
DOI 10.1007/s00165-008-0097-0
BCS © 2008
Formal Aspects of Computing (2008) 20: 637–662

Formal Aspects
of Computing

On the correctness of upper layers
of automotive systems1

Jewgenij Botaschanjan1, Manfred Broy1, Alexander Gruler1, Alexander Harhurin1

Steffen Knapp2, Leonid Kof1, Wolfgang Paul2, Maria Spichkova1

1 Institut für Informatik, Technische Universität München, Boltzmannstr. 3, 85748, Garching bei München, Germany.
E-mail: botascha@in.tum.de; broy@in.tum.de; gruler@in.tum.de; harhurin@in.tum.de; kof@in.tum.de; spichkov@in.tum.de
2 Department of Computer Science, Saarland University, 66123 Saarbrücken, Germany.
E-mail: sknapp@wjpserver.cs.uni-sb.de; wjp@wjpserver.cs.uni-sb.de

Abstract. Formal verification of software systems is a challenge that is particularly important in the area of
safety-critical automotive systems. Here, approaches like direct code verification are far too complicated, unless
the verification is restricted to small textbook examples. Furthermore, the verification of application logic is
of limited use in industrial context, unless the underlying operating system and the hardware are verified, too.
This paper introduces a generic model stack, allowing the verification of all system layers as well as the concrete
application models being used in the upper layers. The presented models and proofs close the gap between the
correctness proof for the lower layers of car electronics developed at the Saarland University and the verification
procedure for distributed applications developed at the Technische Universität München.

Keywords: Formal verification; Automotive software; Model-based development; Time-triggered systems

1. Introduction and overview

In order to provide a pervasively verified system, one must verify the applications in the top system layer as
well as proving that every layer is simulated by the underlying one. Given a verified model stack, for every par-
ticular application it is then sufficient to verify only the upper system layer (the CASE tool model) in order to
obtain a completely verified system. This kind of layered verification is the objective of the German Verisoft
project [Ver06]. More concretely, the mission of the project is (i) to develop tools and methods permitting the
pervasive formal correctness proofs of entire computer systems including hardware, system software, commu-
nication systems, and applications, and (ii) to demonstrate these methods and tools with examples of industrial
complexity.

The goal of the subproject Verisoft-Automotive is to verify an automatic emergency call system, eCall [Eur03].
Starting in 2009, such an eCall functionality will become mandatory in Europe. The verification is based on the
model stack, shown in Fig. 1, which incorporates the idea of a layered framework for the verification of automotive
systems presented in [BKKS05]. The development starts with an AutoFOCUS task model (AFTM), a design

Correspondence and offprint requests to: Leonid Kof, E-mail: kof@in.tum.de
1 The work of J. Botaschanjan, A. Gruler, A. Harhurin, S. Knapp, L. Kof, and M. Spichkova was partially funded by the German Federal
Ministry of Education and Technology (BMBF) in Verisoft project under grant 01 IS C38.

638 J. Botaschanjan et al.

AFTM C0−code

COA

D−OLOS

VAMP

...

simulation

simulation

simulation

code generation
(translation validation)

model stack

verified C0−compiler

Fig. 1. Model stack

model in the CASE tool AutoFOCUS. Out of the AFTM we generate C0 code. The language C0 [LPP05] is a
Pascal-like subset of C that is similar to MISRA C [Mot06]. In safety critical applications it is common to use a
restricted version of C to ensure a less error-prone programming style. The generated C0 code is compiled and
run on the VAMP processor [DHP05]. The intermediate models are necessary in order to verify that the AFTM
and the runnable VAMP code are behaviorally equivalent under the assumption that the C0 code is equivalent
to the AutoFOCUS tasks. This equivalence proof is non-trivial due to the fact that the models of computation
of the AutoFOCUS tool (or, in general, of CASE tools) differ from real hardware.

Outline. The model stack, which is depicted in Fig. 1, includes the following elements: The hardware consists
of Electronic Control Units (ECUs) connected via a FlexRay-like2 bus [Con06, KS06, BBG+05]. The ECUs
comprise a verified architecture micro processor (VAMP) [DHP05] and a FlexRay-like interface. The given
system software is a verified C0 compiler [LPP05] and OLOS, an OSEKtime OS-like operating system [Kna05].
The system infrastructure is introduced in Sects. 2 and 3.

In [BBG+05, BKKS05, IdRLP05, KP06] a pervasive correctness proof for the lower layers of such systems
has already been outlined starting from the gate level and reaching a communication model which is based on
shared variables. In Sect. 4, we present a refinement of this communication model, called the distributed OLOS
model (D-OLOS). In Sect. 5 the model of communicating automata (COA) is introduced, which bridges the gap
between the model-based development and the CASE tool used for the application layer.

The key element of the transition from a CASE tool model to the real system code and real hardware is
the mapping of modeled tasks to ECUs (deployment). Our deployment approach of the verified model onto a
time-triggered architecture has already been sketched in [BGH+06]. Sections 6 and 7 continue this work and show
how the application layer can be modeled in a CASE tool and how a schedule can be constructed to deploy the
model. The resulting deployed model is behaviorally equivalent to the model in the CASE tool (proof: see Sect. 8).
Although the proof of the theorem is simple, its consequences are far-reaching: We have a paper-and-pencil outline
of a correctness proof for car electronics from the gate level up to the CASE tool models.

eCall example. To illustrate the concepts and notions introduced throughout the paper we will use the eCall case
study as a running example. We model the eCall as a system consisting of three sub-systems, namely: A GPS
navigation system, a mobile phone, and the actual emergency call application (cf. Fig. 2). External information
(e.g. the crash sensor, the GPS signals, etc.) is considered to be part of the environment.

According to [Eur03], these components interact as follows: The navigation system sends periodically the
vehicle’s coordinates to the emergency call application. The crash sensor periodically sends the current crash
status to the emergency call application. If a crash is detected, the emergency call application initiates the eCall
by prompting the mobile phone to establish a connection to the emergency center. As soon as the mobile phone
reports an open connection, the application transmits the coordinates to the mobile phone. After the coordinates

2 The term ‘like’ refers to the fact that our implementation does not fully implement the corresponding standard. Differences are described
in Sect. 2.

On the correctness of upper layers of automotive systems 639

Fig. 2. The task architecture of the eCall case study (AutoFOCUS model, see also Sect. 6)

have been successfully sent, the application orders the mobile phone to close the connection. The emergency call
is finished as soon as the connection is successfully closed. If the radio link breaks down during the emergency
call, the whole procedure is repeated starting from the connection initiation step.

2. Deployment platform

To master the inherent complexity of automotive systems, industry came up with a number of standards based
on the time-triggered paradigm [KG94]. These allow the realization of distributed systems with predictable time
behavior, making them an appropriate deployment target for safety-critical real-time systems. In a time-triggered
system, actions are executed at predefined points in time. Furthermore, time-triggered communication protocols
use time synchronization as a global time base for the distributed communication partners. Thus by combining a
time-triggered OS and a time-triggered network, deterministic system behavior with guaranteed response times
can be achieved.

The target deployment platform of the presented work is a network of ECUs connected by a FlexRay-like
bus with an OSEKtime OS-like operating system running on each node.

OSEKtime. OSEKtime OS [OSE01b] is an OSEK/VDX [OSE06] open operating system standard of the
European automotive industry. The OSEKtime OS supports cyclic fixed-time scheduling and provides a fault
tolerant communication mechanism.

An OSEKtime schedule defines when, within a so-called scheduling round, the dispatcher activates a user
process. If another process is currently running at the scheduled activation time, it is preempted until the activated
process has completed its computation. In addition OSEKtime monitors the deadlines of the processes, i.e. at
predefined points within the scheduling round a process must have finished its computation, otherwise an error
hook is executed. This imposes restrictions on the applications running under OSEKtime. The round-based
scheduling procedure is repeated perpetually. All rounds have equal length and the scheduling tables for all
rounds are the same.

FTCom [OSE01a] is the OSEKtime fault-tolerant communication layer that provides a number of primitives
for interprocess communication. Messages kept in FTCom are uniquely identified by their IDs. For every message
ID FTCom realizes a buffer of length one. Applications send or receive messages with certain IDs by invoking
the communication primitives provided by FTCom.

For the scope of this paper we use the following simplifications compared to the OSEKtime standard:

• Every task is activated exactly once per scheduling round.
• Every task computation takes at most one scheduling slot, in particular we do not deal with preemption.
• The replication and replica determinate agreement (RDA [OSE01a]) mechanisms implemented in the FTCom

are not used.

FlexRay. FlexRay [Con06] is a communication protocol for safety critical real-time automotive applications. It
has been developed by the FlexRay Consortium [Fle06]. It is a static time division multiplexing network protocol
that supports clock synchronization.

The static message transmission mode of FlexRay is based on FlexRay rounds consisting of a constant number
of time slices of the same length, so called slots. A node can broadcast messages to other nodes within these slots.
However, there can be at most one sender in a given slot.

A combination of the time-triggered OS and the time-triggered bus allows for synchronization of the
computations and the communication. This is done by synchronizing the local ECU clock with the help of
FlexRay and by setting the length of the OSEKtime scheduling round to be a multiple of the length of a FlexRay

640 J. Botaschanjan et al.

G
P

S

E
m

ergency C
all

M
obile P

hone

FTCom

FlexRay controller

OSEKtime OS

FlexRay controlle r

FTCom

OSEKtime OS

EC
U

 1

...

EC
U

 2

Bus
Guardian

2

Bus
Guardian

1

Fig. 3. An example distribution of the eCall tasks

round. A unit of computation is then also a FlexRay slot. The main aspects of FlexRay, OSEKtime OS and
FTCom have been outlined in [KS06, KS07, dRK05], based on [BKKS05].

To reduce the complexity of the system, several aspects of FlexRay have been abstracted as well (see also [KS07]):

• We use only a simple clock synchronization- and FlexRay start-up algorithm.
• The model does not contain bus guardians [Con06] that protect channels on the physical layer from interference

caused by communication that is not aligned with FlexRay schedules.
• Only the static segment of the communication cycle of FlexRay is used, as we are mainly interested in time-

triggered systems.
• The system operates with one FlexRay channel only.
• Both the scheduling and the FlexRay slots have the same length.
• Both the scheduling and the FlexRay rounds have the same length.

These restrictions of our model preserve the idea of time-triggered systems and thus do not restrict the applicability
of the presented ideas to real systems.

eCall example. Figure 3 shows a possible distribution of the eCall tasks on two ECUs connected by a double
redundant FlexRay link.

3. Introduction to OLOS

The abbreviation OLOS is a shorthand for OSEKtime-like operating system. OLOS implements the core part
of OSEKtime, namely cyclic time-triggered task scheduling and buffers for message exchange. In this section we
will briefly summarize the semantics of OLOS [Kna05], which has been implemented as a dialect of the generic
operating system kernel CVM [GHLP05]. Starting with the introduction to our notations in Sect. 3.1, we will
sketch the scheduling mechanism and the communication behavior as well as the restrictions on the applications
(Sect. 3.2).

3.1. Time-triggered system basics

Both FlexRay and OSEKtime use cyclic scheduling. This section introduces the mathematical notation necessary
to formalize the cyclic schedules. For intervals of natural numbers we use the shorthand

[i : j] ≡ {i , i + 1, . . . , j }

On the correctness of upper layers of automotive systems 641

We consider p electronic control units ECU(i), where i ∈ [0 : p − 1]. On each ECU(i) there are ni applications
A(i , j), where j ∈ [0 : ni − 1], running under the real-time operating system OLOS. These user programs are C0
programs.

Slots and rounds. Let ns be the number of slots in one round. Given a slot s we denote the slot following s by
s + 1, which is a shorthand for s + 1 mod ns. The slot prior to s is denoted by s − 1 which we define in an
analogous way. If r is the round number, we can define the time unit as the pair (r , s). Then, the next time unit
(r , s) + 1 is defined as follows:

(r , s) + 1 ≡
{

(r , s + 1) s < ns − 1
(r + 1, 0) otherwise

The previous slot (r , s) − 1 is defined in an analogous way.

Scheduling. The scheduling of all applications A(i , j), as well as the inter ECU communication procedure via the
FlexRay bus, is identical in each round r and only depends on the slot index s . The scheduling of all applications
is defined by the global scheduling function run(i , s). Note that according to the OSEKtime OS standard an
‘idle’ task is executed if no other application is specified in the scheduler. Since this idle task can be implemented
as a normal application we do not treat it separately here. Function run returns the index j ∈ [0 : ni − 1] of the
application being executed in the given slot s on ECU(i):

run(i , s) ∈ [0 : ni − 1]

Similarly, the global communication schedule defines which ECU is allowed to send a message in the given slot.

send(s) ∈ [0 : p − 1] (1)

To complete the communication schedule, one must characterize which message is being sent. Such a function
mapping slot numbers to message types is introduced below.

Communication. According to the FTCom specification [OSE01a], every ECU maintains a message buffer. The
applications communicate solely via this buffer by writing messages to or reading messages from it. We formalize
this buffer as an array storing the messages. Let nm be the number of message types to be sent in the distributed
system. Then, the message buffer of the i -th ECU MB(i) is an array with the index set [0 : nm − 1]. By MB(i)(k)
we denote the k-th element in the buffer MB(i), where k ∈ [0 : nm − 1].

The application scheduled on ECU(i) can read and write MB(i)(k) using two system-calls similar to those
specified in [OSE01a]:

1. t t Send(k ,msg): The execution of this function on ECU(i) results in copying the value of the C0 sub-variable
with identifier msg into MB(i)(k).

2. t t Recv(k ,msg): On invocation of this function on ECU(i) the C0 sub-variable identified by msg is updated
with the value of MB(i)(k).

The semantics of both system-calls will be formalized in Sect. 4.4. A message that was sent by an application
running on ECU(i) is directly accessible for all applications running on the same ECU, whereas applications
running on different ECUs can receive this message only after it has been broadcast via FlexRay.

Based on the MB definition, we can define the function mapping the communication slot onto the message
to be sent. For a given slot s the message-type is defined by the global function mtype:

mtype(s) ∈ [0 : nm − 1]

Together with the definition of the function send (Eq. 1) this results in a complete specification of the bus
schedule. Intuitively, if ECU (i) is the sender in a given slot s , i.e. if send(s) � i holds, then ECU(i) broad-
casts MB(i)(mtype(s)). The message buffers of all the ECUs will be modified incrementally in each slot according
to these two global schedules. Note that both the mtype and the send function are only partially defined: They
are undefined for bus slots not used for communication.

642 J. Botaschanjan et al.

3.2. Application structure and restrictions

Beside the two system-calls mentioned in Sect. 3.1 OLOS offers a third call named ttExFinished (). An application
invoking this system-call indicates that it has completed its computation for the current slot and wants to return
the control back to the operating system.

Cyclic task activation and deactivation is achieved by the following code structure: the application code is
wrapped by a while-loop and ttExFinished() is invoked only once as the last statement of the loop body:

while(true) {
“Application Code” ;
ttExFinished() ;

}
Thus we enforce the application code to be executed once each time the application is scheduled (see Sect. 4.1).
Intuitively, from an application programmer’s point of view, the ttExFinished() system-call does nothing except
for waiting until the application is scheduled again. The eCall example, put into such code structure, could look
like this:

while(true) {
i f (crash)

do something
else

do nothing
ttExFinished() ;

}
We assume that all our applications comply with the given slot boundaries and thus run from one execution

of ttExFinished to the next. Although this seems to be a hard assumption, it actually meets reality. Calculating
the worst case execution time (WCET) of applications [Abs06], optimizing the application code for short WCET,
and then choosing the proper length for the scheduling intervals is a necessary practice in the domain of real-time
system programming.

4. The D-OLOS model

OLOS is appropriate to model a single ECU. In order to model a network of communicating ECUs, we introduce
distributed OLOS, or D-OLOS. D-OLOS consists of an ECU set and a communication bus. We introduce the
computational model of D-OLOS in two steps:

1. In Sect. 4.1, we introduce the configuration of a single application running under OLOS. In Sect. 4.2 we
define the transition function on this configuration.

2. In a similar way Sects. 4.3 and 4.4 introduce global (distributed) configurations and global computations,
respectively.

In a nutshell, the global configuration combines the configuration of all applications running on the same ECU.
Furthermore it combines the configuration of all ECUs themselves.

4.1. Abstract C0 machine

The applications running under OLOS are C0 programs. C0 [LPP05] is a subset of the language C in which many
error prone features like pointer arithmetic have been removed. The abstract model for the execution of a C0
program is called a C0 machine. To describe the current configuration c of a C0 machine, we refer to the rest of
the program by c.pr . It denotes the list of statements that have not yet been executed. Further on, for reading or
updating C0 variables x , we will use a value function va(c, x) which denotes the current value of a C0 variable
having the given identifier x in the given C0 machine configuration c. The detailed definition of this function as
well as the complete configuration of a C0 machine is given in [LPP05].

A transition in a C0 machine corresponds to the execution of a C0 statement. The transition function δC
executes the first statement in the rest of the program c.pr according to its semantics given in [LPP05].

On the correctness of upper layers of automotive systems 643

While statement. As an example we define the execution of a while statement. We denote the first statement of a
statement list sl by head(sl) and the remaining statements by tail(sl).

Assume the next thing to be executed (the current rest of the program of configuration c) is a while loop, i.e.
has the form head(c.pr) � while(cond){a} where a is a statement list. If the condition cond is satisfied in the
configuration c, i.e. va(c, cond) � true, then the rest of the program of the new configuration c′ is:

c′.pr �
{

a; c.pr if va(c, cond) � true
tail(c.pr) otherwise

Thus, applications being wrapped by a while(true) loop, as assumed for our applications (compare Sect. 3.2), are
executed time and again.

4.2. Local configurations and transitions

To define the semantics of a local computation, it is necessary to define the semantics of system-calls in addition
to the usual programming language semantics. Furthermore, to match the “run-to-completion” semantics of
tasks modeled in a CASE tool (introduced in Sect. 6) it is necessary to define the “run-to-completion” for OLOS
tasks as well.

The definition of execution semantics is based on the local configuration lc, consisting of a C0 machine
configuration and a message buffer, i.e. lc � (lc.c, lc.MB). Informally, this represents an application process
with an inter-process shared memory. A local computation is defined by the local transition function δLC which
returns the successor configuration:

lc′ � δLC (lc)

The tuple lc′ is defined on top of δC , which is the transition function representing the C0 semantics, as follows
(unmentioned components remain unchanged):

• If the C0 machine lc.c does not invoke an operating system-call, then an ordinary C0 transition is performed:

lc′.c � δC (lc.c)

• If the first statement of the rest of the program is a t t Recv system-call, i.e. head(lc.c.pr) � t t Recv(k , msg),
the value of the C0 sub-variable having the identifier msg is updated with the content of the k -th element of
the message buffer. Furthermore the system-call is deleted from the rest of the program:

va(lc′.c, msg) � lc.MB(va(lc.c, k))
lc′.c.pr � tail(lc.c.pr)

• If the first statement of the rest of the program is a t t Send system-call, i.e. head(lc.c.pr) � t t Send(k , msg),
the system-call itself is deleted from the rest of the program and the k -th element of the message buffer is
updated with the value of the variable bound to identifier msg:

lc′.c.pr � tail(lc.c.pr)
lc′.MB(va(lc.c, k)) � va(lc.c, msg)

• If the application is done, i.e. the ttExFinished system-call is to be executed, i.e. head(lc.c.pr) � ttExFinished(),
the application stalls:

lc′ � lc

A finite local computation is a sequence of configurations lc0, lc1, . . . obeying lct+1 � δLC (lct). Let K (lc) > 0
be the smallest step number K such that δK

LC (lc) has finished execution, i.e.

K (lc) � min{K | head(δK
LC (lc).c.pr) � ttExFinished()}

We define the result of the local computation resLC (lc) to be the local configuration after the K -th local transition:

resLC (lc) ≡ δ
K (lc)
LC (lc)

This way we abstract from the local application steps in the computation. Note that during a local computation
the slot index and the current bus-value do not change.

644 J. Botaschanjan et al.

Fig. 4. Example D-OLOS configuration

4.3. D-OLOS configuration

D-OLOS consists of an ECU set and a communication bus. Analogously, a D-OLOS configuration consists of a
set of local configurations and the current bus state (cf. Fig. 4). A D-OLOS configuration dolos is a tuple having
the following components:

• dolos.C (i , j) is the configuration (local state) of an abstract C0 machine representing application A(i , j) for
a process-number i ∈ [0 : p − 1] and an ECU number j ∈ [0 : ni − 1].

• dolos.MB(i)(k) is the k -th message in the message buffer of ECU(i), where k ∈ [0 : nm − 1].
• dolos.s is the index of the current slot.
• dolos.bus holds the message value of the message type currently being broadcasted.

The D-OLOS configuration dolos represents the global state of the system. An example scenario with three
applications running on two ECUs and reading, or writing the k th entry on their corresponding FTCom buffers
is depicted in Fig. 4. (This could be a possible deployment of the eCall example shown in Fig. 3.)

To define the global transition function, we need two predicates. The first predicate specifies which tasks are
running and the second determines if all the tasks have finished their local computation. We define the predicate
running(dolos, i , j) to be true if application A(i , j) is scheduled during slot dolos.s :

running(dolos, i , j) ≡ (j � run(i , dolos.s))

Let done(dolos, i , j) be the predicate indicating that application dolos.C (i , j) has reached the ttExFinished()
statement. The predicate newslot(dolos) indicates that all scheduled processes have finished their computation:

newslot(dolos) ≡ (∀i , j : running(dolos, i , j) ⇒ done(dolos, i , j))

These predicates will be used in the following section to define the global transition function.

4.4. D-OLOS transition

The D-OLOS transition function δDOLOS takes a D-OLOS configuration dolos and returns its successor dolos′,
i.e. dolos′ � δDOLOS(dolos). In the definition of δDOLOS we split cases according to the newslot predicate. If
newslot(dolos) does not hold, the head of the rest of the program is executed in the scheduled application on
each ECU if the application is not completed. If newslot(dolos) holds, the inter-ECU communication procedure
is performed.

In the following definitions we only mention configuration components that are updated; all other configu-
ration components remain unchanged. We start with the definition of the first case, i.e. we assume newslot(dolos)
does not hold:

• Configurations of non-running applications, i.e. applications for which the running(dolos, i , j) predicate does
not hold, are not altered:

¬running(dolos, i , j) ⇒ dolos′.C (i , j) � dolos.C (i , j)

• In case of running applications, a local transition is performed:

running(dolos, i , j) ⇒ (dolos′
.C (i , j), dolos′

.MB(i)) � δLC (dolos.C (i , j), dolos.MB(i))

On the correctness of upper layers of automotive systems 645

In the second case (assumed that newslot(dolos) holds) the slot index is updated, the message buffers are synchro-
nized and the running applications are reset:

• The slot index is incremented:

dolos′.s � dolos.s + 1

• The global communication is performed, i.e. the message buffer of every ECU is updated with the current
content of dolos.bus. The value of dolos.bus itself is updated with the value of the message-type to be broadcast
in the next slot:

∀i : dolos′.MB(i)(mtype(dolos.s)) � dolos.bus
dolos′

.bus � dolos.MB(send(dolos′
.s))(mtype(dolos′

.s))

• Finally the ttExFinished system-calls are removed from the rest of the program of the scheduled applications:

dolos′
.C (i , run(i , dolos.s)).pr � tail(dolos.C (i , run(i , dolos.s)).pr)

This initializes the applications such that they can be scheduled again.

5. Model of communicating automata

The model of communicating OLOS automata (COA) bridges the gap between the D-OLOS model, which was
defined using C0 transitions, and the automaton-based CASE tool models, which are introduced in Sect. 6.
While the D-OLOS model uses a small-step synchronization approach based on the newslot predicate, the COA
transition function combines the small steps into a single slot-step transition and thus abstracts from the local
steps.

As in the previous section, we start with the definition of the system configuration and the transition function
(Sects. 5.1 and 5.2, respectively). Then, in Sect. 5.3 we show how the COA model can be simulated by the D-OLOS
model. This lays the basis for the model-based development in the following sections.

5.1. COA configuration

COA, as compared to D-OLOS, introduces a new transition function but no new configuration concepts. Thus, a
COA configuration coa is a tuple in which all components are taken literally from the D-OLOS configuration dolos:

• coa.C (i , j) is the configuration of the applications.
• coa.MB(i)(k) stores the message values that are visible to ECU(i).
• coa.s is the current slot index.
• coa.bus is the message value of the message type currently being broadcast.

The fundamental difference of COA from D-OLOS lies in its state transition function. This state transition
function is introduced below.

5.2. COA transition

A COA transition corresponds to the sequence of the D-OLOS transitions that are executed during one slot. The
COA transition function δC O A is defined as follows: All runnable applications are executed until they invoke the
ttExFinished() system-call, the others remain unchanged. Formally,

∀i : (APP′(i), MB′(i)) � resLC (coa.C (i , run(i , coa.s)), coa.MB(i))

The application automata are updated with the result of the local computation, so is the coa.bus component.
Note that the ttExFinished system-call needs to be deleted from the rest of the program, so that the application
is not stalled any longer.

646 J. Botaschanjan et al.

The slot number is incremented and the message buffers are either updated with the message value which is
currently being broadcast (if k � mtype(coa.s)) or with the result of the local computation:

coa′.C (i , run(i , coa.s)).pr � tail(APP′(i).pr)
coa′.C (i , run(i , coa.s)).x � APP′(i).x ∀ x �� pr

coa′.s � coa.s + 1
coa′.bus � MB′(send(coa′.s))(mtype(coa′.s))

coa′.MB(i)(k) �
{

coa.bus k � mtype(coa.s)
MB′(i)(k) otherwise

5.3. Simulation: D-OLOS versus COA

The transition functions of D-OLOS and COA are different. However, the execution of a sequence of D-OLOS
transitions fitting in one slot and one COA transition will result in equivalent states. To properly verify behavioral
equivalence between D-OLOS and COA, we need a simulation relation. The simulation relation between the D-
OLOS and the COA model is straightforward. We define a simulation relation dolos ∼� coa between a D-OLOS
configuration dolos and a COA configuration coa by requiring for all i , j :

dolos.C (i , j) � coa.C (i , j)
dolos.MB(i) � coa.MB(i)

dolos.s � coa.s
dolos.bus � coa.bus

The simulation theorem between the D-OLOS and the COA model reads as follows.

Theorem 1 (Simulation: D-OLOS vs. COA) Let u, k be D-OLOS and COA step-numbers such that the simu-
lation relation holds, i.e. dolosu ∼� coak . Let v > u be the smallest step-number such that the newslot predicate
holds again, i.e. v � min{t | (t > u) ∧ newslot(δ(t−u)

DOLOS(dolosu))}. Then, the simulation relation holds in each new
slot after the global communication is performed:

dolosu ∼� coak ⇒ dolosv+1 ∼� δC O A(coak)

Proof The proof is straightforward as the COA only abstracts from the local application steps. �

6. AutoFOCUS task model

The models introduced so far—D-OLOS and COA—both aim at formalizing the behavior of the lower system
levels while having a focus on correctness proofs of system properties throughout these related models. Although
laying the indispensable basis for the realization of a pervasive verification, neither D-OLOS nor COA are
particularly well suited to capture the functionality of a distributed reactive system from a higher, more abstract,
point of view, i.e. that in which a software designer is interested during a model-based development process of
a system. In this section we describe the AutoFOCUS Task Model (AFTM) which seamlessly integrates on top
of the model stack introduced so far (see also Fig. 1), while offering the possibility to abstract further from low
level system details and to focus on modeling the pure functionality of a system. Here, with “integration into the
model stack” we primarily mean that certain properties shown for the AutoFOCUS Task Model also provably
hold in COA, and consequently in D-OLOS, as well.

As we will see in Sect. 6.1, the AFTM is based on the AutoFOCUS semantics, which itself is directly implemen-
ted by the AutoFOCUS CASE tool. In contrast to the AutoFOCUS semantics—and also to current CASE tools
typically used for automotive software development, e.g. MATLAB/Simulink [Mat06] or Rose RT [IBM06]—the
AFTM provides an explicit deployment concept [BGH+06]. This deployment concept guarantees the preserva-
tion of system properties. Such a preservation is essential since without deployment support it makes no sense to
verify properties on the application model (AFTM), as such properties do not necessarily hold after deployment.

Thus, we now have a complete model stack which allows us to model a system at a high level (AFTM,
supported by the respective AutoFOCUS CASE Tool) while being able to prove system properties throughout
the related models and thus to (provably) guarantee the correctness of the entire system. Deployed on a verified
hardware platform, this results in a pervasively verified system.

On the correctness of upper layers of automotive systems 647

Fig. 5. Channel between the ports of connected components

6.1. The AutoFOCUS CASE tool

An AutoFOCUS task model (AFTM) is defined using AutoFOCUS [Aut06], which is a CASE tool for modeling
and simulating reactive, distributed systems. It models the system as a finite network D of components D(i), where
D � {D(i)|i ∈ [1 : n]} for a constant n ∈ N. To simplify matters and to keep the notation short, we denote a
component D(i) in the following from time to time only by its index i , i.e. where actually an element of the set D
is expected we simply use its index i of type N.

The communication between components is accomplished by typed channels which connect components
through ports. A channel can either connect a pair of components with each other or a single component to the
environment. More precisely, for the set of components D there exists a relation flow of directed channels between
them:

flow ⊆ D × D

We restrict this relation by ∀d ∈ D : (d , d) �∈ flow, i.e. no self-loops are allowed.
For a single component D(i), we denote by IP(i) (OP(i)) the set of all its input (output) ports. Further on, we

denote the k -th input port of the component D(i) by IP(i , k), where k ∈ [1 : P in
i] for a constant P in

i � | IP(i) |.
A single output port OP(i , k), where k ∈ [1 : Pout

i] is defined similarly. In particular, ports (and the respective
channels) are the only way for a component to communicate with its environment.

In order to model a concrete channel between the ports of connected components, we define the function src
which maps an input port of a component to the corresponding output port of a connected component:

src(j , p) � (i , o) (2)

This term means that for the given input port p of the component D(j), the corresponding output port of the
component D(i) is o (cf. Fig. 5).

A single component D(i) can either be hierarchically refined to a further component network or directly
implemented by a non-deterministic, finite I/O automaton Ai , which is defined by a set of states S , an initial
state s0 ∈ S , a set of local variables X , and a transition relation δi . Hereby, a state s not only reflects the current
control state of the automaton but also the data state in terms of values of the local variables. Given a state s and
an input message in mes, the result of a single transition δi of the automaton Ai is a pair (s ′, out mes) consisting
of a state and a set of output messages, where

(s ′, out mes) ∈ δi (s, in mes)

More precisely, on activation of the component D(i) the attached automaton Ai can only execute a transition
step in state s if the input ports have received the necessary input messages and the transition precondition is
satisfied. If so, the transition can fire, which means that it writes data to the respective output ports, updates
the local variables X , and puts the automaton into the state s ′. A respective (transition) postcondition directly
reflects these assignments. If in a certain state no transition can fire at all, an implicit idle-loop is executed, which
means that the automaton simply remains in the current state s and produces no output. For more details see
Sect. 6.3.1.

Once all automata are defined, AutoFOCUS can simulate the modeled system. The execution model for the
automata is time-synchronous and message-asynchronous with buffer length one, driven by a global clock which
divides time by so-called ticks into equal slices. Every tick starts a new time-slice, which consists of two phases:
During the first phase every component D(i) reads the values on its input ports and computes new values for its
local variables and output ports, i.e. it performs a single state transition of its automaton Ai . Then, during the
second phase, the computed values are transmitted to the respective input ports of the connected components
where they can be accessed at the following tick. Then the procedure is repeated. Thus, every component is

648 J. Botaschanjan et al.

activated (for computation) exactly once in each AutoFOCUS simulation step. If for one activation several
transitions can be fired, a single one is picked non-deterministically for every simulation step. Furthermore, if
an activated component is refined to a component network (and not directly implemented by an automaton), a
component activation means that each sub-component of the refining network is activated exactly once. The above
sketch of the main principles and features of AutoFOCUS is rather short, but it is sufficient for our purposes.
Huber et al. give a more in-depth introduction to this CASE tool in [HSE97].

In addition to modeling and simulation, it is also possible to prove temporal-logic properties for AutoFOCUS
models. There exists an SMV back-end [WLPS00] for this purpose.

eCall example. The following properties (formulated in linear temporal logic) were proved for the eCall system
using the SMV model checker:

• The system remains in its initial state until it receives the “crash” signal.
• If the system receives the crash signal and there exists a period of time during which the radio link to the

emergency center does not break down, the emergency call is performed correctly.

In order to preserve the LTL properties proved for the modeled system it is necessary to show that the
deployment platform simulates the AutoFOCUS execution semantics [CGP99]. This simulation proof is given in
Sect. 8.

6.2. AutoFOCUS tasks

As an acceptable abstraction level of model-based development we suggest modeling the functionality of the
system at the level of communicating tasks using the AFTM which is described in this section. In [BGH+06]
it is shown how the intended behavior of such AutoFOCUS tasks can be implemented using AutoFOCUS
components, i.e. how a Task Model can be simulated in the AutoFOCUS semantics as sketched in the previous
section.

The AFTM allows one to model a system as a set T of independent, communicating tasks T (i), where

T ≡ {T (i) | i ∈ [1 : M + 1]}
for a constant M ∈ N. The tasks T (i), 1 ≤ i ≤ M , are considered to be regular systems tasks, whereas the task
T (M + 1) is special as it is used to represent the environment of the system.

An AutoFOCUS task T (i), 1 ≤ i ≤ M + 1, is itself composed of a network of AutoFOCUS components.
In particular, this means that a task is an AutoFOCUS component. Thus, all concepts (e.g. ports, channels, etc.)
defined for components are likewise applicable for tasks.

Tasks are divided into three disjoint sets: AND-tasks (TAN D), OR-tasks (TO R) and the environment task
T (M + 1).

T ≡ TAND � TOR � {T (M + 1)}
The environment task T (M + 1) is assumed to be always running. An OR-task TOR(j) can be executed when at
least one input from any preceding task T (i) has arrived, where (i , j) ∈ flow. An AND-task can be executed only
when all the inputs from every preceding task are available. The corresponding formal definition is captured by
the predicate runnable:

∀i ∈ [1 : M + 1] : runnable(T (i), IP(i)) ≡
i � (M + 1) ∨
(T (i) ∈ TOR ∧ ∃ j ∈ [0 : P in

i] : IP(i , j) �� ε) ∨
(T (i) ∈ TAND ∧ ∀ j ∈ [0 : P in

i] : IP(i , j) �� ε) (3)

The absence of a value on a particular port is denoted by the special value ε. According to the AFTM semantics
the task T (i) can start the computation of the inputs IP(i) only if the predicate runnable(T (i), IP(i)) is true (see
below).

eCall example. Functionality of the eCall application was modeled in AutoFOCUS and bundled in three tasks:
GPS, mobile phone, and the emergency call task (cf. Fig. 2, see also [BGH+06] for details). In the case study

On the correctness of upper layers of automotive systems 649

the GPSTask is an AND-task, which gets activated when both coordinates arrive. The remaining two tasks are
OR-tasks: they must respond independently to any of their respective inputs.

Configuration. The configuration of an AFTM aftm consists of the following components:

• aftm.T (i): The state (configuration) of a single task, where aftm.T (i).st denotes the value of the control state
of this task.

• aftm.IP(i , j): The current value of the input port IP(i , j).
• aftm.OP(i , j): The current value of the output port OP(i , j).
• aftm.R: The set of tasks (indicated by their indices) which are currently running.

For the sake of simplicity the notation above using (round) brackets is overloaded, since at one stage it is used to
denote the name of an object (task) while in the other case the notation refers to the value of an object (message).
However, since the respective meaning always becomes clear from the context, we will accept this inaccuracy.

Initial configuration. In the initial configuration aftm0 all port variables are empty, i.e. they keep no messages.
All tasks are in their initial states and aftm0

.R � {M + 1}, i.e. initially, the only running task is the environment.

6.3. AFTM execution semantics

AFTM bridges the gap between the deployment platform (COA) and the CASE tool AutoFOCUS. For this
reason there are two views on the AFTM execution:

• macro-step, corresponding to the COA step.
• micro-step, corresponding to one simulation step of the AutoFOCUS tool.

To define the semantics of the whole AFTM system, it is necessary to consider the composition of single tasks
as well as the communication between them. This results in the necessity of considering two views of the system:
local (semantics of a single task) and global (semantics of the task communication). Together with micro- and
macro-steps this yields four possible views of the AFTM semantics. These four views are introduced below.

6.3.1. Auto FOCUS task automaton: micro-steps (Ticks)

The micro-step of the task automaton is the basis for all the other definitions, because this micro-step directly
reflects the execution semantics of the AutoFOCUS CASE tool. As the AFTM is implemented in the AutoFOCUS
CASE tool the AutoFOCUS execution semantics is the basis of the AFTM execution semantics.

A single micro-step of an AFTM task is defined on the basis of a state transition in one AutoFOCUS tick. The
transition function of a task T (i) is realized over an AutoFOCUS I/O automaton with transition function δAFA.
Here, δAFA is a function which simulates a single transition step, i.e. which returns exactly one successor state
according to δi . If several successors exist (non-determinism), δAFA chooses one of them in a non-deterministic
fashion. Since we consider the preservation of LTL properties (which must be true for all runs), such a way of
dealing with non-determinism does not impose any restrictions. Formally,

δAFA(T (i), IP(i)) � (T ′(i), OP′(i)) ⇒ (T ′(i).st, OP′(i)) ∈ δi (T (i).st, IP(i))

For every task T (i) the control states S (i) of its automaton are disjointly divided by the predicate

idle : S → B

into idle and non-idle states. The concept of an idle state is necessary to synchronize AFTM tasks at predefined
points. Such interrupt points are essential to deploy the tasks onto a platform like OLOS, where tasks are
periodically activated and must terminate after a certain time. Depending on the type of the current control state
T (i).st ∈ S (i) and on the presence of inputs IP(i), different behaviors are exhibited by the transition function
δT , which is defined on top of δAFA.

650 J. Botaschanjan et al.

To define δT it is necessary to introduce two abbreviations: With Ein (i) (Eout (i)), we denote the tuple of
empty inputs (outputs) for the task T (i), i.e.

Ein (i) ≡ (ε, . . . , ε)︸ ︷︷ ︸
P in

i elements

Eout (i) ≡ (ε, . . . , ε)︸ ︷︷ ︸
Pout

i elements

We also need a conditional update operation ⊕ε , similar to the “?”–operation in the programming language C:

var ′ � var ⊕ε default ≡ var ′ �
{

var var �� ε

default otherwise

This operation can also easily be defined for tuples of variables:

(var ′
1, . . . , var ′

n) � (var1, . . . , varn) ⊕ε (default1, . . . , defaultn)
≡ ∀i ∈ [1 : n] : var ′

i � var i ⊕ε defaulti (4)

The function δT with the signature3

δT (T (i), IP(i), OP(i)) ≡ (T ′(i), OP′(i))

is then defined as follows:

1. In an idle state a transition step can only be performed if the task is runnable:

runnable(T (i), IP(i)) ∧ idle(T (i).st) ⇒
{

T ′(i) � δAFA(T (i), IP(i)).T ′(i)
OP′(i) � δAFA(T (i), IP(i)).OP′(i) ⊕ε OP(i)

2. In a non-idle state all inputs are ignored:

¬ idle(T (i).st) ⇒
{

T ′(i) � δAFA(T (i),Ein (i)).T ′(i)
OP′(i) � δAFA(T (i),Ein(i)).OP′(i) ⊕ε OP(i)

3. If neither of the cases apply, i.e. the task is idle but has not received required inputs, nothing happens:

¬ runnable(T (i), IP(i)) ∧ idle(T (i).st) ⇒ (T ′(i), OP′(i)) � (T (i), OP(i))

For the environment task we assume that all its states are idle, i.e. it can react to the outputs of the system
immediately.

6.3.2. AutoFOCUS task automaton: macro-steps (Slots)

A macro-step of an AFTM task automaton is a transition from one idle state to the next and conforms to a finite
D-OLOS computation, i.e. to one step of a COA-Automaton. Each macro-step consists of a finite number of
micro-steps. For the proper definition of the macro-step, it is necessary to introduce an additional abbreviation.
We denote the result of δT (T (i),Ein (i), OP(i)) by δEi

(T (i), OP(i)), i.e.

δEi
(T (i), OP(i)) ≡ δT (T (i),Ein (i), OP(i))

Let idle(T (i).st) hold and let IP(i) be the set of its inputs. For each computation of the task automaton starting
in an idle state, we require that it reaches another idle state after a finite number of transitions:

∀i ∈ [1 : M + 1] : idle(T (i).st) ⇒ ∃n : idle(δn
Ei

(δT (T (i), IP(i),Eout (i))).T ′(i).st) (5)

Let nmacro be the minimum n satisfying the above property for a given task configuration and set of inputs
plus one. Thus, nmacro is the number of transition steps made from one idle state to the next with only non-idle
states in between. Please note that if the task is not runnable, nmacro is equal to one. A macro-step, �T , is defined
as the result of nmacro micro-steps:

�T (T (i), IP(i)) ≡ δ
nmacro−1
Ei

(δT (T (i), IP(i),Eout (i))) (6)

This definition will be used in Sect. 6.3.4 to define the global AFTM execution step.

3 Please note, that δT , and also δAFA, return a record. Thus, we will access its elements by their names, i.e. by δT .T ′(i) and δT .OP′(i).

On the correctness of upper layers of automotive systems 651

6.3.3. AutoFOCUS task model: micro step (Ticks)

The AFTM transition function δAFTM computes the successor of a given AFTM configuration, i.e. δAFTM(aftm)
� aftm′′. A step of the system consists of a micro-computation and a micro-communication phase:

δAFTM ≡ δcomm ◦ δcomp

The original configuration is processed by the computation transition function δcomp first: δcomp(aftm) � aftm′.
Then the modified configuration serves as an input for the communication transition function δcomm , i.e. δcomm
(aftm′) � aftm′′. Both functions are described below.

We will use the following abbreviation of the runnable predicate introduced in Eq. 3:

runnable(aftm)(i) ≡ runnable(aftm.T (i), aftm.IP(i))

To keep the following definitions as short as possible, we list only modified parts of the configuration. The parts
that are not mentioned explicitly remain unchanged.

1. Micro-computation phase. All AFTM tasks run in a lock-step mode, which means that all runnable tasks
are started at the same micro step and run to completion. The lock-step execution is started if solely the
environment is running. In this case we compute the set newR depending on the runnable-predicate.

newR �
{{i ∈ [1 : M + 1] | runnable(aftm)(i)} aftm.R � {M + 1}

aftm.R otherwise

No other task is allowed to start during this phase, runnable tasks can run to completion.
All tasks contained in the set newR perform exactly one step with the values of the corresponding ports as
arguments:

∀i ∈ [1 : M + 1] : i ∈ newR

⇒
{

aftm′
.T (i) � δT (aftm.T (i), aftm.IP(i), aftm.OP(i)).T ′(i)

aftm′.OP(i) � δT (aftm.T (i), aftm.IP(i), aftm.OP(i)).OP′(i)

Then, for all tasks which are started in this step the input ports are flushed (the input messages are consumed):

∀i ∈ newR\aftm.R : aftm′
.IP(i) � Ein(i)

Finally, the set of running tasks is adjusted by removing the terminated ones:

aftm′.R � newR\{i | i �� M + 1 ∧ idle(aftm′.T (i).st)}
Note: (1) According to the AutoFOCUS task micro-step semantics, as defined in Sect. 6.3.1, the input port

values are processed by δT only at the beginning of a macro step and ignored otherwise. This
corresponds to the macro-step semantics of AutoFOCUS tasks defined in Sect. 6.3.2.

(2) In the presented work we treat the concrete behavior of a task (represented by δAFA) in a black-box
manner. E.g. if the task cannot consume all inputs at once at the beginning of its execution, they
could be stored in local variables. Such architectural solutions were discussed in [BGH+06] and
are beyond the scope of the present paper.

2. Micro-communication phase. All finished tasks transmit their produced values and flush their output ports.

∀i , j ∈ [1 : M + 1], o ∈ [1 : Pout
i], p ∈ [1 : P in

j] : src(j , p) � (i , o) ∧ idle(aftm′
.T (i).st)

⇒
{

aftm′′.IP(j , p) � aftm′.OP(i , o) ⊕ε aftm′.IP(j , p)
aftm′′

.OP(i) � Eout (i)

6.3.4. AutoFOCUS task model: macro step (Slots)

The macro-step of AFTM is defined as the simultaneous execution of a macro-step of every runnable task. For
a concrete configuration aftm of AFTM, let n (i)

macro(aftm) be the number of micro-steps in the macro-step to be
performed by the task T (i) (see also Sect. 6.3.2) and let Nmacro(aftm) be the maximal length of the macro-steps:

Nmacro(aftm) ≡ max
i∈[1:M+1]

(n (i)
macro(aftm))

652 J. Botaschanjan et al.

During Nmacro(aftm) steps of the system only the runnable tasks will change their states. Thus, the macro step of
an AFTM system can be defined as follows:

�AFTM(aftm) ≡ δ
Nmacro
AFTM(aftm)

Lemma 1 (Global idle state) For any configuration aftm and any task i

idle(�AFTM(aftm).T (i).st)

Proof This follows directly from the definitions above. �

To prove the correctness of the above definitions we need to show that every macro-lock-step (�AFTM) can be
simulated by parallel execution of the macro-steps of all tasks T (i) with runnable(aftm)(i). This is shown in the
following theorem.

Theorem 2 (Simulation: task automaton macro-step vs. macro-lock-step) The following holds for every configu-
ration of AFTM aftm.∧

i∈[1:M+1]

idle(aftm.T (i).st) ⇒

∀i ∈ [1 : M + 1] :

�AFTM(aftm).T (i) � �T (aftm.T (i), aftm.IP(i)).T ′(i) ∧
∀o, p, j : src(j , p) � (i , o) ⇒

�AFTM(aftm).OP(i , o) � ε ∧

�AFTM(aftm).IP(j , p) �
⎧⎨
⎩

�T (aftm.T (i), aftm.IP(i)).OP′(i , o) ⊕ε aftm.IP(j , p),
if ¬runnable(aftm)(j)

�T (aftmT (i), aftm.IP(i)).OP′(i , o) , otherwise

Proof The proof follows directly from the above definition of �AFTM and from the definitions in Sects. 6.3.2
and 6.3.3. �

7. Deployment

A system specified in a CASE tool with a synchronous lock step semantics has to be deployed onto a target
architecture without loss of certain properties which have been already proven for it. The problem of property
preservation during deployment arises due to the differences in the time-synchronous semantics of AFTM and
the time-triggered semantics of the D-OLOS platform. The main difference is that AutoFOCUS components
perform their computation steps simultaneously, driven by a global clock, whereas in a time-triggered system
applications are scheduled sequentially. In the case of communication cycles in the system these differences
would lead to deviations in the order of input processing of particular tasks. One possible solution would be
the simulation of the AFTM semantics by the deployment platform, e.g. by establishing the global computation
and communication phases in the schedules. However, this would lead to unnecessary communication delays and
inefficient resource usage.

In this section, we present another approach to the deployment of time-synchronous models on time-triggered
platforms. Section 7.1 defines the mapping from an AFTM system onto COA application automata. After that,
a scheduler synthesis procedure is introduced (in Sect. 7.2) which, together with WCET estimations, guarantees
the preservation of temporal properties proved to hold in a given AFTM system.

7.1. Mapping AFTM to COA

To specify the mapping from an AFTM onto a COA model, the following functions and relations are introduced:

• The mapping from AFTM tasks onto COA application automata.
• The mapping from AutoFOCUS output ports onto FlexRay slots and message types.

On the correctness of upper layers of automotive systems 653

Distribution. Each AFTM task T (i) is mapped onto the COA application C (k , j) which simulates the task.
Given M + 1 tasks and p ECUs the task deployment is declared by a injective mapping

depl ⊆ [1 : M + 1] → [0 : p − 1] × [0 : N − 1]

where N is the number of applications maximally allowed on an ECU:

N ≡ max
0≤k<p

nk

The depl-function is defined for the whole input domain ([1 : M +1]); however, there is no need to cover the whole
range ([0 : p − 1] × [0 : N − 1]). By this we allow further applications to be deployed on the same deployment
platform. For reasons of simplicity we assume that the presence of alien functionality (non-AFTM tasks deployed
on the same ECU) does not influence a system’s behavior. On the one side this is guaranteed by the resource
management mechanisms of OSEKtime and FlexRay; on the other side we demand that FTCom entries which
belong to the system are never modified by alien tasks.

For a task T (i) the first component of depl (i) indicates the ECU on which T (i) is deployed. The second com-
ponent denotes the local application number of the ECU. Using the projections fst/snd we access the first/second
component of the result tuple, respectively.

Scheduling. Apart from the definition of the mapping onto FlexRay slots, it is necessary to define the task
activation time start(i) within the round: The constraint required by AFTM is that every task is scheduled
exactly once per round.

start : [1 : M + 1] → [0 : ns − 1]

This function is dual to the function run(k , s) ⊆ [0 : nk − 1] from Sect. 3.1:

start(i) � s ⇔ depl(i) � (p, k) ∧ run(p, s) � k

Communication. In a similar way we define the partial function deplop(i , o) which maps an output port o of a
task i onto the FlexRay slot transporting the corresponding message:

deplop : [1 : M + 1] × [1 : Pout] → [0 : ns − 1]
∃s : deplop(i , o) � s ⇔ ∃ j , p : (i , o) � src(j , p) ∧ fst(depl(i)) �� fst(depl(j))

where ns is the number of slots in the FlexRay round (see Sect. 3.1) and Pout is the maximum number of output
ports allowed:

Pout ≡ max
1≤i≤M+1

Pout
i

The function describes global communication via FlexRay only. Thus it is defined solely for those output ports
which are connected to a task which is deployed on another ECU. We also need a function that defines the points
of time of any communication in the deployed system. For the local communication we set them to the slot in
which the producer is scheduled:

deplcomm(i , o) ≡
{

s ∃s : deplop(i , o) � s
start(i) otherwise

We define a function mtypeop that returns for a given output port the corresponding message type:

mtypeop : [1 : M + 1] × [1 : Pout] → [0 :| OP | −1]

where OP is the set of all output ports in the system. The value produced by the task i on port o is written into
MB(fst(depl(i)))(mtypeop(i , o)). The relation to the functions send(s) ∈ [0 : p − 1] and mtype(s) ∈ [0 : nm − 1]
from Sect. 3.1 is:

deplop(i , o) � s ⇔ send(s) � fst(depl(i)) ∧ mtype(s) � mtypeop(i , o)

654 J. Botaschanjan et al.

(a)

(b)

(c)

Fig. 6. AutoFOCUS Task Graph (M � 5) with a sample schedule and delays

7.2. Scheduler synthesis procedure

For the deployment of an AFTM we assume that the system specification is given as a set of linear temporal
logic (LTL) formulas (see also [CGP99]) and that the AFTM satisfies this specification. In the definition of the
mapping from an AFTM onto a COA system as introduced so far, the temporal properties are not considered.
In the following we describe the scheduler synthesis procedure, which aims to preserve the temporal properties
already proven to hold in a given AFTM system. Thereby we will use a more elaborate example in spite of eCall
(cf. Fig. 6). It is designed to exhibit the most interesting causal relations between tasks.

To simulate AFTM by a deployed system a scheduling constraint is necessary: if an application sends its
outputs via FlexRay, the FlexRay communication must be scheduled after the producing task. Formally,

∀i ∈ [1 : M + 1], o ∈ [1 : Pout
i] : ∃s : deplop(i , o) � s ⇒ start(i) < deplop(i , o) (7)

The task graph in Fig.6 serves as an illustration of the presented concepts. There, the circles denote OR-tasks,
the rectangles AND-tasks and the diamond denotes the environment. There is a directed edge from a task ti to
a task tj if (i , j) ∈ flow.

Assuming the tasks from Fig. 6 are deployed on two ECUs (t1, t3, t5 on ECU 1 and t2, t4 on ECU 2), then
Fig. 6 shows a sample schedule for these tasks. The unallocated ECU computation slots can be used by other tasks
which do not belong to this task graph. The environment task is not deployed explicitly. It is merely represented
by the FlexRay slots for the input/output messages it produces/consumes. The assumption is that the behavior
of the environment task in AFTM and the real environment (which can be realized by several ECUs/tasks) is
equivalent.

On the correctness of upper layers of automotive systems 655

Fig. 7. Message/input buffer content & inputs of the task t1

While an AFTM system is allowed to have arbitrary communication cycles (except for self-loops), according
to the D-OLOS specification, there exists only one cycle with the fixed length of one round. For example, in
AFTM the cycle between tasks t1, t3, and t5 from Fig. 6 means that the environment task t6 will send its output
four times to t1 before the first input from t5 (together with the fifth one from t6 and the third one from t2) will
arrive. In this context we will speak about the age of an input: the number of messages arrived through a specific
channel so far. On the other side, in the corresponding D-OLOS system, having a schedule in which every task
is scheduled exactly once (cf. Fig. 6), the first input from t5 will be processed by t1 together with the second
input from t6. By this a naı̈ve deployment approach would lead to deviations from the communication semantics
established by AFTM.

This problem is mastered by installing delay buffers of length one on communication links in the deployed
system. They exactly simulate the communication semantics of AutoFOCUS. For a given channel between two
tasks T (i) and T (j) the communication has to be either delayed by one if the data sent through this channel
arrives before the task T (j) is started, or the delay emerges naturally otherwise. By this, the set of all input delays
q(j , p) of a task T (j) is defined for every connected input port by:

∀p ∈ [1 : P in
j] : q(j , p) �

{
1 deplcomm(src(j , p)) < start(j)
0, otherwise

(8)

As the result of the deployment every task T (j) gets | {p | q(j , p) > 0} | dedicated buffers for its corresponding
inputs. Figure 6 shows the buffer lengths for each channel from our example. They are initialized with an ε. At
the beginning of its activation the task reads its inputs from FTCom (MB) and puts them into the corresponding
buffer. The values which fall out of the buffer are the actual inputs for the task logic.

The described behavior is illustrated by Fig. 7 for the task t1 from Fig. 6a. There, the inputs for five invocations
of the task according to the schedule from Fig. 6b are listed. The upper index denotes the age of an input, while
the lower one is the index of its producer. The absence of a message from the task i is indicated by εi . The first line
shows the content of the message buffer at the specified points in time. These values are inserted into the buffers
of t1, shown on the second line. The values, which fall out thereby, as well as the input from the task i5 (for which
no buffering is needed, cf. Fig 6c), are the actual inputs of t1, listed in line three. This demonstrates that with the
help of these buffers the tasks in AFTM and D-OLOS will work on consistent inputs (cf. the example given with
the inputs of t1 at (4, 1) in Fig. 7). This statement will be proved as a part of the simulation in Sect. 8.3.

Note: The delay buffers slow down the data flow in the system. Every message transfer lasts exactly one round.
This solution is surely superfluous for applications with acyclic data flow dependencies. In these cases
a sequentialization always exists, which allows one to establish slot-wise communication delays. On the
other side, forbidding data-flow cycles would substantially constrain the set of deployable models and a
buffer-free deployment procedure would reduce the flexibility of the schedule synthesis. Which solution is
preferable depends on the concrete application domain.

Real-time scheduling. The procedure presented above is absolutely sufficient to construct slot-wise schedules.
This means we can assign a FlexRay slot to a message and an OSEKtime slot to a task. However, we still need
to discharge the assumption we made that the assigned task will terminate and the assigned message will be
transmitted before the slot ends. Put another way, we need to estimate the sufficient slot length. Determining the
necessary slot length is possible for concrete application code only: To determine the slot length, it is necessary
to estimate the worst case execution time (WCET) for every application.

656 J. Botaschanjan et al.

Fig. 8. Worst case execution times for eCall tasks

For the three tasks constituting the eCall (GPS navigation system, the mobile phone, and the actual emer-
gency call application) the execution times were estimated with the tool aiT by AbsInt Angewandte Informatik
GmbH [Abs06]. On the 300 MHz VAMP processor [DHP05] the tasks have WCETs, as shown in Fig. 8. The
WCET data in Fig. 8 imply that we can set the slot length to 1 ms. If we compose one round of 20 slots, we get
20 ms per round, i.e. 50 rounds/s. This rate is representative for typical task activation rates used in the automotive
industry.

8. Simulation proof for COA and AFTM

A system specified in a CASE tool with a synchronous lockstep semantics has to be deployed on a target
architecture without loss of properties that have already been proven for it. In order to achieve this, three issues
have to be addressed:

• The structure of the code generated from CASE tool models.

• Equivalence between particular AFTM tasks and the code generated out of them has to be ensured.

• Finally, for both the communication and the OS schedules, it has to be proven that the input/output relations
of the AFTM model are preserved after deployment.

These issues are treated in Sects. 8.1–8.3, respectively.

8.1. Code generation

The structure of the generated code results from the OLOS requirements (see also Sect. 3.2), from the structure
of the AutoFOCUS models, and from the operating system and communication schedules. The overall code
structure is the following:

while(true) {
“Code for copying the inputs” ;
“Code generated from the AutoFOCUS model (GC(depl(i)))” ;
“Code for copying the outputs” ;
ttExFinished() ;

}
The code generated from AutoFOCUS is a schematic translation of finite automata to C0, it is denoted by
GC(depl(i)) and is not treated further here. The code that copies the inputs for the task T (i) needs a set of
additional variables {bufi,p | q(i , p) � 1}. It is built according to the following scheme:

// for ports with q(i , p) � 1
. . .
if (va(GC(depl(i)), bufi,p) �� ε)

task var ini,p � bufi,p ;

On the correctness of upper layers of automotive systems 657

t t Recv(mtypeop(src(i , p)), bufi,p) ;
. . .
// for ports with q(i , p) � 0
. . .
if (MB(fst(depl(i)))(mtypeop(src(i , p))) �� ε)

t t Recv(mtypeop(src(i , p)), task var ini,p) ;
. . .

The code for copying one output is simpler: it consists of a t t Send-call followed by an assignment that flushes
the corresponding local output variable:

// for all output ports of a task
. . .
t t Send(mtypeop(i , o), task var out i,o) ;
task var out i,o � ε ;
. . .

The wrapper code introduced above, together with the code generated from AutoFOCUS, behaves in exactly the
same way as the model in the AutoFOCUS tool (see Proposition 1 below).

8.2. Translation validation

To show the property preservation, it is necessary to ensure the equivalence between particular AFTM tasks and
the code generated out of them. This is accomplished using translation validation [PSS98]. The correctness of an
AutoFOCUS task relies on the correctness of individual transition steps of the underlying I/O automaton. Their
correctness can be guaranteed by generating assertions for every piece of code which implements an individual
transition step. These assertions have to be proven in the real code. The Isabelle theorem prover was enriched by
a verification environment for C0 code within the scope of the Verisoft project. In this environment assertions,
expressed in Hoare-triple style, can be verified [Sch05].

The simulation relation between an AFTM task T (i), its inputs and outputs IP(i) and OP(i), and an instan-
tiated COA application GC (depl(i)) denoted as

GC(depl(i)) ∼� (T (i), IP(i), OP(i))

is defined for all configurations ofT (i), where the control stateT (i).st is idle, and for all configurations GC(depl(i))
after a number of slot computations of the corresponding C (depl(i)) as follows:

∀x : va(GC(depl(i)), x) � T (i).x
∀p : va(GC(depl(i)), task var ini,p) � IP(i , p)
∀o : va(GC(depl(i)), task var out i,o) � OP(i , o)

(9)

Here, x denotes a state component (control state/variable) of T (i)/GC(depl(i)). The behavioral equivalence
is formulated in Proposition 1.

Proposition 1 An AFTM task T (i) and a COA application GC(depl(i)) are in the simulation relation if for all
inputs of the task T (i) that are in the simulation relation with the set of internal input variables of the application
GC(depl(i)), the results of the transition functions of the AFTM and COA models are also in the simulation
relation. Hereby the content of the message buffer is not changed.

idle(T (i).st) ∧ GC(depl(i)) ∼� (T (i), IP(i), OP(i)) ⇒
{

GC ′(depl(i)) ∼� (T ′(i), IP′(i), OP′(i))
MB(fst(depl(i))) � MB′(fst(depl(i)))

where

(T ′(i), OP′(i)) � �T (T (i), IP(i))

IP′(i) �
{

Ein(i) runnable(T (i), IP(i))
IP(i) otherwise

(GC ′(depl(i)), MB′(fst(depl(i)))) � resLC (GC(depl(i)), MB(fst(depl(i))))

658 J. Botaschanjan et al.

Please note that the second part of the above proposition means that code generated from AutoFOCUS automaton
does not contain any t t Send or t t Recv statements. The simulation proof presented in the next section relies on
this proposition: It is applicable only to the systems with behavioral equivalence between AutoFOCUS tasks and
the corresponding generated C0 programs. Thus the proposition has to be proven for every individual task, e.g.
by using the framework from [Sch05] and translation validation as discussed above.

8.3. Simulation proof

Proposition 1 shows that given the same inputs, an AFTM task and the code generated from this task behave in
the same way. Additionally, it is necessary to show that the inputs processed by the task and the generated code
are always the same.

Theorem 3 (Simulation: COA vs. AFTM) Let TaskInput(j , p) be the input received by the task j on the port p.

TaskInput(j , p) � eti(j , p) ⊕ε va(C (depl(j)), task var inj ,p), where

eti(j , p) �
{

MB(fst(depl(j)), mtypeop(src(j , p))) q(j , p) � 0
va(C (depl(j)), bufj ,p) otherwise

Further on let the upper index (.)r ,s denote the configuration of some component at the beginning of the corres-
ponding slot. Then, the following simulation relation holds during the system run:

∀i , r :
∀x : va(coar ,start(i).C (depl(i)), x) � aftmr .T (i).x

∧∀p : TaskInputr ,start(i)(i , p) � aftmr
.IP(i , p)

∧∀o : va(coar ,start(i).C (depl(i)), task var out i,o) � aftmr .OP(i , o) � ε

Proof The theorem is obviously true in the initial system configuration: All AutoFOCUS tasks automata as well
as the COA programs are in their initial states, the slot and round numbers are zero. The message-buffers of all
ECUs and applications variables are empty:

∀ k ∈ [0 : p − 1], l ∈ [0 : nm − 1] :
{

coa.MB(k)(l) � ε
va(coa.C (k , l), x) � ε

and all port variables in AFTM are empty, i.e. they keep no messages:

∀i ∈ [1 : M + 1],∀p ∈ [1 : Pin
i],∀o ∈ [1 : Pout

i] : aftm.IP(i , p) � ε ∧ aftm.OP(i , o) � ε

Thus, at the beginning the AFTM model and the COA model are in the simulation relation. �

Induction step. Let us assume that simulation relation holds in some round r for any task T (i). We show that
these relations hold also in the round r +1 using the following lemmas. Every lemma has the induction assumption
as a premise.

Lemma 2 (State invariance for inactive applications in COA). For all tasks i

coa(r ,start(i))+1.C (depl(i)) � coa(r+1,start(i)).C (depl(i))

Proof The configuration of an application in COA is changed only once per round according to the scheduling
constraint from Sect. 7.1. �

Now we prove the theorem by considering different execution phases of the AFTM and COA systems. We
split the execution of a single task into three phases: (1) execution of the code generated from AutoFOCUS, (2)
copying the produced values into the D-OLOS message buffer MB, (3) transmission of the values stored in MB
to all the ECUs and copying the values from MB into task variables. Each of the following lemmas considers one
execution phase, respectively.

Lemma 3 (State equivalence). Let GC′ be defined as in Proposition 1, namely as the result of the application of
the function resLC to the code GC. Then, for all tasks i in aftmr and their state components x

va(coa(r+1,start(i)).C (depl(i)), x) � �T (T (i), IP(i)).T ′(i).x
∀ j : va(GC′(depl(i)), task var outi, j) � �T (T (i), IP(i)).OP′(i , j)

On the correctness of upper layers of automotive systems 659

Proof Note that the induction assumption guarantees assumptions of Proposition 1 to hold. The statement
follows directly from Proposition 1. �
Lemma 4 (Output equivalence). For all tasks i in aftmr , for all their output ports o, for all ECUs n, and for all
slots (r ′, s ′) which lie in the interval

[(r , deplcomm(i , o)) + 1 : (r + 1, deplcomm(i , o))]

the following predicate holds:

coa(r ′,s ′).MB(n, mtypeop(i , o)) � �T (T (i), IP(i)).OP′(i , o)

Proof As a consequence of the second part of Lemma 3, the code structure, as introduced in Sect. 8.1, and the
semantics of t t Send from Sect. 4.2, we have

coa(r ,start(i))+1.MB(fst(depl(i)), mtypeop(i , o)) � �T (T (i), IP(i)).OP′(i , o)

Furthermore, the scheduling constraint (7) ensures that the value will be transported to all ECUs before the end
of the round r and will not be changed until the next broadcast, according to deplcomm(i , o). �
Lemma 5 (Broadcast correctness) For all tasks i , j in aftmr and all their ports o, p, such that (i , o) � src(j , p),
all the produced messages are correctly broadcast:

TaskInputr+1,start(j)(j , p) � �T (T (i), IP(i)).OP′(i , o) ⊕ε va(C r+1,start(j)(depl(j)), task var inj ,p)

Proof The following is true for all tasks i :

1. In the case that the message is broadcast after the start of the corresponding task j (q(j , p) � 0), the following
obviously holds:

(r + 1, start(j)) ∈ [(r , deplcomm(i , o)) + 1 : (r + 1, deplcomm(i , o))]

Thus, according to Lemma 4 and the definition of TaskInput,

etir+1,start(j)(j , p) � coa(r+1,start(j)).MB(fst(depl(j)), mtypeop(i , o))
� coa(r ,deplcomm (i,o))+1.MB(fst(depl(i)), mtypeop(i , o))
� �T (T (i), IP(i)).OP′(i , o)

where eti is the external task input, as defined at the beginning of the theorem.
2. In the case that the message is broadcast before the start of the corresponding task j (q(j , p) � 1), from the

induction assumption, Lemma 2, and the definition of TaskInput we have

etir+1,start(j)(j , p) � va(coar+1,start(j).C (depl(j)), bufj ,p)
� va(coa(r ,start(j))+1.C (depl(j)), bufj ,p)
� coa(r ,start(j)).MB(fst(depl(j)), mtypeop(i , o))
� �T (T (i), IP(i)).OP′(i , o)

Since TaskInput is defined as

TaskInputr+1,start(j)(j , p) � etir+1,start(j)(j , p) ⊕ε va(C r+1,start(j)(depl(j)), task var inj ,p),

the statement is true in both cases. �
To prove the theorem, it is still necessary to move from �T to �AFTM. For this purpose we use Theorem 2.

From Lemma 1 and Theorem 2 follows

�AFTM(aftmr).T (i) � �T (aftmr
.T (i), aftmr

.IP(i)).T ′(i)

and due to the first part of Lemma 3 follows the first line of the theorem statement. The second line of the theorem
statement directly follows from Proposition 1:

∀p : aftmr+1
.IP(i , p) � va(C r+1,start(i)(depl(i)), task var ini,p),

as well as Theorem 2, Lemma 5, and the fact that the code for copying the inputs behaves according to the
definition of TaskInput. Finally, the last line of the theorem statement follows from Theorem 2 and the code
structure. �

660 J. Botaschanjan et al.

9. Related work

In this paper, we have presented a concept for a pervasive verification approach, separating verification of appli-
cation logic and infrastructure. The necessity of this separation is also argued for by Sifakis et al. [STY03]. They
introduce a formal modeling framework and a methodology, addressing the analysis of correct deployment and
timing properties. The extension in our task concept is the explicit modeling of task dependencies and explicit
statements about task activation conditions.

There are other approaches for the verification of distributed real-time software. Rushby has presented a
framework for a systematic formal verification of time-triggered communication in [Rus97]. His framework
allows one to prove a simulation relationship between an untimed synchronous system, consisting of a number
of communicating components (“processors”) and its implementation based on a time-triggered communication
system. However, his approach considers only a one-to-one relationship between components and physical devices
they run on, i.e. no OS, and no sequentialization of component execution is taken into account. For current
verification issues as encountered in the automotive industry, this approach is insufficient because it neglects the
current praxis of automotive software development: OS, bus and application logic are developed by different
suppliers and therefore should be treated separately.

Put in a broader context the ideas of the presented work coincide with the CLI stack extension from [Moo03]
in which a research proposal is sketched which aims at producing a stack of mechanically verified and formally
integrated models of embedded systems. The models should range from gate-level up to a high-level programming
language. The work presented here can be seen as a realization of the CLI stack vision for the upper system layers.
In fact it makes a step beyond this vision by integrating a further layer (CASE tools) above the top-most CLI
stack level (the C0 semantics in our case). The lower layers of the stack are also covered within the Verisoft
Automotive subproject (cf. [KP06, Pau05] for details).

10. Conclusion

The results presented in this paper build a basis for our continuous verification approach, reaching from the
application models in a CASE tool down to the gate level of the hardware. In particular, we presented a theorem
stack, stating that every level of the system can be simulated by the underlying one. This theorem stack implies
that the system modeled in a CASE tool is simulated by the system running on the real hardware. Combined with
the verification of the model presented at the application layer in AutoFOCUS and translation validation for the
generated code, this implies a completely verified system.

The presented proofs are more than just paper-and-pencil proofs. Major parts of the proofs are already
formalized and proven in the automated theorem prover Isabelle [NPW02].

We see several significant contributions of our paper. First of all, it gives in a mathematical style a compre-
hensive description of the structure of an automotive hardware/software system, including relations to high level
abstract application oriented models. Thus, it is a kind of refinement description of a system through several
levels of abstraction including a proof of this refinement relation.

On the other hand it can be seen as a step towards giving a very precise mathematical description of what
people like to call the architecture of a system. Such architectures include:

• The hardware, meaning the CPU and bus systems.

• The system-level software such as operating systems and device drivers (e.g. drivers for FlexRay in our case).

• The task level where software is represented by tasks that are scheduled; the way these tasks communicate
over the bus infrastructure.

• The high-level application software description in terms of modeling techniques as used in AutoFOCUS.

We consider this contribution to be as important and interesting as the contribution to the overall structuring
of hardware/software architectures to be found in automobiles. The basic idea and the approach is very much
inspired by what people call levels of abstraction and architecture layers.

These terms (“levels of abstraction” and “architecture layers”) are used in a way which is not always very
precise. In our case, however, we give a complete mathematical description of such structures.

On the correctness of upper layers of automotive systems 661

Acknowledgements

We want to thank Nicolas Fritz from AbsInt Angewandte Informatik GmbH for his work on worst case execution
time estimation. Furthermore, we want to thank the anonymous referees who helped a lot to improve the paper.

References

[Abs06] AbsInt Angewandte Informatik. Worst-case execution time analyzers. http://www.absint.com/, 15.12.2006
[Aut06] AutoFocus Project. http://autofocus.in.tum.de, accessed 15.12.2006
[BBG+05] Beyer S, Böhm P, Gerke M, Hillebrand M, In der Rieden T, Knapp S, Leinenbach D, Paul WJ (2005) Towards the formal

verification of lower system layers in automotive systems. In: 23rd IEEE international conference on computer design: VLSI
in computers and processors (ICCD’05). IEEE, New York

[BGH+06] Botaschanjan J, Gruler A, Harhurin A, Kof L, Spichkova M, Trachtenherz D (2006) Towards modularized verification of
distributed time-triggered systems. In: Formal methods 2006. LNCS, vol 4085. Springer, Heidelberg, August 23–25 2006

[BKKS05] Botaschanjan J, Kof L, Kühnel Ch, Spichkova M (2005) Towards verified automotive software. In: ICSE, SEAS Workshop,
St. Louis, Missouri, USA, May 21 2005

[CGP99] Clarke EM, Grumberg O, Peled DA (1999) Model checking. The MIT Press, Cambridge
[Con06] FlexRay Consortium. FlexRay overview. http://www.flexray.com/products/protocol%20overview.pdf , accessed 15.12.2006
[DHP05] Dalinger I, Hillebrand M, Paul W (2005) On the verification of memory management mechanisms. In: Borrione D, Paul W

(eds) CHARME 2005. LNCS. Springer, Heidelberg (to appear)
[dRK05] In der Rieden T, Knapp S (2005) An approach to the pervasive formal specification and verification of an automotive system

(Status Report). In: Tenth international workshop on formal methods for industrial critical systems (FMICS 05)
[Eur03] European Commission (DG Enterprise and DG Information Society). eSafety forum: Summary report 2003. Technical report,

eSafety, March 2003
[Fle06] FlexRay Consortium. http://www.flexray.com, accessed 15.12.2006
[GHLP05] Gargano M, Hillebrand M, Leinenbach D, Paul W (2005) On the correctness of operating system kernels. In: Hurd J, Melham

T (eds) TPHOLs 2005. LNCS. Springer, Heidelberg
[HSE97] Huber F, Schätz B, Einert G (1997) Consistent graphical specification of distributed systems. In: Industrial applications and

strengthened foundations of formal methods (FME’97). LNCS, vol 1313. Springer, Heidelberg, pp 122–141
[IBM06] IBM Rational Rose Technical Developer. http://www-306.ibm.com/software/awdtools/developer/technical/, accessed

18.05.2006
[IdRLP05] In der Rieden T, Leinenbach D, Paul WJ (2005) Towards the pervasive verification of automotive systems. In: Correct hardware

design and verification methods. Lecture Notes in Computer Science, vol 3725. Springer, Heidelberg, pp 3–4
[KG94] Kopetz H, Grünsteidl G (1994) TTP—a protocol for fault-tolerant real-time systems. Computer 27(1):14–23
[Kna05] Knapp S (2005) Towards the verification of functional and timely behavior of an ecall implementation. Master’s thesis,

Universität des Saarlandes
[KP06] Knapp S, Paul W (2006) Realistic worst case execution time analysis in the context of pervasive system verification. In: Program

analysis and compilation, theory and practice: essays dedicated to Reinhard Wilhelm, vol 4444, pp 53–81
[KS06] Kühnel Ch, Spichkova M (2006) Upcoming automotive standards for fault-tolerant communication: FlexRay and OSEKtime

FTCom. In: International workshop on engineering of fault tolerant systems (EFTS 2006), Luxembourg, June 12–13
[KS07] Kühnel Ch, Spichkova M (2007) Fault-tolerant communication for distributed embedded systems. In: Software engineering

and fault tolerance. Series on Software Engineering and Knowledge Engineering, vol 19. World Scientific Publishing, Singapore
[LPP05] Leinenbach D, Paul W, Petrova E (2005) Towards the formal verification of a C0 compiler. In: 3rd international conference

on software engineering and formal method (SEFM 2005), Koblenz, Germany
[Mat06] The MathWorks. http://www.mathworks.com, accessed 18.05.2006
[Moo03] Strother Moore J (2003) A grand challenge proposal for formal methods: a verified stack. Lecture Notes in Computer Science,

vol 2757/2003. Springer, Berlin
[Mot06] Motor Industry Software Reliability Association (MISRA). Guidelines for the use of the C language in critical systems, UK,

18.05.2006
[NPW02] Nipkow T, Paulson LC, Wenzel M (2002) Isabelle/HOL—a proof assistant for higher-order logic. LNCS, vol 2283. Springer,

Heidelberg
[OSE01a] OSEK/VDX. Fault-Tolerant Communication—Specification 1.0, 2001. http://portal.osek-vdx.org/files/pdf/specs/ftcom10.

pdf , accessed 15.12.2006
[OSE01b] OSEK/VDX. Time-Triggered Operating System—Specification 1.0, 2001. http://portal.osek-vdx.org/files/pdf/specs/ttos10.

pdf , accessed 15.12.2006
[OSE06] OSEK/VDX. http://www.osek-vdx.org, accessed 15.12.2006
[Pau05] Paul W (2005) Lecture notes: computer architecture 2—automotive systems. http://www-wjp.cs.uni-sb.de/lehre/vorlesung/

rechnerarchitektur2/ws0506/temp/060302_CA2_AUTO.pdf , December 2005
[PSS98] Pnueli A, Siegel M, Singerman E (1998) Translation validation. In: TACAS ’98: proceedings of the 4th international conference

on tools and algorithms for construction and analysis of systems, London, UK, 1998. Springer, Heidelberg
[Rus97] Rushby J (1997) Systematic formal verification for fault-tolerant time-triggered algorithms. In: Dependable computing for

critical applications—6, vol 11. IEEE Computer Society, New York, pp 203–222
[Sch05] Schirmer N (2005) A verification environment for sequential imperative programs in Isabelle/HOL. In: Baader F, Voronkov

A (eds) Logic for programming, artificial intelligence, and reasoning. LNAI, vol 3452. Springer, Heidelberg

http://www.absint.com/
http://autofocus.in.tum.de
http://www.flexray.com/products/protocol%20overview.pdf
http://www.flexray.com
http://www-306.ibm.com/software/awdtools/developer/technical/
http://www.mathworks.com
http://portal.osek-vdx.org/files/pdf/specs/ftcom10.pdf
http://portal.osek-vdx.org/files/pdf/specs/ftcom10.pdf
http://portal.osek-vdx.org/files/pdf/specs/ttos10.pdf
http://portal.osek-vdx.org/files/pdf/specs/ttos10.pdf
http://www.osek-vdx.org
http://www-wjp.cs.uni-sb.de/lehre/vorlesung/rechnerarchitektur2/ws0506/ temp/060302_CA2_AUTO.pdf
http://www-wjp.cs.uni-sb.de/lehre/vorlesung/rechnerarchitektur2/ws0506/ temp/060302_CA2_AUTO.pdf

662 J. Botaschanjan et al.

[STY03] Sifakis J, Tripakis S, Yovine S (2003) Building models of real-time systems from application software. Proc IEEE 91(1):100–111
[Ver06] Verisoft Project. http://www.verisoft.de, accessed 15.12.2006
[WLPS00] Wimmel G, Lötzbeyer H, Pretschner A, Slotosch O (2000) Specification based test sequence generation with propositional

logic. J STVR Special Issue on Specification Based Testing, 2000, 10:229–248

Received 23 November 2007
Accepted in revised form 1 August 2008 by C.B. Jones
Published online 25 November 2008

http://www.verisoft.de

	1 Introduction and overview
	2 Deployment platform
	3 Introduction to OLOS
	3.1 Time-triggered system basics
	3.2 Application structure and restrictions

	4 The D-OLOS model
	4.1 Abstract C0 machine
	4.2 Local configurations and transitions
	4.3 D-OLOS configuration
	4.4 D-OLOS transition

	5 Model of communicating automata
	5.1 COA configuration
	5.2 COA transition
	5.3 Simulation: D-OLOS versus COA

	6 AutoFOCUS task model
	6.1 The AutoFOCUS CASE tool
	6.2 AutoFOCUS tasks
	6.3 AFTM execution semantics

	7 Deployment
	7.1 Mapping AFTM to COA
	7.2 Scheduler synthesis procedure

	8 Simulation proof for COA and AFTM
	8.1 Code generation
	8.2 Translation validation
	8.3 Simulation proof

	9 Related work
	10 Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

