
DOI 10.1007/s00165-007-0050-7
BCS © 2007
Formal Aspects of Computing (2008) 20: 225–238

Formal Aspects
of Computing

Interval timed coloured Petri net: efficient
construction of its state class space preserving
linear properties
Hanifa Boucheneb
Department of Computer Engineering, École Polytechnique de Montréal,
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Abstract. We consider here the interval timed coloured Petri net model (ITCPN). This model associates with
each created token a time interval specifying when the token will become available and forces enabled transitions
to occur as soon as possible. This model can simulate other timed Petri nets and allows to describe large and
complex real-time systems. We propose a much more efficient contraction for its generally infinite state space
than those developed in the literature. Our contraction approach captures all linear properties of the model and
produces finite graphs for all bounded models.
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1. Introduction

Coloured Petri Nets (CPNs) are widely used for modelling and analysis of large and complex systems [Jen82]. In
these models, a colour (a value) is associated with each token allowing to make much compact and manageable
descriptions. Several large systems have been successfully modelled and analyzed using these models. To describe
systems whose behaviours are time dependent, the classical approach consists in introducing time in terms of
intervals or durations labelling places, transitions or edges of the CPN. The resulting models are called timed
coloured Petri nets. Another approach based on untimed coloured Petri nets and the concept of causal time have
been proposed in [TKP02], where the progression of time is modelled by a special transition called tick which
increments time by one unit whenever it occurs. However, this approach leads to larger models and reachability
graphs than those we obtain for timed coloured Petri net. As an example, Fig. 1 right shows an untimed coloured
Petri net corresponding to the timed model shown in Fig. 1 left. These models execute repeatedly every 3 time
units the transition t1. The reachability graphs of Fig. 1 left and Fig. 1 right consist respectively of one node and
four nodes. Moreover, replacing the time parameter 3 by bigger values increases the graph size of Fig. 1 right but
does not affect the graph size of Fig. 1 left. Therefore, timed coloured Petri nets are, in our opinion, more suitable
for enumerative analysis than untimed coloured Petri nets.

We can find in the literature several timed coloured Petri nets such as Van der Aalst’s model [Van93], Chris-
tensen’s model [CKM01] and Pao-Ann Hsiung’s model [HsG02]. In Pao-Ann Hsiung’s model, a time interval is
associated with each transition specifying its minimal and maximal firing delays. Time intervals of this model
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Fig. 1. Using untimed/timed coloured Petri net to model time

have the same semantics as those of Merlin’s model (time Petri nets) [BeD91, MeF76]. In Christensen’s model, a
date is associated with each created token. The token will become available at its date and still available until it is
consumed. An enabled transition will occur as soon as possible (when all its required tokens become available).
The Van der Aalst’s model called interval timed coloured Petri net (ITCPN) associates with each created token a
time interval specifying when the token will become available (the earliest and latest times). As in Christensen’s
model, an enabled transition will occur as soon as possible. Among these extensions, the model proposed by
Van der Aalst seems to be more appropriate for the CPN model, since time intervals are associated with tokens
instead of transitions. But, unlike Pao-Ann Hsiung’s model, the Van der Aalst’s model does not allow unbounded
intervals and then expressing that a created token could be never available (be lost) is not possible. To overcome
this limitation, we extend this model by allowing unbounded intervals.

To analyze this model, we propose to use an enumerative method (model checking) to verify linear properties
of the model. As for other timed models [BeD91, CKM01, DOT96, DiS94, HHW97, HsG02, Vic01], this method
needs an extra step for contracting its generally infinite state space into a finite graph which preserves properties
of interest (linear properties). We say that a contraction preserves linear properties of some model, if it has the
same firing sequences as the state space of the model.

Van der Aalst proposed in [Van93], a contraction method for the ITCPN model which is “sound” (i.e.: any
firing sequence in the state space of the model is also possible in the contracted state space) but not “complete”
(i.e.: some firing sequence in the contracted state space does not reflect any firing sequence in the model state
space). Moreover, for models allowing infinite occurrence sequences, the Van der Aalst’s method would lead to
infinite graphs. We propose here another contraction approach which has not these drawbacks. Our contrac-
tion approach generates finite graphs for all bounded1 ITCPNs and preserves all linear properties of the model.
Moreover, the characterization and computation of graph nodes are performed efficiently.

Firstly, we give, in Sect. 2, some definitions related to the ITCPN model and its behaviour. Section 3 deals
with the Van der Aalst’s contraction approach of the ITCPN state space. Section 4 is devoted to our contraction
approach. We develop here, a practical and efficient method for computing reachable state classes and then we
show that our contraction generates finite graphs for all bounded ITCPNs. We also show, in this section, by means
of an example how to use the resulting graphs to verify some timed linear properties. Finally, Sect. 5 concludes
this paper.

2. Interval timed coloured Petri nets

We introduce here only necessary definitions and notations. For further details, we refer to [Jen82] for CPNs and
to [Van93] for ITCPNs.

2.1. Definition of the ITCPN model

Definition 2.1 time domain and multi-sets

• The time domain is the set of all non-negative real numbers, i.e.: �+.

1 An ITCPN is bounded if and only if it has a finite number of reachable markings.
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Fig. 2. An ITCPN model

• Let A be a set. A multi-set over the set A is a function N which associates with each element of set A, a
non-negative integer number. It is represented by the following formal sum :

∑
a∈A N(a) · a, where N(a) is the

occurrence number of a in N .
• Let A be a set, N1 and N2 two multi-sets over A. Operators +, −, �, � on multi-sets are defined as usual:

– N1 + N2 � ∑
a∈A(N1(a) + N2(a)) · a.

– N1 � N2 if and only if, (∀ a ∈ A, (N1(a) � N2(a))).

– N1 � N2 if and only if, (∀ a ∈ A, (N1(a) � N2(a))).

– if N2 � N1 then N1 − N2 � ∑
a∈A(N1(a) − N2(a)) · a.

We denote by AMS the set of all multi-sets over A, and by ∅ the empty multi-set.

An ITCPN is a coloured Petri net augmented with time intervals associated with tokens. From the semantic point
of view, each created token has a time stamp which can be any value inside its associated interval. The time stamp
of a token indicates the delay required for the token to become available.

Definition 2.2 an ITCPN model
An ITCPN is a tuple (�, P, T , C, F , TM0) where:

• � is a finite set of types, called colour sets. Each colour set is finite.
• P is a finite and non empty set of places.
• T is a finite set of transitions such that (P ∩ T � ∅).
• C : P → Powerset(�). C(p) is a finite set which specifies the set of allowed values (or colours) for any token

of place p.
• Let CT be the set of all possible coloured tokens, i.e.: CT � {(p, c) | p ∈ P ∧ c ∈ C(p)}

and INT the set of all intervals such that their bounds are rational numbers, i.e.:
INT � {[y, z] ∈ Q+ × (Q+ ∪ {∞}) | y � z}.2
F is the transition function over T: F (t) : Dom(F (t)) −→ (CT × INT )MS,
where Dom(F (t)) is the definition domain of F (t), Dom(F (t)) ⊆ CTMS.
F (t) specifies which tokens are consumed and produced by firing transition t and also the interval inside
which the time stamps of the produced tokens must be chosen (domains of their time stamps).
Each transition is supposed to produce a finite set of tokens.

• TM0 is the initial timed marking, TM0 ∈ (CT × Q+)MS.

2.2. ITCPN behaviour

We first explain the behaviour of an ITCPN, using an example given in [Van93] and reported here in Fig. 2.

2 Unlike Van der Aalst’s model, we allow here unbounded intervals.
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Figure. 2 is the graphic representation of an ITCPN model, which is composed of three places pin, pbusy, pfree,
two transitions t1, t2 and three colour sets: M � {M1, M2, ..., Ms} associated with the place pfree,
J � {J1, J2, .., Jr} associated with the place pin, and M × J associated with the place pbusy.
It represents a jobshop, where jobs of place pin are executed repeatedly. The jobshop is composed of one or
several machines. Each machine is represented by one token, which is either in place pfree or in place pbusy. Tokens
consumed and produced by firing transitions t1 and t2 are specified by functions F (t1) and F (t2):
∀ j ∈ J , ∀ m ∈ M ,

• F (t1)((pin, j) + (pfree, m)) � (pbusy, (m, j), [1, 3]).
Which means that transition t1 consumes two tokens one from each place pin and pfree, and produces one
token in place pbusy. When transition t1 occurs, the time stamp of the created token may be any value inside
interval [1, 3].

• F (t2)(pbusy, (m, j)) � (pfree, m, [2, 2]) + (pin, j, [2, 2]).
Which means that transition t2 consumes one token from place pbusy and produces two tokens one in each
place pin and pfree. When transition t2 occurs, the time stamp of both created tokens is 2.

2.2.1. States of an ITCPN

To characterize the model state, we associate with each token a delay (a continuous variable), which is initialized
at its creation with its time stamp. Afterwards, the delay decreases synchronously with time until it reaches zero.
The state can be defined as a multi-set of timed tokens (i.e.: tokens completed with values of their delays).

Definition 2.3 timed token and timed marking

• A timed token is a 3-uple (p, c, v) where p is its place, c is its colour and v is the value of its delay.
• A timed marking TM is a multi-set of timed tokens, i.e.: TM ∈ (CT ×R+)MS. A state of an ITCPN is a timed

marking.

Consider the previous model (Fig. 2). Its initial timed marking TM0 is:(pfree, M1, 2) + (pin, J1, 2) + (pin, J2, 2).
It consists of three tokens not yet available. Tokens will become available after two time units.

2.2.2. State evolution

Initially, the model is in its initial timed marking. Afterwards, its state evolves either by time progressions (delays
decrease with time) or by firing transitions.

Definition 2.4 events of a timed marking
Let TM be a timed marking and U (TM) the marking obtained from TM by eliminating all delays (the underlying
untimed marking).

• Let t be a transition of T . Transition t is enabled for TM if and only if, all tokens required for its firing are
present in TM, i.e.: ∃ m ∈ Dom(F (t)), m � U (TM).

• An event e of TM is a pair composed with a transition enabled for TM and all timed tokens participating in
its enabling (timed tokens required for its occurrence).
We denote by Jin(e) the multi-set of timed tokens required for its occurrence and by EE(TM) the set of all
events of TM.

In this model, an event shall occur as soon as possible (i.e.: when all required tokens become available). Its firing
takes no time but may lead to a new marking: consumed tokens disappear and possibly new tokens are created.
Note that an event will never occur in case a conflicting event is fired or the progression of time is blocked (because
there is an infinite firing sequence which takes no time). In the first case, the event is disabled (no enough tokens),
while in the second case, some of its tokens will never become available.

Definition 2.5 time progression and event occurrence
Let TM be a reachable state of an ITCPN model, ef an event of TM and dv a non-negative real number.

• The occurrence delay (i.e.: the firing delay) of ef , denoted by FD(ef ), is the delay required for all tokens of
Jin(ef ) to become available, i.e.: FD(ef ) � max(pf ,cf ,vf )∈Jin(ef )(vf ).
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• A time progression of dv units can occur from the state TM (without any firing) if and only if, dv is less or
equal to the occurrence delays of all events, i.e.: dv � minei∈EE(TM)(FD(ei)).
After this time progression, the delay of each token (p, c, v) of TM decreases by min(dv, v) time units (delays
cannot be negative). Its value becomes max(v − dv, 0). We denote by �TM�−dv the obtained timed marking,
i.e.: �TM�−dv � ∑

(p,c,v)∈TM TM((p, c, v)) • (p, c, max(v − dv, 0)).

• Event ef can occur from TM before other events if and only if, its occurrence delay is not greater than those
of other events, i.e.: (FD(ef ) � minei∈EE(TM)(FD(ei))).

• If ef can occur from TM, it occurs instantaneously exactly after FD(ef ) time units. Its occurrence leads to a
state TM′ such that: �TM − Jin(ef )�−FD(ef ) + Jout(ef ).
Where Jout(ef ) is obtained from F (t)(U (Jin(ef ))) by replacing each time interval by any value chosen inside
it. Note that the firing of event ef will disable all events conflicting with it for TM. An event ei of TM does
not conflict with ef iff Jin(ef ) + Jin(ei) � TM.

• An evolution of TM is a sequence of event occurrences and time progressions that can successively occur
from TM. The evolutions of an ITCPN model are those of its initial timed marking.

Consider the model given in Fig. 2 and its initial state TM0: (pfree, M1, 2) + (pin, J1, 2) + (pin, J2, 2).
The initial state TM0 has two conflicting events:
e1 � (t1, (pfree, M1, 2) + (pin, J1, 2)) and e2 � (t1, (pfree, M1, 2) + (pin, J2, 2)).
Their firing delays are: FD(e1) � max(2, 2) and FD(e2) � max(2, 2).
Both events can occur from the initial state after two time units but the firing of one of them will disable the other.
The state reached after two time units is:
(pfree, M1, max(0, 2 − 2)) + (pin, J1, max(0, 2 − 2)) + (pin, J2, max(0, 2 − 2)).
The occurrence of event e1 leads to a state TM1 such that:
TM1 � (pin, J2, 0) + (pbusy, (M1, J1), v) and v ∈ [1, 3].
The occurrence of event e2 leads to a state TM2 such that:
TM2 � (pin, J1, 0) + (pbusy, (M1, J2), v) and v ∈ [1, 3].

Because of time density, the state space of the ITCPN model is generally infinite and then not useful for enu-
merative analysis methods. For these methods, we need an extra step for contracting its infinite state space into
a finite graph preserving properties of interest.

3. Van der Aalst’s contraction approach

Van der Aalst proposed in [Van93] a contraction method which is “sound” but not “complete”. This is due to the
fact that this method “forgets” the occurrence time to memorize only intervals, i.e.: a state class (a set of states)
is defined as a multi-set of triplets of the form (place, color, interval). Consequently, for event producing several
tokens, the dependencies (relations binding intervals) are lost and resulting classes may contain unreachable states
(leading sometimes to unreachable markings). For instance, consider the model shown in Fig. 3. We suppose that
the color domain of each place is {e}, the initial state is (p0, e, 0) and transition functions are defined as follows:
F (t0)((p0, e)) � (p1, e, [0, 2]); F (t1)((p1, e)) � (p2, e, [1, 2]) + (p3, e, [1, 3]);
F (t2)((p2, e)) � 0 and F (t3)((p3, e)) � 0.

Using the Van der Aalst’s method, the firing of transition t0 leads to the state class (p1, e, [0, 2]). The firing of
t1 from this class produces the class (p2, e, [1 + 0, 2 + 2]) + (p3, e, [3 + 0, 4 + 2]) where states (p2, e, 1) + (p3, e, 6) and
(p2, e, 4)+(p3, e, 3) are represented but not reachable. From the former state, transition t2 is fired before t3 (1 < 6)
while from the second one, transition t3 is fired before t2 (3 < 4). Hence, Van der Aalst’s method states that both
markings (p2, e) and (p3, e) are reachable which is in fact wrong. The reason is that after firing transition t1, the
created token (p2, e) becomes available before token (p3, e) ([1, 2] < [3, 4]). Therefore, transition t3 cannot be fired
before t2. Marking (p2, e) is then not reachable. Due to these represented but unreachable states (markings), the
resulting graph has not necessarily the same properties as the initial model.

Moreover, for some bounded ITCPNs allowing infinite firing sequences, Van der Aalst’s method produces
infinite graphs. As an example, consider the model shown in Fig. 4. We suppose that the color domain of each
place is {e}, the initial state is (p1, e), F (t1)(p1, e) � (p1, e, [1, 2]) + (p2, e, [0, 1]), and F (t2)(p2, e) � 0.
Using the Van der Aalst’s approach, the initial state class is α0 � (p1, e, [1, 2]). From α0, event (t1, (p1, e, [1, 2]))
may occur at any date inside [1,2]. Its occurrence leads to the state classα1 � (p1, e, [1+1, 2+2])+(p2, e, [0+1, 1+2]).
Both events (t1, (p1, e, [2, 4])) and (t2, (p2, e, [1, 3])) may occur respectively at dates inside intervals [2, min(3, 4)]
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and [1, min(3, 4)]. The occurrence of event (t2, (p2, mess, [1, 3])) from α1 leads to the class α2 � (p1, e, [2, 4]) which
has the same marking as the initial state class but the interval of its token is different. The repetitive firing of the
sequence t1t2 will generate an infinite number of state classes. All these state classes share the same marking but
their time intervals are different. Hence, the graph of state classes obtained using the Van der Aalst’s approach
is infinite.

We propose, in the following, another approach which is both “sound” and “complete”. As we will show, our
approach generates finite graphs for all bounded ITCPNs.

4. Our contraction approach

To contract the ITCPN state space, we first agglomerate, into one state class, all states reachable by firing the
same sequence of events independently of their occurrence dates.
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4.1. Characterization and computation of state classes

Let S be a sequence of events that can occur from the initial state of an ITCPN model (i.e.: S is a firable sequence).

• We denote by CS the set of all states reachable by firing, from the initial state, the same sequence S, indepen-
dently of instants at which events of the sequence have occurred in the past.

• By convention, if the sequence S is empty, the class CS is the initial state class that contains only the initial
state (the initial timed marking of the model).

• The event set of a state class CS is the union of event sets of all its states.
We denote by ES the set all events of CS .

Definition 4.1 characterization of a state class
The state class CS can be characterized by a pair (SMS, FTS) where:

• SMS is a timed marking such that delay values are replaced by delays (variables, one distinct variable per
token). SMS is the set of timed tokens present in places after firing the sequence S from the initial state of
the model.

• FTS is a logical formula which characterizes the delay valuations of all states agglomerated in the class CS .
Each valuation of delays corresponds to a state within the class.

As an example, the initial state class of the model shown in Fig. 2 is C∅ � (SM∅, FT∅) where:

• SM∅ � (pfree, M1, d1) + (pin, J1, d2) + (pin, J2, d3) and
• FT∅ � (d1 � 2 ∧ d2 � 2 ∧ d3 � 2).

The class C∅ has two events:
e1 � (t1, (pfree, M1, d1) + (pin, J1, d2)) and e2 � (t1, (pfree, M1, d1) + (pin, J2, d3)).

Definition 4.2 Let CS � (SMS, FTS) be a state class and ef one of its events.

• Event ef can occur from CS if and only if, there is a state TM of CS such that ef can occur from it.
• If ef can occur from CS , its occurrence leads to the state class CS.ef which contains all states reachable by

firing ef from any state of CS .
• The set of evolutions of CS is the union of all evolutions of its states.
• Note that events and functions FDmin, FDmax, Jin and Jout are defined as in Sect. 2.2.2 except that delay

values are replaced by delay names.

Proposition 4.1 • Event ef can occur from CS if and only if, there is at least one state in the class for which
the firing delay of event ef is less or equal to the firing delays of all other events, i.e.: the following formula is
consistent: FTS ∧ (

∧
ei∈ES

(FD(ef ) � FD(ei))).
• Suppose that event ef can occur from the state class CS . Its occurrence leads to the state class CS.ef �

(SMS.ef , FTS.ef ), where SMS.ef � SMS − Jin(ef ) + Jout(ef ) and FTS.ef is computed in five steps as follows:

1. Initialize FTS.ef with FTS ∧ (FD(ef ) � dh) ∧ (
∧

ei∈ES
dh � FD(ei)).

2. Eliminate by substitution delays of all tokens consumed by event ef (i.e.: tokens of Jin(ef )).

3. Add for each delay d , a new variable d and the constraint d � max(0, d − dh).

4. Eliminate by substitution dh and all old delays d.

5. Rename each delay d in d and add for each token created by ef the constraint ad � d � bd , where d is
the delay associated with the token and [ad , bd ] is its time stamp interval.

Proof. The firing condition is immediate from the definition. The computation of the successor class is done in
five steps. Starting from the firing condition, we first introduce the variable dh representing the time progression
before firing ef and then we eliminate by substitution delays of tokens consumed by ef . As delays decrease with
time progression until reaching zero, we add a new variable d for each delay d which is equal to the remaining
delay after dh time units, i.e.: d � max(0, d −dh). Afterwards, we eliminate by substitution dh and all old variables
d . At the last step, we rename each d in d and add the time constraints of all newly created tokens. Their delays
may be any value inside their time stamp intervals. �
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As an example, consider the initial state class C∅ of the model in Fig. 2 and its event e1 � (t1, (pfree, M1, d1) +
(pin, J1, d2)). Event e1 can occur from the state class C∅ because the following formula is consistent:
d1 � 2 ∧ d2 � 2 ∧ d3 � 2 ∧ (max(d1, d2) � max(d1, d3)) ∧ (max(d1, d2) � max(d1, d2)).
Its occurrence leads to the state class Ce1 � (SMe1 , FTe1 ) such that SMe1 � (pin, J2, d3) + (pbusy, (M1, J1), d4) and
FTe1 is computed as follows:

1. Initialize FTe1 with:
d1 � 2 ∧ d2 � 2 ∧ d3 � 2 ∧ max(d1, d2) � dh ∧ dh � max(d1, d2) ∧ dh � max(d1, d3).

2. Eliminate by substitution delays of all tokens consumed by event e1 (i.e.: delays d1 and d2):
d3 � 2 ∧ dh � 2.

3. Add for each remaining delay d , a new variable d and the constraint d � max(0, d − dh):
d3 � 2 ∧ dh � 2 ∧ d3 � max(0, d3 − dh).

4. Eliminate by substitution dh and all old delays d: d3 � 0.
5. Rename each delay d in d and add for each token (p, c, d) of Jout(e1), the constraint ad � d � bd : (d3 �

0 ∧ (1 � d4 � 3)).

The reachable state class by firing event e1 from the class C∅ is Ce1 � (SMe1 , FTe1 ) where:

• SMe1 � (pin, J2, d3) + (pbusy, (M1, J1), d4) and
• FTe1 � (d3 � 0 ∧ 1 � d4 � 3).

The firing rule established in Proposition 4.1. is not simple to implement since it requires resolution of a system
of inequations. From the firing rule, we can deduce that the formula of each state class can be rewritten as a
combination of connectors ∧, ∨, and atomic constraints. Each atomic constraint has one of the following forms:
x − y � c, x − o � c or o − x � c, where x and y are delays (variables), c is a rational constant c ∈ (Q ∪ {∞}),
and o is the symbol representing the value zero (o is always zero). Moreover, the computation of reachable state
classes needs to test the consistency (domain emptiness) and equivalency of formulas (domain equality), and
other operations like substitution and elimination of some variables. There are two well-known data structures
that make simple the implementation of these operations: Difference Bound Matrices DBMs [Ben02, DOT96]
and Clock Difference Diagrams CDDs [Ben02]. DBMs are useful to represent convex domains defined as a con-
junction of atomic constraints, by giving for each pair of variables (clocks or delays) the upper bound of their
difference. Almost operations on DBMs are made simple using their canonical forms3 computed in O(m3), (m
being the number of variables in the DBM). The computation of the canonical form is based on the shortest path
Floyd-Warshall’s algorithm and is considered as the most costly operation on DBMs. However, knowing that
DBMs are not closed under set-union, we may need several DBMs to represent formulas containing connector ∨
which makes operations more expensive. For some operations like the union-set, intersection and complementa-
tion, CDDs are more appropriate as they allow representing, in a compact way, such formulas while performing,
with less complexity, these operations. But, some other operations needed to compute reachable state classes are
very complex when we use CDDs [BBD02].

In order to reduce both space and time complexities, we show, in the following, that all state classes sharing
the same marking and some delay function have also the same firing sequence. Therefore, they can be agglom-
erated and represented by their common marking and delay function. Moreover, only one DBM is needed for
representation and computation of delay functions of reachable state classes.

4.2. More efficient characterization and computation of state classes

Let CS � (SMS, FTS) be a state class, ℵS the set of all variables (delays) in SMS and o the symbol representing
the value 0). We define the delay function DS as follows: DS : (ℵS ∪ {o})2 → Q ∪ {∞},
DS(x, y) � max(x − y | FTS).4

The function D∅ of the initial class C∅ is defined by: ∀(x, y) ∈ (ℵ∅ ∪ {o})2, D∅(x, y) �
{

0 if x � y;
bx − ay otherwise

Where ao � 0, bo � 0 and [ad , bd ], for d ∈ ℵ∅, is the time stamp interval of the token associated with d .

3 A canonical form of a DBM is the representation with tightest bounds on all variable (clock or delay) differences.
4 The biggest value of x − y in the domain represented by FTS .
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As an example, consider the initial state class C∅ � (SM∅, FT∅) of the model in Fig. 2:

• SM∅ � (pfree, M1, d1) + (pin, J1, d2) + (pin, J2, d3) and
• FT∅ � (d1 � 2 ∧ d2 � 2 ∧ d3 � 2).

Its function delay D∅ is defined over the set {o, d1, d2, d3} as follows:

D∅ o d1 d2 d3
o 0 −2 −2 −2
d1 2 0 0 0
d2 2 0 0 0
d3 2 0 0 0

Proposition 4.2 Let ef be an event of CS , i.e.: ef ∈ ES . Event ef can occur from the state class CS if and only if:
minei∈E(S) max(pi ,ci ,di )∈Jin(ei ) min(pf ,cf ,df )∈Jin(ef ) DS(di, df ) � 0.

Proof. Proposition 4.1 states that event ef can occur from the state class CS if and only if the following formula
is consistent: (1) FTS ∧ (

∧
ei∈ES

(FD(ef ) � FD(ei))).
After developing FD, we can rewrite it to obtain: FTS ∧ minei∈ES max(pi ,ci ,di )∈Jin(ei ) min(pf ,cf ,df )∈Jin(ef ) di − df � 0.
By assumption, FTS is consistent and DS(di, df ) is the biggest value of di − df in the domain of FTS . Moreover,
since delays decrease synchronously with time, the following relations hold: ∀ x, y, z ∈ ℵ,
(DS(x, y) � DS(z, y) �⇒ ∀ u ∈ ℵ, DS(x, u) � DS(z, u)) and
(DS(x, y) � DS(x, z) �⇒ ∀ u ∈ ℵ, DS(u, y) � DS(u, z)).
It follows that there exists a token (pff , cff , dff ) ∈ Jin(ef ) such that:
∀ d ∈ ℵ, DS(d, dff ) � min(pf ,cf ,df )∈Jin(ef ) (DS(d, df ))
Therefore there exist an event eii ∈ ES and a token (pii , cii , dii ) ∈ Jin(eii ) such that DS(dii , dff ) � minei∈ES

max(pi ,ci ,di )∈Jin(ei ) min(pf ,cf ,df )∈Jin(ef ) (DS(di, df )).
It follows that the firing condition is satisfied if and only if:
minei∈ES max(pi ,ci ,di )∈Jin(ei ) min(pf ,cf ,df )∈Jin(ef ) (DS(di, df )) � 0. �

We have shown that the firing condition from a state class CS can be simplified to be expressed by means
of the marking and the delay function of CS . The following proposition shows how to compute using the delay
function of CS , the delay function of any successor class of CS .

Proposition 4.3 Let S be a firable sequence, ef an event which can occur from the state class CS and S′ the event
sequence (S.ef ). The function DS′ can be computed using DS as follows:

• ∀ d ∈ ℵS′ ,

– DS′ (d, d) � 0.

– DS′ (o, d) �
{−ad if d is created by ef ;

min(0, minei∈ES max(pi ,ci ,di )∈Jin(e) DS(di, d)) otherwise

– DS′ (d, o) �
{

bd if d is created by ef ;
max(0, min(pf ,cf ,df )∈Jin(ef )DS(d, df )) otherwise

• ∀(d, d ′) ∈ ℵ2
S′ , d �� d ′,

– DS′ (d, d ′) �
{

min(DS(d, d ′), DS′ (d, o) + DS′ (o, d ′)) if d and d ′ are not created by ef ;
DS′ (d, o) + DS′ (o, d ′) otherwise

Proof. Recall the definition of DS′ : ∀(x, y) ∈ (ℵS′ ∪ {o})2, DS′ (x, y) � max(x − y | FTS′ ).
(1) Then: ∀ x ∈ ℵS′ ∪ {o}, DS′ (x, x) � 0;
(2) Computing DS′ (d, o) and DS′ (o, d), for d ∈ ℵS′ :

• In case d is associated with some token created by event ef , its domain is the time interval [ad , bd ]. Hence,
DS′ (d, o) � max(d | FTS′ ) � bd and DS′ (o, d) � max(−d | FTS′ ) � −ad .
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• In case d is associated with some token not created by ef , DS′ (d, o) and DS′ (o, d) are respectively the biggest
values of max(0, d − dh) and −max(0, d − dh) (i.e.: the biggest value of min(0, dh − d)), satisfying the firing
condition of ef , i.e.: FTS ∧ FDmin(ef ) � dh � minei∈ES FDmax(ei).
After developing FD, we can rewrite this firing condition to obtain:
(FTS ∧ dh � minei∈ES max(pi ,ci ,di )∈Jin(ei ) (di) ∧ −dh � min(pf ,cf ,df )∈Jin(ef ) (−df )).
The biggest values of d − dh and dh − d satisfying the firing condition of ef are respectively equal to the
biggest values of d − dh and dh − d satisfying the following formula:
(FTS ∧ dh − d � minei∈ES max(pi ,ci ,di )∈Jin(ei ) (di − d) ∧ d − dh � min(pf ,cf ,df )∈Jin(ef ) (d − df )).
We obtain these values by replacing each occurrence d − df and di − d , in the second and the third terms of
the formula, by their biggest values in the domain of FTS (i.e.: DS(d, df ) and DS(di, d)). It comes that the
biggest values of max(0, d − dh) and min(0, dh − d)), satisfying the firing condition of ef are respectively:
DS′ (d, o) � max(0, min(pf ,cf ,df )∈Jin(ef ) DS(d, df )) and
DS′ (o, d) � min(0, minei∈ES max(pi ,ci ,di )∈Jin(ei ) DS(di, d)).

(3) Computing DS′ (d, d ′), for (d, d ′) ∈ ℵ2
S′ . We have DS′ (d, d ′) � max(d − d ′ | FTS′ ):

• In case d or d ′ is associated with some token created by ef , there is no constraint in the firing condition of ef
on the difference d − d ′ but the biggest values of d and −d ′ in FTS′ are respectively DS′ (d, o) and DS′ (o, d ′).
Therefore, DS′ (d, d ′) � DS′ (d, o) + DS′ (o, d ′).

• In case d and d ′ are associated with tokens not created by ef , DS′ (d, d ′) is equal to max (d − d ′ | FTS′ ).
DS′ (d, d ′) is also the biggest value of max(0, d − dh) − max(0, d ′ − dh) satisfying the firing condition of ef ,
i.e.: (FTS ∧ max(d − dh, 0) − max(0, d ′ − dh) �
max(0, min(pf ,cf ,df )∈Jin(ef ) (d − df )) + min(0, minei∈ES max(pi ,ci ,di )∈Jin(ei ) (di − d ′))).

The biggest value of max(0, d − dh) − max(0, d ′ − dh) satisfying the firing condition of ef is then:
min(DS(d, d ′), DS′ (d, o) + DS′ (o, d ′)). �

From the previous propositions, it comes that state classes sharing the same marking and the same delay func-
tion have exactly the same firing sequences. Therefore, they can be agglomerated into one node without loosing
linear properties of the model. The agglomerated state classes are then represented by their common marking
and delay function. The graph of all reachable state classes is obtained by applying the firing rule established in
Propositions 4.2. and 4.3. to the initial class represented by (SM∅, D∅) and to each new class. In this way, all state
classes sharing the same marking and the same delay function are agglomerated in the same node. The following
theorem establishes one necessary and sufficient condition to obtain a finite state class graph. The proof of this
theorem is based on the following proposition shown in [BeD91].

Proposition 4.4 Let Y be a finite linear combination i.e.: Y � n1 × y1 + n2 × y2 + · · · + nr × yr where n1, n2, . . . , nr
are integer coefficients and y1, y2, . . . , yr are rational constants. If Y is bounded by finite rational constants (i.e.:
a � Y � b) then the number of different linear combinations Y is finite. In other words, the value domain of Y
is finite.

Theorem 4.1 An ITCPN has a finite state class graph if and only if, it is bounded (it has a finite number of
reachable markings).

Proof. ⇒) is obvious.
⇐) If the model is bounded, it has a finite set of reachable markings. Since the number of different markings is
finite, it suffices to prove that for each marking, we have a finite number of different classes that share the same
marking. Consider a marking and a firable sequence S which leads to the considered marking. We have to show
that there is a finite number of different functions DS . For each pair of delays (d, d ′) of ℵ2

S , terms DS(d, d ′),
DS(o, d ′) and DS(d, o) are finite combinations of rational constants with integer coefficients (finite combinations
because the number of different time intervals in the model is finite). These terms are bounded or equal to ∞:

• DS(d, o) is initialized to bd . If bd � ∞ then the value of DS(d, o) is ∞ and does not change with time.
Otherwise, the value of DS(d, o) decreases with time until reaching the value zero. Then:
0 � DS(d, o) � bd �� ∞ or DS(d, o) � ∞.

• DS(o, d ′) is initialized to −ad ′ . Its value increases until reaching the value zero. Then:
−ad ′ � DS(o, d ′) � 0.

• −ad ′ � DS(d, d ′) � bd �� ∞ or DS(d, d ′) � ∞.
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Fig. 5. The state class graph of the ITCPN model shown in Fig. 2

From Proposition 4.4, the value domains of DS(d, o), DS(o, d ′) and DS(d, d ′) are finite. Consequently, the number
of different DS is finite. �

This necessary and sufficient condition that ensures a finite state class graph may be difficult to use since we have
not a general procedure to decide whether or not an ITCPN has a finite number of different markings. However,
we have a straightforward sufficient condition using the underlying coloured Petri net (CPN), and we know
several methods to decide this property on CPN, namely the invariant method: An ITCPN has a finite number
of markings (i.e.: bounded), if its underlying CPN has a finite number of different markings (i.e.: bounded). The
reverse is not true. Indeed, an ITCPN can have a finite set of reachable markings but its underlying CPN has an
infinite number of reachable markings As an example the model shown in Fig. 4 has three reachable markings:
M0, M1 � (p1, e) + (p2, e) and M2 � (p1, e) + 2(p2, e), but its underlying coloured Petri net is unbounded (place
p2 is unbounded).

For example, applying our approach to the model given in Fig. 2 produces the state class graph shown in Fig. 5.
It consists of 5 state classes, 8 edges and 4 events:

• C∅ �((pfree, M1, d1) + (pin, J1, d2) + (pin, J2, d3), (d1 � 2 ∧ d2 � 2 ∧ d3 � 2))
• Ce1 � ((pbusy, (M1, J1), d4) + (pin, J2, d3), (d3 � 0 ∧ 1 � d4 � 3))
• Ce1e3 � ((pfree, M1, d1) + (pin, J1, d2) + (pin, J2, d3), (d1 � 2 ∧ d2 � 2 ∧ d3 � 0))
• Ce2 � ((pbusy, (M1, J2), d5) + (pin, J1, d2), (d2 � 0 ∧ 1 � d5 � 3))
• Ce2e4 � ((pfree, M1, d1) + (pin, J1, d2) + (pin, J2, d3), (d1 � 2 ∧ d3 � 2 ∧ d2 � 0))
• e1 � ((pfree, M1, d1) + (pin, J1, d2), t1)
• e2 � ((pfree, M1, d1) + (pin, J2, d3), t1)
• e3 � ((pbusy, (M1, J1), d4), t2)
• e4 � ((pbusy, (M1, J2), d5), t2)

4.3. Using state class graphs to verify the ITCPN properties

The state class graph of an ITCPN, obtained using our approach, preserves linear properties of the model. So,
if it is finite, it can be used to verify linear properties of the model. Untimed linear properties can be checked on
the graph using the classical linear model checking techniques [ACD93, HHW97].

For timed properties, a variety of real time extensions of linear time logic (LTL) have been proposed for
expressing requirements of real time systems. Among these extensions, we consider the metric interval temporal
logic (MITL) which extends LTL by associating a time interval with temporal operators (always G, eventually F,
and until U). The verification of these properties can be performed using a technique similar to the one developed
in [AlD90]. This technique consists in two steps. The first step constructs some timed Buchi automaton for the
negation of the property to be checked. The second step computes the synchronous product of the state space
of the model (or a contraction preserving its linear properties) with the timed Buchi automaton constructed in
the first step. The property is satisfied if and only if the synchronous product is empty. To apply this technique,
we suppose that the model is zenon free (there is no infinite firing sequence with execution time equal to 0)
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not q; 1<=dp true

p and not q; init(dp=c+1)

q; 1<=dp

dp<1

not p or q

s0 errs1

Fig. 6. The timed Buchi automaton of ¬(G(p �⇒ F[0,c]q))

[AlD90, DOT96]. In [AlD90], clock constraints and guards of the timed Buchi automaton are used to express
time requirements and atomic propositions of the property to be checked. In our case, we use delays instead
of clocks. Note that using delays instead of clocks simplifies the computation of reachable state classes as no
over-approximation operation is needed [Ben02].

As an example, we consider the important bounded response requirement of real time systems. This require-
ment is expressed by the MITL formula as follows: G(p �> F[0,c]q) which means that request p must be followed
by a response q within c time units. The timed Buchi automaton of the negation of this property is shown in Fig. 6,
where s0 is the initial node and err is an acceptation node. The delay dp and the constraint dp � c + 1 are added to
the current state class if it satisfies the formula p and not q and the edge (s0, s1) has to be fired synchronously with
an event of the model. The property q must hold before or when dp reaches the value 1. Otherwise, the node err
is reachable. We suppose that the ITCPN model is not zeno. Zenoness is a pathological situation which suggests
that infinity of actions may take place in a finite amount of time.

Consider the state class graph shown in Fig. 5 and the property G((pin, J1) �⇒ F[0,4](pbusy, (M1, J1))). This
property means whenever the job J1 is waiting for execution, it must be in execution within 4 time units. To verify
this property, we have to construct the synchronous product of the timed buchi automaton of the property and
the state class graph shown in Fig. 5. Its construction is essentially based on propositions 4.2 and 4.3. The part
of the resulting graph, shown in Fig. 7, exhibits that the synchronous product is not empty. The property is not
satisfied since there exists a cycle which passes over the acceptation node (err).
Starting from the initial summit of the synchronous product ((SM0, s0), FT0), successors summits can be com-
puted iteratively using the following rule:
Let ((SM, s), FT) be a summit of the synchronous product, ef an event of SM, and (s, s′, gp, init, gd) be an out-
going edge of s, where gp is a guard over SM, init5 is the constraint to be added to FT in case SM satisfies the
guard gp, and gd is the constraint to be added to the successor summit resulting from the synchronous firing of
ef with (s, s′, gp, init, gd). Event ef may occur synchronously with edge (s, s′, gp, init, gd) from ((SM, s), FT) if
and only if:

1 SM satisfies the guard gp,
2 ef is firable from (SM, FT ∧ init). Let (SM′, FT′) be the resulting successor state class.
3 The formula (FT′ ∧ gd) is consistent.

In this case, ef may occur synchronously with edge (s, s′, gp, init, gd) from ((SM, s), FT), its occurrence leads to
the summit ((SM′, s′), FT′ ∧ gd).

Note that the implementation of the above firing rule is in fact based on propositions 4.2 and 4.3. In addition,
the synchronous product can be computed directly with no need to construct the state class graph. To attenuate
the state explosion problem, it can be also computed using an on-the-fly method augmented with an abstraction
by inclusion (as shown in [Ben02]).

5. Conclusion

We proposed an efficient approach for contracting the generally infinite state space of the ITCPN model. Our
contraction approach generates finite graphs for all bounded ITCPNs and preserves linear properties of the
ITCPNs. So, the generated graphs are useful for LTL model checking.

We have first extended the ITCPN model by allowing unbounded intervals. This extension allows express-
ing that a created token could be never available (be lost) but complicates somewhat its enumerative analysis

5 Delay variables in constraint init are all different from those in FT.



Efficient construction of the ITCPN state class space 237

(e2,(pin,J1) and (pbusy,(M1,J1)))

(e4, not(pbusy,(M1,J1) and 1 <=dp))

(e2, dp<1)

(e4,true)

(e2,true)

((SM0,s0), FT0 and dp=5)

((SMe2,s1), FTe2 and dp=3)

((SMe4e4,s1), FTe2e4 and 0<=dp<=2)

((SMe2,err), FTe2 and dp=0) ((SMe2e4,err), FTe2e4 and dp=0)

Fig. 7. A part of the synchronous product of Fig. 5 and Fig. 6

(unbounded delays). To contract the ITCPN state space, we first agglomerated, into one state class, all states
reachable by the same firing sequence. The resulting state classes can be characterized by means of a marking
and a formula combining atomic constraints and connectors ∨ and ∧. There are two well-known data structures
that make simple the representation and implementation of operations needed to compute reachable state clas-
ses: Difference Bound Matrices DBMs [Ben02, DOT96] and Clock Difference Diagrams CDDs [Ben02]. However,
knowing that DBMs are not closed under set-union, we may need several DBMs to represent formulas containing
connector ∨ which makes operations more expensive. CDDs are more appropriate as they allow representing, in
a compact way, such formulas. But, some operations needed to compute reachable state classes are very complex
when we use CDDs [Ben02].
In order to reduce both space and time complexities, we proposed an relation of equivalence over state classes
which induces an attractive characterization and computation procedure of state classes. Indeed, only one DBM
is needed for the representation and computation of time constraints of reachable state classes.

Our approach is more efficient than those developed in the literature [BoB02, BeB94, Van93]. Indeed, the
approach developed in [Van93] is not complete and may generate infinite graphs for some bounded models
while our approach has not these drawbacks. In addition, our approach is more simple than those developed in
[BoB02, BeB94]. The characterization and computation of state classes are both simplified.

Finally, we have shown by means of an example how to use our approach to verify timed linear properties
of the model. To attenuate the state explosion problem, this verification can be performed using an on-the-fly
method augmented with an abstraction by inclusion.
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