
DOI 10.1007/s00165-009-0116-9
BCS © 2009
Formal Aspects of Computing (2010) 22: 385–422

Formal Aspects
of Computing

Reasoning with graph constraints
Fernando Orejas1, Hartmut Ehrig2 and Ulrike Prange2

1 Dpto de L.S.I., Universitat Politècnica de Catalunya, Campus Nord, Mòdul Omega, Jordi Girona 1-3, 08034 Barcelona, Spain
E-mail: orejas@lsi.upc.edu
2 Fak. IV, Technische Universität Berlin, Franklinstrasse 28/29, 10587 Berlin, Germany

Abstract. Graph constraints were introduced in the area of graph transformation, in connection with the notion
of (negative) application conditions, as a form to limit the applicability of transformation rules. However, we
believe that graph constraints may also play a significant role in the area of visual software modelling or in the
specification and verification of semi-structured documents or websites (i.e. HTML or XML sets of documents).
In this sense, after some discussion on these application areas, we concentrate on the problem of how to prove
the consistency of specifications based on this kind of constraints. In particular, we present proof rules for two
classes of graph constraints and show that our proof rules are sound and (refutationally) complete for each class.
In addition, we study clause subsumption in this context as a form to speed up refutation.

Keywords: Graph constraints, Visual modelling, Graph transformation

1. Introduction

Graph constraints were introduced in the area of graph transformation, together with the notion of (negative)
application conditions, as a form to limit the applicability of transformation rules [EhH86, HHT96, HeW95,
EEHP04, HaP05, HaP06]. More precisely, a graph constraint is the graphical description of some kind of pattern
that must be present (or must not be present) in the graphs that we are transforming. In particular, a trans-
formation would be illegal if the resulting graph would violate any of the given constraints. Graph constraints
have been studied mainly in connection with negative application conditions. These conditions are constraints
that are associated to the left-hand side or the right-hand side of a graph transformation rule. Then, one such
rule would be applicable to a given graph if the left-hand side application conditions are satisfied by the given
graph (or rather by the rule matching) and the right-hand side application conditions are satisfied by the result
of the transformation (or rather by its comatch). In this context, most of the above-mentioned work is related
to the extension of basic graph transformation concepts and results to the use of application conditions and
constraints, and to show how one can transform a set of constraints into application conditions for the given
transformation rules. Other work related to these notions has studied the detection of conflicts for graph trans-
formation with application conditions [LEO06], or the expressive power of some kinds of graph constraints
[Ren04].

We believe that graph constraints can go beyond their use in connection to graph transformation. More
precisely, there are two areas in which we think that graph constraints may play an interesting role. The first

Correspondence and offprint requests to: F. Orejas, E-mail: orejas@lsi.upc.edu

386 F. Orejas et al.

one is the area of visual software modelling. The second one is the specification and verification of classes of
semi-structured documents, including the specification and verification of websites (i.e. HTML or XML sets of
documents).

In the area of visual modelling, especially in the context of UML modelling, models are designed using dif-
ferent kinds of diagrams. However, if we have to impose some specific constraints on the models, then we have to
use a textual notation as OCL. We consider that this situation is quite inconvenient. Especially, when we want to
express constraints on the structure of the model, we think that using a graphical notation which is close to the
visual description of the model is much more clear and intuitive than using some textual expression where one
has to previously code or represent that structure.

Some very recent work that is related to this kind of application of graph constraints is the work by de Lara
and Guerra on the specification and synthesis of model transformations [LaG08]. In that paper, they describe
model transformations using graph constraints over triple graphs. Then, these constraints are transformed into
(triple) graph grammar rules that can be used to implement the model transformation specified by the constraints.
As a first step for the synthesis of the graph rules, some inference steps are done using deduction rules which are
similar to some of the rules that are used in this paper.

Other work that, in a sense, is related to the use of graph constraints in visual modeling is the work by
Parisi and Koch on the specification and analysis of access control policies (see, e.g. [KMP05]). In particular,
they specify access control policies using graph constraints to describe the valid states of a system, and graph
transformation rules to specify operations. Interestingly, they use some form of deduction on constraints to
check the consistency of a policy. Unfortunately, the kind of deduction used may be considered quite ad hoc and
incomplete.

On the other hand, we know two kinds of approaches for the specification and verification of semi-structured
documents. The first one [AlF06, EEFN03] is based on extending a fragment of first-order logic allowing us to
refer to the components of the given class of documents (in particular, using XPath notation). This approach,
in our opinion, poses two kinds of problems. On one hand, from a technical point of view, the extension of
first-order logic to represent XML patterns has to make use of associative-commutative operators. This may
make deduction difficult to implement efficiently, since using unification in inference rules may be very costly
(in general, two arbitrary atoms may have a doubly exponential amount of most general unifiers). As a conse-
quence, the approaches presented in [AlF06, EEFN03] present specification languages that allow us to specify
classes of documents, and tools that allow us to check if a given document (or a set of documents) follows a
specification. However, they do not consider the problem of defining deductive tools to analyze specifications,
for instance for looking for inconsistencies. On the other hand, from a pragmatic point of view, this kind of
specifications can be quite verbose and this may make the resulting specifications unpleasant to read and to
write.

The other approach that we know [Jel00], which we consider especially interesting, has a more practical nature.
Schematron is a language and a tool that is part of an ISO standard (DSDL: Document Schema Description
Languages). The language allows us to specify constraints on XML documents by describing directly XML
patterns (using XML) and expressing properties about these patterns. Then, the tool allows us to check if a given
XML document satisfies these constraints. However, we consider that there are two problems with this approach.
The most important one is that this work lacks proper foundations. The other one is that the kind of patterns
that can be expressed in the Schematron language could be a bit limited. On the other hand, as in the approaches
mentioned above, Schematron provides no deductive capabilities.

In this paper, we start the study of graph constraints as a specification formalism. In particular, we study
their underlying logic, providing inference rules that would allow us to prove the consistency (or satisfiability) of
specifications. Actually, we show that these rules are sound and refutationally complete for the class of constraints
considered. It must be noted that, as it is well-known, the fact that our inference rules are refutationally complete
means that we have a complete method to prove consequences of our specifications. In particular, if we want to
check if a given property is a consequence of a specification then it is enough to see if the given specification,
together with the negation of the property, is inconsistent.

Some very recent work that is very related to ours is [Pen08]. In that paper, Pennemann proposes a proof
system for nested graph constraints, a generalization of the kind of constraints considered in our work. The proof
system is proven sound but not complete. In addition, Pennemann describes an implementation of his approach
providing interesting results.

It must also be noted that the results that we present are quite more general than what they actually may seem.
Following recent work on algebraic graph transformation (see, e.g., [EEPT06]), our results apply not only to plain

Reasoning with graph constraints 387

graphs, but generalize to a large class of structures including typed and attributed graphs (we discuss this issue
in more detail in the conclusion). In particular, instead of a logic of graph constraints we could speak of a logic
of pattern constraints, since our results would also apply to reasoning about constraints based on other kinds of
patterns, like XML patterns. In this sense, we consider that the work that we present in this paper provides the
basis for defining the logical foundations of Schematron, and for extending it with more powerful constraints
and with deduction capabilities. In particular, the XML patterns that are used in Schematron can be seen just
as the textual representation (or, rather, the XML representation) of a subclass of the graph constraints that we
consider. In particular, our work could be used to provide deductive capabilities to analyze the consistency of
Schematron specifications.

The work that we present is not the first logic to reason about graphs. With different aims, in a series of papers
(for a survey, see [Cou97]) Courcelle has studied in detail the definition and use of a graph logic (in the following
called CL, from Courcelle Logic). His approach can be seen as a coding of graphs and graph properties into
first-order or monadic second-order logic. In particular, the approach is based on the use of some predicates
describing the existence of nodes and edges which, together with some given axioms, provide an axiomatization
of the basic graph theory. Then, one can express graph properties using standard first-order or monadic second-
order formulas over these predicates. Our constraints can be seen as a fragment of CL in the sense that a graph
constraint can be coded into a sentence in that logic. Actually, nested constraints have been proved equivalent
to the first-order fragment of CL [HaP08]. As a consequence, there are two main issues that one may consider.
On one hand, whether graphs constraints, as advocated in this paper, are useful as a modeling formalism. On the
other hand, we can question whether it is really needed to develop proof techniques for our constraints, since we
can do this indirectly: by coding the constraints into CL and using standard logic deduction. In particular, with
respect to the first issue, we could think of directly using CL to write our specifications. However, we think that
for modeling and specification purposes, graph constraints provide a much more friendly and intuitive formalism
than CL. With respect to the second issue, we think that there are two main reasons that justify our work in
this direction. First, studying directly the constraints logic gives you insights about the logic that we would not
obtain using the coding. For instance, our completeness proofs implicitly tell us how we can design procedures to
build models for a given set of constraints. This is interesting for applications like the one presented in [LaG08],
where building a model is, in a sense, equivalent to synthesizing the specified model transformation. And, second,
we believe that we can gain significant efficiency. Actually, this kind of discussion is not new. For instance, the
development of proof techniques for first-order logic with equality has sometimes been questioned, considering
that one could use the standard techniques for first-order logic without equality together with an axiomatization
of the equality predicate. However, the study of first-order logic with equality has allowed the development of
powerful techniques which are the basis of very efficient tools. In this sense, in [Pen08] Pennemann compares
his implementation for his proof system for nested constraints with an implementation based on coding the
constraints into CL and then using some standard provers like VAMPIRE, DARWIN and PROVER9. The
result is that his implementation outperforms the coding approach. Actually, in most examples considered, the
above provers were unable to terminate in the given time (1 h of cpu time). Unfortunately, these results cannot
be considered technically valid, since the completeness of Pennemann’s proof system is not shown. In [BCKL06]
CL is extended with temporal operators. In this case, the intention is to present a logic that can be used for the
verification of graph transformation systems.This logic goes far beyond our aims.

This paper is organized as follows. In the next section, we present the kind of graph constraints that we
consider in this paper and some basic notions concerning refutation procedures. Moreover, we present a small
example to motivate their use in connection with visual modeling. This example will be used as a running example
in the rest of the paper. The following two sections are the core of the paper. They present inference rules for
two classes of graph constraints showing, in both cases, their soundness and completeness. Then, in Sect. 5, we
present some techniques that may be used to speed up refutation procedures. In particular, we present a notion
of subsumption, proving that subsumed clauses can be eliminated without losing completeness. Finally, in the
conclusion we discuss some issues concerning the results that we present, in particular, their generality and the
possible implementation of a deductive tool.

This paper extends and generalizes the work presented in [OEP08] in several ways. In particular, in addition
to providing detailed proofs for all our results, the paper considers the general case where specifications are
assumed to consist of arbitrary clauses, while in [OEP08] the specifications were assumed to be just sets of literals.
In addition, this paper includes a new section about subsumption and clause elimination which was not present
in [OEP08].

388 F. Orejas et al.

2. Graphs and graph constraints

In this section, we present the basic notions that are used in this paper. First, we present some notation and termi-
nology needed. Then, in the second section we introduce the kind of graph constraints that we consider. Finally,
in the third section, we introduce some standard basic concepts about refutation procedures. For simplicity, we
present our definitions in terms of plain directed graphs, although in some examples, for motivation, we deal with
typed attributed graphs. Anyhow, following the approach used in [EEPT06], it should not be difficult to show
that our results generalize to a large class of (graphical) structures. In Sect. 6, we discuss this issue in more detail.

2.1. Graphs

As said above, all our notions and results will be presented in terms of plain directed graphs, i.e.:

Definition 1 (Graphs) A graph G � (GV ,GE , sG , tG) consists of a set GV of nodes, a set GE of edges, a source
function sG : GE → GV , and a target function tG : GE → GV .

It may be noted that we do not explicitly state that the sets of nodes and edges of a graph are finite sets. That
is, according to our definition, unless it is explicitly stated, graphs may be infinite. This issue is discussed in some
detail in Sects. 3 and 4.

All over the paper we will have to express that a certain graph G1 is included into another graph G2. Obviously,
we could have done this through a subgraph relationship. However, G2 may include several instances of G1. For
this reason, in order to be precise when specifying the specific instance in which we may be interested, we will
deal with these inclusions using the notion of graph monomorphism:

Definition 2 (Graph morphisms) Given the graphs G � (GV ,GE , sG , tG) and H � (H V ,H E , sH , tH), a graph
morphism f : G → H is a pair of mappings, f V : GV → H V , f E : GE → H E such that f commutes with the
source and target functions, i.e. the diagrams below are commutative.

GE
sG

��

f E

��

GV

f V

��
H E

sH

�� H V

GE
tG

��

f E

��

H V

f V

��
H E

tH

�� G ′V

A graph morphism f : G → H is a monomorphism if f V and f E are injective mappings.

In several results of the paper, given two graphs G,G ′ we will need to overlap them in all possible ways. This
will be done using the construction G ⊗ G ′:

Definition 3 (Jointly surjective morphisms) Two graph morphisms m : H → G and m ′ : H ′ → G are jointly
surjective if mV (H V) ∪m ′V (H ′V) � GV and mE (H E) ∪m ′E (H ′E) � GE .

Given two graphs G and G ′, the set of all pairs of jointly surjective monomorphisms from G and G ′ is denoted
by G ⊗ G ′, that is:

G ⊗ G ′ � {m : G → H ← G ′ : m ′ | m and m′ are jointly surjective monomorphisms}.
The definition of G ⊗ G ′ in terms of sets of pairs of monomorphisms may look a bit more complex than

needed but, as in the case of the inclusions, we often need to identify the specific instances of G and G ′ inside H .
However, from an intuitive point of view, it is enough to consider that G ⊗ G ′ is the set of all graphs that can be
seen as the result of overlapping G and G ′.

Note that if G and G ′ are finite graphs then G ⊗ G ′ is also a finite set (up to isomorphism). This is needed
because in several inference rules (see Sects. 3, 4) the result is a clause involving a disjunction related to a set of
this kind. In particular, if G ⊗ G ′ is infinite so would be the corresponding disjunction. A property satisfied by
graphs, which we use in the proofs of most results, is pair factorization:

Reasoning with graph constraints 389

Proposition 1 (Pair factorization) Given two graph morphisms, h1 : G1 → G ← G2 : h2, with the same codomain
G there exists a graph H and morphisms g1 : G1 → H ← G2 : g2 and h : H → G such that g1 and g2 are jointly
surjective and the diagram below commutes:

G1

g1

��

h1

���
��

��
��

�

H
h �� G

G2

g2

��

h2

����������

Moreover, if h1 and h2 are monomorphisms so are g1 and g2.

Proof. We define the graph H as follows:

• H V � {v ∈ GV | ∃v1 ∈ GV
1 hV

1 (v1) � v} ∪ {v ∈ GV | ∃v2 ∈ GV
2 hV

2 (v2) � v}
• H E � {e ∈ GE | ∃e1 ∈ GE

1 hE
1 (e1) � e} ∪ {e ∈ GE | ∃e2 ∈ GE

2 hE
2 (e2) � e}

• For every e ∈ HE , sH (e) � sG (e) and tH (e) � tG (e)

and we define g1 and g2 as follows:

• For every v1 ∈ GV
1 , gV

1 (v1) � hV
1 (v1) and for every e1 ∈ GE

1 , gE
1 (e1) � hE

1 (e1)

• For every v2 ∈ GV
2 , gV

2 (v2) � hV
2 (v2) and for every e2 ∈ GE

2 , gE
2 (e2) � hE

1 (e2)

Now, by definition, g1 and g2 are jointly surjective and H is a subgraph of G . Let us call h the monomorphism
associated to this inclusion. Moreover, notice that by definition if h1 and h2 are monomorphisms so are g1 and
g2. We only have to prove that the diagram above commutes. But this is also a straightforward consequence of
the definitions of H , g1, g2, and h. �

Extended pair factorization, which seems a generalization of pair factorization, is also used in our proofs.
However we can see that extended pair factorization is really a straightforward consequence of pair factorization:

Proposition 2 (Extended pair factorization) Given the commuting diagram below,

G1

h1

���
��

��
��

�

G0

f2 ���
��

��
��

�

f1

����������
G

G2

h2

����������

there exist a graph H and morphisms g1 : G1 → H ← G2 : g2, and h : H → G such that g1 and g2 are jointly
surjective and the diagram below commutes:

G1

g1

��

h1

���
��

��
��

�

G0

f2 ���
��

��
��

�

f1

����������
H

h �� G

G2

g2

��

h2

����������

Moreover, if h1 and h2 are monomorphisms so are g1 and g2.

390 F. Orejas et al.

Proof. Let us define H , g1, g2, and h using pair factorization. Then we only need to prove that g1 ◦ f1 � g2 ◦ f2.
Now, according to pair factorization we know that h ◦ g1 ◦ f1 � h1 ◦ f1 � h2 ◦ f2 � h ◦ g2 ◦ f2. But we know that
h is a monomorphism, therefore g1 ◦ f1 � g2 ◦ f2. �

We may see that ⊗ is, in some sense, associative and commutative:

Proposition 3 Given three graphs G1, G2 and G3 then:
{G | 〈f ,G, g〉 ∈ G1 ⊗ (G2 ⊗ G3)} � {G | 〈f ,G, g〉 ∈ (G2 ⊗ G1)⊗ G3} �
{G | there are jointly surjective monomorphisms f : G1 → G, g : G2 → G, h : G3 → G}.
Proof. We start proving that if G is in {G | 〈f ,G, g〉 ∈ G1⊗ (G2⊗G3)} then there are jointly surjective monomor-
phisms f1 : G1 → G, f2 : G2 → G, f3 : G3 → G . Suppose G is in {G | 〈f ,G, g〉 ∈ G1 ⊗ (G2 ⊗ G3)}, this means
that there is a graph H and morphisms f ′ : G2 → H ← G3 : g ′ and f : G1 → G ← H : g such that f ′ and g ′ are
jointly surjective and so are f and g . But, then, it is routine to show that f1 � f : G1 → G , f2 � g ◦ f ′ : G2 → G ,
and f3 � g ◦ g ′ : G3 → G are jointly surjective.

Now, we prove the converse inclusion. Suppose that there are jointly surjective monomorphisms f1 : G1 →
G, f2 : G2 → G, f3 : G3 → G . Using the pair factorization property there exist a graph H and monomorphisms
g2, g3, and h:

G2

g2

��

f2

���
��

��
��

�

H
h �� G G1

f1

��

G3

g3

��

f3

����������

such that the diagram above commutes and g2 and g3 are jointly surjective. But this means that 〈g2,H , g3〉 ∈
G2⊗G3. On the other hand, it is routine to prove that f1 and h are jointly surjective, which means that 〈f1,G,m〉 ∈
G1 ⊗ (G2 ⊗ G3). The prove that {G | there are jointly surjective monomorphisms f : G1 → G, g : G2 → G, h :
G3 → G} � {G | 〈f ,G, g〉 ∈ (G2 ⊗ G1)⊗ G3} is similar. �

Finally, the last property that we need for our results, which is also satisfied by graphs, is the existence of
infinite colimits (satisfying an additional minimality property) for sequences of monomorphisms. Intuitively,
these colimits are the union of the graphs in the sequence. Actually, in the category of graphs we have colimits
for arbitrary diagrams. To be more precise:

Proposition 4 (Infinite colimits) Given a sequence of monomorphisms:

G1
f1 �� G2

f2 �� . . . fi−1 �� Gi
fi �� . . .

there exists a colimit:

G1
f1 ��

h1

����������������������������� G2
f2 ��

h2

															 . . .
fi−1 �� Gi

fi ��

hi

. . .

G

that satisfies that for every monomorphism g : G ′ → G , such that G ′ is a finite graph, there is a j and a monomor-
phism gj : G ′ → Gj such that the diagram below commutes:

G ′ gj ��

g
���

��
��

��
� Gj

hj����
��

��
�

G

Reasoning with graph constraints 391

Proof. We define the graph G as follows:

• GV � (
⋃

1≤i GV
i)/ ≡V , where ≡V is the least equivalence relation satisfying that for every i and every

v ∈ GV
i v ≡V fi (v).

• GE � (
⋃

1≤i GE
i)/ ≡E , where ≡E is the least equivalence relation satisfying that for every i and every

e ∈ GE
i e ≡E fi (e).

• For every e ∈ GE
i , sG (|e |) �| sGi (e) | and tG (|e |) �| tGi (e) |.

Moreover, for every i we define the morphism hi : Gi → G as follows:

• For every v ∈ GV
i , hV

i (v) �| v |.
• For every e ∈ GE

i , hE
i (e) �| e |.

Now, it should be obvious that, by definition, the graph G and the morphisms hi are a cocone for the above
diagram. We may see that it satisfies the universal property for colimits. Suppose that the diagram:

G1
f1 ��

h ′1

���������������������������� G2
f2 ��

h ′2

															 . . .
fi−1 �� Gi

fi ��

h ′i

. . .

G ′

is also a cocone. We define the following morphism h : G → G ′:

• For every v ∈ GV
i , hV (| v |) � h ′Vi (v).

• For every e ∈ GE
i , hE (| e |) � h ′Ei (e).

By definition, for every i , h ′i � h ◦hi . Now, suppose that h ′ : G → G ′ also satisfies that for every i , h ′i � h ′ ◦hi

let us see that h � h ′:

• For every v ∈ GV
i , hV (| v |) � h ′Vi (v) � h ′V (hV

i (v) � h ′V (| v |).
• For every e ∈ GE

i , hE (| e |) � h ′Ei (e) � h ′E (hE
i (e) � h ′E (| e |).

Therefore we have proved that G together with the morphisms hi are a colimit for the diagram above. Let us
now prove that this colimit satisfies that for every monomorphism g : G ′ → G , such that G ′ is a finite graph,
there is a j and a monomorphism gj : G ′ → Gj such that the diagram below commutes:

G ′ gj ��

g
���

��
��

��
� Gj

hj����
��

��
�

G

Let G ′ be a finite graph and suppose that g : G ′ → G . For each i , let G ′i ⊆ G be the image of Gi by hi . It should
be noted that, by definition, we have that, for each i , G ′i ⊆ G ′i+1 and, moreover, Gi and G ′i are isomorphic, since
the morphisms hi are injective. Let g ′i : G ′i → Gi be that isomorphism, for each i . In addition, we also have:

• GV � ⋃
1≤i G ′Vi , and

• GE � ⋃
1≤i G ′Ei

Now, since G ′ is finite, there must be a j such that for every v ∈ G ′V : gV (v) ∈ G ′Vj and for every e ∈ G ′E :
gE (e) ∈ G ′Ej . Then, we can define the required gj as follows:

• For every v ∈ G ′V, gV
j (v) � g ′Vj (gV (v).

• For every e ∈ G ′E, gE
j (e) � g ′Ej (gE (e).

Then, by definition, gj commutes the above diagram. �

392 F. Orejas et al.

2.2. Graph constraints

The underlying idea of a graph constraint is that it should specify that certain patterns must be present (or must
not be present) in a given graph. For instance, the simplest kind of graph constraint, ∃C , specifies that a given
graph G should include (a copy of) C. For instance, the constraint:

∃ ()

specifies that a graph should include at least one edge. Obviously, ¬∃C specifies that a given graph G should not
include (a copy of) C. For instance, the constraint:

¬ ∃ ()

specifies that a given graph G should not include two different edges between any two nodes. A slightly more
complex kind of graph constraints are atomic constraints of the form ∀(c : X → C) where c is a monomorphism
(or, just, an inclusion). This constraint specifies that whenever a graph G includes (a copy of) the graph X it
should also include (a copy of) its extension C. However, in order to enhance readability (the monomorphism
arrow may be confused with the edges of the graphs), in our examples we will display these kinds of constraints
using an if—then notation, where the two graphs involved have been labelled to implicitly represent the given
monomorphism. For instance, the constraint:

if a b c then a b c

specifies that a graph must be transitive, i.e. the constraint says that for every three nodes a, b, c if there is an edge
from a to b and an edge from b to c then there should be an edge from a to c.

Obviously, graph constraints can be combined using the standard connectives ∨ and ¬ (as usual, ∧ can be
considered a derived operation). In addition, in [EEHP04, Ren04] a more complex kind of constraints, namely
nested constraints, is defined, but we do not consider them in this paper.

Definition 4 (Syntax of graph constraints) An atomic graph constraint ∀(c : X → C) is a graph monomorphism
c : X → C , where X and C are finite graphs. An atomic graph constraint ∀(c : X → C), where X � ∅, is called
a basic atomic constraint (or just a basic constraint) and will be denoted ∃C .

Graph constraints are logic formulas defined inductively as usual:

• Every atomic graph constraint is a graph constraint.
• If α is a graph constraint then ¬α is also a graph constraint.
• If α1 and α2 are graph constraints then α1 ∨ α2 is also a graph constraint.

Satisfaction of constraints is also defined inductively following the intuitions described above.

Definition 5 (Satisfaction of graph constraints) A graph G satisfies a constraint α, denoted G |� α if the following
holds:

• G |� ∀(c : X → C) if for every monomorphism h : X → G there is a monomorphism f : C → G such that
h � f ◦ c.

• G |� ¬α if G does not satisfy α.
• G |� α1 ∨ α2 if G |� α1 or G |� α2.

It may be noted that, according to these definitions, the constraint ∃∅, where ∅ denotes the empty graph, is
satisfied by any graph, i.e. ∃∅ may be considered the trivial true constraint.

We assume that our specifications consist of clauses of the form L1 ∨ · · · ∨ Ln , where each literal Li is either
an atomic constraint (a positive literal) or a negative atomic constraint (a negative literal). For technical reasons,
we will consider that the clause including only ∃∅ (i.e. the true clause) is included in any specification. We will
say that a clause is strictly negative if it only includes negative basic constraints.

It may be noticed that dealing with arbitrary clauses is equivalent to deal with arbitrary boolean fomulas over
the atomic constraints since these formulas can always be transformed into clausal form.

In the case of basic constraints the above definition specializes as expected:

Reasoning with graph constraints 393

Fact 1 (Satisfaction of basic constraints) G |� ∃C if there is a monomorphism f : C → G .

Remark 1 Atomic constraints can be generalized by allowing its definition in terms of arbitrary morphisms. That
is, we could have defined atomic graph constraints ∀(c : X → C) where c is an arbitrary morphism. However,
with our notion of satisfaction, this generalization does not add any additional power to our logic, since it can be
proved [HaP05] that if c is not a monomorphism then the constraint ∀(c : X → C) is logically equivalent to the
constraint ¬∃X . For instance, the two constraints below are equivalent. In particular, both constraints specify
that there cannot be two different edges between any two nodes.

(1) if 1 2
a
b

then 1 2ab (2) ¬∃(

1 2
a
b

)

Analogously, we could have also generalized our notion of satisfaction by allowing h and f to be also arbi-
trary morphisms and not just monomorphisms. This generalized form of satisfaction has been studied in [HaP06],
where it is called A-satisfaction in contrast with the notion of satisfaction that we use, which is called M-satisfaction
in that paper. In particular, in [HaP06], it is shown how to transform nested constraints such that A-satisfiability
for a certain constraint is equivalent to M-satisfiability for the transformed constraint (and vice versa). Anyhow,
we believe that M-satisfaction is more interesting than A-satisfaction for specification purposes.

Remark 2 The above notions can be defined not only for the category of graphs but for any weak adhesive HLR-
category [LaS04, EEPT06] as can be seen in [EEHP04, EEPT06]. In particular, in that case, it is assumed that
the morphisms involved in the notions of atomic constraints and satisfaction are not arbitrary monomorphisms
but belong to a given class M of monomorphisms. In this context, the notions of constraints and satisfaction
apply to many other kinds of graphical categories, including typed graphs and attributed typed graphs, as the
ones considered in our running example.

Example 1 Let us suppose that we want to model an information system describing the lecturing organization
of a department. Then the type graph of (part of) our system could be the following one:

Subject
string Name

Lecturer
string Name

Room
int RoomNumber

int TimeSlot

This means that in our system we have three types of nodes: Rooms including two attributes, the room number
and a time slot, and Subjects and Lecturers, having their name as an attribute. We also have two types of edges.
In particular, an edge from a Subject S to a Lecturer L means, obviously, that L is the lecturer for S . An edge
from a Subject S to a Room means that the lecturing for S takes place on that room for the given time slot. Now
for this system we could include the following constraints, where the type of each node is denoted by the word at
the top of the square:

(1) ∃ (
Subject

Name�CS1

)
(2) ∃ (

Subject
Name�CS2

)

meaning that the given system must include the compulsory subjects CS1 and CS2. Moreover, we may have a
constraint saying that every subject included in the system must have some lecturer assignment and some room
assignment:

(3) if
Subject
Name�N then

Subject
Name�N

Lecturer

Room

394 F. Orejas et al.

Then, we may also have constraints expressing some negative conditions. For instance, that a room is not
assigned at the same time to two subjects or that two different rooms are assigned at the same time to the same
subject:

(4) ¬∃ (
Room

Subject

Subject

)
(5) ¬∃ (

Subject

Room
TimeSlot�T

Room
TimeSlot�T

)

or, similarly, that a lecturer does not have to lecture on two different subjects in two different rooms at the same
time slot:

(6) ¬∃ (
Lecturer

Subject

Subject

Room
TimeSlot�T

Room
TimeSlot�T

)

Finally, perhaps we may want to specify that not every lecturer has a teaching assignment, so that every
semester there may be someone on sabbatical:

(7) ¬ if Lecturer
Name�N then Lecturer

Name�N
Subject

It may be noticed that the system that we are describing with these graphical constraints may not be an
information system, but the set of web pages of a department, where an arrow from a node of type t1 to a node
of type t2 may mean that there is a link between two web pages (for instance from the web page of a subject to
the web pages of a lecturer), or it may mean that the information of type t2 is a subfield of the information of
type t1 (for instance the room assignment may be a field of the subject’s web pages). In this case, we could have
displayed our constraints not in terms of graphs, but as HTML or XML expressions.

2.3. Refutation procedures for checking satisfiability

As it is often done in the area of automatic reasoning, the refutation procedures that we present in this paper are
defined by means of some inference rules. More precisely, as usual, each rule tells us that if certain premises are
satisfied then a given consequence will also hold. In this context, a refutation procedure can be seen as a (possibly
nonterminating) nondeterministic computation where the current state is given by the set of formulas that have
been inferred until the given moment, and where a computation step means adding to the given state the result
of applying an inference rule to that state.

More precisely, in our case, we assume that in general the inference rules have the form:

�1 �2

�3

where �1, �2 and �3 are clauses, and where clauses are seen as sets of literals. In particular, this means that if we
write that a clause has the form � ∨ L, this does not necessarily imply that L is the rightmost literal of the given
clause. Similarly, we consider that the clause � ∨ L is the same as the clause � ∨ L ∨ L.

Reasoning with graph constraints 395

Then, a refutation procedure for a set of constraints C is a sequence of inferences:

C0 ⇒ C1 ⇒ · · · ⇒ Ci ⇒ . . .

where the initial state is the original specification (i.e., C0 � C) and where we write Ci ⇒ Ci+1 if there is an inference
rule like the one above such that �1, �2 ∈ Ci , and Ci+1 � Ci ∪ {�3}. Moreover, we will assume that Ci ⊂ Ci+1, i.e.
�3 �∈ Ci , to avoid useless inferences.

In this framework, proving the unsatisfiability of a set of constraints means inferring the false clause (which is
represented by the empty clause, i.e. the empty disjunction, denoted �), provided that the procedure is sound and
complete. Since the procedures are nondeterministic, there is the possibility that we never apply some key infer-
ence. To avoid this problem we will always assume that our procedures are fair, which means that, if at any moment
i , there is a possible inference Ci ⇒ Ci ∪ {�}, for some clause �, then at some moment j we have that � ∈ Cj .
This means that inferences are not postponed forever, i.e. every inference will eventually be performed. If we care
about completeness, fairness must always be taken into account when implementing deduction. For instance,
implementations based on depth-first search with backtracking run the risk of not being fair: if the deduction
process gets into an infinite branch of the tree representing the deduction process, then it may fail to apply some
alternative inferences. This is the well-known problem of the incompleteness of Prolog’s implementation of SLD
resolution [Llo87].

Then, a refutation procedure for C is sound if whenever the procedure infers the empty clause we have that C
is unsatisfiable. And a procedure is complete if, whenever C is unsatisfiable, we have that the procedure infers �.

It may be noted that if a refutation procedure is sound and complete then we may know in a finite amount of
time if a given set of constraints is unsatisfiable. However, it may be impossible to know in a finite amount of time
if the set of constraints is satisfiable. For this reason, sometimes the above definition of completeness is called
refutational completeness, using the term completeness when both satisfiability and unsatisfiability are decidable.

As usual, for proving soundness of a refutation procedure it is enough to prove the soundness of the inference
rules. This means that for every rule as the one above and every graph G , if G |� �1 and G |� �2 then G |� �3.

3. Basic constraints and positive atomic constraints

In this section, we present an inference system consisting of the three rules (R1), (R2) and (R3) below that provides
sound and complete refutation procedures for checking satisfiability when clauses consist only of positive and
negative basic constraints and positive atomic constraints. This means that the given specifications are assumed
to consist of clauses including literals of the form ∃C1, ¬∃C1, or ∀(c : X → C2).

Our refutation procedures may not terminate, which means that the procedures are just refutationally com-
plete. However, as shown in [OEP08], if we restrict our logic to basic constraints then refutation procedures would
terminate. Moreover, our procedures check satisfiability with respect to the class of finite and infinite graphs. In
fact, in the following section, we show an example of a specification whose only models are infinite graphs. As a
consequence, we guess that satisfiability for this class of constraints is already undecidable (but semi-decidable).

∃C1 ∨ �1 ¬∃C2 ∨ �2

�1 ∨ �2
(R1)

if there exists a monomorphism m : C2 → C1

∃C1 ∨ �1 ∃C2 ∨ �2

(
∨

G∈G ∃G) ∨ �1 ∨ �2
(R2)

where G � {G | 〈f1 : C1 → G ← C2 : f2〉 ∈ (C1 ⊗ C2)} and (
∨

G∈G ∃G) denotes the (finite)
disjunction ∃G1 ∨ · · · ∨ ∃Gn , if G � {G1, . . . ,Gn }.

∃C1 ∨ �1 ∀(c : X → C2) ∨ �2

(
∨

G∈G ∃G) ∨ �1 ∨ �2
(R3)

if there is a monomorphism m : X → C1 and G � {G | 〈f1 : C1 → G ← C2 : f2〉 ∈
(C1 ⊗ C2) such that f1 ◦m � f2 ◦ c}.

396 F. Orejas et al.

The first rule is, in some sense, similar to resolution and is the rule that may allow us to infer the empty clause.
The reason is that it is the only rule that eliminates literals from clauses. The second one can be seen as a rule
that, given two constraints, builds a new constraint that subsumes them. More precisely, the graphs involved in
the new literals in the clause, i.e. the graphs G ∈ G satisfy both constraints ∃C1 and ∃C2. This means that if
we apply this rule repeatedly, using all the positive constraints in the original set C, we would build graphs that
satisfy all the positive basic constraints in C. The third rule is similar to rule (R2) in the sense that given a positive
basic constraint and a positive atomic constraint it builds a disjunction of literals representing graphs that try to
satisfy both constraints. However, in this case the satisfaction of the constraint ∀(c : X → C2) is not necessarily
ensured for all G ∈ G. In particular, the idea of the rule is that if we know that X is included in C1 then we build
all the possible extensions of C1 which also include C2 (each G would be one of such extensions). But we cannot
be sure that G satisfies ∀(c : X → C2), because G may include an instance of X which was not included in C1.
For instance, suppose that we have the following constraints:

(1) ∃ ()
(2) if a then a b

where the first one specifies that the given graph must include a node and where the second one specifies that every
node must have an outgoing edge. Then applying rule (R3) to these constraints would yield a clause including
the literal:

∃ (

a b
)

Now, in this graph, the node a has an outgoing edge, but the node b does not have it, so the graph still does
not satisfy the second constraint. If we would apply again the third rule, then we would infer a clause including
a graph with three nodes and two edges, and so on. This is the reason why, in this case, a refutation procedure
may not terminate. Moreover, as we will also see, if the procedure does not refute the given set of constraints
then the completeness proof ensures that there will be a model that satisfies this set of constraints, but this model
may be an infinite graph built by an infinite colimit. One may wonder whether there will also exist a finite model
of that specification. In the case of this example such a finite graph exists. Actually, the resulting clause after
applying for the second time the third rule to the graph above, would also include the graph below that satisfies
both constraints.

However, in general, we do not know if an arbitrary set of basic constraints and positive atomic constraints
which is satisfiable by an infinite graph, is also satisfied by some finite graph. Nevertheless, in the general case
(when dealing with positive and negative atomic constraints) there are sets of constraints whose only models are
infinite graphs, as we will see in the following section. For this reason we conjecture that in this case the answer
to this question will also be negative.

Example 2 If we consider the basic constraints and the positive atomic constraints that are included in the
Example 1 [i.e. the constraints (1), (2), (3), (4), (5), and (6)] then it would first be possible to infer the constraint
below using the rule (R2) on constraints (1) and (2):1

(8) ∃ (
Subject

Name�CS1
Subject

Name�CS2

)

1 Actually, if the graphs in the example would be considered attributed graphs as presented in [EEPT06], then the clause inferred would
include an additional literal. In particular, this literal would be a graph consisting of a single node of type Subject with two Name attributes.
However, from now on, in our examples we will assume that it is not possible that a node has twice the same attribute. This could be done,
for instance, assuming that our specifications implicitly include a graph constraint stating that this situation is not allowed.

Reasoning with graph constraints 397

This new constraint obviously means that the graph representing the system must include at least two Subject
nodes (with attributes CS1 and CS2). Then, if we apply the third rule on constraints (8) and (3), and, again, on
the resulting clause and on constraint (3) then we would infer the following clause:

(9) ∃ (
Subject

Name�CS1

Lecturer

Room

Subject
Name�CS2

Lecturer

Room

) ∨ ∃ (
Subject

Name�CS1

Lecturer

Room

Subject
Name�CS2

Room

) ∨

∨ ∃ (
Subject

Name�CS1

Lecturer

Room

Subject
Name�CS2

Lecturer

) ∨ ∃ (
Subject

Name�CS1

Lecturer

Room

Subject
Name�CS2

)

This clause states that the graph should include two subjects (CS1 and CS2) and these subjects may be assigned
to two different rooms and to either two different lecturers, or to the same lecturer, or they may be assigned to the
same room, and to either different lecturers, or the same lecturer. Obviously, the last two constraints in this clause
violate constraint (4), which means that we can eliminate them using twice the rule (R1), yielding the following
clause:

(10) ∃ (
Subject

Name�CS1

Lecturer

Room

Subject
Name�CS2

Lecturer

Room

) ∨ ∃ (
Subject

Name�CS1

Lecturer

Room

Subject
Name�CS2

Room

)

At this point, we could stop the inference process since the two graphs in (10) are already (minimal) models
of the given set of constraints, which means that it is satisfiable. Actually, the inferences that we can apply to
the current set of clauses are quite useless and we could have avoided them by defining more restrictive side
conditions in the inference rules. For instance, in (R2) we could have asked, in addition, that there should not
exist any monomorphism from C1 to C2 or vice versa since it could be proved that, if such monomorphism exists,
the deduction rule is useless. However, we have preferred to present this (inefficient) version of the deduction
rules to simplify as much as possible the completeness proof.

It is easy to prove that these three rules are sound:

Lemma 1 (Soundness of the inference rules) Rules (R1), (R2), and (R3) are sound.

Proof. (R1) Let G be a graph and suppose that G |� ∃C1∨�1, G |� ¬∃C2∨�2, and there exists a monomorphism
m : C2 → C1. We know that it cannot happen that G |� ∃C1 and G |� ¬∃C2, since if G |� ∃C1 then there
exists a monomorphism h : C1 → G and this implies that h ◦m : C2 → G is a monomorphism, meaning that
G |� ∃C2. Therefore, G |� �1 ∨ �2.

(R2) Suppose that G |� ∃C1 ∨ �1 and G |� ∃C2 ∨ �2. The case where G |� �1 or G |� �2 is trivial. Suppose
that G |� ∃C1 and G |� ∃C2. This means that there are two monomorphisms h1 : C1 → G and h2 : C2 → G
and this implies by Prop. 1 that there is a factorization:

398 F. Orejas et al.

C1

f1

��

h1

���
��

��
��

�

G ′ m ′ �� G

C2

f2

��

h2

����������

where f1 : C1 → G ′ and f2 : C2 → G ′ are jointly surjective, which means that G ′ is in G, and m ′ is injective. This
implies that G |� (

∨
G ′∈G ∃G ′)

(R3) Suppose that G |� ∃C1 ∨ �1, G |� ∀(c : X → C2) ∨ �2, and there is a monomorphism m : X → C1.
The case where G |� �1 or G |� �2 is trivial. Suppose that G |� ∃C1 and G |� ∀(c : X → C2), this means,
on one hand, that there is a monomorphism h1 : C1 → G . On the other hand, this also means that there is a
monomorphism h2 : C2 → G such that h1 ◦m � h2 ◦ c, since G |� ∀(c : X → C2). As a consequence, by Prop. 2
there is a factorization:

C1

f1

��

h1

���
��

��
��

�

X

c
���

��
��

��
�

m

����������
G ′ m ′ �� G

C2

f2

��

h2

����������

where f1 : C1 → G ′ and f2 : C2 → G ′ are jointly surjective, which means that G ′ is in G, and m ′ is injective. This
implies that G |� (

∨
G ′∈G ∃G ′). �

Proving completeness is more involved. The underlying idea of the completeness proof is to consider a pre-
cedence relation between the basic literals (or the associated graphs) occurring in clauses. Then, we will show
that the colimit of one of these sequences is the model of the given specification. More precisely, we will see that
the sequences considered represent a construction of possible models using the inference rules (R2) and (R3).
But before proving the completeness of our system, let us first present some auxiliary definitions and results. We
start by defining a key construction for proving completeness, related to inference rules (R2) and (R3). Given
a basic constraint, ∃G1, and a positive literal, L, I (∃G1,L) is the set of all literals ∃G (or rather of morphisms
h : G1 → G) that can be inferred from ∃G1 and L using the rules (R2) or (R3). In particular, in the case where
L � ∃G2, this means, essentially, G1 ⊗ G2. In the case where the second literal is ∀(c : X → G2) we iterate the
construction for each of the monomorphisms from X to G1.

We may notice that, in the proofs below, we do not make explicit use of the fairness requirement for the given
refutation procedures. However this requirement is implicitly used in a number of proofs. More precisely, given
a refutation procedure C ⇒ C1 ⇒ · · · ⇒ Ck . . ., whenever we are assuming that the result of a certain inference
is in

⋃
k≥1 Ck (assuming, obviously, that the premises are also in

⋃
k≥1 Ck) we are implicitly assuming that the

procedure is fair.

Definition 6 Let ∃G1 be a basic literal and L a positive literal. We define the set of monomorphisms I (∃G1,L) by
cases:

• If L is a basic literal, L � ∃G2, then I (∃G1,L) � {f1 | 〈f1 : G1 → G ← G2 : f2〉 ∈ (G1 ⊗ G2)}.
• If L is a non-basic literal, L � ∀(c : X → C), and H is the set of all monomorphisms from X to G1 then

I (∃G1,L) � I ∗(∃G1,H), where I ∗(∃G1,H) is defined inductively:

– If H � ∅ then I ∗(∃G1,H) � {idG1}, where idG1 denotes the identity, idG1 : G1 → G1

– If H � {f : X → G1} ∪ H ′ then I ∗(∃G1,H) � {h ′ ◦ h | h : G1 → G ∈ I ∗(∃G1,H ′), 〈h ′ : G → G ′ ← C :
f2〉 ∈ (G ⊗ C) such that f2 ◦ c � h ′ ◦ h ◦ f }.

Notice that, by Prop. 3, the above definition is independent of the order in which we consider the monomor-
phisms in H .

Reasoning with graph constraints 399

The definition of I is extended to clauses and sets of clauses. I (∃G1, �) is the set of all literals ∃G (morphisms
h : G1 → G) that can be inferred from ∃G1 and the positive literals in � using the rules (R2) or (R3). Then,
I (∃G1, C) is the set of all literals ∃G (morphisms h : G1 → G) that can be inferred from ∃G1 after applying
one inference with each of the clauses (one after the other) in C. However, if a clause � in C includes a negative
literal, ¬∃G and we have that G1 |� ∃G then no inference would be applied when computing I , since G1 would
already satisfy �. The same happens if � includes a literal ∀(c : X → G2) and there is no monomorphism
h : X → G1. Notice that this implies, as we can see in the definition below, that if � is a strictly negative clause
then I (∃G1, �) is the empty set. Also, if � ∈ C is strictly negative and for every literal ¬∃C in � we have that
there is a monomorphism from C into G1 then I (∃G1, C) is again the empty set. Otherwise, if G1 satisfies all the
strictly negative clauses in C then I (∃G1, C) is not empty.

Definition 7 Let ∃G1 be a basic literal and � be a clause. We define the set of monomorphisms I (∃G1, �):

I (∃G1, �) �
⋃

∃C∈�
I (∃G1, ∃C) ∪

⋃

∀(c:X→C)∈�
I (∃G1,∀(c : X → C))

If ∃G1 is a basic literal and C is a set of clauses. We define the set of monomorphisms I (∃G1, C) inductively:

• If C is the empty set, then I (∃G1, C) � {idG1}.
• If C � {�} ∪ C ′, and � includes a negative literal, ¬∃G such that G1 |� ¬∃G , or � includes a positive atomic

literal, ∀(c : X → G2) such that there is no monomorphism h : X → G1 then I (∃G1, C) � I (∃G1, C ′).
• Otherwise, I (∃G1, {�} ∪ C ′) � {g ◦ h | g ∈ I (∃G, �), (h : G1 → G) ∈ I (∃G1, C ′)}.

Given a literal G1 and a set of clauses C, the relation between the set I (∃G1, C) and our inference rules is made
explicit by the following propositions. In particular, the aim of these two propositions is to show that if a literal
∃G2 is in I (∃G1, C) then, in every clause � in C there should be a literal L such that ∃G2 can be seen as one of the
results of an inference of ∃G1 and L. First we consider the case where C consists of a single clause.

Proposition 5 Let � be a clause consisting of basic constraints and positive atomic constraints and let h : G1 → G2
be a monomorphism such that h ∈ I (∃G1, �), then there is a literal L in � such that:

• if L � ¬∃C , then there is no monomorphism m : C → G1.
• if L � ∃C , then there is a monomorphism m : C → G2.
• If L � ∀(c : X → C) then for every monomorphism f : X → G1 there is a monomorphism g : C → G2 with

h ◦ f � g ◦ c.

Proof. By definition, we know that I (∃G1, �) � ⋃
∃C∈� I (∃G1, ∃C) ∪⋃

∀(c:X→C)∈� I (∃G1,∀(c : X → C)). We
consider several cases:

• If � does not include any positive literal (i.e. � is the empty clause or � includes only negative literals), then
the proposition trivially holds, since by definition I (∃G1, �) is empty.

• If � includes a negative literal, ¬∃C such that G1 |� ¬∃C then the proposition trivially holds, since it is
enough to take L � ¬∃C .

• If � includes an atomic literal ∀(c : X → C) and there is no monomorphism h from X to G1, then the
proposition trivially holds, since it is enough to take L � ∀(c : X → C).

• If (h : G1 → G2) ∈ ⋃
∃C∈� I (∃G1, ∃C), then h ∈ I (∃G1, ∃C) for some literal ∃C in �. Then, by definition

of I (∃G1, ∃C), (h : G1 → G2) ∈ {f1 | 〈f1 : G1 → G2 ← C : f2〉 ∈ (G1 ⊗ C)}, which means that there is a
monomorphism f2 : C → G2.

• If (h : G1 → G2) ∈ ⋃
∀(c:X→C)∈� I (∃G1,∀(c : X → C)), then h ∈ I (∃G1,L) for some literal L � ∀(c :

X → C) in �. Let H � {f1, . . . , fn } be the set of all monomorphisms from X to G1. Then, by definition, we
know that the monomorphisms in I (∃G1,∀(c : X → C)) are defined as compositions hn ◦ · · · ◦ h1, where
h1 : G1 → C1 and, for each i , hi+1 : Ci → Ci+1, hi ◦ · · · ◦ h1 : G1 → Ci ∈ I ∗(∃G1, {f1, . . . , fi } and there
is a monomorphism (gi : C → Ci), such that gi ◦ c � hi ◦ · · · ◦ h1 ◦ fi . Therefore, given a monomorphism
fj : X → G1, we have that gj ◦ c � hj ◦ · · · ◦ h1 ◦ fj and this means that if we define g : C → G2 as
g � hn ◦ · · · ◦ hj+1 ◦ gj , then g ◦ c � hn ◦ · · · ◦ hj+1 ◦ gj ◦ c � hn ◦ · · · ◦ hj+1 ◦ hj ◦ · · · ◦ h1 ◦ fj � h ◦ fj . �
Now, we extend the previous result to an arbitrary set of clauses C.

400 F. Orejas et al.

Proposition 6 Let C be a set of clauses consisting of basic constraints and positive atomic constraints and let h :
G1 → G2 be a monomorphism such that h ∈ I (∃G1, C), then for every clause � in C there is a literal L in � such that:

• if L � ¬∃C , then there is no monomorphism m : C → G1.
• if L � ∃C , then there is a monomorphism m : C → G2.
• If L � ∀(c : X → C) then for every monomorphism m : X → G1 there is a monomorphism f : C → G2 with

h ◦m � f ◦ c.

Proof. We prove the proposition by induction on C, following the definition of I (∃G1, C):

• If C is the empty set, then the proposition trivially holds.
• Otherwise, if C � {�} ∪ C ′, by induction, we know that if h ′ : G1 → G ′2 ∈ I (∃G1, C ′) every �′ in C ′ satisfies

the proposition with respect to h ′. Therefore, if h � g ◦ h ′ ∈ I (∃G1, C), with g : G ′2 → G2 ∈ I (∃G ′2, �), on
one hand we have to prove that every �′ in C ′ satisfies the proposition with respect to g ◦ h ′ and, on the other,
that � also satisfies the proposition with respect to g ◦ h ′.

Given a clause �′ in C ′, by induction, we know that there is a a literal L in � such that one of the following
cases holds:

– if L � ¬∃C , the case is trivial.
– if L � ∃C , then there is a monomorphism m : C → G2. But this means that g ◦m : C → G ′2
– If L � ∀(c : X → C) then for every monomorphism m : X → G1 there is a monomorphism f : C → G ′2

with h ′ ◦m � f ◦ c. But this means that there is a monomorphism g ◦ f : C → G2. Moreover, g ◦ f ◦ c �
g ◦ h ′ ◦m � h ◦m

Let us now consider the clause �. We have the following cases:

– If � includes a negative literal, ¬∃G such that G1 |� ¬∃G then the proposition trivially holds, since it is
enough to take L � ¬∃G .

– � includes a positive atomic literal, ∀(c : X → G2) such that there is no monomorphism h : X → G1
then again the proposition trivially holds, since it is enough to take L � ∀(c : X → G2).

– Otherwise, by Prop. 5, we know that there is a literal L in � such that

· if L � ∃C , then there is a monomorphism m : C → G2.

· If L � ∀(c : X → C) then for every monomorphism m : X → G ′2 there is a monomorphism
f : C → G2 with g ◦m � f ◦ c. Suppose, in this case, that we have a monomorphism m ′ : X → G1,
then this means that we have a monomorphism h ′ ◦ m ′ : X → G ′2, therefore there should exist a
monomorphism f : C → G2 with f ◦ c � g ◦ h ′ ◦m ′ � h ◦m ′. �

A direct consequence of the proposition above is that if the identity morphism is in I (∃G1, C) then G1 is a
model of C.

Proposition 7 Let C be a set of clauses consisting of basic constraints and positive atomic constraints, if idG ∈
I (∃G, C), then G |� C.

Proof. If idG ∈ I (∃G, C) then, according to Prop. 6, for every � in C there is a literal L in � such that:

• if L � ¬∃C , then there is no monomorphism m : C → G . But this means that G |� L and, hence, G |� �.
• if L � ∃C , then there is a monomorphism m : C → G . Therefore G |� L and, hence, G |� �.
• If L � ∀(c : X → C) then for every monomorphism m : X → G there is a monomorphism f : C → G with

idG ◦m � m � f ◦ c. Again, this means that G |� L and, hence, G |� �.

Therefore G satisfies all the clauses in C. �
The aim of the next two propositions is to show that if we have a literal ∃G1 in a clause �, then we can infer

the clause resulting from replacing that literal by a disjunction consisting of all the graphs in I (∃G1, C).

Proposition 8 Let C be a set of clauses consisting of basic constraints and positive atomic constraints, let C ⇒
C1 ⇒ · · · ⇒ Ck . . . be a fair refutation procedure defined over C based on the rules (R1), (R2), and (R3) and
let ∃G1 ∨ �1 and �2 be two non-empty clauses in

⋃
k≥1 Ck such that for every negative literal ¬∃G2 ∈ �2 we have

that G1 � ¬∃G2 and for every atomic literal ∀(c : X → G2) ∈ �2 there is a monomorphism h : X → G1. Then
(
∨

G∈G ∃G ∨ �1) ∈ ⋃
k≥1 Ck , where G � {G | h : G1 → G ∈ I (∃G1, �2)}.

Reasoning with graph constraints 401

Proof. We prove something slightly more general: that for all clauses �1 and �2, if ∃G1 ∨ �1 is in
⋃

k≥1 Ck and
for every literal ¬∃G2 ∈ �2 we have that G1 � ¬∃G2 and for every literal ∀(c : X → G2) ∈ �2 there is a
monomorphism h : X → G1, then for every clause �3 such that �2 ∨ �3 is in

⋃
k≥1 Ck we have that either �2 is

empty or (
∨

G∈G ∃G ∨ �3 ∨ �1) ∈ ⋃
k≥1 Ck , where G � {G | h : G1 → G ∈ I (∃G1, �2)}. Note that to prove the

proposition it is enough to consider that �3 is the empty clause. We prove this by induction on �2.
If �2 is the empty clause, then the proof is trivial. Otherwise, let us suppose that �2 � L ∨ �′2, for a given

literal L. By induction, we may assume that for any �3 if (�′2 ∨ L ∨ �3) ∈ ⋃
k≥1 Ck then either (a) �′2 is empty or

(b) (
∨

G∈G′ ∃G ∨ L ∨ �3 ∨ �1) ∈ ⋃
k≥1 Ck , where G′ � {G | h : G1 → G ∈ I (∃G1, �

′
2)}. Let us define �′3 to be

equal to �3 in case (a), and equal to (
∨

G∈G′ ∃G ∨ �3 ∨ �1) in case (b). We have three cases:

• If L � ¬∃G2 then we know that ¬∃G2 ∨ �′3 ∈
⋃

k≥1 Ck . By assumption, we know that G1 � ¬∃G2, which
means that there is a morphism from G2 to G1. Thus, we can apply rule (R1) to ∃G1 ∨ �1 and ¬∃G2 ∨ �′3
yielding the clause �′3 ∨ �1 ∈ ⋃

k≥1 Ck . Therefore, in case (a) we know that �3 ∨ �1 ∈ ⋃
k≥1 Ck , and this

completes the proof, since in this case, by definition, {G | h : G1 → G ∈ I (∃G1, �2)} � ∅. On the other hand,
in case (b) we know that (

∨
G∈G′ ∃G∨�3∨�1)∨�1 ≡ (

∨
G∈G′ ∃G∨�3∨�1) ∈ ⋃

k≥1 Ck and this completes also
the proof, since in this case, by definition, {G | h : G1 → G ∈ I (∃G1, �2)} � {G | h : G1 → G ∈ I (∃G1, �

′
2)}.

• If L � ∃G2 then we know that ∃G2∨�′3 ∈
⋃

k≥1 Ck . Thus, we can apply rule (R2) to ∃G1∨�1 and ∃G2∨�′3 yield-
ing the clause (

∨
G∈G′′ ∃G∨�1∨�′3) ∈ ⋃

k≥1 Ck , where G′′ � {G | 〈f1 : G1 → G ← G2 : f2〉 ∈ (G1⊗G2)}. There-
fore, in case (a) we know that (

∨
G∈G′′ ∃G∨�1∨�3) ∈ ⋃

k≥1 Ck , and this completes the proof, since in this case, by
definition, {G | h : G1 → G ∈ I (∃G1, �2)} � {G | 〈f1 : G1 → G ← G2 : f2〉 ∈ (G1⊗G2)}. On the other hand,
in case (b) we know that (

∨
G∈G′′ ∃G∨�1∨∨

G∈G′ ∃G∨�3∨�1) ≡ (
∨

G∈G′′ ∃G∨
∨

G∈G′ ∃G∨�3∨�1) ∈ ⋃
k≥1 Ck

and this completes the proof, since in this case, by definition, {G | h : G1 → G ∈ I (∃G1, �2)} � G′′ ∪ G′.
• If L � ∀(c : X → G2) then we know that ∀(c : X → G2) ∨ �′3 ∈

⋃
k≥1 Ck . Let H be the set of all monomor-

phisms from X to G1, which by assumption is not empty. By definition, I (∃G1,∀(c : X → G2)) � I ∗(∃G1,H).
So we will prove by induction that, for any non-empty H , (

∨
G∈G′′ ∃G ∨ �1 ∨ �′3) is in

⋃
k≥1 Ck , where G′′ �

{G | f : G1 → G ∈ I ∗(∃G1,H)}.
– If H �{g : X → G1} then applying rule (R3) to ∃G1∨�1 and (∀(c : X → G2)∨�′3) we infer (

∨
G∈G′′′ ∃G ∨

�1 ∨ �′3), where G′′′ � {G | 〈f1 : G1 → G ← G2 : f2〉 ∈ (G1 ⊗ G2) such that f1 ◦ g � f2 ◦ c}. But, in this
case, G′′ � G′′′. Hence, (

∨
G∈G′′ ∃G ∨ �1 ∨ �′3) is in

⋃
k≥1 Ck .

– If H � {g : X → G1} ∪ H ′ then, by induction, we may assume that (
∨

G∈G′′′ ∃G ∨ �1 ∨ �′3) is in⋃
k≥1 Ck , where G′′′ � {G | f : G1 → G ∈ I ∗(∃G1,H ′)}. Let us assume that I ∗(∃G1,H ′) � {f1 :

G1 → C1, . . . , fn : G1 → Cn}, i.e. G′′′ � {C1, . . . ,Cn } and (
∨

G∈G′′′ ∃G ∨ �1 ∨ �′3) ≡ ∃C1 ∨ · · · ∨
∃Cn ∨ �1 ∨ �′3. We know that for every i we have a monomorphism fi ◦ g : X → Ci . Therefore, we
can apply rule (R3) to ∃C1 ∨ · · · ∨ ∃Cn ∨ �1 ∨ �′3 and to (∀(c : X → G2) ∨ �′3) inferring the clause
((

∨
G∈G1
∃G) ∨ ∃C2 ∨ · · · ∨ ∃Cn ∨ �1 ∨ �′3 ∨ �′3) ≡ ((

∨
G∈G1
∃G) ∨ ∃C2 ∨ · · · ∨ ∃Cn ∨ �1 ∨ �′3, where

G1 � {G | 〈h1 : C1 → G ← G2 : h2〉 ∈ (C1⊗G2) such that h1 ◦ f1 ◦g � h2 ◦c}. Now, if we apply again rule
(R3) to the previous clause and to (∀(c : X → G2) ∨ �′3) and we repeat this process n times, applying the
rule to each of the literals Ci , we would finally infer the clause ((

∨
G∈G1
∃G)∨· · ·∨ (

∨
G∈Gn

∃G)∨�1∨�′3),
where Gi � {G | 〈h1 : Ci → G ← G2 : h2〉 ∈ (C1 ⊗ G2) such that h1 ◦ fi ◦ g � h2 ◦ c}. This means that
((

∨
G∈G′′′ ∃G)∨�1∨�′3) ∈ ⋃

k≥1 Ck , where G′′′ � {G | 〈h1 : Ci → G ← G2 : h2〉 ∈ (Ci ⊗G2) such that (fi :
G1 → Ci) ∈ I ∗(∃G1,H ′) and h1◦fi ◦g � h2◦c}. But, by definition, G′′′ � {G | f : G1 → G ∈ I ∗(∃G1,H)}.
Therefore, we have also proved in this case that (

∨
G∈G′′ ∃G ∨ �1 ∨ �′3) is in

⋃
k≥1 Ck , where G′′ � {G | f :

G1 → G ∈ I ∗(∃G1,H)}.
Hence, in case (a) we know that (

∨
G∈G′′ ∃G∨�1∨�3) ∈ ⋃

k≥1 Ck , and this completes the proof, since in this case,
by definition, {G | h : G1 → G ∈ I ((∀(c : X → G2), �2)} � {G | f : G1 → G ∈ I ∗(∃G1,H)}. On the other
hand, in case (b) we know that ((

∨
G∈G′′ ∃G) ∨ �1 ∨ (

∨
G∈G′ ∃G) ∨ �3 ∨�1) ≡ ((

∨
G∈G′′ ∃G(∨(

∨
G∈G′ ∃G) ∨

�3 ∨�1) ∈ ⋃
k≥1 Ck and this completes the proof, since in this case, by definition, {G | h : G1 → G ∈ I ((∀(c :

X → G2), �2)} � G′′ ∪ G′. �

The above proposition can be extended as follows:

402 F. Orejas et al.

Proposition 9 Let C be a set of clauses consisting of basic constraints and positive atomic constraints, let C⇒ C1 ⇒
· · · ⇒ Ck . . . be a fair refutation procedure defined over C based on the rules (R1), (R2), and (R3) and let ∃G1∨�1
be a clause in

⋃
k≥1 Ck , then for any C ′ ⊆ C, (

∨
G∈G ∃G∨�1) ∈ ⋃

k≥1 Ck , where G � {G | h : G1 → G ∈ I (∃G1, C ′)}.
Proof. We proof the proposition by induction:

• If C ′ is empty then the case is trivial since I (∃G1, C ′) � {idG1} and, hence, (
∨

G∈G ∃G ∨ �1) � ∃G1 ∨ �1.
• If C ′ � {�} ∪ C ′′, and � includes a negative literal, ¬∃G such that G1 |� ¬∃G or � includes a positive atomic

literal, ∀(c : X → G2) such that there is no monomorphism h : X → G1, then the case is also trivial, since
by definition I (∃G1, C ′) � I (∃G1, C ′′) and, by induction, we may assume that (

∨
G∈G ∃G ∨ �1) ∈ ⋃

k≥1 Ck ,
where G � {G | h : G1 → G ∈ I (∃G1, C ′′)}.

• If C ′ � {�} ∪ C ′′, for every negative literal ¬∃G in � we have that G1 � ¬∃G (i.e. there is a monomorphism
h1 : G → G1) and for every atomic literal ∀(c : X → G2) in � there is a monomorphism h2 : X → G1,
then by definition we know that I (∃G1, {�} ∪ C ′′) � {g ◦ h | g ∈ I (∃G, �), (h : G1 → G) ∈ I (∃G1, C ′′)}.
This means that we have to prove that (

∨
G∈G ∃G ∨ �1) ∈ ⋃

k≥1 Ck , where G � {G | g ◦ h : G1 → G, g ∈
I (∃G, �), (h : G1 → G) ∈ I (∃G1, C ′′)}. This is equivalent to prove that (

∨
G ′∈G′

∨
G∈G′G

∃G) ∨ �1 ∈ ⋃
k≥1 Ck ,

where G′ � {G ′ | h : G1 → G ′ ∈ I (∃G1, C ′′)} and GG ′ � {G | g : G ′ → G, g ∈ I (∃G ′, �)}.
By induction we know that (

∨
G ′∈G′ ∃G ′ ∨ �1) ∈ ⋃

k≥1 Ck . We also know that for every G ′ ∈ G′ and for every
negative literal ¬∃G in � we have that there is a monomorphism from G to G ′, since we know that there is a
monomorphism from G to G1 and also from G1 to G ′. And, in addition, we know that for every atomic literal
∀(c : X → G2) in � there is a monomorphism from X to G ′, since we know that there is a monomorphism
from X to G1 and also from G1 to G ′. This means that every literal ∃G ′ ∈ G′ and � satisfy the conditions of
Proposition 8. Therefore, we have (

∨
G ′∈G′

∨
G∈G′G

∃G) ∨ �1 ∈ ⋃
k≥1 Ck . �

Let us now define the precedence relation mentioned above. The intuition is quite simple. ∃G1 precedes ∃G2
if G1 is embedded in ∃G2:

Definition 8 For every pair of literals ∃G1, ∃G2, ∃G1 ≺ ∃G2 if there is a monomorphism hG1≺G2 : G1 → G2.

As said above, we use this precedence relation to build (or to find) models of the given specification. More
precisely we use (possibly infinite) ascending sequences of basic constraints ∃G1 ≺ · · · ≺ ∃Gi ≺ . . . which are
saturated, where intuitively a sequence is saturated if either it leads to a model of the given set of clauses, or if we
know that the sequence cannot lead to a model (in this case we say that its last element is closed). Therefore, we
define a closed literal as a literal that cannot be used for building a model of the given set of clauses.

Definition 9 Let C be a set of clauses consisting of basic constraints and positive atomic constraints, let C ⇒
C1 ⇒ · · · ⇒ Ck . . . be a fair refutation procedure defined over C based on the rules (R1), (R2), and (R3) and
let BasPosLit(

⋃
k≥1 Ck) be the set of all the basic positive literals occurring in clauses inferred in the refutation

procedure. A literal ∃G in BasPosLit(
⋃

k≥1 Ck) is closed if there is a strictly negative clause � in
⋃

k≥1 Ck such
that G � �. We also say that ∃G is open if it is not closed.

Following the intuitions above, a saturated sequence is a sequence of basic literals that approximate a model
or, alternatively, that we have discovered that it is impossible that it leads to a model:

Definition 10 An ascending sequence in BasPosLit(
⋃

k≥1 Ck) ∃G1 ≺ · · · ≺ ∃Gi ≺ . . . is saturated if one of the
following cases applies:

• the sequence is finite and its last element ∃Gk satisfies that Gk is a model for C, or
• the sequence is finite and its last element is closed, or
• the sequence is infinite and for every clause � in

⋃
k≥1 Ck there is a literal L in � such that:

(a) if L � ¬∃C , then for every j there is no monomorphism m : C → Gj

(b) if L � ∃C , there is a j , such that there is a monomorphism m : C → Gj

(c) If L � ∀(c : X → C) then for every i and every monomorphism m : X → Gi there is a j , with i < j , and a
monomorphism h : C → Gj with hCi≺Cj

◦m � h ◦ c.

The following lemma makes explicit in which sense an infinite saturated sequence provides successive approx-
imations to a model of a given set of constraints:

Reasoning with graph constraints 403

Lemma 2 Let ∃G1 ≺ · · · ≺ ∃Gi ≺ . . . be an infinite saturated sequence in BasPosLit(
⋃

k≥1 Ck) for a fair refutation
procedure C⇒ C1 ⇒ · · · ⇒ Ck . . . and let G be the colimit of the sequence:

G1
hG1≺G2 ��

f1

����������������������������� G2
hG2≺G3 ��

f2

															 . . .
hGi−1≺Gi �� Gi

hGi≺Gi+1 ��

fi

. . .

G

then G is a model for the given set of clauses, i.e. G |� C.

Proof. Let � be any clause in C. We have to prove that G |� �. Since the sequence is assumed to be saturated
there should be a literal L in � such that the conditions (a), (b), or (c) in Def. 10 are satisfied. We consider each
case separately:

(a) if L � ¬∃C , then we know that for every j there is no monomorphism m : C → Gj . But, according to
Prop. 4, this means that there is no monomorphism h : C → G . Therefore G |� ¬∃C and as a consequence
G |� �.

(b) if L � ∃C , we know that there is a j , such that there is a monomorphism m : C → Gj . But this means that
there is a monomorphism fj ◦m : C → G . Therefore G |� ∃C and as a consequence G |� �.

(c) If L � ∀(c : X → C) then we know that for every i and every monomorphism m0 : X → Gi there is a j ,
with i < j , such that there is a monomorphism h : C → Gj with hGi≺Gj

◦m0 � h ◦ c. Suppose that there
is a monomorphism m : X → G . This means, according to Prop. 4, that there exists an i such that there is
a monomorphism m ′ : X → Gi such that fi ◦ m ′ � m. But this implies that there is a j , with i < j , such
that there is a monomorphism h : C → Gj with hGi≺Gj

◦m ′ � h ◦ c. Hence, fj ◦ h : C → G and moreover
fj ◦ h ◦ c � fj ◦ hGi≺Gj

◦ m ′ � fi ◦ m ′ � m. Therefore, G satisfies ∀ c : X → C and as a consequence
G |� �. �
The following two lemmas show that saturated sequences can be constructed using the I construction defined

above. In particular, the first one shows how we can construct infinite sequences such that they are saturated if
all its elements are open.

Lemma 3 Let ∃G1 ≺ · · · ≺ ∃Gi ≺ . . . be an infinite ascending sequence in BasPosLit(
⋃

k≥1 Ck) for a fair refutation
procedure C ⇒ C1 ⇒ · · · ⇒ Ck . . . such that, for every j , ∃Gj is open and moreover hGj≺Gj+1 ∈ I (∃Gj , Cj). Then,
∃G1 ≺ · · · ≺ ∃Gi ≺ . . . is a saturated sequence.

Proof. Let � be any clause in
⋃

k≥1 Ck . More precisely, let us assume that � ∈ Cn . We have to prove that there is
a literal L in � such that:

(a) if L � ¬∃C , then for every j there is no monomorphism m : C → Gj

(b) if L � ∃C , there is a j , such that there is a monomorphism m : C → Gj

(c) If L � ∀(c : X → C) then for every i and every monomorphism m : X → Gi there is a j , with i < j , and a
monomorphism f : C → Gj with hGi≺Gj

◦m � f ◦ c.

Now, if there is an L in � that satisfies condition (a), then the proposition trivially holds. Otherwise, let us
assume that there is a j such that for every negative literal L � ¬∃C in �, there is a monomorphism m : C → Gj .
Let k � max (n, j). By Prop. 6, we know that for every k ′ ≥ k there should be a literal L in � such that:

• if L � ∃C , then there is a monomorphism m : C → Gk ′+1.
• If L � ∀(c : X → C) then for every monomorphism m : X → Gk ′ there is a monomorphism f : C → Gk ′+1

with hGk ′ ≺Gk ′+1
◦m � f ◦ c. Therefore, we just have to consider just the case when there is a monomorphism

m : X → Gn , with n < k : We know that hGn≺Gk
◦m : X → Gk is a monomorphism then, by Prop. 6, there

should be a monomorphism f : C → Gk withhGk≺Gk+1◦hGn≺Gk
◦m � f ◦c. ButhGk≺Gk+1◦hGn≺Gk

� hGn≺Gk+1 .
Hence, hGn≺Gk

◦m � f ◦ c. �
It may be noted that Lemma 3 (together with the rest of the results below), implicitly provides a procedure

for building models of a given set of clauses. In particular, starting by the set of literals L0 consisting of the basic
positive literals occurring in the given clauses, we build sets L1, . . . , Ln , . . . where each Li+1 is the set of basic
literals in I (∃G, Cj) which are not closed, and where ∃G ∈ Li . We can stop this construction if we find a literal
∃G ∈ Ln where G is already a model of the given specification.

404 F. Orejas et al.

The following lemma shows the existence of saturated sequence if the given set of clauses includes a basic
positive constraint.

Lemma 4 Given a fair refutation procedure C⇒ C1 ⇒ · · · ⇒ Ck . . . if BasPosLit(
⋃

k≥1 Ck) is not empty then there
is a saturated sequence in BasPosLit(

⋃
k≥1 Ck).

Proof. Let us suppose that there is a literal ∃G in BasPosLit(
⋃

k≥1 Ck). We define a sequence ∃G1 ≺ · · · ≺ ∃Gi ≺
. . . in BasPosLit(

⋃
k≥1 Ck) as follows:

• G1 � G .
• If h : Gj → G ′ is a monomorphism such that h ∈ I (∃Gj , Cj), then we define Gj+1 � G ′.

Now, we have to prove that this sequence is saturated. We consider three cases:

• The sequence is finite because I (∃Gj , Cj) is the empty set. This means that Gj � � for some strictly negative
clause � ∈ Cj . But this means that � is closed and, as a consequence, the sequence ∃G1 ≺ · · · ≺ ∃Gj is
saturated.

• The sequence is finite, because idGj
∈ I (∃Gj , C). Then, according to Prop. 7, this means that Gj is a model

for Cj and, hence, for C. As a consequence, the sequence ∃G1 ≺ · · · ≺ ∃Gj is saturated.
• Otherwise, the sequence is infinite and, for every j , ∃Gj is open. Then, by Lemma 3, the sequence ∃G1 ≺ · · · ≺
∃Gj ≺ . . . is saturated. �

The last result that we need, before proving completeness for our inference rules, shows that if all saturated
sequences end in a closed literal and if the given set of constraints includes a clause consisting only of basic
positive literals then we can infer a clause consisting only of closed literals.

Lemma 5 Let C⇒ C1 ⇒ · · · ⇒ Ck . . . be a fair refutation procedure defined over C based on the rules (R1), (R2),
and (R3) such that C includes a clause � consisting only of basic positive literals. If every saturated sequence in
BasPosLit(

⋃
k≥1 Ck) is finite and its last element is a closed literal then there is a clause �′ in

⋃
k≥1 Ck consisting

only of closed literals.

Proof. We define inductively the sequence of clauses �1, . . . , �n , . . . where:

• �1 � �.
• �n+1 � (

∨
G∈Gn+1

∃G), where Gn+1 � {G | there is a literal ∃G ′ ∈ �n with (h : G ′ → G) ∈ I (∃G ′, Cn}
Now, we know that every set of clauses Ck is finite and this implies that, for every literal ∃C in �k , I (∃C , Ck) is
also finite. As a consequence, if for every i there is an open literal included in �i then this means that there should
be an infinite sequence of open literals ∃G1 ≺ · · · ≺ ∃Gn ≺ . . . where each Gn ∈ �n and hGn≺Gn+1 ∈ I (∃Gn , Cn).
But by Lemma 3 this sequence would be saturated against our original assumption. Therefore, there should exist
an i where all the literals in �i are closed. So it is enough to define �′ � �i . �
Lemma 6 (Completeness) Let C be a set of clauses consisting of basic constraints and positive atomic constraints,
let C⇒ C1 ⇒ · · · ⇒ Ck . . . be a fair refutation procedure defined over C based on the rules (R1), (R2), and (R3).
If C is unsatisfiable then there is a j such that the empty clause is in Cj .

Proof. Suppose that the empty clause is not in Cj for any j . We have to show the existence of a graph G such that
G |� C. We consider four cases:

1. There is no clause � in C consisting only of basic positive literals. This means that every clause � includes
a negative literal ¬∃C or a non-basic literal ∀(c : X → C), where X is not empty. In this case, the empty
graph would satisfy all these atomic and negative literals and, as a consequence, would be a model for C.

2. Otherwise, we have a clause � in C consisting only of basic positive literals. Then, by Lemma 4, we know that
there exist at least one saturated sequence in BasPosLit(

⋃
k≥1 Ck). By Def. 10, we have the following cases:

(a) Every saturated sequence in BasPosLit(
⋃

k≥1 Ck) is finite and its last element is a closed literal. We may see
that this case is not possible. Let ∃G ∨� be a minimal clause in

⋃
k≥1 Ck consisting only of closed literals

(according to Lemma 5 we know that such clause must exist and, according to our assumption, it must no
be empty). Since we are assuming that ∃G is closed then there should exist a clause ¬∃C1 ∨ · · · ∨ ¬∃Cn

in
⋃

k≥1 Ck such that for every i there is a monomorphism mi : Ci → G . Using rule (R1) we can infer

Reasoning with graph constraints 405

�∨¬∃C2∨ · · · ∨¬∃Cn . Then, using again rule (R1) with this clause and the clause ∃G ∨�, we can infer
�∨�∨¬∃C3 ∨ · · · ∨¬∃Cn � �∨¬∃C3 ∨ · · · ∨¬∃Cn . Then, applying repeatedly rule (R1) in a similar
way, we would finally infer �, against the assumption that ∃G ∨ � was minimal.

(b) There is a finite saturated sequence in BasPosLit(
⋃

k≥1 Ck) whose last element is ∃G . Then G |� C.
(c) There is an infinite saturated sequence ∃G1 ≺ · · · ≺ ∃Gi ≺ . . . in BasPosLit(

⋃
k≥1 Ck). Then, according

to Lemma 2, its colimit is a model for the given set of clauses. �
As a consequence of Lemmas 1 and 6, we have:

Theorem 1 (Soundness and completeness) Let C⇒ C1 ⇒ · · · ⇒ Ck . . . be a fair refutation procedure defined over
a set of basic constraints and positive atomic constraints C, based on the rules (R1), (R2), and (R3). Then, C is
unsatisfiable if and only if there is a j such that the empty clause is in Cj .

Example 3 In our running example, the two models of the given set of constraints C [i.e. the two graphs in (10)]
would be built in I (∃CS1, {(2), (3), (4), (5), (6)}), where ∃CS1 is the only literal in constraint (1). More precisely,
I (∃CS1, {(2), (3), (4), (5), (6)}) � I (∃CS1, {(2), (3)}), since (4), (5) and (6) do not include any positive literal.
Then, I (∃CS1, (2)) would consist of the inclusion from the graph CS1 to the graph in (8), let us call it CS12.
And I (∃CS12, (3)) would consist of the inclusions from the graph CS12 to the graphs in (9). Now two of these
four graphs do not satisfy clause (4), which means that they are closed. The other two graphs, as said above are
models of the given set of constraints.

4. Atomic constraints

The approach used in the previous section and the results obtained cannot be directly extended in an obvious way
to deal with the general case of specifications including also negative atomic constraints. Let us see the problem.
In the previous section, the idea of the approach followed was that we had two kinds of rules. Rules (R2) and
(R3) were seen as rules to build models of the given positive constraints, while the rule (R1) was used to discard
models not satisfying the negative constraints. This is the idea of the proof of Lemma 6. Now, suppose that our
specification includes the constraint ¬∀(g : X → C). This constraint, although it is a negative constraint, can
be considered similar to a positive constraint in the sense that, if we have a graph G that does not satisfy it, we
can build a new graph G ′ that satisfies the constraint by extending G with some new nodes and edges so that it
includes a copy of X (without including its extension C). For instance, given the constraint:

(7) ¬ if Lecturer
Name�N then Lecturer

Name�N
Subject

If a graph G does not satisfy the constraint because all lecturer nodes are linked to some subject node, then we
can add to G a new lecturer node and the resulting graph will now satisfy the constraint. This intuition suggests
that the rule below could be what is needed to deal with negative atomic constraints:

∃C1 ∨ �1 ¬∀(g : X → C) ∨ �2

(
∨

G∈G ∃G) ∨ �1 ∨ �2
(R4)

where G � {G | 〈f1 : C1 → G ← X : f2〉 ∈ (C1⊗X) such that there is no m : C → G with f2 �
m ◦ g}.

The above rule can be proven sound but, unfortunately, we can see very easily that rules (R1–R4) are incom-
plete. It is enough to consider a specification consisting of the constraints ∀(g : X → C) and ¬∀(g : X → C).
The specification is trivially unsatisfiable. However, we cannot derive the empty clause using rules (R1–R4). Let
us see what would fail in the completeness proof, if we try to do it along similar lines as the proof for Lemma 6.

Suppose that we have a graph that does not satisfy the negative constraint (for instance the empty graph)
then, using rule (R4), we could build a graph that satisfies it, in this case the graph X . But this graph does not
satisfy the constraint ∀(g : X → C). Then, according to rule (R3), we can now build (among others) the graph

406 F. Orejas et al.

C that satisfies the positive constraint. Unfortunately, C now does not satisfy the constraint ¬∀(g : X → C).
That is, the main difference between the current situation and the proof of Lemma 6 is that in the latter case if we
have that G1 ≺ G2 then G2 could be seen closer (a better approximation) to a graph that satisfies all the positive
constraints. However, in the former case, G1 may be satisfying the constraint ¬∀(g : X → C) while none of its
successors satisfies that constraint.

The idea of the proposed solution to avoid this problem is, first, to annotate the basic atoms in the clauses
with information about the negative constraints that have been used to infer that clause. And, then, to use this
information so that, when doing a new inference, the basic atoms included in the resulting clause still satisfy
the negative constraints included in the annotation. These annotations are called contexts, and the annotated
constraints are called contextual constraints. More precisely, given a constraint ∃C , a context for this constraint
is a set of negative atomic constraints ¬∀(g : X → C1) such that X is included in C . Actually, we assume that C
has to satisfy this negative constraint. However, as usual, we need to know not only that X is a subgraph of C ,
but also to identify the specific instance of X that cannot be extended to C1. For this reason we consider that a
context is a finite set of negative atomic constraints together with monomorphisms binding the conditional part
of each constraint to the corresponding literal. Below, in the completeness proof, we will see in more detail the
use of these contexts.

Definition 11 (Contextual Constraints) A contextual constraint ∃C [Q] is a pair consisting of a basic constraint,
∃C , and a set Q consisting of pairs 〈¬ ∀(g : X → C1), h : X → C 〉 where ¬∀(g : X → C1) is a nega-
tive atomic constraint and h is a monomorphism. A contextual constraint ∃C [Q] is consistent if for each pair
〈¬ ∀(g : X → C1), h : X → C 〉 in Q there is no monomorphism h ′ : C1 → C such that h � h ′ ◦ g .

A constraint ∃C without a context is considered to be annotated by the empty context. Now, we have to
define satisfaction for this kind of contextual constraints. The idea is that a graph satisfies a contextual constraint
∃C [Q] if it satisfies ∃C and all the constraints in its context:

Definition 12 (Satisfaction of contextual constraints) A graph G satisfies a contextual constraint ∃C [Q] via a
monomorphism f : C → G , written G |�f ∃C [Q], if for every pair 〈¬ ∀(g : X → C1), h : X → C 〉 ∈ Q there
is no monomorphism h ′ : C1 → G such that f ◦ h � h ′ ◦ g . G satisfies ∃C [Q], written G |� ∃C [Q], if there is a
monomorphism f : C → G such that G |�f ∃C [Q].

Inconsistent contextual constraints are not satisfied by any graph:

Fact 2 If ∃C [Q] is not consistent then for every graph G , G � ∃C [Q].

Proof. Suppose that ∃C [Q] is inconsistent, i.e. there is a pair 〈¬ ∀(g : X → C1), h : X → C 〉 in Q and there is a
monomorphism h ′ : C1 → C such that h � h ′ ◦ g .

If there is a morphism f : C → G then according to the diagram below:

C
f

���
��

��
��

�

X

g
���

��
��

��
�

h

����������
G

C1

h ′

��

f ◦h ′

���������

we have that f ◦ h ′ ◦ g � f ◦ h, which means that G � ∃C [Q]. �
Finally, in some inference rules, given a contextual constraint ∃C [Q] and a monomorphism f : C → G , we

need to be able to build a contextual constraint whose left-hand side is ∃G and whose context includes the same
negative constraints as [Q]. In order to do this we need to define the new binding to G of the negative constraints
in [Q]:

Definition 13 Given a contextual constraint ∃C [Q] and a monomorphism f : C → G , we define the context f 〈Q 〉
as the set {〈¬∀(g : X → C1), f ◦ h : X → G〉 | 〈¬ ∀(g : X → C1), h : X → C 〉 ∈ Q }.

In this case, satisfiability is based on five rules. The first three rules are a reformulation (in terms of contextual
constraints) of the rules defined in the previous sections. The fourth rule is a similar reformulation of the rule

Reasoning with graph constraints 407

stated above. In addition, there is a new rule that states that contextual constraints that are not consistent can be
deleted from a clause. The five rules are:

∃C1[Q 1] ∨ �1 ¬∃C2 ∨ �2

�1 ∨ �2
(R1’)

if there exists a monomorphism m : C2 → C1

∃C1[Q 1] ∨ �1 ∃C2[Q 2] ∨ �2

(
∨

G∈G ∃G [f1〈Q 1〉 ∪ f2〈Q 2〉]) ∨ �1 ∨ �2
(R2’)

where G � {G | 〈f1 : C1 → G ← C2 : f2〉 ∈ (C1 ⊗ C2)}.

∃C1[Q] ∨ �1 ∀(c : X → C2) ∨ �2

(
∨

G∈G ∃G [f1〈Q 〉]) ∨ �1 ∨ �2
(R3’)

if there is a monomorphism m : X → C1 and G � {G | 〈f1 : C1 → G ← C2 : f2〉 ∈
(C1 ⊗ C2) such that f1 ◦m � f2 ◦ c}.

∃C1[Q 1] ∨ �1 ¬∀(g : X → C2) ∨ �2

(
∨
〈G,Q 〉∈G ∃G [Q]) ∨ �1 ∨ �2

(R4’)

where G � {〈G, f1〈Q 1〉 ∪ {〈¬∀(g : X → C2), f2〉}〉 | 〈f1 : C1 → G ← X : f2〉 ∈ (C1 ⊗ X)}.

∃C [Q] ∨ �

�
(R5)

if ∃C [Q] is not consistent.

We may see that (R4’) is very similar to (R2’). The reason is that, as discussed above, a negative atomic con-
straint ¬∀(c : X → C2) (partly) specifies that there must be a copy of X in the given graph, as it happens with
the constraint ∃X . The main difference to the rule (R2’) is that, in (R4’), the negative constraint is added to the
context of the new constraints introduced in the clause inferred by the rule. As said above, the fifth rule just states
that inconsistent contextual constraints can be deleted from clauses, since they cannot be satisfied by any graph.

Example 4 Let us consider all the constraints and clauses from Examples 1 and 2. If we apply twice the rule (R4’)
on clauses (10) and (7) then we would infer the following clause:

(11) ∃ (
Subject

Name�CS1

Lecturer

Room

Subject
Name�CS2

Lecturer Lecturer

Room

) ∨ ∃ (
Subject

Name�CS1

Lecturer

Room

Subject
Name�CS2

Room

Lecturer

)

408 F. Orejas et al.

where the context associated to each literal (not displayed above) would consist of constraint (7) together with
a monomorphism mapping the Lecturer node in the condition part of (7) to the Lecturer node which is discon-
nected in each of the graphs. Again, no useful new inferences can be applied, and the two graphs occurring in
clause (11) are (minimal) models of the set of constraints.

Now, with this new formulation, again we are able to show soundness and completeness of our inference
rules. In particular, the proofs of soundness for rules (R1’–R3’) are a straightforward extension of the proofs for
rules (R1–R3). The only difference is that we have to take into account the contexts. Anyhow, before showing
the soundness and completeness of the new calculus let us prove a proposition about satisfaction of contextual
constraints.

Proposition 10 Let ∃C [Q] be a consistent contextual literal, let G be a graph such that G |�f ∃C [Q], and let
g : C → G ′ and g ′ : G ′ → G be monomorphisms such that f � g ′ ◦ g . Then, G ′[g〈Q 〉] is consistent and
G |�g ′ ∃G ′[g〈Q 〉].
Proof. Let 〈¬ ∀(h : X → C1), h ′ : X → C 〉 ∈ Q , on one hand we have to prove that there is no monomorphism
h ′′ : C1 → G ′ such that h ′′ ◦h � g ◦h ′. However the existence of h ′′ would imply that we have the monomorphism
g ′ ◦ h ′′ : C1 → G satisfying that g ′ ◦ h ′′ ◦ h � g ′ ◦ g ◦ h ′ � f ◦ h ′ against the hypothesis that G |�f ∃C [Q].
Therefore G ′[g〈Q 〉] is consistent.

C

g

��

f

���
��

��
��

�

X

h ′
��������

h ���
��

��
��

� G ′ g ′ �� G

C1

h ′′

��

On the other hand, we have to prove that there is no monomorphism f ′ : C1 → G such that f ′ ◦h � g ′ ◦g ◦h ′,
but this is straightforward since f � g ′ ◦ g and G |�f ∃C [Q]. Therefore G |�g ′ ∃G ′[g〈Q 〉]]. �

Lemma 7 (Soundness of the rules) The rules (R1’), (R2’), (R3’), (R4’), and (R5) are sound.

Proof. The proofs for the rules (R1’–R3’) are similar to the proofs for the rules (R1–R3). Below, in addition
to the proofs for the new rules (R4’) and (R5), we just present the proof for the rule (R3’) to show the (small)
difference to the proof of the corresponding rule (R3).

(R3’) Suppose that G |� ∃C1[Q]∨�1, G |� ∀(c : X → C2)∨�2, and there is a monomorphism m : X → C1.
The case where G |� �1 or G |� �2 is trivial. Suppose that G |�h1 ∃C1[Q], for some monomorphism h1 : C1 → G .
In addition, we also have that that there is a monomorphism h2 : C2 → G such that h1 ◦ m � h2 ◦ c, since
G |� ∀(c : X → C2). As a consequence, by Prop. 2 there is a factorization:

C1

f1

��

h1

���
��

��
��

�

X

c
���

��
��

��
�

m

����������
G ′ f �� G

C2

f2

��

h2

����������

where f1 : C1 → G ′ and f2 : C2 → G ′ are jointly surjective monomorphisms and f is injective. Therefore, G ′ is
in the set G defined in the rule. Finally, according to Prop. 10, we have that G |�f ∃G ′[f1〈Q 〉] which means that
G |� (

∨
G ′∈G ∃G ′[f1〈Q 〉]) ∨ �

(R4’) Similarly, suppose that G |� ∃C1[Q 1] ∨ �1 and G |� ¬∀(c : X → C2) ∨ �2. The case where G |� �1
or G |� �2 is trivial. Suppose that G |�h1 ∃C1[Q 1], for some monomorphism h1 : C1 → G , and that there is
a monomorphism h2 : X → G such that there is no monomorphism h ′ : C2 → G such that h2 � h ′ ◦ c, i.e.

Reasoning with graph constraints 409

G |� ¬∀(c : X → C2). As a consequence, by Prop. 1 there is a factorization:

C1

f1

��

h1

���
��

��
��

�

G ′ f �� G

X

f2

��

h2

��������

where f1 : C1 → G ′ and f2 : X → G ′ are jointly surjective monomorphisms and f is injective. Note that there is
no monomorphism h : C2 → G ′ such that f2 � h ◦ c, since f ◦ f2 � h2 and this would mean that h2 � f ◦ h ◦ c
violating the above condition. Hence, we have that G ′ ∈ {G ′′ | 〈f1 : C1 → G ′′ ← C2 : f2〉 ∈ (C1⊗C2)}. Finally, on
one hand, according to proposition 10, we have that G |�f ∃G ′[f1〈Q 1〉] and, on the other hand, we can show that
G |�f G ′[{〈¬∀(g : X → C2), f2〉}]. The reason is that if h ′ : C2 → G is a monomorphism such that f ◦ f2 � h ′ ◦c,
we would have that G |� ¬∀(c : X → C2) would not hold, since we would have h2 � f ◦f2 � h ′◦c. Altogether, this
means that G |� ∃G ′[Q]) for Q � f1〈Q 1〉 ∪ {〈¬∀(g : X → C2), f2〉}. As a consequence, G |� (

∨
〈G ′,Q 〉∈G ∃G [Q]),

for G � {〈G ′, f1〈Q 1〉 ∪ {〈¬∀(g : X → C2), f2〉}〉 | 〈f1 : C1 → G ← X : f2〉 ∈ (C1 ⊗ X)}.
(R5) Suppose that G |� ∃C [Q] ∨ �. By Fact 2 we know that G � ∃C [Q]. Therefore, G |� �. �
The proof of completeness in this case is very similar to the previous completeness proof. The main dif-

ference is in the key role played by the contexts. The idea in the previous proof was to consider sequences of
constraints ∃C1 ≺ · · · ≺ ∃Ci ≺ . . ., where every Ci is included in Ci+1, that could be seen as the construction
of a model for C if the empty clause was never inferred. In particular, these sequences were associated to the
given inferences. Moreover, an important property in that proof is that it was assumed that every graph in these
sequences would satisfy all the strictly negative clauses in

⋃
k≥1 Ck . In particular, given a graph Ci , if a possible

successor Ci+1 does not satisfy a strictly negative clause ¬∃C1 ∨ · · · ∨ ¬∃Cn then we know that a sequence
∅ ≺ C1 ≺ · · · ≺ Ci ≺ Ci+1 ≺ . . . would never yield a model of C. The reason is that any graph including Ci will
neither satisfy ¬∃C .

In the current case, as discussed above, negative atomic constraints are treated in a similar way to basic positive
constraints. If a graph Ci does not satisfy the constraint ¬∀(g : X → C) then we may build Ci+1 including a
copy of X (but not of its extension C) applying the fourth rule. This means that Ci+1 now satisfies that constraint.
However, in this situation if we do not use contexts, it would be impossible to say if this sequence, in the limit (or,
rather, in the colimit) would yield a model of C and, especially, if it would satisfy that constraint. The reason is
that Ci+2 may include a copy of C as an extension of the instance of X included in Ci+1.

The use of contexts solves this problem. In particular, if Ci [Q] does not satisfy a constraint ¬∀(g : X → C)
in its context Q then no larger graph would satisfy it. Then, in a similar manner as in the previous completeness
proof, we can define sequences C0[∅] ≺ C1[Q 1] ≺ · · · ≺ Ci [Q i] ≺ Ci+1[Q i+1] ≺, where each Ci satisfies all the
strictly negative clauses and all the negative constraints in Q i . Then, saturation of the sequences ensures that for
every sequence there is an i such that Q i includes all the negative atomic constraints in C. This ensures that a
saturated sequence will yield a model of C, provided that the empty clause cannot be inferred from C.

As in the previous completeness proof, we have to provide some auxiliary definitions and results. These defi-
nitions and results are in most cases essentially equivalent to the corresponding ones in the previous section. In
particular, in some cases the only difference would be that the given basic constraints will have a context. In some
other cases, we will explicitly have to deal with the new kind of constraints considered (i.e. non-basic negative
constraints). For this reason, we will omit the proof of these auxiliary results when they are essentially identical
to the corresponding proof in Sect. 3, or we will just show the proof for the case of the new constraints, when this
is the only difference.

We start defining the construction I . In this case, the result of I (∃G1[Q 1],L) is not the set of possible graphs
(actually monomorphisms from G1 to these graphs) that we can infer from ∃G1[Q 1] and L, but also the resulting
contexts:

Definition 14 Let ∃G1[Q 1] be a contextual literal and L a positive literal or a negative non-basic constraint. We
define the set of monomorphisms I (∃G1[Q 1],L) by cases:

• If L is a basic contextual literal, L � ∃G2[Q 2], then I (∃G1[Q 1],L) � {〈f1, Q 〉 | 〈f1 : G1 → G ← G2 : f2〉 ∈
(G1 ⊗ G2)}, where Q � f1〈Q 1〉 ∪ f2〈Q 2〉.

410 F. Orejas et al.

• If L is a positive atomic literal, L � ∀(c : X → G2), and H is the set of all monomorphisms from X to G1
then, I (∃G1[Q 1],L) � I ∗(∃G1[Q 1],H), where I ∗(∃G1[Q 1],H) is defined inductively:

– If H � ∅ then I ∗(∃G1[Q 1],H) � {〈idG1 , Q 1〉}.
– IfH � {f : X → G1}∪H ′ then I ∗(∃G1[Q 1],H) � {〈h ′◦h, h ′〈Q 〉〉 | 〈h : G1 → G, Q 〉 ∈ I ∗(∃G1[Q 1],H ′), 〈h ′ :

G → G ′ ← G2 : f2〉 ∈ (G ⊗ G2) such that f2 ◦ c � h ′ ◦ h ◦ f }.
• If L is a negative non-basic constraint, L � ¬∀(c : X → G2), then I (∃G1[Q 1],L) � {〈f1, Q 〉 | 〈f1 : G1 →

G ← X : f2〉 ∈ (G1 ⊗ X)}, where Q � f1〈Q 1〉 ∪ {〈∀(c : X → G2), f2〉}.
The definition of I is extended to clauses and sets of clauses as in the previous section:

Definition 15 Let ∃G1[Q 1] be a contextual literal and � be a clause. We define the set of monomorphisms
I (∃G1[Q 1], �) inductively:

• If � is the empty clause, then I (∃G1[Q 1], �) � ∅.
• If � � L ∨ �′, where L is a negative basic literal, then I (∃G1[Q 1], �) � I (∃G1[Q 1], �′).
• If � � L∨�′, where L is a positive literal or a negative non-basic literal, then I (∃G1[Q 1], �) � I (∃G1[Q 1],L)∪

I (∃G1[Q 1], �′).

If ∃G1[Q 1] is a contextual literal and C is a set of clauses, the set of monomorphisms I (∃G1[Q 1], C) is defined
inductively:

• If C is the empty set, then I (∃G1[Q 1], C) � {〈idG1 , Q 1〉}.
• If C � {�} ∪ C ′, and � includes a negative basic literal, ¬∃G such that G1 |� ¬∃G , or � includes a positive

atomic literal, ∀(c : X → G2) such that there is no monomorphism h : X → G1 then I (∃G1[Q 1], C) �
I (∃G1[Q 1], C ′).

• Otherwise,

I (∃G1[Q 1], {�} ∪ C ′) � {〈g ◦ h, Q 〉 | 〈g, Q 〉 ∈ I (∃G [Q ′], �), 〈h : G1 → G, Q ′〉 ∈ I (∃G1[Q 1], C ′)}
The function I is monotonic with respect to the context part:

Proposition 11

• If L is not a basic negative literal and 〈h, Q 〉 ∈ I (∃G1[Q 1],L) then h〈Q 1〉 ⊆ Q .
• For any clause �, if 〈h, Q 〉 ∈ I (∃G1[Q 1], �) then h〈Q 1〉 ⊆ Q .
• For any set of clauses C, if 〈h, Q 〉 ∈ I (∃G1[Q 1], C) then h〈Q 1〉 ⊆ Q .

Proof. Straighforward by the definition of I . �
The following proposition is almost identical to Prop. 5 since here the contexts do not play any role. The main

difference is that now we also consider the case of non-basic negative constraints.

Proposition 12 Let � be a clause and let h : G1 → G2 be a monomorphism such that 〈h, Q 〉 ∈ I (∃G1[Q 1], �), for
some set of contexts Q then there is a literal L in � such that:

• If L � ¬∃C , then there is no monomorphism m : C → G1.
• If L � ∃C [Q], then there is a monomorphism m : C → G2.
• If L � ∀(c : X → C) then for every monomorphism f : X → G1 there is a monomorphism g : C → G2 with

h ◦ f � g ◦ c.
• If L � ¬∀(c : X → C), then 〈¬ ∀(c : X → C),m〉 ∈ Q for some monomorphism m : X → G2.

Proof. If �0 is the subset of � including all its positive literals and all its non-basic negative constraints then, we
know that I (∃G1[Q 1], {�}) � ⋃

L∈�0
I (∃G1[Q 1],L]). Now, if � does not include any positive literal nor a negative

non basic constraint (i.e. � is the empty clause or � includes only negative basic literals), then the proposition
trivially holds, since by definition I (∃G1[Q 1], �) is empty. So let us assume that � includes some literal which is not
a negative basic constraint and, moreover, let us assume that 〈(h : G1 → G2), Q 〉 ∈ I (∃G1[Q 1],¬∀(c : X → C))
for some literal ¬∀(c : X → C) in �, since the other possible cases were proved in Prop. 5 and the current proof
would be essentially identical. But this case is quite straightforward since, by definition, I (∃G1[Q 1],¬∀(c : X →
C)) � {〈h, Q 〉 | 〈h : G1 → G ← X : m〉 ∈ (G1 ⊗ X)}, where Q � h〈Q 1〉 ∪ {〈∀(c : X → G2),m〉}. �

Reasoning with graph constraints 411

The extension of the above proposition to a set of clauses C is again almost identical to Prop. 6, except for the
case when the literal L is a non-basic negative constraint.

Proposition 13 Let C be a set of clauses consisting of basic constraints and positive atomic constraints and let
h : G1 → G2 be a monomorphism such that 〈h, Q 〉 ∈ I (∃G1[Q 1], C), then for every clause � in C there is a literal L
in � such that:

• If L � ¬∃C , then there is no monomorphism m : C → G1.

• If L � ∃C [Q], then there is a monomorphism m : C → G2.

• If L � ∀(c : X → C) then for every monomorphism m : X → G1 there is a monomorphism f : C → G2 with
h ◦m � f ◦ c.

• If L � ¬∀(c : X → C), then 〈¬ ∀(c : X → C),m〉 ∈ Q for some monomorphism m : X → G2.

Proof. Let 〈h, Q 〉 ∈ I (∃G1[Q 1], C). By induction on C, following the definition of I (∃G1[Q 1], C):

• If C is the empty set, then the proposition trivially holds.

• Otherwise, by induction, we know that if 〈h ′ : G1 → G ′2, Q ′〉 ∈ I (∃G1[Q 1], C ′) every �′ in C ′ satisfies the
proposition with respect to h ′. Therefore, if h � g ◦ h ′, with 〈g : G ′2 → G2, Q ′〉 ∈ I (∃G ′2[Q ′], �), on one hand
we have to prove that every �′ in C ′ satisfies the proposition with respect to g ◦ h ′ and, on the other, that �
also satisfies the proposition with respect to g ◦ h ′.
Given a clause �′ in C ′, by induction, we know that there is a a literal L in � such that one of the following
cases hold:

– if L � ¬∃C , the case is trivial.
– if L � ∃C [Q ′′], then there is a monomorphism m : C → G ′2. But this means that g ◦m : C → G ′2
– If L � ∀(c : X → C) then for every monomorphism m : X → G1 there is a monomorphism f : C → G ′2

with h ′ ◦m � f ◦ c. But this means that there is a monomorphism g ◦ f : C → G2. Moreover, g ◦ f ◦ c �
g ◦ h ′ ◦m � h ◦m

– If L � ¬∀(c : X → C) then 〈¬ ∀(c : X → C),m ′〉 ∈ Q ′ but this means that 〈¬ ∀(c : X → C), g◦m ′〉 ∈ Q .

Now, in the case of the clause � the proof is just a direct consequence of Prop. 12. �

The aim of the following two propositions, like in the case of Propositions 8 and 9, is to show that if we have a
literal ∃G1[Q 1] in a clause �, then we can infer the clause resulting from replacing that literal by a disjunction of
the literals that, in some sense can be considered included in I (∃G1[Q 1], C). The proof of Proposition 14 is very
similar to the proof of Proposition 8. The main difference, in addition to dealing with the contexts involved, is
that in Proposition 14 we have to explicitly deal with the case of non basic constraints.

Proposition 14 Let C be a set of clauses, let C ⇒ C1 ⇒ · · · ⇒ Ck . . . be a fair refutation procedure defined over C
based on the rules (R1’), (R2’), (R3’), (R4’), and (R5), and let ∃G1[Q 1] ∨ �1 and �2 be two non-empty clauses
in

⋃
k≥1 Ck such that for every negative literal ¬∃G2 ∈ �2 we have that G1 � ¬∃G2 and for every atomic literal

∀(c : X → G2) ∈ �2 there is a monomorphism h : X → G1. Then (
∨
〈G,Q 〉∈G ∃G [Q] ∨ �1) ∈ ⋃

k≥1 Ck , where
G � {〈G, Q 〉 | 〈h : G1 → G, Q 〉 ∈ I (∃G1[Q 1], �2)}.
Proof. As in the case of Proposition 8, we prove by induction that for all clauses �1 and �2, if ∃G1[Q 1]∨ �1 is in⋃

k≥1 Ck and for every literal ¬∃G2 ∈ �2 we have that G1 � ¬∃G2 and for every literal ∀(c : X → G2) ∈ �2 there
is a monomorphism h : X → G1, then for every clause �3 such that �2 ∨ �3 is in

⋃
k≥1 Ck we have that either �2

is empty or (
∨
〈G,Q 〉∈G ∃G [Q] ∨ �3 ∨ �1) ∈ ⋃

k≥1 Ck , where G � {〈G, Q 〉 | 〈h : G1 → G, Q 〉 ∈ I (∃G1[Q 1], �2)}.
This implies the proposition when �3 is the empty clause.

If �2 is the empty clause, then the proof is trivial. Otherwise, let us suppose that �2 � L ∨ �′2, for a given
literal L. By induction, we may assume that for any �3 if (�′2 ∨ L ∨ �3) ∈ ⋃

k≥1 Ck then either (a) �′2 is empty or
(b) (

∨
〈G,Q 〉∈G′ ∃G [Q] ∨ L ∨ �3 ∨ �1) ∈ ⋃

k≥1 Ck , where G′ � {〈G, Q 〉 | 〈h : G1 → G, Q 〉 ∈ I (∃G1[Q 1], �′2)}. Let
us define �′3 to be equal to �3 in case (a), and equal to (

∨
〈G,Q 〉∈G′ ∃G [Q] ∨ �3 ∨ �1) in case (b). Below we just

consider the case where L � ¬∀(c : X → C), since the proofs for the remaining cases are essentially identical to
the proofs of the corresponding cases in Proposition 8.

412 F. Orejas et al.

• If L � ¬∀(c : X → C) then we can apply the rule (R4’) to ∃G1[Q 1] ∨ �1 and ¬∀(c : X → C) ∨ �′3 yielding
the clause (

∨
〈G,Q 〉∈G′′ ∃G [Q] ∨ �1 ∨ �′3) ∈ ⋃

k≥1 Ck , where G′′ � {〈G, f1〈Q 1〉 ∪ {〈¬∀(g : X → C2), f2〉}〉 | 〈f1 :
G1 → G ← X : f2〉 ∈ (G1⊗X)}. Therefore, in case (a) we know that (

∨
〈G,Q 〉∈G′′ ∃G [Q]∨�1∨�3) ∈ ⋃

k≥1 Ck ,
and this completes the proof, since in this case, by definition, {〈G, Q 〉 | 〈h : G1 → G, Q 〉 ∈ I (∃G1[Q 1], �2)} �
{〈G, f1〈Q 1〉 ∪ {〈¬∀(g : X → C2), f2〉}〉 | 〈f1 : G1 → G ← X : f2〉 ∈ (G1 ⊗ X)}. On the other hand, in case (b)
we know that (

∨
〈G,Q 〉∈G′′ ∃G [Q]∨ �1 ∨∨

〈G,Q 〉∈G′ ∃G [Q]∨ �3 ∨ �1) ≡ (
∨
〈G,Q 〉∈G′′ ∃G [Q]∨∨

〈G,Q 〉∈G′ ∃G [Q]∨
�3∨�1) ∈ ⋃

k≥1 Ck and this completes the proof, since in this case, by definition, {〈G, Q 〉 | 〈h : G1 → G, Q 〉 ∈
I (∃G1[Q 1], �2)} � G′′ ∪ G′. �
The proof of the proposition below is essentially identical to the proof of Proposition 9. For this reason, we

will omit it.

Proposition 15 Let C be a set of clauses , let C ⇒ C1 ⇒ · · · ⇒ Ck . . . be a fair refutation procedure defined over C
based on the rules (R1’), (R2’), (R3’), (R4’), and (R5), and let ∃G1[Q 1]∨�1 be a clause in

⋃
k≥1 Ck , then for any

C ′ ⊆ C, (
∨
〈G,Q 〉∈G ∃G [Q] ∨ �1) ∈ ⋃

k≥1 Ck , where G � {G � {〈G, Q 〉 | 〈h : G1 → G, Q 〉 ∈ I (∃G1[Q 1], C ′)}.
The precedence relation that we use here is basically the same one as the relation defined in the previous

section. There are two main differences. The first one is that now the relation is defined on contextual literals.
The second one is that now if ∃G1[Q 1] ≺ ∃G2[Q 1] then the context Q 1, when translated through hG1≺G2 , should
be included in Q 2.

Definition 16 For every pair of contextual literals ∃G1[Q 1], ∃G2[Q 2], ∃G1[Q 1] ≺ ∃G2[Q 2] if there is a monomor-
phism hG1≺G2 : G1 → G2 and hG1≺G2〈Q 1〉 ⊆ Q 2.

Given a contextual literal ∃C1[Q 1], this literal precedes the results of I (∃C1[Q 1], C) for any set of clauses C:

Proposition 16 If 〈g : C1 → C2, Q 2〉 is in I (∃C1[Q 1], C) then ∃C1[Q 1] ≺ ∃C2[Q 2].

Proof. It is enough to define hC1≺C2 � g , since we know that, by Prop 11, g〈Q 1〉 ⊆ Q 2. �
As said above, we use this precedence relation to build (or to find) models of the given specification, like in the

previous completeness proof. In particular, the notion of a saturated sequence is also a key concept. There are two
main differences of the notion of saturated sequence needed here and the notion presented in the previous section.
The first one is that here we also have to take into account the inferences with negative non-basic constraints. The
second difference concerns the notion of closed literal. Intuitively, a closed literal is a literal that cannot lead to
the construction of a model of the given set of clauses. In the previous section, a literal was closed when it would
not satisfy a strictly negative clause. In the current context a literal is considered also closed if it is inconsistent.

Definition 17 Let C be a set of clauses, let C ⇒ C1 ⇒ · · · ⇒ Ck . . . be a fair refutation procedure defined over C
based on on the rules (R1’), (R2’), (R3’), (R4’), and (R5), and let ContLit(

⋃
k≥1 Ck) be the set of all contextual

literals occurring in clauses inferred in the refutation procedure. A literal ∃G [Q] in ContLit(
⋃

k≥1 Ck) is closed if
either there is a strictly negative clause � in

⋃
k≥1 Ck such that G � � or if ∃G [Q] is inconsistent. We also say that

∃G [Q] is open if it is not closed.

Then, the new definition of a saturated sequence, following the intuitions above is:

Definition 18 An ascending sequence in ContLit(
⋃

k≥1 Ck) ∃G1[Q 1] ≺ · · · ≺ ∃Gi [Q i] ≺ . . . is saturated if one of
the following cases applies:

• the sequence is finite and its last element ∃Gk [Q k] satisfies that Gk is a model for C, or
• the sequence is finite and its last element is closed, or
• the sequence is infinite, it consists only of open elements and for every clause � in

⋃
k≥1 Ck there is a literal L

in � such that:
(a) if L � ¬∃C , then for every j there is no monomorphism m : C → Gj

(b) if L � ∃C [Q], there is a j , such that there is a monomorphism m : C → Gj

(c) If L � ∀(c : X → C) then for every i and every monomorphism m : X → Gi there is a j , with i < j , and a
monomorphism h : C → Gj with hCi≺Cj

◦m � h ◦ c.
(d) if L � ¬∀(c : X → C), then there is a j , such that 〈¬ ∀(c : X → C), h : X → Gj 〉 is in Q j for some

monomorphism h.

Reasoning with graph constraints 413

The lemma that shows that the colimit of infinite saturated sequences is a model of the given set of constraints
is, again, very similar to the corresponding lemma in Sect. 3. However, the proof of the lemma below is slightly
different to the prove of Lemma 8. In particular, here we have to consider the additional case of negative non-basic
constraints. For this reason, below we include the proof for this case.

Lemma 8 Let ∃G1[Q 1] ≺ · · · ≺ ∃Gi [Q i] ≺ . . . be an infinite saturated sequence in ContLit(
⋃

k≥1 Ck) for a fair
refutation procedure C⇒ C1 ⇒ · · · ⇒ Ck . . . and let G be the colimit of the sequence:

G1
hG1≺G2 ��

f1

����������������������������� G2
hG2≺G3 ��

f2

															 . . .
hGi−1≺Gi �� Gi

hGi≺Gi+1 ��

fi

. . .

G

then G is a model for the given set of clauses, i.e. G |� C.

Proof. Let � be any clause in C. We have to prove that G |� �. Since the sequence is assumed to be saturated
there should be a literal L in � such that the conditions (a), (b), (c) or (d) in Def. 18 are satisfied. The proof for the
cases (a), (b), (c) is essentially identical to the corresponding proof in Lemma 8. For this reason we only include
case (d):

(d) if L � ¬∀(c : X → C), we know that there is a j , such that 〈¬ ∀(c : X → C), h : X → Gj 〉 is in Q j for some
monomorphism h. As a consequence, fj ◦h is a monomorphism from X to G . Now we will prove that if there
is a monomorphism f : C → G , such that fj ◦ h � f ◦ c, then some contextual literal ∃Gk [Q k] would be
inconsistent, against the assumption that all the literals in the sequence are open (and therefore consistent).
Let us suppose that such an f exists. Then, according to proposition 4 there must exist a monomorphism
f ′ : C → Gi such that f � fi ◦ f ′. Therefore, we would have fj ◦ h � f ◦ c � fi ◦ f ′ ◦ c. Now, we consider
two cases. If j ≤ i then, we have that fj � fi ◦ hGj≺Gi

which means that fi ◦ hGj≺Gi
◦ h � fi ◦ f ′ ◦ c. But since

fi is a monomorphism we have that f ′ ◦ c � hGj≺Gi
◦ h. Now, according to the definition of the precedence

relation:

〈¬ ∀(c : X → C), hGj≺Gi
◦ h : X → Gi 〉 ∈ Q i .

and this implies that Gi [Q i] would be inconsistent. If i < j then fi � fj ◦ hGi≺Gj
, which means that fj ◦ h �

fi ◦ f ′ ◦ c � fj ◦ hGi≺Gj
◦ f ′ ◦ c and, again, since fj is a monomorphism we have that h � hGi≺Gj

◦ f ′ ◦ c,
implying that Gj [Q j] would be inconsistent. �
The proof of the lemma that shows us a procedure to define saturated infinite sequences is also a small var-

iation of the proof of Lemma 3, where the only difference refers again to the case where negative non-basic
constraints are considered.

Lemma 9 Let ∃G1[Q 1] ≺ · · · ≺ ∃Gi [Q i] ≺ . . . be an infinite ascending sequence in ContLit(
⋃

k≥1 Ck) for a fair
refutation procedure C ⇒ C1 ⇒ · · · ⇒ Ck . . . such that, for every j , ∃Gj [Q j] is open and moreover hGj≺Gj+1 ∈
I (∃Gj [Q j], Cj). Then, ∃G1[Q 1] ≺ · · · ≺ ∃Gi [Q i] ≺ . . . is a saturated sequence.

Proof. Let � be any clause in
⋃

k≥1 Ck . More precisely, let us assume that � ∈ Cn . We have to prove that there is
a literal L in � such that:

(a) if L � ¬∃C , then for every j there is no monomorphism m : C → Gj

(b) if L � ∃C [Q], there is a j , such that there is a monomorphism m : C → Gj

(c) If L � ∀(c : X → C) then for every i and every monomorphism m : X → Gi there is a j , with i < j , and a
monomorphism f : C → Gj with hGi≺Gj

◦m � f ◦ c.
(d) if L � ¬∀(c : X → C), then there is a j , such that 〈¬ ∀(c : X → C), h : X → Gj 〉 is in Q j for some

monomorphism h.

Now, if there is an L in � that satisfies condition (a), then the proposition trivially holds. Otherwise, assume
that there is a j such that for every negative literal L � ¬∃C in �, there is a monomorphism m : C → Gj . Let
k � max (n, j). By Proposition 13, we know that for every k ′ ≥ k there should be a literal L in � such that:

• if L � ∃C [Q], then there is a monomorphism m : C → Gk ′+1.
• If L � ∀(c : X → C) then the proof is identical to the proof of the corresponding case in Lemma 3.

414 F. Orejas et al.

• if L � ¬∀(c : X → C), then 〈¬ ∀(c : X → C), h : X → Gk ′+1〉 ∈ Q k ′+1. �
The proof of the lemma for showing the existence of saturated sequences is also identical to the proof of

Lemma 4.

Lemma 10 Given a fair refutation procedure C⇒ C1 ⇒ · · · ⇒ Ck . . . if ContLit(
⋃

k≥1 Ck) is not empty then there
is a saturated sequence in ContLit(

⋃
k≥1 Ck).

The lemma that shows that if all saturated sequences are finite and end in a closed element then we can derive
a clause consisting only of closed elements is now slightly different than Lemma 5.

Lemma 11 Let C⇒ C1 ⇒ · · · ⇒ Ck . . . be a fair refutation procedure defined over C based on the rules (R1), (R2),
and (R3) such that C includes a clause � consisting only of basic positive literals and negative non basic literals. If
every saturated sequence in ContLit(

⋃
k≥1 Ck) is finite and its last element is a closed literal then there is a clause �′

in
⋃

k≥1 Ck consisting only of closed literals.

Proof. First we will prove that if the clause � includes only basic positive literals and negative non basic literals,
then there is a clause �′ in

⋃
k≥1 Ck such that �′ consists only of basic (contextual) literals.

Suppose that � � �1 ∨ �2 where �1 consists only of negative non basic constraints and �2 consists only of
contextual literals. We will prove our claim by induction on �1. More precisely, we will prove that if �1 consists
only of negative non basic constraints then for every clause �2 such that �1∨�2 is in

⋃
k≥1 Ck there exists a clause

�′1 consisting only of contextual literals such that �′1 ∨ �2 is in
⋃

k≥1 Ck :

• If �1 is the empty clause then the case is trivial.
• If �1 � ¬∀(c : X → C)∨�3 then, by induction, we know that there is a clause �′3 consisting only of contextual

literals such that ¬∀(c : X → C) ∨ �′3 ∨ �2 is in
⋃

k≥1 Ck . Since we assume that every set of clauses includes
the trivial true clause (i.e. the clause consisting only of the literal ∃∅, which is equivalent to the contextual
literal ∃∅[∅]), then we can apply rule (R4’) to this trivial clause and to ¬∀(c : X → C) ∨ �′3 ∨ �2 inferring
the clause: ∃X [{〈¬∀(c : X → C), idX 〉}] ∨ �′3 ∨ �2.

So we have shown that from every clause � including only contextual literals and negative non basic literals
we can infer a clause �′ including only contextual literals. It remains to show that from �′ we can infer a clause
including only closed literals. However, this proof is essentially identical to the proof of Lemma 5. �

We can finally show the completeness of our calculus. The proof follows, with small variations the proof of
Lemma 6.

Lemma 12 (Completeness) Let C be a set of atomic constraints, let C0 ⇒ C1 ⇒ · · · ⇒ Ck . . . be a fair refutation
procedure defined over C based on the rules (R1’), (R2’), (R3’), (R4’), and (R5). If C is unsatisfiable then there is
a j such that the empty clause is in Cj .

Proof. Suppose that the empty clause is not in Cj for any j . We have to show the existence of a graph G such that
G |� C. We consider four cases:

1. All clauses in C include some negative basic constraint, ¬∃C , or some positive non basic constraint, ∀(c :
X → C) (i.e., there is no clause � in C consisting only of basic positive literals and negative non-basic literals).
In this case, the empty graph would satisfy all these positive atomic literals and all the negative basic literals
and, as a consequence, would be a model for C.

2. Otherwise, we have a clause � in C consisting only of basic positive literals and negative non-basic literals.
Then, by Lemma 10, we know that there exist at least one saturated sequence in ContLit(

⋃
k≥1 Ck). By Def. 18,

we have the following cases:

(a) Every saturated sequence in ContLit(
⋃

k≥1 Ck) is finite and its last element is a closed literal. Using the
same reasoning as in the proof of Lemma 6, we may see that this case is not possible.

(b) There is a finite saturated sequence in ContLit(
⋃

k≥1 Ck) whose last element is a model for C. The case
is trivial.

(c) There is an infinite saturated sequence ∃G1[Q 1] ≺ · · · ≺ ∃Gi [Q i] ≺ . . . in ContLit(
⋃

k≥1 Ck). Then,
according to Lemma 8, its colimit is a model for the given set of clauses. �

Reasoning with graph constraints 415

As a consequence of Lemmas 7 and 12, we have:

Theorem 2 (Soundness and completeness) Let C⇒ C1 ⇒ · · · ⇒ Ck . . . be a fair refutation procedure defined over
a set of atomic constraints C, based on the rules (R1’), (R2’), (R3’), (R4’), and (R5). Then, C is unsatisfiable if
and only if there is a j such that the empty clause is in Cj .

As discussed above, our completeness results show that a set of constraints is satisfiable then a fair refutation
procedure will never infer an empty clause from the given set of constraints. However, in the proof of completeness,
the model constructed to show the satisfiability of the constraints may be an infinite graph. One could wonder
whether in this situation it would always be possible to find an alternative finite model for these constraints. The
answer is no. As we can see in the counter-example below, there are sets of atomic constraints which do not have
finite models.

Theorem 3 (Finite satisfiability) There are satisfiable sets of atomic constraints C such that there are no finite graphs
G with G |� C.

Proof. The set of constraints below is not satisfied by any finite graph, but only by infinite graphs:

(1) ∃ ()
(2) ¬∃ ()

(3) ¬∃ ()

(4) if a then a b (5) ¬ if a then b a

Let n be the number of nodes of a finite graph satisfying the constraints and e its number of edges. The first
constraint specifies that the graph must have at least a node, i.e. n ≥ 1. The second and third constraints specify
that every node must have at most one incoming edge and one outgoing edge, i.e. n ≥ e. The previous two
constraints together with the fifth constraint (not every node has an incoming edge) imply that n > e. However,
the fourth constraint (every node has an outgoing edge) implies that n ≤ e. Obviously no finite graph would
satisfy these constraints. However the graph below does satisfy them:

.1 2 n
�

5. Clause subsumption and elimination

Using the kind of refutation procedures that we have described, proving the unsatisfiability of a set of clauses C
can be very costly. A main (standard) problem is that proving unsatisfiability implies doing an exhaustive search,
considering all possible inferences among all the clauses. To reduce the cost of this search there are several pos-
sible approaches. For instance, one approach that we do not consider in this paper is to use some kind of ad-hoc
heuristics or strategy to guide the search. A more general kind of solution is based on the elimination from the
given specification of clauses or literals that may be known to be unnecessary for finding a refutation. In this way,
we obviously reduce the search space. A technique that is often used for this purpose is subsumption. Intuitively,
a clause �1 subsumes �2 if every refutation using �2 can be replaced by a refutation using �1. In this case, �2
may be considered useless and we can delete it. The standard definition of clause subsumption applies also here,
i.e. �1 subsumes �2 if every literal in �1 subsumes a literal in �2. However, the notion of literal subsumption
is quite different from the standard notion of literal subsumption in first-order logic. In that case, a literal L1
subsumes L2 if there is a substitution σ that applied to the variables of L1 yields L2. This means that, in a sense,
L1 is smaller than L2. Here, literal subsumption works exactly in the opposite direction. A literal ∃C1 subsumes
∃C2 if C1 includes C2:

Definition 19 (Literal and clause subsumption) Given literals L1and L2, we say that L1 subsumes L2, denoted
L1 � L2 if L1 � L2 or one of the following cases applies:

• If L1 and L2 are contextual constraints, L1 � ∃C1[Q 1] and L2 � ∃C2[Q 2], f : C2 → C1 is a monomorphism,
then L1 �f L2 if for every 〈¬ ∀(c : X → C), f2 : X → C2〉 in Q 2 there exists 〈¬ ∀(c : X → C), f1 : X → C1〉
in Q 1 such that f1 � f ◦ f2. Moreover, L1 � L2 if there exists an f : C2 → C1 such that L1 �f L2.

416 F. Orejas et al.

• If L1 and L2 are basic negative constraints, L1 � ¬∃C1 and L2 � ¬∃C2, then L1 � L2 if there is a monomor-
phism h : C1 → C2.

• if L1 and L2 are positive atomic constraints, L1 � ∀(c1 : X1 → C1) and L2 � ∀(c2 : X2 → C2), then L1 � L2
if there are monomorphisms g : X1 → X2 and h : C2 → C1 such that c1 � h ◦ c2 ◦ g .

Given clauses �1 and �2, �1 � �2 if for every literal L1 in �1 there is a literal L2 in �2 such that L1 � L2.

It may be noticed that we have not provided any explicit definition of subsumption for negative non-basic
literals. This means that, implicitly, in this case subsumption coincides with equality. There are two reasons for
this. On one hand, the most obvious candidate for this definition, the contravariant version of subsumption for
positive non-basic literals does not work (i.e. Theorem 4 would not hold for that notion of subsumption). On the
other hand, one of the main reasons for introducing subsumption, as explained below, is to have the possibility
of eliminating (some of) the premises of a deduction rule after applying that inference. However, in this case,
subsumption of negative non-basic literals plays no specific role for this elimination.

The following properties are a straightforward consequence of the above definition.

Proposition 17 Subsumption satisfies the following properties:

1. If �1 � �2 and �2 is empty then �1 is also empty.
2. If �1 � �2 and L1 � L2 then �1 ∪ {L1} � �2 ∪ {L2}.
3. If �1 � �2 and �′1 � �′2 then �1 ∪ �′1 � �2 ∪ �′2.
4. Given literals ¬∀(c : X → C), ∃C1[Q 1], and ∃C2[Q 2]. If ∃C1[Q 1] �f ∃C2[Q 2] and there are monomorphisms

f1 : X → C1, f2 : X → C2, such that f1 � f ◦ f2, then ∃C1[Q ′1] � ∃C2[Q ′2], where Q ′1 � Q 1 ∪ {〈¬∀(c : X →
C), f1 : X → C1〉} and Q ′2 � Q 2 ∪ {〈¬∀(c : X → C), f2 : X → C2〉}

5. Given literals ∃C1[Q 1], ∃C2[Q 2] and graphs C ′1 and C ′2. If ∃C1[Q 1] �f ∃C2[Q 2] and there are monomorphisms
f1 : C1 → C ′1, f2 : C2 → C ′2, and f ′ : C ′2 → C ′1 such that f1 ◦ f � f ′ ◦ f2, then ∃C ′1[f1〈Q 1〉] �f ′ ∃C ′2[f1〈Q 1〉].

6. If ∃C1[Q 1] � ∃C2[Q 2], ∃C ′1[Q ′1] � ∃C ′2[Q ′2], �1 � (
∨

G1∈G1
∃G1[f1〈Q 1〉]), and �2 � (

∨
G2∈G2

∃G2[f2〈Q 2〉]) where
G1 � {G1 | 〈f1 : C1 → G1 ← C ′1 : f ′1〉 ∈ (C1 ⊗ C ′1)} and G2 � {G2 | 〈f2 : C2 → G2 ← C ′2 : f ′2〉 ∈ (C2 ⊗ C ′2)},
then �1 � �2.

Now we can prove the main result of this section. Namely that subsumed clauses are not needed in refutations:

Theorem 4 Let �1 and �2 be clauses, such that �1 � �2 and let C⇒ C1 ⇒ · · · ⇒ Ck . . . be a fair refutation procedure
where �1, �2 ∈ C. There is a refutation C \{�2} ⇒ C ′1 ⇒ · · · ⇒ C ′k . . ., where ∀ i �2 �∈ C ′i , such that there is a k
where the empty clause is in Ck if and only if there is a j where the empty clause is in C ′j
Proof. The if part is trivial since C \{�2} is included in C, and this implies that any clause, including the empty
clause, that can be inferred from C \{�2} can also be inferred from C. To prove the only-if part, we build inductively
the refutation C \{�2} ⇒ C ′1 ⇒ · · · ⇒ C ′k . . . showing that for every k there is a j such that for every clause � in
Ck there is a clause �′ in C ′j such that �′ � �. This is enough to prove the theorem since, according to Prop. 17,
the only clause that subsumes the empty clause is the empty clause, which means that if the empty clause is in Ck

then the empty clause should also be in the C ′j .

• The base case is trivial since the only clause that is in C which is not in C \{�2} is obviously �2, and we have
assumed that �1 � �2 and �1 ∈ C.

• Let us assume that for every clause �k in Ck there is a clause �′j in C ′j such that �′j � �k and j ≤ k . Now we
consider five cases depending on the inference Ck ⇒ Ck+1 � Ck ∪ {�} in order to show that there is some �′
in C ′j+1 such that �′ � �:

1. � is obtained applying rule (R1’) to ∃C3[Q 3]∨ �3 and ¬∃C4 ∨ �4. This means that there exists a monomor-
phism m : C4 → C3 and � � �3 ∨�4. By induction, we know that there should be clauses ∃C ′3[Q ′3]∨�′3 and
¬∃C ′4 ∨ �′4 in C ′j such that ∃C ′3[Q ′3] � ∃C3[Q 3], �′3 � �3, ¬∃C ′4 � ¬∃C4 and �′4 � �4. But this means that
there are monomorphisms h4 : C ′4 → C4 and h3 : C3 → C ′3. As a consequence h3 ◦m ◦h4 is a monomorphism
from C ′4 to C ′3 which means that we can apply rule (R1’) to the two clauses inferring the clause �′3∨�′4 which,
according to Proposition 17, subsumes �3 ∨ �4. Therefore, we can define C ′j+1 � C ′j ∪ {�′3 ∨ �′4}.

2. � is obtained applying rule (R2’) to ∃C3[Q 3]∨�3 and ∃C4[Q 4]∨�4. Then � � (
∨

G∈G ∃G [f3〈Q 3〉 ∪ f4〈Q 4〉])∨
�3 ∨ �4, where G � {G | 〈f3 : C3 → G ← C4 : f4〉 ∈ (C3 ⊗ C4)}. By induction, we know that there should be

Reasoning with graph constraints 417

clauses ∃C ′3[Q ′3]∨�′3 and ∃C ′4[Q ′4]∨�′4 in C ′j , such that ∃C ′3[Q ′3] � ∃C3[Q 3], �′3 � �3, ∃C ′4[Q ′4] � ∃C4[Q 4], and
�′4 � �4. Then, we can apply the rule (R2’) inferring the clause � ′ � (

∨
G∈G ∃G [f3〈Q ′3〉 ∪ f4〈Q ′4〉])∨ �′3 ∨ �′4,

where G � {G | 〈f3 : C ′3 → G ← C ′4 : f4〉 ∈ (C ′3 ⊗ C ′4)}. Therefore, we can define C ′j+1 � C ′j ∪ {�′}, since
according to Proposition 17, �′ subsumes �.

3. � is obtained applying rule (R3’) to ∃C3[Q 3] ∨ �3 and ∀(c : X → C4) ∨ �4. This means that there is a
monomorphism m : X → C3 and � � (

∨
G∈G ∃G [f3〈Q 3〉]) ∨ �3 ∨ �4, where G is the set consisting of all the

graphs G such that there are two jointly surjective monomorphisms f3 : C3 → G and f4 : C4 → G such that
f4 ◦ c � f3 ◦m. By induction, we know that there should be clauses ∃C ′3[Q ′3]∨�′3 and ∀(c ′ : X ′ → C ′4)∨�′4 in
C ′j , such that ∃C ′3[Q ′3] � ∃C3[Q 3], �′3 � �3, ∀(c′ : X ′ → C ′4) � ∀(c : X → C4), and �′4 � �4. Moreover, this
implies that there are monomorphisms f : C3 → C ′3, g : X ′ → X and h : C4 → C ′4 such that c ′ � h ◦ c ◦ g .
But this means that there is a monomorphism m ′ � f ◦m ◦ g from X ′ to C ′3. As a consequence, we can apply
the rule (R3’) inferring the clause � ′ � (

∨
G ′∈G′ ∃G ′[f ′3〈Q ′3〉]) ∨ �′3 ∨ �′4, where G′ is the set consisting of all

the graphs G ′ such that there are two jointly surjective monomorphisms f ′3 : C ′3 → G ′ and f ′4 : C ′4 → G such
that f ′4 ◦ c ′ � f ′3 ◦m ′. Now, for every G ′ ∈ G′ we have monomorphisms f ′3 ◦ f : C3 → G ′ and f ′4 ◦ h : C4 → G ′
such that f ′3 ◦ f ◦m � f ′4 ◦h ◦c. Then, by Prop. 2, there should be a G ∈ G and a monomorphism f ′ : G → G ′
such that the diagram below commutes.

X ′

m ′

���
��

��
��

�
c′ ��

g

��

C ′4
f ′4

����
��

��
��

C ′3
f ′3 �� G ′

C3

f

��

f3

�� G

f ′

��

X

m

����������
c

�� C4

h

��

f4

����������

But, according to Proposition 17, this means that for every G ′ ∈ G′ there should be a G ∈ G such that
∃G ′[f ′3〈Q ′3〉] � ∃G [f3〈Q 3〉]. Therefore, �′ subsumes �.

4. � is obtained applying rule (R4’) to ∃C3[Q 3] ∨ �3 and ¬∀(g : X → C) ∨ �4. This means that � �
(
∨

G∈G ∃G [Q]) ∨ �3 ∨ �4, where G � {G | 〈f3 : C3 → G ← X : f4〉 ∈ (C3 ⊗ X)}, and Q � f3〈Q 3〉 ∪ {〈¬∀(g :
X → C), f4〉}. By induction, we know that there should be clauses ∃C ′3[Q ′3] ∨ �′3 and ¬∀(g : X → C) ∨ �′4
in C ′j , such that ∃C ′3[Q ′3] � ∃C3[Q 3], �′3 � �3, and �′4 � �4. As a consequence, we can apply the rule (R4’)
to these clauses inferring the clause �′ � (

∨
G∈G ∃G [Q ′]) ∨ �′3 ∨ �′4, where G � {G | 〈f ′3 : C ′3 → G ← X :

f ′4〉 ∈ (C ′3 ⊗ X)}, and Q � f ′3〈Q 3〉 ∪ {〈¬∀(g : X → C), f ′4〉}. Therefore, we can define C ′j+1 � C ′j ∪ {�′}, since
according to Proposition 17, �′ subsumes �.

5. � is obtained applying rule (R5) to ∃C [Q] ∨ �. This means that ∃C [Q] is inconsistent, i.e. there exists
〈¬ ∀(c1 : X → C1), h : X → C 〉 in Q such that there is a monomorphism h1 : C1 → C such that h � h1 ◦ c1.
By induction, we know that there should be a clause∃C ′[Q ′]∨�′ in C ′j , such that∃C ′[Q ′] � ∃C [Q] and �′ � �.
But this implies that there is a monomorphism f : C → C ′ and there is 〈¬ ∀(c1 : X → C1), h ′ : X → C ′〉 in
Q ′ such that f ◦ h � h ′, i.e.:

C

f

��

X

c′1 ����������������� c1
��

h

�����������������
C1

h1

����������

f ◦h1

���
��

��
��

�

C ′

418 F. Orejas et al.

but this means that there is a monomorphism f ◦h1 : C1 → C ′. Moreover, we have that h ′ � f ◦h � f ◦h1 ◦c1
and, hence, ∃C ′[Q ′] is not consistent. Therefore, we can apply rule (R5) to the clause ∃C ′[Q ′] ∨ �′ inferring
�′ and we can define C ′j+1 � C ′j ∪ {�′}. �

It may be noted that, according to our definition of subsumption, in our inference rules (R1’–R4’) if one of
the clauses �1 or �2 in the premises is empty then the result of the rule subsumes a premise. In the case of (R5)
the result of the rule always subsumes the premise. For instance, given rule (R2’):

∃C1[Q 1] ∨ �1 ∃C2[Q 2] ∨ �2

(
∨

G∈G ∃G [f1〈Q 1〉 ∪ f2〈Q 2〉]) ∨ �1 ∨ �2
(R2’)

if �1 is empty then the consequence of the rule subsumes ∃C2[Q 2] ∨�2. This means that after this inference, this
premise could be eliminated since according to our previous theorem it is useless to find a refutation of our spec-
ification. A similar thing happens with some of the inference rules that can be found below. If the corresponding
�1 or �2 are empty then we can eliminate one of the premises.

Example 5 According to the previous theorem, we can delete all the subsumed clauses in a specification without
losing completeness. In particular, in our running example, this means that the constraints (1) and (2) could be
eliminated, since they are subsumed by clause (8). Clause (8) can also be eliminated since it is subsumed by clause
(10). Clause (1) also subsumes clause (9), so we could also eliminate it. Finally, clause (10) can also be eliminated,
since it is subsumed by clause (11).

Another way of speeding up refutation procedures is to have inference rules, which perhaps are not needed
for completeness, that allow us to infer clauses that may help us in finding shorter refutations, perhaps with the
help of a heuristics or some proof-strategy. In this case, we may note that a positive (respectively, negative) literal
which is larger (respectively, smaller) than another literal L2 has better chances to be deleted from clauses. In
addition, L1 may subsume more literals than L2 (and it may also subsume L2). This means that if we are able to
replace a clause including L2 by a clause including L1 we may have better chances of finding a refutation faster.

Below, we include several rules that may be used to find better clauses in the above sense. In particular for
each of these clauses we prove its soundness. The first rule tells us that in a certain situation we may amalgamate
two positive atomic constraints to create a new one that subsumes them.

∀(c1 : X1 → C1) ∨ �1 ∀(c2 : X2 → C2) ∨ �2

∀(c3 : X1 → C3) ∨ �1 ∨ �2
(R6)

if there are monomorphisms g : X1 → X2 and h : X2 → C1 such that c1 � h ◦ g and where C3
and c3 � c′1 ◦ c1 are defined by the pushout diagram below.

C2

h ′

��

X2

c2

��������

h

��

p.o. C3

X1

g

��

c1 �� C1

c′1

��������

Proposition 18 (R6) is sound.

Proof. Suppose that G |� ∀(c1 : X1 → C1) ∨ �1, G |� ∀(c2 : X2 → C2) ∨ �2, and there exist monomorphisms
g : X1 → X2 and h : X2 → C1 such that c1 � h ◦ g . The case where G |� �1 or G |� �2 is trivial. Now, suppose
G |� ∀(c1 : X1 → C1) and G |� ∀(c2 : X2 → C2) and suppose that there is a monomorphism (f1 : X1 → G)
then we have to show that there should exist a monomorphism (f : C3 → G) such that f1 � f ◦ c3. Using that
G |� ∀(c1 : X1 → C1) we have that there is a monomorphism (g1 : C1 → G) with f1 � g1 ◦ c1. But this means

Reasoning with graph constraints 419

that g1 ◦ h is a monomorphism from X2 to G using G |� ∀(c2 : X2 → C2) we have that there is a monomorphism
(g2 : C2 → G) such that g1 ◦ h � g2 ◦ c2:

C2

g2

���
��

��
��

�

h ′

��
X2

c2

����������

h

���
��

��
��

� C3
f

�� G

X1

g

��

c1 �� C1

g1

����������
c′1

��

But, by the universal property of pushouts and Prop. 2, there must exist a monomorphism (f : C3 → G) making
the above diagram commute. But this means that f1 � g1 ◦ c1 � f ◦ c ′1 ◦ c1 � f ◦ c3. Hence, G |� ∀(c3 : X1 → C3).

�

The last three rules describe the interaction of a negative and a positive constraint and, in this sense, they can
be seen as generalizations of the rule (R1’). In particular, the rule (R7) describes the interaction of a negative
basic constraint with a positive atomic constraint:

∀(c : X1 → C1) ∨ �1 ¬∃C2 ∨ �2

¬∃X1 ∨ �1 ∨ �2
(R7)

if there exists a monomorphism m : C2 → C1

Proposition 19 (R7) is sound.

Proof. Suppose that G |� ∀(c : X1 → C1)∨�1, G |� ¬∃C2∨�2, and there exists a monomorphism m : C2 → C1.
The case where G |� �1 or G |� �2 is trivial. Now, suppose that G |� ∀(c : X1 → C1) and G |� ¬∃C2, and
suppose that there exists a monomorphism f : X1 → G this means that there should be a monomorphism
g : C1 → G with g ◦ c1 � f . But this means that g ◦m is a monomorphism from C2 to G :

X1
c1 ��

f ���
��

��
��

� C1

g

��

C2
m��

G

Therefore such f cannot exist, which means that G |� ¬∃X1 �

Rule (R8) can be seen as a variation of rule (R1’). In particular, as we have discussed above a negative atomic
constraint ¬∀(c : X1 → C1) can be seen as a variation of the basic constraint ∃X1 in the sense that, in both cases
we are asking that the graph X1 should be included in the given graph.

¬∀(c : X1 → C1) ∨ �1 ¬∃C2 ∨ �2

�1 ∨ �2
(R8)

if there exists a monomorphism m : C2 → X1

Proposition 20 (R8) is sound.

Proof. It is enough to see that a graph G cannot satisfy simultaneously ¬∀(c : X1 → C1) and ¬∃C2. The reason
is that if G |� ¬∀(c : X1 → C1)∨ �1 this implies that there should exist a monomorphism f : X1 → G . But this
would imply the existence of the monomorphism f ◦m from C2 to G . �

420 F. Orejas et al.

Finally, rule (R9) can be seen as a variation of resolution when considering atomic constraints:

¬∀(c1 : X → C1) ∨ �1 ∀(c2 : X → C2) ∨ �2

�1 ∨ �2
(R9)

if there is a monomorphism m : C1 → C2 such that c2 � m ◦ c1.

Proposition 21 (R9) is sound.

Proof. It is enough to see that if there is a monomorphism m : C1 → C2 such that c2 � m ◦c1 then a graph G can-
not satisfy simultaneously ¬∀(c1 : X → C1) and ∀(c2 : X → C2). The reason is that if G |� ¬∀(c1 : X → C1)
this implies that there should exist a monomorphism f : X → G such that there is no h1 : C1 → G with
h1 ◦ c1 � f . But G |� ∀(c2 : X → C2) implies the existence of a monomorphism h : C2 → G , such that
f � h ◦ c2:

C1

m

��

X
f

��

c1

����������������

c2

		�������������� G

C2

h

���������

But this would mean that we have the monomorphism h ◦m from C1 to G . Moreover, we know that f � h ◦ c2 �
h ◦m ◦ c1 in contradiction with the side condition above. �

6. Conclusion

In this paper, we have shown how we can use graph constraints as a specification formalism to define constraints
associated to visual modelling formalisms or to specify classes of semi-structured documents. In particular, we
have shown how we can reason about these specifications, providing inference rules that are sound and complete.
Moreover, as can be seen in our examples, and as a consequence of Lemmas 3 and 3, the completeness proofs
show that our inference rules can also be used for the construction of models for the given sets of constraints.

Our results apply not only to plain graphs, but generalize to a large class of structures including typed and
attributed graphs. In this sense, in [EEHP04, EEPT06] the constraints that we consider have been defined for
any adhesive HLR-category [LaS04, EEPT06]. However, to be precise, to generalize our results, we would need
that the underlying category of structures satisfies the properties stated in Sect. 2.1, which are used in the main
results in the paper, and that are not considered in [EEHP04, EEPT06]. First, we would need that G1 ⊗ G2 is
finite, provided that G1 and G2 are finite. Second, we would need that our category satisfies the property of pair
factorization as stated in proposition 1. Finally, we would need that the given category satisfies the existence of
infinite colimits as stated in Prop. 4. In this sense, most set-based categories, in particular, most graph categories
satisfy these conditions. However, the category of attributed graphs presents some problems. In particular, in
general, if G1 and G2 are arbitrary attributed graphs then G1 ⊗ G2 may be infinite, even if the graph part of G1
and G2 is finite. It is enough that the set of possible values for the attributes is infinite. However, if the definition
of G1⊗G2 is restricted to the case where the jointly surjective morphisms are not only monomorphisms, but also
the identity on the attributes, then G1 ⊗ G2 would be finite. These monomorphisms are called M-morphisms in
[EEPT06] and are needed to prove that attributed graphs are an adhesive HLR-category. Therefore, in this case
it would be enough to show that the factorization properties hold for M-morphisms. Nevertheless, in [Ore08] we
have studied constraints on attributed graphs following a completely different approach, which is inspired in the
area of Constraint Logic Programming. The basic idea is to consider that an attributed graph (and therefore an
attributed graph constraint) can be seen as a graph labelled with variables together with a logical formula on this
variables. This allowed us to make a neat separation between the graph part and the data part of attributed graph

Reasoning with graph constraints 421

constraints and to provide sound and complete inference rules which are quite close to the ones presented in this
paper, but that may ask, as a side condition, for the satisfiability of some formulas of the data.

Further work is concerned, on one hand, to the extension of this results to the case of arbitrary nested con-
straints, and on the other, with the implementation of our techniques. In particular, we think that it will not be
too difficult to implement them on top of the AGG system [Tae04], given that the basic construction that we use
in our inference rules (i.e. building G1 ⊗ G2) is already implemented there.

Acknowledgments

This work has been partially supported by the CICYT project FORMALISM (ref. TIN2007-66523) and by the
AGAUR grant to the research group ALBCOM (ref. 00516). Part of the work was done during a sabbatical leave
of the first author at TU Berlin with financial support from the Ministerio de Ciencia e Innovación (grant ref.
PR2008-0185).

References

[Tae04] Taentzer G (2004) AGG: a graph transformation environment for modeling and validation of software. In: Pfaltz J, Nagl
M, Boehlen B (eds) Application of graph transformations with industrial relevance (AGTIVE903), LNCS 3062. Springer,
Heidelberg, pp 446–456. URL:http://tfs.cs.tu-berlin.de/agg

[AlF06] Alpuente M, Ballis D, Falaschi M (2006) Automated verification of web sites using partial rewriting. Softw Tools Technol
Transf 8:565–585

[BCKL06] Baldan P, Corradini A, Koenig B, Lluch-Lafuente A (2007) A temporal graph logic for verification of graph transformation
systems. In: Recent trends in algebraic development techniques, 18th international workshop, WADT 2006. Springer Lecture
Notes in Computer Science, vol 4409, pp 1–20

[Cou97] Courcelle B (1997) The expression of graph properties and graph transformations in monadic second-order logic, in [Roz97],
pp 313–400

[EEPT06] Ehrig H, Ehrig K, Prange U, Taentzer G (2006) Fundamentals of algebraic graph transformation. Springer, Heidelberg
[EEHP04] Ehrig E, Ehrig K, Habel A, Pennemann KH (2004) Constraints and application conditions: from graphs to high-level struc-

tures. In: Ehrig H, Engels G, Parisi-Presicce F, Rozenberg G (eds) Graph transformations, second international conference,
ICGT 2004. Springer Lecture Notes in Computer Science, vol 3256, pp 287–303

[EhH86] Ehrig H, Habel A (1986) Graph grammars with application conditions. In: Rozenberg G, Salomaa A (eds) The book of L.
Springer, Heidelberg, pp 87–100

[EEFN03] Ellmer E, Emmerich W, Finkelstein A, Nentwich C (2003) Flexible consistency checking. ACM Trans Softw Eng Method
12(1):28–63

[HHT96] Habel A, Heckel R, Taentzer G (1996) Graph grammars with negative application conditions. Fundam Inform 26(3/4):287–313
[HaP05] Habel A, Pennemann KH (2005) Nested constraints and application conditions for high-level structures. In: Kreowski H-J,

Montanari U, Orejas F, Rozenberg G, Taentzer G (eds) Formal methods in software and systems modeling. Essays dedicated
to Hartmut Ehrig, on the occasion of his 60th birthday. Springer Lecture Notes in Computer Science, vol 3393, pp 293–308

[HaP06] Habel A, Pennemann KH (2006) Satisfiability of high-level conditions. In: Corradini A, Ehrig H, Montanari U, Ribeiro L,
Rozenberg G (eds) Graph transformations, third international conference, ICGT 2006. Springer Lecture Notes in Computer
Science, vol 4178, pp 430–444

[HaP08] Habel A, Pennemann KH (2008) Correctness of high-level transformation systems relative to nested conditions. Math Struct
Comp Sci (accepted)

[HeW95] Heckel R, Wagner A (1995) Ensuring consistency of conditional graph grammars—a constructive approach. In: Proceedings
SEGRAGRA 1995, Electr Notes Theor Comput Sci, vol 2, pp 118–126

[Jel00] Jelliffe R (2000) Schematron. Internet document, May 2000. http://xml.ascc.net/resource/schematron/
[LaS04] Lack S, Sobocinski P (2004) Adhesive categories. In: Walukiewicz I (ed) Foundations of software science and computation

structures, 7th international conference, FOSSACS 2004, Lecture Notes in Computer Science, vol 2987. Springer, Heidelberg,
pp 273–288

[LEO06] Lambers L, Ehrig H, Orejas F (2006) Conflict detection for graph transformation with negative application conditions. In:
Corradini A, Ehrig H, Montanari U, Ribeiro L, Rozenberg G (eds) Graph transformations, third international conference,
ICGT 2006. Springer Lecture Notes in Computer Science, vol 4178, pp 61–76

[LaG08] De Lara J, Guerra E (2008) Pattern-based model-to-model transformation. In: Ehrig H, Heckel R, Rozenberg G,
Taentzer G (eds) Graph transformations, 4th international conference, ICGT 2008. Springer Lecture Notes in Computer
Science, vol 5214, pp 426–441

[Llo87] Lloyd JW (1987) Foundations of logic programming, 2nd edn. Springer, Heidelberg
[Ore08] Orejas F (2008) Attributed graph constraints. In: Ehrig H, Heckel R, Rozenberg G, Taentzer G (eds) Graph transformations,

4th international conference, ICGT 2008. Springer Lecture Notes in Computer Science, vol 5214, pp 274–288
[OEP08] Orejas F, Ehrig H, Prange U (2008) A logic of graph constraints. In: Fiadeiro JL, Inverardi P (eds) Fundamental approaches

to software engineering, 11th international conference, FASE 2008. Springer Lecture Notes in Computer Science, vol 4961,
pp 179–198

http://tfs.cs.tu-berlin.de/agg
http://xml.ascc.net/resource/schematron/

422 F. Orejas et al.

[KMP05] Koch M, Mancini LV, Parisi-Presicce F (2005) Graph-based specification of access control policies. J Comput Syst Sci 71(1):
1–33

[Pen08] Pennemann KH (2008) Resolution-like theorem proving for high-level conditions. In: Ehrig H, Heckel R, Rozenberg G,
Taentzer G (eds) Graph transformations, 4th international conference, ICGT 2008. Lecture Notes in Computer Science, vol
5214. Springer, Heidelberg, pp 289–304

[Ren04] Rensink A (2004) Representing first-order logic using graphs. In: Ehrig H, Engels G, Parisi-Presicce F, Rozenberg G (eds)
Graph transformations, second international conference, ICGT 2004. Springer Lecture Notes in Computer Science, vol 3256,
pp 319–335

[Roz97] Rozenberg G (ed) (1997) Handbook of graph grammars and computing by graph transformation, vol 1 Foundations. World
Scientific, Singapore

Received 29 October 2008
Accepted in revised form 18 May 2009 by J.L. Fiadeiro, P. Inverardi and T.S.E. Maibaum
Published online 4 July 2009

	Reasoning with graph constraints
	Abstract
	1 Introduction
	2 Graphs and graph constraints
	2.1 Graphs
	2.2 Graph constraints
	2.3 Refutation procedures for checking satisfiability

	3 Basic constraints and positive atomic constraints
	4 Atomic constraints
	5 Clause subsumption and elimination
	6 Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

