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Abstract. This paper describes how the communication protocol of Mondex electronic purses can be specified
and verified against desired security properties. The specification is developed by stepwise refinement using the
RAISE formal specification language, RSL, and the proofs are made by translation to PVS and SAL. The work
is part of a year-long project contributing to the international grand challenge in verified software engineering.
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1. Introduction

As a response to the international grand challenge in verified software engineering [Hoa03, HM05, Hoa06,
JOW06] a number of research groups started in January 2006 to work on the same verification problem, the
Mondex case study, in a year-long project [Woo06] initiated by Jim Woodcock. This paper reports on how the
Mondex problem has been approached using the Rigorous Approach to Industrial Software (RAISE) formal
method.

In the remaining part of this introduction, we briefly describe the Mondex case study, provide some infor-
mation about RAISE and give a survey of the paper. For a more detailed description of the Mondex case study,
descriptions of the work made by the other research groups and a comparison of the different approaches we
refer to the other papers in this special issue of the FAC journal [FACJ].

1.1. The Mondex case study

Mondex [Inc, IE97] is a 10-year-old financial system that utilizes smart cards as electronic purses. Each card
stores financial value (equivalent to cash) as electronic information on a microchip and provides operations for
making financial transactions with other cards via a communication device. The system is distributed without
any central controller.

It is rather important that such a financial system does not contain bugs. Therefore Logica (a commercial
software house) in collaboration with the University of Oxford specified and refined the Mondex smart card
system in the Z [Spi92] formal specification language, and proved by hand that the system satisfies some required
security properties. This resulted in an assurance at ITSEC [ITS] level E6, ITSEC’s highest granted security-level
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classification which is equivalent to Common Criteria level EAL7. This work is documented in [SCW00]. Recently
Woodcock and Freitas mechanised the proof [WF06] using the Z/Eves theorem prover.

During 2006 a number of research groups worked in parallel on the Mondex case study using different
formalisms, methods and tools: Alloy, ASM/KIV, Event-B, OCL, PerfectDeveloper, π -calculus, RAISE and Z.
The purpose was to see and compare what the current state of the art is in mechanising specification and proof,
and more generally to contribute to the international grand challenge in verified software engineering. The results
will be stored in the verified software repository [BHW06].

In this paper we report on our contribution using the RAISE method.

1.2. The Mondex protocol and key problems

The Mondex protocol and key problems are completely described in [SCW00]. Here we just provide enough
information for being able to read the remainder of this paper.

The Mondex protocol for transferring an amount (value), v, from one purse, P1 (the “from purse”), to another
purse, P2 (the “to purse”), includes the following steps:

1. P2 sends a request about transferring v from P1 to P2
2. P1 receives the request and sends the amount v to P2
3. P2 receives the amount v and sends an acknowledgement to P1

It should be noted that the protocol can be stopped at any point by either purse aborting the transaction, such
as by a card losing power. If e.g. P2 aborts after P1 has sent the amount but before P2 has received it, it must be
logged that the amount is “lost”; money may be lost from the purse balances but not from the system as a whole.

In the complete, concrete description of Mondex there are altogether 11 operations:

• startFrom and startTo set up the purses P1 and P2 to make a transfer; StartTo also sends the request message
(step 1 above).

• req and val perform steps 2 and 3 respectively.
• ack performs the receipt of the acknowledgement.
• abort aborts any existing transfer.
• readLog, clearLog, authoriseClear, and archive are operations concerned with reliably moving purse logs to a

central archive.
• increase is an abstraction of other purse activities, and in our model only increases the purse’s internal sequence

number. Monotonically increasing sequence numbers in the purses are used to ensure that messages sent by
purses are fresh, i.e. not possible duplicates of previous messages.

The first five of these operations are the ones intended for use in transferring money between purses. They are
each triggered by receipt of a corresponding message, i.e. we have startFrom, startTo, req, val and ack messages.
There are also other messages concerned with log archiving which we do not discuss further in this paper.

The key problems are:

1. to specify the protocol in detail
2. to prove that each operation satisfies two conditions:

(a) the value in circulation in the system will not increase

(b) all value is accounted in the system

1.3. RAISE background

The RAISE method [RAI95] is based on stepwise refinement using the invent and verify paradigm. In each step
a new specification is constructed and proved to be a refinement of the specification of the previous step.

The specifications are formulated in the RAISE specification language (RSL) [RAI92]. RSL is a formal, wide-
spectrum specification language that enables the formulation of modular specifications which may be algebraic
or model-oriented, applicative or imperative, and sequential or concurrent. A basic RSL specification is called a
class expression and consists of declarations of types, values, variables, channels, and axioms. Specifications may
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also be built from other specifications by renaming declared entities, hiding declared entities, or adding more
declarations. Moreover, specifications may be parameterized.

With the method and language there is a suite of tools supporting the construction, checking and verification
of specifications and development relations, and for translating specifications in certain subsets of RSL into
several other languages including PVS [ORS92], SAL [dMOS03] and C++.

1.4. Paper survey

First, in Sect. 2, we describe how a specification of the Mondex communication protocol and proof obligations
has been stepwise developed. Then, in Sects. 3 and 4, we explain how the proof obligations have been proved by
translation to PVS and SAL, respectively, and in Sect. 5 we outline how a prototype implementation has been
created by translation to C++. Finally, in Sect. 6, we draw some conclusions.

There are many excerpts from the specifications: full specifications can be found in the technical report [GH07].

2. RSL specification of Mondex

In this section, first we describe the original Z approach to specification of the Mondex problem, as this specifi-
cation served as inspiration for our work. Then we describe our approach using RAISE.

2.1. The Z approach

The Z specification [SCW00] of Mondex electronic purses consists of three models at different levels of abstraction:

1. An abstract model that describes the global state (world of purses) and operations on this for atomic value
transfer between purses.

2. A between model that describes (1) the state of a single purse and the single purse operations, and, (2) the
global state as a collection of purses, an ether of messages and an archive of logs, and global world operations
defined by promoting the single purse operations.

3. A concrete model that is similar to the between model, but with no state invariants. Loss of messages is also
introduced.

The abstract model describes the functional requirements (independent of any protocol) for value transfer between
purses, while the concrete model describes the actual Mondex communication protocol. The between model was
introduced for technical reasons to ease the proof that the concrete model refines the abstract one.

The security properties are expressed in terms of the abstract model and proved to be correct already at that
level. It is proved that the between model refines the abstract model and the concrete model refines the between
model. Hence, it is proved that the concrete model satisfies the security properties.

2.2. The RAISE approach

First, we considered staying very close to the structure of the Z approach. Technically this would have been
possible, but we decided to use an approach more in keeping with the RAISE method and the RAISE notion of
refinement.1 However, the details we describe follow closely the details described in Z.

We also specified the system at three levels as described in the subsections below, but there is not a one to one
correspondence between the three Z levels and the three RAISE levels.

One of the main differences is that different levels in Z use different types to represent the global state (AbWorld
and ConWorld), while in RAISE we use the same type World at all levels of the specification. In the abstract
RAISE model the type is abstract (a sort with some associated observer functions), while in the concrete one

1 Refinement in Z is relational: A model B refines a model A if any B state transition simulates an A state transition. Simulation is defined
in terms of a retrieve relation between the A and B states: seen through this retrieve relation the states reachable in B should be a subset of
those reachable in A. In RAISE, refinement basically is model inclusion (or theory extension) and not a simulation subrelation.
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it is given an explicit representation. In the intermediate level it is still abstract, but additional observers are
introduced.

Another difference is that we do not have one set of atomic operations at the abstract level and another set
of operations (the protocol operations) at the intermediate and concrete levels which then should be related to
each other. Rather, from the very beginning our goal is to define the protocol operations. At the abstract level,
we just define what it means for an operation to be correct. At the intermediate level we axiomatically specify the
behaviour of the operations, and at the final, concrete level, the operations are explicitly defined.

2.2.1. Level 0

The initial specification WORLD0 specifies the global state as a sort World with three fundamental observers
that give the total sum of values stored in purses, the total value in transit between purses, and the total value
logged as lost, respectively:

type World

value /∗ World observers ∗/
inPurses : World → Nat,
inTransit : World → Nat,
lost : World → Nat

The two desired relations noIncreasedCirculation (the sum of inPurses and inTransit does not increase) and
allValueAccounted (the sum of all three is constant) between pre and post Worlds of operations are explicitly
defined in terms of these fundamental observers:

value
totalCirculating : World → Nat
totalCirculating(w) ≡ inPurses(w) + inTransit(w),

totalAccounted : World → Nat
totalAccounted(w) ≡

inPurses(w) + lost(w) + inTransit(w),

noIncreasedCirculation : World × World → Bool
noIncreasedCirculation(w, w1) ≡

totalCirculating(w1) � totalCirculating(w),

allValueAccounted : World × World → Bool
allValueAccounted(w, w1) ≡

totalAccounted(w) � totalAccounted(w1)

Types Op and Pre for protocol operations (state changing operations taking a purse name and a message as
parameters) and their preconditions (protocol guards) are introduced, but no concrete operations are introduced
at this level.

type
Op � Name × Message × World

∼→ World,
Pre � Name × Message × World → Bool

The arrow in the type of Op indicates that it is a partial function; that for Pre shows it is total.
We define what it means for an operation to be correct, by which we will mean only that it satisfies noIn-

creasedCirculation and allValueAccounted :

value
isCorrect : Pre × Op → Bool
isCorrect(p, op) ≡

(∀ n : Name, m : Message, w, w1 : World •

p(n, m, w) ⇒
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op(n, m, w) � w1 ⇒
noIncreasedCirculation(w, w1) ∧ allValueAccounted(w, w1))

Finally, four predicates for classifying operations according to how they change the observable values are defined.
An operation that satisfies isTransferLeft reduces inPurses and increases inTransit or lost by the value in the input
message; one that satisfies isTransferRight reduces inTransit and increases inPurses by the value in the input
message; one that satisfies isNo op leaves the three observers unchanged; and one that satisfies isAbort reduces
inTransit and increases lost by the same amount (which may in fact be zero: whether an abort actually causes
a definite increase in lost depends on the point in the protocol when the abort of a purse happens). Here is
isTransferLeft for example:

value
isTransferLeft : Pre × Op → Bool
isTransferLeft(p, op) ≡

(∀ n : Name, m : Message, w, w1 : World •

p(n, m, w) ⇒
op(n, m, w) � w1 ⇒

inPurses(w1) � inPurses(w) − valu(m) ∧
(lost(w1) � lost(w) ∧

inTransit(w1) � inTransit(w) + valu(m) ∨
lost(w1) � lost(w) + valu(m) ∧
inTransit(w1) � inTransit(w))),

A theory, THEORY0, asserts that the four classes of operation satisfy isCorrect. Our strategy for development is
to show that each of the 11 concrete protocol operations, when viewed abstractly in terms of the three fundamental
observers, satisfy one of isTransferLeft, isTransferRight, isNo op, isAbort, and hence that they all satisfy isCorrect.

2.2.2. Level 1

The next level consists of two parts: PURSE1 and WORLD1.
PURSE1 introduces a purse state with names, balances, pay details, statuses:

type
PurseBase,
Purse � {| p : PurseBase • isPurse(p) |}

value /∗ Purse observers ∗/
balance : PurseBase → Nat,
pdAuth : PurseBase → PayDetails,
status : PurseBase → Status,
name : PurseBase → Name

PurseBase is an abstract type; Purse a subtype of it satisfying isPurse, which is defined (not shown here) in terms
of relations between the PurseBase observers: isPurse is an invariant on purses since, as we shall see, the purse
operations are specified to take Purse values as arguments and return Purse values as results.

Purse state changing operations receiving and sending a message are axiomatically specified, and their pre-
conditions are explicitly defined. Here we show the signature, the precondition, and one of the axioms for the
operation req that formalizes the request step in the communication protocol:

value /∗ Purse operations and guards ∗/

req : Message × Purse
∼→ Purse × Message,

canReq : Message × Purse → Bool
canReq(m, p) ≡ m � req(pdAuth(p)) ∧ status(p) � epr,

axiom /∗ observer generator axioms ∗/
[ balance req ]

∀ m : Message, p : Purse •
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canReq(m, p) ⇒
balance(req(m, p)) � balance(p) − valu(pdAuth(p)),

...

The precondition canReq states that the received message must be a req message containing the same pay details
as held by the purse, and the purse must have status epr.

The term valu(pdAuth(p)) is the amount of value requested to be transferred. The axiom balance req states
that the balance of the purse is decreased by that amount.

The alert reader will notice we have overloaded balance so that it can apply to a pair of purse and message
(as returned by req) as well as to a purse.

WORLD1 introduces new World observers giving the state of each purse, the sets of pay details logged by
“to purses” and “from purses”, respectively, when a protocol is interrupted, the set of all previous messages sent,
and the set of those previous messages sent that are visible (i.e. not lost):

value
purses : World → PursesMap,
toLogs : World → PayDetails-set,
fromLogs : World → PayDetails-set,
ether : World → Message-set,
visible : World → Message-set

and the observers from WORLD0 are explicitly defined in terms of these. An axiom isWorldAxiom specifies a
state invariant (required relations between the observers). For example, in any World, visible is a subset of ether,
reflecting that messages may be lost.

The Purse operations and guards, of types Op and Pre (identical to those types in level 0), are promoted to
World operations:

value /∗ World operations and guards ∗/
req : Op,
canReq : Pre,
...

axiom /∗ explicit definitions of guards ∗/
[ canReqAxiom ]

∀ n : Name, m : Message, w : World •

canReq(n, m, w) ≡ ...,
...

axiom /∗ observer generator axioms ∗/
[ purses req ]

∀ n : Name, m : Message, w : World •

canReq(n, m, w) ⇒ purses(req(n, m, w)) � ...,
...

A theory, THEORY1, asserts that each of the 11 World operations satisfies one of the four classification conditions
(introduced in WORLD0) and that WORLD1 implements WORLD0, and so inherits all its properties and hence
its theories. Implementation is fully defined in the RAISE method book [RAI95], but here it suffices to note that
if P is a property of WORLD0, and WORLD1 implements WORLD0, then P is a property of WORLD1. So,
taking the operation req as an example:

1. req in WORLD1 satisfies isTransferLeft (asserted in THEORY1)
2. WORLD1 implements WORLD0 (asserted in THEORY1)
3. In WORLD0, any operation satisfying isTransferLeft satisfies isCorrect (asserted in THEORY0)

Item 2 above allows us to lift item 3 to a statement about WORLD1, and then item 1 implies that req in WORLD1
satisfies isCorrect, provided we prove THEORY0 and THEORY1. Similarly for the other ten operations. We
restate this argument slightly more formally in Sect. 3.3.
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2.2.3. Level 2

At the final level, in WORLD2 and PURSE2, all types and operations are explicitly defined apart from a few
things that are intentionally underspecified. We have the same degree of concreteness as in the concrete Z model.

For later discussion, we show how the World type is defined as a subtype of a concrete type:

type
World � {| w : WorldBase • isWorld(w) |},
WorldBase ::

purses : PursesMap
ether : Message-set
visible : Message-set
archive : LogBook

The state invariant isWorld is explicitly specified to satisfy 14 conjuncts.
Here is the specification or req and canReq in WORLD2:

value
req : Name × Message × World

∼→ World
req(n, m, w) ≡

let (p1, m1) � P.req(m, n, purses(w)(n)) in
mk WorldBase(

purses(w) † [ n 
→ p1 ], ether(w) ∪ {m1},
hideSome(visible(w) ∪ {m1}), archive(w))

end
pre canReq(n, m, w),

canReq : Name × Message × World → Bool
canReq(n, m, w) ≡

n ∈ dom purses(w) ∧ m ∈ visible(w) ∧
P.canReq(m, n, purses(w)(n))

Here P is the object instantiating PURSES2, so P.req and P.canReq are the corresponding functions in PURSES2.
We see that req, if its precondition is true (the purse n exists, the message m is visible, and P.canReq is true):

• calculates a new purse p1 and message m1
• updates the map of purses with the new purse p1
• adds m1 to the ether
• adds m1 to the visible messages, and then allows some of those to be lost: hideSome is a function defined only

by the axiom that for any set ms of messages hideSome(ms) ⊆ ms
• leaves the archive unchanged

A theory, THEORY2, asserts that WORLD2 implements WORLD1, and so inherits all its properties and
hence its theories. Hence, by a similar argument to that for level 1, if we can also prove THEORY2, we will have
proved that all the 11 concrete operations of WORLD2 satisfy isCorrect.

3. Mondex in PVS

The Mondex RSL specification was translated to PVS using the RSL to PVS translator [DG02]. Each of the
three levels was translated together with the associated theory.

3.1. Strategy

The aim of the Mondex project is to see what can be done automatically. We could probably have developed
automatic strategies to deal with all the proofs involved here, but that, we feel, is not really the purpose: rather
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we are interested in how much can tools deal with proofs guided by software engineers with some experience and
some heuristics to guide them. Scripted proof strategies should only be employed if they are fairly general, with
guidelines about when to use them, or (as in this case) there are a number of very similar proofs and it is fairly
simple to develop a useful strategy that is particular to the problem.

3.2. Proof obligations

A number of different kinds of proof obligation were generated by the translator:

Existence TCCs Existence type-correctness conditions (TCCs) are generated when there is a need to show that a
type is non-empty. We had very few of these, and they were easily discharged.

Subtype TCCs These are generated when there is a need to show that an expression is in a subtype. There were
many of these, because there are a number of subtypes in the RSL specification and also many functions with
preconditions, which become subtypes in PVS. A large collection of proofs in this category appears at level 2,
where we have to prove that isWorld is invariant for each of the 11 operations.

Finiteness There are a number of sets defined by comprehension which need to be finite because we sum over
them.

Lemmas Many of the statements in the THEORY modules are lemmas to be used later, in particular expressing
quantities that will be needed in the proofs of later assertions.

Refinement In THEORY1 we find the assertion “WORLD1 � WORLD0”. In the translation to PVS such refine-
ment relations are expanded into a collection of predicates sufficient to imply refinement. In fact, WORLD1
is essentially an extension of WORLD0, and the relation reduces immediately to true. In THEORY2 the
corresponding relation expands into 113 lemmas to be proved, arising from the axioms in WORLD1 and
PURSE1 that now have to be proved from the concrete definitions in WORLD2 and PURSE2. Most of them
are trivial to prove.

3.3. The argument for correctness

We need to be clear about exactly what we have proved. We defined the basic relations noIncreasedCirculation
and allValueAccounted in WORLD0, and defined a function isCorrect that returns true for an operation (state
transformer in this case) that maintains these two relations when its precondition is true. This reduces the problem
to showing for each operation and associated precondition that we define, that they satisfy isCorrect. But we need
to be aware that isCorrect is defined in WORLD0, and we need proofs for the concrete operations defined in
WORLD2. We will take the operation req as an example. The argument proceeds as follows:

1. We assert in THEORY0 and prove that any operation satisfying isTransferLeft satisfies isCorrect.
2. We axiomatise req in WORLD1, and assert in THEORY1 and prove that req satisfies isTransferLeft. Now we

appeal to a meta-theorem for refinement in RAISE:

S0 � P, S1 � S0

S1 � P
(1)

which states that if predicate P is proved for specification S0, and specification S1 refines S0, then P is proved
for S1. We can appeal to this rule to show that req must satisfy isCorrect at level 1. (We did in fact assert and
prove this separately at level 1, but theorem (1) shows that such an assertion and proof is unnecessary.)
Theorem (1) follows from the definition of refinement in RAISE, which says that S1 � S0 iff (a) the signature
of S1 includes that of S0 (from which it follows that if P is well-formed in the context S0 then it will be
well-formed in the context S1) and (b) all the properties of S0 are true in S1. It follows that if P can be proved
from the properties of S0 then it can be proved from the properties of S1.

3. We define req explicitly in WORLD2 and prove that WORLD2 � WORLD1. The final result that req must
satisfy isCorrect at level 2 follows by another appeal to theorem (1).
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Table 1. Numbers of proofs by level and by difficulty

Level Automatic Trivial Complex Total

0 4 0 0 4
1 41 11 46 98
2 166 9 42 217
Total 211 20 88 319

3.4. The proofs

3.4.1. Effort

Table 1 summarises the proof effort. Here “Automatic” proofs were those done automatically by a tactic built-in
to PVS (like subtype-tcc or grind) or by a simple tactic. We used a simple tactic, essentially

(then
(skosimp* :preds? t)
(repeat* (decompose-equality))
(iff)
(branch (grind :if-match nil) ((grind :if-match all))))

which dealt with a number of lemmas in which we needed to “decompose” equalities between sets. Since sets are
predicates, proving an expression like s1 = s2 involving sets of type T, say, is usually done by decomposition to

ALL (x : T): s1(x) = s2(x)

The command iff converts the (Boolean) equality in this expression to IFF which is then split automatically
by grind into two implications.

“Trivial” proofs are those done manually, but only needing a few proof commands, and where the way to
prove them is obvious. The rest are classified as “Complex”, though the amount of effort and skill involved in
proving them varied considerably.

3.4.2. Difficulties

The following (groups of) proofs were the most difficult:

1. At level 2, the proofs that the 11 operations preserve isWorld each involves proving 14 conjuncts, and this
was a very substantial proof effort, and the one for which it was worth producing a tactic to assist. While,
obviously, each of the operations changes the state in different ways, so requiring its own proof, the overall
structure of the 11 proofs was similar. We wrote a tactic to do most of the work, basically by doing one proof
by hand and using its proof, structured with then and split, as the tactic, then trying it on the next one,
stepping through the tactic and improving it and generalising it as necessary. Then we just ran it on the rest
and completed the proofs by hand. The basic tactic completed 81% of the proof branches—but this still left
70 proofs to be done!
The branches of the tactic end with assert, flatten, assert, and assert. It was tempting to use something
more powerful than assert, but the size of the specification meant that grind could generate a very large
number of cases (we once generated 1580) and even grind :if-match nil could generate 70. Some might
have generated more: we often lost patience and interrupted a seemingly endless proof.

2. The proof that the invariant isWorldAxiom at level 1 was implied by the invariant isWorld at level 2 was quite
substantial: the two invariants have very different structures, that at level 1 being designed to help the proofs of
the correctness of the operations, and that at level 2 being designed to support the proofs that the operations
are correctly implemented, which depends on having a suitable tightly restricted state space. This proof was
quite large, but not difficult.

3. The proofs of the finiteness of a number of sets needed care. Proving finiteness from first principles (by the
existence of a bijection to a finite range of integers) is almost never a good idea, and existing useful theorems
need to be found (or created). For example, a value toInEpv (used to calculate inTransit) of a World w is defined
by the expression

{P.pdAuth(purses(w)(T.to(pd))) | pd : T.PayDetails •
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T.to(pd) ∈ dom purses(w) ∧ P.status(purses(w)(T.to(pd))) � T.epv}
and it is easy to see that this will be a subset of

{P.pdAuth(purses(w)(n)) | n : Name • n ∈ dom purses(w)}
which is the image of a function (λ n : Name • P.pdAuth(purses(w)(n))) applied to the set dom purses(w),
which is finite by definition. The necessary theorems (a subset of a finite set is finite, and the functional image
of a finite set is finite) are in the PVS prelude.
More difficult was proving that logs are finite. fromLogs, for example, which is used to calculate inTransit and
lost, is a subset of the pay details found in purse logs or the archive. The archive is stored as a finite map from
purse name to finite sets of pay details, and the purse logs effectively have the same structure. So we had to
prove that mapping the set union operator through a finite collection of finite sets gives a finite set. We did
this by defining such a structure in RSL—a parameterised scheme MAPUNION defining the map type, and
a function mapunion, defined by a comprehension, to generate the set. This was asserted to have a finite result,
and so generated the condition as a TCC. The TCC was proved by complete set induction (included in the
RSL prelude). Then the finiteness of fromLogs, for example, is proved by showing it is a subset of the union
of two instances of mapunion: finiteness of the union of two finite sets is included in the PVS prelude.

3.4.3. Importance of replay

We produced some 11 versions of the specification, doing some proof for all of them. This amount of experimen-
tation would have been impractical without the ability to replay proofs from a previous version, either blindly,
just to see how much was left, or more carefully stepping through the proof and adjusting it as necessary.

4. Mondex in SAL

We are currently developing a translator from RSL to SAL [PG06], and applied this translator to the concrete
(level 2) Mondex specification.

4.1. SAL

SAL provides a set of commands for the analysis of specifications. The SAL language is similar to the input
language of some other verification tools and describes transition systems in terms of initialisation and state
transitions. One of SAL’s components implements a symbolic model checker called sal–smc, which allows users
to specify assertions in linear temporal logic (LTL). For invalid LTL-assertions, a counter-example is produced.

4.2. Motivation

One might ask why we bothered with a translation to SAL since the SAL version must be finite with a bounded
size, and we already have a formal proof of an unbounded version. There are several reasons:

• Model checking is much easier than proof, and so much more available to software engineers.
• Model checking can be used to check things before a great deal of effort is invested in proving them. For

example, we wasted a lot of time on trying to prove one version with an appealing clause in the invariant
which turned out not to be true. We used it on the proofs of many operations before we stumbled on the
operation for which it was not invariant. Model checking at the beginning would almost certainly have
exposed the problem and saved a lot of work.

• It is good also to demonstrate some liveness properties. It is not clear that Mondex has any classical liveness
properties—nothing is guaranteed to happen eventually (apart perhaps for the unbounded increasing of
sequence numbers)—but we can use model checking to demonstrate simple liveness in terms of some possible
sequences of events. In particular, we used model checking to prove that a transfer of money between purses
can occur. We did this by starting the model with one purse empty, the other not, and asserting that the empty
purse remains forever empty. The model checker generates a counter-example to the (deliberately invalid)
assertion, showing how a transfer to the empty purse can be made.
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It would be possible to prove this result with PVS, but it is complicated to state because of the inherent
nondeterminism of the system through the possible loss of messages. It would involve asserting that if there
is a (consistent) state in which one purse has a positive balance, and there is another purse, then there is a
sequence of states which are each possible results of startFrom, startTo, req, val, and then ack applied to the
previous state such that in the final state some amount, at most the balance, is transferred to another purse.
You cannot just assert that this sequence of operations models a (definite) transfer, since in general it models
a transfer or an abort.
In fact we did specify a multiple operation to do a definite transfer of money, but it was rather an artificial
exercise. We could “prove” in PVS that the operation would effect a transfer, but the “proof” exploits a feature
of the classical PVS logic that the epsilon (set choice) operator is deterministic: this is not true in the richer
RSL logic. Determinism of epsilon enables us to state a precondition of the operation that predicts what
messages will be lost during it.
Model checking provides a much more convenient method of demonstrating such properties, either of classical
liveness (something will eventually happen) or simple liveness (something is possible).

• We will see below in Sect. 4.5 that we can use model checking to check for violations of subtype conditions
and preconditions, again avoiding possible wasted effort in trying to prove things that are false.

4.3. Simplifications

We made a number of simplifications in order to reduce the size of the state space to something SAL can handle:

• There are only two purses.
• Money is in the range 0..3 only.
• Transfers are always of one unit of money (so that the amount does not need to be included in messages).
• All the operations and messages concerned with archiving logs are removed (as we think these operations

could be model checked separately).
• The technique inherited from the Z specification of including all the startTo and startFrom messages in the

ether is replaced by the (equivalent) technique of including none of them.
• Sequence numbers (used in the concrete version to ensure uniqueness of messages, and modelled as natural

numbers) are in the range 0..3.

The more we reduce the model in order to model check it, the harder it is to justify that results from the model
checker actually apply to the full model. The last simplification seems particularly drastic, because it reduces the
number of “runs” of the protocol: if the sequence numbers are restricted to 0..n then at most n transfers can take
place. So, for example, if Money were in the range 0..4 we could “prove” that a purse with a balance of four would
never become empty!

We also made some changes to split the state into smaller components. Such modifications do not reduce the
size of the state, or change the behaviour, but they make the specification more accessible to the optimisations
used by SAL:

• The ether containing a set of three possible message types is replaced by three sets each containing the contents
of one message type.

• The logs are separated from the purses.
• Some data types are split into a number of disjoint subtypes, and assertions that are universal quantifications

over them are split into a number of assertions each over one of the subtypes. For example, the type we use
to represent pay-details was split up into four disjoint subtypes and assertions modified accordingly.

• Extra state variables are introduced to simplify the LTL assertions. For example, a pair of state components
hold the total money in circulation in the previous and current states, allowing for a simple formulation of
the assertion that money in circulation does not increase.

• Pay-details are injectively mapped to a range of natural numbers, and this range used as the domain of the
predicates representing sets of pay-details.

Even with the simplifications and modifications listed above the SAL checking of the assertions mentioned
in Sect. 4.4 grows to a maximum memory usage of 1,133 MB.
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4.4. Results

We have been able to prove (for the simplified specification):

• the original Mondex requirements that money in circulation does not increase and that all money is accounted,
• simple liveness in the sense that

– an empty purse can become non-empty,

– a non-empty purse can become empty, and,

– money can be lost,

• all of the state invariants isWorld, isWorldAxiom and isPurse,
• all of the confidence conditions (see Sect. 4.5).

4.5. Checking RSL confidence conditions

Confidence conditions are conditions that a specification must satisfy if unintended use of RSL constructs are to be
avoided. The main ones in applicative specifications are satisfaction of preconditions and “subtype correctness”—
constants should be in subtypes, and arguments of functions and their results should be in subtypes. Here the term
“functions” includes both user-defined functions and operators and the built-in ones. So detecting confidence
conditions includes, for example, division by zero. SAL and PVS do not support preconditions, but they can be
translated into subtypes (since SAL and PVS support the notion of dependent type). However, subtype checks
are not performed by SAL.

The translator from RSL to SAL generates a separate set of SAL files which include confidence condition
(CC) checking, and replaces the user-defined LTL assertions with a single one that says no “NaV” (“Not a Value”)
occurs in any of the state variables. The term “NaV” is inspired by the IEEE’s floating-point standard (IEEE
754) which involves the use of “NaN”, “Not a Number”, for such things as the result of under- or overflow,
or attempting to calculate the square root of a negative number. A NaV is generated whenever a confidence
condition is violated, and all functions and operators in this version are strict: if a NaV is generated in a function
it is returned as the result. This is done by “lifting” all types into SAL DATATYPES, so that for any defined type T
there is also defined a lifted type:

T_cc: TYPE = DATATYPE
T_cc(T_val: T),
T_nav(T_nav_val: Not_a_value_type)

The type Not a value type is generated by the translator as an enumeration of identifiers which indicate
where the confidence condition violation was detected, as we see from the example below.

When we ran the CC version of Mondex no violations were detected. To check that it was actually capable
of detection, we introduced some CC violations and checked they were detected. For example, we changed one
clause of canStartFromEaFrom from balance(p) � 1 to balance(p) > 1. The results of normal model-checking
were unaltered, but the CC version produced a counter-example in which the state of the second purse is a NaV:

purse2 =
PurseBase_nav(Precondition_of_function_WORLD2INV_startFromEaFrom_not_satisfied)

This indicated that the error was the non-satisfaction of the precondition of startFromEaFrom in the context
WORLD2INV.

Use of the CC version of SAL increases our confidence in the quality of the specification. It also increases
our confidence that the proofs of confidence conditions—which are partly generated as TCCs in PVS after
translation, and otherwise generated by the translator to PVS as extra lemmas to be proved—can be done. Again
model-checking is a useful precursor to the effort of proof.

5. Prototype implementation

We also produced a prototype implementation of the specification using the RSL to C++ translator [AG00]. This
involved a few changes to the specification, the first two to make it translatable, the next two for convenience:
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• Things that were left abstract in the specification, such as the type Name and the definition of increase for
sequence numbers, were made concrete.

• Some set comprehensions and quantified expressions were rewritten slightly so that the comprehension or
quantification is over a set.

• The operations concerned with archiving purse exception logs were removed, just to keep the prototype and
its interface simple.

• The top-level specification WORLD2 was extended to provide an imperative interface: a variable of type
World was defined and functions defined for the operations that would update this variable. This makes it
simpler to define an interface that allows the user to repeatedly call these functions to run the system. Some
other functions useful in the interface, such as one to remove a message from the visible ether according to a
parameter generated randomly, were also included.

A simple command line interface was then defined by hand in C++ (just 90 lines of code). This is a simple
loop that repeatedly:

• displays the states of the purses, the messages currently in the ether, and the current values of inPurses,
inTransit, and lost, plus the contents of the message which disappeared if one disappeared at the previous step
(see below)

• asks the user to choose an operation and a purse to run it on
• if there is a visible message in the ether such that the operation’s precondition is true, then the operation is

performed using that message, updating the state accordingly, and adding any output message to the ether;
otherwise it tells the user the operation could not be performed

• a random number is generated and used to possibly select a message to disappear from the visible messages;
if such a message is selected its disappearance is reported to the user.

This provides a simple means to exercise the specification and show the results. Building the prototype is just
a case of running the translator to C++, using #include to incorporate the translated code into the hand-written
file, and compiling.

As a default, the translator generates code to check the confidence conditions we mentioned in Sect. 4.5.
While running the prototype we are therefore also checking that preconditions are not violated, that the state
invariant (subtype) is maintained, etc.

Running the prototype exposed a possible “denial of service” attack on the protocol. There is a user option
to start a transfer by inputting the from and to purse and the amount. This start transfer operation places a pair
of startFrom and startTo messages in the ether. The startTo message to be read by the to purse, for example,
includes the identity and sequence number of the from purse. If there are several such messages in the ether (with
different sequence numbers, left by previous runs) the to purse cannot tell which is appropriate, since it has no
other information about the current sequence numbers of other purses, and this can cause the protocol to fail
later because the sequence number of the from purse will be wrong if the to purse selected an earlier message.
Thus an attacker can cause the protocol to possibly fail by recording and replaying earlier such messages. These
messages are sent in the clear, so the attack could also work by the attacker generating such messages. But since
it need only involve replay and not decryption, this attack could work even if the startFrom and startTo messages
were encrypted.

We changed the prototype so that the start transfer operation removed from the ether any existing startFrom
and startTo messages.

There is an obvious issue here about whether this attack was foreseen by the designers, and whether resilience
against such attacks could be in the requirements. The specification described in this paper (along with the
original Z specification and other Mondex specifications) abstracts away from the message delivery mechanism.
They merely posit an “ether” of messages that have been sent (and that have not been lost), and the preconditions
of the operations merely state the availability of an appropriate message. The actual triggering of operations
may, of course, involve much stronger conditions, probably only reading one message on a transmission channel,
and then checking this against the precondition. But the prototype takes the simple view that the precondition
is sufficient, and part of this is “if there is a suitable message available, then use it”. This notion of an ether of
messages means that the proofs of correctness also hold in an environment where messages are replayed by an
attacker.

What was not noticed by the authors of this paper, at least in terms of possible significance, until the problem
with running the prototype, is that most operations depend on a unique message: the one of the right type for
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this operation that contains a payment details identical to that held by the purse. Any other message can be
ignored. But the startFrom and startTo messages cannot be validated by their recipient in this way. This affects
the prototype’s behaviour; whether it affects the real system’s behaviour depends on how message transmission
and reception is handled. For example, if the real protocol for each operation is to read one message and act on
it (aborting if it is not what was expected) then denial of service can be achieved by constantly resending older
messages of any type. If the real protocol is to read messages up to some time limit or until an acceptable one is
received, then denial of service using older startFrom and startTo messages can work because older ones can be
accepted.

6. Conclusion

The aim of this work is to see, for this example, (a) whether the Z proof could be mechanically proved and so
confirmed, and (b) how much can be automated. We succeeded in specifying the complete protocol and in proving
mechanically the two security properties of the Z work. We are clearly some way yet from having an automated
proof: a lot of this proof had to be done by hand. It is also not clear how much of the expertise required to do
such proofs can be taught to software engineers.

We also model checked the protocol using SAL, and checked the security properties, the confidence conditions
(subtype correctness and precondition satisfaction), and some simple liveness properties, in particular showing
that transfers of money between purses are possible.

We also built and exercised a prototype in C++. It is worth noting that the “denial of service” attack described
in Sect. 5 only became apparent when we used the prototype to conduct more than one run of the protocol. Testing
does not provide conclusive evidence of correctness, but it often uncovers problems that were not apparent through
formal analysis because they had not been considered and hence were not included in that analysis.

There are also a number of other problems that are not solved by automation of the proof and model checking
processes alone:

Consistency Is there a contradiction in our specification somewhere? If there is, effectively, axiom false somewhere
in our specification then all our proofs could have gone through. One can argue that automating proofs
increases this risk: a user doing the proof manually might notice.
In fact this possibility is less likely than it might seem. Since we know that WORLD2 implements WORLD1,
and WORLD1 implements WORLD0, then any such contradiction must exist at level 2 if it exists anywhere.2

Since level 2 is mostly constructive it is less likely than more abstract descriptions to contain a contradiction.
The RSL to PVS translator includes confidence conditions in the translation as lemmas (when these are
not subsumed by PVS TCCs). These conditions therefore have to be proved, and their proof removes the
possibility of many possible sources of contradiction. We have also seen that the special CC version of the
translator to SAL can be used to give us confidence that these conditions are not violated. The translation to
and running of an executable prototype also demonstrates that there is no contradiction in the specification.

Correct modelling Is our model correct? We gain more confidence as we get results from proof, from model
checking, from prototyping, etc., but these are no defence against we, the authors of the specification, not
understanding the requirements. If we did not specify the right thing then all our results are useless. This
can only be resolved by someone else carefully checking the specification by reading it. Hence it is important
that our language (and our style of using it) be readable, expressing concepts at an appropriate level, with an
intuitive semantics, etc.

Correct final implementation Is our “concrete” specification correctly implemented? Our level 2 specification is
still an abstraction of the actual code. Is the chip itself safe from attack by micro-probing [Mon97]?

Correct tools Are the tools correct? We rely on translators from RSL to PVS, SAL, and C++, and on the PVS
and SAL engines and C++ compiler (gcc): none of these have been proved correct.

Correct transition system For model checking, if the only result we see is “proved”, is anything actually happening,
or are we only visiting a small set of states because the guards of some transitions are never true? Here we
can be much more confident if, as we did here, some expectedly false assertions are included, when the output
traces that accompany failure show us the transitions that have occurred.

2 This is a consequence of the RSL implementation relation.
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Correctness of model check version While model checking does not require interaction, using SAL to automati-
cally check the Mondex specification written in RSL required substantial modification and rewriting of the
specification. First, we had to reduce the number of possible states. Secondly, we had to further rewrite the
RSL specification to help the SAL optimizer. If we were relying more heavily than in this example on model
checking to check correctness then we would need more evidence that these changes maintained the protocol’s
behaviour.

Accessibility of model checking Our state reduction raises the question of whether results of model checking are
applicable to the full specification. Our rewrites for SAL’s optimizer raise the question of whether in practice
software engineers can be expected to learn enough about tailoring specifications to the requirements of
model checking in general, and about the internal operation of SAL in particular, to successfully use it, or
whether the optimizations used in SAL can be improved to be applicable to a wider range of inputs. In order
to successfully employ SAL in practice, software engineers will need a good selection of techniques to make
their specifications accessible to the model checker.

Invariant discovery A key to being able to do a proof of such a system is finding the appropriate invariant.
Unfortunately there is no single “correct” invariant. Anything which can be proved from an invariant is
also an invariant, of course, including for example any subset of our 14 conjuncts. An invariant has to be
strong enough to enable the proofs, but preferably no stronger, because that would require more proof ef-
fort (and, incidentally, make our system harder to maintain if we have to change it because of changed
requirements). It also has, of course, to be an actual invariant and not an erroneous one! Finding such an
invariant is not easy, and probably requires deep knowledge of why something works, in this case of the ideas
behind the design of the protocol. There are techniques for discovering invariants from code or specifications,
but of course one discovered from the specification may be erroneous if the specification is. Model check-
ing is very useful in checking that proposed invariants are indeed invariant, but does not help one to find
them.

The critical requirements What are the important properties? The two security properties we proved are the
fundamental ones, according to the original problem, but they are also quite weak. They say nothing about
individual purses, for example, so there is nothing to say that a transfer from A to B, say, does not involve
stealing from C. The original security properties might be characterised as “security for the bank” rather than
“security for the user”. Simple liveness properties such as the ability to actually transfer money, or to clear a
purse log, might also be interesting. The abstract specification was designed to make it possible to prove the
properties stated in the original problem. Proving other properties might require choosing a new abstraction
and redoing the development and proofs. The size of the proof task makes this a daunting prospect.
For liveness properties, especially in nondeterministic systems, model checking is much more convenient than
proof. Once the model has been set up then it is comparatively little effort to devise and check formulae for new
properties, and liveness demonstrations can easily be done, either by expressing (classical) liveness conditions
directly in LTL, or, for simple liveness (possibility), by getting the model checker to find a counter-example to
a claim for the property’s negation. So proving fundamental properties, and using a model checker to explore
a range of other properties, makes a powerful combination in practice.

Should we have used PVS and SAL directly, instead of starting in RSL? The immediate answer is no, because
there is no notion of refinement in PVS or SAL, and our strategy is based on refinement, on starting from an
abstract specification of the properties to be proved and showing that a concrete specification refines it. But there
is a second issue, of whether specifications written directly in PVS or SAL could have made the proofs easier,
more amenable to automation, easier to model check? We think not. The translators to PVS and to SAL are quite
straightforward: there is mostly a one-to-one correspondence between RSL constructs and PVS/SAL ones. We
chose SAL as the target language for model checking RSL because of its comparatively rich type system, enabling
us for example to translate RSL variant types as SAL DATATYPEs, rather than having to encode everything using
only ranges of integers and Booleans, as some model checkers would force us to do. Hence we think (a) that
the translators generate PVS and SAL code that is very close to what would be written by hand in the other
languages, and (b) that problematic constructs in either target language can be avoided by writing the RSL in a
suitable way. There are some issues here, for example the currently poor support for modularity in SAL, and of
course its requirement for finiteness, but generally we found little contradiction between good style in RSL and
good translated code.
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