
DOI 10.1007/s00165-010-0157-0
BCS © 2010
Formal Aspects of Computing (2011) 23: 391–419

Formal Aspects
of Computing

A probability perspective
Eric C. R. Hehner
Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada.
E-mail: hehner@cs.utoronto.ca

Abstract. This paper draws together four perspectives that contribute to a new understanding of probability
and solving problems involving probability. The first is the Subjective Bayesian perspective that probability is
affected by one’s knowledge, and that it is updated as one’s knowledge changes. The main criticism of the Bayesian
perspective is the problem of assigning prior probabilities; this problem disappears with our Information Theory
perspective, in which we take the bold new step of equating probability with information. The main point of the
paper is that the formal perspective (formalize, calculate, unformalize) is beneficial to solving probability prob-
lems. And finally, the programmer’s perspective provides us with a suitable formalism. To illustrate the benefits
of these perspectives, we completely solve the hitherto open problem of the two envelopes.

Keywords: Bayesian probability, Probabilistic programming, Two envelopes

“Writing is nature’s way of letting you know how sloppy your thinking is.”
—Richard Guindon (cartoon), San Francisco Chronicle, 1989 January

“Mathematics is nature’s way of letting you know how sloppy your writing is.”
—Leslie Lamport, Specifying Systems, page 2, 2002 July 19

“Formal mathematics is nature’s way of letting you know how sloppy your mathematics is.”
—Leslie Lamport, Specifying Systems, page 2, 2002 July 19

1. Introduction

Here is a very simple probability problem:
I have two children. At least one child is a girl. What is the probability that the other child is also a girl?

A lot of people fail to get the right answer, which is 1/3. They fail to see the difference between that and the
following problem:

I have two children. The older child is a girl. What is the probability that the younger child is also a girl?
The answer to this one is 1/2. How about this version:

I have two children. The child named Pat is a girl. What is the probability that the other child, whose name
is Chris, is also a girl?

Have you made some unstated assumptions? Did you assume that children are distinct, unlike raindrops in a
barrel? Did you assume that children come in exactly two genders, unlike the navanax (a sea slug)? Did you

Correspondence and offprint requests to: E. C. R. Hehner, E-mail: hehner@cs.utoronto.ca

392 E. C. R. Hehner

assume that half the population of children are girls, unlike the ant population? Did you assume that my sperm
can produce boys and girls with equal probability, unlike the sperm of King Henry VIII? Are these assumptions,
and perhaps others, necessary to arrive at the answers?

Probability is not well understood, and that is why gambling houses and insurance companies are so suc-
cessful. The answers to even simple problems like the preceding are debated on internet discussion groups by
both amateur and professional probabilists. This lack of understanding is one of the motivations for this paper;
I propose a new approach to probability that I hope will help.

The perspective of this paper is really a combination of four perspectives. The first is the Subjective Bayesian
perspective, which says that probability is affected by one’s knowledge. The second is the Information Theory
perspective, and I claim that information and probability are the same; this solves (or perhaps dissolves) the
Bayesian problem of prior probabilities. Next is the formalist perspective, in which we replace argument, even
careful argument and reasoning, with calculation. And the programmer’s perspective provides the necessary
formalism in which the calculations are conducted.

2. Bayesian perspective

According to any textbook on probability, the statement “in experiment X , event E has probability p” means
that if we run experiment X a large number N of times, we will see, or we expect to see event E somewhere
near p × N times. Let me call this the “long-run” meaning of probability (probabilists call it “frequentist”). In
contrast to that, every day all of us make probabilistic judgements about situations that cannot be repeated. Can
we repeat the experiment concerning the gender of my two children? If the experiment really is about my children,
it is impractical to suggest that I have 1000 pairs of children so that we can say, in those pairs having at least one
girl (somewhere near 750 pairs), the other one is also a girl 1/3 of the time (somewhere near 250 pairs). Although
impractical, we could say it at least makes sense conceptually. But what about the probability that a nuclear
war will occur, or the probability that an earth-shattering meteor will strike? In general, events can change the
world so that they cannot, even conceptually, be repeated in anything like the same circumstances. How does
the long-run meaning of probability apply to such events? We could talk about rewinding and replaying, or we
could talk about a thousand parallel worlds, but such talk is completely divorced from any experiment that can
be run, even conceptually, and is therefore not really meaningful. We need a meaning for probability that makes
sense even for one-time-only events. For experiments that can be repeated, the long-run meaning should be a
consequence.

Alice and Bob have a coin to flip. They decide to bet with each other on the outcome. They agree that the
probability for each of the two possible outcomes, head or tail, is 1/2, and that means that they should each bet the
same amount, and the winner takes the whole amount. But wait: Alice suspects that Bob may be an expert flipper
who can pretty well make the coin land as he wants. And Bob is equally suspicious of Alice. Should they flip to
see who will flip? Should they each ask to see the other make some sample flips? Neither of those suggestions
helps. Let’s remove the psychology and chicanery from the problem, and start again.

Alice and Bob see a coin-flipping machine. They decide to bet with each other on the outcome. They agree
that the probability for each of the two possible outcomes is 1/2, and that means that they should each bet the
same amount, and the winner takes the whole amount. But wait: is the coin constructed perfectly? They use their
handy atomic laser-guided shape checker, and discover that the coin has a slightly concave head and convex tail,
making the head landing position slightly more stable than the tail landing. They do the math, and find that the
probability is 4/7 for head and 3/7 for tail; that means that Alice, who bets head, and Bob, who bets tail, should
lay down money in the ratio of 4 to 3, and the winner takes the whole amount. But wait: is the material the coin is
made of homogeneous? They use their density analyzer and discover that the perimeter is slightly denser than the
center, making the bias worse. They do the math, and find the new probabilities to be 5/7 for head and 2/7 for tail.
Unlike most gamblers, they know that only the ratio of amounts they put down, not the amounts, is determined
by the probability calculation; the actual amounts are determined by factors that have nothing to do with coin
flipping. But wait: is the coin-flipping machine constructed perfectly? They measure the weight of the coin, the
angle of flip, the strength of the spring, the distance to the floor, and several other factors. They determine that
the machine has a strong bias toward an even number of rotations. They do the math, and find that if the coin is
placed tail-up to start with, the bias of the machine exactly compensates the bias of the coin, and the probabilities
are 1/2 and 1/2. But wait: should they consider the wind velocity? the direction and strength of the magnetic field?

A probability perspective 393

Alice and Bob decide to abandon their calculations in favor of a new approach: they decide to make 1000 trial
flips before betting. To their surprise, there were 753 heads and only 247 tails. What should the bet be? A typical
gambler’s answer is that the next flip is much more likely to be a tail than a head. The gambler’s reason is that
in the long run, there should be half heads and half tails, so tails are overdue. In other words, there should now
be more tails than heads for a while to bring the proportion back near half and half. A typical probabilist has a
different answer. First, a probabilist wants to be told that it is a “fair coin”, or rather that the coin plus machine
plus any other influential factors make it a “fair toss”; Alice and Bob confirm that their previous investigation
had that conclusion. Now the probabilist will say that all past tosses are irrelevant. Even if there were 753 heads
and only 247 tails to date, the next toss has 1/2 probability of landing on either side. Alice and Bob and I have
yet another answer. We take the 1000 tosses to be highly relevant; they are clearly showing a bias to heads, and
we assign 0.753 probability that the next toss will be a head, and 0.247 probability that it will be a tail. When
Alice and Bob examined the coin and machine, they must have missed some important factor, or maybe they
miscalculated, or maybe someone bumped the machine after the calculation and changed its bias. Whatever the
reason, we take the machine’s past performance to be a strong indication of its future performance. Based on the
0.753 and 0.247 probabilities, Alice and Bob make their bet, they activate the machine once more, the coin lands
showing head, and Alice wins.

What Alice and Bob failed to understand is that they could have bet at any stage of their investigations, even
at the start before making any investigation, or after examination of just the coin, or after examination of coin
and machine but before the trial flips, using the probabilities at that stage, and it would have been a fair bet. They
could even have waited until after the decisive flip! If they did not witness the event, and no-one told them its
outcome, they should use the same probabilities (0.753 and 0.247) they would have used just before the flip. If
they did witness the event, or someone told them its outcome, the probability of the coin landing showing head
is 1 (because it did), and the probability of landing showing tail is 0 (because it didn’t). For a fair (but pointless)
bet, Alice would have to contribute the whole pot, Bob none, and Alice would then take the whole pot.

The story of Alice and Bob is intended to illustrate the view (called “Subjective Bayesian” by probabilists)
that probability is not a property of an event; there is no such thing as the probability that the coin lands showing
head. Probability is a measure of one’s ability to predict the event. It depends on the event, and also on the infor-
mation known to the person who determines the probability. The very same event can have different probabilities
for different people possessing different knowledge, or to the same person at different times. In the story, the
coin and flipping machine were unchanging, but the probabilities changed as new information was learned. As
a shorthand, we may say “the probability that the coin lands showing head”, but implicitly we mean “according
to someone’s state of knowledge”.

The point I have just made can be countered in at least two ways. One is to say that no-one can predict the
future. My reply is that evolution has made us quite good at predicting. I predict that this apple will taste good
and make me feel less hungry and more energetic. I predict that stepping in front of this moving bus will hurt
me and maybe even kill me. People who are poor at predicting are quickly removed from the gene pool; people
who are good at it tend to pass on their genes. And since we are not equally good at predicting, it makes sense to
measure that ability.

Another objection is, according to standard accounts of probability, that an event does indeed have a proba-
bility, but one’s knowledge of that probability changes, or one’s estimate of that probability changes, when one
learns new information. In the standard view, a probabilist can talk about a “fair coin”, which is a coin for which
the events “lands showing head” and “lands showing tail” each have probability 1/2. Whether one can actually
make such a coin is irrelevant; it is still, according to the standard view, a meaningful concept. In my view, “fair
coin” means nothing, but “fair bet” is meaningful; whether a bet is fair depends on the state of knowledge of the
bettors.

There is a difference between how much knowledge one has, and how well one can predict what will happen.
Sometimes gaining knowledge reduces one’s ability to predict. For example, after Alice and Bob had examined
the coin, they were able to predict with some confidence (probability 5/7) that the coin would land showing head.
Then, after examining the coin flipping machine, they no longer had any idea (probability 1/2) whether it would
land showing head or not. Probability is not a measure of knowledge; it is a measure of one’s ability to predict,
according to one’s current knowledge.

A wheel whose perimeter is painted red and blue is about to be spun; you and I are going to bet on whether
it stops with red or blue at the indicator arrow. What is a fair bet (what proportion of the pot should we each
contribute)? Do you feel unprepared to bet? What would you like to know? Do you feel the need to know what
proportion of the perimeter is painted each color? If I know that proportion and you don’t, that would give me

394 E. C. R. Hehner

an unfair advantage over you, but if neither of us knows, we can make a fair bet: we each contribute the same
amount to the pot, and by that action we are saying that the probabilities are 1/2 and 1/2. I wish to emphasize
that these probabilities do not mean that we know, expect, or assume that red and blue each occupy half of the
perimeter. Nor are we making an assumption (that would need justifying) that the probabilities are 1/2 and 1/2.
Saying that the probabilities are 1/2 and 1/2 means that we do not have any idea, or any expectation, of whether
the result of the spin will be red or blue. If we learn that each color does indeed occupy half of the perimeter, we
still have no better idea whether the result will be red or blue, so we do not revise the probability.

Suppose someone tells us that red occupies either 1/4 or 1/2 of the perimeter; perhaps they forget which of
those two fractions it is, or they are unwilling to tell us which it is. For our bet, it is of no use to us to say that
the probability that the spin will end on red is either 1/4 or 1/2. But, with this new information, we are certainly
not now going to contribute equal amounts to the pot. The fair bet that we can now make with each other
corresponds to assigning the probability 3/8 that the spin will end on red, and 5/8 on blue. A bet demands, or
perhaps defines, a single probability distribution.

My examples have been about betting money. If we consider non-monetary bets too, probability becomes a
guide for action in all of life’s situations, so it is no small matter to get it right. In life, we cannot refuse to bet,
and a bet is a statement of probability.

3. Information

In 1948, Claude Shannon invented information theory based on probability theory [S48, SW49]. The basic defi-
nition is entropy. Given of a set of messages mi , each one occurring with probability pi , their entropy is defined
as −�i · pi × log(pi) where log is logarithm base 2. The messages could be letters in an alphabet, or words in
a language, and the idea is that a long sequence of messages is sent from a sender to a receiver. The probability
pi is the relative frequency of message mi in the sequence. Shannon referred to entropy as a measure of “uncer-
tainty” on the part of the receiver, before receiving a message, about what message would be received next. It is
independent of representation.

The word “entropy” comes from statistical mechanics, where it originally represented the amount of “disor-
der” in a large collection of molecules. Currently it is explained as the average energy carried by a molecule, which
is related by the Boltzmann constant k ≈ 1.38 × 10−23 to the temperature. Although temperature is considered
a macro property, and one may be reluctant to talk about the average value in a set that contains only one value,
there is no harm in relating energy to temperature even for a single molecule.

E � k × T/2

Similarly, Shannon was reluctant to talk about the information content of each message individually, but there
is no harm in doing so [H77]. If we define the information content Ii of message mi as

Ii � −log(pi)

then the entropy �i · pi × Ii is the average information content of a message measured in bits.
In 1948 it made good sense to explain information in terms of probability; information (as a mathematical

theory) was unknown, and probability (as a mathematical theory) was already well developed. But today it might
make better sense to explain probability in terms of information. Most people today have a quantitative idea of
what information and memory are; they talk about bits and bytes; they buy an amount of memory, and hold it
in their hand; they wait for a download, and complain about the bandwidth. Many people already understand
the important difference between information and memory; they compress files before sending them, and they
decompress files upon receiving them.

Information theory talks about messages, but it could just as well talk about events, or outcomes of an exper-
iment. (Perhaps a message is just a special case of event, or perhaps an event is just a special case of message.)
Let us be more abstract, and dispense with events and messages. The information I (in bits) associated with
probability p is

I � −log p

which is easily inverted

p � 2−I

to allow us to define probability in terms of information.

A probability perspective 395

The suggestion to define probability in terms of information is intended as a pedagogical technique: define
the less familiar in terms of the more familiar, or perhaps I mean define the less understood in terms of the more
understood. Henceforth I will be neutral on this point, making use of the relationship between them, without
taking either one of them to be more basic.

4. Scale

There are two temperature scales in common use: Fahrenheit (in the USA) and Celsius (in the rest of the world).
There are formulas to convert each to the other:

c � (f − 32) × 5/9 and f � c × 9/5 + 32

Whenever two physical quantities can be converted, each to the other, they measure the same thing on different
scales. (More generally, every physical law says that there are fewer things to measure than there are variables in
the law.) So energy and mass measure the same thing on different scales.

E � m × c2 and m � E/c2

Also, energy and temperature measure the same thing on different scales.

E � k × T/2 and T � 2 × E/k

And therefore mass and temperature measure the same thing on different scales.

m � k × T/(2 × c2) and T � 2 × m × c2/k

More to the point, information and probability measure the same thing on different scales.

I � −log p and p � 2−I

I am not sure what to call the “thing” measured on these two scales; rather than introduce a new word I shall just
call it “information”.

There is another scale in common use for measuring information: the number of possible states. (This same
scale applies to energy-temperature-mass too.) This is the scale preferred by people who build “model checkers”
to verify the correctness of computer hardware or software. They like to say they can handle up to 1060 states,
which is something like the number of atoms in our galaxy. That is a truly impressive number, until we realize
that 1060 is about 2200, which is the state space of 200 bits, or about six 32-bit variables; we rapidly descend from
1060 states to 6 program variables!

In order to write the conversion formulas among the three scales neatly, I need unit names for each of them.
We already have the “bit” and the “state”; I am missing a unit for the probability scale, so let me invent the
“chance”. (All three of these units are non-physical; they are alternative names for unity (pure numbers).) Here
are the conversions.

b bit � 2b state � 2−b chance
s state � 1/s chance � log s bit
c chance � −log c bit � 1/c state

Let’s look at three example points on these scales.

0 bit � 1 state � 1 chance

1 bit � 2 state � 1/2 chance

∞ bit � ∞ state � 0 chance

On the middle line, 1 bit is the amount of information needed to tell us which of 2 states we are in, or has occurred,
or will occur, and that corresponds to probability 1/2 chance for each state. On the top line, 0 bits is the amount of
information needed to tell us which state if there is only 1 state, and that corresponds to 1 chance (certainty). On
the bottom line, it takes ∞ bits to tell us that something impossible is occurring (Shannon would say that we are
infinitely surprised). (I say “certain” for probability 1 and “impossible” for probability 0 and I don’t care about
any measure-theoretic difference.)

396 E. C. R. Hehner

Information does not have to be an integer number of bits. If we are talking about a decimal digit (and that
is all we know about it), we have

3.322 bit ≈ 10 state � 1/10 chance

of information, although we may use 4 bits of memory to store it. Similarly, as a measure of information we may
have a non-integer number of states,

0.585 bit ≈ 1.5 state � 2/3 chance

although in any physical manifestation the number of states is a positive integer.
The Bayesian “problem of priors” is the problem of how to justify the assumption that the initial probability

distribution is uniform across all states. I suggest that there is no “assumption” being made, and so no need for
“justification”. Saying that there are 4 states is saying, on another scale, that the probability is 1/4, and on yet
another scale that 2 bits are required to specify the situation. If we then learn that one of the states never occurs,
we adjust: there are 3 states (that occur); each of the (occurring) states has probability 1/3 (and any nonoccurring
state has probability 0); it takes about 1.585 bits to identify a state (that occurs, and infinitely many bits to iden-
tify any nonoccurring state). (The phrase “nonoccurring state” is an informational absurdity in the same way
that “nonexisting state” is a boolean absurdity.) To be less extreme, if we learn that one of the four states rarely
occurs, then we adjust: as a measure of information, there are less than 4 but more than 3 states; each commonly
occurring state has a probability between 1/4 and 1/3, and the rarely occurring state has a probability between
0 and 1/4; it takes somewhere between 1.585 and 2 bits to identify any of the commonly occurring states, and
somewhere between 2 and ∞ bits to identify the rarely occurring state. In general, having no prior information
about which of n states occurs is probability 1/n for each state, not by assumption, but by a change of scale.

This paper does not venture into the topic of subdistributions and superdistributions, but I mention that a
subdistribution (sum < 1) corresponds to the information of an open (redundant) code (which is undecodable),
a distribution (sum=1) corresponds to the information of a closed (zero-redundancy) code (which is uniquely
decodable), and a superdistribution (sum > 1) corresponds to the information of an ambiguous code (which has
multiple decodings). And just to tease you,

−1 bit � 1/2 state � 2 chance
−∞ bit � 0 state � ∞ chance

What is the point of having several scales on which to measure the same quantity? If they are Fahrenheit
and Celsius for measuring temperature, there is no point at all; they are linear translations of each other, and
the duplication is just annoying. Long ago, the easiest way to multiply two numbers was to transform them to
a logarithmic scale, where the multiplication is transformed into the simpler operation of addition, and then
transform the result back. Fourier transforms are used for the same reason. Similarly, perhaps some information
calculations are easier on the chance (probability) scale, others on the bit scale, and still others on the state scale.
Thus they might all be useful.

In passing, I would like to mention two other scales that might have some advantages. We could have a scale
that is symmetric about 0, say from −1 to +1, with +1 representing “certain” and −1 representing “impossible”,
and 0 representing “equally likely to happen or not happen”. On this scale, a distribution sums to 0 . An advantage
might be the ease of expressing the uniform distribution over an infinite number of possibilities. Or, we could have
a scale that uses the entire real range, from −∞ to +∞, to represent the range from “impossible” to “certain”.
An advantage might be unification with other algebras (see [H07]), or simplification of distribution formulas.

5. Abstraction

What is the sum of 2 km + 3 km ? I expect you to say 5 km without hesitation, and you would be right. In primitive
mathematics (I was not there, so I am speculating), the concept of length made sense only if we say what object
or piece of ground we are talking about. A length had to be the length of something. The question just asked
could not be answered without further information. Perhaps the 2 km is from Alice’s house to Carol’s house, and
the 3 km is from Bob’s house to Don’s house. As it happens, these houses are arranged in a straight line, starting
at Alice’s at kilometer 0 to Bob’s at kilometer 1 to Carol’s at kilometer 2 to Don’s at kilometer 4. Thanks to the
overlap, you can walk the 2 km from Alice to Carol, and the 3 km from Bob to Don, by walking only 4 km. In
this primitive mathematics, adding lengths is a little bit complicated. In modern mathematics, we can talk about

A probability perspective 397

abstract lengths; we don’t need to specify an object or piece of ground. Addition is simple. If we have a problem
about someone who walks some overlapping distances, we will be careful to formalize the problem so that we
don’t add these distances. Formalization is sometimes complicated, but addition is simple.

It would be equally primitive to tie our probabilistic calculations to the situations or events that the probabil-
ities represent. We wouldn’t be able to say that conjoining probability 1/2 with probability 1/4 gives probability
1/8 because there might be an overlapping dependency. The probability that an unknown integer is even is 1/2,
and the probability that it is a multiple of 4 is 1/4, but the probability that it is both even and a multiple of 4 is
not 1/8 due to the dependency.

I propose that we allow ourselves to work with probabilities abstractly, not attached to any specific events.
We conjoin 1/2 chance and 1/4 chance and we get 1/8 chance. If we have a problem in which there are overlapping
events, we will be careful to formalize it so that we don’t just multiply the probabilities. This is exactly the same
as saying that 1 bit plus 2 bits equals 3 bits. If we receive a bit of information, and then we receive 2 more bits,
one of which is a repeat of the bit we received first, then we are in possession of only 2 bits of information; to say
this requires looking at what information is received. This is exactly the same as saying that a space of 2 states
crossed with a space of 4 states is a space of 8 states. If we look at what the states are, we may see that 2 of the
latter states are the same as the 2 former states (an axis of the second space was aligned with (not orthogonal to)
the axis of the first space), so the resulting space is just the second space with 4 states, not the cross product of
the two spaces.

Conjoining probabilities p and q is p×q ; disjoining probabilities p and q is p−p×q +q ; negating probability
p is 1 − p.

6. Formalization and calculation

When mathematics is used to help solve problems, there are three distinct phases in the solution. The first is
formalization. That means choosing variables to represent quantities of interest, then representing all the given
information as mathematical expressions (often, but not always, equations). In the second phase, we turn our
backs on the informal problem description, and we calculate using only the mathematical expressions; we do not
care what the variables stand for. The calculation might be simplifying, or proving (which means simplifying to
true), or solving (which means finding values for variables that make the mathematical expressions true). The
third phase is to unformalize the result of the calculation, stating it in the same natural language that the problem
was originally stated in. Just to make that clear and concrete, here is a grade school example.

Amanda is 164 cm tall. This is 8 cm more than 3 times her height at birth. Find her height at birth.
Perhaps a thousand years ago the philosophers of the time might argue about what her height at birth was, each
philospher giving reasons why their answer is right. Now we don’t argue; we formalize, calculate, and unformalize.
So we choose variable a to represent Amanda’s height now, and b to represent her height at birth. The given
information is formalized as the top line of the following calculation.

a=164 ∧ a = 8 + 3×b context and specialization
⇒ 164 = 8 + 3×b additive and multiplicative cancellation
= b = (164–8)/3 arithmetic
= b=52

From the last line, we conclude that Amanda was 52 cm tall at birth. During the calculation, the meanings of
variables a and b are of no concern. Each step in the calculation must be a specialization of a law (either an axiom
or a previously proven thereom) in a sound formalism. In principle, it must be checkable by a computer (that’s
the meaning of “formal” mathematics) so that a calculation is objective and not just an argument. In this paper
I will use the formalism of [H93] because it is reasonably standard. Various sciences use this template (formalize,
calculate, unformalize) to great advantage, and I want to show that probability problems can use it to advantage
also.

In a probability problem, often some activity is described. Maybe there is a sequence of events; maybe some
events are conditional upon the outcome of other events; maybe there is a repetition of events. Formalizing a
description of such activities is exactly what programming notations are for.

398 E. C. R. Hehner

7. Programming

In the ordinary (non-probabilistic) world of programming, a specification is a boolean expression whose vari-
ables represent the quantities of interest. The term “boolean expression” means an expression of type boolean,
and is not meant to restrict the types of variables and subexpressions, nor the operators, within a specification.
Quantifiers, functions, terms from the application area, and terms invented for one particular specification are all
welcome. A specification is a boolean expression because it is either satisfied or not satisfied by the executions of a
program. The “quantities of interest” may be the initial and final states of memory, they may be the intermediate
states, they may be the interactions or communications during execution, and they may be the execution time
and space.

A program is a specification that is implemented, so that a computer can execute it. Each programming nota-
tion is, mathematically, a specification of the computer behavior it invokes. The only programming notations
(statements, constructs) we need in this paper are the following.

ok the empty statement (do nothing)
x :� e the assignment statement

(assign to variable x the value of expression e)
if c thenA elseB conditional

(if the value of c is true then do A; otherwise do B)
A; B sequence (first do A, then do B)
A||B parallel (do A and B at the same time)
while c doA loop (if the value of c is true then do A and repeat ;

otherwise do nothing)
repeatAuntil c loop (do A; if the value of c is true

then do nothing more; otherwise repeat)

In the boolean world of programming, these notations are given mathematical meaning either by equating them
to boolean expressions, or by saying what specifications they implement. But I leave the boolean world to other
resources [H93]. My purpose here is to solve probability problems.

8. Probabilistic programming

We generalize from the boolean world to the probabilistic world [H04] by considering the boolean values 0 (false)
and 1 (true) to be special cases of probabilities (real numbers from 0 to 1 inclusive). We will be mixing boolean
notations, number notations, and programming notations in unusual ways. To keep the notation unambiguous,
there is a precedence table at the end of this paper; please consult it whenever you are in doubt.

A distribution is an expression whose value (for all assignments of values to its variables) is a probability, and
whose sum (over all assignments of values to its variables) is 1. (In this paper, we consider only discrete variables;
for continuous variables, summations become integrals, but we do not pursue that here.) For example, if n and
m vary over the positive naturals nat+1, then 2−n−m is a distribution. Formally,

(∀n,m : nat + 1 · 0 ≤ 2−n−m ≤ 1) ∧ (�n,m : nat + 1 · 2−n−m) � 1

(It has become standard in the formal methods community to use a single, uniform notation for all quantifiers:
the quantifier is followed by the variables, followed by the domain over which the variables vary, followed by the
body. So �n,m : nat + 1 · 2−n−m is read “the sum, as n and m vary over nat + 1, of 2−n−m”. The domain can
be omitted when it is obvious or irrelevant.)

If E is an expression whose value (for all assignments of values to its variables) is nonnegative, and whose sum
(over all assignments of values to its variables) is properly between 0 and ∞, then �E (pronounced “normalize
E”) is the distribution whose values are in the same proportion as the values of E . If the variables are n and m
(as in the previous example), then

� E � E/(�n,m · E)

For example, if n and m vary over the naturals, then 2−n−m is not a distribution because

(�n,m : nat · 2−n−m) � 4

A probability perspective 399

but

�(2−n−m) � 2−n−m/4

is a distribution.
The programming notations of the previous section are now generalized to probabilistic operands and results

as follows. Suppose the program variables are x and y . Let the value of a variable before execution of a statement
be denoted by the variable name (x , y), and let the value of a variable after execution of a statement be denoted
by the variable name with a prime (x ′, y ′).

ok � (x ′ � x) × (y ′ � y)
x :� e � (x ′ � e) × (y ′ � y)
if c thenA elseB � c × A + (1 − c) × B
A; B � �x ′′, y ′′ · (forx ′, y ′ substitute x ′′, y ′′ in A)

× (for x , y substitute x ′′, y ′′inB)
A||B � � (A × B)

(We will see the loop constructs later.)
The notation ok stands for a one-point distribution of the final state: it says the final state (after execution of

ok) equals the initial state (before execution of ok) with probability 1, and equals any other state with probability
0. If, before execution of ok, the variables x and y have values 2 and 3, then after execution, the probability that
the final values x ′ and y ′ are 2 and 3 is

ok
� (x ′ � x) × (y ′ � y)
� (2 � 2) × (3 � 3)
� 1 × 1
� 1

and the probability that the final values are 3 and 3 is

ok
� (x ′ � x) × (y ′ � y)

� (3 � 2) × (3 � 3)

� 0 × 1

� 0

The assignment notation x :� e is also a one-point distribution of the final state. If, before execution of
x :� 4, the variables x and y have values 2 and 3, then after execution, the probability that the final values x ′ and
y ′ are 2 and 3 is

x :� 4
� (x ′ � 4) × (y ′ � y)

� (2 � 4) × (3 � 3)

� 0 × 1

� 0

and the probability that the final values are 4 and 3 is

x :� 4
� (x ′ � 4) × (y ′ � y)

� (4 � 4) × (3 � 3)

� 1 × 1

� 1

400 E. C. R. Hehner

If c is a probability expression in the initial state, and A and B are distributions of the final state, then
if c thenA elseB is a distribution of the final state. For example,

if 1/3 then x :� 0 else x :� 1

means that with probability 1/3 we assign the value 0 to x and with the remaining probability 2/3 we assign 1 to x .
(I do not claim that the notation if 1/3 then . . . reads nicely. I am not inventing notation; the if then else nota-
tion (or equivalent) is already in all programming languages. I am just generalizing it to apply to probabilities.)
According to the meanings assigned, in one variable x ,

if 1/3 then x :� 0 else x :� 1

� 1/3 × (x ′ � 0) + (1 − 1/3) × (x ′ � 1)

Let us evaluate this expression using the value 0 for x ′.

1/3 × (0 � 0) + (1 − 1/3) × (0 � 1)
� 1/3 × 1 + 2/3 × 0

� 1/3

which is the probability that x has final value 0. Let us evaluate this expression using the value 1 for x ′.

1/3 × (1 � 0) + (1 − 1/3) × (1 � 1)
� 1/3 × 0 + 2/3 × 1

� 2/3

which is the probability that x has final value 1. Let us evaluate this expression using the value 2 for x ′.

1/3 × (2 � 0) + (1 − 1/3) × (2 � 1)
� 1/3 × 0 + 2/3 × 0

� 0

which is the probability that x has final value 2.
If A and B are distributions of the final state, then A;B is a distribution of the final state. This operator is

associative, and has ok as left and right identity. To elaborate on the previous example,

if 1/3 then x :� 0 else x :� 1;
if x � 0 then if 1/2 then x :� x + 2 else x :� x + 3
else if 1/4 then x :� x + 4 else x :� x + 5

After the first line, x might be 0 or 1. If it is 0, then with probability 1/2 we add 2, and with the remaining proba-
bility 1/2 we add 3; otherwise (if x is not 0) with probability 1/4 we add 4 and with the remaining probability 3/4
we add 5. Notice that the programmer’s if gives us conditional probability. According to the meanings assigned,
in one variable x ,

if 1/3 then x:= 0 else x:= 1;
if x=0 then if 1/2 then x:= x+2 else x:= x+3
else if 1/4 then x:= x+4 else x:= x+ 5

= Σx′′· ((x′′=0)/3 + (x′′=1)×2/3)
× ((x′′=0) × ((x′ = x′′+2)/2 + (x′ = x′′+3)/2)

+ (1 – (x′′=0)) × ((x′ = x′′+4)/4 + (x′ = x′′+5)×3/4))
= (x′=2)/6 + (x′=3)/6 + (x′=5)/6 + (x′=6)/2

The sum is much easier than it looks because all values for x ′′ other than 0 and 1 make a 0 contribution to the
sum. The final line says that the resulting value of variable x is 2 with probability 1/6, 3 with probability 1/6, 5
with probability 1/6, 6 with probability 1/2, and any other value with probability 0.

A probability perspective 401

Either A||B is a distribution of the final state or it is undetermined (0/0) due to a contradiction between A and
B . Because it is normalizing, there is no requirement that A and B be distributions. This operator is associative
and symmetric. Any nonzero finite constant is a left and right identity in parallel with a distribution. (Parallel
composition is also known as joint probability.) For example, let b vary over the booleans. Suppose one process
makes the probabilistic assignment

if 1/3 then b :� 0 else b :� 1

at the same time as another process probabilisticly either flips b or leaves it alone.

if 1/3 then b :� 1 − b else ok

Without any need to reason, we calculate the result.

if 1/3 then b :� 0 else b :� 1 || if 1/3 then b :� 1 − b else ok
� ((b ′ � 0)/3 + (b ′ � 1) × 2/3) × ((b ′ � 1 − b)/3 + (b ′ � b) × 2/3)

/�b ′ · ((b ′ � 0)/3 + (b ′ � 1) × 2/3) × ((b ′ � 1 − b)/3 + (b ′ � b) × 2/3)

� (b � 0) × (b ′ � 0)/2 + (b � 0) × (b ′ � 1)/2 + (b � 1) × (b ′ � 0)/5 + (b � 1) × (b ′ � 1) × 4/5

� (5 − 3 × b + 6 × b × b ′)/10

The result says that if b is 0 to start, then b ′ is 0 with probability (5 − 0 + 0)/10 � 1/2 and 1 with probability
(5−0+0)/10 � 1/2. And if b is 1 to start, then b ′ is 0 with probability (5−3+0)/10 � 1/5 and 1 with probability
(5 − 3 + 6)/10 � 4/5.

9. Learning

The first step in formalization is to decide what the variables are, and what their domains are. That creates a state
space. For example, we might choose natural variables n and m. The problem might tell us some facts about the
state space, which we can express as a boolean expression. For example, we might be told that n and m add up
to less than 10, expressible as

n + m < 10

This is not a distribution because

(�n,m : nat · n + m < 10) � 55

Furthermore, as a programming specification or statement, it should be a distribution of the final values of
variables. So we put primes on the variables, and we normalize.

� (n ′ + m ′ < 10) � (n ′ + m ′ < 10)/55

is a distribution saying that the probability that n ′ is 5 and m ′ is 3 is

(5 + 3 < 10)/55 � 1/55

and the probability that n ′ is 15 and m ′ is 13 is

(15 + 13 < 10)/55 � 0

If we are given a distribution, and we learn an additional fact, we place the new fact in parallel with the dis-
tribution. For example, suppose n varies over the positive naturals according to distribution 2−n ′

. Now suppose
we learn that n is even. The distribution becomes

2−n ′ ||even n ′

� � (2−n ′ × even n ′)

� (2−n ′ × even n ′)/(�n ′′ · 2−n ′′ × even n ′′)

� (2−n ′ × even n ′)/(1/3)

� 2−n ′ × even n ′ × 3

402 E. C. R. Hehner

When we learn that the result is even, the probability for each odd number drops to 0, and the probability for
each even number is tripled.

The distribution in that example did not have any dependence on the initial state. Here is an example with a
distribution that does depend on the initial state. Let n be a natural variable. To begin, we add 1 with probability
1/3, and 2 with probability 2/3. Then we learn that the result is even.

(if 1/3 then n :� n + 1 elsen :� n + 2)||even n ′

� � (((n ′ � n + 1)/3 + (n ′ � n + 2) × 2/3) × even n ′)

� ((n ′ � n + 1)/3 + (n ′ � n + 2) × 2/3) × even n ′

/(�n ′′ · ((n ′′ � n + 1)/3 + (n ′′ � n + 2) × 2/3) × even n ′′)

� ((n ′ � n + 1) + (n ′ � n + 2) × 2) × even n ′/((even n) + 1)

The divisor is either 1 or 2, depending on whether n began odd or even.

10. Average

Let P be any distribution of final states (primed variables), and let e be any number expression over initial states
(unprimed variables). After execution of P , the average value of e is P ;e. For example, the average value of n2

as n varies over nat + 1 according to distribution 2−n is

2−n ′
; n2

� �n ′′ : nat + 1 · 2−n ′′ × n ′′2

� 6

After execution of an earlier example, the average value of x is

if 1/3 then x :� 0 else x :� 1;
if x � 0 then if 1/2 then x :� x + 2 else x :� x + 3
else if 1/4 then x :� x + 4 else x :� x + 5;
x

� (x ′ � 2)/6 + (x ′ � 3)/6 + (x ′ � 5)/6 + (x ′ � 6)/2; x

� �x ′′ · ((x ′′ � 2)/6 + (x ′′ � 3)/6 + (x ′′ � 5)/6 + (x ′′ � 6)/2) × x ′′

� 1/6 × 2 + 1/6 × 3 + 1/6 × 5 + 1/2 × 6

� 4 + 2/3

Let P be any distribution of final states (primed variables), and let b be any boolean expression over initial
states (unprimed variables). After execution of P , the probability that b is true is P ; b. (Probability is just the
average value of a boolean expression.) For example, after execution of our earlier example, the probability that
x > 3 is true is

if 1/3 then x :� 0 else x :� 1;
if x � 0 then if 1/2 then x :� x + 2 else x :� x + 3
else if 1/4 then x :� x + 4 else x :� x + 5;
x > 3

� (x ′ � 2)/6 + (x ′ � 3)/6 + (x ′ � 5)/6 + (x ′ � 6)/2; x > 3

� �x ′′ · ((x ′′ � 2)/6 + (x ′′ � 3)/6 + (x ′′ � 5)/6 + (x ′′ � 6)/2) × (x ′′ > 3)

� 1/6 × (2 > 3) + 1/6 × (3 > 3) + 1/6 × (5 > 3) + 1/2 × (6 > 3)

� 2/3

A probability perspective 403

The summations due to semicolons can usually be avoided by the use of the Substitution Law, which says
that, for any variable x and expressions e and P ,

x :� e; P

is equal to the following:

start with P ;
remove “ok” and “:�” and “; ” using their meanings;
substitute e for x .

For example, after execution of our earlier example, the average value of x is

if 1/3 then x:= 0 else x:= 1;
if x=0 then if 1/2 then x:= x+2 else x:= x+3
else if 1/4 then x:= x+4 else x:= x+5;
x

now use some distribution laws

= if 1/3 then (x:= 0; if x=0 then if 1/2 then (x:= x+2; x) else (x:= x+3; x)
else if 1/4 then (x:= x+4; x) else (x:= x+5; x))

else (x:= 1; if x=0 then if 1/2 then (x:= x+2; x) else (x:= x+3; x)
else if 1/4 then (x:= x+4; x) else (x:= x+5; x))

now use the Substitution Law within the inner brackets
= if 1/3 then (x:= 0; if x=0 then if 1/2 then x+2 else x+ 3

else if 1/4 then x+4 else x+5)
else (x:= 1; if x=0 then if 1/2 then x+2 else x+ 3

else if 1/4 then x+4 else x+5)
now use the Substitution Law within the remaining brackets

= if 1/3 then (if 0=0 then if 1/2 then 0+2 else 0+3
else if 1/4 then 0+4 else 0+5)

else (if 1=0 then if 1/2 then 1+2 else 1+3
else if 1/4 then 1+4 else 1+5) two of the ifs reduce to one case

= if 1/3 then (if 1/2 then 2 else 3)
else (if 1/4 then 5 else 6)

= 1/3 × (1/2 × 2 + 1/2 × 3) + 2/3 × (1/4 × 5 + 3/4 × 6)
= 4 + 2/3

11. Blackjack

This example is a simplified version of the card game known as blackjack. You are dealt a card from a deck; its
value is in the range 1 through 13 inclusive. You may stop with just one card, or have a second card if you want.
Your object is to get a total as near as possible to 14, but not over 14. Your strategy is to take a second card if the
first is under 7.

To assign card c a value from 1 to 13, each value having probability 1/13, we write (1 ≤ c′ ≤ 13)/13. We
should assign the second card d a diminished probability of having the same value as the first card, and in a
real game that’s important, but in this example, for simplicity, let’s ignore that complication. We’ll use x for your
total. The game is

(1≤c′≤13)/13 × (1≤d ′≤13)/13 × (x′=x tlaederasdraceht;)
if c<7 then x:= c+d else x:= c syalpreyalpeht;
x what is your average total?

= 10.2 approximately

404 E. C. R. Hehner

That is your average total if you use the “under 7” strategy. We can similarly find your average total if you
use the “under 8 ” strategy, or any other strategy. But which strategy is best? To compare two strategies, we play
both of them at once. Player x will play “under n” and player y will play “under n + 1” using exactly the same
cards (the result would be no different if they used different cards, but it would require more variables). Here is
the new game, followed by the condition that x wins:

(1≤c′≤13)/13 × (1≤d ′≤13)/13 × (x′=x) × (y′=y tlaed era sdrac eht;)
if c < n then x:= c+d else x:= c reyalp; x plays
if c < n+1 then y:= c+d else y:= c reyalp; y plays
y<x≤14 ∨ x≤14<y what is the probability that x wins?

Factor out x:= and y:= .
= (1≤c′≤13) × (1≤d ′≤13) × (x′=x) × (y′=y) / 169;

x:= if c < n then c+d else c; y:= if c < n+1 then c+d else c;
y<x≤14 ∨ x≤14<y Use the substitution law twice.

= (1≤c′≤13) × (1≤d ′≤13) × (x′=x) × (y′=y) / 169;
 (if c < n+1 then c+d else c) < (if c < n then c+d else c) ≤ 14
∨ (if c < n then c+d else c) ≤ 14 < (if c < n+1 then c+d else c)

= (1≤c′≤13) × (1≤d ′≤13) × (x′=x) × (y′=y) / 169; c=n ∧ d>14–n
= Σc′′, d ′′, x′′, y′′· (1≤c′′≤13) × (1≤d ′′≤13) × (x′′=x) × (y′′=y) / 169
 × (c′′=n) × (d ′′>14–n)
= Σd ′′· (1≤d ′′≤13) / 169 × (d ′′>14–n)
= (n–1) / 169

The probability that x wins is (n − 1)/169. By a similar calculation we can find that the probability that y wins
is (14 − n)/169, and the probability of a tie is the remaining 12/13. For n < 8, “under n + 1” beats “under n”.
For n ≥ 8, “under n” beats “under n + 1”. So “under 8” beats both “under 7” and “under 9”.

12. Monty Hall

Monty Hall is a game show host, and in this game [MH] there are three doors. A prize is hidden behind one of
the doors. The contestant chooses a door. Monty then opens one of the doors, but not the door with the prize
behind it, and not the door the contestant has chosen. Monty asks the contestant whether they (the contestant)
would like to change their choice of door, or stay with their original choice. What should the contestant do?

Let p be the door where the prize is. Let c be the contestant’s choice. Let m be the door Monty opens. If the
contestant does not change their choice of door, the program, followed by the condition for winning, is:

(0≤p′≤2)/3 × (c′=c) × (m′=m .roodadnihebneddihsiezirpehT;)
(p′=p) × (0≤c′≤2)/3 × (m′=m .roodasesoohctnatsetnocehT;)
if c=p If the contestant has chosen the prize door,
then if 1/2 then m:= c⊕1 else m:= c⊕ ,srehtoehtfoenosnepoytnoMneht2
else m:= 3–c–p .roodrehtoylnoehtsnepoytnoMesiwrehto;
ok .hctiwsottonsedicedtnatsetnocehT;
c=p Has the contestant won the prize?

The contestant has no idea where the prize is, so from the contestant’s point of view, the prize is placed randomly.
Then the contestant chooses a door at random. If the contestant happened to choose the door with the prize,
then Monty chooses either one of the other two; otherwise Monty must choose the one door that differs from
both c and p (using ⊕ for addition modulo 3). The next line ok is the contestant’s decision not to change door.
The final line c � p is the question whether the contestant has won the prize. Now let’s calculate. The assignments
to m have no effect on c or p, and so they disappear. And ok is the identity for semi-colon.

� (0 ≤ p ′ ≤ 2)/3 × (0 ≤ c′ ≤ 2)/3 × (m ′ � m); c � p� �p ′′, c′′,m ′′ · (0 ≤ p ′′ ≤ 2) × (0 ≤ c′′ ≤ 2) × (m ′′ � m)/9 × (c′′ � p ′′)� 1/3

A probability perspective 405

The probability that the contestant wins is 1/3. If the contestant takes the opportunity offered by Monty of
switching their choice of door, the probability that the contestant wins must be the remaining 2/3. If that is
surprising, here is a direct calculation. The program, followed by the condition for winning, becomes

(0≤p′≤2)/3 × (c′=c) × (m′=m .rood a dniheb neddih si ezirp ehT;)
(p′=p) × (0≤c′≤2)/3 × (m′=m .rood a sesoohc tnatsetnoc ehT;)
if c=p If the contestant has chosen the prize door,
then if 1/2 then m:= c⊕1 else m:= c⊕ ,srehto eht fo eno snepo ytnoM neht2
else m:= 3–c–p .rood rehto ylno eht snepo ytnoM esiwrehto;
c:= 3–c–m .hctiws ot sediced tnatsetnoc ehT;
c=p Has the contestant won the prize?

= (0≤p′≤2) × (0≤c′≤2) × (m′=m) / 9;
 (c=p) × (p′=p) × (c′=c) × ((m′=c⊕1)/2 + (m′=c⊕2)/2)
+ (c≠p) × (p′=p) × (c′=c) × (m′=3–c–p));
3–c–m = p

= (0≤p′≤2) × (0≤c′≤2) × (m′=m) / 9;
Σp′′, c′′, m′′· ((c=p) × (p′′=p) × (c′′=c) × ((m′′=c⊕1)/2 + (m′′=c⊕2)/2)
 + (c≠p) × (p′′=p) × (c′′=c) × (m′′=3–c–p))
 × (3–c′′–m ′′ = p′′)

= (0≤p′≤2) × (0≤c′≤2) × (m′=m) / 9; (c=p) × ((c=p⊕1)/2 + (c=p⊕2)/2) + (c≠p)
= Σp′′, c′′, m′′· (0≤p′′≤2) × (0≤c′′≤2) × (m′′=m) / 9 × (c′′≠p′′)
= 2/3

So the contestant should switch. This is a well-known result; the point here is that we did not argue or reason
why it should be so; we calculated it.

When the contestant happens to choose the door with the prize, Monty has a choice of which door to open.
Suppose the contestant knows that Monty is a creature of habit who always opens the cyclically next door c ⊕ 1.
Does that change anything? We might reason that if Monty opens door c ⊕ 2, then we know for sure that Monty
had no choice, and the prize is behind door c ⊕ 1, and that increases the probability of winning if we switch. Or
we just formalize and calculate:

(0≤p′≤2)/3 × (c′=c) × (m′=m .roodadnihebneddihsiezirpehT;)
(p′=p) × (0≤c′≤2)/3 × (m′=m .roodasesoohctnatsetnocehT;)
if c=p If the contestant has chosen the prize door,
then m:= c⊕ ,enotxenehtsnepoytnoMneht1
else m:= 3–c–p .roodrehtoylnoehtsnepoytnoMesiwrehto;
c=p Has the contestant won the prize?

= 1/3

The probability of winning if the contestant sticks with their original choice remains 1/3, and the probability of
winning if the contestant switches remains 2/3. The calculation shows that our informal reasoning, no matter
how convincing it sounded, was wrong.

Suppose that Monty does not know, or forgets, which door has the prize behind it, and the contestant realizes
Monty’s dilemma. So Monty just opens either of the doors not chosen by the contestant. If the prize is revealed,
then obviously the contestant switches their choice to that door. If the prize is not revealed, the contestant learns
that Monty’s door has no prize. What should the contestant do? Let’s not waste any time on reasoning; let’s
formalize and calculate.

((0≤p′≤2)/3 × (c′=c) × (m′=m .rood a dniheb neddih si ezirp ehT;)
 (p′=p) × (0≤c′≤2)/3 × (m′=m .rood a sesoohc tnatsetnoc ehT;)
 (p′=p) × (c′=c) × (0≤m′≤2)/2 × (m′≠c tub rood yna sesoohc ytnoM)) c .
|| m′≠p′ .ezirp on sah rood s'ytnoM taht snrael tnatsetnoc ehT;
c=p Has the contestant won the prize?

= (0≤p′≤2) × (0≤c′≤2) × (0≤m′≤2) × (m′≠c′) / 18 || m′≠p′ ; c=p
= (0≤p′≤2) × (0≤c′≤2) × (0≤m′≤2) × (m′≠c′) / 18 × (m′≠p′)

/ (Σp′, c′, m′· (0≤p′≤2) × (0≤c′≤2) × (0≤m′≤2) × (m′≠c′) / 18 × (m′≠p′));
c=p

= (0≤p′≤2) × (0≤c′≤2) × (0≤m′≤2) × (m′≠c′) × (m′≠p′) / 12; c=p
= Σp′′,c′′,m′′· (0≤p′′≤2) × (0≤c′′≤2) × (0≤m′′≤2) × (m′′≠c′′) × (m′′≠p′′) / 12 × (c′′=p′′)
= 6/12
= 1/2

406 E. C. R. Hehner

If Monty is forgetful, and happens to choose a door with no prize, it doesn’t matter whether the contestant sticks
or switches.

13. Two Children

To formalize the opening problem about the gender of my two children, we must begin by choosing our variables.
The problem began “I have two children.”, so we choose two variables c and d whose values can be either of girl
or boy. To save a few keystrokes, let girl be 1 and let boy be 0. Next we learn “At least one child is a girl.”. That’s
� (c ′ ∨ d ′). The question “What is the probability that the other child is also a girl?” is c ∧ d . We calculate.

(c′ ∨ d′); c ∧ d replace
= (c′ ∨ d′) / (Σc′, d′· c′ ∨ d′); c ∧ d do the sum
= (c′ ∨ d′) / 3; c ∧ d replace ;
= Σc′′, d′′· (c′′ ∨ d′′) / 3 × (c′′ ∧ d′′ mus eht od)
= 1/3

In the middle version of the problem, we are told that the children can be distinguished by age. We can use
variable c for the older child, and d for the younger child. Then we learn c � girl (we learn c), and we are asked
whether d � girl (whether d).

c′; d replace
= c′ / (Σc′, d′· c′); d do the sum and replace ;
= Σc′′, d′′· c′′ / 2 × d′′ do the sum
= 1/2

The last version of the problem is just like the middle one. We are given that the children can be distinguished
by name, so we introduce variables p and c for Pat and Chris, and get the answer 1/2.

Did we assume that children are distinct, unlike raindrops in a barrel? We did indeed, by choosing two vari-
ables, one for each. Raindrops in a barrel are not distinct; you cannot point and say “that one”; permuting them
does not create a state that we, at our human-scale, can distinguish from the unpermuted state. But by knowing
the volume (or weight) of water in the barrel and the volume (or weight) of a raindrop, we can say how many
raindrops there are. So we formalize with a variable that says how many, not with variables for each raindrop.
Suppose there are two raindrops in a thimble, and suppose a raindrop is either acidic or basic. We are told “At
least one raindrop is acidic.”, and asked “What is the probability that the other raindrop is also acidic?”. We
formalize with a single variable n for the number of acidic raindrops, having 3 possible values 0, 1, 2. We learn
n ≥ 1, and we are asked whether n � 2. We calculate

(n′≥1); n=2 replace
= (n′≥1) / (Σn′· n′≥1); n ; ecalper dna mus eht od2=
= Σn′′· (n′′≥1) / 2 × (n′′ mus eht od)2=
= 1/2

The probability that the other raindrop is also acidic is 1/2.
Did we assume that children come in exactly two genders, unlike the navanax? Yes, we chose variables with

two values: girl and boy; but there may be any number of subgenders of girl and of boy. Did we assume that half
the population of children are girls, unlike the ant population? No; according to the perspective I have adopted,
probability 1/2 for each child means complete ignorance. There is no need to take the long-run view; perhaps
these are the only children in the world. If we do know something about the population of children, it could affect
the calculation. Suppose we know that one-third of the general population are girls. Then

(if 1/3 then c′ else 1–c′) × (if 1/3 then d′ else 1–d′) || (c′ ∨ d′); c ∧ d replace if
= (c′/3 + (1–c′)×2/3) × (d′/3 + (1–d′)×2/3) || (c′ ∨ d′); c ∧ d replace ||
= (c′/3 + (1–c′)×2/3) × (d′/3 + (1–d′)×2/3) × (c′ ∨ d′)

/ (Σc′, d′· (c′/3 + (1–c′)×2/3) × (d′/3 + (1–d′)×2/3) × (c′ ∨ d′));
c ∧ d do the sum

= (c′/3 + (1–c′)×2/3) × (d′/3 + (1–d′)×2/3) × (c′ ∨ d′) / (5/9); c ∧ d replace ;
= Σc′′, d′′· (c′′/3 + (1–c′′)×2/3) × (d′′/3 + (1–d′′)×2/3) × (c′′ ∨ d′′) / (5/9) × (c′′ ∧ d′′) sum
= 1/5

If we know that 1/3 of the general population are girls, then the probability that my other child is a girl is 1/5.

A probability perspective 407

Did we assume that my sperm can produce boys and girls with equal probability, unlike the sperm of King
Henry VIII? This question might be asking whether we have assumed independence of gender of the two children.
It was not an assumption, but it is a consequence of our state of knowledge: complete ignorance of the state space
can be factored into a product of complete ignorance of each variable.

14. Loops

So far, our probabilistic programs have not included loops, and we were able to calculate the resulting distri-
butions. Whenever a loop is formed, either by using a loop construct like while or by invoking a distribution
recursively, we cannot just calculate the resulting distribution. We must make a hypothesis (an educated guess),
and then prove it. Quite often the proof attempt fails, but the way it fails tells us how to make a better hypothesis.

Let p be a probability and let B (the loop body) and H (the hypothesis) be distributions. The notation

H � while p doB

is a shorthand (or syntactic sugar) for the equation

H � if p then (B ; H) else ok

Likewise, the notation

H � repeatB until p

is a shorthand (or syntactic sugar) for the equation

H � B ; if p then ok elseH

And similarly for other loop constructs.
These loop constructs are not being defined separately from a hypothesis. If we were to define while p doB

as a solution X of the equation

X � if p then (B ; X) else ok

we would have the problem that there may be many solutions, and we would have to say which solution defines the
loop. We could perhaps define an ordering on distributions, and define the loop as one of the extreme solutions.
But our approach is much simpler, and it becomes satisfactory after the following consideration. Let t be a time
variable; its type can be the integers, or the rationals, or the reals, whichever you prefer, but it must be extended with
an infinite value ∞ to account for infinite execution time. We use t for the time at which execution starts, and t ′ for
the time at which execution ends (which is ∞ in the case of nontermination). We insist that the loop body include
a time increment, which might realistically account for the time to execute the body, or it might be 1 and just count
iterations. We insist further that all hypotheses give probability 0 to t > t ′, which means that time cannot go
backwards. With these restrictions, all distributions X that satisfy the above equation agree on the probabilities
of the values of all variables when t ′ is finite, and furthermore they agree on the probability that t ′ is infinite.
They may disagree only on the probabilities of the values of the non-time variables at time ∞; that disagreement
is inconsequential. Thus choosing a specific solution of the equation amounts to choosing what probabilities to
attach to the values of the non-time variables at time ∞, and we have no motivation for making that choice.

15. Dice

If you repeatedly throw a pair of six-sided dice until they are equal, how long does it take? Informally, the program
is

repeat throw the pair of dice until they are equal

Throwing the dice can be formalized as (1 ≤ u ′ ≤ 6)/6 × (1 ≤ v ′ ≤ 6)/6 × (t ′ � t + 1) using variables u and v for
the dice, and time variable t to count throws. Checking if the dice are equal is u � v . For the hypothesis, we note
that each iteration, with probability 5/6 we keep going, and with probability 1/6 we stop. (On a different scale,
when we see a pair of dice values that differ, we learn 0.263 bits of information, and when we see a pair of dice
values that are equal, we learn 2.585 bits of information.) We offer the hypothesis that (for finite start time t) the
final state has the distribution

(u ′ � v ′) × (t ′ ≥ t + 1) × (5/6)t
′−t−1 × 1/6

408 E. C. R. Hehner

Proving the hypothesis means proving

(u ′ � v ′) × (t ′ ≥ t + 1) × (5/6)t
′−t−1 × 1/6

� (1 ≤ u ′ ≤ 6)/6 × (1 ≤ v ′ ≤ 6)/6 × (t ′ � t + 1);

if u � v then ok else (u ′ � v ′) × (t ′ ≥ t + 1) × (5/6)t
′−t−1 × 1/6

Let’s start with the right side.

(1≤u′≤6)/6 × (1≤v′≤6)/6 × (t′=t+1); replace ;
if u=v then ok else (u′=v′) × (t′≥t+1) × (5/6)t′–t–1 dna6 / if and ok

= Σu′′, v′′, t′′· (1≤u′′≤6) × (1≤v′′≤6) × (t′′=t+1) / 36
 × ((u′′=v′′) × (u′=u′′) × (v′=v′′) × (t′=t′′)
 + (u′′≠v′′) × (u′=v′) × (t′≥t′′+1) × (5/6)t′–t′′–1 mus)6 /
= (6 × (u′=v′) × (t′=t+1) + 30 × (u′=v′) × (t′≥t+2) × (5/6)t′–t–2 enibmoc63 /)6 /
= (u′=v′) × (t′≥t+1) × (5/6)t′–t–1 × 1/6

which is the distribution we hypothesized, and that completes the proof.
The average value of t ′ is

(u ′ � v ′) × (t ′ ≥ t + 1) × (5/6)t
′−t−1 × 1/6; t � t + 6

so on average it takes 6 throws of the pair of dice to get an equal pair.

16. Mr. Bean’s socks

Mr. Bean is trying to get a matching pair of socks from a drawer containing an inexhaustible supply of red and
blue socks. He begins by withdrawing two socks at random. If they match, he is done. Otherwise, he throws away
one of them at random, withdraws another sock at random, and repeats. How long will it take him to get a
matching pair?

Informally, here is Mr.Bean’s program.

choose a sock color with the left hand;
choose a sock color with the right hand;
while sock colors do not match do choose a hand and a sock color for that hand

Let variables L and R represent the color of socks held in Mr.Bean’s left and right hands, and let time variable t
count iterations. Formally, the program is

if 1/2 then L:= red else L:= blue;
if 1/2 then R:= red else R:= blue;
while L≠R do (if 1/2 then if 1/2 then L:= red else L:= blue

else if 1/2 then R:= red else R:= blue;
t:= t+1)

Since red and blue are the only two values for L and R, the first two lines can be simplified as follows:

if 1/2 then L:= red else L:= blue;
if 1/2 then R:= red else R:= blue replace if and :=

= 1/2 × (L′=red) × (R′=R) × (t′=t) + 1/2 × (L′=blue) × (R′=R) × (t′=t);
1/2 × (R′=red) × (L′=L) × (t′=t) + 1/2 × (R′=blue) × (L′=L) × (t′=t)

= ((L′=red) + (L′=blue)) × (R′=R) × (t′=t) / 2;
((R′=red) + (R′=blue)) × (L′=L) × (t′=t) /2 for either value of L′ the sum is 1 , and similarly for R′

= (R′=R) × (t′=t) / 2; (L′=L) × (t′=t wal tniop-eno esu dna ; ecalper2 /)
= (t′=t)/4

A probability perspective 409

Similarly the loop body can be simplified:

if 1/2 then if 1/2 thenL :� red elseL :� blue
else if 1/2 thenR :� red elseR � blue;
t :� t + 1

� ((L′ � L) + (R′ � R)) × (t ′ � t + 1)/4

The program is now

(t ′ � t)/4; whileL � R do ((L′ � L) + (R′ � R)) × (t ′ � t + 1)/4

For the loop, we need a hypothesis H that satisfies

H � if L � R then (((L′ � L) + (R′ � R)) × (t ′ � t + 1)/4; H) else ok

After three failed attempts I propose H � if L � R then(L′ � R′) × (t ′ > t) × 2t−t ′
else ok and the proof (not

shown here) succeeds. Now we put the initialization together with the loop distribution to calculate the final state
distribution.

(t′=t)/4; H omitting several steps
= (L′=R′) × (t′≥t) × 2t–t′–1

The average value of t ′ is

(L′=R′) × (t′≥t) × 2t–t′–1; t omitting several steps
= t+1

On average, Mr. Bean draws the initial two socks plus one more sock from the drawer.

17. Amazing average

Consider the following innocent-looking program, where p is a positive natural variable (or a natural power of
2 variable).

p :� 1; while 1/2 do p :� 2 × p

After initialization, we repeatedly flip a coin; each time we see a head, we double p, stopping the first time we see
a tail. We add a time variable t that counts iterations, and we prove that the resulting distribution (both p ′ and
t ′) is

(t ′ ≥ t) × (p ′ � 2t ′−t)/(2 × p ′)

To prove this, we start by hypothesizing that the loop alone is the distribution

(t ′ ≥ t) × (p ′ � 2t ′−t × p) × p/(2 × p ′)

Here’s the proof.

if 1/2 then (p :� 2 × p; t :� t + 1; (t ′ ≥ t) × (p ′ � p × 2t ′−t) × p/(2 × p ′)) else ok

� (t ′ ≥ t + 1) × (p ′ � 2 × 2t ′−t−1 × p) × 2 × p/(2 × p ′)/2 + (t ′ � t) × (p ′ � p)/2

� (t ′ ≥ t) × (p ′ � 2t ′−t × p) × p/(2 × p ′)

Now we prove that the initialization followed by the loop results in the final distribution.

p:= 1; (t′≥t) × (p′ = 2t′–t×p) × p / (2×p′ walnoitutitsbus)
= (t′≥t) × (p′ = 2t′–t) / (2×p′)

410 E. C. R. Hehner

The average value of t ′ is

(t′≥t) × (p′ = 2t′–t) / (2×p′); t definition of ;
= Σp′′, t′′· (t′′≥t) × (p′′ = 2t′′–t) / (2×p′′) × t′′ sum
= t+1

On average, the loop body is executed once. The average value of p ′ is

(t′≥t) × (p′ = 2t′–t) / (2×p′); p definition of ;
= Σp′′, t′′· (t′′≥t) × (p′′ = 2t′′–t) / (2×p′′) × p′′ sum
= ∞

We start p at 1; with probability 1/2 we stop there; with probability 1/4 we double it and stop there; with proba-
bility 1/8 we double it twice and stop there; and so on. On average, we double it once! And on average, its final
value is ∞? Amazing!

18. Two envelopes

Here are two envelopes. Each contains an amount of money from $1 to $100 (integer amounts only). You must
choose one envelope, and you can look in it if you like, and then you must decide whether to keep that amount,
or to switch to the other envelope. Should you switch? Here is the best strategy: if the amount you see in the
envelope you choose is $50 or less, switch; if it is $51 or more, keep what you have.

What if the amount is from $1 to $1000? Should the strategy be to switch if you see $500 or less? What if the
amount is from $1 to $1000000? What if the amount is from $1 to $10100? Do you still divide the upper bound by 2?

What if there is no upper bound? Should you switch every time? This isn’t like the Monty Hall problem, where,
after you make your choice, Monty gives you some new information, which changes the probabilities, making the
other choice a better bet. By looking in the envelope, what information did you gain? You see a finite amount; but
you knew it would be a finite amount even without looking in the envelope; so there must be something wrong
with this argument. At what amount did the argument go wrong? This problem is much more like Pascal’s Wager
[PW]. When you choose an envelope and look in it, you see an amount x . There are only finitely many amounts
less than x , and infinitely many amounts greater, so there is much more room to gain by switching than to lose
by switching. So shouldn’t you switch? The great mathematician Blaise Pascal thought so.

Let me withdraw the statement that each amount is an integer from $1 to whatever, and replace it with the
statement that each envelope contains a positive rational amount, and one envelope contains twice as much as the
other. (This version has been the subject of debate in scholarly papers for many years [K30, G82, DL05, KO07],
and the debate rages on.) Should you switch? You reason:

If the amount in the envelope I choose first is x and I switch, then with probability 1/2 I gain x , and with
probability 1/2 I lose x/2, so the average gain from switching is x/2 − (x/2)/2 � x/4, which is positive, so I
should switch.

Looking in the envelope doesn’t help you make that decision either, so again there must be something wrong. In
fact, if you don’t look in the envelope, and you switch, you can make the argument again and convince yourself
to switch back. Or, how about this argument:

If the amount in the envelope I didn’t choose first is y and I switch, then with probability 1/2 I gain y/2, and
with probability 1/2 I lose y, so the average gain from switching is (y/2)/2 − y/2 � −y/4, which is negative,
so I should keep the envelope I have.
Finally, let me tell you how I chose the amounts in the envelopes. I started with $1, then I repeatedly flipped a

coin, doubling the amount each time the coin landed showing head, stopping when the coin first landed showing
tail. That determined the amount in one envelope, and I put double that amount in the other envelope. You reason:

All this coin flipping is irrelevant. When it’s done, in one envelope there’s an amount that I can call 1 in some
currency, and in the other there’s an amount that is 2 in that same currency. The coin flipping just determined
the conversion rate between dollars and that unit of currency.

A probability perspective 411

A sufficiently insightful person can see what is wrong with all these arguments, and can supply the correct
arguments. My point is that all these arguments sound reasonable. They sound at least as reasonable as the correct
arguments supplied by the insightful person. We shouldn’t accept a mathematical argument based on how rea-
sonable it sounds, nor on the authority of the person who makes it (“Believe me, because I am insightful.”); that’s
not good mathematics. Some academic papers discuss this problem in philosophical terms, piling confusion upon
confusion. One paper [DL05] claims to give an “axiomatic” approach, but the “axioms” are just natural language
(English) statements, and the “proofs” are just natural language arguments (informal mathematics). Please read
the quotations at the beginning of this paper again. We should formalize, calculate, and unformalize.

Let the amount in one envelope be x , and the amount in the other envelope be y . Taking an envelope can be
formalized as

if 1/2 then z :� x else z :� y

Switching can be formalized as

z :� x + y − z

If you know nothing about how x and y are chosen, and you don’t switch, then the entire program is

if 1/2 then z :� x else z :� y
� (x ′ � x) × (y ′ � y) × ((z ′ � x) + (z ′ � y))/2

which is the final state distribution. And the average amount is

if 1/2 then z :� x else z :� y ;
z

� (x + y)/2

If you do switch, then the program is

if 1/2 then z :� x else z :� y ;
z :� x + y − z

� (x ′ � x) × (y ′ � y) × ((z ′ � x) + (z ′ � y))/2

which is exactly the same distribution. And (obviously) the average amount is again

if 1/2 then z :� x else z :� y ;
z :� x + y − z ;
z

� (x + y)/2

From these calculations, we conclude that if you know nothing about how x and y are chosen, then always
sticking gives the same result as always switching.

If you don’t care what the final distributions and amounts are, and you just want to know the probability that
switching beats sticking, you can make a single calculation whose last line compares switching with sticking.

if 1/2 then z:= x else z:= y epolevnenaesoohc;
w:= x+y–z; switch
w>z switch > stick

= (x≠y) / 2

If x and y are unequal, the probability that switching beats sticking is 1/2. If x and y are equal, the probability is
0. It is more interesting to find out how much you gain, on average, by switching rather than sticking. For that,
replace w > z with w − z .

if 1/2 then z:= x else z:= y epolevnenaesoohc;
w:= x+y–z; switch
w–z switch – stick

= 0

If you know nothing about how x and y are chosen, the strategy “always switch” is equal to the strategy “always
stick”.

412 E. C. R. Hehner

Now let’s try a more discriminating strategy. You look in the envelope, and if the amount you see is no greater
than s (some strategic amount, to be determined later), then you switch, otherwise you stick.

if 1/2 then z:= x else z:= y epolevne na esoohc;
if z≤s then w:= x+y–z else w:= z kcits ro hctiws ot ediced ;ti ni kool;
w–z profit

= ((x≤s) – (y≤s)) × (y–x) / 2

If x ≤ s and y ≤ s , this expression has value 0. If x > s and y > s, it again has value 0. If x ≤ s < y its value is
positive. And if y ≤ s < x it is also positive. It is never negative. But we cannot say more about the average profit
until we know more about the values of x , y , and s.

In the first version of this problem, we are told that x and y are integers chosen from the range 1 to 100. Here
is the program.

(1≤x′≤100)/100 × (1≤y′≤100)/100 × (z′=z) × (w′=w sepolevne ni stnuoma;)
if 1/2 then z:= x else z:= y epolevne na esoohc;
if z≤s then w:= x+y–z else w:= z kcits ro hctiws ot ediced ;ti ni kool;
w–z profit

= (100×s – s2) / 200

This expression is maximum when s � 50, and its maximum value is 12.5. (Always switch and always stick give
you $50.50 on average; this strategy gives you $63.)

When the upper bound on the amount of money in an envelope increased from $100 to $1000 to $1000000 to
$10100, your uneasy feeling that the strategy “switch if less than half” might be going wrong was your suspicion
that a uniform distribution (constant probability) over this enormous range might not be realistic. You have some
knowledge that you weren’t using: you know that as the amount increases, I am less willing to give away that
amount; and for really large amounts, you know that there isn’t that much money in the world. And when the
upper bound is removed altogether, a uniform distribution is not representable on the scale we are using.

In the famous version of this “paradox”, all you know is that each envelope contains a positive rational
amount, and one envelope contains twice as much as the other. Without loss of generality (because you choose
either envelope randomly), we suppose y is twice x . If we always stick, on average we get

y:= 2×x sepolevnenistnuoma;
if 1/2 then z:= x else z:= y epolevnenaesoohc;
z amount you hold

= 3 × x / 2

If we always switch, on average we get

y:= 2×x sepolevnenistnuoma;
if 1/2 then z:= x else z:= y epolevnenaesoohc;
z:= x+y–z; switch
z amount you hold

= 3 × x / 2

Always switch and always stick have the same result. So let’s use some strategy, and calculate the profit.

y:= 2×x sepolevnenistnuoma;
if 1/2 then z:= x else z:= y epolevnenaesoohc;
if z≤s then w:= x+y–z else w:= z kcitsrohctiwsotediced;tinikool;
w–z profit

= (x ≤ s < 2×x) × x / 2

This expression is never negative, but to say more requires knowledge about how x and s are chosen.

A probability perspective 413

Now let’s see what happens when I choose x according to the coin flipping and doubling scheme from the
previous section that results in the amazing infinite average value.

x:= 1; while 1/2 do x:= 2×x nitnuoma; x envelope
y:= 2×x nitnuoma; y envelope
if 1/2 then z:= x else z:= y epolevnenaesoohc;
if z≤s then w:= x+y–z else w:= z kcitsrohctiwsotediced;tinikool;
w–z profit

= (1≤s<∞) / 4

If s � 0, the test z ≤ s will never succeed, you will never switch, and your average profit over always sticking will
be 0. If s � 1, you will switch if you see $1, and stick if you see more, and your average profit using this strategy
over the always-stick strategy will be $0.25. Obviously, if you see $1, you should switch! If s � 100, you will
switch if you see less than or equal to $100, and stick if you see more, and your average profit using this strategy
over the always-stick strategy will again be $0.25 . Amazingly, it doesn’t matter what value we use for s as long
as it is at least 1 and at most finite; the average profit over always-stick is $0.25.

If we just reason informally, we might suppose that we can always switch, with an average profit of $0.25.
And then we have the paradoxical question “Why even open the envelope?”, and then you can switch back with
a further average profit of $0.25, and plenty of other nonsense. But the calculation clearly says that if s � ∞
(always switch) then the average profit is 0.

In the preceding program, we repeatedly doubled x and halved the probability. The doubling balanced the
halving, to create an interesting effect. Now let’s see what happens if x increases faster than the probability
decreases. We’ll triple x each time the coin lands showing head, and then make y be 3 times x . Since x and y will
be powers of 3, our calculation will be neater if our strategy is to compare z to 3n for some natural number n
(that is, we take s to be 3n for some n).

x:= 1; while 1/2 do x:= 3×x nitnuoma; x envelope
y:= 3×x nitnuoma; y envelope
if 1/2 then z:= x else z:= y epolevnenaesoohc;
if z≤3n then w:= x+y–z else w:= z kcitsrohctiwsotediced;tinikool;
w–z profit

= (0≤n<∞) × 3n / 2n+1

If n � 0, you will switch if you see $1, and stick if you see more, and your average profit using this strategy over
the always-stick strategy will be $0.50. If n � 1, you will switch if you see less than or equal to $3, and stick if
you see more, and your average profit using this strategy over the always-stick strategy will be $0.75. If n � 2,
you will switch if you see less than or equal to $9, and stick if you see more, and your average profit using this
strategy over the always-stick strategy will be $1.125. As n increases, your average profit increases, so you should
choose a very large, but finite, value for n. As before, if n � ∞ (always switch), the average profit is 0.

When we first introduced the strategy z ≤ s to decide whether to switch or stick, before we considered how
x and y are chosen, we calculated

if 1/2 then z:= x else z:= y epolevnenaesoohc;
if z≤s then w:= x+y–z else w:= z kcitsrohctiwsotediced;tinikool;
w–z profit

= ((x≤s) – (y≤s)) × (y–x) / 2

and concluded that this average profit is never negative. But we could not conclude that it is positive until we
looked at how x , y , and s are chosen. We have looked at various interesting distributions for x and y, but not
yet for s. To conclude the two envelopes, we calculate what happens when x varies over the positive rationals, y
is twice x , and s varies over the positive naturals according to the distribution 2−s . Note that x and y are chosen

414 E. C. R. Hehner

without knowledge of s, and likewise s is chosen without knowledge of x and y, so the choices could be made in
either order, or in parallel.

y:= 2×x nitnuoma; y envelope
2–s′ × (x′=x) × (y′=y) × (z′=z) × (w′=w esoohc;) s from distribution 2–s

if 1/2 then z:= x else z:= y epolevnenaesoohc;
if z≤s then w:= x+y–z else w:= z kcitsrohctiwsotediced;tinikool;
w–z profit

= x × (1 – 2–x) × 2–x

Even without knowing how x is chosen (we know only that it is a positive rational), we can conclude that this
amount is positive. Randomness in the choice of s is a strategy that wins no matter how x is chosen.

19. How to build probability 1/2

According to the perspective presented earlier, probability 1/2 means that we have no idea which of two states
will occur, either because we have no knowledge that pertains, or because the knowledge we have is balanced on
the two sides of the question. As the story of Alice and Bob illustrated, probability is subject to possible revision
as we gain knowledge. In this section we tackle the interesting problem of creating probability 1/2 in such a way
that further knowledge does not change the probability.

Suppose we have a coin for which the probability of landing showing head is p (according to our current state
of knowledge). The value of p is subject to revision as we learn more, but we will create probability 1/2 no matter
what the value of p is. Here is the procedure [D89]:

Flip the coin twice. If the outcomes differ, use the first outcome. If the outcomes are the same, repeat the
experiment until the two outcomes differ, and then use the first outcome of the first pair that differ.

There are two major deficiencies of this description of the procedure: lack of formalization, and lack of calcu-
lation (proof). The description was carefully worded, and it may seem clear, but there are at least two different
ways that it might be understood. One understanding of the procedure is the program

R � if p then x :� head else x :� tail ;

if p then y :� head else y :� tail ;

if x � y thenR else ok

Another understanding of the procedure is the program

R� if p then x :� head else x :� tail ; S

S � if p then y :� head else y :� tail ;

if x � y thenS else ok

The informal description could reasonably be understood either way; it is ambiguous. If two people with different
understandings of the informal description of the procedure ask each other whether it is clear and understood,
they will each say yes, and a long argument about whether the procedure produces the desired result will ensue.
In contrast to that, the programs are unambiguous. With them we don’t need to argue; we just calculate. Let me
begin with the first program.

Formally, we want the result 1/2; in one boolean state variable x , we can rewrite 1/2 more elaborately as

if 1/2 then x ′ � head else x ′ � tail

But the procedure apparently achieves slightly more:

if 1/2 then x ′ � head ∧ y ′ � tail else x ′ � tail ∧ y ′ � head

where x ′ and y ′ are the results of the last two flips. This can be simplified to

(x ′ � y ′)/2

A probability perspective 415

So that will be R, and the proof is as follows.

if p then x :� head else x :� tail ;
if p then y :� head else y :� tail ;
if x � y thenR else ok

� �x ′′, y ′′ · (p × (x ′′ � head) + (1 − p) × (x ′′ � tail)) × (p × (y ′′ � head) + (1 − p) × (y ′′ � tail))
× ((x ′′ � y ′′) × (x ′ � y ′)/2 + (x ′′ � y ′′) × (x ′ � x ′′) × (y ′ � y ′′))

� p2 × (x ′ � y ′)/2

+ p × (1 − p) × (x ′ � head) × (y ′ � tail)
+ (1 − p) × p × (x ′ � tail) × (y ′ � head)

+ (1 − p)2 × (x ′ � y ′)/2

� (p2 + 2 × p × (1 − p) + (1 − p)2) × (x ′ � y ′)/2

� (x ′ � y ′)/2

� R

If timing is of interest, add variable t, put t :� t + 1 before the recursive call, and replace R with the specification

(x ′ � y ′) × (t ′ ≥ t) × (p2 + (1 − p)2)t
′−t × p × (1 − p)

Here is the calculation.
if p then x:= head else x:= tail;
if p then y:= head else y:= tail;
if x=y then (t:= t+1; (x′≠y′) × (t′≥t) × (p2 + (1–p)2)t′–t × p × (1–p)) else ok

= Σx′′, y′′, t′′· (p × (x′′=head) + (1–p) × (x′′=tail))
× (p × (y′′=head) + (1–p) × (y′′=tail))
× (t′′=t)

× ((x′′=y′′) × (x′≠y′) × (t′≥t′′+1) × (p2 + (1–p)2)t′–t′′–1 × p × (1–p)
 + (x′′≠y′′) × (x′=x′′) × (y′=y′′) × (t′=t′′))

= p × p × (x′≠y′) × (t′≥t+1) × (p2 + (1–p)2)t′–t–1 × p × (1–p)
+ p × (1–p) × (x′=head) × (y′=tail) × (t′=t)
+ (1–p) × p × (x′=tail) × (y′=head) × (t′=t)
+ (1–p) × (1–p) × (x′≠y′) × (t′≥t+1) × (p2 + (1–p)2)t′–t–1 × p × (1–p)

= (p2 + (1–p)2) × (x′≠y′) × (t′≥t+1) × (p2 + (1–p)2)t′–t–1 × p × (1–p)
+ p × (1–p) × (x′≠y′) × (t′=t)

= (x′≠y′) × (t′≥t+1) × (p2 + (1–p)2)t′–t × p × (1–p) + (x′≠y′) × (t′=t) × p × (1–p)
= (x′≠y′) × (t′≥t) × (p2 + (1–p)2)t′–t × p × (1–p)

We didn’t require an assumption that p differs from both 0 and 1 in either proof. But if p is either 0 or 1, the
timing expression gives probability 0 to any finite value of t ′. And if p is either 0 or 1 we can prove t ′ � ∞ (but
we omit that proof). The average value of t ′ is

(x ′ � y ′) × (t ′ ≥ t) × (p2 + (1 − p)2)t
′−t × p × (1 − p); t

� t + (p2 + (1 − p)2)/(2 × p × (1 − p))

This average time is at its minimum when p � 1/2, and its minimum is t + 1. It is at its maximum when either
p � 0 or p � 1, and its maximum is ∞.

So the first program works. But the second program doesn’t; it gives exactly the same result as a single flip of
the coin. Here is the calculation. This time define

R� if p then x ′ � head ∧ y ′ � tail else x ′ � tail ∧ y ′ � head

� p × (x ′ � head) × (y ′ � tail) + (1 − p) × (x ′ � tail) × (y ′ � head)

and define

S � x ′ � x ∧ y ′ � x

416 E. C. R. Hehner

The first equation is proved as follows:

if p then x :� head else x :� tail ; S
� if p then x :� head else x :� tail ; x ′ � x ∧ y ′ � x

� if p then (x :� head ; x ′ � x ∧ y ′ � x) else (x :� tail ; x ′ � x ∧ y ′ � x)

� if p then x ′ � head ∧ y ′ � head else x ′ � tail ∧ y ′ � tail

� R

and the second equation is proved as follows:

if p then y:= head else y:= tail;
if x=y then S else ok

= Σx′′, y′′· (p×(x′′=x)×(y′′=head) + (1–p)×(x′′=x)×(y′′=tail))
× ((x′′=y′′)×(x′=x′′)×(y′≠y′′) + (x′′≠y′′)×(x′=x′′)×(y′=y′′))

= p × ((x=head)×(x′=x)×(y′≠head) + (x≠head)×(x′=x)×(y′=head))
+ (1–p) × ((x=tail)×(x′=x)×(y′≠tail) + (x≠tail)×(x′=x)×(y′=tail))

= p × ((x=head)×(x′=x)×(y′≠x) + (x≠head)×(x′=x)×(y′≠x))
+ (1–p) × ((x=tail)×(x′=x)×(y′≠x) + (x≠tail)×(x′=x)×(y′≠x))

= (x′=x) × (y′≠x) × (p×((x=head) + (x≠head)) + (1–p)×((x=tail) + (x≠tail)))
= (x′=x) × (y′≠x)
= S

No argument.

20. Probabilistic data transformation

Data transformation, also known as data refinement [RE98], can be generalized from the boolean world to the
probabilistic world, as follows. Let the variables of a distribution D be collectively called v , and the corresponding
primed variables be collectively called v ′; for each value of v ,D is a distribution of v ′. We want to replace these
variables by some new variables w and w ′ that are probabilistically related to v and v ′ by a transformer T . We
require

∀w · (∀ v · 0 ≤ T ≤ 1) ∧ (�v · T) � 1

which means that for each w ,T is a distribution of v . Let T ′ be the same as T but with primes on all the variables.
Transformer T transforms D to the new distribution

�v , v ′ · T × D × T ′/�w ′ · T ′

For each w , this is a distribution of w ′. The idea is that after we replace the old variables by the new, the new
distribution has the following characteristic: if we view the new initial values w through the transformer, we see
a distribution of old initial values v for which D gives us a distribution of final values v ′ which are exactly what
we see when we view the new final values w ′ through the transformer. Some examples will help.

Suppose we have one variable n whose value can be any of 0, 1, 2. We want to replace n with a new boolean
variable b using the transformer

(b � 0) × (n � 0) + (b � 1) × (n � 0)/2

When we see b has value 0, we know with probability 1 that n had value 0. When we see b has value 1, we
know with probability 1/2 that n had value 1, and with probability 1/2 that it had value 2. Let’s try using this
transformer on the distribution

(n ′ � 0)/2 + (n ′ � 0)/4

A probability perspective 417

which gives n the final value 0 with probability 1/2, final value 1 with probability 1/4, and final value 2 with
probability 1/4. The new distribution is

Σn, n′· ((b=0)×(n=0) + (b=1)×(n≠0)/2)
× ((n′=0)/2 + (n′≠0)/4)
× ((b′=0)×(n′=0) + (b′=1)×(n′≠0)/2)

 / Σb′· (b′=0)×(n′=0) + (b′=1)×(n′≠0)/2 omitting several steps
= (b′=0)/2 + (b′=1)/2
= 1/2

As you might expect, the transformed distribution says b has final value 0 with probability 1/2, and final value 1
with probability 1/2.

Just for fun, let’s try the reverse transformation. Suppose we have one boolean variable b. We want to replace
b with a new variable n whose value can be any of 0, 1, 2 using the transformer

b � (n � 0)

When we see n has value 0, with probability 1 we know b had value 0. When we see n has value 1, with probability
1 we know b had value 1. When we see n has value 2, with probability 1 we know b had value 1. Let’s try using
this transformer on the distribution 1/2, which says b ′ is equally likely 0 or 1. The new distribution is

Σb, b′· (b=(n≠0)) × 1/2 × (b′=(n′≠0)) / Σn′· b′=(n′≠ spetslarevesgnittimo)0
= (n′=0)/2 + (n′≠0)/4

We get back the distribution we started with in the previous example. It says that n ′ is equally likely 0 or not, and
if not, then equally likely 1 or 2. Not all transformations are invertible, but this one is.

21. Partial specification

Suppose we want to say something about probabilities, without pinning them down. If we have one variable n
whose value can be any of 0, 1, 2, we may want to say “ n ′ is equally likely 0 or not” without saying “and if not,
then equally likely 1 or 2”. Perhaps saying whether 1 is more likely than 2, equally as likely, or less likely, would
be overspecification. Our first attempt might be (n ′ � 0)/2. That expression does say the probability that n ′ has
value 0 is 1/2, but it also says the probability that n ′ has value 1 is 0 (replace n ′ with 1 and evaluate), and likewise
the probability that n ′ has value 2 is 0. This is not a distribution, and cannot be interpreted in the same way as a
distribution. And it fails to leave the latter two probabilities undetermined. The expression (n ′ � 0)/2+(n ′ � 0)/2
may seem to say that n ′ has value 0 with probability 1/2 and a non-zero value with probability 1/2, but actually
it says the probability that n ′ has value 0 is 1/2, the probability that n ′ has value 1 is 1/2 (replace n ′ with 1 and
evaluate), and the probability that n ′ has value 2 is 1/2. This is also not a distribution, and also fails to leave the
latter two probabilities undetermined.

One final attempt to say just what we want and no more is to transform n to boolean variable b such that b � 0
corresponds to n � 0, and b � 1 corresponds to both n � 1 and n � 2. We can say (b ′ � 0)/2 + (b ′ � 1)/2, or
more briefly 1/2, and this is a distribution, and it doesn’t seem to say how the 1/2 probability that b ′ � 1 is divided
between n ′ � 1 and n ′ � 2. But we have just seen that transforming this distribution back to a distribution of n ′
divides the 1/2 probability equally between n ′ � 1 and n ′ � 2. This attempt fails too.

The probability perspectives of this paper provide an unusual answer to the problem. We are talking about
what final value we might observe for variable n. When we say n ′ � 0 we are saying that we know it will be 0, and it
won’t be 1 or 2; the probabilities are 1, 0, and 0 respectively. When we say (n ′ � 0)×2/3+(n ′ � 1)×2/9+(n ′ � 2)/9
we are saying we are not sure it will be 0, but we believe 0 is most likely, and if it isn’t 0, then 1 is more likely than
2 (and we are saying how strong those beliefs are). When we say (n ′ � 0)/2 + (n ′ � 0)/4 we are saying we have no
idea whether it will be 0 or not, and if not, we have no idea whether it will be 1 or 2. Probability talks about “how
well we know what will happen”; so if we talk about “how well we know a probability”, we would be talking
about “how well we know how well we know what will happen”. When we have no idea whether the final value
of n will be 0 or not, and if not, whether it will be 1 or 2, we know perfectly well what the probabilities are. Our
earlier desire not to overspecify the probabilities was a confusion of levels; we really didn’t want to overspecify
what n ′ will be, and we do that by our choice of probabilities.

418 E. C. R. Hehner

22. Related work

For a clear, rigorous, and readable account of modern probability theory, I recommend [R06], which includes
distributions with infinite average value. It even uses pseudo-code programs as descriptions of processes to which
probabilistic analysis is applied. But it does not use programs as probabilistic expressions, and it does not use
the formalize-calculate-unformalize paradigm.

An early work that considers programs as probabilistic expressions is by Kozen in 1981 [K81], followed by
work of Morgan, McIver, Seidel and Sanders in 1996 [MMSS96], and culminating in a delightful and insightful
book by McIver and Morgan in 2005 [MM05]. Their work implicitly uses the formalize-calculate-unformalize
paradigm. It is based on the predicate transformer semantics of programs; it generalizes the idea of predicate
transformer from a function that produces a boolean result to a function that produces a probability result. It
is particularly concerned with the interaction between probabilistic choice and nondeterministic choice, which is
required for refinement. In contrast, the paper you are now reading takes the position that programs express prob-
ability distributions, and does not include nondeterministic choice. McIver and Morgan’s book also considers
probabilistic data transformation, but quite differently from this paper.

The work by Tafliovich [TH06] uses the same approach and methods as in this paper, but applied to the very
new field of quantum programming. Related work at Oxford using the probabilistic language qGCL can be found
in [SZ00] and [Z04].

23. Conclusion

This paper draws together four perspectives that contribute to a new understanding of probability and solving
problems involving probability. The first is the Subjective Bayesian perspective that probability is affected by
one’s knowledge, and that it is updated as one’s knowledge changes. But to update probabilities, you have to
have probabilities to start with; justifying the “choice” of prior (initial) probabilities has been a weak point of
the Bayesian perspective. I make the novel suggestion that probability, information, and state measure the same
quantity on different scales. In this information perspective, the initial probability is not an assumption needing
justification, but the amount of information (expressed on the probability scale) inherent in the state space.

The main point of the paper is that the formal perspective (formalize, calculate, unformalize) is beneficial to
solving probability problems. And finally, the programmer’s perspective provides us with a suitable formalism.

The proposal I am making, that we formalize problems using programming and specification language, does
not eliminate argument, but it disentangles the argument from the calculation of probability. The argument is
about what the informal (English) words mean, and formalizations make their possible meanings clear. After we
have chosen the formalization that we think best represents the informal description, we calculate the probability
without argument. Calculation is not difficult, but it is tedious, involving a lot of detail; fortunately, it can largely
be automated.

The problem of the two envelopes has an eighty-year history of publications that make plausible-sounding
but wrong arguments, and they continue to the present day. I eliminate all the arguments by calculating the
probabilities, and solve the problem completely. As far as I know, this is the first time the problem has been solved
completely. Furthermore, I suggest some new variations of the problem, and solve them too.

Acknowledgments

I had the privilege and pleasure of discussing these ideas in their formative stage with Anya Tafliovich. The
forgetful and habitual versions of Monty Hall were suggested by Jeffrey Rosenthal [R08]. Mr.Bean is modified
from an example of Morgan and McIver. Michael Jackson introduced me to the problem of two envelopes. The
suggestion to compare the contents of an envelope against a value chosen randomly came from Yajun Mei of the
Georgia Institute of Technology via Gang Liang of UC Irvine. The paper was improved as a result of the helpful
criticisms of the referees, and Leslie Lamport.

A probability perspective 419

Appendix: Precedence

Here are all the notations used in this paper, arranged by precedence level.

0 0 1 2 ∞ x y () numbers, variables, bracketed expressions
1 f x pi xy function application, subscripting, exponentiation
2 � normalization
3 ×/ multiplication, division
4 + − ⊕ addition, subtraction, modular addition
5 ��<>≤≥ comparisons
6 ¬ negation
7 ∧ conjunction
8 ∨ disjunction
9 := assignment
10 if then else while do repeat until conditional composition, loops
11 ; || sequential and parallel composition
12 ∀ ·�· universal and summation quantifiers
13 � ⇒ equality, implication

Subscripting and exponentiation serve to bracket all operations within them. The infix operators /− associate
from left to right. The infix operators × + ⊕ ∧ ∨; || are associative (they associate in both directions). Except
on levels 5 and 13, a mixture of operators on the same level associate from left to right; for example, a − b + c
associates as (a −b)+c and P ;Q ||R;S associates as ((P ;Q)||R);S . On levels 5 and 13 the operators are continuing;
for example, a � b � c neither associates to the left nor associates to the right, but means a � b ∧ b � c. On
either of these levels, a mixture of continuing operators can be used. For example, a ≤ b < c means a ≤ b∧b < c.
The operator � is identical to = except for precedence.

References

[D89] Dijkstra EW (1989) Fair gambling with a biased coin. http://www.cs.utexas.edu/users/EWD/ewd10xx/EWD1069.PDF
[DL05] Dietrich F, List C (2005) The two envelope paradox: an axiomatic approach. Mind 114(454):239–248
[G82] Gardner M (1982) Aha! Gotcha! Paradoxes to puzzle and delight. Freeman, New York
[H77] Hehner ECR (1977) Information content of programs and operation encoding. JACM 24(2):290–297. http://www.cs.utoronto.

ca/~hehner/ICPOE.pdf
[H93] Hehner (1993) A practical theory of programming. Springer, Berlin. http://www.cs.utoronto.ca/~hehner/aPToP
[H04] Hehner ECR (2004) Probabilistic predicative programming. Mathematics of Program Construction, Stirling Scotland,

Springer LNCS 3125:169–185. http://www.cs.utoronto.ca/~hehner/PPP.pdf
[H07] Hehner ECR (2007) Unified algebra. Int J Math Sci 1(1):20–37. http://www.cs.utoronto.ca/~hehner/UA.pdf
[K81] Kozen DC (1981) Semantics of probabilistic programs. J Comput Syst Sci 22:328–350
[K30] Kraı̈tchik M (1930) La mathématique des jeux. Stevens, Bruxelles
[KO07] Katz B, Olin D (2007) A tale of two envelopes. Mind 116(464):903–926
[MH] The Monty Hall problem. en.wikipedia.org/wiki/Monty Hall problem
[MM05] McIver AK, Morgan CC (2005) Abstraction, refinement and proof for probabilistic systems. Springer, Berlin
[MMSS96] Morgan CC, McIver AK, Seidel K, Sanders JW (1996) Probabilistic predicate transformers. ACM Trans Program Lang Syst

18(3):325–353
[PW] Pascal’s wager. plato.stanford.edu/entries/pascal-wager
[R06] Rosenthal JS (2006) A first look at rigorous probability theory, 2nd edn. World Scientific Publishing, Singapore
[R08] Rosenthal JS (2008) Monty Hall, Monty Fall, Monty Crawl. Math Horizons, pp 5–7. probability.ca/jeff/writing/montyfall.pdf
[RE98] de Roever WP, Engelhardt K (1998) Data refinement: model-oriented proof methods and their comparisons. Tracts in Theo-

retical Computer Science, vol 47. Cambridge University Press, Cambridge
[S48] Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423, 623–656
[SW49] Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Illinois
[SZ00] Sanders JW, Zuliani P (2000) Quantum programming. Mathematics of program construction, Ponte de Lima Portugal,

Springer LNCS, vol 1837
[TH06] Tafliovich A, Hehner ECR (2006) Predicative quantum programming. Mathematics of program construction, Kuressaare

Estonia, Springer LNCS 4014:433–454
[Z04] Zuliani P (2004) Non-deterministic quantum programming. In: Second international workshop on quantum programming

languages, pp 179–195

Received 30 July 2008
Accepted in revised form 2 March 2010 by I. Hayes and J. Woodcock
Published online 19 May 2010

http://www.cs.utexas.edu/users/EWD/ewd10xx/EWD1069.PDF
http://www.cs.utoronto.ca/~hehner/ICPOE.pdf
http://www.cs.utoronto.ca/~hehner/ICPOE.pdf
http://www.cs.utoronto.ca/~hehner/aPToP
http://www.cs.utoronto.ca/~hehner/PPP.pdf
http://www.cs.utoronto.ca/~hehner/UA.pdf

	A probability perspective
	Abstract
	1 Introduction
	2 Bayesian perspective
	3 Information
	4 Scale
	5 Abstraction
	6 Formalization and calculation
	7 Programming
	8 Probabilistic programming
	9 Learning
	10 Average
	11 Blackjack
	12 Monty Hall
	13 Two Children
	14 Loops
	15 Dice
	16 Mr. Bean's socks
	17 Amazing average
	18 Two envelopes
	19 How to build probability 1/2
	20 Probabilistic data transformation
	21 Partial specification
	22 Related work
	23 Conclusion
	Acknowledgments
	Appendix: Precedence
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

