
DOI 10.1007/s00165-009-0133-8
BCS © 2009
Formal Aspects of Computing (2010) 22: 681–711

Formal Aspects
of Computing

Translating FSP into LOTOS and networks
of automata
Frédéric Lang1, Gwen Salaün1,2, Rémi Hérilier1, Jeff Kramer3 and Jeff Magee3

1
Vasy Project-Team, Inria Grenoble Rhône-Alpes/Lig, 655 avenue de l’Europe, Montbonnot, 38334 St Ismier Cedex, France.

E-mail: Frederic.Lang@inria.fr
2 Grenoble Institut National Polytechnique, Grenoble, France
3 Department of Computing, Imperial College, London, UK

Abstract. Many process calculi have been proposed since Robin Milner and Tony Hoare opened the way more
than 25 years ago. Although they are based on the same kernel of operators, most of them are incompatible
in practice. We aim at reducing the gap between process calculi, and especially making possible the joint use of
underlying tool support. Finite state processes (FSP) is a widely used calculus equipped with Ltsa, a graphical
and user-friendly tool. Language of temporal ordering specification (Lotos) is the only process calculus that has
led to an international standard, and is supported by the Cadp verification toolbox. We propose a translation
of FSP sequential processes into Lotos. Since FSP composite processes (i.e., parallel compositions of processes)
are hard to encode directly in Lotos, they are translated into networks of automata which are another input
language accepted by Cadp. Hence, it is possible to use jointly Ltsa and Cadp to validate FSP specifications. Our
approach is completely automated by a translator tool.

Keywords: Automated translation, Communicating automata, FSP, Lotos, Parallel composition,
Process algebra, Verification

1. Introduction

Process calculi (or process algebras) are abstract description languages to specify concurrent systems. The process
algebra community has been working on this topic for 25 years and many different calculi have been proposed.
Meanwhile, several toolboxes have been implemented to support the design and verification of systems speci-
fied with process calculi. However, although they are based on the same kernel of operators, most of them are
incompatible in practice. In addition, there are very few bridges between existing verification tools. Our goal is
to reduce the gap between the different formalisms, and to propose some bridges between existing tools to make
their joint use possible.

We focus here on the process calculi finite state processes (FSP) and Lotos. FSP [MK06] is an easy to learn
process calculus conceived to make specifications easy to write and concise. FSP is supported by Ltsa, a user-
friendly tool that compiles FSP specifications into finite state machines known as labeled transition systems

Correspondence and offprint requests to: F. Lang. E-mail: Frederic.Lang@inria.fr

682 F. Lang et al.

(LTSs), visualising and animating Ltss through graphical interfaces, and verifying LTL properties. FSP/Ltsa are
quite widely used: Magee and Kramer’s book on Concurrency [MK06], which presents FSP and Ltsa, has sold
over 15, 000 copies, courses using FSP/Ltsa are taught at numerous universities worldwide, and a considerable
number of research groups are using FSP/Ltsa in their research (589 citations in Google Scholar as of January
2009).

On the other hand, Lotos is an ISO standard [ISO89], which has been applied successfully to many appli-
cation domains. Lotos is more structured than FSP, and then adequate to specify complex systems possibly
involving data types. Lotos is equipped with Cadp [GLMS07], a verification toolbox for asynchronous concur-
rent systems distributed worldwide, which allows very large state spaces to be handled, and implements various
verification techniques such as model checking, compositional verification, equivalence checking, distributed
model checking, etc.

To sum up, the simplicity of FSP makes it more accessible to “newcomers” than Lotos, which requires a
better level of expertise. In addition, Cadp is a rich and efficient verification toolbox that can complement basic
analysis possible with Ltsa. We propose to translate FSP specifications into Lotos to enable FSP users to access
the verification techniques available in the Cadp toolbox. Since some FSP constructs for composite processes
are difficult to encode into Lotos (for instance synchronisations between complex labels or priorities), they have
been encoded into another input format of Cadp named Exp.Open 2.0 [Lan05] (simply written Exp.Open in the
sequel). Exp.Open allows networks of automata to be described using general parallel composition operators,
but also supports renaming, hiding and priorities.

Our goal is not to replace Ltsa, since Ltsa is convenient to debug and visualise graphically simple examples,
but to complement it with supplementary verification techniques such as those mentioned before. Furthermore,
we choose a high-level translation between process calculi, as most as possible, instead of low-level connections
with Cadp (through the Open/CÆsar application programming interface [Gar98] for instance) because:

• We preferred to keep the expressiveness of the specification and then make the translation of most behavioural
operators easier;

• High-level models are necessary to use some verification techniques available in Cadp, such as compositional
verification [GL01, Lan02, Lan05, Lan06];

• Verification of the generated Lotos code can benefit from the numerous optimisations implemented in the
CÆsar.adt and CÆsar [Gar89a, Gar89b, Gar90, GS06] compilers for Lotos available in Cadp, which would
be too expensive to re-implement for FSP.

We implemented the translation from FSP to Lotos/Exp.Open in a completely automated tool named
Fsp2Lotos (about 25,000 lines of code). This tool was validated on many examples (more than 10,000 lines
of FSP) to ensure that the translation is reliable. As regards semantics, our translation preserves strong equiva-
lence between processes.

The remainder of this article is organised as follows. Section 2 gives short introductions to Ltss, FSP, Lotos,
and Exp.Open. Section 3 presents formally the translation rules from FSP sequential processes into Lotos and
from FSP composite processes into Exp.Open. Section 4 presents the Fsp2Lotos tool and its validation. Section 5
illustrates how Ltsa and Cadp can be used jointly on a simple system. Section 6 presents some related work.
Section 7 provides concluding remarks.

2. Background

In this section, we present the underlying semantic model used in this work, namely Labeled Transition Systems
(Ltss) as well as the source language FSP and the target languages Lotos and Exp.Open of our translator.

2.1. Labeled transition systems and bisimulations

An Lts is a graph defined as a quadruple “(Q,A,→, q0)”, consisting of a set Q of states, a set A of symbols
called labels or actions, a labeled transition relation “→ ⊆ Q × A × Q”, and an initial state “q0 ∈ Q”. As usual,
we write “q1

a−→ q2” instead of “(q1, a, q2) ∈ →”.

Translating FSP into LOTOS and networks of automata 683

Following CCS, Lts is the semantic model underlying FSP, Lotos, and Exp.Open: to each process can be
associated an Lts that defines the behaviour of the process exhaustively. In addition, an Lts usually has a special
symbol that denotes an internal action of the process. This symbol is generally written τ in theoretical work, and
more concretely written “i” in Lotos/Cadp and “tau” in FSP/Ltsa.

The Lts model used in Ltsa also has a special sink state (i.e., a state without outgoing transitions) modeling
an error of the system, called error state. Such an error state can be encoded in the above Lts model as a normal
state that contains a single self-looping transition labeled by a special error symbol.

To decide whether two processes are equivalent, one has to compare the Ltss associated to each process.
To this aim, we follow the approach based on graph bisimulations. Of interest in this work are strong bisimu-
lation [Par81], which captures the fact that two processes have exactly the same behaviour, including internal
actions (τ -transitions), and branching bisimulation [vGW89], which captures the fact that two processes have
similar behaviours, except differences on internal actions provided they do not affect the choices of non-internal
actions available from branching bisimilar states. Two processes are strongly equivalent (respectively branching
equivalent) if their corresponding Ltss are strongly bisimilar (respectively branching bisimilar). More formally,
let “(Q,A,→, q0)” be an Lts, and q1 and q2 be states of that Lts:

• q1 and q2 are strongly bisimilar if there exists a relation “R ⊆ Q × Q” such that “R(q1, q2)” and (1) for each
transition “q1

a−→ q ′
1”, there is a transition “q2

a−→ q ′
2” such that “R(q ′

1, q
′
2)”, and (2) for each transition

“q2
a−→ q ′

2”, there is a transition “q1
a−→ q ′

1” such that “R(q ′
2, q

′
1)”.

• q1 and q2 are branching bisimilar if there exists a relation “R ⊆ Q × Q” such that “R(q1, q2)” and (1) for
each transition “q1

a−→ q ′
1”, either “a � τ” and “R(q ′

1, q2)”, or there is a path “q2
τ∗−→ q ′

2
a−→ q ′′

2 ” such that
“R(q1, q ′

2)” and “R(q ′
1, q

′′
2)”, and (2) for each transition “q2

a−→ q ′
2”, either “a � τ” and “R(q ′

2, q1)”, or there
is a path “q1

τ∗−→ q ′
1

a−→ q ′′
1 ” such that “R(q2, q ′

1)” and “R(q ′
2, q

′′
1)”.

Two Ltss “(Qi ,Ai ,→i , q0i) (i ∈ {0, 1})” are strongly bisimilar (respectively branching bisimilar) if the states
q00 and q01 are strongly bisimilar (respectively branching bisimilar) in the Lts “(Q0�Q1,A0∪A1,→0 ∪ →1, q00)”,
where “Q0 � Q1” denotes the disjoint union of Q0 and Q1.

In every class of strongly bisimilar (respectively branching bisimilar) Ltss, there exists a unique representative
(modulo a renaming of states) that is minimal in number of states and transitions. We call Lts minimization
the computation of this representative, for which there exists efficient algorithms [PT87, GV90, KS90] and
tools [BO05, GLMS07].

The Lts model also allows temporal logic formulas to be verified by evaluation on the initial state of the Lts.
For instance, Ltsa allows the specification and verification of safety and progress properties themselves written
in FSP, and Cadp allows the specification and verification of temporal logic formulas expressed in the regular
alternation-free μ-calculus [MS03].

2.2. Finite state processes

FSP is a recent process calculus [MK99, MK06] originally proposed to design software architectures [MDEK95,
Mag99]. FSP allows Booleans, integers, constant character strings, and sets to represent data, as well as processes
to represent behaviours. An FSP process may be either basic (i.e., sequential) or composite (i.e., built from parallel
compositions of processes).

We give here a short presentation of FSP processes in the form of an abstract grammar, which allows us to get
rid of details of FSP’s concrete syntax. We omit the “@” visibility operator, whose treatment is close to its dual
hiding operator, although our tool presented in Sect. 4 supports this operator. Also, we do not handle safety and
progress properties which, in further work, could be translated into regular alternation free modal μ-calculus
formulas in order to be verified using the Evaluator [MS03] tool of Cadp. A comprehensive concrete syntax of
FSP is described in Magee and Kramer’s book [MK06].

Figures 1 and 2 present the grammar of FSP basic and composite processes, respectively. In the gram-
mar, and also in the sequel, we use “. . .” and indexed terms to represent sequences of arbitrary length. For
instance, “V1, . . . ,Vn” represents a possibly empty sequence of terms separated by commas. Note that “. . .”
should not be confused with the “..” terminal symbol of FSP. We use the symbol P (or “P1,P2, . . .”) to rep-
resent process identifiers, x (or “x1, x2, . . .”) to represent variables, act to represent character strings, and V (or
“V1,V2, . . .”) to represent data expressions. To avoid details about the concrete syntax of data expressions, we
consider that an expression is either a variable x , or the application of a function f to expressions “V1, . . . ,Vn”,

684 F. Lang et al.

Fig. 1. Abstract grammar of the FSP language: basic processes

written “f (V1, . . . ,Vn)”. Without loss of generality, literal constants can be considered as functions without
parameters.

FSP has an expressive syntax to represent labels. FSP labels, written A (or “A′,A1,A2, . . .”), are concatena-
tions of sublabels written L (or “L′,L1,L2, . . .”), each of which is either a character string act , an expression V ,
a nonempty set of labels “{A1, . . . ,An}”, or a nonempty integer range “V1..V2”, where V1 and V2 are integer
expressions. An FSP label thus denotes a set of label strings obtained by (combinatorial) concatenation of sub-
label strings. When a variable x is associated to a sublabel, such as in “x:V1..V2”, x is assigned any value in the
label set corresponding to the sublabel.

A basic process definition Db consists of:

• a process name P ;
• a (possibly empty) list of data parameters “xi (i ∈ 1..k)”, each data parameter being assigned a default value

Vi ;
• a basic behaviour B0, described below;
• a (possibly empty) list of local process definitions “Dl 1, . . . ,Dlm”;
• a (possibly empty) set of relabeling rules “{A′

r1
/Ar1 , . . . ,A

′
rp

/Arp
}”, which apply to the labels of B0, where

“Ari
,Ar ′

i
(i ∈ 1..p)” are label expressions: each label in the label set corresponding to Ari

renames into labels
corresponding to A′

ri
(i.e., a single label may rename into several labels);

• a (possibly empty) set of FSP labels “{Ah1 , . . . ,Ahq
}” to be hidden in B0, i.e., renamed into the internal action

tau;
• a (possibly empty) set of labels “{Ae1 , . . . ,Aen

}” which, together with the set of non-hidden labels occurring
in B0 constitutes the alphabet of the process.

Each local process is defined by an ordered set of equations, each of the form “P[x 1
i :L

1
i] . . . [xn

i :L
n
i] �

Bi”, where “x 1
i , . . . , xn

i ” are variables and each label Lj
i does not contain expressions. In the concrete syn-

tax, each “x j
i (j ∈ 1..n)” is optional, but we make them mandatory in the abstract syntax so as to simplify

the presentation of translation rules. Parsing into the abstract syntax may thus require adding some dummy

Translating FSP into LOTOS and networks of automata 685

Fig. 2. Abstract grammar of the FSP language: composite processes

variables x j
i for those Lj

i not preceded by a variable in the concrete syntax. Also, FSP’s concrete syntax allows
the definition of several local processes with same name but different arities. Instead, we assume that parsing has
associated a unique name to each local process, which corresponds to a particular ordered set of equations Dl .

A local process call of the form “P [V1] . . . [Vn]” is substituted by the first Bi such that “L1
i , . . . ,L

n
i ” contain

respectively the values “V1, . . . ,Vn”, in which each “x j
i (j ∈ 1..n)” is replaced by Vj . If no such Bi exists, then

the process call is equivalent to “error”.
As regards hiding and relabeling, FSP uses label prefix matching, which means that the rules apply to label

prefixes. For instance, as regards hiding, a label is hidden if some of its prefixes belongs to the set of labels to be
hidden.

The operational semantics of FSP can be expressed in terms of an Lts. Informally, the semantics of sequential
behaviours is the following:

• The “stop” behaviour corresponds to deadlock termination. No transition can be derived from “stop”.
• The “end” behaviour corresponds to successful termination. It does not produce a transition but, if it occurs

in the left part of the sequential composition operator “;”, then the execution of the right part immediately
starts.

• The “error” behaviour corresponds to erroneous termination. It is modeled by the error state.
• “A → B0” corresponds to the prefixing of behaviour B0 by any action a belonging to A. It produces a tran-

sition labeled by a and then behaves as B0, in which every variable x possibly defined in A is replaced by its
value.

• “P(V1, . . . ,Vn);B0” corresponds to the execution of the basic global process P with actual parameters
“V1, . . . ,Vn”, followed by B0 once P has terminated succesfully. FSP’s concrete syntax also allows calls of
the form “P(V1, . . . ,Vn)” (not followed by a behaviour B0), which is parsed into “P(V1, . . . ,Vn);end” in
the abstract syntax.

• “P[V1] . . . [Vn]” corresponds to the execution of the local process P , indexed by “V1, . . . ,Vn”. A local
process call cannot be followed by another behaviour.

• “if V then B1 else B2” behaves as B1 if V evaluates to true, and as B2 otherwise.
• “when V1 B1 | . . . | when Vn Bn” behaves nondeterministically as any branch Bi whose condition Vi evaluates

to true.

A composite process definition Dc consists of:

• a process name P , the symbol “||” which precedes P indicating that P belongs to the class of composite
processes;

• a (possibly empty) list of data parameters “xi (i ∈ 1..k)”, each data parameter being assigned a default value
Vi ;

686 F. Lang et al.

Fig. 3. Process labeling and process sharing in FSP

• a composite behaviour C0, described below;
• a (possibly empty) list of labels “{Ap1 , . . . ,Apn

}” that are assigned either higher (symbol “
”) or lower (symbol
“�”) priority than all other labels occurring in C0;

• a (possibly empty) set of FSP labels “{Ah1 , . . . ,Ahq
}” to be hidden, i.e., renamed into tau.

The semantics of composite behaviours C is the following:

• “P(V1, . . . ,Vn)” corresponds to a (basic or composite) process call.
• “C1|| . . . ||Cn” corresponds to the parallel composition of the composite behaviours “C1, . . . ,Cn”. All

behaviours among “C1, . . . ,Cn” that contain a common label in their alphabets must synchronise all together
on that label.

• “C0/{A′
1/A1, . . . ,A′

n/An}” corresponds to the relabeling of C0, which has the same semantics as for basic
processes.

• “{A1, . . . ,An }:C0”, called process labeling, generates an interleaving of as many instances of C0 as there are
labels in “{A1, . . . ,An}”. All the labels of each instance are prefixed by the label of “{A1, . . . ,An }” associated
to this instance. It is assumed that “n �� 0”.

• “{A1, . . . ,An }::C0”, called process sharing, replaces each label l occurring in C0 by a choice between labels
“A1l , . . . ,An l”. It is assumed that “n �� 0”.

• “if V then C1 else C2” behaves as C1 if V evaluates to true, and as C2 otherwise.
• “forall [x1:L1] . . . [xn:Ln] C0” corresponds to the parallel composition of as many instances of C0 as there are

valuations of “x1, . . . , xn” such that the value of each xi belongs to the set of labels “Li (i ∈ 1..n)”. In each
instance of C0, each “xi (i ∈ 1..n)” is replaced by its value in the corresponding valuation.

Example 1 An illustration of process labeling and process sharing is given in Fig. 3. The figure shows the automata
corresponding to the following processes:

P = comm -> end
||C1 = {a, b}: P
||C2 = {a, b}:: P

�
An FSP specification consists of a set of basic (Db) and composite (Dc) process definitions. We note “P̂” the

process definition corresponding to the basic or composite process P , and we note “P̂ [V ′
1, . . . ,V

′
k]” the process

definition corresponding to P , in which the default parameter values “V1, . . . ,Vk” are replaced by “V ′
1, . . . ,V

′
k”.

For instance, if “P̂” corresponds to:

||P(x1=V1, . . . , xk=Vk) = C � {Ap1 , . . . ,Apn
} \{Ah1 , . . . ,Ahq

}
then “P̂ [V ′

1, . . . ,V
′
k]” corresponds to:

||P(x1=V ′
1, . . . , xk=V ′

k) = C � {Ap1 , . . . ,Apn
} \{Ah1 , . . . ,Ahq

}.
The behaviour of the whole FSP specification is that of a particular process, which may be either selected by

the user, or chosen by default. We call this particular process the main process of the FSP specification.

Example 2 The following specification describes in FSP’s concrete notation a semaphore inspired from an exam-
ple in [MK06]. The indexed process notation “SEMA[v:Int]” represents two processes named “SEMA[0]” and
“SEMA[1]”, which are mutually recursive. The “ACCESS” process simulates a client which accesses the critical
section protected by the “SEMAPHORE” process. The main process, called “SEMADEMO”, is composed of an instance
of the “SEMAPHORE” process that models a semaphore in charge of three resources “a, b, c”, and an instance of
the “ACCESS” process that wants to access these resources.

Translating FSP into LOTOS and networks of automata 687

Fig. 4. Transition system computed by Ltsa for the “SEMADEMO” specification

Fig. 5. Syntax of a Lotos process definition

range Int = 0..1

SEMAPHORE (N = 0) = SEMA[N],
SEMA[v:Int] = (up -> SEMA[v+1] | when (v > 0) down -> SEMA[v-1]).
ACCESS = (mutex.down -> critical -> mutex.up -> ACCESS).
||SEMADEMO = ({a,b,c}:ACCESS || {a,b,c}::mutex:SEMAPHORE(1)).

The Lts corresponding to the exhaustive behaviour of “||SEMADEMO” process is depicted in Fig. 4. �

2.3. Language of temporal ordering specification

Language of temporal ordering specification (Lotos) is a specification language for distributed open systems,
standardised by Iso [ISO89]. Lotos combines a data part based on algebraic abstract data types to define data and
their operations, and a control part to define (sequential and parallel) processes, inspired from the CCS [Mil89]
and CSP [Hoa85] process algebras. In this section, we do not present Lotos data part, which is not intensively
used in the translation since FSP does not handle complex data types. Their translation into Lotos makes no
particular difficulty. We do not present Lotos parallel composition operators either, since Lotos is used only
as target language for translating FSP sequential processes, the Exp.Open language (see Sect. 2.4) being used as
target language for FSP composite processes.

A Lotos process has the syntax given in Fig. 5. It consists of:

• a process name P ;
• a list of gate parameters “G1, . . . ,Gn”;
• a list of data parameters “X1, . . . ,Xm” of respective types (in Lotos terminology: sorts) “T1, . . . ,Tm”;
• a functionality among “exit” if P may end by the “exit” behaviour, and “noexit” otherwise;
• a behaviour B0;
• and a possible set of local process definitions “D0, . . . ,Dp”.

Figure 6 gives the grammar of the subset of Lotos behaviours used in this article, which consists of sequen-
tial behaviours only. The operational semantics of sequential behaviours can be expressed in terms of an Lts.

688 F. Lang et al.

Fig. 6. Syntax of a subset of (sequential) Lotos behaviours

Intuitively, the semantics is the following:

• The “stop” behaviour corresponds to deadlock termination. No transition can be derived from “stop”.
• The “exit” behaviour corresponds to normal termination. It produces a transition labeled by “exit” and then

behaves like “stop”.
• “[V] → B0” behaves either as B0 if the expression V evaluates to true, or as “stop” otherwise.
• “B1[]B2” behaves nondeterministically, either as B1 or as B2.
• “B1>>B2” behaves as B1 until B1 terminates normally, i.e., produces a transition labeled by “exit”. This tran-

sition is then consumed by the “>>” operator and turned into an internal action“i”, followed by the behaviour
of B2.

• “P[G ′
1, . . . ,G

′
n](V1, . . . ,Vm)” corresponds to a call to process P . If P is defined as in Fig. 5, this call

behaves as B0 in which the formal gate parameters “G1, . . . ,Gn” are replaced respectively by the actual
gate parameters “G ′

1, . . . ,G
′
n”, and the formal data parameters “X1, . . . ,Xm” are replaced respectively by

the actual values (expressions) “V1, . . . ,Vm”. Cyclic behaviours may be defined using tail-recursive process
calls.

• “choice X : T [] B0” behaves as a nondeterministic choice between all instances of B0 in which X is replaced
by some value in T .

• “G O1 . . . On [V]; B0” corresponds to the prefixing of behaviour B0 by action “G O1 . . . On [V]”,
where G is a gate, “O1, . . . ,On” are data expressions called offers, and V is a Boolean data expression
called guard. Each offer Oi has either the form “!Vi”, which corresponds to the emission of a value Vi ,
or “?Xi : Ti”, which corresponds to the reception of any value Vi of sort Ti , stored in a variable Xi . If
the guard V in which every variable Xi is replaced by Vi evaluates to true, then “G O1 . . . On [V]; B0”
produces a transition labeled by “G !V1 . . . !Vn” and then behaves as B0 in which every variable Xi is
replaced by Vi . Otherwise, it behaves as “stop”. For instance, “RECV ?X : Nat [X ≥ 1]; SEND !X ; stop”
produces either a transition labeled by “RECV !0” followed by a transition labeled by “SEND !0”, and
then stops, or a transition labeled by “RECV !1” followed by a transition labeled by “SEND !1”, and
then stops. The special action “i” corresponds to an internal action and can neither have offers nor
guards.

• “hide G1, . . . ,Gn in B0” behaves as B0, except that for every transition produced by B0, the gate of which
belongs to “G1, . . . ,Gn”, the transition label is replaced by the internal action “i”.

Translating FSP into LOTOS and networks of automata 689

Fig. 7. Ltss generated by the CÆsar tool of Cadp for the instances “SEMAPHORE LOTOS [UP, DOWN] (0)” (left) and
“ACCESS LOTOS [MUTEX UP, MUTEX DOWN, CRITICAL]” (right) of the sequential processes defined in Example 3

Example 3 The following example describes in Lotos’s concrete syntax two sequential processes named
“SEMAPHORE LOTOS” and “ACCESS LOTOS”.

process SEMAPHORE_LOTOS [UP, DOWN] (N : Nat) : noexit :=
[N < 4] ->

UP; SEMAPHORE_LOTOS [UP, DOWN] (N + 1)
[]
[N > 0] ->

DOWN; SEMAPHORE_LOTOS [UP, DOWN] (N - 1)
endproc

process ACCESS_LOTOS [MUTEX_UP, MUTEX_DOWN, CRITICAL] : noexit :=
MUTEX_DOWN;

CRITICAL;
MUTEX_UP;

ACCESS_LOTOS [MUTEX_UP, MUTEX_DOWN, CRITICAL]
endproc

The Ltss corresponding to the instances “SEMAPHORE LOTOS [UP, DOWN] (0)” and
“ACCESS LOTOS [MUTEX UP, MUTEX DOWN, CRITICAL]” are given in Fig. 7. �

2.4. EXP.OPEN

Exp.Open 2.0 [Lan05] is a tool of the Cadp toolbox that allows all applications written using the
Open/CÆsar [Gar98] application programming interface to be executed directly on networks of communicat-
ing automata. Cadp contains Open/CÆsar applications for step-by-step and random simulation, temporal logic
verification, equivalence checking, test generation, etc. For instance, the evaluation of a temporal logic for-
mula described in the file “prop.mcl” on the network of automata described in the file “spec.exp” using the
Open/CÆsar application of Cadp named Evaluator [MS03] can be done using the single command “exp.open
spec.exp evaluator prop.mcl”.

The input language of Exp.Open, which we also call Exp.Open, allows the description of such networks
using synchronisation vectors, and generalisations of several parallel composition, renaming, hiding, cutting,
and priority operators taken from the process algebras CCS, CSP, Lotos, E- Lotos, and μCrl.

While Lotos synchronisation rules depend on the gate name and only allow synchronisations of transitions
that have the same label, Exp.Open allows more flexible label handling mechanisms, such as synchronisations
determined by regular expressions, and renaming, hiding, cutting, and synchronisation rules that may depend
either upon the gate part of labels as in Lotos, or upon labels as a whole. This additional flexibility of Exp.Open

with respect to Lotos will be appropriate when translating FSP concurrent constructs, whose semantics is not
easily expressible in Lotos. For this reason, we use Exp.Open instead of Lotos as the target language for FSP
concurrent behaviours.

Despite this generality, Exp.Open satisfies nice congruence properties inherited from process algebras, namely:
strong bisimulation is a congruence for all Exp.Open operators, and branching bisimulation [vGW89], obser-
vational equivalence [Mil89], trace equivalence (also known as language equivalence), weak trace equiva-
lence [BHR84], and safety equivalence [BFG+91] (among others) are congruences for all Exp.Open operators
except priority.

690 F. Lang et al.

Fig. 8. Syntax of a subset of the Exp.Open language

We present in Fig. 8 the part of the Exp.Open language that is used in this article. “L1,L′
1,L2, . . .” represent

labels, which are merely character strings. In the case of “rename”, “hide”, “cut”, and “prio”, they may also
be regular expressions aimed to match labels. As FSP and Lotos, Exp.Open expressions have an operational
semantics defined in terms of an Lts:

• “"F.bcg"” is the name of a file describing an Lts. Its format called binary coded graph (Bcg) [GLMS07]
allows a compact representation of very large Ltss.

• “total rename L1 → L′
1, . . . ,Ln → L′

n in B0 end rename” behaves as B0 except that every label matching one
of the “Li (i ∈ 1..n)” is replaced by the corresponding L′

i .
• “total hide L1, . . . ,Ln in B0 end hide” behaves as B0 except that every label matching one of the “Li (i ∈ 1..n)”

is replaced by the internal action “i”.
• “total cut L1, . . . ,Ln in B0 end cut” behaves as B0 except that every transition whose label matches one of the

“Li (i ∈ 1..n)” is cut, thus potentially making unreachable some states of B0.
• “total prio L1, . . . ,Ln > all but L1, . . . ,Ln inB0 end prio” behaves as B0 except that every transition whose label

matches one of the “Li (i ∈ 1..n)” takes priority over all other transitions. For “total prio all but L1, . . . ,Ln >
L1, . . . ,Ln in B0 end prio”, the priority relation is inversed.

• “label par L1, . . . ,Lm in B1 || . . . || Bn end par” behaves as the concurrent execution of “B1, . . . ,Bn” with
mandatory (n-ary) synchronisation on the labels “L1, . . . ,Lm”.

• “label par V1, . . . ,Vm in B1 || . . . || Bn end par” behaves as the concurrent execution of “B1, . . . ,Bn”
with synchronisation following the constraints expressed by the synchronisation vectors “V1, . . . ,Vm”. Pre-
cisely, a synchronisation vector (between n expressions “B1, . . . ,Bn”, with “n ≥ 1”) is a term of the form
“A1 ∗ . . . ∗ An → L”, where each Ai is either a label, which corresponds to an action of Bi , or the special
symbol “ ”, which corresponds to inaction of Bi . In a given state, the vector “A1 ∗ . . . ∗ An → L” produces a
transition labeled by L if all Bi such that “Ai �� ” execute all together a transition labeled by Ai . We call n
the length of the synchronisation vector.

• “B1 ||| B2” behaves as the concurrent execution of B1 and B2 without synchronisation.

Exp.Open provides other variants of the “hide”, “rename”, “cut”, “prio”, and “par” operators (see [Lan05] for
more details). The semantics of each variant is determined by the keyword (“total” and “label” for the operators
described above) that precedes the operator name.

Translating FSP into LOTOS and networks of automata 691

3. Translating FSP processes into LOTOS and EXP.OPEN

In this section, we describe how a process P of an FSP specification is translated into Lotos and Exp.Open.

3.1. Preliminary definitions

We will present the translation from FSP to Lotos using first-order logic and its usual notions of variables,
(open and closed) terms, and formulas. Sets may be defined either in extension in the form “{e1, . . . , en }”,
or in intension in the form “{t | F (x1, . . . , xn)}”, where t is a term and F a formula whose free variables
“x1, . . . , xn” are variables of t . The latter denotes the set of closed instances of the term t , such that the valuation
of “x1, . . . , xn” satisfies the formula “F (x1, . . . , xn)”. All sets mentioned in this article will be finite.

We represent a partial function from a set S1 to a set S2 as a set of couples of the form “e1 �→ e2”, where
e1 and e2 are elements of S1 and S2, respectively. We assume that, for a given e1, at most one e2 exists such that
“e1 �→ e2” belongs to the set. The domain of a function f , denoted by “dom(f)”, is defined as the set of elements
“e1 ∈ S1” such that there exists a couple of the form “e1 �→ e2” in f . In this case, we write “f (e1) � e2”. If
“e1 �∈ dom(f)” then “f (e1)” is not legal (undefined value). We represent the empty list by “()” and the list of head
e and tail T by “e :: T”.

During the translation from FSP to Lotos, we will use the following functions and predicates:

• We write “l · m” the concatenation of labels l and m. We write “ε” the neutral element of concatenation, i.e.
such that “(∀ l) ε · l � l · ε � l”.

• The dispatching function “�→d” takes two sets of labels. It returns a partial function from labels to sets of labels,
which associates every element of the first set to the second:

{li | i ∈ 1..n} �→d {mj | j ∈ 1..p} � {li �→ {mj | j ∈ 1..p} | i ∈ 1..n}
• Function “⊗” takes two sets of labels and returns the set of labels obtained by (combinatorial) concatenation

of labels taken in each set:

{li | i ∈ 1..n} ⊗ {mj | j ∈ 1..p} � {li · mj | i ∈ 1..n ∧ j ∈ 1..p}
• The prefix matching test “pm?” takes as inputs a label l and a set of labels, and evaluates to true if one of the

labels in the list is a prefix for l :

pm?(l , {li | i ∈ 1..n}) � ((∃i ∈ 1..n) (∃m) l � li · m)

• A relabeling is a partial function from labels to sets of labels, such that a single label may be replaced by several
ones, yielding several transitions. Function “relabel” takes as inputs a label l and a relabeling, and returns the
set of labels obtained after relabeling every prefix of l that belongs to the domain of the relabeling:

relabel(l ,R) �
{ {m ′ · l ′ | l � m · l ′ ∧ m ∈ dom(R) ∧ m ′ ∈ R(m)} if pm?(l , dom(R))

{l} otherwise

• In the sequel, FSP sequential composition will have to be translated into the Lotos sequential composition
operator “B1>>B2”, whose semantics introduces an internal action “i” between the end of B1 and the begin-
ning of B2. This internal action does not exist in the semantics of FSP sequential composition. We will see
that, to ensure a strong equivalence between the source FSP specification and the target Lotos specification
of a sequential process1, those internal actions can be removed by using Lts minimisations modulo branching
bisimulation. Therefore, we must distinguish such “i” actions from the internal actions obtained by hiding of
FSP labels, which must appear in the Lts corresponding to the specification. Therefore, we consider a different
Lotos label written “TAU”, as well as the following function “hide”, which takes as inputs a label l and a set of
labels H , and returns “TAU” if l has to be hidden, or l otherwise:

hide(l ,H) �
{
TAU if pm?(l ,H)
l otherwise

1 Note that weaker equivalences are not congruences in concurrent languages which contain priority operators, such as FSP. Therefore,
strong equivalence is an important requirement as regards the semantic correctness of the translator.

692 F. Lang et al.

As regards FSP data expressions, we will also use the standard function “type”, which computes the type of
an FSP expression.

The translation of an FSP specification into Lotos/Exp.Open requires to collect and propagate along the
abstract syntax tree of the FSP specification, information about the context of the process under translation.
Such context information, called an environment, consists of the following elements:

• E , called variable environment, is a partial function from variables to Lotos expressions. E is initialised with
the constant definitions, which are global to all processes, and will be extended to store the value of parameters
and variables.

• X , called constraint environment, is a partial function from variables to integer ranges of the form “(v1, v2)”
corresponding to the set of natural numbers ranging from v1 to v2. For a variable x , “X (x)” denotes the set of
numbers in which x may take its value.

• M , called relabeling environment, is a list of tuples “(R,H)” where R is a relabeling and H is a set of labels to
be hidden.

3.2. Translating data and label expressions

Given a variable environment E , an FSP data expression is translated into a Lotos data expression using the
“f2le” function defined below. We assume that every FSP data operator written “f” can be translated into a Lotos

data operator “f”. Indeed, FSP contains a fixed set of data operators, which can be easily translated into Lotos

data operators, defined using first order conditional algebraic equations. The precise translation of FSP data
operators into Lotos is standard and out of the scope of this paper.

f2le : FSP expression × variable environment → Lotos expression

f2le(x ,E) � E (x)

f2le(f (V1, . . . ,Vn),E) � f (f2le(V1,E), . . . , f2le(Vn ,E))

Both FSP and Lotos have a rich syntax of expressions to represent labels, so that each label expression eval-
uates into a set of labels. However, label expressions are structured much differently in each of these languages.

On the one hand, FSP label expressions are concatenations of smaller label expressions. It is not always
possible to say at compile-time whether a label expression will be renamed or hidden, because the hiding or
renaming operator will act differently on the different values of the label expression. The label expression has to
be expanded , i.e., replaced by its values (a set of labels) to determine which labels of this set are to be renamed or
hidden. This is how Ltsa operates while generating a transition system corresponding to an FSP specification.

On the other hand, Lotos labels are more structured, since they consist of a static part (the gate) and an evalu-
able part (the offers). The fact that a label expression will be renamed (through gate instantiation) or hidden can be
determined statically because it only depends on the gate part. This is how the CÆsar compiler of Lotos operates.

Therefore, the translation from FSP labels into Lotos cannot be straightforward: in some cases, we can trans-
late an FSP label expression into a single Lotos label expression, but in many cases, we must expand the FSP
label expression into several Lotos labels, depending on the operations performed on the labels.

To translate labels, we thus define two functions, named “expand” and “expandx”, defined below, which trans-
late an FSP label expression in a given environment into a set of tuples consisting of a Lotos label and an updated
environment. Function “expand” expands each FSP label expression into a set of couples consisting of a Lotos

label without variables and a variable environment that associates to each variable occurring in the FSP label
the value given by the expansion. For instance, the FSP label “x : 0..2” is translated by “expand” into the set
“{(0, {x �→ 0}), (1, {x �→ 1}), (2, {x �→ 2})}” corresponding to all possible values for the FSP label and subsequent
bindings for x . By contrast, function “expandx” keeps the range variables occurring in the FSP label expression as
this allows the translation of FSP labels into more compact sets of Lotos labels. It thus expands each FSP label
expression into a set of triples consisting of a Lotos label which may contain variables, a variable environment,
and a constraint environment that associates the appropriate range to each variable occurring in the FSP label.
For instance, the FSP label “x : 0..2” is translated by “expandx” into the set “{(x , {x �→ x }, {x �→ (0, 2)})}”.
During the translation, function “expand” will be used instead of “expandx” only when required for a correct
translation of FSP hiding or renaming be possible.

Translating FSP into LOTOS and networks of automata 693

Functions “expand” and “expandx” use respectively the auxiliary functions “expandl” and “expandlx” defined
thereafter, which expands a sublabel.

expand : FSP label × variable environment → (expanded label × variable environment) set

expand(L1 . . .Ln ,E) � {(l1 · . . . · ln ,En+1) | E1 � E ∧ (∀ i ∈ 1..n) (li ,Ei+1) ∈ expandl(Li ,Ei)}

expandl : FSP sublabel × variable environment → (expanded label × variable environment) set

expandl(act,E) � {(act,E)}
expandl(V ,E) � {(f2le(V ,E),E)}

expandl(x:V ,E) � {(v ,E ∪ {x �→ v})} where v � f2le(V ,E)

expandl({A1, . . . ,An},E) � ⋃
i∈1..n expand(Ai ,E)

expandl(x:{A1, . . . ,An},E) � ⋃
i∈1..n{(li ,Ei ∪ {x �→ li }) | (li ,Ei) ∈ expand(Ai ,E)}

expandl(V1..V2,E) � {(i ,E) | i ∈ f2le(V1,E).. f2le(V2,E)}
expandl(x:V1..V2,E) � {(i ,E ∪ {x �→ i}) | i ∈ f2le(V1,E).. f2le(V2,E)}

expandx : FSP label × variable environment × constraint environment
→ (expanded label × variable environment × constraint environment) set

expandx(L1 . . .Ln ,E ,X)
� {(l1 · . . . · ln ,En+1,Xn+1) | E1 � E ∧ X1 � X ∧ (∀ i ∈ 1..n) (li ,Ei+1,Xi+1) ∈ expandlx(Li ,Ei ,Xi)}

expandlx : FSP sublabel × variable environment × constraint environment
→ (expanded label × variable environment × constraint environment) set

expandlx(act,E ,X) � {(act,E ,X)}
expandlx(V ,E ,X) � {(f2le(V ,E),E ,X)}

expandlx(x:V ,E ,X) � {(v ,E ∪ {x �→ v},X)}
where v � f2le(V ,E)

expandlx({A1, . . . ,An},E ,X) � ⋃
i∈1..n expandx(Ai ,E ,X)}

expandlx(x:{A1, . . . ,An},E ,X) � ⋃
i∈1..n{(li ,Ei ∪ {x �→ li },Xi) | (li ,Ei ,Xi) ∈ expandx(Ai ,E ,X)}

expandlx(V1..V2,E ,X) � {(x ,E ∪ {x �→ x },X ∪ {x �→ (f2le(V1,E), f2le(V2,E))})}
where x is an unused variable

expandlx(x:V1..V2,E ,X) � {(x ,E ∪ {x �→ x },X ∪ {x �→ (f2le(V1,E), f2le(V2,E))})}

694 F. Lang et al.

Example 4 expand(lab[x:1..2],∅) � {(lab · 1, {x �→ 1}), (lab · 2, {x �→ 2})}
expandx(lab[x:1..2],∅,∅) � {(lab · x , {x �→ x }, {x �→ (1, 2)})} �

3.3. Relabel test

We now define the “relabel?” function, which tests whether a set of labels is affected by hiding or renaming con-
tained in a relabeling environment. This function is used when translating sequences of labels, to decide which
of the “expand” or “expandx” functions has to be used. Indeed, if hiding or renaming has an effect on the list of
labels, then variables must be totally expanded, i.e., the “expand” function must be used.

relabel? : expanded labels × relabeling environment → Boolean

relabel?({li | i ∈ 1..n}, ()) � false

relabel?({li | i ∈ 1..n}, (R,H) :: M) � (∃i ∈ 1..n) pm?(li ,H ∪ dom(R)) ∨ relabel?({li | i ∈ 1..n},M)

3.4. Translating sequential processes into LOTOS

FSP sequential processes are translated into Lotos processes. If E0 is the initial environment containing the
definitions of constants, and the main process P of the FSP specification is sequential, then P is translated into
“f2lsd(P̂ ,E0, ())”, where “f2lsd” is defined below. It uses the auxiliary functions “f2llp”, which translates a local
FSP process (defined as a set of equations) into a Lotos process, “func”, which computes the Lotos functionality
resulting from the translation of an FSP process, and “f2lb”, defined thereafter.

f2lsd : FSP sequential process definition × variable environment × relabeling environment
→ Lotos process

f2lsd

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

P(x1=V1, . . . , xk=Vk) =
B0,Dl1 , . . . ,Dlm
+{Ae1 , . . . ,Aen

}
/{A′

r1
/Ar1 , . . . ,A

′
rp

/Arp
}

\{Ah1 , . . . ,Ahq
}

⎞
⎟⎟⎟⎠,E ,M

⎞
⎟⎟⎟⎠ �

⎛
⎜⎜⎜⎜⎜⎜⎝

process P ′ [EVENT, TAU, ERROR] : func(B0) :�
f2lb(B0,E0, (R,H) :: M)
where

f2llp(Dl1,E0, (R,H) :: M)
. . .
f2llp(Dlm ,E0, (R,H) :: M)

endproc

⎞
⎟⎟⎟⎟⎟⎟⎠

where P ′ is an unused name
E0 � {x1 �→ V1, . . . , xk �→ Vk } ∪ E
(∀i ∈ 1..p) Si � {l | (l ,E) ∈ expand(Ari

,E0)}
(∀i ∈ 1..p) S ′

i � {l | (l ,E) ∈ expand(A′
ri

,E0)}
R � ⋃i∈1..p Si �→d S ′

i

H � ⋃i∈1..q{l | (l ,E) ∈ expand(Ahi
,E0)}

Translating FSP into LOTOS and networks of automata 695

f2llp : FSP local process definition × variable environment × relabeling environment → Lotos process

f2llp

⎛
⎝
⎛
⎝P[x 1

1 :L
1
1] . . . [xn

1 :L
n
1] = B1,

. . . ,

P[x 1
m:L1

m] . . . [x 1
m:Ln

m] = Bm

⎞
⎠ ,E ,M

⎞
⎠

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

process P [EVENT, TAU, ERROR] (x1:T1, . . . , xn:Tn) :F :=
(
[C1] → f2lb(B1, {x 1

1 �→ x1, . . . , xn
1 �→ xn} ∪ E ,M)

[]
[¬C1] →
(
[C2] → f2lb(B2, {x 1

2 �→ x1, . . . , xn
2 �→ xn} ∪ E ,M)

[]
[¬C2] →

. . .
(
[Cm] → f2lb(Bm , {x 1

m �→ x1, . . . , xn
m �→ xn} ∪ E ,M)

[]
[¬Cm] → f2lb(error,E ,M)

)
. . .

)
)

endproc

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where x1, . . . , xn are unused variables
(∀i ∈ 1..n) Ti � type(xi)
F � func(B1 | . . . |Bm)
(∀i ∈ 1..m, j ∈ 1..n) S j

i � {l | (l ,E ′) ∈ expandl(L
j
i ,E)}

(∀i ∈ 1..m) Ci � (x1 ∈ S 1
i) ∧ . . . ∧ (xn ∈ Sn

i)

func : FSP sequential behaviour → {exit, noexit}

func(B) �
{

exit if exit(B)
noexit otherwise

where exit(stop) � false

exit(end) � true

exit(error) � false

exit(P(V1, . . . ,Vn); B) � exit(B)

exit(P[V1] . . . [Vn]) � false

exit(if V then B1 else B2) � exit(B1) ∨ exit(B2)

exit(when V1 → B1 | . . . | when Vn → Bn) � ∨i∈1..n exit(Bi)

exit(A → B) � exit(B)

696 F. Lang et al.

Fig. 9. Definition of function “f2lb”

The translation from FSP sequential behaviours into Lotos is done by the “f2lb” function defined in Fig. 9.
“f2lb” also uses auxiliary functions “applyRH”, “f2ls”, and “f2lsx”, defined below.

Lotos behaviours generated by the translation contain three gates, named “EVENT”, “TAU”, and “ERROR”.
Every Lotos visible label is made of the “EVENT” gate with an offer corresponding to a visible label obtained by
translation of an FSP label using function “expand” or “expandx”. The choice between “expand” and “expandx”
depends whether A has to be relabeled: if so, A is expanded using the “expand” function; if not, the “expandx”
function is used instead. The “ERROR” gate is used to encode FSP error termination. At last, the “TAU” gate is
used to encode the FSP internal action as already explained in Sect. 3.1.

Function “applyRH” computes a set of labels resulting from a list of operations (renaming and hiding) on labels.
It uses the auxiliary functions “applyR” and “applyH”, defined below, which compute a set of labels resulting from
renaming and hiding, respectively.

Translating FSP into LOTOS and networks of automata 697

applyRH : expanded label set × relabeling environment → expanded label set

applyRH({li | i ∈ 1..n}, ()) � {li | i ∈ 1..n}
applyRH({li | i ∈ 1..n}, (R,H) :: M) � applyRH(applyH(applyR({li | i ∈ 1..n},R),H),M)

applyR : expanded label set × relabeling → expanded label set

applyR({li | i ∈ 1..n},R) � ⋃i∈1..n relabel(li ,R)

applyH : expanded label set × expanded label set → expanded label set

applyH({li | i ∈ 1..n},H) � {hide(li ,H) | i ∈ 1..n}

Functions “f2ls” and “f2lsx”, defined below, generate either a Lotos choice from a set of labels, or a single
label if the set is a singleton. They also choose the appropriate Lotos sequential composition operator between
“>>” and “;”, depending whether the set of labels is a singleton or not.

f2ls : expanded label set × Lotos behaviour → Lotos behaviour

f2ls({li | i ∈ 1..n ∧ n > 0},B) �
{

l1; B if n � 1
(l1; exit [] . . . [] ln; exit) >> B otherwise

f2lsx : expanded label set × constraint environment × Lotos behaviour → Lotos behaviour

f2lsx(l , {xj �→ (vj , v ′
j) | j ∈ 1..m},B) � choice x1:T1, . . . ,xm:Tm [] ([V] → l ; B)

where V � ∧j∈1..m ((xj ≥ vj) ∧ (xj ≤ v ′
j))

(∀i ∈ 1..m) Ti � type(xi)

3.5. Process alphabets

Due to the semantics of the parallel composition operator of FSP, the translation of composite processes requires
to compute the alphabet of a process, i.e., its set of reachable labels. Function “alph” computes such alphabets. We
first define below “alph” for sequential processes, then for composite processes. The auxiliary function “alphm”
computes the alphabet of a process definition.

698 F. Lang et al.

alph (sequential processes) : FSP sequential behaviour × variable environment → expanded label set

alph(stop,E) � ∅
alph(end,E) � ∅

alph(error,E) � ∅
alph(A → B0,E) � ⋃

(l,E ′)∈expand(A,E)({l} ∪ alph(B0,E ∪ E ′))

alph(P(V1, . . . ,Vk); B0,E) � alphm(P̂ [V1, . . . ,Vk],E ,M) ∪ alph(B0,E)

alph(P[V1] . . . [Vn],E) � ∅

alph(if V then B1 else B2,E) �
{

alph(B1,E) if f2le(V ,E) � true
alph(B2,E) otherwise

alph(when V1 → B1 | . . . |when Vn → Bn ,E) � ⋃
i∈1..n ∧ f2le(Vi ,e)�true alph(Bi ,E)

alph (composite processes) : FSP composite behaviour × variable environment → expanded label set

alph(P(V1, . . . ,Vk),E) � alphm(P̂ [V1, . . . ,Vk],E)

alph(C0/{A′
1/A1, . . . ,A′

n/An},E) � applyR(alph(C0,E),
⋃

i∈1..n Si �→d S ′
i)

where (∀i ∈ 1..n) Si � {l | (l ,E ′) ∈ expand(Ai ,E)}
(∀i ∈ 1..n) S ′

i � {l | (l ,E ′) ∈ expand(A′
i ,E)}

alph({A1, . . . ,An}::C0,E) � ⋃
i∈1..n{l | (l ,E ′) ∈ expand(Ai ,E)} ⊗ alph(C0,E)

alph({A1, . . . ,An}:C0,E) � ⋃
i∈1..n{l | (l ,E ′) ∈ expand(Ai ,E)} ⊗ alph(C0,E)

alph(if V then C1 else C2,E) �
{

alph(C1,E) if f2le(V ,E)
alph(C2,E) otherwise

alph(C1|| . . . ||Ck ,E) � ⋃
i∈1..k alph(Ci ,E)

alph(forall [x1:L1] . . . [xn:Ln] C0,E) � ⋃
l1∈S1,...,ln∈Sn

alph(C0,E ∪ {x1 �→ l1, . . . , xn �→ ln})
where (∀i ∈ 1..n) Si � {li | (li ,E ′) ∈ expand(Li ,E)}

Translating FSP into LOTOS and networks of automata 699

alphm (sequential processes) : FSP sequential process definition × variable environment
→ expanded label set

alphm

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

P(x1=V1, . . . ,xk=Vk) �
B ,Dl1 , . . . ,Dlm
+{Ae1 , . . . ,Aen

}
/{A′

r1
/Ar1 , . . . ,A

′
rp

/Arp
}

\{Ah1 , . . . ,Ahq
}

⎞
⎟⎟⎟⎠,E

⎞
⎟⎟⎟⎠ �

(
applyR(applyH(alph(B ,E0) ∪⋃

i∈1..m alphm(Dli ,E0),H0),R0) ∪⋃
i∈1..n{l | (l ,E ′) ∈ expand(Aei

,E)}

)

where E0 � {x1 �→ V1, . . . , xk �→ Vk } ∪ E
(∀i ∈ 1..p) Si � {l | (l ,E ′) ∈ expand(Ari

,E)}
(∀i ∈ 1..p) S ′

i � {l | (l ,E ′) ∈ expand(A′
ri

,E)}
R0 � ⋃i∈1..p Si �→d S ′

i

H0 � ⋃i∈1..q{l | (l ,E ′) ∈ expand(Ahi
,E)}

alphm

⎛
⎝
⎛
⎝P[x 1

1 :L
1
1] . . . [xn

1 :L
n
1] =B1,

. . . ,

P[x 1
m:L1

m] . . . [xn
m:Ln

m] =Bm

⎞
⎠,E

⎞
⎠ �

(⋃
i∈1..m

⋃
l1∈S 1

i ∧...∧ln∈Sn
i

alph(Bi ,E ∪ {x 1
i �→ l1, . . . , xn

i �→ ln})
)

where (∀i ∈ 1..m)(∀j ∈ 1..n)
S j
i � {l | (l ,E ′) ∈ expandl(L

j
i ,E)}

alphm (composite processes) : FSP composite process definition × variable environment
→ expanded label set

alphm

((
||P(x1=V1, . . . , xk=Vk) = C
� {Ap1 , . . . ,Apn

}
\{Ah1 , . . . ,Ahq

}

)
,E

)
� applyH(alph(C ,E0),H0)

where E0 � {x1 �→ V1, . . . , xk �→ Vk } ∪ E
H0 � ⋃i∈1..q{l | (l ,E ′) ∈ expand(Ahi

,E)}

3.6. Translating composite processes into EXP.OPEN

If E0 is the initial environment containing the definitions of constants, the FSP composite process P of interest
is translated into the Exp.Open expression “f2lcd(P̂ ,E0)” where “f2lcd” is defined below.

700 F. Lang et al.

f2lcd : FSP composite process definition × variable environment → Exp.Open code

f2lcd(

(
||P(x1=V1, . . . ,xk=Vk) = C
� {Ap1 , . . . ,Apn

}
\{Ah1 , . . . ,Ahq

}

)
,E) �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

total prio "ERROR" > all but "ERROR" in
total cut "exit" in

total hide
"EVENT !l1 · .*", . . . , "EVENT !lm · .*"

in
total prio

all but "EVENT !l ′1", . . . , "EVENT !l ′p" >
"EVENT !l ′1", . . . , "EVENT !l ′p"

in
f2lc(C , {x1 �→ V1, . . . , xk �→ Vk } ∪ E)

end prio
end hide

end cut
end prio

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where {(li ,Ei) | i ∈ 1..m} � ⋃i∈1..q expand(Ahi
,E)

{(l ′i ,E ′
i) | i ∈ 1..p} � ⋃i∈1..n expand(Api

,E)

Note that the generated Exp.Open code contains regular expressions of the form “EVENT !li ·.*”, where “.*”
is the regular expression that matches any (possibly empty) sequence of labels. This implements the label prefix
matching.

The definition of “f2lcd” details only the case of the “�” priority operator. The “
” operator is handled
similarly, except that

all but "EVENT !l ′1", . . . , "EVENT !l ′p" > "EVENT !l ′1", . . . , "EVENT !l ′p"

is replaced by

"EVENT !l ′1", . . . , "EVENT !l ′p" > all but "EVENT !l ′1", . . . , "EVENT !l ′p".

Function “f2lc”, defined in Fig. 10, translates composite processes into Exp.Open code. It uses the auxiliary
functions “alph” already defined, as well as “vecr”, “f2lpr”, and “f2lrc”, which will be detailed below. The renam-
ing rules of the form “"EVENT !\(.*\)" → "EVENT !m · \1"” correspond to the prefixing of every label by m.
The regular expression “\1” in the right-hand side stands for the sequence of characters matched by the regular
expression located in the (first) occurrence of “\(. . . \)” in the left-hand side.

As already seen earlier, the error state is modeled as a sink state that contains a single (self-looping) transition
labeled “ERROR”. The priority given to action “ERROR” over all other actions in the generated Exp.Open code
ensures that if a component is in the error state, then the whole specification is also in the error state since “ERROR”
is the only action that can be executed.

The “rename” operator of Exp.Open allows many-to-one renaming, i.e., several labels may be renamed into
the same label, but it does not allow one-to-many renaming, i.e., a single label may not be renamed into several
labels, such as in FSP. However, one-to-many renaming can be implemented in Exp.Open using synchronisa-
tion vectors of length 1, i.e., of the form “L1 → L2”. Function “vecr”, defined below, is used to generate such
synchronisation vectors.

vecr : relabeling × expanded label set → Exp.Open synchronisation vectors

vecr(R,S) � "l1" → "l ′1", . . . , "ln" → "l ′n"
where {(li , l ′i) | i ∈ 1..n} � {(l , l ′) | l ∈ S ∧ l ′ ∈ relabel(l ,R)}

Translating FSP into LOTOS and networks of automata 701

Fig. 10. Definition of function “f2lc”

Function “f2lpr”, defined below, translates a sequential or composite process call into Exp.Open code.
In the case of a sequential process, the process call is replaced by a Bcg graph corresponding to the Lotos process
obtained by translation of the sequential process with appropriate parameters, minimized modulo branching
bisimulation to eliminate “i” transitions that are generated from the Lotos sequential composition operator
“>>”, as explained in Sect. 3.1. This graph is obtained automatically by using the CÆsar.Adt and CÆsar com-
pilers for Lotos, and the Bcg Min minimization tool, all available in Cadp. In the case of a composite process,
the process call is replaced by an Exp.Open expression that inlines the call to the composite process. Note that
the translation terminates, because FSP composite processes are not recursive.

702 F. Lang et al.

f2lpr : FSP process call × variable environment → Exp.Open code

f2lpr(P(V1, . . . ,Vn),E) �
{
"P ′.bcg" if P is a sequential process
f2lcd(P̂ [V1, . . . ,Vn],E) otherwise

where P ′ is the Lotos process defined by f2lsd(P̂ [V1, . . . ,Vn],E , ())
and "P ′.bcg" is the Bcg graph of P ′ minimized for branching

bisimulation

Function “f2lrc”, defined recursively below, is an auxiliary function used to translate forall processes.

f2lrc : FSP composite behaviour × variable environment set → Exp.Open code

f2lrc(C , {E0}) � f2lc(C ,E0)

f2lrc(C , {E0, . . . ,En+1}) �

⎛
⎜⎜⎜⎝

label par l1, . . . , lq in
f2lc(C ,E0)
||
f2lrc(C , {E1, . . . ,En+1})

end par

⎞
⎟⎟⎟⎠

where {li | i ∈ 1..q} � alph(C ,E0) ∩⋃i∈1..n+1 alph(C ,Ei)

4. Tool and validation

We developed an automatic translator tool from FSP to Lotos and Exp.Open, which is named Fsp2Lotos, imple-
mented using the Syntax+Traian compiler construction technology [GLM02]. It consists of about 5, 000 lines
of Syntax code, 20, 000 lines of Lotos NT code, and 600 lines of C code. The Fsp2Lotos tool consists of two
parts:

• The front-end parses the input FSP program and builds an abstract syntax tree. The front-end was quite
hard to implement, because the abstract grammar given in [MK06] is not directly implementable in Syntax,
which needs LALR(1) grammars. Therefore, the grammar given in [MK06] was refined to a concrete LALR(1)
grammar.

• The back-end translates the abstract syntax tree into code. It generates a Lotos file containing the definition
of sequential processes and an Exp.Open file semantically equivalent to the main process.
In addition, Fsp2Lotos generates a verification script in the Svl language [GL01], which automates the gener-
ation of Ltss. In particular, this script generates (using the CÆsar.adt and CÆsar compilers for Lotos) and
minimizes (using the Bcg Min tool) the Bcg graphs corresponding to FSP sequential processes composed in
the main process.

We also developed a new shell-script named Fsp.Open, which provides an interface between FSP specifications
and the Open/CÆsar application programming interface. Fsp.Open encapsulates the full translation from FSP to
Exp.Open using Fsp2Lotos and Svl, and a call to the Exp.Open tool on the generated network of automata. This
allows Open/CÆsar applications to be executed directly on FSP specifications. For instance, the evaluation of a
temporal logic formula described in the file “prop.mcl” on the FSP specification described in the file “spec.lts”
using the Open/CÆsar application of Cadp named Evaluator [MS03] can be done using the single command
“fsp.open spec.lts evaluator prop.mcl”.

Translating FSP into LOTOS and networks of automata 703

Fig. 11. Principles of the automated checker used to validate Fsp2Lotos

We applied Fsp2Lotos and Fsp.Open on a benchmark of FSP examples,2 which includes all examples
provided with the Ltsa distribution [MK06] (except features unsupported by Fsp2Lotos such as fluents
and properties), as well as unitary tests that we wrote ourselves. It consists of 714 FSP files containing 2, 781
translatable processes. This represents 198, 964 FSP lexical tokens3 in total. For the whole benchmark, Fsp2Lotos

produced 1, 097, 497 Lotos lexical tokens, 169, 247 Exp.Open lexical tokens, and 137, 682 Svl lexical tokens. The
explanations for these apparently large amount of code are the following:

• Lotos generally allows a less concise style than FSP. For instance, it requires more keywords and gates have
to be declared explicitly and passed as parameters to each process call.

• Although FSP variables are translated as often as possible into Lotos variables, the translation may expand
concise FSP labels into many Lotos labels.

2 We are looking forward to enriching our benchmark with additional examples. Examples may be sent to cadp@inrialpes.fr.
3 A lexical token is either a keyword, a symbol, or an identifier of the considered language. Comments are excluded. Measuring code size in
lexical tokens is more fair than in number of characters or number of lines, which depend on non-significant factors such as indenting style
or identifier conventions.

704 F. Lang et al.

It is essential for the validity of verifications performed with Cadp that the Lotos/Exp.Open code obtained
after translation has the same semantics as the source FSP specification. Therefore, we developed an automatic
checker, which verifies that strong equivalence is preserved by the translation. The checker, illustrated in Fig. 11,
works as follows:

• In a first step, the checker generates using Ltsa (which is accessed in non-interactive mode) the Lts in Aldeb-

aran format (file extension “.aut”) corresponding to the main process of the source FSP specification. This
Lts is then slightly transformed by the program Aut2Cadp that we developed (255 lines of C code): the FSP
error state is replaced by a sink state labeled by the “ERROR” symbol, and labels in FSP notations are converted
into labels in Cadp notations. The resulting Lts is then translated into the compact Bcg (Binary Coded Graph)
format of Cadp (file extension “.bcg”), using the Bcg Io tool of Cadp.

• In a second step, the checker generates the Lotos, Exp.Open, and Svl files corresponding to the translation
of the source FSP specification using Fsp2Lotos. The checker then calls the Svl tool of Cadp to generate
from these files a network of automata in the Exp.Open format, which corresponds semantically to the main
process of the source FSP specification. Note that this network of automata includes renaming of the Lotos

labels (which are not written using the same conventions as Ltsa) into the Ltsa notation. This is an important
feature that allows the FSP user to easily understand the behaviour of the translation into Lotos.

• In a third step, the checker compares the Bcg graph generated in the first step with the Exp.Open network of
automata generated in the second step, modulo strong bisimulation. The comparison is performed automati-
cally using the Bisimulator [BDJM05] on-the-fly equivalence checking tool of Cadp, which responds by true
or false and is even capable of producing a counter-example in case the graphs are not strongly bisimilar.

We validated the Fsp2Lotos translator using the aforementioned automated checker on all the examples of
our database, and for each example the checker returned the answer true, thus showing that both specifications
(before and after translation) are strongly equivalent.

So far, the largest FSP specification processed using Fsp2Lotos had 1, 658 FSP tokens (213 lines), which is
already quite large (although not huge) given the conciseness of the FSP language. The code generated from this
specification consists of 389 Svl tokens, 984 Exp.Open tokens, and 7, 729 Lotos tokens. These numbers are far
below the code sizes already processed by the Cadp tools, which has been used to verify specifications consisting
of thousands of lines of code4.

Although the translation rules implemented in our tool have been formally defined, we cannot claim that
they have been formally proven. Given that FSP, Lotos, and Exp.Open are based upon the same Lts semantic
model, defined using structural operational semantic rules, and that strong bisimulation is a congruence for all
operators, a formal proof would consist in showing, using a structural induction hypothesis, that for each rule,
the FSP process in the left-hand side of the rule yields the same Lts transitions as the Lotos or Exp.Open pro-
cess in the right-hand side, modulo the different encodings of labels and error state. Doing this using a theorem
prover such as, e.g., Pvs would probably not raise much technical difficulty. However, due to the size and number
of (source and target) languages involved, encoding the translation scheme and underlying theory (languages,
semantics, and bisimulations) in such a theorem prover is itself a quite manpower consuming task that we have
not considered as a priority so far.

4 See for instance the list of case studies done using Cadp at http://www.inrialpes.fr/vasy/cadp/case-studies.

http://www.inrialpes.fr/vasy/cadp/case-studies

Translating FSP into LOTOS and networks of automata 705

5. Application

In this section, we present several refinements of an FSP specification of a semaphore. We show how Cadp can
be used in complement to Ltsa, using the translation from FSP to Lotos and Exp.Open.

The starting point is the FSP specification of the semaphore given in Example 2, whose corresponding graph
(Fig. 4, page 687) has 7 states and 9 transitions.

A first refinement is to extend the number of resources (“{1,2,3}” in addition to “{a,b,c}”) accessed in
mutual exclusion, as well as the number of accesses, leading to the following specification “SEMADEMO1”:

||SEMADEMO1 = (
{a,b,c}:ACCESS

|| {a,b,c,[1..3]}::mutex:SEMAPHORE(1)
|| [1..3]:ACCESS
).

For “SEMADEMO1”, Ltsa generates a graph with 13 states and 18 transitions.
The next refinement aims at duplicating both semaphores so that each semaphore is in charge of a single

resource. This leads to the following specification “SEMADEMO2”:

||SEMADEMO2 = (
{a,b,c}:ACCESS

|| {a,b,c}::mutex:SEMAPHORE(1)
|| [1..3]::mutex:SEMAPHORE(1)
|| [1..3]:ACCESS
).

For “SEMADEMO2”, Ltsa generates a graph with 49 states and 126 transitions, which is difficult to analyse
visually, in particular because all the transitions between resources “{a,b,c}” and “{1,2,3}” are interleaved.

The last refinement defines the specification as a composition of two composite processes being dedicated to
one resource. This leads to the following specification “SEMADEMO3”:

||C_P = ({a,b,c}:ACCESS || {a,b,c}::mutex:SEMAPHORE(1)).
||C_Q = ([1..3]:ACCESS || [1..3]::mutex:SEMAPHORE(1)).
||SEMADEMO3 = (C_P || C_Q).

For “SEMADEMO3”, Ltsa generates a graph which has the same size as “SEMADEMO2”. However, it is impossible to
check using Ltsa that “SEMADEMO2” and “SEMADEMO3” are equivalent. Instead, the translation to Lotos/Exp.Open

allows the Bisimulator [BDJM05] tool of Cadp to be used to verify that, indeed, “SEMADEMO2” and “SEMADEMO3”
are strongly equivalent.

The following code is an excerpt of the Lotos code generated by Fsp2Lotos. We only show here the code
generated for the “SEMAPHORE” and “SEMA” sequential processes. Additional code (of similar size) is generated
for the “ACCESS” sequential process. Note that label concatenation “·” used in Section 3.2 is implemented using
the “CONS” and “NIL” list constructor operations, which are defined using Lotos abstract data types.

process SEMAPHORE [EVENT, TAU, ERROR] (N:Int): noexit :=
SEMA [EVENT, TAU, ERROR] (N)

where
process SEMA [EVENT, TAU, ERROR] (N:Int): noexit :=

EVENT !CONS (UP, NIL);
SEMA [EVENT, TAU, ERROR] (N + POS(1))
[]
[V > POS(0)] -> EVENT !CONS (DOWN, NIL);
SEMA [EVENT, TAU, ERROR] (N - POS(1))

endproc
endproc

706 F. Lang et al.

The following is an excerpt of the Exp.Open code generated by Fsp2Lotos (comments were added by hand).
We only show here the code generated for the “C P” composite process. Similar code (same size) is generated for
“C Q”. To save space, we have replaced this code by dots at the end of the following excerpt.

total prio "ERROR" > all but "ERROR" in
(*
* this part of the EXP.OPEN code corresponds to
* C_P = ({a, b, c}:ACCESS || {a, b, c}::mutex:SEMAPHORE)
*)
label par
"EVENT !CONS (A, CONS (MUTEX, CONS (DOWN, NIL)))",
"EVENT !CONS (A, CONS (MUTEX, CONS (UP, NIL)))",
"EVENT !CONS (B, CONS (MUTEX, CONS (DOWN, NIL)))",
"EVENT !CONS (B, CONS (MUTEX, CONS (UP, NIL)))",
"EVENT !CONS (C, CONS (MUTEX, CONS (DOWN, NIL)))",
"EVENT !CONS (C, CONS (MUTEX, CONS (UP, NIL)))"

in
(* {a, b, c}:ACCESS *)
(

(* a:ACCESS *)
total rename "EVENT !\(.*\)" -> "EVENT !CONS (A, \1)" in
"ACCESS.bcg"

end rename
|||
(* b:ACCESS *)
total rename "EVENT !\(.*\)" -> "EVENT !CONS (B, \1)" in
"ACCESS.bcg"

end rename
|||
(* c:ACCESS *)
total rename "EVENT !\(.*\)" -> "EVENT !CONS (C, \1)" in
"ACCESS.bcg"

end rename
)
||
(* {a, b, c}::mutex:SEMAPHORE *)
label par

"EVENT !CONS (MUTEX, CONS (UP, NIL))" ->
"EVENT !CONS (A, CONS (MUTEX, CONS (UP, NIL)))",

"EVENT !CONS (MUTEX, CONS (UP, NIL))" ->
"EVENT !CONS (B, CONS (MUTEX, CONS (UP, NIL)))",

"EVENT !CONS (MUTEX, CONS (UP, NIL))" ->
"EVENT !CONS (C, CONS (MUTEX, CONS (UP, NIL)))",

"EVENT !CONS (MUTEX, CONS (DOWN, NIL))" ->
"EVENT !CONS (A, CONS (MUTEX, CONS (DOWN, NIL)))",

"EVENT !CONS (MUTEX, CONS (DOWN, NIL))" ->
"EVENT !CONS (B, CONS (MUTEX, CONS (DOWN, NIL)))",

"EVENT !CONS (MUTEX, CONS (DOWN, NIL))" ->
"EVENT !CONS (C, CONS (MUTEX, CONS (DOWN, NIL)))",

"ERROR" -> "ERROR" in
(* mutex:SEMAPHORE *)

total rename "EVENT !\(.*\)" -> "EVENT !CONS (MUTEX, \1)" in
"SEMAPHORE.bcg"

end rename
end par

end par
|||
(*
* the part corresponding to C_Q is similar as above,
* with A, B, C replaced by POS (1), POS (2), and POS (3)
*)

...
end prio

Translating FSP into LOTOS and networks of automata 707

This example illustrates the use of equivalence checking of FSP specifications, but other verification tech-
niques available in Cadp to tackle the state explosion problem, such as distributed, compositional, or on-the-fly
verification, can be used to complement Ltsa validation. For instance, one can use the Evaluator [MS03] model
checker of Cadp to verify μ-calculus formulas on-the-fly. The counterexamples provided by Cadp are easy to
translate back automatically into FSP format, using the label renaming facilities available in Cadp.

6. Related work

Several works aimed at combining the theories and notations of CSP, ACP, and CCS [HLP81, AZ81, Bro83,
Mil87, HH06]. The long-term goal of these papers is to unifying theories of concurrent programming, and
accordingly they focus on theoretical aspects of the aforementioned process calculi. As an example, in [HH06],
the authors consider CCS and CSP and formalise a set of links between common parts of CCS and CSP theories.
Codifying the similarities between their respective theories enables them to be used in combination while pre-
serving their benificial differences. Our objective is different since we consider calculi equipped with verification
tools, and propose a solution to allow the joint use of existing tools.

As regards high-level translations between process algebras, several proposals have been made in the hardware
area [SS05, WKTZ05]. In [SS05], the authors propose a translation from the hardware process algebra Chp to
Lotos. Thus, it makes possible to verify Chp designs of asynchronous circuits and architectures using the Cadp

toolbox. This approach was applied in practice for the verification of an Asynchronous Network-on-Chip archi-
tecture [SSTV07]. Wang et al. [WKTZ05] starts with a Balsa description of circuits, and sketches a translation
from Balsa to Csp in order to verify Balsa programs using Fdr.

Two other initiatives consider Lotos as target language of high-level language encodings. In the framework
of the French national project TopCased, which gathers numerous industrial (Airbus, Thales, CS-SI, etc.) and
academic partners (Inria, Cnrs, Toulouse Universities, . . .), a new language named Fiacre has been designed as
an intermediate model between high-level models and verification toolboxes such as Tina and Cadp. The connec-
tion to Cadp has led to a translator from Fiacre into Lotos named Flac [BBF+08, BGLV08]. Also a translator
to Lotos from a variant of E- Lotos [ISO01] named Lotos- NT [Sig04] is under construction at Inria/Vasy.

Another group of related works concerns those advocating the encoding of process calculi (mainly Acp, Ccs,
Csp and their dialects) into higher-order logics, inputs of theorem provers such as Hol, Pvs, Isabelle [Nes99,
DS97, TW97, BH99] or into the B method [But00], motivated by the availability of formal verification support
for the target formalism. Theorem proving is a means to fight against the state explosion problem and to deal
with infinite automata, but is not suitable to prove temporal properties. Instead, we focused on model checking
because it makes verification steps easier (especially for non-expert users) thanks to a full automation and its
adequacy to automata-based models.

In [CMS95], the authors present an alternative solution to translation approaches to verify process algebras.
The process algebra compiler (Pac) is a front-end generator for process-algebra-based verification tools. It pro-
duces routines for parsing and unparsing programs being given a description of the syntax and semantics of a
language. Thus, the Pac provides a useful tool for expanding the repertoire of languages that tools can support.
The current prototype only includes a back-end for the Concurrency Workbench (Cwb).

Another way to use Cadp to verify Fsp specifications would have been to use a lower-level translation from
Fsp to an intermediate language such as the one advocated in the If toolset [BGM02]. If is built upon a specifi-
cation language based on communicating extended timed automata. So far, the If toolset is mainly connected to
high-level modelling languages such as Sdl and Uml. Several validation tools have been developed and connected
(mainly Cadp) to analyse If descriptions. We preferred to connect Fsp with Lotos and Exp.Open because it avoids
the state explosion that a lower-level encoding might induce.

Other proposals and initiatives have emerged to favour a joint use of verification tools: Rushby and his col-
leagues [Rus06] propose a joint use of an satisfiability modulo theories (SMT) solver, model checking techniques,
and theorem proving. A similar work [FMM+06] focuses as well on a combination of SMT Solvers and Interactive
Proof Assistants. Last, let us emphasize the Fmics- Jeti initiative [MNS05] (Electronic Tool Integration Platform)
which aims at facilitating access to a managed collection of analysis tools.

708 F. Lang et al.

At last, a preliminary version of this work has been published in [SKLM07]. The current article contains the
following updates and additions:

• A related work section has been written and integrated.
• The conference paper contained only excerpts of the translation rules, whereas the current article presents all

translation rules in more details.
• Some translation rules have been simplified when possible, so that smaller Lotos/Exp.Open code is

generated. In addition, the translation process now preserves a strong equivalence relation (instead of branch-
ing equivalence) between the source FSP specification and the target Lotos/Exp.Open code.

• We have enhanced our validation procedure, which now checks automatically that the graphs generated using
Fsp2Lotos and Cadp are equivalent to those generated using Ltsa.

7. Concluding remarks

The motivation of this work was to reduce the gap between existing tool support for process calculi. We chose here
the process calculus FSP and the Lotos international standard. We proposed a translation from FSP to Lotos

and Exp.Open to make the joint use of Ltsa and Cadp possible for FSP users. The translation is completely auto-
mated, and implemented within the Fsp2Lotos and Fsp.Open tools, which we validated on many examples using
formal verification tools of Cadp, such as the Bisimulator [BDJM05] Lts equivalence checker. Fsp2Lotos has
been distributed within Cadp since beta-version 2007-p (January 2009) and Fsp.Open since beta-version 2008-d
(July 2009).

As regards the lessons learnt from our experience in making gateways between formalisms and tools, we
think that supporting a high-level encoding between process algebra is a good solution as these languages are
based on the same kernel of operators, which makes the translation rather straightforward for most of them.
Lotos is an appropriate target calculus because, beyond the numerous validation and verification tools available,
it contains various behavioural operators that can be freely combined, but also has an expressive notation to
describe abstract data types, the presence of which is sometimes essential to ensure a correct encoding. In [SS05],
the authors managed to encode all the operators of the hardware process algebra Chp into Lotos.

However, each process algebra comes with its own specificities and subtleties that may make the high-level
translation of all the operators difficult. For instance, in the case of FSP, priorities and the label prefix matching
semantics of hiding and relabeling cannot be easily translated into Lotos, which prevented us to benefit from
Lotos composition operators. To ameliorate this, an automata-based language such as Exp.Open can be used
in order to complement the process algebra translation by providing a large number of parallel composition,
hiding, relabeling, and priority operators, among others. When a pure process algebra translation is not possi-
ble, a mixed translation targeting both a process algebra and an automata-based language may therefore be an
adequate solution to encode the whole expressiveness of a calculus.

A perspective of this work is to apply our approach on complex systems, for instance on Web service mod-
els described first in Bpel [A+05] or Ws- Cdl [KBR], and then automatically translated into FSP for analysis
purposes [FUMK05]. In this case, the interaction of services can involve huge underlying state spaces, which
require efficient generation and minimisation tools such as those available in Cadp. Moreover, the equivalence
checking tool available in Cadp can help in Web services to ensure that an abstract specification of a problem and
its solution described as a composition of services are formally equivalent [SBS06]. Another perspective is to take
FSP safety and progress properties into account, and to translate them into regular alternation-free μ-calculus
formulas, which can be checked using the Evaluator [MS03] on-the-fly model checker of Cadp.

Acknowledgments

The authors warmly thank Hubert Garavel (head of the Inria/Vasy project-team) for suggesting this work, and
for his constant support and encouragements. They are also grateful to Wendelin Serwe (Inria/Vasy) for his
valuable help on technical aspects during the implementation of the translator.

Translating FSP into LOTOS and networks of automata 709

References

[A+05] Andrews T et al (2005) Business process execution language for Web services (WSBPEL). BEA Systems, IBM, Microsoft,
SAP AG, and Siebel Systems

[AZ81] Astesiano E, Zucca E (1981) Semantics of CSP via translation into CCS. In: Proceedings of the 10th international symposium
on mathematical foundations of computer science (MFCS’81). Lecture notes in computer science, vol 118. Springer, Berlin,
pp 172–182

[BBF+08] Berthomieu B, Bodeveix J-P, Farail P, Filali M, Garavel H, Gaufillet P, Lang F, Vernadat F (2008) FIACRE: an intermediate
language for model verification in the TOPCASED environment. In: Laprie J-C (ed) Proceedings of the 4th European congress
on embedded real-time software ERTS’08 (Toulouse, France). SIA (the French Society of Automobile Engineers), AAAF (the
French Society of Aeronautic and Aerospace), and SEE (the French Society for Electricity, Electronics, and Information and
Communication Technologies)

[BDJM05] Bergamini D, Descoubes N, Joubert C, Mateescu R (2005) BISIMULATOR: a modular tool for on-the-fly equivalence
checking. In: Halbwachs N, Zuck L (eds) Proceedings of the 11th international conference on tools and algorithms for the
construction and analysis of systems TACAS’2005 (Edinburgh, Scotland, UK). Lecture notes in computer science, vol 3440.
Springer, Berlin, pp 581–585

[BFG+91] Bouajjani A, Fernandez J-C, Graf S, Rodrı́guez C, Sifakis J (1991) Safety for branching time semantics. In: Proceedings of
18th ICALP. Springer, Berlin

[BGLV08] Berthomieu B, Garavel H, Lang F, Vernadat F (2008) Verifying dynamic properties of industrial critical systems using
TOPCASED/FIACRE. ERCIM News 75:32–33

[BGM02] Bozga M, Graf S, Mounier L (2002) IF-2.0: a validation environment for component-based real-time systems. In: Larsen KG,
Brinksma E (eds) Proceedings of the conference on computer-aided verification CAV’2002 (Copenhagen, Denmark). Lecture
notes in computer science, vol 2404. Springer, Berlin

[BH99] Basten T, Hooman J (1999) Process algebra in Pvs. In: Proceedings of the 5th international conference on tools and algorithms
for the construction and analysis of systems TACAS’99 (Amsterdam, The Netherlands). Lecture notes in computer science,
vol 1579. Springer, Berlin, pp 270–284

[BHR84] Brookes SD, Hoare CAR, Roscoe AW (1984) A theory of communicating sequential processes. J ACM 31(3):560–599
[BO05] Blom S, Orzan S (2005) Distributed state space minimization. Int J Softw Tools Technol Transf 7(3):80–291
[Bro83] Brookes SD (1983) On the relationship of CCS and CSP. In: Proceedings of the 10th colloquium automata, languages and

programming (ICALP’83). Lecture notes in computer science, vol 154. Springer, Berlin, pp 83–96
[But00] Butler M (2000) Csp2B: a practical approach to combining Csp and B. Formal Aspects Comput 12(3):182–198
[CMS95] Cleaveland R, Madelaine E, Sims S (1995) A front-end generator for verification tools. In: Engberg UH, Larsen KG, Skou A

(eds) Proceedings of TACAS’95 tools and algorithms for the construction and analysis of systems (Aarhus, Denmark). Also
available as INRIA Research Report RR-2612

[DS97] Dutertre B, Schneider S (1997) Using a PVS embedding of CSP to verify authentication protocols. In: Proceedings of the 10th
international conference on theorem proving in higher order logics TPHOLs’97 (Murray Hill, NJ, USA). Lecture notes in
computer science, vol 1275. Springer, Berlin, pp 121–136

[FMM+06] Fontaine P, Marion J-Y, Merz S, Nieto LP, Tiu AF (2006) Expressiveness + automation + soundness: towards combining
SMT solvers and interactive proof assistants. In: Proceedings of the 12th international conference on tools and algorithms for
the construction and analysis of systems TACAS’06 (Vienna, Austria). Lecture notes in computer science, vol 3920. Springer,
Berlin, pp 167–181

[FUMK05] Foster H, Uchitel S, Magee J, Kramer J (2005) Tool support for model-based engineering of Web service compositions. In:
Proceedings of the IEEE international conference on Web services ICWS’05. IEEE Computer Society Press, Los Alamitos,
pp 95–101

[Gar89a] Garavel H (1989) Compilation et vérification de programmes LOTOS. Thèse de Doctorat, Université Joseph Fourier
(Grenoble)

[Gar89b] Garavel H (1989) Compilation of LOTOS abstract data types. In: Vuong ST (ed) Proceedings of the second international
conference on formal description techniques FORTE’89 (Vancouver B.C., Canada). North-Holland, Amsterdam, pp 147–162

[Gar90] Garavel H (1990) CÆSAR reference manual. Rapport SPECTRE C18, Laboratoire de Génie Informatique, Institut IMAG,
Grenoble

[Gar98] Garavel H (1998) OPEN/CÆSAR: an open software architecture for verification, simulation, and testing. In: Steffen B
(ed) Proceedings of the first international conference on tools and algorithms for the construction and analysis of systems
TACAS’98 (Lisbon, Portugal). Lecture notes in computer science, vol 1384. Springer, Berlin, pp 68–84 (full version available
as INRIA Research Report RR-3352)

[GL01] Garavel H, Lang F (2001) SVL: a scripting language for compositional verification. In: Kim M, Chin B, Kang S, Lee D (eds)
Proceedings of the 21st IFIP WG 6.1 international conference on formal techniques for networked and distributed systems
FORTE’2001 (Cheju Island, Korea). IFIP, Kluwer, Dordrecht, pp 377–392 (full version available as INRIA Research Report
RR-4223)

[GLM02] Garavel H, Lang F, Mateescu R (2002) Compiler construction using LOTOS NT. In: Horspool N (ed) Proceedings of the 11th
international conference on compiler construction CC 2002 (Grenoble, France). Lecture notes in computer science, vol 2304.
Springer, Berlin, pp 9–13

[GLMS07] Garavel H, Lang F, Mateescu R, Serwe W (2007) CADP 2006: a toolbox for the construction and analysis of distributed
processes. In: Damm W, Hermanns H (eds) Proceedings of the 19th international conference on computer aided verification
CAV’2007 (Berlin, Germany). Lecture notes in computer science, vol 4590. Springer, Berlin, pp 158–163

[GS06] Garavel H, Serwe W (2006) State space reduction for process algebra specifications. Theor Comput Sci 351(2):131–145
[GV90] Groote JF, Vaandrager F (1990) An efficient algorithm for branching bisimulation and stuttering equivalence. In: Patterson

MS (ed) Proceedings of the 17th ICALP (Warwick), Lecture notes in computer science, vol 443. Springer, Berlin, pp 626–638

710 F. Lang et al.

[HH06] He J, Hoare CAR (2006) CSP is a retract of CCS. In: Proceedings of of the first international symposium on unifying theories
of programming (UTP’06). Lecture notes in computer science, vol 4010. Springer, Berlin, pp 38–62

[HLP81] Hennessy M, Li W, Plotkin GD (1981) A first attempt at translating CSP into CCS. In: Proceedings of the second international
conference on distributed computing systems (ICDCS’81). IEEE Computer Society Press, Los Alamitos, pp 105–115

[Hoa85] Hoare CAR (1985) Communicating sequential processes. Prentice-Hall, Englewood Cliffs
[ISO89] ISO/IEC (1989) LOTOS—a formal description technique based on the temporal ordering of observational behaviour. Inter-

national Standard 8807, International Organization for Standardization—Information Processing Systems—Open Systems
Interconnection, Genève

[ISO01] ISO/IEC (2001) Enhancements to LOTOS (E-LOTOS). International Standard 15437:2001. International Organization for
Standardization—Information Technology, Genève

[KBR] Kavantzas N, Burdett D, Ritzinger G (2004) Web services choreography description language 1.0. W3C. W3C Working Draft
[KS90] Kanellakis PC, Smolka SA (1990) CCS expressions, finite state processes, and three problems of equivalence. Inf Comput

86(1):43–68
[Lan02] Lang F (2002) Compositional verification using SVL scripts. In: Katoen J-P, Stevens P (eds) Proceedings of the 8th inter-

national conference on tools and algorithms for the construction and analysis of systems TACAS’2002 (Grenoble, France).
Lecture notes in computer science, vol 2280. Springer, Berlin, pp 465–469

[Lan05] Lang F (2005) EXP.OPEN 2.0: a flexible tool integrating partial order, compositional, and on-the-fly verification methods. In:
van de Pol J, Romijn J, Smith G (eds) Proceedings of the 5th international conference on integrated formal methods IFM’2005
(Eindhoven, The Netherlands). Lecture notes in computer science, vol 3771. Springer, Berlin, pp 70–88 (full version available
as INRIA Research Report RR-5673)

[Lan06] Lang F (2006) Refined interfaces for compositional verification. In: Najm E, Pradat-Peyre J-F, Viguié Donzeau-Gouge J-F
(eds) Proceedings of the 26th IFIP WG 6.1 international conference on formal techniques for networked and distributed
systems FORTE’2006 (Paris, France). Lecture notes in computer science, vol 4229. Springer, Berlin, pp 159–174 (full version
available as INRIA Research Report RR-5996)

[Mag99] Magee J (1999) Behavioral analysis of software architectures using LTSA. In: Proceedings of the 21st international conference
on software engineering ICSE’99. ACM Press, London, pp 634–637

[MDEK95] Magee J, Dulay N, Eisenbach S, Kramer J (1995) Specifying distributed software architectures. In: Proceedings of the 5th
European software engineering conference ESEC’95 (Sitges, Spain). Lecture notes in computer science, vol 989. Springer,
Berlin, pp 137–153

[Mil87] Millington M (1987) Theories of Translation Corrections for Concurrent Programming Languages. PhD thesis, LFCS,
School of Informatics, University of Edinburgh

[Mil89] Milner R (1989) Communication and concurrency. Prentice-Hall, Englewood Cliffs
[MK99] Magee J, Kramer J (1999) Concurrency: state models and Java programs. Wiley, New York
[MK06] Magee J, Kramer J (2006) Concurrency: state models and Java programs, 2006 edn. Wiley, New York
[MNS05] Margaria T, Nagel R, Steffen B (2005) Remote integration and coordination of verification tools in JETI. In: Proceedings

of the 12th IEEE international conference on the engineering of computer-based systems ECBS’05 (Greenbelt, MD, USA).
IEEE Computer Society Press, Los Alamitos, pp 431–436

[MS03] Mateescu R, Sighireanu M (2003) Efficient on-the-fly model-checking for regular alternation-free Mu-calculus. Sci Comput
Programm 46(3):255–281

[Nes99] Nesi M (1999) Formalising a value-passing calculus in Hol. Formal Aspects Comput 11(2):160–199
[Par81] Park D (1981) Concurrency and automata on infinite sequences. In: Deussen P (ed) Theoretical computer science. In: Lecture

notes in computer science, vol 104. Springer, Berlin, pp 167–183
[PT87] Paige R, Tarjan RE (1987) Three partition refinement algorithms. SIAM J Comput 16(6):973–989
[Rus06] Rushby JM (2006) Tutorial: automated formal methods with PVS, SAL, and Yices. In: Proceedings of the 4th IEEE inter-

national conference on software engineering and formal methods SEFM’06 (Pune, India). IEEE Computer Society Press,
Los Alamitos, p 262

[SBS06] Salaün G, Bordeaux L, Schaerf M (2006) Describing and reasoning on Web services using process algebra. Int J Business
Process Integr Manage 1(2):116–128

[Sig04] Sighireanu M (2004) LOTOS NT User’s Manual (Version 2.4). INRIA projet VASY. ftp://ftp.inrialpes.fr/pub/vasy/traian/
manual.ps.Z, June 2004

[SKLM07] Salaün G, Kramer J, Lang F, Magee J (2007) Translating FSP into LOTOS and Networks of Automata. In: Davies J, Schulte
W, Song Dong J (eds) Proceedings of the 6th international conference on integrated formal methods IFM’2007 (Oxford,
United Kingdom). Lecture notes in computer science, vol 4591. Springer, Berlin, pp 558–578

[SS05] Salaün G, Serwe W (2005) Translating hardware process algebras into standard process algebras—illustration with CHP and
LOTOS. In: van de Pol J, Romijn J, Smith G (eds). In: Proceedings of the 5th international conference on integrated formal
methods IFM’2005 (Eindhoven, The Netherlands). Lecture notes in computer science, vol 3771. Springer, Berlin (November
2005. Full version available as INRIA Research Report RR-5666)

[SSTV07] Salaün G, Serwe W, Thonnart Y, Vivet P (2007) Formal verification of CHP specifications with CADP—illustration on an
asynchronous network-on-chip. In: Beerel P, Roncken M, Greenstreet M, Singh M (eds) Proceedings of the 13th IEEE interna-
tional symposium on asynchronous circuits and systems ASYNC 2007 (Berkeley, California, USA). IEEE Computer Society
Press, Los Alamitos, pp 73–82

[TW97] Tej H, Wolff B (1997) A corrected failure-divergence model for Csp in Isabelle/Hol. In: Proceedings of the 4th international
symposium of formal methods Europe FME’97 (Graz, Austria). Lecture notes in computer science, vol 1313. Springer, Berlin,
pp 318–337

[vGW89] van Glabbeek RJ, Weijland WP (1989) Branching-Time and Abstraction in Bisimulation Semantics (extended abstract).
CS R8911, Centrum voor Wiskunde en Informatica, Amsterdam, 1989. In: Proceedings of IFIP 11th world computer con-
gress, San Francisco

ftp://ftp.inrialpes.fr/pub/vasy/traian/manual.ps.Z
ftp://ftp.inrialpes.fr/pub/vasy/traian/manual.ps.Z

Translating FSP into LOTOS and networks of automata 711

[WKTZ05] Wang X, Kwiatkowska MZ, Theodoropoulos GK, Zhang Q (2005) Towards a Unifying Csp approach to hierarchical ver-
ification of asynchronous hardware. In: Procedings of the 4th international workshop on automated verification of critical
systems AVoCS’04 (London, UK). Electronic notes in theoretical computer science (ENTCS) series, vol 128, pp 231–246

Received 31 January 2008
Accepted in revised form 10 October 2009 by C.B. Jones and J.C.P. Woodcock
Published online 18 November 2009

	Translating FSP into LOTOS and networks of automata
	Abstract
	1 Introduction
	2 Background
	2.1 Labeled transition systems and bisimulations
	2.2 Finite state processes
	2.3 Language of temporal ordering specification
	2.4 EXP.OPEN

	3 Translating FSP processes into LOTOS and EXP.OPEN
	3.1 Preliminary definitions
	3.2 Translating data and label expressions
	3.3 Relabel test
	3.4 Translating sequential processes into LOTOS
	3.5 Process alphabets
	3.6 Translating composite processes into EXP.OPEN

	4 Tool and validation
	5 Application
	6 Related work
	7 Concluding remarks
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

