
DOI 10.1007/s00165-007-0048-1
BCS © 2007
Formal Aspects of Computing

Formal Aspects
of Computing

A unification of probabilistic choice within
a design-based model of reversible computation
Bill Stoddart1 and Frank Zeyda2

1School of Computing, University of Teesside, Borough Road, Middlesbrough, TSI 3BA, UK. E-mail: w.j.stoddart@tees.ac.uk
2High Integrity Systems Engineering Group, Department of Computer Science, University of York, York, UK

Abstract. We see reversible computing as a generalisation of sequential computation obtained by revoking the
law of the excluded miracle. Our execution language includes naked guarded commands and non-deterministic
choice. Choices which lead to miraculous continuations invoke reverse computation, and non-deterministic choice
plays the rôle of provisional choice within a backtracking context. We require probabilistic choice for symmetry
breaking and sampling large search spaces, but must formulate it differently from previous approaches to obtain
the required interactions between probabilistic choice and non-deterministic choice and between probabilistic
choice and feasibility. Our formulation allows us to derive the post-distributions which characterise a program,
and we use these to construct a relational model. We consider refinement as containment of convex closures within
distribution space, qualified with additional conditions to avoid over-refinement. We link the non-probabilistic
and probabilistic versions of the model with a Galois connection and show that classical designs are a retract of
our probabilistic designs. We consider the interaction between probabilistic and non-deterministic choice and find
the same initially counter-intuitive results that have been noted by other investigators. We provide an alternative
formulation, within the same model, of oblivious non-determinism, which allows all non-deterministic choices to
be moved to the start of a computation. We consider the interaction between probabilistic choice and feasibility
that is required to match an operational interpretation in which infeasible commands provoke reverse execution,
and we present a small case study to show how the interaction between probabilistic choice and feasibility can be
exploited in a practical program. All programming structures described here are supported by our implementation
platform, the Reversible Virtual Machine, whose development has accompanied our theoretical investigations.

Keywords: Reversible computing; Backtracking; Probability; Hoare-He designs; Bunches

1. Introduction

In our UTP Symposium paper [SZL06] we investigated, within the UTP framework of Hoare-He designs, the effect
of seeing computation as an essentially reversible process. We described the theoretical link between reversibility,
the physics of computation and minimum power requirements, and we reviewed Paolo Zuliani’s work [Zul01]
on reversible probabilistic guarded command language. We proposed an alternative formalisation of reversible
computing which accommodates backtracking. To obtain a single result from a search we exploited the already
recognised properties of non-deterministic choice, using it as provisional choice rather than implementor’s choice.
We added a prospective-value formalism which can describe programs that return all the possible results of a

Correspondence and offprint requests to: B. Stoddart, E-mail: w.j.stoddart@tees.ac.uk

(2013) 25: 107–131

B. Stoddart and F. Zeyda

search, and we showed how to formally describe the premature termination of such a search, a mechanism
analogous to the “cut” of Prolog.

In this paper we add probabilistic choice, which we require for symmetry breaking, sampling, and modelling
quantum algorithms. Symmetry breaking allows us to resolve ties in search heuristics: multiple runs of the
same search algorithm then probabilistically take different execution paths. Replacing provisional choice by
probabilistic choice in a large search space allows us to select a random sample of solutions, avoiding the clustering
often associated with a set of solutions obtained by imposing a cut. Many additional applications of randomness
are described in [MM04]. For a recent sketch of unification of probabilism, reversibility, and quantum computing
in a formal context see [HS06]. This work extends the approach of [Zul01] to accommodate, amongst other
things, angelic choice, for which the authors find a novel use, namely to provide the option of a strict approach
to non-termination, relating their resulting model to pGCL by means of a Galois connection. They also consider
the implication of providing a language which consists purely of reversible commands in the sense of commands
whose corresponding relations are bijections. In this approach there is no additional hidden state. Such a language
could be useful to us when providing a concrete description of the instruction set of a reversible virtual machine,
where its use would preclude any accidental “cheating” through the introduction of non-reversible commands.
When using it, however, one is forced to work at a completely concrete level since the language is not closed under
non-deterministic choice.

We turn now to our own approach. As in pGCL [MM04] we use D1 p⊕ D2 to represent a probabilistic choice
in which D1 is chosen with probability p and D2 with probability 1 − p. Our formalism differs from that of pGCL
(which, within a UTP context, we may perhaps take as the standard approach) in a number of ways.

• We take a strict view of non-termination, so that, for example, abort 1
2
⊕ II is equivalent to abort, whereas

in pGCL it terminates with probability 1/2. The motivation is to ensure that attempting to discharge proof
obligations will clearly signal any precondition violations, even when these occur with only a small probability.

• We take a non-strict view of infeasibility, so that, for example magic 1
2
⊕ II is equivalent to II . Whereas the

syntactic restrictions of pGCL preclude the direct use of naked guarded commands, i.e. commands of the
form g �⇒ D, they are a vital component of our language, where they are used in conjunction with non-
deterministic choice to control backtracking. We describe the interaction between non-deterministic choice,
probabilistic choice and feasibility in a manner which captures the execution behaviour of our implementation
platform, the Reversible Virtual Machine (RVM).

• Like pGCL we use the statistical idea of expectation to express the properties of random states. However,
we take a very general view of what random quantities may be the subject of expectations. We allow any
expression of type R, and also any of type seq R, treating them as vectors. Our choice of sequences rather
than tuples relates to our interest in infinite sample spaces. By way of contrast, pGCL uses expectations based
on numerotized predicates.

• In considering the effect of non-deterministic choice, pGCL only retains information about the choice least
likely to provide a particular postcondition. It is concerned with establishing the minimum guaranteed
probability of obtaining that postcondition. In our formalism, where non-determinism plays the dual rôle of
expressing both implementor’s choice and the provisional choices associated with backtracking, and where we
have executable program structures which provide all the possible results of a computation (over its possible
non-deterministic choices) we need to retain all the information about such choices. One effect of this is that
we can derive post-distributions characterising a program’s behaviour.

• There is an interaction, within both formalisms, between probabilistic and non-deterministic assignments
to independent variables. This interaction does not reflect the executional reality of our virtual machine. To
capture this reality we provide a refined description in which non-deterministic choice is blind with respect to
the current state.

For our purposes we need a new variant of the interactions between probabilistic and non-deterministic
choice. These interactions are not simple to formulate. He and Sanders comment in [HS06] “The laws relating
probabilism and non-determinism are, as we have seen, the most subtle”. In a discussion on a programming logic
of distributions [MM04], McIver and Morgan find an unexpected result and comment “Because there are several
phenomena involved here—and all our pre-conceptions as well—we cannot point to any one of them and say
“that causes the contradiction”. In a paper which extends a categorical formulation of non-determinism [VWar]
Danielle Varacca and Glynne Winskel comment “In Category Theory, non-determinism and probability are
represented by suitable monads. These two monads do not combine well, as they are”. In his thesis “Probabilistic

108

Probabilistic choice in reversible computation

Extensions of Semantic Models” [dH01] Jerry den Hartog devotes over 100 pages to combining the two forms
of choice.

The paper is organised as follows. In Sect. 2 we discuss mathematical preliminaries. We introduce our
adaptation of Eric Hehner’s bunch theory, the use of which will greatly simplify the presentation of our theory
and in particular the representation of the combined effects of probabilistic and non-deterministic choice. In
this section we also give our precedence rules and parsing conventions. In Sect. 3 we review our prospective-
value formalism, reversibility, and the use of backtracking in non-probabilistic programs. In Sect. 4 we introduce
probabilistic designs, which are designs enhanced by a probabilistic choice operator. We formulate an expectation
calculus to study their effect, we give the associated probabilistic relational model, and we show how our
expectation calculus can be used to derive the after-state distributions of a probabilistic design. In Sect. 5 we
give a geometric characterisation of our relational model and define refinement in terms of convex closures in
distribution space. In Sect. 6 we relate designs to probabilistic designs via a Galois connection. We show that
the former are a retract of the latter and consider the consequences for applying standard (non-probabilistic)
reasoning as an abstraction of our probabilistic expectation calculus. In Sect. 7 we consider the interaction
between probabilistic and non-deterministic choice applied to independent sets of variables, and formulate an
alternative definition of probabilistic choice that eliminates this interaction so that non-deterministic choice
becomes “oblivious”. In Sect. 8 we consider the interaction between probabilistic choice and feasibility. This
interaction is of vital importance to the reversible computations aspect of our approach, in which infeasible
continuations provoke reverse execution back to the most recent point at which an unexplored choice is available.
We include a point search algorithm as a case study which exploits the interaction between probabilistic choice
and feasibility. In Sect. 9 we draw our conclusions and discuss future work.

2. Mathematical preliminaries

2.1. Bunches

A bunch [Heh81, Heh93] is the “contents of a set” without the packaging that allows set representation to build
up nested structures. A bunch of bunches is self-flattening.

Any value is an elementary bunch or element; for example 2 is a bunch. In set theory we make a distinction
between 2 and {2}, i.e. between an element and a set containing just that element. In bunch theory there is no
distinction.

The empty bunch is written as null. If A and B are bunches then their union, written A, B, is also a bunch.
For any bunch A we have A, null � A. We write A : B to say A is a sub-bunch of B. As with sets, the repetition
and order of elements has no significance, and thus bunch union is commutative.

Some examples of predicates that use bunch inclusion are

2, 3 : 1, 2, 3, 4 2 : 2 A : A, B null : 1, 2 1, 2, null : 1, 2

If A is the bunch 1, 2 and B is the bunch 3, 5 then A + B is the bunch made from summing individual values
from A and B. Noting that arithmetic operators have a higher precedence than bunch comma, we have

A + B � 1 + 3, 2 + 3, 1 + 5, 2 + 5 � 4, 5, 6, 7

Standard arithmetic operators applied to bunches of values are all lifted in this way: they distribute through
bunch union and are strict with respect to null, e.g. A + null � null.

We sometimes need to write a bunch within brackets to control operator precedence, for example, since + has
a higher precedence than comma, we would write (1, 2) + 3 for the operation of adding 1, 2 and 3. This creates a
potential conflict with the traditional use of brackets to indicate tuples. In this paper we use the maplet symbol �→
to create ordered pairs: brackets are reserved for structuring purposes. Operator precedences will be summarised
in Sect. 2.2.

We write the bunch subtraction of B from A as A \ B. It represents the elements of A that are not in B.
We adopt bunch theory to our particular ends, which are to use it in a typed (or multi-sorted) theory which

uses partial functions together with classical two-valued logic and takes a total-correctness view of program
description, i.e. the approach of B and Z, as well as of Hoare-He designs. All variables in our theory denote
elements. Bunches only arise as expressions. Bunches have no effect on our treatment of types, which are maximal
sets. The type of any non-empty bunch is the same as the type of its elements. We also have an empty bunch

109109

B. Stoddart and F. Zeyda

of each type. Although all expressions in our formalism are typed, we do not necessarily give the type of each
identifier explicitly, requiring only that it can be inferred without ambiguity.

To model non-termination we introduce an improper bunch ⊥, or more exactly an improper bunch for each
type. Given a type (maximal set) T the associated improper bunch is ⊥T . Where context can determine its type
we just write it as ⊥. The bunches of any type form a complete lattice under reverse bunch inclusion with null and
⊥ as its top and bottom elements. The properties of the improper bunch are chosen to facilitate the description
of sequential computations within a total-correctness framework, i.e within an approach where a computation
invoked outside its assumption might provide any result (of the correct type) or fail to terminate. For any proper
bunch E we have E : ⊥ and ¬ ⊥ : E. Bunch union is strict with respect to ⊥ i.e. E, ⊥ � ⊥ . So also is any
operation of type T �→ T or T × T �→ T . e.g. E + ⊥ � ⊥, even when E is null. However, it is not strict with
respect to maplet construction, so we can have values such as 3 �→ ⊥ which are distinguished from ⊥.
The “guarded bunch” g −→E is defined by the property:

(g ⇒ (g −→E � E)) ∧ (¬ g ⇒ (g −→E � null))

and we should note here that we are assuming the use of classical logic in which g ∨ ¬ g is a theorem, so that
this property is sufficient to fully define the meaning of a guarded bunch.
The conditional expression if g then E1 else E2 end is defined by

if g then E1 else E2 end �̂ g −→E1, ¬ g −→E2

The “preconditioned bunch” p E is defined as

p E �̂ if p then E else ⊥ end

The bunch comprehension § x • E, where E is an expression that must include information that determines
the type of x, is the bunch of all values that can be taken by E as x ranges over the values of its type. For example
§ n • 2 ∗ n is the bunch of even numbers, and § x • 0 < x ∧ x < 3−→10 ∗ x is the bunch 10, 20.

Given a predicate P we define two further forms of bunch comprehension,

§ x | P �̂ § x • P −→x

is the bunch of values of x which satisfy P, and

§ x | P • E �̂ § x • P −→E

is the bunch of values taken by E as x ranges over values that satisfy P.
Where a bunch comprehension occurs within set brackets, we omit the bunch comprehension symbol, writing,

for example {§ x | P • E} as {x | P • E}, which has its familiar meaning as a set comprehension.
We write E[F/w], where E and F are expressions and w a variable to denote the substitution of F for w in E.

If F and w are lists they must be of the same arity and the substitution is made term-wise.
To remain within two-valued logic we avoid bunches of predicates by interpreting inner predicates (membership

and equality) in a way that always makes them either true or false. Given expressions X and S of types T and
P T , the membership predicate X ∈ S is true if it is point-wise true for each element x : X and s : S. Predicates
such as a < b are interpreted as set membership, i.e. in this case as a �→ b ∈ < . Thus 1, 2 < 3 is true, and
both 1, 3 < 3 and 4 < 3, 5 are false. Expressions A and B are equal if A : B and B : A.

Bunches allow us to define function application in a generalised way. Given r ∈ A ↔ B and a ∈ A, and where
r, a, A and B are all elementary, we define the application of r to a by:

r(a) �̂ § b | a �→ b ∈ r

This generalisation of function application renders the separate notion of relational image superfluous, but
more importantly it allows us to write r(x) � y (where x and y are elements) to express that r is functional at
x and the unique value associated with x in r is y, a luxury not usually permitted in systems which use classical
two-valued logic with equality together with a relational model of function application. For example given a
partial function f and f (x) � 3 we are not entitled, under the classical dispensation, to deduce x ∈ dom (f)
[SDG99, AM02]. With the definition of application given here we can make this deduction, for were it false we
would have f (x) � null.

We define the weighted addition E1 p+ E2 where p is an element with 0 � p � 1 by

Definition 1

E1 p+ E2 �̂ E1 � null−→E2 , E2 � null−→E1 , p ∗ E1 + (1 − p) ∗ E2

110

Probabilistic choice in reversible computation

This is a key definition which will be used in our characterisation of expected values resulting from probabilistic
choice. The body of the definition consists of the bunch union of three terms. The definition covers nine cases,
these being that each of E1 and E2 could be a proper non-empty bunch, or null, or ⊥. Where E1 and E2 are
non-empty the first two terms equate to null and thus do not contribute to the result, which is given by the third
term. If either E1 or E2 is null, then, by the absorptive properties of null, the third term will be null and the result
will be given by the first two terms, at most one of which will be non-null. If either E1 or E2 is ⊥, the third term
will be ⊥ (by the absorptive power of ⊥), and the whole expression will equate to ⊥.

The bunch properties most used in this paper are given in the following summary. E, F and G are bunches
and a is an element. Their types, where required, are given by context.
Bunch union

E, F � F , E (E, F), G � E, (F , G) E, null � E E, ⊥ � ⊥
Lifting

E + (F , G) � E + F , E + G E �→ (F , G) � E �→ F , E �→ G (E, F) �→ G � E �→ G, F �→ G

Arithmetic, (in the last two of these rules E is proper)

E + F � F + E E ∗ F � F ∗ E E + ⊥ � ⊥ E ∗ ⊥ � ⊥ E + null � null E ∗ null � null

Distributivity

g −→ (E, F) � g −→E, g −→F a ∗ (E + F) � a ∗ E + a ∗ F (a an element)

2.2. Precedence and parsing

Precedence of infix symbols, in descending order, with those of equal priority listed within brackets, is o (∗ /) (+ −)
p+ × ∧ ∩ ∪ \ �→ −→ , (< > � �) (� ∈ : �� �∈) ¬ ∧ ∨ ⇒ ⇔ :� � p⊕ � �⇒ � ; . • � (�̂ = ≡
� �). Unary symbols have higher precedence than related infix symbols, e.g. logical not ¬ binds more tightly
than the logical infix connectives.

We make a syntactic distinction between terms representing declarations, values, predicates and programs.
Precedence is governed by well-formedness. For example in the expression

x � 1 ∧ y � 2−→0

the highest-priority connective is−→but 2−→0 is ill-formed and this reduction is rejected. The connective of next
highest priority is �, and the first reduction is to (x � 1) ∧ y � 2−→0. The next is to (x � 1) ∧ (y � 2)−→0.
The guard symbol now has a predicate to its left and a value to its right, suggesting a possible reduction to
(x � 1) ∧ ((y � 2) −→ 0), but this is rejected because the result is ill formed, having an ∧ symbol between a
predicate and a value. The final reduction is thus to ((x � 1) ∧ (y � 2))−→0.

3. Reversibility, non-determinism and backtracking

Discussion of “non-deterministic choice” (which, of course, we distinguish from “probabilistic choice”) goes
back at least as far as Floyd’s 1967 paper “Non-deterministic Algorithms” [Flo67], where it is used to indicate
provisional choices made during a search. Within the formal methods community, the use of non-determinism
as an essential abstraction tool (demonic or implementor’s choice) has aroused more interest. However, as a
number of writers have commented, a single semantics of non-deterministic choice can serve both purposes
[Mor88, Nel89, Heh93].

In previous work, we have explored the use of non-deterministic choice used as provisional choice within
search procedures, both in the B formalism [ZSD05] and in terms of Hoare and He’s unifying theories [SZL06].
We propose the formalism D � E to represent the value(s) E might take after executing D. By adding probabilistic
choice to our language we will obtain an interpretation of the expectation of D � E as the expected value(s) of
E after conducting “experiment” D.

Central to our project is the provision of an execution platform for the constructs we investigate in the form of
the Reversible Virtual Machine [Sto06]. We have created this platform in order to experiment with computations
which are organised in a way that minimises essential power requirements, as analysed by Landauer [Lan61] and

111

B. Stoddart and F. Zeyda

Feynman [Fey96]. This analysis maintains that heat is necessarily generated within a computation only where
information is erased. We organise our computations in a similar way to Bennett [Ben73, Ben82] and Zuliani
[Zul01], providing a history stack to preserve information and recovering the space thus consumed by reverse
execution after the result of a computation has been generated. Our approach has the original aspect of using
reversibility to support backtracking, and does so without compromising stepwise reversibility.

For the high level language which runs on the RVM we propose an extended expression language in which
we can use terms of the form D � E. This yields the value (or bunch of values) E would take after executing D,
but does not change the system’s state. Operationally it represents the execution of D, the recording of the value
of E, then reverse execution which will return to the most recent choice construct and look for an unexplored
alternative. If such an alternative is found, forward execution re-commences, and a new value is added to the
bunch of results. Otherwise execution continues in reverse. On termination of the evaluation of D � E the original
system state has been restored. For a more extensive overview see our UTP symposium paper [SZL06].

We do not obtain any benefits in terms of power consumption from our reversible virtual machine, since that
just simulates reversibility on a conventional architecture. There is, however, a second important advantage of
reversibility which we do exploit: reversibility provides a simple and efficient form of automatic garbage collection.
This makes it relatively easy to use mathematically oriented data structures built on sets, and the RVM includes
a complete implementation of finite sets and set operations.

To control reversibility we introduce naked guarded command of the form g �⇒ D. If such a command is
invoked where g is false it causes reverse execution. Otherwise the commands behaves as D. The introduction of
such commands requires the repeal of Dijkstra’s “Law of the Excluded Miracle”. In UTP this means suspending
healthiness condition H4, which insists that designs should be feasible.

In the following discussions D �̂ P � Q will denote a design with assumption P and commitment Q; we refer
to it generally as D, but as P � Q when we need to explicitly mention its assumption or commitment. We define:

g �⇒ (P � Q) �̂ (g ⇒ P � g ∧ Q)

Note that this is a design, but not one that will obey H4, other than in the trivial case where g � true.
One effect of introducing this definition is that the conditional D1 � b � D2 is no longer a primitive construct:

it can be defined in terms of guard and non-deterministic choice as:

D1 � b � D2 �̂ b �⇒ D1 � ¬ b �⇒ D2

Let P � Q be a design with state variable (or variable list) v : V . Then we define:

(P � Q) � E �̂ P § v′ • Q−→E[v′/v]

We can then prove [SZL06] the following rules, which give the effect of D � E over the fundamental syntactic
constructs1 of our language. Each rule eliminates one program connective, and they provide a complete
characterisation. In these rules x may be an atomic variable or a variable list.

Name Rule Side Cond’s

Assumption (P � D) � E � P D � E

Skip II � E � E

Assignment x :� F � E � E[F/x]

Guard g �⇒ D � E � g −→D � E

Choice D1 � D2 � E � (D1 � E), (D2 � E)

Choice from Set (x :∈ A) � E � § a • a ∈ A−→E[a/x] a \ E and a \ A

Sequential Composition D1 ; D2 � E � D1 � D2 � E

Local Variable (var z.D.end z) � E � § z • D � E z \ E

1 Examples of constructs which we do not consider as fundamental are selection statements, which as we have seen can be constructed as a
choice of guarded commands, and iteration constructs, which are formulated as solutions of fixed-point equations.

112

Probabilistic choice in reversible computation

These rules provide an alternative semantics for sequential programs, which we refer to as “prospective-value
semantics”. A simple design which we will use to illustrate their use is

D �̂ x :� 1 � x :� 2 ; x � 2 �⇒ II

and we will calculate the possible values of x after running D. We note from our rules that the effect of a non-
deterministic choice is captured by a bunch union. The first operation of D is a choice between assigning x :� 1
or x :� 2. However, if the choice x :� 1 is taken, the following command becomes infeasible. In this case our
rules will ensure that this blocked path through the computation makes a null contribution to the final result.
If the choice x :� 2 is taken the second command reduces to II , the program terminates with x � 2 and the
contribution to the final result from this path through the program is 2.

We calculate the possible values of x after running D as follows:

D � x

= “Defn of D”

x :� 1 � x :� 2 ; x � 2 �⇒ II � x

= “Sequential Composition”

x :� 1 � x :� 2 � x � 2 �⇒ II � x

= “Guard and Skip”

x :� 1 � x :� 2 � x � 2−→x

= “Choice”

(x :� 1 � x � 2−→x), (x :� 2 � x � 2−→x)

= “Assignment”

1 � 2−→1, 2 � 2−→2

= “Guarded bunch”

null, 2 = 2

In effect, the non-deterministic choice is controlled by a guard in the following operation. This is the basis of
our backtracking semantics. An operational interpretation would be that if the choice x :� 1 is initially made
the guard of the following operation is false, provoking reverse execution. The alternative x :� 2 is then selected,
resulting in a true guard and termination with x � 2. We do not see the details of the operational interpretation
when following the formal analysis of course. What we see instead is that a blocked path makes no contribution
to the result.

One price we pay for exploiting the backtracking aspect of guards and choice is that, if we wish to avoid
refining away all the behaviour of a specification, we must take more care with the management of refinement.
In the classical dispensation, we are entitled to refine x :� 1 � x :� 2 by x :� 1, but doing that in the design D
above would result in a loss of feasibility as the result would simply be magic, a valid refinement, but not a useful
one. We therefore need to identify choice used as provisional choice and not refine it away [ZSD03, Zey07].

Prospective-value semantics provides an alternative description of sequential programs in a total-correctness
setting, with exactly the same expressive power as Hoare-He designs or the weakest-precondition calculus. We
have already defined the value of D � E in terms of the assumption P and commitment Q of a design. We can
similarly recover the P and Q of a design D using the following prospective-value formulations

P ≡ ¬ (⊥ : D � null)
Q ≡ x′ : D � x

The contribution of bunch theory to our prospective-value semantics can be seen in the simplicity of the rules
for skip and for sequential composition. These rules are given in the following table, along with the rules that
would be required for a formulation in which D � E represents the set of possible values that could be taken by
E after executing D.

113

B. Stoddart and F. Zeyda

Name Bunch Rule Set Rule

Skip II � E � E II � E � {E}
Sequential Composition D1 ; D2 � E � D1 � D2 � E D1 ; D2 � E � ⋃

D1 � D2 � E

We see in the set-based rule for skip that we lose homogeneity between E and D � E. We see a consequence of
this in the set-based rule for sequential composition, where a generalised union operator must be used to flatten
a set of sets.

4. Probabilistic choice and expected values

To extend our theory of designs to include probabilistic designs we add a probabilistic choice operator, D1 p⊕ D2,
which chooses D1 with probability p and D2 with probability 1−p. Were we to formalise our theory of probabilistic
designs in terms of before–after predicates, we would require non-homogeneous predicates Q which relate before
states to after distributions. For example, given:

D �̂ x :� x + 1 1
3
⊕ x :� x + 2

the predicate describing the commitment of the design could be

�′
x �

{

x + 1 �→ 1
3
, x + 2 �→ 2

3

}

Rather than pursue this approach, however, we will formulate an expectation calculus. As in classical probability
theory, our expectations will range over real values or vectors of real values. We represent such vectors as sequences,
and assume operations for vector addition and multiplication of vectors by scalars. We emphasise at the outset
that the restriction to real values will not imply any loss of generality. Indeed, we will be able to use our expectation
calculus to recover the after-state distributions associated with a probabilistic design.

Before we formulate our notion of expectation, we briefly review the concepts of random variables and
expectation as they have been developed in classical probability theory.

In probability theory a discrete sample space S is a countable set and a distribution prob over that sample
space is a function from S to the closed real interval [0, 1] such that the range elements of prob sum to 1, and with
prob(s) interpreted as the probability that the result of some associated experiment will be s. A random variable
X on S is a function from S to the real numbers and the expected value of X is given by

E (X) �̂
∑

s∈S

prob(s) ∗ X (s)

By an expressive abuse of notation, random variables are generally treated notationally as if they are values
rather than functions. For example, given a random variable X we are often interested in the related random
variable whose values are the squares of those returned by X , i.e. the random variable λs • X (s)2. By the abuse of
notation this random variable is referred to as X 2 and its expectation as E (X 2).

We should also note that in the notation E (X) the random variable X is privileged (in terms of visibility) over
the distribution prob, which is understood to be given by context.

In probabilistic programs, the sample space is the set of values that can be taken by program variables, our
experiments are programs, and their associated distributions can be calculated from the semantics we will give
to each programming construct. An appropriate compositional notation for the expected value of expression X
after running D could be E (D, λx • X), which would allow us to treat the expectation operator as a relation2

acting on D and on the lambda abstraction of X . However, since we have a notation for the value of X after
D, namely D � X , we prefer the notation E (D � X). Note that this is a composite notation, rather than the
application of a relation E to a value D � X . We define E (D � X) according to the following rules:

2 As discussed in Sect. 2.1 we allow the application of a relation to any argument in its domain and obtain the bunch of associated range
elements as the result.

114

Probabilistic choice in reversible computation

Name Rule Side Cond

Assumption E (P � D � X) � P E (D � X)

Skip E (II � X) � X

Assignment E (x :� E � X) � X [E/x]

Guard E (g �⇒ D � X) � g −→E (D � X)

Choice E (D1 � D2 � X) � E (D1 � X), E (D1 � X)

Sequential Composition E (D1 ; D2 � X) � E (D1 � E (D2 � X))

Local Variable E (var z.D.end z � X) � § z • E (D � X) z \ X

Probabilistic Choice 1 E (D1 p⊕ D2 � X) � E (D1 � X) p+ E (D2 � X) 0 < p < 1

Probabilistic Choice 2 E (D1 0⊕ D2 � X) � E (D2 � X)

Probabilistic Choice 3 E (D1 1⊕ D2 � X) � E (D1 � X)

A simple proof by structural induction will show that in the absence of probabilistic choice E (D � E) � D � E.
This suggests that the theory of designs is a sub-theory of the theory of probabilistic designs, an idea which we
will make more precise in Sect. 6.

To model probabilistic choice we use the weighted bunch addition p+ defined in the bunch section. As an
(unsatisfactory) alternative we might have used the simpler rule

E (S p⊕ T � E) � p ∗ E (S � E) + (1 − p) ∗ E (T � E)

which would be correct in the case of feasible S and T , but would have the unwanted effect of making a possibly
infeasible operation certainly infeasible. For example we would obtain E (false−→II p⊕ II � 1) � null indicating
that the operation has no after states. To write code that complies with such a rule we need to probe the feasibility
of each of the choices, which would be very inefficient. We therefore prefer execution to resolve infeasibility by
use of its backtracking mechanism, and the rule we adopt makes false −→ II p⊕ II equal to II . Thus, for us,
magic is a zero element of probabilistic choice, just as it is for non-deterministic choice. Also, by our rule, abort
dominates in probabilistic choice, just as it does for non-deterministic choice.

The probability or probabilities of postcondition Q holding after D is given by

Definition 2

probD(Q) �̂ E (D � [Q])

where [Q] is a “numerotized predicate” taking the value 0 where Q is false and 1 where Q is true, and defined by

[Q] �̂ Q−→1, ¬ Q−→0

Note that probD(Q) may be a bunch of more than one element, and the smallest probability is given by
minset {probD(Q)}. McIver and Morgan, whose approach is based on a probabilistic version of the wp calculus,
call this the “weakest pre-expectation of Q”. They take their minimums progressively by defining (in their notation)
wp.(D1 � D2).postE � wp.D1.postE min wp.D2.postE. That gives them an approach focused on wp analysis,
since they assume that only the non-deterministic choice which gives the least chance of a postcondition being
true is of any interest. We will use additional information retained by our rules in a number of ways, including
extracting the distributions of a design and formulating alternative forms of probabilistic choice.

It is in handling the additional information present in our calculus that the use of bunches plays its most vital
rôle. If we had formulated our expected values in terms of sets, as briefly discussed in the previous section, it
would have been necessary to develop a theory of expectation based on sets of real values rather than real values
themselves. That would not have been impossible, but would have required a number of special operation, such
as a weighted addition of sets of values that has isomorphic properties to those of bunch addition. The theory
would also have been unnecessarily clumsy when dealing with expectations that involve no non-determinism,
whereas our approach makes a smooth transition between probabilistic designs involving non-determinism and
those which do not.

115

B. Stoddart and F. Zeyda

We now demonstrate how we can extract the after-state distributions associated with a probabilistic design.
We first consider designs whose alphabet consists of a single non-auxiliary variable3 x ranging over values from
the set S � {a, b}. Considering the example design

D1(p) �̂ x :� a p⊕ x :� b

we would intuitively expect it to yield an after-state distribution in which x takes the value a with probability p
and b with probability 1 − p. We will represent such information in two different ways. Firstly as the sequence
〈 p, 1 − p 〉, which we will call “a point in distribution space”. Distribution space, (interpreted as Euclidean space
or in the infinite case as a Hilbert space), will play an important part in our discussions, and the use of sequences
to represent points will allow us to handle space with countably infinite dimensions. The second representation of
distributions we will use is a mapping from values to probabilities, which in this case would be {a �→ p, b �→ 1−p},
and we call this a “probability distribution”.

We begin with the following definition, which maps before states to points in distribution space.

dist(D) �̂ λx • E (D � 〈 [x � a], [x � b] 〉)
Now take the design D1 given above where 0 < p < 1. We calculate

dist(D1(p))

= “Defn of dist”

λx • E (D1(p) � 〈 [x � a], [x � b] 〉)
= “Defn of D1”

λx • E (x :� a p⊕ x :� b � 〈 [x � a], [x � b] 〉)
= “Probabilistic Choice with 0 < p < 1”

λx • E (x :� a � 〈 [x � a], [x � b] 〉) p+ E (x :� b � 〈 [x � a], [x � b] 〉)
= “Assignment”

λx • 〈 [a � a], [a � b] 〉 p+ 〈 [b � a], [b � b] 〉
= “Evaluation of [. . .]”

λx • 〈 1, 0 〉 p+ 〈 0, 1 〉
= “Weighted addition with non-null arguments”

λx • p ∗ 〈 1, 0 〉 + (1 − p) ∗ 〈 0, 1 〉
= “Multiplication of vectors by scalar”

λx • 〈 p, 0 〉 + 〈 0, 1 − p 〉
= “Vector addition”

λx • 〈 p, 1 − p 〉
In this case the result is a function which always returns the constant value 〈 p, 1 − p 〉. This is because the

before state has no effect on the after state, so the same distribution is obtained from any starting state.
We next consider a design in which D1 appears as an element.

D2 �̂ x � a �⇒ (D1(p) � D1(q)) � x � b �⇒ D1(r)

Once again we are interested in calculating distribution points for the after state, which will now depend on the
before state. From the definition of dist and application of the rules for E (D � X) we obtain

dist(D2) = λx • x � a−→ (〈 p, 1 − p 〉, 〈 q, 1 − q 〉) , x � b−→〈 r, 1 − r 〉
To obtain the possible points in distribution space from pre-state x � a, we evaluate dist(D2)(a), yielding the
bunch of two distributions 〈 p, 1 − p 〉, 〈 q, 1 − q 〉. Similarly from pre-state x � b we obtain the single distribution
〈 r, 1 − r 〉.

3 The auxiliary variables of a design being ok and ok′.

116

Probabilistic choice in reversible computation

We now consider how to express the effect of D2 as a relation from states to probability distributions. We first
define for sequences of elementary values x � 〈 x1, x2, . . . 〉 and y � 〈 y1, y2, . . . 〉 the combinator x o y �̂ {x1 �→
y1, x2 �→ y2, . . .}. We can then define (still within our limited example world) the probabilistic relation of a design
as

prel(D) �̂ {x | x ∈ S • x �→ 〈 a, b 〉 o dist(D)(x)}
and again we will generalise this definition presently. For D2 we have:

prel(D2)

= “Defn of prel”

{x | x ∈ S • x �→ 〈 a, b 〉 o dist(D2)(x)}
= “By comprehension of set terms”

{a �→ 〈 a, b 〉 o dist(D2)(a), b �→ 〈 a, b 〉 o dist(D2)(b)}
= “Expanding dist(D2)”

{a �→ 〈 a, b 〉 o (λx • x � a−→ (〈 p, 1 − p 〉, 〈 q, 1 − q 〉) , x � b−→〈 r, 1 − r 〉)(a),
b �→ 〈 a, b 〉 o (λx • x � a−→ (〈 p, 1 − p 〉, 〈 q, 1 − q 〉) , x � b−→〈 r, 1 − r 〉)(b)}

= “Function application and evaluation of guarded bunches”

{a �→ 〈 a, b 〉 o (〈 p, 1 − p 〉, 〈 q, 1 − q 〉), b �→ 〈 a, b 〉 o 〈 r, 1 − r 〉}
= “Bunch lifting of o and �→”

{a �→ 〈 a, b 〉 o 〈 p, 1 − p 〉, a �→ 〈 a, b 〉 o 〈 q, 1 − q 〉, b �→ 〈 a, b 〉 o 〈 r, 1 − r 〉}
= “Applying the sequence combinator o ”

{a �→ {a �→ p, b �→ 1 − p}, a �→ {a �→ q, b �→ 1 − q}, b �→ {a �→ r, b �→ 1 − r}}
We now demonstrate how such a relation from states to probability distributions can be used to calculate an

expectation, under the assumption of a given pre-distribution �. We note that prel(D2) from our above example
has two subsets which have the same domain as prel(D2) and which are functional, namely

F1 � {a �→ {a �→ p, b �→ 1 − p}, b �→ {a �→ r, b �→ 1 − r}}
F2 � {a �→ {a �→ q, b �→ 1 − q}, b �→ {a �→ r, b �→ 1 − r}}

These model deterministic (though probabilistic) operations. Note that, for example, F1(b)(a) is the probability
of F1 going from a before state b to after state a. The probability that F1 will yield x′ � a is the probability of
starting in a and finishing in a plus the probability of starting in b and finishing in a, that is:

�a ∗ F1(a)(a) + �b ∗ F1(b)(a) � �a ∗ p + �b ∗ r

Now letting S � {a, b}, the expectation of expression E after F1 will be:
∑

s∈S,s′∈S

�s ∗ F1(s)(s′) ∗ E[s′/x]

and the expectation of E after D2 will be the bunch of two such terms obtained from F1 and F2.
For a generalised model consider a design D �̂ P � Q whose alphabet consists of a variable or variable list s

taking values from a countable set S � {s1, s2, . . .}. Then the distributions of D are given by

Definition 3 dist(D) �̂ E (D � 〈 [s � s1], [s � s2], . . . 〉)
and the probabilistic relation of D is given by

Definition 4 prel(D) �̂ {s | s ∈ S • s �→ 〈 s1, s2, . . . 〉 o dist(D)(s)}
To model expectations we define a function to return the functions “packed” within a relation:

F (R) �̂ {F | F ⊆ R ∧ dom F � dom R ∧ F ∈ dom R → ran R}

117

B. Stoddart and F. Zeyda

and the expectation of E after D assuming an initial distribution � is:

§ F • F ∈ F (prel(D))−→
∑

s∈S,s′∈S

F (s)(s′) ∗ E[s′/x]

A relational model from states to distributions over states was first proposed by He, Seidel and McIver
[HSM97] and is discussed in [MM04] though formulated as a function from states to sets of distributions.

5. Convexity and refinement

Suppose we have designs D1 and D2 which act on the same state space, and suppose that, for any postcondition
Q, the minimum probability of D2 establishing Q is at least as great as the minimum probability of D1 doing
so. Then, by analogy with standard operational refinement, we might be tempted to say that D1 is refined by
D2. Such a definition of refinement would, however, not be monotonic with respect to program connectives, as
is shown on pages 314–315 of [MM04]. In this section we attempt to provide some intuitive justification for this
result by means of a geometric model, and then show how non-deterministic choice used as provisional choice
must be handled during the refinement process.

We consider a state space with a single variable v which can range over the distinct values a, b and c. A program
acting on this state space has eight possible postconditions: true, false, v � a, v � b, v � c, v �� a, v �� b and v �� c.
Consider a program which offers a non-deterministic choice between six distributions d1, . . . , d6 for assigning a
value to v. In the following table we write the probabilities of each distribution yielding an a, b or c, labelling these
as x, y and z to comply with a geometric interpretation in which we will represent these probabilities as points in
3D space. To the right of them we write lower and upper bound constraints imposed by each distribution.

x y z lower bound upper bound
d1 0.1 0.4 0.5 prob(v � a) � 0.1 prob(v �� a) � 0.9
d2 0.5 0.1 0.4 prob(v � b) � 0.1 prob(v �� b) � 0.9
d3 0.4 0.5 0.1 prob(v � c) � 0.1 prob(v �� c) � 0.9
d4 0.2 0.2 0.6 prob(v �� c) � 0.4 prob(v � c) � 0.6
d5 0.6 0.2 0.2 prob(v �� a) � 0.4 prob(v � a) � 0.6
d6 0.2 0.6 0.2 prob(v �� b) � 0.4 prob(v � b) � 0.6

Table of Distributions.

Distribution d1 has the lowest probability of all distributions for establishing v � a. It imposes the constraints
that, after running our program, the probability of v � a will be at least 0.1. Suppose we choose some value
p < 0.1 and by running our program many times we collect data to test the hypothesis prob(v � a) � p. To do
this we perform trials by repeatedly running our program and recording, after each run, whether v � a is true or
false. If we perform a hypothesis test based on these results it will fail with a probability arbitrarily close to 1 if
we base it on a sufficiently large number of trials. This is true no matter what choices the demon makes. Similarly
any hypothesis that takes some p > 0.9 and posits prob(v �� a) � p will similarly fail. The constraints shown in
the table show the limits outside which such hypotheses will fail with probability arbitrarily close to 1 given a test
based on a sufficiently large number of trials.

We can give a geometric illustration of these distributions and constraints. In the left-hand diagram of Fig. 1
we see a portion of 3D Euclidean space within which we have drawn the triangle with corners at 〈0, 0, 1〉, 〈0, 1, 0〉,
〈1, 0, 0〉. On the plane defined by these points we have x + y + z � 1, and within the triangle we have 0 � x �
1 ∧ 0 � y � 1 ∧ 0 � z � 1. Each point within the triangle corresponds to a unique distribution, with the x, y
and z coordinates representing the probabilities v � a, v � b and v � c.4

In the right-hand diagram of Fig. 1 we have taken the triangle of distributions and drawn it flat on the page.
Now, along the base of the triangle we have y � 0 and at the top we have y � 1. We have drawn lines on the
triangle to mark the points at which y � 0.1 and y � 0.6.

4 A similar geometric representation is given in [MM04], but in their case accommodates sub-distributions. Their space of sub-distributions
is 3D, occupying the tetrahedron with apexes (expressed in conventional tuple notation) at (0, 0, 0), (0, 0, 1), (0, 1, 0) and (1, 0, 0).

118

Probabilistic choice in reversible computation

Fig. 1. The space of distributions over three possible values

?

, ,

, , , ,

Fig. 2. The convex closure and event constraints of a set of distributions

In Fig. 2 we have marked all the restrictions shown in the table of distributions along with the points
corresponding to the distributions d1 to d6 themselves. Joining the points d1 to d6 as shown, we form a convex
hexagon. Taking any distribution within the hexagon and testing whether our program has that distribution is
not bound to fail in the manner previously described, because the demon could make a judicious choice between
his available distributions to provide a distribution at that particular point. We call the region within the hexagon
the convex closure of the points d1, . . . , d6. The convex closure of a set of points in Euclidean space is the smallest
set containing the points themselves, and any point on a straight line between two other points in the closure.

We have also marked a question mark on the diagram of Fig. 2. This lies outside the convex closure of
the distributions, yet does not conflict with the constraints imposed by any postcondition. No test based on the
observation of a particular postcondition can be sure of refuting the hypothesis that we are observing a distribution
situated at this point. We can design an experiment which, based on a sufficient number of observations, is sure
to refute this hypothesis, but we must record all the information available from each trial. If we record, after each
trial, the value of 〈[x � a], [x � b], [x � c]〉, the vector average of these values will approach the given point with
probability 1 over a long sequence of trials. In terms of hypothesis testing, a χ2 test could be used to tell us the
significance of a particular set of results.

If, on the other hand, we modify our program to add a seventh distribution, but we place this new distribution
within the convex closure defined by the other six, there is no experiment based on observing repeated runs of the
program that will be able to detect any difference made by this additional distribution. This consideration has led
McIver and Morgan [MM04] to use convex closure (more specifically convex “up closure” which also deals with

119

B. Stoddart and F. Zeyda

sub-distributions) as the key concept for defining the meaning of probabilistic programs and refinement. They
identify probabilistic programs with their convex closures and define refinement as containment. We now look at
the problems we face in adopting exactly this approach with our reversible language in which non-deterministic
choice serves both as provisional choice in a backtracking context, and as implementor’s choice.

In [ZSD03] we consider refinement in the context of reversible computation, and note the danger of over
refinement in a language where our syntax allows us to express infeasible programs. For example magic is a
design that we can express in our implementation language. It refines any program, but is unlikely to satisfy
any customer. Its run-time behaviour, in an operational sense, is to put execution into reverse. We define “star-
refinement” �∗ designed to guard against the problem of over-refinement by maintaining feasibility during the
refinement process. In the following definition fis(D) is the condition that D is feasible in the current state.

Definition 5

DA �∗ DC �̂ DA � DC ∧ (fis(DA) � fis(DC))

This definition refers to non-probabilistic programs. We will use the idea of preserving feasibility during
refinement to produce a similar definition for the probabilistic case.

For star-refinement to serve as a basis for piecewise and stepwise development, we would like our language
constructs to be monotonic with respect to it. We prove in [ZSD03] that they are so for assumption, guard,
assignment, choice and sequential composition in its second operand.

We can illustrate the case of sequential composition in its first operand with the program:

x :� 1 � x :� 2 ; x � 2−→II

this is equivalent to x :� 2, but if we star-refine its first operand by x :� 1, the resulting program x :� 1 ; x �
2 −→ II is equal to magic. It illustrates a typical backtracking situation in which the non-deterministic choice
of the first operand is acting as provisional choice. An operational interpretation was given earlier. To manage
star-refinement such provisional choice must be identified and not refined.

To give a definition of star-refinement in the probabilistic world we first provide a definition for feasibility of
a probabilistic design D with state variables s. The idea of this definition is that only infeasibility can prevent the
expected value of ⊥ after executing D being ⊥.

Definition 6 fis(D) �̂ E (D � ⊥) � ⊥

The definition of star-refinement in a probabilistic world is as follows:

Definition 7

DA �∗ DC �̂ (PA � PC) ∧
(∀s • conv({dist(PA �⇒ DC)(s)}) ⊆ conv({dist(PA �⇒ DA)(s)})) ∧ fis(DA) � fis(DC)

where conv maps a set of points in distribution space to its convex closure. We require DC to terminate whenever
DA does, we restrict the required subset inclusion to the termination region of DA, and we require the refinement
to be no less feasible than the program it refines.

We add a final note on infinite state spaces. Euclidean space is normally thought of as having a finite number
of dimensions. An infinite-dimensional space with the Euclidean metric loses the important property that the
distance between any two points in the space is well-defined. If we take an n dimensional cube of fixed size δ
(however small), the length of the longest diagonal between vertices of this cube will be δ∗√

n, a term which tends
to infinity with n. Thus in infinite-dimensional space, we have infinite distances within arbitrarily small hypercubes.
However, within distribution space, which is the space of sequences whose elements represent probabilities, we
have the following:

Proposition 1 The Euclidean metric is defined between any two points in infinitely dimensional distribution space
and the square of the distance between such points, say 〈 x1, x2, . . . 〉 and 〈 y1, y2, . . . 〉, which by the Euclidean metric
is �∞

i�1(xi − yi)2, is less than or equal to 2.

120

Probabilistic choice in reversible computation

Proof.
∑∞

i�1(xi − yi)2

� “Expanding each term”
∑∞

i�1(x2
i − 2xiyi + y2

i)

� “Since 2xiyi > 0”
∑∞

i�1(x2
i + y2

i)

� “By associativity of addition”
∑∞

i�1 x2
i +

∑∞
i�1 y2

i

� “Since 0 � xi � 1 ∧ 0 � yi � 1”
∑∞

i�1 xi +
∑∞

i�1 yi

� “Since probabilities sum to 1”

2 �

6. Linking theories

We can link our probabilistic designs to classical designs by means of a Galois connection.

Definition 8 Given a pair of partially ordered sets (posets) A and B, and functions

L ∈ A → B, R ∈ B → A

then L and R form a Galois connection if

β � L(α) ⇔ R(β) � α (1)

L will play the rôle of a transformation from the richer world of probabilistic designs to the world of designs,
and it will lose information in a controlled way by treating probabilistic choice as non-deterministic choice. The
function R will lift a design into the world of probabilistic designs by expressing values as point distributions,
i.e. distributions which give a particular value with probability one. The existence of a Galois connection will
tell us that should we perform the transformation L from a probabilistic design to a design and then perform
the transformation R to take the result back to the probabilistic world, the result will be an abstraction (anti-
refinement) of our original probabilistic design. Performing transformations in the opposite direction, we will be
able to lift a design into the probabilistic world and transfer it back again to the same design, a stronger property
than required for a Galois connection, and the characteristic of a “retract”.

Before applying these ideas to our theory, we give an equivalent characterisation of Galois connections that
is more directly related to the transformations we have just discussed.

Proposition 2 Given posets A, B, a pair of monotonic functions L ∈ A → B and R ∈ B → A form a Galois
connection (L, R) if

R(L(α)) � α (2)
β � L(R(β)) (3)

We prove the given conditions are sufficient for (L, R) to be a Galois connection. This will be enough for our
purposes, though it can also be readily shown that the conditions are also necessary.

121

B. Stoddart and F. Zeyda

Proof. We need to show from the given conditions that (1) holds. We first assume the LHS of (1), that is β � L(α)
and prove the RHS

β � L(α)

⇒ “by monotonicity of R”

R(β) � R(L(α))

⇒ “by (2) and transitivity of �”

R(β) � α

And now we assume the RHS of (1) and prove the LHS

R(β) � α

⇒ “by monotonicity of L”

L(R(β)) � L(α)

⇒ “by (3) and transitivity of �”

β � L(α) �

In the following discussion D and D′ will represent probabilistic designs and D and D′ classical designs. To
characterise the Galois connection between designs and probabilistic designs we use the relational models of
each. For a design D acting on a state variable s ∈ S we define

Definition 9

rel(D) �̂ {s | s ∈ S • s �→ D � s}

and for a probabilistic design we use the definition of prel previously given in Definition 4.

As an example we take the design acting on variable v ∈ {a, b, c} defined by:

D �̂
v � a �⇒

((

v :� a 1
2
⊕ v :� c

)

�
(

v :� b 1
2
⊕ v :� c

)

� II
)

�
v � b �⇒

((

v :� a 1
3
⊕ v :� b

)

�
(

v :� a 1
3
⊕ v :� c

)

�
(

v :� b 1
3
⊕ v :� c

))

calculating dist(D) � E (D � 〈[v � a], [v � b][v � c]〉) we obtain:
{

a �→
(〈

1
2
, 0,

1
2

〉

,

〈

0,
1
2
,

1
2

〉

, 〈1, 0, 0〉
)

, b �→
(〈

1
3
,

2
3
, 0

〉

,

〈

1
3
, 0,

2
3

〉

,

〈

0,
1
3
,

2
3

〉)}

where we are using the distributivity of maplet construction over bunch union to write the contents of the set
in a more compact form. The convex closures of {dist(D)(a)} and {dist(D)(b)} are shown in Fig. 3. The value of
prel(D) is

{

a �→
({

a �→ 1
2
, b �→ 0, c �→ 1

2

}

,

{

a �→ 0, b �→ 1
2
, c �→ 1

2

}

, {a �→ 1, b �→ 0, c �→ 0}
)

b �→
({

a �→ 1
3
, b �→ 2

3
, c �→ 0

}

,

{

a �→ 1
3
, b �→ 0, c �→ 2

3

}

,

{

a �→ 0, b �→ 1
3
, c �→ 2

3

})}

We define the transformation L, applicable to any probabilistic design D by

Definition 10

L(D) �̂ µD • s �→ s′ ∈ rel(D) ⇔ ∃p • s �→ p ∈ prel(D) ∧ p(s′) > 0

122

Probabilistic choice in reversible computation

Fig. 3. The convex closures of {dist(D)(a)} and {dist(D)(b)}

which for our example yields

rel(D) � {(a, b) �→ (a, b, c)}
which is a set of six elements expressed in more compact form using distributivity of maplet construction over
bunch union. From state v � a we can obtain after states of v � a or v � b or v � c, as we can from state v � b.
From state v � c D is infeasible. The design D is

D �̂ v ∈ {a, b} �⇒ (v :� a � v :� b � v :� c) (4)

We define the transformation R, applicable to any design D by

Definition 11

R(D) �̂ µD′ • s �→ p ∈ prel(D′) ⇔ ∃s′ • s �→ s′ ∈ rel(D) ∧ p(s′) � 1

which for our example yields

prel(D′) � {(a, b) �→ ({a �→ 1, b �→ 0, c �→ 0}{a �→ 0, b �→ 1, c �→ 0}{a �→ 0, b �→ 0, c �→ 1})} (5)

and the definition of D′ would be exactly that given for D in Eq. 4 above, the difference being that we are now
interpreting this definition in terms of our probabilistic model. The value of dist(D′) is

{(a, b) �→ (〈 1, 0, 0 〉, 〈 0, 1, 0 〉, 〈 0, 0, 1 〉)}
We now check the Galois connection requirement R(L(D)) �∗ D, i.e. D′ �∗ D. The assumption and feasibility

of D′ and D are true so we need consider only the containment of convex closures, i.e.

∀s • conv({dist(D)(s)}) ⊆ conv({dist(D′)(s)})
we have {dist(D′)(a)} � {〈 1, 0, 0 〉, 〈 0, 1, 0 〉, 〈 0, 0, 1 〉}, i.e. the point distributions which form the vertices of
distribution space. Their convex closure is the whole of distribution space and must therefore contain the convex
closure of {dist(D)(a)}. Similar remarks apply to b, whereas for c the containment is satisfied because the convex
closures are empty, both operations being infeasible in this case.

We argue the general case that R(L(D)) �∗ D informally. The transformations L and R do not alter the
assumption or feasibility of a design, so we are concerned only with the containment of convex closures of
distributions. We recall that each dimension of distribution space corresponds to a particular value within the
state space. We can eliminate dimensions of distribution space associated with impossible after state values. For
the remaining dimensions and any before state s, the convex closure of {dist(D′)(s)} will be the whole of the
remaining distribution space, and must therefore contain the corresponding convex closure of {dist(D)(s)}

Now consider the second Galois connection requirement D �∗ L(R(D)). We take D as defined in Eq. 4, and
for D′ � R(D) we have prel(D′) as given by Eq. 5. Letting D′ � L(D′) we have from Definition 10 that

rel(D′) � {(a, b) �→ (a, b, c)}
and thus D′ � D, i.e. L(R(D)) � D. Again, we argue informally, this result also holds in general since the effect
of R is to lift each after state of D into a point distribution, and the effect of L is to return this point distribution
to its associated value.

123

B. Stoddart and F. Zeyda

The importance of the retract is that it confirms in a general sense that when reasoning about the prospective-
value effects of a design we can reason about probabilistic choice as though it were non-deterministic choice, and
that, in so doing, we will be reasoning about an abstraction of our original probabilistic design. This, indeed,
is the impact of the property R(L(D)) �∗ D. We can also say, from the property L(R(D)) � D that the theory
of designs is a sub-theory of probabilistic designs, in that any reasoning about the prospective-value effect of
probabilistic designs that do not involve probabilistic choice will correspond with reasoning about the effect of
corresponding classical designs.

7. Interactions between demonic and probabilistic choice

Suppose we have designs D1 �̂ x :� a � x :� b and D2 �̂ y :� c p⊕ y :� d , where a, b, c and d are
constants. At first glance, D1 and D2 appear to be independent in terms of their effects, and we might suppose
that D1 ; D2 � D2 ; D1. However, as both McIver and Morgan [MM04] and He and Sanders [HS06] have noted,
this is not the case, and instead we have D2; D1 �∗ D1; D2. In effect, to reflect implementor’s choice we
need to characterise D2 ; D1 (where the implementor’s choice follows the probabilistic assignment) so that the
implementor’s choice can be made in a manner that is dependent on the current state. We will see how this works
in our formalism in a moment. Then we will consider why we might want, and how we can formulate, rules to
give “oblivious non-determinism”, a blind form of interaction.

To show D1 ; D2 �� D2 ; D1 we order the possible values of x �→ y as a �→ c, a �→ d , b �→ c, b �→ d and
calculate the distributions of x �→ y after D1 ; D2 and D2 ; D1 respectively. For reasons of space we limit ourselves
to the case where a, b, c and d have different values. For D1 ; D2 we then have:

dist(D1 ; D2)

= “Defn of dist (Def. 3)”

λx, y • E (D1 ; D2 � 〈 [x �→ y � a �→ c)], [x �→ y � a �→ d], [x �→ y � b �→ c], [x �→ y � b �→ d] 〉)
= “Defn of D2, Sequential composition, probabilistic choice and assignment”

λx, y • E (D1 � p ∗ 〈 [x �→ c � a �→ c], [x �→ c � a �→ d], [x �→ c � b �→ c], [x �→ c � b �→ d] 〉 +
(1 − p) ∗ 〈 [x �→ d � a �→ c], [x �→ d � a �→ d], [x �→ d � b �→ c], [x �→ d � b �→ d)] 〉)

= “Evaluation of numerotized predicates and simplification of terms”

λx, y • E (D1 � p ∗ 〈 [x � a], 0, [x � b], 0 〉 + (1 − p) ∗ 〈 0, [x � a], 0, [x � b] 〉)
= “Defn of D1 and choice”

λx, y • p ∗ 〈 1, 0, 0, 0 〉 + (1 − p) ∗ 〈 0, 1, 0, 0 〉, p ∗ 〈 0, 0, 1, 0 〉 + (1 − p) ∗ 〈 0, 0, 0, 1 〉
= “Vector multiplication and addition”

λx, y • 〈 p, 1 − p, 0, 0 〉, 〈 0, 0, p, 1 − p 〉
The two distributions we see in this result correspond to the non-deterministic choice in which the demon has
assigned x :� a and x :� b respectively. We next evaluate the distributions of D2 ; D1.

dist(D2 ; D1)

= “Defn of dist (Def. 3)”

λx, y • E (D2 ; D1 � 〈 [x �→ y � a �→ c], [x �→ y � a �→ d], [x �→ y � b �→ c], [x �→ y � b �→ d] 〉)
= “Defn of D1, Sequential composition, choice and assignment”

λx, y • E (D2 �
〈 [a �→ y � a �→ c], [a �→ y � a �→ d], [a �→ y � b �→ c], [a �→ y � b �→ d] 〉,
〈 [b �→ y � a �→ c], [b �→ y � a �→ d], [b �→ y � b �→ c], [b �→ y � b �→ d] 〉)

= “Evaluation of numerotized predicates and simplification of terms”

λx, y • E (D2 � 〈 [y � c], [y � d], 0, 0 〉, 〈 0, 0, [y � c], [y � d] 〉)
= “Defn of D2, Probabilistic choice and evaluation of numerotized predicates”

124

Probabilistic choice in reversible computation

λx, y • p ∗ (〈 1, 0, 0, 0 〉, 〈 0, 0, 1, 0 〉) + (1 − p) ∗ (〈 0, 1, 0, 0 〉, 〈 0, 0, 0, 1 〉)

= “Lifted vector multiplication”

λx, y • (〈 p, 0, 0, 0 〉, 〈 0, 0, p, 0 〉) + (〈 0, 1 − p, 0, 0 〉, 〈 0, 0, 0, 1 − p 〉)

= “Lifted vector addition”

λx, y • (〈 p, 1 − p, 0, 0 〉, 〈 p, 0, 0, 1 − p 〉, 〈 0, (1 − p), p, 0 〉, 〈 0, 0, p, 1 − p 〉)

Here, where demonic choice follows probabilistic choice, we obtain a lambda expression whose body is a bunch of
four elements. The first and fourth are those obtained from our analysis of D1 ; D2, and correspond to the demon
assigning x :� a and x :� b respectively. The second and third elements, which we refer to as “hybrid terms”,
correspond to demonic choices made according to the current state. For example the element 〈 p, 0, 0, 1 − p 〉
corresponds to the demon assigning x :� a when y � c and x :� b when y � d . We can see that we need this
element in our result if we recall that an operation is the demonic choice of all its operational refinements, and:

x :� a � x :� b � y � c �⇒ x :� a � y �� c �⇒ x :� b

We also note that the new elements are not in the convex closure of those found previously, so that we have
D2 ; D1 �∗ D1 ; D2 but not vice versa.

McIver and Morgan [MM04] discuss a number of alternatives to their main expectation calculus, one of
which is a programming logic of distributions. This is based on Hoare triples, with both the pre and post-
judgements being over distributions. This formalism exhibits some different properties, one of which is that
non-deterministic choice becomes blind with respect to the current state. “When we lift the whole semantic
structure up to distributions, from states, the demonic choice loses the ability to see individual states: it can only
see distributions.. There are circumstances in which such oblivious non-determinism is the behaviour we are trying
to capture, for example when we are dealing with concurrency or modularity in which separation of processes,
or information hiding, we protect part of the state from being read freely by other parts of the system”.

To approach the formulation of oblivious choice we consider the interaction of probabilistic and demonic
choice illustrated above and note that the interaction between the two forms of choice comes from hybrid terms,
i.e. the addition of terms which originally arose from two different non-deterministic choices. To eliminate them
we replace the probabilistic choice in our language with an alternative we refer to as “random choice”, where the
random choice between D1 and D2 which chooses D1 with probability p and D2 with probability 1 − p will be
represented by D1 p� D2.

Definition 12 For E being elementary, null or ⊥ random choice is identical to probabilistic choice:

E (D1 p� D2 � E) �̂ E (D1 p⊕ D2 � E) when card(E) � 1 or E � ⊥

Otherwise we demand that random choice distributes through probabilistic choice, namely for any bunches E
and F we have

E (D1 p� D2 � E, F) �̂ E (D1 p� D2 � E), E (D1 p� D2 � F)

If we now take D1 �̂ x :� a � x :� b and D2 �̂ y :� c p� y :� d , we can use the method of extracting the
distributions of D1; D2 and D2; D1 to show D1; D2 � D2; D1; the non-deterministic choice in D1 has become
oblivious of state.

It may seem strange that we obtain oblivious non-deterministic choice by changing our conception of how
probabilistic choices are made, and we will investigate this further. We now consider what we call “random
designs” which may be written with the connectives of classical designs plus random choice. They exclude any
use of the probabilistic choice operator p⊕ .

Proposition 3 For any random design D, prospective value calculations distribute through bunch union, that is:

E (D � E, F) � E (D � E), E (D � F)

125

B. Stoddart and F. Zeyda

Proof. Proof is by structural induction over the constructs of random designs. We consider just some constructs
to show the general approach. We also omit special case analysis for E or F being ⊥ or null. As usual, assignment
and skip provide base cases. For skip we have

E (II � E, F)

= “Rule for skip”

E, F

= “Rule for skip applied separately to E and F”

E (II � E), E (II � F)

As examples of constructs which appeal to the inductive case we consider first the guard construct

E (g �⇒ D � E, F)

= “Rule for guard”

g −→E (D � E, F)

= “inductive case”

g −→ (E (D � E), E (D � F))

= “Distributivity of bunch guards, g −→ (E, F) � g −→E, g −→F”

g −→E (D � E), g −→E (D � F)

For sequential composition we have

E (D1; D2 � E, F)

= “Rule for sequential composition”

E (D1 � E (D2 � E, F))

= “Inductive case on D2”

E (D1 � (E (D2 � E), E (D2 � F)))

= “Inductive case on D1”

E (D1 � E (D2 � E)), E (D1 � E (D2 � F))

= “Rule for sequential composition”

E (D1; D2 � E), E (D1; D2 � F)

For random choice assuming 0 < p < 1 we have

E (D1 p� D2 � E, F)

= “Rule for random choice”

E (D1 p� D2 � E), E (D1 p� D2 � F)

Here we make no appeal to the inductive case; the definition of random choice has been chosen precisely to
make it work as an additional base case. �

Given Proposition 3 we can readily prove the following proposition which captures the oblivious nature of
non-deterministic choice in the context of a random design.

Proposition 4 Within a random design sequential composition distributes through non-deterministic choice, that is
for any random designs D1, D2, D3 and expression E

E (D1 ; D2 � D3 � E) � E (D1; D2 � D1; D3 � E)

where we remind the reader that choice binds more tightly than sequential composition.

126

Probabilistic choice in reversible computation

Proof. E (D1 ; D2 � D3 � E)

= “Rule for sequential composition”

E (D1 � E (D2 � D3 � E))

= “Rule for choice”

E (D1 � (E (D2 � E), E (D3 � E)))

= “By Proposition 3”

E (D1 � E (D2 � E)), E (D1 � E (D3 � E))

= “Rule for sequential composition applied to each of the two terms in the bunch union”

E (D1; D2 � E), E (D1; D3 � E)

= “Rule for choice”

E (D1; D2 � D1; D3 � E) �

In Proposition 4 the oblivious nature of non-deterministic choice is captured by the property that in any sequential
program expressed as a random design any non-deterministic choice can be made at the start of the program.
McIver and Morgan describe oblivious choice in exactly this way in [MM04], where, as we have noted, they obtain
it in a programming logic of distributions.

We return to the question of why we obtain oblivious non-determinism by changing the definition of probabil-
istic choice rather than that of non-deterministic choice itself. Proposition 4, which captures the idea of oblivious
choice, was proved by appeal to Proposition 3, which required a proof by structural induction over the progra-
mming connectives of random designs. Thus the oblivious nature of choice within random designs is dependent
not only on the definition of choice itself, but also on the properties of the other programming connectives in the
language.

8. Interaction of feasibility and probabilistic choice

For non-probabilistic programs our computational model provides a backtracking interpretation. Non-determ-
inistic choice is seen as provisional choice, with the operational interpretation that attempting to execute a
command of the form g �⇒ D when g is false will cause execution to reverse. Execution will then continue back
to a previous choice construct and then choose a previously untried forward execution path. We use a similar
approach in the case of probabilistic choice; any probabilistic choice that leads to infeasibility will be revised on
reverse execution. We can exploit this behaviour in random search algorithms. Such algorithms are particularly
effective where solutions are numerous but clustered together so that an exhaustive and unrandomised search
might traverse most of the search space before encountering any of them. Random search algorithms will sample
different parts of the state space, rather than work their way through it according to some unspecified pattern of
search that might be particularly unhelpful.

We will use probabilistic choice from a set, written as x :⊕ A, in which each element of the set A that provides
a feasible continuation is equally likely to be assigned to x. This is made more precise in the following definition,
which has the restriction of applying only to finite sets. We define the effect of x :⊕ A in terms of its expectation:

Definition 13

E (x :⊕ A � E) �
let A′ � {a | a ∈ A ∧ x :� a � E �� null} and n � card(A′) in

n > 0−→E (x :� choice (A′) 1
n
⊕ (x :⊕ A′ \ {choice (A′)}) � E)

end

127

B. Stoddart and F. Zeyda

In the following proposition we consider the case where E takes the form G −→ [P]. Such an expression is
null where G is false, and where P is true takes the value 1 or 0 depending on whether P is true or false.

Proposition 5 Given a finite set A and propositions G and P, define the following subsets of A:

A1 � {a | a ∈ A ∧ (x :� a � G −→ [P]) � 1}
A2 � {a | a ∈ A ∧ (x :� a � G −→ [P]) � 0}

Then

E (x :⊕ A � G −→ [P]) � card(A1 ∪ A2) > 0−→ card(A1)
card(A1) + card(A2)

Proof. A′ and n in the definition of probabilistic choice from a set are here equal to A1 ∪ A2 and card(A1 ∪ A2)
respectively. For n � 0 we have the LHS of the proposition is null from the definition of E (x :⊕ A � E) and
property of guarded bunches that false −→ E � null. The RHS of the definition is false −→ 0/0 which is also
null.

The remaining proof is by induction on the value n. For the base case n � 1 we have from the definition of
E (x :⊕ A � E) that

E (x :⊕ A � G −→ [P]) � x :� choice (A) � G −→ [P]

and the goal of our proof becomes

x :� choice (A) � G −→ [P] � card(A1)
card(A1) + card(A2)

We can relate A′ in the definition of E (x :⊕ A � E) to A1 and A2 of the proposition by A′ � A1 ∪ A2. For
n � 1, A′ contains a single element. We consider cases. For choice (A′) ∈ A1 we have both LHS and RHS of our
conjecture are 1. Otherwise we must have choice (A′) ∈ A2, and both LHS and RHS of the conjecture are 0.

For n > 1

E (x :⊕ A � G −→ [P])

= “Defn of :⊕”

E (x :� choice (A′) 1
n
⊕ (x :⊕ A′ \ {choice (A′)}) � G −→ [P])

= “Defn of p⊕ ”

E (x :� choice (A′) � G −→ [P]) p+ E (x :⊕ A′ \ {choice (A′)} � G −→ [P])

= “Since choice (A′) ∈ A1 ∨ choice (A′) ∈ A2 and by inductive case”

choice (A′) ∈ A1 −→ 1
n + n−1

n ∗ card(A1)−1
card(A1)−1+card(A2) ,

choice (A′) ∈ A2 −→ n−1
n ∗ card(A1)

card(A1)+card(A2)−1

= “By simplification of fractions and using rule g −→a, h−→a = g ∨ h−→a”

choice (A′) ∈ A1 ∨ choice (A′) ∈ A2 −→ card(A1)
card(A1)+card(A2)

= “Since choice (A′) ∈ A1 ∨ choice (A′) ∈ A2”
card(A1)

card(A1)+card(A2) �

8.1. Case study

We consider the specification of a point search:

DA �̂ f ∈ X �→ Y ∧ y ∈ ran (f) � f (x′) � y

and show that it has an implementation

DC �̂ x :⊕ dom (f) ; f (x) � y �⇒ II

128

Probabilistic choice in reversible computation

We need to show E (DC � [f (x) � y]) � 1 under the assumption f ∈ X �→ Y ∧ y ∈ ran (f).

LHS

= “By Defn of DC , Sequential Composition, Guard and Skip”

E (x :⊕ dom (f) � f (x) � y−→ [f (x) � y])

= “By Proposition 1”
card(A1)

card(A1)+card(A2)

where:

A1 � {a | a ∈ dom (f) ∧ (x :� a � f (x) � y−→ [f (x) � y]) � 1}
A2 � {a | a ∈ dom (f) ∧ (x :� a � f (x) � y−→ [f (x) � y]) � 0}
by assignment rule these sets are:

A1 � {a | a ∈ dom (f) ∧ (f (a) � y−→ [f (a) � y]) � 1}
A2 � {a | a ∈ dom (f) ∧ (f (a) � y−→ [f (a) � y]) � 0}

Now observing that an expression with form P −→ [P] never takes the value 0, we see card(A2) � 0. Also since
y ∈ ran (f) there will be some a with a ∈ dom (f) and f (a) � y so card(A1) > 0, hence: card(A1)

card(A1)+card(A2) �
1 and thus LHS � 1 as required. �

We can calculate the probability of obtaining a particular x′ after Dc as follows:

probDC
(x � x′)

= “Defn of probD”

E (DC � [x � x′])

= “Defn of DC , Sequential Composition, Guard and Skip”

E (x :⊕ dom (f) � f (x) � y−→ [x � x′])

= “By Proposition 1”
card(A1)

card(A1)+card(A2) where

A1 � {a | a ∈ dom (f) ∧ (x :� a � f (x) � y−→ [x � x′]) � 1} and
A2 � {a | a ∈ dom (f) ∧ (x :� a � f (x) � y−→ [x � x′]) �� 1}

by substitution and bunch properties these sets are:

A1 � {a | a ∈ dom (f) ∧ f (a) � y ∧ x � x′}
A2 � {a | a ∈ dom (f) ∧ f (a) � y ∧ x �� x′}

and hence

A1 ∪ A2

= “Set union property {x | P ∧ Q} ∪ {x | P ∧ ¬ Q} � {x | P}”
{a | a ∈ dom (f) ∧ f (a) � y}

= “Since f −1(y) denotes the bunch of elements f maps to y”

{f −1(y)}
For f (x′) � y we have card(A1) � 1 and for f (x′) �� y we have card(A1) � 0, and noting that since A1 and A2

are disjoint card(A1) + card(A2) � card(A1 ∪ A2) we have

probDC
(x � x′) = card(A1)

card(A1 ∪ A2)
= [f (x′) � y]

card {f −1(y)}

129

B. Stoddart and F. Zeyda

a result that tells us it is impossible to obtain an x′ for which f (x′) �� y and that each value for which f (x′) � y is
equally likely to be obtained.

9. Conclusions and future work

We have added probabilistic choice to our design-based theory of reversible computation. In our original theory we
gave rules, defined over the syntactic constructs of our language, which give the prospective values an expression
could take after an operation is executed. The rules were proved from a closed-form definition. In this paper
we introduce probabilism by adding probabilistic choice and converting our prospective-value rules to yield
expectations. We do not give a full semantic justification for our rules here, but they have certain properties which
provide a level of confidence in their correctness and indicate how that confidence could be further increased.
First, for designs which do not contain probabilistic choice, expected values reduce to prospective values. Second,
we use our rules for expectation to extract the distributions associated with a design and to express its associated
relation. That in turn, is used to obtain a derivation of expectations from relations, closing a circle that could be
used to validate our expectation calculus with respect to a relational model.

Refinement is defined in terms of the containment of convex closures in distribution space. However, since
our approach allows the expression of possibly infeasible operations, we must qualify our refinement rule with
an additional predicate that prevents over-refinement, i.e. refinement to the point of infeasibility.

We are able to link our new probabilistic designs to non-probabilistic designs by a Galois connection. To
transform from the richer theory of probabilistic designs to standard designs we treat probabilistic choice as
non-deterministic choice. The reverse transform lifts values into point distributions. The existence of the Galois
connection means we can apply standard reasoning to probabilistic designs by treating probabilistic choice as
non-deterministic choice.

In our formulation we find the same, initially counter-intuitive, interaction between probabilistic and demonic
choice as reported by other workers. On reflection, this interaction is necessary and derives from the demon’s ability
to make a choice that depends on the current state. Sometimes, however, an oblivious form of non-determinism
is required, and we give an alternative formulation which achieves this.

An important aspect of our approach is that probabilistic choice is governed by feasibility. Operationally,
a probabilistic choice may indeed select a continuation which is not feasible, but this will result in execution
reversing back to the point of choice, and another alternative being selected if one is available. A short case study
is provided to show how this interaction between feasibility and probabilistic choice may be exploited in terms
of practical programming.

One aspect omitted from this paper, apart from one brief remark, is the alphabetisation of probabilistic
relations. This cannot be expressed solely in terms of predicates on before states and after states, since that
can only describe homogeneous relations. We therefore need to introduce a new after-state variable ranging
over distributions. The elaboration of these predicates and the rules for their combination over the syntactic
constructs of our language remains as future work. Other “unfinished business” includes a formal exploration of
the monotonicity properties of probabilistic star-refinement and an exploration of a link between our language
with oblivious non-determinism and other languages which exhibit the same property.

Acknowledgments

We thank the referees for their careful and patient reading of our original text and for their many invaluable
comments.

References

[AM02] Abrial J-R, Mussat WJ (2002) On using conditional definitions in formal theories. In: ZB 2002: Formal Specification and
Development in Z and B, Vol 2272. Lecture Notes in Computer Science. Springer, Heidelberg

[Ben73] Bennett C (1973) The logical reversibility of computation. IBM J Res Dev 6
[Ben82] Bennett C (1982) The thermodynamics of computation. Int J Theor Phys 21:905–940
[dH01] den Hartog J (2001) Probabilistic extensions of semantic models. PhD thesis, IPA, Amsterdam
[Fey96] Feynman RP (1996) Lectures on computation. Westview, Boulder
[Flo67] Floyd RW (1967) Nondeterministic algorithms. J ACM 14(4):636–644

130

Probabilistic choice in reversible computation

[Heh81] Hehner ECR (1981) Bunch theory: a simple set theory for computer science. Inf Process Lett 12(1):26–30
[Heh93] Hehner ECR (1993) A practical theory of programming. Texts and Monographs in Computer Science. Springer, Heidelberg
[HS06] He J, Sanders JW (2006) Unifying probability. In: First international symposium on unifying theories of programming, UTP

2006, Vol 4010. Lecture Notes in Computer Science. Springer, Heidelberg, pp 173–199
[HSM97] He J, Seidel K, McIver A (1997) Probabilistic models for the guarded command language. Sci Comput Program 28(2–3):171–192
[Lan61] Landauer R (1961) Irreversibility and heat generated in the computing process. IBM J R D 5
[MM04] McIver A, Morgan CC (2004) Abstraction, refinement and proof for probabilistic systems. Springer, Heidelberg
[Mor88] Morgan CC (1988) The specification statement. ACM Trans Program Lang Syst 10(3):403–419
[Nel89] Nelson G (1989) A generalization of Dijkstra’s calculus. ACM Trans Program Lang Syst 11(4):517–561
[SDG99] Stoddart WJ, Dunne SE, Galloway AJ (1999) Undefined expressions and logic in Z and B. Form Methods Syst Des 15(3)
[Sto06] Stoddart WJ (2006) The reversible virtual machine. User and technical manuals, University of Teesside, UK
[SZL06] Stoddart WJ, Zeyda F, Lynas AR (2006) A design-based model of reversible computation. In: UTP 2006, First international

symposium on unifying theories of programming, Vol 4010. Lecture Notes in Computer Science, Springer, Heidelberg, pp
63–83

[VWar] Varacca D, Winskel G (2007) Distributing probability over nondeterminism. Mathematical Structures in Computer Science
(in press)

[Zey07] Zeyda F (2007) Reversible computation in B. PhD thesis, University of Teesside
[ZSD03] Zeyda F, Stoddart WJ, Dunne S (2003) The refinement of reversible computations. In: RCS’03: 2nd International workshop

on refinement of critical systems: methods, tools and developments
[ZSD05] Zeyda F, Stoddart WJ, Dunne S (2005) A prospective-value semantics for the GSL. In: ZB 2005: Formal specification and

development in Z and B, Vol 3455. Lecture Notes in Computer Science, Springer, Heidelberg, pp 187–202
[Zul01] Zuliani P (2001) Logical reversibility. IBM J R D 45(6)

Received 12 November 2006
Revised 4 June 2007
Accepted 22 August 2007 by T S E Maibaum

131

Published online 11November 2007

	A unification of probabilistic choice within a design-based model of reversible computation
	Abstract
	1. Introduction
	2. Mathematical preliminaries
	2.1. Bunches
	2.2. Precedence and parsing

	3. Reversibility, non-determinism and backtracking
	4. Probabilistic choice and expected values
	5. Convexity and refinement
	6. Linking theories
	7. Interactions between demonic and probabilistic choice
	8. Interaction of feasibility and probabilistic choice
	9. Conclusions and future work
	Acknowledgments
	References

