
DOI 10.1007/s00165-009-0143-6
BCS © 2009
Formal Aspects of Computing (2011) 23: 191–219

Formal Aspects
of Computing

A formal approach for the construction
and verification of railway control systems
Anne E. Haxthausen1, Jan Peleska2 and Sebastian Kinder2

1 Department of Informatics and Mathematical Modelling, Technical University of Denmark,
bld 321, 2800 Lyngby, Denmark. E-mail: ah@imm.dtu.dk
2 Department of Mathematics and Computer Science, Universität Bremen, Bremen, Germany.
E-mails: jp@informatik.uni-bremen.de, kinder@informatik.uni-bremen.de

Abstract. This paper describes a complete model-based development and verification approach for railway con-
trol systems. For each control system to be generated, the user makes a description of the application-specific
parameters in a domain-specific language. This description is automatically transformed into an executable con-
trol system model expressed in SystemC. This model is then compiled into object code. Verification is performed
using three main methods applied to different levels. (0) The domain-specific description is validated wrt. internal
consistency by static analysis. (1) The crucial safety properties are verified for the SystemC model by means of
bounded model checking. (2) The object code is verified to be I/O behaviourally equivalent to the SystemC model
from which it was compiled.

Keywords: Domain engineering, Domain-specific languages, Code generation, Formal methods, Verification,
Railway control systems

1. Introduction

1.1. Motivation

The development of modern railway and tramway control systems represents a considerable challenge to both
systems and software engineers: the goal to increase the traffic throughput while at the same time increasing the
availability and reliability of railway operations leads to a demand for more elaborate safety mechanisms in order
to keep the risk at the same low level that has been established for European railways until today.

Correspondence and offprint requests to: A. E. Haxthausen, E-mail: ah@imm.dtu.dk

192 A. E. Haxthausen et al.

The challenge is further increased by the demand for shorter time-to-market periods and higher competition
among suppliers of the railway domain; both factors resulting in a demand for a higher degree of automation
for the development, verification, validation and test phases of projects, without impairing the thoroughness of
safety-related quality measures and certification activities. Motivated by these considerations, this paper describes
an approach for the construction, verification and validation of railway control systems which has been elaborated
by the authors and their collaborators during the last decade.

1.2. Two problem categories

A closer analysis shows that the problems to be solved can be structured according to two main categories.

(1) The design of novel generic control algorithms is stimulated by the availability of innovative technologies
offering new possibilities for safe and reliable train control mechanisms. In this category the objective is to
elaborate generic theories, that is, collections of theorems whose assumptions and implications are univer-
sally quantified over, say, railway networks of a certain type. As an example, we mention the investigation of
distributed train control algorithms stimulated by the advent of mobile communication technologies, now
making it possible to develop alternatives to the centralised interlocking paradigm. For the verification of
these algorithms, mechanised (first-order or higher-order logic) proof support is desirable.

(2) The development and verification of concrete system configurations addresses a problem frequently arising
in conventional developments: typically, railway control systems are nowadays constructed following the
principles of object orientation and generics. The system is designed as a generic collection of classes, struc-
tured according to certain design patterns, collaborations and frameworks enforcing proven design principles
and facilitating the utilisation of specific hardware technology. Concrete systems are instantiated from the
generic collection using configuration data specifying the network to be controlled, available track elements
(signals, sensors, points) etc. In spite of the elegance of this approach, it suffers from the flaw that—when
conventionally tested for a limited number of different configurations—some software bugs are only revealed
when new configuration variants are used. Additionally, the verification of configuration data requires a con-
siderable effort, often necessitating customised verification tool sets which in turn have to be qualified. As a
consequence, even minor configuration changes, induced, for example, by construction work on certain track
sections, require complex verification processes. The solution to these problems would be an automated ver-
ification suite making it possible to verify each concrete system instance together with its configuration. Here,
automation is a crucial requirement, since the conventional verification process currently only exercised once
on generic system level would be far too time-consuming and expensive to be repeated on every concrete
system instance. In this problem category verification does not involve universal quantification, since all
configuration aspects are completely determined. As a consequence, model-based development combined
with model or property checking, validated compilers or object code verifiers are the technical means of
choice for the development and verification process.

In this article, we focus on the second problem category. For a detailed description of the first, the reader is
referred to [HP00a] and further references listed there.

1.3. Domain-specific approach

In recent years, domain-specific methods for software development have gained wide interest. One of the main
objectives addressed by these techniques is the possibility for a given domain to reuse various assets when devel-
oping software, e.g. to develop a generic system from which one can instantiate concrete systems. Additionally,
the use of domain-specific languages (DSLs) as front-ends for development tools is advocated. In contrast to
general-purpose specification and programming languages, DSLs facilitate their utilisation by domain experts
who are not specialists in the field of information technology, because they use the terminology of the application
domain.

Inspired by these considerations, we have suggested an approach for efficient construction of a family of similar
tramway or railway control systems in [HP02, HP03a] and exemplified it for a class of route-based tramway con-
trol systems. The idea is to provide a framework consisting of (1) a generic control system that can be instantiated
with configuration data, (2) a DSL front-end for specifying application-specific parameters and (3) a generator
from domain-specific descriptions into configuration data and instantiation rules for the concrete system. Hence,

A formal approach for the construction and verification of RCSs 193

for each control system to be developed, application-specific parameters are described in the domain-specific lan-
guage and from this specification a control system can automatically be generated. An advantage of the front-end
consists in the fact that it is much simpler to specify the parameters of a system in the domain-specific language
and then apply the generator, than it is to program the configuration data directly. This speeds up the production
time and reduces the risk of errors; furthermore, it can be done by domain experts without requiring the assistance
of programming specialists.

While this approach clearly offers advantages, it requires careful work to develop such a language, generator
and generic control system and to automatically verify that generated control systems are safe. For this purpose
we use formal methods.

1.4. Automated verification approach

As “programming” language for the control systems we have chosen SystemC [GLMS02] which allows for formal
reasoning based on an operational transition system semantics. SystemC serves both as a compilation target from
semi-formal DSL descriptions to semantically well-founded formal specifications and as a high-level program-
ming language which can be compiled into executable code. Our development approach prescribes that each time
a SystemC control system model is generated and compiled into object code, verification shall be performed at
two levels. (1) The SystemC control system model is verified to be safe by means of bounded model checking
combined with an inductive proof strategy, and (2) the object code is verified to be a correct implementation
of the SystemC control system model. For this purpose, the framework should provide support tools: a proof
obligation generator and an object code verifier.

1.5. Development of languages and tools

For the development of a domain-specific language and support tools our suggestion is to follow the TripTych
dogma by Dines Bjørner (see for instance [Bjø06c]) making a domain model describing the concepts of the appli-
cation domain prior to the actual development of applications. Apart from separating the concern of describing
what there is from the concern of describing what there should be (the applications), this ensures that different
applications are based on the same conceptual understanding. Then from the domain-model one can establish
a model of domain-specific descriptions and their static semantics, a model of the application generator and a
model of the code verifier. For a case study we have formulated such models in the formal RAISE Specification
Language, RSL, [RAI92].

1.6. Related work

The work presented in this paper is based on results published in [HP00a, LVH00, PBH00, HP00b, HP02, HP03b,
HP03a, GH03, HCD04, PGHD04, Ber06, PH07]. Our work has been inspired by Dines Bjørner’s TripTych dogma
and formal techniques for software development described in [Bjø06a, Bjø06b, Bjø06c, Bjø03a, Bjø06d, Bjø07].

The domain model used in our case study only includes concepts needed for our development framework.
For domain models capturing a much broader collection of concepts for railways we consider Dines Bjørner’s
formal railway domain models (see e.g. [Bjø03c, BGH+97]) as very promising candidates.

Object code verification has been investigated by several authors, see [PSS98] for an approach that has influ-
enced our work in a considerable way. While our results have a similar formal basis—for example, our notion of
I/O-equivalence is a specialisation of the “correct implementation relation” defined in [PSS98]—we exploit the
specific restrictions of our model-based development framework in order to simplify the equivalence proofs in a
considerable way.

For other complementary and competing approaches for the development and verification of railway control
systems the reader is referred to the contributions in [TS03, ST04, ST07, EDD+04], and for a survey of results
and trends the reader is referred to the paper [Bjø03b].

194 A. E. Haxthausen et al.

3

Checking
Result

Checking
Result

Model checker

´Verifier

4

5 6

Document
DSL

Checker
Semantics

Static

Result
Checking

Data Collector

Input

2

1

Assembler code

 Behavioural domain model

Object Code

Controller model
Executable

Generators

Safety conditions

Compiler

Fig. 1. Toolchain overview

1.7. Paper overview

First, in Sect. 2–3, we give an overview of our approach and informally describe a case study used to illustrate
our approach. Then, in Sect. 4, we outline how a domain-specific description language for our case study can
be formally developed from a static domain model. Next, in Sect. 5, we outline the development of application
generators. In Sect. 6, we explain how the safety requirements can be verified. After that, in Sect. 7, we outline our
approach for object code verification and we sketch how an associated code verifier can be formally developed.
Finally, in Sect. 8, we discuss the work presented in this paper.

2. Method and toolchain: overview

Our approach requires a domain-specific language (DSL) and tools supporting the language. The main tool
components required are:

1. A data collector for producing syntactically correct DSL text documents.

2. A static semantics checker for DSL documents.

3. Generators parsing DSL documents in order to create (1) executable controller models with transition system
semantics (expressed in SystemC), (2) behavioural physical domain models with transition system semantics
(SystemC), and (3) safety conditions (expressed in a subset of the temporal logic PSL [Acc04] that is a widely
known industrial standard) for the concurrent composition of these two models.

A formal approach for the construction and verification of RCSs 195

4. A bounded model checker capable of verifying properties of composed controller and physical domain models
written in SystemC.

5. A compiler for translating SystemC models into assembler code (since SystemC is embedded into C++,
conventional compilers can be used for this task).

6. An object code verifier which, given a SystemC controller model and associated assembler code, verifies that
the latter is a correct implementation of the former.

To create and verify a new control system users should apply these tools to go through the following steps
illustrated in Fig. 1:

1. The railway specialists use the data collector to produce a syntactically well-formed DSL description D of
domain-specific details of the system to be developed.

2. The static semantics checker checks that D is statically well-formed.
3. The generators automatically transform the domain-specific description D into a behavioural controller

model M, a behavioural physical domain model P (describing how uncontrolled physical devices are behav-
ing) and a set of verification obligations � (safety properties as, for example, the requirement that trams
should never meet within a track segment or on a point).

4. It is proved that the controller model M in concurrent combination with the physical model P satisfies the
obligations �. This is done by means of an inductive proof strategy performed using bounded model checking
techniques.

5. The controller model M is compiled into object code and data with conventional C/C++ compilers. This
results in an assembler “model” A.

6. The assembler “model” A is verified to be behaviourally equivalent to the controller model M using the
object code verifier.

7. Finally the correctness of the hardware/software integration is automatically tested, following the concepts
described in [BFPT06].

3. A case study

In a case study we have applied our approach to provide a framework for constructing and verifying a family
of route-based tramway control systems. In particular we have designed a domain-specific language (DSL) and
associated tools. Below, in Sect. 3.1, we informally explain the contents of descriptions (D) in this domain-specific
language and give a concrete example of such a description, and then, in Sect. 3.2, we outline the SystemC models
(M and P) and safety conditions (�) that the generators should produce from such descriptions. In Sect. 4 we
explain how the language and associated static semantics checker were developed, and in Sect. 5 we explain the
design of the primary generator: the application generator producing SystemC controller models. In Sect. 6 we
describe our strategy for proving safety conditions �. We have successfully applied this strategy for the concrete
sample DSL description from Sect. 3.1.

3.1. Domain-specific description

The basic requirements for avoiding tram collisions are that trams must only drive on predefined routes previously
reserved and that two conflicting (overlapping) routes must not be reserved at the same time. As a consequence,
controllers built to enforce these requirements depend on the railway network to be controlled and on a selection
of predefined routes through that network. This implies that the associated domain-specific description should
include network specifications and interlocking tables describing the routes.

Figure 2 shows a DSL representation of a sample network, consisting of the following track components:

• Sensors detecting passing trams: G20.0, . . . , G25.1
• Controllable points: W100, W102, W118.
• Non controllable points: shown by grey colour.
• Signals: S20, S21, S22.
• Track segments: (G20.0,G20.1), . . . , (G25.0,G25.1), shown as solid lines between two sensors.

196 A. E. Haxthausen et al.

S22

G24.2

W118

W100

TRAMWAY MAIN ROUTES:
 1: S20−G21 (NORTH−SOUTH)
 3: S21−G23 (SOUTH−NORTH)

ROUTE 4: S21−G25

ROUTE 5: S22−G23

ROUTE 2:
S20−G25

ROUTE 6:
S22−G21

ROUTE 3
S21−G23

G22.1

G22.0

G22.3

G25.0 G25.1

G23.1

G23.0

G21.1

G21.0

S20

S21

G24.0G24.1

G24.3

G22.2

S20−G21
ROUTE 1:

G20.0

G20.1

G20.2 G20.3

W102

TRAM MAINTENANCE SITE

Fig. 2. The sample network

The interlocking tables, which are also part of the DSL, comprise four items: (1) a route definition table specify-
ing admissible routes through the network, (2) a route conflict table describing the routes not to be simultaneously
allocated because they have a common route entry point (marked by “o” in the route conflict table) or overlap
each other in another way (marked by “x”). (3) a point position table describing for each route how points should
be set for its traversal, and (4) a signal setting table specifying for each route the name of its entry signal and the
aspect it should be set to, in order to indicate that a tram is allowed to enter the route. In Fig. 3 the graphical
representation of some sample interlocking tables for the network given in Fig. 2 are shown.

3.2. Generated SystemC models and safety conditions

From DSL descriptions as that depicted in Figs. 2 and 3, the generators create SystemC models M and P together
with the associated interface specifications and safety-related proof obligations �. For this purpose, the genera-
tors utilises a library of design patterns, so that architectural aspects, physical model, controller model and proof
obligations are elaborated according to pre-defined schemes.

3.2.1. Interfaces

Interfaces are modelled according to the shared variable paradigm, to be realised using DMA or dual-ported
RAM technology on all hardware interfaces (Fig. 4). Signal and point interfaces, for example, consist of three
data fields: the requested state (controller→ signal/point), the actual state (controller← signal/point), and the
time tick of the request so that a switching deadline can be checked in order to detect failed track elements. In
SystemC the interfaces are modelled by the following variables:

• A clock t storing the current time, i.e. number of cycles performed by the controller.

A formal approach for the construction and verification of RCSs 197

• For each signal S: reqsig[S] storing the requested state, actsig[S] storing the actual state, and reqsigtm[S]
storing the time of request.

• For each point W: reqpt[W] storing the requested state, actpt[W] storing the actual state, and reqpttm[W]
storing the time of request.

• For each sensor G: sen[G] storing the actual state and sentm[G] storing the time for the last LOW-to-HIGH
transition.

• delta s storing a common switching deadline for signals.
• delta p storing a common switching deadline for points.
• delta l storing a common stabilisation deadline for sensors.

Fig. 3. Interlocking tables

3.2.2. SystemC model for controller

The basic behavioural patterns of a control system generated for a network and collection of routes are as follows.
When a tram approaches the network, a route is requested to be reserved. The control system makes a reservation
for that route if no conflicting route has already been reserved. Then it allocates the route by requesting points to
be switched into positions that allow traversal of the chosen route (as described by the point position table), and
when the points have been switched it requests the entry signal to show a GO aspect (as described by the signal
setting table) indicating that the tram may enter the route. As soon as the tram has passed the entry signal, the

198 A. E. Haxthausen et al.

SAFETY CONTROL LAYER

DRIVERS / HW−CONTROLLERS

ACTUAL
STATESTATE

REQUESTED REQUEST
TIME

DRIVER INTERFACES FOR SIGNALS AND POINTS

TRANSITIONSTATE
SENSOR LAST

TIME

DRIVER INTERFACES FOR SENSORS

TIMETICK

CLOCK INTERFACE

HARDWARE INTERFACE

DRIVER INTERFACE LAYER − DMA / DUAL PORTED RAM

Fig. 4. Layered architecture and interfaces

signal is requested to show STOP, and when the tram has left the route, the route is deallocated by removing its
reservation.

Each control system is implemented using a main loop, so that each execution cycle has four phases. In the
input phase all current values of input interfaces (actual states) are copied to (global) shadow variables, in the
processing phase interfaces are neither read nor updated, but global or local variables are processed. In the wait
phase the system “spins” in an active wait loop without side effects (this is to ensure constant loop frequency),
and in the output phase the states of global variables shadowing outputs are copied to the corresponding output
interfaces (requested states). This usage of shadow variables is applied to establish a SystemC controller model
which is close to its corresponding assembler implementation: in the assembler implementation, the input and
output variables should not be changed before the end of an execution cycle, because changes in memory become
immediately visible, while in SystemC these changes are first visible at the next execution cycle. In the remainder
of this paper we will ignore the wait phase.

3.2.3. SystemC model for physical domain

The physical model generated for a network consists of transition rules describing the behaviour of all sensors,
signals and points of the network.

For each sensor G there is a virtual (i.e. not physically existing) counter c[G] storing the number of trams that
have passed the sensor. Intuitively speaking, counters measure the “discrete flow” of trams through the network,
while abstracting from concrete speed. In an empty network all counters are zero. A tram entering the network,
say, at sensor G20.0, is modelled by the sensor state changing from LOW to HIGH and a counter state change from
c[G20.0] == 0 to c[G20.0] == 1. Flow propagation through the network is governed by a collection of sensor
state transition rules: sensors G inside the network can change their state from LOW to HIGH and increment their
counter values if the sum of all neighbouring sensors on routes directed to G is greater than G’s current counter
value. If, for example, G21.0 has counter value c[G21.0] == 0, is in state LOW and c[G20.2] + c[G24.2] == 1
holds, this corresponds to the situation where a tram on route 1 or route 6 approaches, but has not yet reached,
G21.0. The consecutive state change of G21.0 to HIGH is accompanied by a counter increment and reflects the
situation where the tram has reached G21.0. Safety violations can be expressed by counters as well; c[G21.0]
== 0 && c[G20.2] == 1 && c[G24.2] == 1, for example, would model the hazard where two trams simulta-
neously approach G21.0 from different routes. More details are presented in the safety requirements SF1–SF5
below. More formally, sensor state changes from LOW to HIGH are modelled by rules following the pattern

if ((sen[G] == LOW) && c[G] < <sum-incoming-counters> &&
<signal-condition> && <nondeterministic-guard>) {

sen[G] = HIGH;
sentm[G] = t;
c[G] = c[G] + 1;
<signal-action>;

}

A formal approach for the construction and verification of RCSs 199

In this pattern <sum-incoming-counters> stands for the counter sum of neighbouring sensors on routes
approaching G. The <signal-condition> applies for sensors guarded by signals: the sensor state may only
change, that is, the tram may only pass, if the signal aspect is GO. This models the hypothesis that trams
really stop at signals showing a HALT aspect, which is crucial for proving the desired safety properties. The
<nondeterministic-guard> is an auxiliary input used to model all possible interleavings of tram movements:
as long as this guard is false, the transition is not performed, modelling the situation where the tram has not yet
reached the sensor. The time of the state change is stored in sentm[G] so that the latency of the sensor can be
modelled: a state change from HIGH back to LOW may only occur after this latency interval has passed. Passing a
sensor may be accompanied by a request for a signal state change; this is modelled in the <signal-action>.

To avoid overflow of the counters, there are additional rules for decrementing them after an occupying tram
has completely passed through a route. For instance, for route 1 there is a rule stating that when c[G21.1] ==
c[G20.2] > 0, all the counters (c[G20.0], c[G20.1], c[G20.2], c[G21.0], c[G21.1]) of the route should be
decremented by the value of the counter c[G21.1] (by which c[G20.2] and c[G21.1] become reset to 0). The
condition c[G20.2] > 0 expresses that there has been a tram on the route, and the condition c[G21.1] ==
c[G20.2] is intended to express that the route is now empty (i.e. the tram has left the route). This is true, as long
as the safety invariant

(c[G20.2] == 0) || (c[G24.2] == 0)

holds. Similar “route-is-empty” conditions can be formulated for the other routes, and all of them require safety-
related side conditions as the one above.

For each signal S, there is a transition rule having the following pattern:

if (((t >= reqsigtm[S] + delta_s) || <nondeterministic-guard>)
&& (reqsig[S] != actsig[S])) { actsig[S] = reqsig[S]; }

It states that within the specified switching deadline delta s the actual state actsig[S] of the signal has to
switch to the state reqsig[S] requested by the controller, if these states differ. To determine whether delta s
time units have elapsed, the time of the request reqsigtm[S] for this signal is compared to the time t of the tram
control system. Again, <nondeterministic-guard> is a nondeterministic auxiliary input. Here it is set with an
arbitrary value in each execution cycle and enables a state transition at arbitrary time ticks between the time of
the request and the time limit for the transition. Here it is used to model situations where the signal switches to
the requested state before the time bound for a correctly operating signal has been reached.

For points the transition rules are similar to the rules for signals.

3.2.4. Safety conditions �

The major safety requirements � preventing collisions within the network boundaries marked by the entry signals
are:

SF1 Each segment not containing a point is occupied by at most one tram. For the network shown in Fig. 2 there
are 3 such segments: the 3 exit segments [G21.0, G21.1], [G23.0, G23.1], and [G25.0, G25.1].

SF2 Each controllable point is occupied by at most one tram. For the network shown in Fig. 2 there are 3 control-
lable points: W102, W100, W118.

SF3 No two trams may approach the same sensor simultaneously from two directions. For the network shown in
Fig. 2 there are only three sensors that can be approached by trams from different directions: G21.0, G23.0,
G25.0. (That it can’t happen for the other sensors follows from the network configuration and the assumption
that trams only enter the network at the signals and do not change direction.) Sensor G21.0, for example, can
be approached by trams from G20.2 or G24.2, but not from G21.1.

SF4 For two segments crossing each other at least one of them is empty. For the network shown in Fig. 2 there are
3 crossings. E.g. there is a crossing between the segments [G20.3, G25.0] and [G22.2, G23.0].

SF5 Each controllable point is empty when it is in a switching state.

For a concrete network, these requirements can be formalised as conditions on the virtual counters c[G] intro-
duced in the physical model P of the network. Then formula � can be specified as the conjunction of these
conditions. We will now illustrate how some of these requirements have been formalised for the network shown

200 A. E. Haxthausen et al.

in Fig. 2. For instance, the SF1 requirement that there is at most one tram on segment [G21.0, G21.1] can be
expressed by the condition

c[G21.0] - c[G21.1] <= 1

as c[G21.0] indicates the number of trams that have entered the segment, and c[G21.1] indicates the number
of trams that have left the segment. The SF2 requirement that there is at most one tram on point W102 can be
expressed by the condition

c[G20.1] - (c[G20.2] + c[G20.3]) <= 1

as c[G20.1] indicates the number of trams that have entered the point, and c[G20.2] + c[G20.3] indicates
the number of trams that have left the point. The SF3 requirement that at most one tram is approaching G21.0
from G20.2 or G24.2 can be expressed by the condition1

(c[G20.2] == 0) || (c[G24.2] == 0)

as c[Gx.y] == 0 means that no tram has passed Gx.y after it was reset last time. The SF4 requirement that one
of the two crossing segments [G20.3, G25.0] and [G22.2, G23.0] is empty, can be expressed by the condition2

(c[G20.3] == 0) || (c[G22.2] == 0)

This follows from the fact that trams only enter the segments [G20.3, G25.0] and [G22.2, G23.0] at G20.3 and
G22.2, respectively, and therefore these segments are empty when the associated counters are zero. The SF5
requirement that point W102 is empty when it is in a switching state can be expressed by the condition

(actpt[W102] != reqpt[W102]) -> (c[G20.1] - (c[G20.2] + c[G20.3])) == 0

For the network shown in Fig. 2 there are 15 such conditions in total, and � is the conjunction of these.
Observe that, in contrast to tramways, railways usually impose additional safety requirements concerning

flank protection and shunting.

4. From static domain model to domain-specific language

In this section we explain how a domain-specific description language for our case study can be formally devel-
oped from a static domain model using RSL. At the end of this development process, the RSL model obtained
represents the abstract syntax and static semantics of the DSL under construction. It then only remains to associ-
ate the abstract syntactic elements with concrete syntax, in order to complete the DSL definition. The behavioural
semantics is defined in a transformational way by means of the generator translating DSL specifications into
SystemC models.

4.1. RSL static domain model

We start by describing how a domain model can be established. The domain model covers the concepts of railway
networks and routes. More general models would typically cover further concepts like time tables , but here we
only present those concepts that are relevant for the development of the application considered in this paper. The
model of each concept is generic (algebraic) in the sense that it defines which properties any concrete instance
of the concept should have. The generic model can be instantiated to produce a concrete one defining what the
specific properties are for that specific instance.

1 This requirement could alternatively have been formalised by the condition (c[G20.2] + c[G24.2]) - c[G21.0] <= 1.
2 Note that it would not have been correct to express the emptiness of e.g. [G20.3, G25.0] (on route 2) by the condition c[G20.3] - c[G25.0]
== 0 as G25.0 is also part of route 4, and therefore c[G25.0] can be incremented not only by trams going along route 2, but also by trams
going along on route 4.

A formal approach for the construction and verification of RCSs 201

4.1.1. Generic network model

Any concrete network model should describe the topology of a railway network consisting of the physical com-
ponents: segments, sensors, signals, and points.

In the generic model, for each kind of component, an abstract type of identifiers for its components is declared:

type Sensor, Point, Signal, Segment

Furthermore, signatures for functions that describe the relationship between the components are given. For
instance, the following function gives the sensor at which a given signal is placed:

value sensor of : Signal→ Sensor

Finally, a number of axioms express requirements on these functions, i.e. impose restrictions on which network
topologies are allowed. For instance, the following axiom requires that any two distinct signals are placed at
distinct sensors:

∀ s1, s2 : Signal • s1 �� s2⇒ sensor of(s1) �� sensor of(s2)

To describe a concrete network, the elements of the types should be specified and the functions should be explicitly
defined in such a way that the axioms are satisfied. In Sect. 4.2.2 we explain how the checking of axioms has been
implemented in a tool.

4.1.2. Generic route model

An abstract type of identifiers for routes is declared:

type Route

We state the signature for a function that for a given route returns a list of those sensors which have to be passed
in the stated order when travelling along the route:

value sensors of : Route→ Sensor∗

A number of axioms express requirements to this function, i.e. impose restrictions on what is an allowed route.
For instance, there must be a signal at the first sensor of any route:

∀ r : Route • ∃ s : Signal • sensor of(s) � hd sensors of(r)

4.2. Domain-specific language

4.2.1. RSL specification

The domain model is now extended with value declarations for each element to be part of a domain description.
For each kind of physical component there is an element (all together providing a network description):

value
sensors : Id-set,
points : Id →m (Sensor × Sensor × Sensor),
signals : Id →m Sensor,
segments : Id →m (Sensor × Sensor),
crossings : (Segment × Segment)-set

The declarations give each element a name and a model-oriented type and hence provide an abstract syntax for
the elements. As an example, the abstract syntax for the sensors element is Id−set. The sensors element contains
the set of sensor identifiers, points maps each point identifier to the three sensors covering the point, signals maps
each signal identifier to the sensor at which it is placed, segments maps each segment identifier to the two sensors

202 A. E. Haxthausen et al.

at the borders of the segment, and crossings contains the pairs of segments that cross each other. Similarly, for
each kind of interlocking table there is an element:3

value
rdt : Id →m Sensor∗,
rct : Route→ Route-set × Route-set,
ppt : Route→ Point→m PointPosition,
sst : Route→ Signal × SignalSetting

In the route conflict table rct , for example, the pair rct(r) � (c1, c2) identifies the routes with conflict types ◦ and
x, respectively (see Fig. 3): Route r ◦ r ′ if and only if r ′ ∈ c1 and r x r ′′ iff r ′′ ∈ c2.

We chose identifiers to be texts:

type Id � Text

Now, the Signal type can be explicitly defined as containing the identifiers of the domain of the signals element:

type Signal � {| id : Id • id ∈ dom signals |}
The Sensor , Point , Segment and Route types can be defined in a similar way.

All functions from the domain model can now be explicitly defined in terms of the element values. In this way
the axioms (that refer to these functions) from the domain model now impose well-formedness conditions on the
elements of a language description. Additional axioms that impose well-formedness conditions on the rct , ppt
and sst values are added, so that these axioms provide a static semantics for the DSL.

4.2.2. Concrete syntax and static semantics implementation

Two alternative solutions to the implementation of the concrete DSL have been made using the Extensible Markup
Language XML [W3Cb] and the Unified Modelling Language UML [RJB04], respectively. Below we outline the
XML solution that is documented in [DC04]. In [Ber06] it is described how the DSL is defined by a UML 2.0
profile in the second solution. The concrete syntax of the language has been defined by an XML document type
definition (DTD). For the elements of the RSL abstract syntax, corresponding XML elements are defined. The
static semantics has been implemented using the extensible style sheet language XSL [W3Cc]. In a systematic
way each RSL axiom expressing a well-formedness requirement has been transformed into a template that tests
whether the requirement is fulfilled. A GUI based data collector for creating DSL descriptions in the required
XML syntax has been developed using XForms [W3Ca]. For the convenience of users, a graphical representation
of DSL descriptions (XML documents) has been developed. This was done using XSLT and HTML. In Fig. 3
the graphical representation of some sample interlocking tables for the network given in Fig. 2 are shown.

5. Generating applications from domain-specific descriptions

According to our method three generators taking a statically well-formed DSL description D as argument are
required (Fig. 1). The primary one is the generator producing a control system model M. The second generator
produces the behavioural model P of the physical environment and the third one generates the safety properties
�, to be checked to hold for the concurrent composition of the control system model M and the physical model
P . In this section we outline the basic concepts of the generator for M. The other generators are designed in a
similar way.

3 rdt for route definition table, rct for route conflict table, ppt for point position table, and sst for signal setting table.

A formal approach for the construction and verification of RCSs 203

5.1. Components of the controller model generator

The implemented generator for controller models consists of two parts:

1. A configurable library of generic code that is re-usable for all control systems to be generated: the code
comprises generic versions of the control algorithms, the data structures carrying dynamic state information
needed for performing control decisions, and the static configuration data structures.

2. A parser that takes a domain-specific description as input and returns concrete configuration data and
instantiation parameters for the generic algorithms.

We have selected SystemC [GLMS02] as the target language for the generator, since it is associated with a
formal transition system semantics and can be directly compiled into executable code [PGHD04, Ber06]. As a
consequence, the original DSL descriptions “inherit” formal behavioural semantics from the transformations
performed by the generator.

5.2. Generic configurable library

Since the SystemC code is automatically generated, the emphasis of the coding structure—whose layout is already
fixed in the configurable library—lies on easy verifiability and efficient executability: the control structures of
the generic algorithms utilise generic data structures (global arrays) and generic parameters. For example, if
reservation of route i requires i to be requested, not already reserved, and excludes simultaneous reservation of
conflicting routes j , then the reservation is performed by the following generic code structure:

bool mayReserve = requested[i] && ! reserved[i];
for (int j = 0; j < NUM_ROUTES; j++)

mayReserve = mayReserve && ! (conflict[i][j] && reserved[j]) ;
if (mayReserve)

reserved[i] = 1;

where requested and reserved are arrays that keep parts of the dynamic control states, conflict is an array
encoding the route conflict table and NUM ROUTES is a constant specifying the number of routes. The actual
value of NUM ROUTES and contents of conflict differ from application to application and is defined by the con-
crete parameters and configuration data. This structure also ensures a close relationship between SystemC and
assembler code which facilitates the object code verification in a considerable way.

The generic parameters referenced in the control algorithms of the library are of a very simple nature. They
comprise number parameters, specifying the concrete quantities of sensors, signals, points and routes to be fixed
for each system and offset parameters used for looking up specific routes and track elements in the static config-
uration data or in the dynamic control states.

The most important aspect of the static configuration data is the description of available track elements
and route specifications. Routes are represented as sequences of index references to track elements, together
with information about the required signal and point states to be enforced when allocating a route to a tram.
This encodes the network description, route definition table, signal setting table and point position table of the
domain-specific description. An additional array (conflict) is used for specifying the conflict relations between
routes. This encodes the route conflict table of the domain-specific description.

5.3. DSL→ SystemC parser

The parser for producing concrete SystemC code from DSL descriptions proceeds in two passes. First, the number
parameters are determined from the DSL and represented as C constant declarations. As a result the dimensions
of all arrays used for storing static configuration data and dynamic state information are fixed. In the second
pass the parser generates constant C array assignments carrying the configuration data and auxiliary offset
information for looking up routes and track elements.

204 A. E. Haxthausen et al.

6. Verification of safety requirements

In this section we describe the verification step of our method. First we state the general verification objectives
and assumptions, and then we describe the verification strategy. Finally we apply this for a concrete example.

6.1. Verification objectives

When a controller model M, a physical model P , and safety conditions � have been generated from a DSL
description D, the next step according to our method is to verify that all possible P executions, when controlled
by the model M executed in parallel, respect the safety conditions � at any time. This is written (P ‖M) sat G(�).
M and P are SystemC models as described in Sect. 3.2 and � is a PSL proposition over the state variables of P
as described in Sect. 3.2.4. G is the PSL/LTL temporal “Globally” operator, so that G(�) means “� holds in all
states reachable after an initialisation”.

6.2. Verification assumptions

Our verification strategy is driven by the following assumptions:

• It is assumed that the railway network description in D is complete and correct.
• No assumptions about the correctness of interlocking tables in D are made.
• The DSL description D inherits its formal behavioural semantics from the SystemC models which are auto-

matically generated from it. As a consequence, no refinement proofs are required to ensure consistency between
internal SystemC models and high-level DSL description.

• No assumptions about the correctness of the generators are made.
• The rules how trains can move in the uncontrolled network (physical model P) are complete and correct. In

particular, it is assumed that trains only enter the network at the entry signals, they stop at signals in HALT
state and do not change direction.

• The generated safety conditions � are complete and correct.

Completeness of safety conditions � can be justified by means of a refinement proof starting with a high
abstraction of safety conditions which explicitly relates trams to track segments, and is therefore easy to validate.
The high abstraction is then refined to the expression of � in terms of sensor counter conditions.

6.3. Verification strategy

Since we are not assuming that generators and interlocking tables are correct, an universal “once-and-for-all”
verification is impossible: each system instance has to be verified with its concrete configuration data. As a
consequence, it is desirable to elaborate a verification strategy which can be executed in an automated way.

With respect to full automation the model checking approach for (P ‖ M) sat G(�) seems attractive. It is
well known, however, that conventional model checking would lead to state explosions for train control tasks
of realistic size. As a consequence, we have adopted a bounded model checking strategy combined with inductive
reasoning. To prove that � always holds we use the following inductive principle called k-induction:

1. First it is proved that �∧� holds for the k > 0 first execution cycles after initialisation, i.e. �∧� holds for
k > 0 successive4 states σ0, . . . , σk−1 of which σ0 is the initial state of (P ‖M).

2. Next the following is proved for an arbitrary execution sequence of k + 1 successive states σt , . . . , σt+k of
which the first σt is an arbitrary state (reachable or not from the initial state σ0): if �∧� holds in the k first
states σt , . . . , σt+k−1, then � ∧� will also hold for the k + 1st state σt+k .

Here � is an auxiliary property that holds for reachable states. (Note that � is simultaneously proved by the
given induction principle.) The proofs of the base case and the induction step are performed by a bounded model

4 Two states σi and σi+1 are successive, if there is a transition from σi to σi+1 according to (P ‖M).

A formal approach for the construction and verification of RCSs 205

checker tool described in [DG05]. This tool treats the two proof obligations by exploring corresponding prop-
ositional satisfiable problems and solving these by a SAT solver. Note that the induction steps argue over an
execution sequence of k + 1 states of which the first state, σt , may be unreachable, although it would have been
sufficient for the truth of G(�) only to consider sequences for which σt is reachable. For sequences starting at
an unreachable state, the induction step may fail and the property checker give a false negative. To avoid this the
desired property � is strengthened with an auxiliary property � that is false for those unreachable states, σt , for
which the induction step would otherwise fail.

6.3.1. Auxiliary condition �

The auxiliary condition � is a conjunction of state relations. Below we give examples of some of these relations.
As mentioned earlier, these are needed as assumptions in the induction step of the proof of G(�), in order to rule
out unreachable states that would have given rise to false negatives otherwise.

Example 1 Since the model is implemented as a timed state transition system, time consistency has to be estab-
lished as a part of �. Time consistency means that the current time t kept by the system is always larger than or
equal to the time stamps in the interfaces reqsigtm[S], reqpttm[W], and sentm[G] of each signal S, point W,
and sensor G, respectively. For example, for signal S20 of the network in Fig. 2 this means:

reqsigtm[S20] <= t

Example 2 For each sensor G, the controller model has a counter cc[G] that plays the same role for the controller
as the virtual counter c[G] does for the physical model. Both counters are initially 0. At the same time as the
sensor becomes high (i.e. sen[G] = HIGH), the virtual counter c[G] is incremented by 1. The controller will first
detect that the sensor is high one execution cycle later and increment its counter cc[G] by 1 in that cycle. Hence,
either the two counters, c[G] and cc[G], have the same value, or c[G] == (cc[G] + 1) in which case we are
just one time unit after the sensor became high (i.e. t == sentm[G] + 1). The following relation expresses this
and is included in �:

((c[G] == cc[G]) || ((t == sentm[G] + 1) && (c[G] == cc[G] + 1)))

6.3.2. Additional assumptions

To avoid overflow of the clock t in the proof of the induction step, we additionally assume t < t max in the first
state, σt , where t max is chosen such that t max + k is less than the maximal integer in the integer type of t.
At the same time t max is chosen such that it is larger than the maximal number of cycles that a controller can
perform during a day from when it is started until it is stopped.

Note that the time consistency relations defined in Example 1 together with the assumption t < t max also
ensure that no overflow will occur in the reqsigtm[S], reqpttm[W], and sentm[G] interfaces.

6.4. Application example

For the controller that can be generated from the sample network and interlocking tables in Sect. 3, we have used
the strategy presented above to prove that it is safe. A value of k � 3 sufficed to carry out the induction. With
t max = 4 billion, it took the model checker 391.53 s to do the proof.

7. Object code verification

In this section we outline our approach for object code verification that is described in detail in [PH07], and we
sketch how an associated code verifier can be formally developed.

7.1. Motivation

Automated object code verification for safety-critical control systems is motivated by the fact that applicable
standards for these safety-critical applications, e.g. for railways [ECfES01], require a substantial justification
with respect to the consistency between high-level software code and the object code generated by the applied
compilers.

206 A. E. Haxthausen et al.

7.2. Approach

The conventional approach for this is compiler validation: “once-and-for-all” it is validated that the compiler
for any input produces object code that is a correct implementation of that input. However, such an approach
is very time-consuming, especially if it should be done formally (see e.g. [GZ99] for techniques for that), and
furthermore it has to be performed again whenever modifications of the compiler have been performed. An
alternative to compiler validation is object code verification: each time object code is generated (by an arbitrary
compiler), the generated object code is verified to be a correct implementation of the high-level software code.
Object code verification has the advantage that it is independent of changes in the compiler and it can be fully
automated and reasonably fast, if the compiled code originates from high-level programs strictly adhering to
certain programming patterns as is the case for our generated SystemC models.

Our specific approach to object code verification is as follows: to prove that an assembler program (object
code) A is a correct implementation of the SystemC controller model M from which it is generated, one should
map (see Sect. 7.5) A and M to their behavioural models T (A) and T (M) given in terms of some common
semantic foundations (I/O-Safe Transition Systems to be explained in Sect. 7.3) and then prove that T (A) and
T (M) are I/O equivalent (modulo a variable renaming defined in Sect. 7.6) by applying transformations that
have been proved “once-and-for-all” to preserve I/O behaviour (see Sect. 7.4).

7.3. Common semantic foundations: I/O-safe transitions systems

In this section we introduce our notion of I/O-safe transitions systems (IOTS) and our notion of I/O equivalence
between IOTS.

7.3.1. Abstract syntax and static semantics of IOTS

I/O-safe transitions systems (IOTS) are closely related to transition diagrams (as defined e.g. in [MP92]) consisting
of (1) a set of variables for which initial values are given by an initial state, (2) a set of locations one of which is
designated as the initial location l0, and, (3) a set of transition rules. Variables are classified into input, output
and processing variables. A transition rule from one location l1 to another location l2 is specified by a guard that
is a quantifier-free predicate over the variables and by a multiple assignment (v1, . . . , vn) :� (e1, . . . , en), where
v1, . . . , vn are variables and e1, . . . , en are expressions over the given set of variables. A new characteristic of IOTS
consists in the fact that locations can be partitioned into pairwise disjoint sets of input, output and processing
locations, and we put further constraints on the allowed use of variables in guards and expressions in an IOTS:
guards must only use processing variables, for transitions into input locations the assignments must only read
input variables and make assignment to processing variables, for transitions into processing locations the assign-
ments must only read processing variables and make assignment to processing variables, and, for transitions into
output locations the assignments must only read processing variables and make assignment to output variables.

One can obviously specify an abstract syntax of IOTS in RSL:
type

IOTS ::
vars : Var-set
initstate : State
locs : Loc-set
initloc : Loc
trans : TransitionRel-set,

TransitionRel � Loc × Guard × Assign × Loc,
Assign :: al : (Var × Expr)∗,
Expr �� mk Const(i : Int) | mk Var(v : Var) | mk Sum(e1 : Expr, e2 : Expr) | ...,
Guard �� TRUE | ...,

where Guard and Expr are the abstract syntax of guards and expressions, respectively, for space reasons not com-
pletely specified here. For variables and locations two abstract types are used, each having an observer function
mode that returns the mode (input, output or processing) of variables and locations, respectively:
type Var, Loc
value mode : Var→Mode, mode : Loc→Mode
type Mode �� IN | OUT | PROC

A formal approach for the construction and verification of RCSs 207

We also introduce a well-formedness predicate for IOTS formalising all the conditions on the use of variables
and locations stated informally above:

value
is wff : IOTS→ Bool
is wff(iots) ≡ dom initstate(iots) � vars(iots) ∧ initloc(iots) ∈ locs(iots) ∧ ...

For instance, the predicate checks that the initial state of an IOTS gives initial values to the variables in its variable
set and that the initial location is in its location set.

7.3.2. Dynamic semantics of IOTS

Now we define a dynamic semantics of IOTS. It involves states. A state σ for an IOTS is a valuation of its variables:

type State � Var →m Int

Each transition relation specification of an IOTS induces a state transformer:

value
eval : TransitionRel→ (State→ State)
eval(l, g, a, l′)(σ) ≡ if eval(g)(σ) then eval(a)(σ) else σ end

Here eval (g)(σ) and eval (a)(σ) are the standard extensions of the valuation σ to guards g and assignments a,
respectively. It should be noted that we have defined the evaluation, eval (mk Var (v))(σ), of variables v �∈ dom σ
to give the default value 0 to avoid partial evaluation functions. For well-formed IOTS this does no harm as only
variables in v ∈ dom σ are evaluated by the semantics defined below.

The semantics of an IOTS is the set of its possible runs. A possible run of an IOTS is a non-empty sequence
of pairs of locations and states such that the first location is its initial location, the first state is its initial state,
and that for each consecutive pairs in the list there is a transition relation in the IOTS from the location of the
first pair to the location of the second pair so that the associated state transformer maps the non input part of
the state of the first pair to the non input part of state of the second pair:

type Run � (Loc × State)∗

value
eval : IOTS→ Run-infset
eval(iots) ≡
{ r | r : Run •

len r > 0 ∧
let (l0, σ 0) � hd r in

l0 � initloc(iots) ∧ σ 0 � initstate(iots)
end ∧
(∀ i : Int • i > 0 ∧ i < len r⇒

let
(l i, σ i) � r(i), (l i′, σ i′) � r(i+1)

in
dom σ i′ � vars(iots) ∧
(∃ (l, g, a, l′) : TransitionRel •
(l, g, a, l′) ∈ trans(iots) ∧
l � l i ∧ l′ � l i′ ∧
eval(l, g, a, l′)(σ i)\ivars(σ i) � σ i′\ivars(σ i))

end
)

},
ivars : State→ Var-set
ivars(σ) ≡ {v | v : Var • v ∈ dom σ ∧ mode(v) � IN}

208 A. E. Haxthausen et al.

7.3.3. IOTS equivalence

We are now going to define a notion of I/O equivalence of IOTS. In order to do that, we first need to define some
auxiliary notions. An I/O restriction of a run is the restriction of the run to pairs where the location is an input
or output location, and for these pairs the states are restricted to input and output variables only:

IOrestrict : Run→ Run
IOrestrict(r) ≡ 〈 (l, σ / {v | v : Var • mode(v) ∈ {IN,OUT} }) | (l,σ) in r • mode(l) ∈ {IN,OUT} 〉

An I/O restriction of a set of runs rs is the set of I/O restrictions of the runs in the set rs :

IOrestrict : Run-infset→ Run-infset
IOrestrict(rs) ≡ {IOrestrict(r) | r : Run • r ∈ rs}

An I/O map ρ is a bijective, mode preserving variable mapping between I/O variables:

type IOMap � {| ρ : Var→m Var • bijective(ρ) ∧ IOmodepreserving(ρ) |}
value

bijective : (Var →m Var)→ Bool
bijective(ρ) ≡ (∀ v2 : Var • v2 ∈ rng ρ⇒ (∃! v1 : Var • v1 ∈ dom ρ ∧ ρ(v1) � v2)),

IOmodepreserving : (Var →m Var)→ Bool
IOmodepreserving(ρ) ≡

(∀ v : Var • v ∈ dom ρ⇒
mode(ρ(v)) � mode(v) ∧ mode(v) ∈ {IN,OUT})

Two I/O restricted runs are I/O equivalent wrt. an I/O map if they have (1) the same length, (2) the same order of
input locations and output locations, and (3) their states agree on input variables and output variables modulo
the I/O map:

equiv : Run × Run × IOMap→ Bool
equiv(r1 io, r2 io, ρ) ≡

len r1 io � len r2 io ∧
(∀ j : Int • j > 0 ∧ j ≤ len r1 io⇒

let (l1, σ1) � r1 io(j), (l2, σ2) � r2 io(j) in
mode(l1) � mode(l2) ∧
σ1 � σ2 ◦ ρ

end
)

Finally, we can define two IOTS to be I/O equivalent wrt. an I/O map ρ, if there is a bijection γ between I/O
equivalent I/O restrictions of runs of the two IOTS:

equiv : IOTS × IOTS × IOMap
∼→ Bool

equiv(iots1, iots2, ρ) ≡
(∃γ : Run →m Run •

dom γ � IOrestrict(eval(iots1)) ∧ rng γ � IOrestrict(eval(iots2)) ∧
(∀ r1, r2 : Run • {r1, r2} ⊆ dom γ ∧ r1 �� r2⇒ γ (r1) �� γ (r2)) ∧
(∀ r : Run • r ∈ dom γ ⇒ equiv(r, γ (r), ρ))

)
pre dom ρ � iovars(iots1) ∧ rng ρ � iovars(iots2),

iovars : IOTS→ Var-set
iovars(iots) ≡ {v | v : Var • v ∈ vars(iots) ∧ mode(v) ∈ {IN,OUT}}

For the identity variable mappings id we just write equiv (iots1, iots2) rather than equiv (iots1, iots2, id).

A formal approach for the construction and verification of RCSs 209

l3

l0 l0

l1

l2

l3

x := y

g / y := x

y := y+1

g / x := x+1 <=>

Fig. 5. A transformation rule

7.4. IOTS transformation rules

We have developed a collection (see [PH07]) of transformation rules between IOTS patterns and proved by hand
that any instance of the rules gives rise to a transformation that preserves I/O behaviour. The RSL formulation of
the IOTS concepts in the previous section now enables us to formalise these proofs. As an example, there is a rule
stating that an IOTS iots1 can be transformed into an equivalent IOTS iots2 by replacing the transition shown
on the left hand side of Fig. 5 with the three transitions shown on the right hand side of Fig. 5, or vice versa,
provided that (1) l1 and l2 are not locations of iots1, x and y are local variables, and (2) in any path emanating
from location l3, the variable y is assigned before read. The rule is generic in locations l0, l1, l2, l3, variables x
and y , and guard g . Proving this rule correct amounts to proving:

∀ iots1, iots2 : IOTS, l0, l1, l2, l3 : Loc, g : Guard, x, y : Var •
{x, y} ⊆ vars(iots1) ∧ mode(x) � PROC ∧ mode(y) � PROC ∧
{l0, l3} ⊆ locs(iots1) ∧ l1 �∈ locs(iots1) ∧ l2 �∈ locs(iots1) ∧
(l0, g, mk Assign(〈(x, mk Sum(mk Var(x), mk Const(1)))〉), l3)
∈ trans(iots1) ∧

vars(iots2) � vars(iots1) ∧
initstate(iots2) � initstate(iots1) ∧
locs(iots2) � locs(iots1) ∪ {l1, l2} ∧
initloc(iots2) � initloc(iots1) ∧
trans(iots2) �

trans(iots1) \
{(l0, g, mk Assign(〈(x, mk Sum(mk Var(x), mk Const(1)))〉), l3)}
∪
{(l0, g, mk Assign(〈(y, mk Var(x))〉), l1),
(l1, TRUE, mk Assign(〈(y, mk Sum(mk Var(y), mk Const(1)))〉), l2),
(l2, TRUE, mk Assign(〈(x, mk Var(y))〉), l3)
} ∧

assigned before read(iots1, l3, y)

⇒
equiv(iots1, iots2)

Another example of a transformation rule is one stating that an IOTS iots1 can be transformed into an equivalent
IOTS iots2 by replacing the transition shown on the left hand side of Fig. 6 with the four transitions shown on
the right hand side of Fig. 6, or vice versa, provided that (1) l1, l2 and l3 are not locations of iots1, aux1 and
aux2 are local variables, and (2) in any path emanating from location l4, the variables aux1 and aux2 are assigned
before read. The rule is generic in locations l0, l1, l2, l3 and l4, and variables aux1, aux2, x and y .

210 A. E. Haxthausen et al.

l0 l0

l1

l2

l3

l4

l4

 x[i] := y[i]

aux2 := i

 aux1 := i

aux2 := y[aux2]

 x[aux1] := aux2

<=>

Fig. 6. Another transformation rule

7.5. IOTS semantics of the source and target languages

Any SystemC model M generated from a domain-specific description adheres, as explained in Sect. 3.2.2, to a
set of simple programming patterns: it has a main loop consisting of phases each adhering to specific, restricted
rules for allowed variable access, and furthermore each phase only consists of assignments, conditionals, and for
statements. SystemC models M adhering to these programming patterns can therefore quite easily be given a
behavioural semantics in terms of an IOTS. This semantics is far more simple than the complex semantic [MRR03]
of general SystemC models.

Likewise, any assembler program A generated by applying a conventional C/C++ compiler to a SystemC
model M (that has been generated from a domain-specific description D) adheres to a set of simple “low-level
patterns”5 that makes it possible to give it an IOTS semantics. This follows from the fact that the controller
model M adheres to the coding patterns explained above and the fact that compiler optimisations are not used
in safety-critical applications.

In [PH07] IOTS semantics for generated SystemC models and IOTS assembler code was informally described.
These semantics can be formalised in RSL by defining abstract syntax Ccode and AssemblerCode for generated
SystemC models and assembler programs, respectively:

type Ccode � ...
type AssemblerCode � ...

and then defining semantic evaluation functions having the following signatures:

value T : Ccode→ IOTS
value T : AssemblerCode→ IOTS

We will not present a full RSL formalisation, but below we will describe the IOTS (RSL values) that each of
the two evaluation functions return when applied to a given SystemC model and a given assembler program,
respectively.

5 For instance, the A program consists of a control loop that corresponds to the main loop of the SystemC program M.

A formal approach for the construction and verification of RCSs 211

7.5.1. Semantics of SystemC models

The behavioural semantics of a generated SystemC model M is an IOTS: T (M) � (V M, σM
0 ,LM,TM) where

the values V M, σM
0 , LM, and TM are as described below.

The set of variables V M � V M
I ∪V M

O ∪V M
P where

• V M
I is the set of input variables. It consists of the interfaces (introduced in Sect. 3.2.1) that the controller

model M uses to read the state of hardware devices, e.g. actpt[n] (actual state of point number n).
• V M

O is the set of output variables. It consists of the interfaces (introduced in Sect. 3.2.1) that the controller
model M uses to send requests to hardware devices, e.g. reqpt[n] (for sending requested state to point
number n).

• V M
P � V M

G ∪V M
L is the set of processing variables.

• V M
G is the set of global variables and constants declared in M. It consists of a shadow variable (see Sect. 3.2.2)

for each input and output variable, e.g. actptNext[n] and reqptNext[n], internal state variables such as
the array entry reserved[n] (that keeps track of the reservation status of route number n), and constants
like conflict table entries conflict[i][j] used internally in the processing phase.

• V M
L is the set of local variables i, j, r,... in M used as loop counters and temporary variables.

The initial state σM
0 is derived in the obvious way from the initialisation part of the SystemC model M. For

local variables x ∈ V M
L the initial valuation is undefined, but it is made sure by means of static analysis that no

local variable is read before having been written to.
The set of locations LM consists of all labels that are associated with the statements in M when using the

following labelling procedure. Each statement s in M is given two labels: a pre-label ls and a post-label l ′s . Fur-
thermore, each for statement is given a third label l ′′s . In general the labels associated with the statements must be
distinct, however, there are some exceptions. For instance, for any compound statement { s1 . . . si si+1 . . . sn}
its pre-label l must be equal to the pre-label of its first statement (i.e. l = ls1), its post-label l ′ must be equal to the
post-label of its last statement (i.e. l ′ = lsn), and for any two consecutive statements si and si+1 the post-label of si
must be identical to the pre-label of si+1 (i.e. l ′si = lsi+1). Another exception is the requirement that the post-label
l ′ of any conditional if(b) s must be equal to the post-label of s (i.e. l ′ = l ′s).

For each location l ∈ LM its mode can be derived by investigating the mode of variables appearing in those
transitions (in the set TM described below) that go into l (i.e. are of the form (..., ..., ..., l)). The set of transitions
TM is constructed by deriving one or more transitions from each statement in M: 6

• A compound statement leads to the union of the transitions that its constituent statements lead to.
• An assignment x = e; with pre-label l and post-label l ′ leads to a transition (l , true, x :� e, l ′).
• A guarded statement if(b) s with pre-label l and post-label l ′ � l ′s leads to the transitions associated with s

as well as the following transitions: (l , b, ε, ls) and (l ,¬b, ε, l ′), where ε denotes the empty assignment which
does not change any variable valuation.

• A for statement for (i=0; i < c ;i++) s with pre-label l , post-label l ′, and third label l ′′ leads to the
transitions associated with s as well as the following transitions: (l , true, i :� 0, l ′′), (l ′′, i >� c, ε, l ′),
(l ′′, i < c, ε, ls), and (l ′s , true, i :� i + 1, l ′′).

In this way the input phase of M leads to transitions into input and processing locations, the processing phase
leads to transitions into processing locations, and the output phase leads to transitions into output and processing
locations.

6 To make the description of this derivation easier to read, we use concrete syntax for SystemC statements, IOTS guards, and IOTS
assignments.

212 A. E. Haxthausen et al.

7.5.2. Semantics of assembler code

The behavioural semantics of an assembler program A � g(M), where M is a generated SystemC model, is an
IOTS: T (A) � (V A, σA

0 ,LA,TA), where the values V A, σA
0 , LA, and TA are as described below.

The set of variables V A � V A
I ∪V A

O ∪V A
P where

• V A
I � {x(,n,4) | x[n] ∈ V M

I } is the set of input variables.
• V A

O � {x(,n,4) | x[n] ∈ V M
O } is the set of output variables.

• V A
P � V A

G ∪V A
L is the set of processing variables.

• V A
G � {x(,n,4) | x[n] ∈ V M

G }.
• V A

L � V M
L ∪ REGS ∪ FLAGS ∪ SADDR.

• REGS contains all symbols %eax, %edx, ... denoting registers.
• FLAGS contains the symbols ZF, SF, PF, ... for zero flag, sign flag, parity flag and others.
• SADDR contains stack address symbols used for auxiliary variables.

It is easy to see that there is a 1-1 relationship between the variable symbols in V A and V M, except that V A
L

contains additional assembler-specific variable symbols. All variables in V A except the local variables are rep-
resented as arrays. Expression actpt(,n,4) (where n is a constant), for example, denotes the contents of the
4-bytes memory cell at memory byte address actpt + 4 · n.

The set of locations LA consists of all labels that are associated with the instructions in A when using the
following labelling procedure. Each instruction in A is given two labels: a pre-label and a post-label. The labels
must be distinct, except that for any two consecutive instructions the post-label of the first and the pre-label of
the second must be identical, and for any labelled instruction, the pre-label and the label in the instruction must
be identical.

For each location l ∈ LA its mode can be derived from the transitions in TA. The set of transitions TA is
constructed by deriving one or more transitions from each instruction in A: 7

• An instruction movl a, b (move contents of a to b8) with pre-label l and post-label l ′ leads to a transition
(l , true, b :� a, l ′).

• An instruction jmp Lx (unconditional jump to label Lx) with pre-label l leads to a transition (l , true, ε,Lx).
• An instruction cmpl a,b (compare a,b and set zero flag if a � b and sign flag if a > b) with pre-label l and

post-label l ′ leads to a transition (l , true, (ZF, SF) :� (a � b, a > b), l ′).
• An instruction jle Lx (conditional jump to Lx, jump if previous compare evaluated to “less or equal”) with

pre-label l and post-label l ′ leads to transitions (l ,¬(ZF ∨ SF), ε, l ′) and (l ,ZF ∨ SF , ε,Lx).
• An instruction l:incl i (increment i by 1) with pre-label l and post-label l ′ leads to a transition

(l , true, (i ,ZF ,SF) :� (i + 1, i � −1, i < −1), l ′). (We will ignore the assignments to ZF ,SF in the follow-
ing paragraphs and figures, since their values after increment instructions have no impact on the execution
of A.)

Further assembler instructions yield IOTS transitions in an analogous way. In the semantics we have ignored the
overflow flag OF, as it can be proved that overflow will never happen. (The generated instructions that potentially
could give overflow are of the form l:incl i coming from loop increments in M, but the upper bound of these
are some constants that are far smaller than the range values for i+1.)

7 To make the description of this derivation easier to read, we use concrete syntax for assembler instructions, IOTS guards, and IOTS
assignments.
8 We use notational conventions of the GNU assembler; source operands are denoted on the left-hand side, target operands on the right-hand
side.

A formal approach for the construction and verification of RCSs 213

7.6. Abstraction mappings

When a SystemC model M is compiled into an assembler program A, there is (as noted above) a 1-1 cor-
respondence between SystemC symbols in V M and assembler symbols in V A (e.g. for each SystemC array
element x [n] there is a corresponding assembler array element x (,n, 4)), except that V A contains additional local
variables: flags, registers and stack addresses. We now define an IOTS T (M+) that extends the variable set of
T (M) with local variable symbols corresponding to the additional flags, registers and stack addresses in V A:
T (M+) � (V M+

, σM+

0 ,LM+
,TM+

) where

• V M+ � V M+

I ∪V M+

O ∪V M+

P .

• V M+

I � V M
I is the set of input variables.

• V M+

O � V M
O is the set of output variables.

• V M+

P � V M+

G ∪V M+

L is the set of processing variables.

• V M+

G � V M
G .

• V M+

L � V M
L ∪ CREGS ∪ FLAGS ∪ SADDR � (V A

L \ REGS) ∪ CREGS .
• CREGS � {eax, ...}.
We then define a map αM from V A to V M+

:

• αM(x(,n,4)) � x[n] for the array elements x(,n,4) ∈ V A \V A
L

• αM(x) � x for x ∈ V A
L \ REGS

• αM(%n) = n for %n ∈ REGS

Clearly αM is a bijection that preserves the mode of variables (input/output/processing), and its restriction
αM
IO � αM/(V A

I ∪V A
O) to I/O variables is an I/O map.

7.7. Implementation relation

Using the definitions given in the sections above, we are now able to define the implementation relation between
assembler programs and SystemC models.

Definition 7.1 An assembler program A � g(M) is a correct implementation of a generated SystemC model M,
if T (A) is I/O equivalent to T (M) wrt. αM

IO , i.e. equiv(T (A), T (M), αM
IO).

In next section we explain our strategy for performing mechanised proofs of I/O equivalences. That strategy is
based on the following theorem.

Theorem 7.1 An assembler program A � g(M) is a correct implementation of a generated SystemC model M,
if equiv(αM(T (A)), T (M+)), where αM(T (A)) is the result of renaming the variables in T (A) according to the
map αM.

Proof. This follows from the fact that equiv(T (A), T (M), αM
IO) is true if and only if equiv(T (A), T (M+), αM

IO)
(as adding processing variables to the state space of one IOTS, does not change the I/O behaviour of that IOTS)
and the fact that equiv(T (A), T (M+), αM

IO) is true if and only if equiv(αM(T (A)), T (M+)). �

7.8. Automated object code verification

Currently an object code verifier is being implemented. The implementation consists of the following major
components:

• An implementation of the two T functions yielding IOTS generators for SystemC and assembler code,
respectively.

• A library of equivalence-preserving transformation rules similar to the ones exemplified in Figs. 5, 6.
• An IOTS transformer that given an IOTS and a transformation rule is able to apply the transformation rule.

214 A. E. Haxthausen et al.

A mechanised proof of the equivalence between an assembler program A and the SystemC controller model M
from which it is generated is planned to be automatically performed according to the following procedure using
the above components. First the SystemC controller model M is mapped to its behavioural IOTS model T (M),
and A is mapped to its model T (A) as well, using the semantic evaluation functions for SystemC and assembler,
respectively. Next, the symbols of T (A) are changed to C-style notation according to mapping αM defined in
Sect. 7.6—this results in T 1. Also, the variable symbol space of T (M) is extended to T (M+), so that T 1 and
T (M+) can be directly compared with respect to their variable symbols. Then the verifier searches for a sequence
T 1 �→ T 2 �→ . . . �→ T (M+) of transformations from T 1 to T (M+), whereupon it terminates.

7.9. Example

We illustrate the mechanised proof procedure explained above using a fragment of the SystemC controller code
from our case study. Here global shadow variables reqsigNext[i] (the new state required for signal i) and
reqptNext[j] (the new state required for point j) are copied to output signals reqsig[i] (set-state request to
signal i) and reqpt[j] (set-state request to point j) during the output phase of a main loop cycle. Consider the
following fragment from the output phase of a SystemC controller M:

for (int i=0; i<NUM_SIGNALS; i++)
reqsig[i] = reqsigNext[i];

for (int j=0; j<NUM_POINTS; j++)
reqpt[j] = reqptNext[j];

The concrete configuration data for this controller instance defines NUM POINTS=3 and NUM SIGNALS=3. From
that the compiler9 generates the following assembler fragment of A:

movl $0, i
jmp .L103

.L104:
movl i, %edx
movl i, %eax
movl reqsigNext(,%eax,4), %eax
movl %eax, reqsig(,%edx,4)
movl i, %eax
incl %eax
movl %eax, i

.L103:
movl i, %eax
cmpl $2, %eax
jle .L104
movl $0, j
jmp .L106

.L107:
movl j, %edx
movl j, %eax
movl reqptNext(,%eax,4), %eax
movl %eax, reqpt(,%edx,4)
movl j, %eax
incl %eax
movl %eax, j

.L106:
movl j, %eax
cmpl $2, %eax
jle .L107

9 We have used gcc 4.0.2 for this example.

A formal approach for the construction and verification of RCSs 215

eax := i

.L103

i := 0

S11

() :=

eax := i

i := eax

j := 0

eax := j

S12

.L107

(ZF SF) :=

eax := j

j := eax

(2 = eax,
2 > eax)

.L106

[¬(ZF ∨ SF)]
.L104

eax := eax + 1

[ZF ∨

,

SF]

[ZF ∨ SF]

(2 =
ZF SF

eax, 2 > eax)

eax := eax + 1

edx := j

.L107

eax := j

eax := reqptNext[eax]

reqpt[edx] := eax

S12

T 1

edx := i

.L104

eax := i

eax := reqsigNext[eax

reqsig[edx] := eax

S11

[¬(ZF ∨ SF)]

,

Fig. 7. IOTS T 1 associated with A after renaming of variables

Now the mechanised equivalence proof is constructed as follows. (1) The behavioural IOTS model T (A) of A
is constructed by using the semantic evaluation function for assembler programs. After changing the names of
assembler variables to C-style notation according to mapping αM explained above, this results in an IOTS T 1

which is depicted in Fig. 7. (2) The behavioural IOTS model T (M) of M is constructed by using the semantic
evaluation function for SystemC models whereupon the variable space is extended to achieve T (M+) which is
depicted on the left-hand side of Fig. 9. (3) Applying the transformation rule shown in Fig. 6 to the regions
S11 and S12 of T 1 results in an I/O-equivalent IOTS T 2 depicted in Fig. 8. (4) Twofold application of other
transformation rules on T 2 results in I/O-equivalent IOTS T 3 shown on the left-hand side of Fig. 9. (5) Finally, a
valuation-preserving change of guard conditions ([i ≤ 2] �→ [i < 3], [i > 2] �→ [i ≥ 3] etc.) yields T (M+) which
completes the proof, as far as the code fragments shown here for illustration purposes are concerned.

216 A. E. Haxthausen et al.

eax := i

.L103

i := 0

(ZF SF) :=

eax := i

i := eax

j := 0

eax := j

.L107

(ZF SF) :=

eax := j

j := eax

.L106

[¬(ZF ∨ SF)]
.L104

eax := eax + 1

[ZF SF]

[ZF ∨ SF]

eax := eax + 1 λ12

λ11

λ11 =def reqsig[i] := reqsigNext[i]
λ12 =def reqpt[j] := reqptNext[j]

(2 = eax, 2 > eax)

(2 = eax, 2 > eax)

[¬(ZF ∨

,

SF)]

T 2

∨

,

Fig. 8. T 1 �→ T 2: I/O-equivalent transformation

8. Conclusion

In this paper we have given an overview of a complete model-driven development and verification approach for
railway and tram control systems. The approach provides a framework consisting of:

1. A domain-specific language.
2. A collection of tools, including (a) syntax and static semantics checkers for the language, (b) generators

producing executable models of the control system and its physical environment as well as proof obligations,
(c) a bounded model checker, and (d) an object code verifier.

3. A method for using these tools to construct and verify a family of similar control systems.

A formal approach for the construction and verification of RCSs 217

i := 0

[i > 2]

[i ≤ 2]

i := i + 1
j := 0

[j > 2]

[j ≤ 2]

j := j + 1

λ11

λ12

i := 0

[i ≥ 3]

[i < 3]

i := i + 1
j := 0

[j ≥ 3]

[j < 3]

j := j + 1

λ11

λ12

λ11 =def reqsig[i] := reqsigNext[i]
λ12 =def reqpt[j] := reqptNext[j]

T 3 T (M+)

Fig. 9. T 3 �→ T (M+): I/O-equivalent guard transformation

For each control system to be generated, the user makes a description of the application-specific parameters in the
domain-specific language and checks the description by means of the syntax and static semantics checker. Next,
the generators produce models of the control system and its physical environment from this description, together
with the safety requirements which are automatically verified using the bounded model checker in combination
with an inductive proof strategy. Finally—since the formal controller model can be directly compiled—object
code is generated by a conventional compiler, and it is checked by the object code verifier that the object code is
behaviourally equivalent to the control system model. In this way it is ensured that the safety properties established
for the control system model also hold for the object code.

The development of the framework was formalised by using the RAISE formal method, thereby providing
complete and precise specifications of the tools as well as the domain-specific language. This provides a sound
basis for tool implementation and allows for formal mechanised verification of algorithms.

References

[Acc04] Accellera (2004) Property specification language version 1.1
[Ber06] Berkenkötter K (2006) OCL-based validation of a railway domain profile. In: OCLApps 2006—OCL for (meta-)models in

multiple application domains
[BFPT06] Badban B, Fränzle M, Peleska J, Teige T (2006) Test automation for hybrid systems. In: Proceedings of the third international

Workshop on SOFTWARE QUALITY ASSURANCE (SOQUA 2006), Portland Oregon, USA
[BGH+97] Bjørner D, George CW, Stig Hansen B, Laustrup H, Prehn S (1997) A railway system, coordination’97, case study workshop

example. Technical Report 93, UNU/IIST, P.O.Box 3058, Macau

218 A. E. Haxthausen et al.

[Bjø03a] Bjørner D (2003) Domain engineering: a “radical innovation” for Software and Systems Engineering? A Biased Account. In:
Dershowitz N (ed) The Zohar Manna international symposium on “verification: theory & practice”. Springer, Heidelberg,
Germany, July 2003

[Bjø03b] Bjørner D (2003) New results and current trends in formal techniques for the development of software for transportation
systems. In: Proceedings of the symposium on formal methods for railway operation and control systems (FORMS’2003),
Budapest/Hungary. L’Harmattan Hongrie, 15–16 May 2003

[Bjø03c] Bjørner D (2003) Railways systems: towards a domain theory. Technical report, Informatics and Mathematical Modelling,
Technical University of Denmark, Building 322, Richard Petersens Plads, DK-2800 Kgs.Lyngby, Denmark

[Bjø06a] Bjørner D (2006) Software engineering, vol 1: abstraction and modelling. Texts in theoretical computer science. Springer,
Berlin

[Bjø06b] Bjørner D (2006) Software engineering, vol 2: specification of systems and languages. Texts in theoretical computer science.
Springer, Berlin

[Bjø06c] Bjørner D (2006) Software engineering, vol 3: domains, requirements and software design. Texts in theoretical computer
science. Springer, Berlin

[Bjø06d] Bjørner D (2006) The rôle of domain engineering in software development, October 2006. In: Invited keynote paper and talk:
IPSJ/SIGSE software engineering symposium 2006, Tokyo

[Bjø07] Bjørner D (2006) Domain engineering, August 2006, reprinted March 2007. To appear as a chapter in a book based on the
BCS FACS Evening Seminars to be published by Springer, UK

[DC04] Dyhrberg R, Christensen N (2004) A domain-specific language for tramway control systems. Master’s thesis, Informatics and
Mathematical Modelling, Technical University of Denmark, DTU

[DG05] Drechsler R, Große D (2005) System level validation using formal techniques. In: IEE Proceedings-computers and digital
techniques 152(3):393–406

[ECfES01] European Committee for Electrotechnical Standardization (2001) EN 50128—railway applications—communications, sig-
nalling and processing systems—software for railway control and protection systems. CENELEC, Brussels

[EDD+04] Ehrig H, Damm W, Desel J, Große-Rhode M, Reif W, Schnieder E, Westkämper E (eds) (2004) Integration of software spec-
ification techniques for applications in engineering, Lecture Notes in Computer Science, vol 3147. Springer, Berlin. ISBN
3-540-23135-8

[GH03] Gjaldbæk T, Haxthausen AE (2003) Modelling and verification of interlocking systems for railway lines. In: Proceedings of
the 10th IFAC symposium on control in transportation systems. Elsevier Science Ltd, Oxford. ISBN 0-08-044059-2

[GLMS02] Grötker T, Liao S, Martin G, Swan S (2002) System design with SystemC. Kluwer, Dordrecht
[GZ99] Goos G, Zimmermann W (1999) Verification of compilers. In: Correct system design. Springer, Berlin, pp 201–230
[HCD04] Haxthausen AE, Christensen N, Dyhrberg R (2004) From domain model to domain-specific language for railway control sys-

tems. In: Proceedings of formal methods for automation and safety in railway and automotive systems (FORMS/FORMAT
2004), Braunschweig, Germany

[HP00a] Haxthausen AE, Peleska J (2000) Formal development and verification of a distributed railway control system. IEEE Trans
Softw Eng 26(8):687–701

[HP00b] Haxthausen AE, Peleska J (2000) Formal methods for the specification and verification of distributed railway control systems:
from algebraic specifications to distributed hybrid real-time systems. In: Forms ’99—Formale Techniken für die Eisenbahnsi-
cherung Fortschritt-Berichte VDI, Reihe 12, Nr. 436. VDI-Verlag, Düsseldorf, pp 263–271

[HP02] Haxthausen AE, Peleska J (2002) A domain specific language for railway control systems. In: Proceedings of the sixth biennial
world conference on integrated design and process technology, (IDPT2002), Pasadena, California

[HP03a] Haxthausen AE, Peleska J (2003) Automatic verification, validation and test for railway control systems based on domain-
specific descriptions. In: Proceedings of the 10th IFAC symposium on control in transportation systems. Elsevier Science Ltd,
Oxford

[HP03b] Haxthausen AE, Peleska J (2003) Generation of executable railway control components from domain-specific descriptions. In:
Proceedings of the symposium on formal methods for railway operation and control systems (FORMS’2003), Budapest/Hun-
gary, pp 83–90. L’Harmattan Hongrie

[LVH00] Lindegaard MP, Viuf P, Haxthausen AE (2000) Modelling railway interlocking systems. In: Proceedings of the 9th IFAC
symposium on control in transportation systems 2000, 13–15 June 2000. Braunschweig, Germany, pp 211–217

[MP92] Manna Z, Pnueli A (1992) The temporal logic of reactive and concurrent systems. Springer, Berlin
[MRR03] Müller W, Ruf J, Rosenstiel W (2003) SystemC—methodologies and applications, chap 4. Kluwer, Dordrecht, pp 97–126
[PBH00] Peleska J, Baer A, Haxthausen AE (2000) Towards domain-specific formal specification languages for railway control systems.

In: Proceedings of the 9th IFAC symposium on control in transportation systems 2000, 13–15 June 2000. Braunschweig,
Germany, pp 147–152

[PGHD04] Peleska J, Große D, Haxthausen AE, Drechsler R (2004) Automated verification for train control systems. In: Schnieder
E, Tarnai G (eds) Proceedings of the FORMS/FORMAT 2004—formal methods for automation and safety in railway and
automotive systems, pp 252–265. Technical University of Braunschweig, ISBN 3-9803363-8-7

[PH07] Peleska J, Haxthausen AE (2007) Object code verification for safety-critical railway control systems. In: Proceedings of formal
methods for automation and safety in railway and automotive systems (FORMS/FORMAT 2007), Braunschweig, Germany.
GZVB e.V., ISBN 13:978-3-937655-09-3

[PSS98] Pnueli A, Shtrichman O, Siegel M (1998) The code validation tool CVT: automatic verification of a compilation process. Int
J Softw Tools Technol Transf 2(2):192–201

[RAI92] The RAISE Language Group (1992) The RAISE specification language. The BCS practitioners series. Prentice Hall Interna-
tional

[RJB04] Rumbaugh J, Jacobson I, Booch G (2004) The unified modeling language —reference manual, 2nd edn. Addison-Wesley,
Reading

A formal approach for the construction and verification of RCSs 219

[ST04] Schnieder E, Tarnai G (eds) (2004) Proceedings of formal methods for automation and safety in railway and automotive
systems (FORMS/FORMAT 2004), Technical University of Braunschweig, Braunschweig, Germany

[ST07] Schnieder E, Tarnai G (eds) (2007) Proceedings of formal methods for automation and safety in railway and automotive
systems (FORMS/FORMAT 2007), Braunschweig, Germany. GZVB e.V., ISBN 13:978-3-937655-09-3

[TS03] Tarnai G, Schnieder E (eds) (2003) Proceedings of the symposium on formal methods for railway operation and control
systems (FORMS’2003), Budapest, L’Harmattan Hongrie

[W3Ca] XForms 1.0. Available under http://www.w3.org/TR/xforms
[W3Cb] Extensible Markup Language (XML). Available under http://www.w3.org/XML/
[W3Cc] The Extensible Stylesheet Language Family (XSL). Available under http://www.w3.org/Style/XSL

Received 17 December 2008
Accepted in revised form 23 November 2009 by Zhiming Liu and Jim Woodcock
Published online 17 December 2009

http://www.w3.org/TR/xforms
http://www.w3.org/XML/
http://www.w3.org/Style/XSL

	A formal approach for the construction and verification of railway control systems
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Two problem categories
	1.3 Domain-specific approach
	1.4 Automated verification approach
	1.5 Development of languages and tools
	1.6 Related work
	1.7 Paper overview

	2 Method and toolchain: overview
	3 A case study
	3.1 Domain-specific description
	3.2 Generated SystemC models and safety conditions
	3.2.1 Interfaces
	3.2.2 SystemC model for controller
	3.2.3 SystemC model for physical domain
	3.2.4 Safety conditions Φ

	4 From static domain model to domain-specific language
	4.1 RSL static domain model
	4.1.1 Generic network model
	4.1.2 Generic route model

	4.2 Domain-specific language
	4.2.1 RSL specification
	4.2.2 Concrete syntax and static semantics implementation

	5 Generating applications from domain-specific descriptions
	5.1 Components of the controller model generator
	5.2 Generic configurable library
	5.3 DSL rightarrow SystemC parser

	6 Verification of safety requirements
	6.1 Verification objectives
	6.2 Verification assumptions
	6.3 Verification strategy
	6.3.1 Auxiliary condition Ψ
	6.3.2 Additional assumptions

	6.4 Application example

	7 Object code verification
	7.1 Motivation
	7.2 Approach
	7.3 Common semantic foundations: I/O-safe transitions systems
	7.3.1 Abstract syntax and static semantics of IOTS
	7.3.2 Dynamic semantics of IOTS
	7.3.3 IOTS equivalence

	7.4 IOTS transformation rules
	7.5 IOTS semantics of the source and target languages
	7.5.1 Semantics of SystemC models
	7.5.2 Semantics of assembler code

	7.6 Abstraction mappings
	7.7 Implementation relation
	7.8 Automated object code verification
	7.9 Example

	8 Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

