In this proof, we can use the Circus refinement calculus, which includes all the laws of the Z refinement
calculus [CW99], or the existing technique based on ClawZ. In [CC06], we provide a strategy to automate the
use of ProofPower tools based on ClawZ to carry out this step. We reduce the sequence in the specification
to a schema, and then to a specification statement. ClawZ can then establish that the body of the procedure,
Diff in our example, refines it. Finally, we use the copy rule (Law (copy-rule-action)) to introduce the call: in
the example, to Diff , and afterwards to Calc Derivative.

3. Remove unused actions, mostly the ClawZ schemas of the model. This is justified by a reverse application of
Law (action-intr).

At the end of this phase, we obtain the process DiffSd presented in Fig. 24.

6.4. Phase Sc: scheduling introduction

In this phase, we already have a process corresponding to each of the schedulers. For our example, we have the
processes SpSum, which corresponds to the procedures that are scheduled in Exec 1, SiInt whose corresponding
procedure is handled by Exec 2, and, finally, DiffSd in correspondence with Exec 3. In Exec 0, we have just the
definition of the time frames. We now verify the scheduling order.

The steps in this phase are summarised in Fig, 25, and further explained and illustrated below.

1. Declare FrameIndex and the channel frame. In this step, we use our knowledge of the number of frames used
in the implementation; as said before, this can be extracted from the program (or from its model). For the
PID, there are two frames, and therefore the set FrameIndex of frame indices is {1, 2}.

FrameIndex �� 1 . . 2

channel frame : FrameIndex

This step is justified by a program law for introduction of paragraphs: Law (parag-intr).

500 A. L. C. Cavalcanti et al.

Fig. 25. Refinement strategy: phase Sc

2. Introduce the timer model. The following steps need to be carried out.

(a) Split into a conditional the body of the recursion in the main action of all processes. The conditional is
used to determine the current frame, and schedule the procedures accordingly. We first use a version of
Law (frame-intr) below, which is appropriate for a two-frame implementation; its generalisation to an
arbitrary number of frames is simple.

Law[frame-intr]

(μ X • A1; A2; X)
�
⎛

⎜

⎜

⎜

⎝

var cf : FrameIndex •
cf :� 1;
(

μX •
(if (cf � 1) → A1[] (cf � 2) → A2 fi;

cf :� (cf mod 2) + 1;
X

))

⎞

⎟

⎟

⎟

⎠

provided X is not free in A1 and A2; cf is fresh; and {1, 2} ⊆ FrameIndex .

This law splits the sequence of actions A1; A2 in the body of a recursion so that it now takes two iterations
of the recursion. The fresh variable cf is used to keep track of the iterations; its type FrameIndex must
include enough values to index the required number of frames. After we apply Law (frame-intr), we use
Law (main-var-state) to make cf a state component.

The appropriate application of Law (frame-intr) requires the information about how each procedure
is allocated to a frame. For DiffSd (see Fig. 24), we get the main action below, based on the information
that Calc Derivative is scheduled in frame 1 (see Table 1).

Init ;
cur f :� 1;
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

μX •

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

if (cur f � 1) →
⎛

⎜

⎝

(E ?x → pid Diff In1 :� x
||[{pid Diff In1 } | {pid Sd In1 }]||

Kd?x → pid Sd In1 :� x

)

;

Calc Derivative

⎞

⎟

⎠

[] (cur f � 2) → Sd out !pid Sd Out1 → end cycle → Skip
fi;
cur f :� (cur f mod 2) + 1;
X

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The variable cur f is now a component of the state of DiffSd , and the appropriate declaration of
FrameIndex is guaranteed by Step (2) above.

From control law diagrams to Ada via Circus 501

(b) Extract the timer, by applying (to the process that models the diagram) a version of Law (timer-intr) pre-
sented below. It considers an implementation with two frames and two schedulers, but the generalisation
for an arbitrary number of frames and schedulers is simple. One of the resulting parallel processes should
model the timer; in our example, this is the process Exec0 corresponding to Exec 0.
Law (timer-intr) applies to processes whose main actions take a specific form (involving a recursion whose
body includes a conditional). Since this is a law of processes, we have no need for provisos concerning
the access to state components (and local variables), which is partitioned by the processes. This simplifies
the law and its application. We need, however, a notation to refer to the main action of a process, so that
we can specify the necessary restrictions over it. Accordingly, we use P(A) to denote any process whose
main action is A. We, therefore, for example, state below that Law (timer-intr) applies to a parallelism of
processes whose main actions are a sequence of an action A1 (or A4), followed by an assignment cf :� 1,
followed by a recursion, whose body is a conditional, followed by the assignment cf :� (cf mod 2) + 1.

Law[timer-intr]
(P(A1 ; cf :� 1 ; μX • if cf � 1 → A2 [] cf � 2 → A3; c → Skip fi; cf :� (cf mod 2) + 1; X)

|[{| c |} ∪ cs]|
P(A4 ; cf :� 1 ; μX • if cf � 1 → A5 [] cf � 2 → A6; c → Skip fi; cf :� (cf mod 2) + 1; X)

)

�
⎛

⎜

⎜

⎜

⎜

⎜

⎝

(P(A1; μX • f ?cf → if cf � 1 → A2 [] cf � 2 → A3; c → Skip fi; X)
|[{| c, f |} ∪ cs]|

P(A4; μX • f ?cf → if cf � 1 → A5 [] cf � 2 → A6; c → Skip fi; X)

)

|[{| c, f |}]|
P
(

cf :� 1;
μX • f !cf → if cf � 1 → Skip [] cf � 2 → c → Skip fi; cf :� (cf mod 2) + 1; X

)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

\ {|f |}

provided f is fresh;
cf �∈ wrtV (A1,A2,A3,A4,A5,A6) ∪ usedV (A1,A2,A3,A4,A5,A6);
usedC (A1,A4) � ∅; usedC (A2) ∩ usedC (A6) � ∅; and usedC (A3) ∩ usedC (A5) � ∅.

The purpose of this law is to extract from the main actions of each of the parallel processes the control
of the frames, and create a new single process that controls the frames. Therefore, the parallelism of two
processes becomes a parallelism of three processes after the application of this law. The original parallel
processes synchronise on the set of channels {|c|} ∪ cs . In the new parallelism, the original processes syn-
chronise on the same channels, but we add a new local channel f that is used to exchange information
with the timer process, namely the value of the variable cf .

The original parallel processes keep information about the current frame themselves, using a state
component cf that they each initialise and increment. A proviso requires that cf is used and updated only
where explicitly shown, so that the actions A1, A2, A3, A4, A5, and A6 are not related to framing tasks at
all. Law (timer-intr) introduces a single process that keeps the framing information, and provides it to the
parallel processes, as they need it at the start of each frame.

The actions A1 and A4 are supposed to be initialisations, and are required not to use any channels.
The framing information, that is, the value of cf kept by the timer, is shared among all processes; this

guarantees that their frames are in lock-step. In the original parallel processes, however, the frames proceed
independently in each process. The channel c keeps the sequence of frames of a single cycle in step, but
not the frames themselves, which can potentially start and finish independently. The change carried by the
Law (timer-intr), therefore, is only possible if there are no communications between the original parallel
processes that take place in different frames of their behaviour. For example, the behaviour of the first par-
allel process in the first frame, as described by action A2, is required to be independent of that of the second
parallel process in the second frame, as defined by A6. Similarly, A3 and A5 are required not to share any
channels. In this way, we can keep the frames of all processes in synchrony, without introducing a deadlock.

With the application of this law, or more precisely, of its version for three schedulers, to our example,
we get the following definition for the process PID .

502 A. L. C. Cavalcanti et al.

process PID �̂
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎝

SiInt {|E ,Ki , Int out, end cycle, frame |}
||

DiffSd {|E ,Kd ,Sd out, end cycle, frame |}
||

SpSum {|Sd out,E ,Kp, Int out,Y , end cycle, frame |}

⎞

⎟

⎟

⎟

⎠

|[{|end cycle, frame|}]|
Exec0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

\ {| frame, Int out,Sd out |}

The main action of the process DiffSd , for example, is now as follows.

Init Derivative;
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

μX •

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

frame?cur f →
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

if (cur f � 1) →
⎛

⎜

⎝

(E ?x → pid Diff In1 :� x
||[{pid Diff In1 } | {pid Sd In1 }]||

Kd?x → pid Sd In1 :� x

)

;

Calc Derivative

⎞

⎟

⎠

[] (cur f � 2) → Sd out !pid Sd Out1 → end cycle → Skip
fi;
X

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The process Exec0, on the other hand, is as follows at this stage.

process Exec0 �̂ begin
state [cur f : FrameIndex]
• cur f :� 1 ;
⎛

⎜

⎜

⎜

⎝

μX • frame!cur f →

⎛

⎜

⎜

⎜

⎝

if (cur f � 1) → Skip
[] (cur f � 2) → end cycle → Skip
fi ;
cur f :� (cur f mod 2) + 1 ;
X

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

end

The only difference between this process and the model of our timer in Fig. 14 is the use of procedures to
initialise and update cur f . The next step sorts this out.

(c) Extract the assignments to cur f to procedures. This is achieved by applying, to the process that models
the timer, Law (action-intr) to introduce the model of the procedures that initialise and increment the
frame counter. In our example, they are the actions Init F and Next F . Afterwards, we use Law (copy-
rule-action) to replace the uses of these procedures with calls to them. After this step, the process Exec0
introduced in the previous step is exactly as shown in Fig. 14.

3. Introduce the Step procedure In each of the processes that model a scheduler, it remains for us to introduce
the model of the Step procedure. Each process already has in its main action the body of its corresponding
Step procedure. All that we need to do is to use Law (action-intr) to introduce an action Step that models
the procedure, and afterwards Law (copy-rule-action) to introduce a call. At the end, of this step, the DiffSd
process, for example, is as shown in Fig. 26.

If we compare the process in Fig. 26 with that in Fig. 15, which is the model of the main Ada program Exec 3,
we observe that the only differences are in the names of state components, local input variables, and hidden
channels, and in the use of schema calculus to define the state. These are purely syntactic differences that can, for
instance, be checked automatically to be indeed the only discrepancies.

Alternatively, from the point of view of program transformation, first the definition of schema conjunction
can be used to flatten the state definitions of the scheduler processes. Renaming the model variables to the pro-
gram variables is a simple functional data refinement, whose retrieve relation is the conjunction of the equalities
that relate the variables.

From control law diagrams to Ada via Circus 503

Fig. 26. Process DiffSd—end of phase Sc

Distributivity of data refinement for Circus is shown in [CSW03]. For DiffSd , for instance, the retrieve
relation equates pid Diff UnitDelay state to Diff Mem, pid Diff In1 to Error, pid Sd In1 to Kd, and
pid Sd Out1 to D. This is based on the correspondence between model and program variables that has been
already used previously. Renaming of local variables, including those introduced by input communications, is jus-
tified by standard refinement laws. Finally, internal channels, used to communicate shared data, can be renamed
using Law (hid-ren) because they are hidden. In the example, we can rename Sd out to Dsh and Int out to Ish.
Again, this correspondence is already established.

In summary, all this indicates that we can either carry out the additional steps above to obtain models that
are in exact correspondence with the model of the program, or just check that the only differences between the
models are of this nature. If the transformations are carried out, the Circus program obtained is the model of our
implementation, except only for the names of processes. For our example, we have seen that the refinement creates
processes named SpSum, SiInt , and DiffSd , instead of Exec1, Exec2, and Exec3. These differences, however, have
no impact on the semantics of the processes [OCW09].

Many of the steps of our refinement strategy are trivial, but as we explained some rely on more elaborate and
specialised laws. What they have in common is that they are all based on Circus refinement laws. Consequently,
we have is a sound verification procedure that can be automated.

Compositionality stems from the use of refinement. If, for instance, the PID is used in a larger diagram, and its
implementation is, therefore, part of a larger program, all the verification steps for the PID are exactly as shown
above, except only for those in phase Sc. It is just that last phase that is specific to the structure of the closed pro-
gram, which must correspond to that of a complete diagram. Additionally, if we consider an alternative implemen-
tation for the PID, which uses the same Ada procedures, but schedules them in a different way, the only verification
effort affected is the last part of phase BJ, which joins the processes that model procedures scheduled together. Fur-
thermore, and most importantly, all the steps of our refinement strategy can be carried out automatically, with the
proof effort completely concentrated in phase Pr. This phase is only ever affected if different procedures or different
procedure implementations are considered. What we have achieved is a strategy that can build on the ClawZ auto-
mation infrastructure to cover the verification of complete programs, without adding to the proof effort required.

7. Related work

The work that we have presented in this paper is distinctive in its aim to verify implementations of (discrete-
time) Simulink diagrams, rather than validate properties of the diagrams or of the systems that they specify. The
literature, however, provides a wealthy of approaches for modelling and analysis of Simulink diagrams and other
similar notations; several of them rely on a later use of an automatic code generator. In this section, we discuss

504 A. L. C. Cavalcanti et al.

some of these works. As already explained, automatically generated code may not be appropriate for specialised
hardware, and, in addition, for safety-critical systems use of a code generator is often not regarded as enough
assurance of correctness of an implementation. In this case, validation of the models and designs needs to be
followed up by a verification of their implementations.

The need to verify automatically generated code is also recognised in [BDF10]. This provides a technique
for mechanising the construction of safety cases using assertion-based verification of properties identified in the
requirements. The verification tool used is AutoCert. The case study is code generated from Simulink diagrams.
To provide independent arguments, diagrams are not used to identify the properties like we do here. These prop-
erties, however, are formalised in terms of signals of the diagram, and a mapping between them and variables
of the program is necessary, like in our work. The results in [BDF10] indicate how a formal verification can be
used for certification as part of a safety case, and in that way they go beyond what we achieve here: we are only
concerned with the verification itself. On the other hand, there is no mention of concurrency and scheduling
in [BDF10]. For the verification of sequential code, it seems that we could equally use ClawZ or AutoCert, since
our technique identifies the properties of interest for each procedure.

For analysis of discrete transition systems, abstraction and model checking are effective [RB01]. Model check-
ing replaces simulation with an exhaustive analysis, but restricts the data types that can be handled.

For hybrid systems, diagrams with discrete and continuous blocks, and automata with continuous dynamics
associated with discrete states are used [Kro99a]. Tools are available to model and analyse such diagrams [Kro99b].
Abstraction makes the models tractable; often they are discretised [AHLP00, TK02, TSR03]. This approach is
used in [Tiw02] for automata-based analysis of Simulink specifications of hybrid systems.

Simulations of a Simulink diagram are used to construct a formal model for an electronic throttle controller
in [FK04]. The model is a hybrid automata, and is analysed using the model checker CheckMate. In the work
reported in [JH05], a Simulink model of a wheel brake system described in a standards document (ARP 4761), and
a corresponding faulty Simulink model are imported to SCADE for model checking. SCADE makes assumptions
about the implementation environment, but works very well for systems that follow these restrictions. SCADE
provides a code generator that has been developed to satisfy stringent quality requirements of the avionics indus-
try, although it has not been formally verified. Another example is tackled with SVM, which is used in [DBCHP03]
to model check a triplex sensor voter specified in Simulink.

The combined use of UML and Simulink is supported by the approach in [GH06], which is used for hybrid
mechatronic systems. This work presents a technique to verify real-time properties of a distributed design com-
positionally using model checking. It is also part of the trend to verify models and designs, and rely on code
generators for the automatic production of programs [GHOS06].

Model checking is also considered in [AFF+04], which presents a management tool for model-based design of
embedded systems, from requirements to code, integrated with Matlab. The tool records the verification activities,
including model checking, their results, and their associations to requirements.

An extension of Simulink to specify real-time interactions is used in [KS02] to model a helicopter control
system. The approach is based on a programming language called Giotto. The extended model is translated to
Simulink, and then to a program that combines the result of the Simulink code generator with a Giotto program
that handles the scheduling. This program runs in an embedded machine that is platform dependent.

Analysis across boundaries of different models is tackled in [JZW+00]. This uses an intermediate notation,
SPI, to combine models written in different languages. It is based on communicating processes, but does not
incorporate data operations; the focus is on timing requirements. The translation of Simulink diagrams to SPI
defines a timing model for Simulink. Code generators handle the data aspects of the input models.

There have been efforts to use logic to capture the meaning of control diagrams and support reasoning.
Weakest preconditions are used in [BG02]; preconditions and postconditions are predicates over elements of
traces of values of variables over the cycles. Concurrency is not handled, but pointed out as future work. The
work in [BHM03] proposes a technique in the style of a Hoare logic to reason about properties of the frequency
response of continuous-time control diagrams. The feasibility and practical relevance of their approach is further
detailed in [BGH+04]. In [Mah02], Mahony uses Isabelle/HOL tools to mechanise a technique based on predicate
transformers for dataflow networks with feedback. This is a graphical notation like control law diagrams, but
parallelism is indicated explicitly, and in [Mah02] nodes are dynamic processes.

Industrial examples of control software have guided the work in [GT00], where models for sequential function
charts directly related to their shape are proposed. Reasoning tools are indicated as future work.

From control law diagrams to Ada via Circus 505

Functional and timing requirements of Simulink diagrams are modelled in [CDS09] using a Timed Interval
Calculus (TIC). The technique is based on a translation of Simulink diagrams to TIC specifications, which use
the Z mathematical and schema notations to structure interval time properties. Support for automated proof of
properties of the TIC specifications using PVS is also provided.

Refinement is also the basis of the work in [BMW07], where Simulink is extended with a specification block
to allow an action-system style of formal stepwise model development. The focus is refinement of models, rather
than refinement to code. Specification blocks are used to define preconditions and postconditions for diagram
fragments yet to be developed. In this way, it is possible to reason about diagrams in terms of abstract specifica-
tions of sub-diagrams. We, on the other hand, generate specifications from existing diagrams, and give a path to
establish refinement by code.

Circus has been applied for the refinement and verification of several industrial and sizeable applications
[OCW05, FCW06, FC06]. It has a refinement theory and technique [CSW03] to develop distributed and con-
current applications from centralised specifications, composed of a single process. The technique presented here
is different; it starts from a highly distributed model of a diagram, and reduces parallelism to match that of
the program. Some of the laws that we propose, however, are of general interest, and complement those already
available [Oli06] to formalise the refinement strategy that we propose. Like for those in [Oli06], the soundness of
the new laws is based on the UTP model of Circus. Moreover, the very large Circus models generated using the
semantics presented here are a valuable source of validation for Circus tools. This work makes the applicability
of Circus to an important class of industrial applications a reality.

8. Conclusions and future work

We have presented a semantics for discrete-time Simulink diagrams using a combination of Z and CSP: Circus.
Our model captures the functionality of a diagram over any number of cycles, and the inherent parallelism

between blocks. We can handle enabled subsystems, blocks whose outputs depend on the order of arrival of the
inputs, and independent flows of execution inside blocks. Feedback loops are also covered, by catering for blocks
that do not require all the inputs before producing the outputs.

There are several combinations of a state-based formalism with a process algebra [Fis98, TS99, MD00, Fis00,
HO02]; Circus is distinctive in its refinement theory. Our semantics opens the possibility of reasoning about
diagrams and proving the correctness of implementations using refinement. We have presented a refinement
strategy that can be used to verify parallel Ada programs that implement Simulink diagrams. Each step of the
refinement strategy is justified by Circus refinement laws. They guarantee the soundness of the verification, and
provide a basis for automation. The use of Circus and refinement puts us in a position to handle a comprehensive
diagrammatic notation, large data sets, and dynamic scheduling.

If a law is not applicable, because a syntactic constraint or a proviso is not satisfied, we have an indica-
tion that there is a mistake in the implementation, or in the analysis that matches the diagram and program
components. The graph model of a Simulink diagram, and the associated Circus model, can be automatically
generated [ZC09]; the same is also possible for the Circus model of the Ada implementation. The specification
of the correspondence between components of the diagram and of the of the program, however, is not fully
automated. ClawZ provides support for the definition of the association between wires and program variables,
including the automatic generation of a suggested mapping, but the process is interactive. The theorem-proving
effort is only in phase Pr, where current practice supported by ClawZ can be adopted and high levels of auto-
mation can be achieved [CC06, AC05]. Automation here ensures practicality, and makes it possible to keep the
formalism mostly hidden from engineers and programmers.

Our example is small, but illustrates how the issues related to the architecture of the implementation and reuse
of ClawZ are addressed. Its implementation is representative of the use of time frames and shared variables. We
have considered a number of industrial examples, including applications provided by two aircraft manufacturers.
The most complex Circus model is for a diagram whose structure includes up to four nesting levels, with 155
elementary blocks and 14 subsystems. A large QinetiQ case study is a Non-linear Dynamic Inversion controller;
in that example, we have a three-processor implementation, with three frames and four shared variables. There
are over 1500 lines of code; the Circus model has 200 pages. Additional tool development is necessary before we
can carry out larger case studies; this work is under way.

As a next step, we will consider the automatic generation of Circus models also for Ada programs. The
refinement strategy can be formally described using tactics [OCW03], and that is the basis for its automation
using ProofPower-Z. In summary, we are working on a toolset to automate the application of our technique; it
will be a powerful resource in the analysis of control diagrams and their implementations.

506 A. L. C. Cavalcanti et al.

With full automation, and consequent possibility of carrying out a wider collection of case studies, we are
going to be in a position to consider the issue of error management. It will be interesting to determine how failure
in the refinement can be conveyed in a way that helps identification of the source of the problem. At the moment,
failure in the Pr phase displays a simplified version of the unproved verification conditions. The prototype of the
Circus model checker [Fre06] combines refinement checking and theorem-proving techniques. It may provide a
route for effective error reporting and even further automation of the phase Pr.

The refinement strategy is very general and modular. The first three phases handle the models of blocks; they
match the structure of the specification to that of the implementation, and prove the correctness of the individual
procedures. These phases are very stable and widely applicable. The fourth phase is dependent on the architecture
of the scheduler, and on the scheduling policy. In our experience, what we have presented here is enough to cope
with applications in the area of military avionics.

In the next phase of our work, we will seek examples in other areas of application; we are now considering
civil avionics. IMA applications, in particular, pose an interesting challenge, since their modular architecture pro-
vides an opportunity for reuse of Circus models and their formal verification. Moreover, with Circus advanced
dynamic scheduling policies can be covered.

One of the challenges in considering other application areas is the programming language used in the imple-
mentations. Adapting our technique to subsets of C, like MISRA C and C flat, is not difficult; a version of ClawZ
for such a subset is under development. We observe, however, that to consider other languages, or even paradigms,
all we need is a Circus semantics. For functional languages like HUME [HM03], for example, the CSP subset of
Circus is likely to be enough to model programs, since CSP is itself a functional language. In this case, we need
technology to refine state-based models to functional programs.

One aspect of the verification that is not covered here is timing. We observe, however, that Circus does have a
conservative timed extension, Circus Time, whose semantics preserves the laws of untimed Circus. With its use,
we will tackle multi-rate diagrams, generate more direct models of the Ada programs, and provide an extended
technique for verification of timing, as well as functional and scheduling, properties.

Finally, a Simulink model can include stateflow blocks; they are defined by a diagram including data and
finite state machines that react to events in the Simulink model. The reactions lead to state changes that affect
the behaviour of the Simulink model. Stateflow diagrams are studied in [Tiw02, Spe02]. We are investigating the
use of Circus to model stateflow diagrams [Cav08]; it seems promising as Circus can cope with data and reactive
aspects of the problem. Ultimately, we want to cover the whole of the Simulink notation in a uniform framework
for program verification based on Circus.

Acknowledgments

This work is funded by the Royal Society and the EPSRC. We discussed various aspects of it with Daniel Boulton,
Chris Marriott, Marcel Oliveira, Jim Woodcock, and Frank Zeyda; their comments were very useful. We are also
grateful to anonymous referees for very helpful suggestions.

A. Formalisation of the graph model

Here, we use Z to characterise the form of the data-flow graph defined by the function DF, and used in our
formalisation of the construction of the Circus model of a diagram. We use given sets to represent the valid
specification names, and the sets of signal and block names.

[NAME ,Signal ,Block]

For a given diagram d , the graph defined by DF is represented in a record that gives the name of the diagram, its
inputs and outputs, and a characterisation of each of its blocks.

Graph
spec : NAME
inputs, outputs : P Signal
blocks : Block → BlockWiring

From control law diagrams to Ada via Circus 507

Values of a free type Enabled are used to record whether a flow of execution is always enabled or enabling depends
on the values of some special input signals.

Enabled ::� always | esigs〈〈P Signal〉〉
Moreover, in a flow, the order in which the signals are received may be relevant. Finally, we also need to know
the signals that a flow requires (rinps) in order to produce its outputs.

Flow �� [enabled : Enabled ; ordered : BOOL; rinps : P Signal]

Besides including information about flows of execution, the block wiring defines an order for the inputs (inps)
and outputs (outs) of the block. Each flow is characterised by the set of outputs that it produces. Therefore, in
the record of a block wiring, flows is a function that associates each set of outputs that characterises a flow to
the corresponding information about a flow: a record of type Flow .

BlockWiring
inps, outs : seqSignal
flows : P Signal
→Flow

∀ pouts : domflows | flows(pouts).enabled ∈ ran esigs • (esigs∼) (flows(pouts).enabled) ⊆ ran inps
∀ pouts : domflows • flows(pouts).rinps ⊆ ran inps
⋃

(domflows) � ran outs
∀ pouts1, pouts2 : domflows • pouts1 �� pouts2 ⇒ pouts1 ∩ pouts2 � ∅

The invariant establishes that the enabling signals and the required inputs of a flow are inputs of the block, and
every output of the diagram is an output of a flow. For inputs, we do not have the same restriction, as there may
be inputs that are not required to produce outputs; a unit delay block is a simple example. Finally, different flows
should produce distinct outputs.

The invariant above is certainly not strong enough to characterise the set of graphs that correspond to well-
formed Simulink diagrams. Instead, we provide the invariants that clarify the way in which we use the model
proposed to capture properties of (independent) flows of execution.

B. Refinement laws

We present here the laws used in the application of our verification technique to the PID example. Some of these
laws can be found in [Oli06]; they are marked with a *. There is an implicit assumption that there are no nested
redeclarations of variables. This is a usual assumption in semantic definitions, which simplifies the application
of some laws. It needs, however, to be enforced by a syntactic check and renaming, if necessary.

B.1. Parallelism

Law[par-inter] A1 |[ns1 | cs | ns2]| A2 � A1 ||[ns1 | ns2]|| A2
provided (usedC (A1) ∪ usedC (A2)) ∩ cs � ∅

Law[*par-seq-step] (A1; A2) |[ns1 | cs | ns2]| A3 � A1; (A2 |[ns1 | cs | ns2]| A3)
provided usedC (A1) � ∅; usedV (A3) ∩ wrtV (A1) � ∅; and wrtV (A1) ⊆ ns1 ∪ ns ′

1.

B.2. Interleaving

Law[*inter-unit] Skip ||[ns1 | ns2]|| A � A ||[ns2 | ns1]|| Skip � A

Law[*inter-assoc] (A1 ||[ns1 | ns2]|| A2) ||[ns1 ∪ ns2 | ns3]|| A3 � (A1 ns1) ||| (A2 ns2) ||| (A3 ns3)

508 A. L. C. Cavalcanti et al.

Law[inter-seq] A1 ||[ns1 | ns2]|| A2 � A1;A2
provided usedC (A1) ∪ usedC (A2) � ∅;

usedV (A2) ∩ wrtV (A1) � ∅; wrtV (A1) ⊆ ns1 ∪ ns ′
1; and wrtV (A2) ⊆ ns2 ∪ ns ′

2.

Law[inter-seq-extract-snd] (A1; A2) ||[ns1 | ns2]|| A3 � (A1 ||[ns1 | ns2]|| A3); A2
provided usedC (A2) � ∅;

usedV (A2) ∩ wrtV (A3) � ∅; wrtV (A1) ⊆ ns1 ∪ ns ′
1; and wrtV (A2) ⊆ ns1 ∪ ns ′

1.

Law[inter-unused-name] A1 |[{n } ∪ ns1 | cs | ns2]| A2 � A1 |[ns1 | cs | ns2]| A2
provided {n,n ′ } ∩ wrtV (A1) � ∅

B.3. Hiding

Law[hid-join] (A \ cs1) \ cs2 � A \ (cs1 ∪ cs2)

Law[hid-ren] (A \ {|c|}) � (A[d/c] \ {|d |})
provided d �∈ usedC (A)

Law[*hid-step] (c → A) \ {| c |} � A \ {| c |}

B.4. Variable blocks

Law[*var-exp-seq] A1; (var x : T • A2); A3 � (var x : T • A1; A2; A3)
provided {x , x ′ } ∩ (FV (A1) ∪ FV (A3)) � ∅

The set FV (A) contains the free variables of an action A.

Law[var-exp-par] ((var x : T • A1) |[ns1 | cs | ns2]| A2) � (var x : T • A1 |[ns1 ∪ {x } | cs | ns2]| A2)
provided {x , x ′ } �∈ FV (A2)

Law[var-exp-rec] μX • (var x : T • F (X)) � var x : T • (μX • F (X))
provided x is initialised before use in F .

Law[join-blocks] (var x : T1 • var y : T2 • A) � (var x : T1; y : T2 • A)

B.5. Processes and programs

Law[*copy-rule-action]

begin (state S) (n �̂ A) LADS (n) • MA(n) end
�
begin (state S) (n �̂ A) LADS (A) • MA(A) end

We use LADS (n) to denote the fact that the local action definitions LADS may include references to the action
n; the same holds to for the main action MA(n). The later references to LADS (A) and MA(A) are the result of
substituting the body A of n for some or all occurrences of n in LADS and MA.

Law[*action-intr] (begin state S LADS • MA end) � (begin state S LADS (n �̂ A) • MA end)
provided n �∈ α(S) ∪ α(LADS)

From control law diagrams to Ada via Circus 509

For a schema S , α(S) gives the set of names of its components, and for a sequence of local action definitions
LADS , α(LADS) gives the names it declares and introduces in the scope of the process in which it occurs.

Law[hid-par-dist] (P1 (cs1 ∪ {|c|}) ‖ P2 cs2) \ {|c|} � (P1 \ {|c|}) cs1 ‖ P2 cs2
provided c �∈ cs2

Law[main-var-state]

begin (state S) LADS (x : T) • (var x : T • MA) end
�
begin (state S ∧ [x : T]) LADS () • MA end

We write LADS (x : T) to indicate that the local action definitions include schemas that declare variables x and
x ′ of type T . The later reference to LADS () denotes the fact that declarations of x (and x ′) in schemas, which
were used to put the local variable x of the main action into scope, may now be removed.

Law[*parag-intr] cp � par cp
provided α(par) ∩ α(cp) � ∅

The sets α(par) and α(cp) contain the names introduced by the new paragraph par and the program cp.

B.6. Specialised laws

Law[var-int-par-join]
(

(var x1 : T1; x2 : T2 • (c?x → x1 :� x ||[{x1} | {x2}]|| d?y → x2 :� y); A1)
|[ns1 | {c, d} ∪ cs | ns2]|

(var x1 : T1; x2 : T2 • (c?x → x1 :� x ||[{x1} | {x2}]|| d?y → x2 :� y); A2)

)

�
(

var x1 : T1; x2 : T2 •
(c?x → x1 :� x ||[{x1} | {x2}]|| d?y → x2 :� y); (A1 |[ns1 | {c, d} ∪ cs | ns2]| A2)

)

provided {x1, x2} ∩ (ns1 ∪ ns2) � ∅

Law[rec-sync]

(μX • A1; c → X) |[ns1 | {| c |} ∪ cs | ns2]| (μX • A2; c → X)
�
μX • (A1 |[ns1 | cs | ns2]| A2); c → X

provided c �∈ usedC (A1,A2); wrtV (A1) ∩ usedV (A2) � ∅; and wrtV (A2) ∩ usedV (A1) � ∅.

Law[par-out-inp-inter-exchange]

(A1; c1 → Skip) |[ns1 | {| c1 |} | ns2]| ((c1 → A2 ||[ns3 | ns4]|| c2 → A3); A4)
�
(A1; c1 → A2 ||[ns1 ∪ ns3 | ns4]|| c2 → A3); A4

provided c1 �� c2; c1 �∈ usedC (A1,A2,A3,A4);
ns3 ∪ ns4 ⊆ ns2; wrtV (A1) ⊆ ns1; wrtV (A2) ⊆ ns3; and wrtV (A4) ⊆ ns2.

Law[inter-split]

((A1; c → Skip) |[ns1 | {| c |} ∪ cs | ns2]| ((A3 ||[ns3 | ns4]|| c → A4); A5)) \ {| c |}
�
((A1; c → Skip) |[ns1 | {| c |} ∪ cs | ns2]| (A3 ; (c → A4); A5)) \ {| c |}

provided c �∈ usedC (A1,A3,A5); usedC (A2,A4) � ∅;
wrtV (A3) ⊆ ns3; wrtV (A4) ⊆ ns4; and usedV (A4) ∩ wrtV (A3) � ∅.

510 A. L. C. Cavalcanti et al.

Law[frame-intr]

(μ X • A1; A2; X)
�
⎛

⎜

⎜

⎜

⎝

var cf : FrameIndex •
cf :� 1;
(

μX •
(if (cf � 1) → A1[] (cf � 2) → A2 fi;

cf :� (cf mod 2) + 1;
X

))

⎞

⎟

⎟

⎟

⎠

provided X is not free in A1 and A2; cf is fresh; and {1, 2} ⊆ FrameIndex .

Law[timer-intr]

(P(A1 ; cf :� 1 ; μX • if cf � 1 → A2 [] cf � 2 → A3; c → Skip fi; cf :� (cf mod 2) + 1; X)
|[{| c |} ∪ cs]|

P(A4 ; cf :� 1 ; μX • if cf � 1 → A5 [] cf � 2 → A6; c → Skip fi; cf :� (cf mod 2) + 1; X)

)

�
⎛

⎜

⎜

⎜

⎜

⎜

⎝

(P(A1; μX • f ?cf → if cf � 1 → A2 [] cf � 2 → A3; c → Skip fi; X)
|[{| c, f |} ∪ cs]|

P(A4; μX • f ?cf → if cf � 1 → A5 [] cf � 2 → A6; c → Skip fi; X)

)

|[{| c, f |}]|
P
(

cf :� 1;
μX • f !cf → if cf � 1 → Skip [] cf � 2 → c → Skip fi; cf :� (cf mod 2) + 1; X

)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

\ {|f |}

provided f is fresh;
cf �∈ wrtV (A1,A2,A3,A4,A5,A6) ∪ usedV (A1,A2,A3,A4,A5,A6);
usedC (A1,A4) � ∅; usedC (A2) ∩ usedC (A6) � ∅; and usedC (A3) ∩ usedC (A5) � ∅.

References

[AC05] Adams MM, Clayton PB (2005) Cost-effective formal verification for control systems. In: Lau K, Banach R (eds) ICFEM
2005: formal methods and software engineering. Lecture notes in computer science, vol 3785. Springer, Berlin, pp 465–479

[ACOS00] Arthan R, Caseley P, O’Halloran CM, Smith A (2000) ClawZ: control laws in Z. In: 3rd international conference on formal
engineering methods. IEEE Press, pp 169–176

[AFF+04] Aldrich B, Fehnker A, Feiler PH, Han Z, Krogh BH, Lim K, Sivashankar S (2004) Managing verification activities using
SVM. In: Davies J, Schultte W, Barnett M (eds) 6th international conference on formal engineering methods. Lecture notes
in computer science, vol 3308. Springer, Berlin, pp 61–75

[AHLP00] Alur R, Henzinger TA, Lafeerriere G, Pappas GJ (2000) Discrete abstractions of hybrid systems. Proc IEEE 88(2):971–984
[Bar05] Barnes J (2005) Programming in Ada 95. Addison-Wesley, Reading
[BDF10] Basir N, Denney E, Fischer B (2010) Deriving safety cases for hierarchical structure in model-based development. In: Computer

safety, reliability, and security. Lecture Notes in Computer Science, vol 6351. Springer, Berlin, pp 68–81
[BG02] Blow J, Galloway A (2002) Generalised substitution language and differentials. In: Bert D, Bowen JP, Henson MC, Robinson

K (eds) ZB 2002: Formal Specification and Development in Z and B. of Lecture notes in computer science, vol 2272. Springer,
Berlin, pp 396–415

[BGH+04] Boulton RJ, Gottliebsen H, Hardy R, Kelsy T, Martin U (2004) Design verification for control engineering. In: Boiten EA,
Derrick J, Smith G (eds) IFM 2004: integrated formal methods. Lecture notes in computer science, vol 2999. Springer, Berlin,
pp 21–35 Invited paper

[BHM03] Boulton RJ, Hardy R, Martin U (2003) A hoare-logic for single-input single-output continuous-time control systems. In: 6th
international workshop on hybrid systems: computation and control. Lecture notes in computer science, vol 2623. Springer,
Berlin, pp 113–125

[BMW07] Boström P, Morel L, Waldén M (2007) Stepwise development of Simulink models using the refinement calculus framework.
In: Woodcock JCP, Jones CB, Liu Z (eds) International colloquium on theoretical aspects of computing. Lecture notes in
computer science, vol 4711. Springer, Berlin

[Cav08] Cavalcanti ALC (2008) Stateflow diagrams in Circus. In: Machado P (eds) SBMF 2008: Brazilian symposium on formal
methods. In: Electronic notes in theoretical computer science. Elsevier, Amsterdam (invited paper)

[CC06] Cavalcanti ALC, Clayton P (2006) Verification of control systems using Circus. In: 11th IEEE international conference on
engineering of complex computer systems. IEEE Computer Society, pp 269–278

[CCM+03] Caspi P, Curic A, Maignan A, Sofronis C, Tripakis S (2003) Translating discrete-time Simulink to lustre. In: Alur R, Lee I
(eds) EMSOFT 2003. Lecture Notes in Computer Science, vol 2855. Springer, Berlin, pp 84–99

[CCO05] Cavalcanti ALC, Clayton P, O’Halloran C (2005) Control law diagrams in Circus. In: Fitzgerald J, Hayes IJ, Tarlecki A (eds)
FM 2005: formal methods. Lecture notes in computer science, vol 3582. Springer, Berlin, pp 253–268

From control law diagrams to Ada via Circus 511

[CD06] Chen C, Dong JS (2006) Applying timed interval calculus to Simulink diagrams. In: Liu Z, Jifeng H (eds) International
conference on formal engineering methods. Lecture notes in computer science. Springer, Berlin, pp 74–93

[CDS09] Chen C, Dong JS, Sun J (2009) A formal framework for modeling and validating simulink diagrams. Formal Aspects of
Computing 21(5):451–484

[CSW03] Cavalcanti ALC, Sampaio ACA, Woodcock JCP (2003) A refinement strategy for Circus. Formal Aspects Comput 15(2–
3):146–181

[CW99] Cavalcanti ALC, Woodcock JCP (1999) ZRC—a refinement calculus for Z. Formal Aspects Comput 10(3):267–289
[DBCHP03] Dajani-Brown S, Cofer D, Hartmann G, Pratt S (2003) Formal modeling and analysis of an avionics triplex sensor voter. In:

Ball T, Rajamani SK (eds) SPIN 2003. Lecture notes in computer science, vol 2648. Springer, Berlin, pp 34–48
[FC06] Freitas AF, Cavalcanti ALC (2006) Automatic translation from Circus to Java. In: Misra J, Nipkow T, Sekerinski E (eds) FM

2006: formal methods. Lecture notes in computer science, vol 4085. Springer, Berlin, pp 115–130
[FCW06] Freitas LJS, Cavalcanti ALC, Woodcock JCP (2006) Taking our own medicine: applying the refinement calculus to state-rich

refinement model checking. In: Liu Z, He J (eds) Formal methods and software engineering. 8th international conference on
formal engineering methods, ICFEM 2006. Lecture notes in computer science, vol 4260. Springer, Berlin, pp 697–716

[Fis98] Fischer C (1998) How to combine Z with a process algebra. In: Bowen J, Fett A, Hinchey M (eds) ZUM’98: the Z formal
specification notation. Springer, Berlin

[Fis00] Fischer C (2000) Combination and implementation of processes and data: from CSP-OZ to Java. PhD thesis, Fachbereich
Informatik Universität Oldenburg

[FK04] Fehnker A, Krogh BH (2004) Hybrid system verification is not a sinecure: electronic throttle control case study. In: Wang F
(ed) ATVA 2004. Lecture notes in computer science, vol 3299. Springer, Berlin, pp 263–277

[Fre06] Freitas LJS (2006) Model checking Circus. PhD thesis, University of York, Department of Computer Science
[GH06] Giese H, Hirsch M (2006) Modular verification of safe online-reconfiguration for proactive components in mechatronic UML.

In: Bruel J-M (ed) Satellite events at the MoDELS 2005 conference. Lecture Notes in Computer Science, vol 1618. Springer,
Berlin, pp 67–78

[GHOS06] Graf S, Haugen O, Ober I, Selic B (2006) Modelling and analysis of real-time and embedded systems. In: Bruel J-M (ed)
Satellite events at the MoDELS 2005 conference. Lecture notes in computer science, vol 1618. Springer, Berlin, pp 58–66

[GT00] Gurr C, Tourlas K (2000) Towards the principled design of software engineering diagrams. In: 22nd international conference
on software engineering. ACM Press, pp 509–5188

[HM03] Hammond K, Michaelson G (2003) Hume: a domain-specific language for real-time embedded systems. In: Generative pro-
gramming and component engineering. Lecture notes in computer science, vol 2830. Springer, Berlin, pp 37–56

[HO02] Hoenick J, Olderog E-R (2002) Combining specification techniques for processes, data and time. In: Butler MJ, Petre L, Sere
K (eds) Integrated formal methods. Lecture notes in computer science, vol 2335, pp 245–266

[Hoa85] Hoare CAR (1985) Communicating sequential processes. Prentice-Hall, Englewood Cliffs
[JH05] Joshi A, Heimdahl MPE (2005) Model-Based Safety Analysis of Simulink Models using SCADE Design Verifier. In: Winther

R, Gran Ba, Dahll G, editors, SAFECOMP 2005, volume 3688 of Lecture Notes in Computer Science, pages 122–135. Springer-
Verlag

[JZW+00] Jersak M, Ziegenbein D, Wolf F, Richter K, Ernst R, Cieslok F, Teich J, Strehl K, Thiele L (2000) Embedded system design
using the SPI workbench. In: 3rd international forum on design languages

[KAW96] King DJ, Arthan RD, Winnersh ICL (1996) Development of practical verification tools. ICL Syst J 11(1)
[Kro99a] Krogh BH (1999) Approximating Hybrid System Dynamics for Analysis and Control. In: Vaandrager FW, van Schuppen JH

(eds) Hybrid systems: computation and control: second international workshop. Lecture notes in computer science, vol 1569.
Springer, Berlin

[Kro99b] Krogh BH (1999) Recent developments in modeling and analysis of hybrid dynamic systems. In: Donatelli S, Kleijn J (eds)
Applications and theory of petri nets 1999: 20th international conference. Lecture notes in computer science, vol 1639. Springer,
Berlin

[KS02] Kirsch CM, Sanvido MAA (2002) A Giotto-based helicopter control system. In: Sangiovanni-Vincentelli A, Sifakis J (eds)
EMSOFT 2002. Lecture notes in computer science, vol 2491. Springer, Berlin, pp 46–60

[Mah02] Mahony B (2002) 1st international workshop on formalising continuous mathematics. In: The DOVE approach to the design
of complex dynamic processes, pp 167–187

[Mat] The MathWorks,Inc. Simulink. http://www.mathworks.com/products/simulink
[MD00] Mahony B, Dong JS (2000) Timed communicating object Z. IEEE Trans Softw Eng 26(2):150–177
[Mor94] Morgan CC (1994) Programming from specifications, 2nd edn. Prentice-Hall, Englewood Cliffs
[OCW03] Oliveira MVM, Cavalcanti ALC, Woodcock JCP (2003) ArcAngel: a tactic language for refinement. Formal Aspects Comput

15(1):28–47
[OCW05] Oliveira MVM, Cavalcanti ALC, Woodcock JCP (2005) Formal development of industrial-scale systems. Innov Syst Softw

Eng 1(2):126–147
[OCW07] Oliveira MVM, Cavalcanti ALC, Woodcock JCP (2007) Unifying theories in ProofPowerZ. Formal Aspects Comput. doi:10.

1007/s00165-007-0044-5
[OCW09] Oliveira MVM, Cavalcanti ALC, Woodcock JCP (2009) A UTP semantics for Circus. Formal Aspects Comput 21(1–2):3–32
[Oli06] Oliveira MVM (2006) Formal derivation of state-rich reactive programs Using Circus. PhD thesis, University of York
[RB01] Ranville S, Black PE (2001) Automated testing requirements—automotive perspective. In: 2nd international workshop on

automated program analysis, testing and verification
[SCJS10] Sherif A, Cavalcanti ALC, Jifeng H, Sampaio ACA (2010) A process algebraic framework for specification and validation of

real-time systems. Formal Aspects Computing 22(2):153–191
[She06] Sherif A (2006) A Framework for Specification and Validation of Real-time Systems using Circus actions. PhD thesis, Centro

de Informática/UFPE, Brazil

http://www.mathworks.com/products/simulink
http://dx.doi.org/10.1007/s00165-007-0044-5
http://dx.doi.org/10.1007/s00165-007-0044-5

512 A. L. C. Cavalcanti et al.

[SJCS05] Sherif A, He Jifeng, Cavalcanti ALC, Sampaio ACA (2005) A framework for specification and validation of real-time systems
using circus actions. In: Liu Z, Araki K (eds) International colloquium on theoretical aspects of computing. Lecture notes in
computer science, vol 3407. Springer, Berlin, pp 478–493

[Spe02] Spencer C (2002) Model checking for stateflow diagram with floating point variables and complex expressions. Master’s thesis,
Department of Electrical and Computer Engineering, Carnegie Mellon University

[Tiw02] Tiwari A (2002) Formal semantics and analysis methods for Simulink stateflow models. Technical report, SRI International.
http://www.csl.sri.com/~tiwari/stateflow.html

[TK02] Tiwari A, Khanna G (2002) Series of abstractions for hybrid automata. In: Vaandrager FW, van Schuppen JH (eds) Hybrid
systems: computation and control: second international workshop. Lecture notes in computer science, vol 2289. Springer,
Berlin, pp 465–478

[TS99] Treharne H, Schneider S (1999) Using a process algebra to control B operations. In: 1st international conference on integrated
formal methods, IFM’99. Springer, Berlin, pp 437–457

[TSR03] Tiwari A, Shankar N, Rushby J (2003) Invisible formal methods for embedded control systems. Proc IEEE 91(1):29–39
[WD96] Woodcock JCP, Davies J (1996) Using Z—specification, refinement, and proof. Prentice-Hall, Englewood Cliffs
[ZC09] Zeyda F, Cavalcanti ALC (2009) Mechanised translation of control law diagrams into Circus. In: Integrated formal methods.

Lecture notes in computer science. Springer, Berlin

Received 18 May 2010
Revised 18 October 2010
Accepted 9 November 2010 by Cliff Jones and Ursula Martin
Published online 11 January 2011

http://www.csl.sri.com/~tiwari/stateflow.html

	From control law diagrams to Ada via Circus
	Abstract
	1 Introduction
	2 Control law diagrams
	3 ClawZ and Circus
	3.1 ClawZ
	3.2 Circus

	4 Translation strategy
	4.1 Graph model
	4.2 Channels
	4.3 The blocks
	4.4 The diagram

	5 Ada programs and their Circus models
	6 Refinement strategy
	6.1 Phase NB: normalise blocks
	6.2 Phase BJ: blocks join
	6.3 Phase Pr: procedure introduction
	6.4 Phase Sc: scheduling introduction

	7 Related work
	8 Conclusions and future work
	Acknowledgments
	A Formalisation of the graph model
	B Refinement laws
	B.1 Parallelism
	B.2 Interleaving
	B.3 Hiding
	B.4 Variable blocks
	B.5 Processes and programs
	B.6 Specialised laws

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

