
DOI 10.1007/s00165-006-0019-y
BCS © 2007
Formal Aspects of Computing (2007) 19: 225–241

Formal Aspects
of Computing

Construction and analysis of ground models
and their refinements as a foundation
for validating computer-based systems
Egon Börger
Dipartimento di Informatica, Università di Pisa, 56125 Pisa, Italy.
E-mail: boerger@di.unipi.it

Abstract. We explain why for the verified software challenge proposed in Hoare (J ACM 50(1):63–69, 2003), Ho-
are and Misra (Verified software: theories, tools, experiments. Vision of a Grand Challenge project. In: [Meyer05])
to gain practical impact, one needs to include rigorous definitions and analysis, prior to code development and
comprising both experimental validation and mathematical verification, of ground models, i.e., blueprints that
describe the required application-content of programs. This implies the need to link via successive refinements the
relevant properties of such high-level models in a traceable and checkable way to code a compiler can verify. We
outline the Abstract State Machines (ASM) method, a discipline for reliable system development which allows
one to bridge the gap between informal requirements and executable code by combining application-centric
experimentally validatable system modelling with mathematically verifiable stepwise detailing of abstract models
to compile-time-verifiable code.

Keywords: System analysis; Validation and certification; Abstract State Machine; ASM ground model (golden
model); ASM refinement; Verified software challenge

1. Introduction

By its original definition in [Hoa03], the then called “verifying compiler grand challenge” is focussed on the
correctness of programs: software representations of computer-based systems, to-be-compiled by the verifying
compiler. As a consequence, “the criterion of correctness is specified by types, assertions and other redundant
annotations associated with the code of the program”, where “the compiler will work in combination with other
program development and testing tools, to achieve any desired degree of confidence in the structural soundness
of the system and the total correctness of its more critical components.” The extension in [HM] to what is now
called “verified software grand challenge” has broadened the focus from “a program verifier that would use
logical proof to give an automatic check of the correctness of programs submitted to it” (op.cit. p. 1) to a vision
that forsees the interactive use of “a range of program construction and analysis tools” (ibidem) and mentions the
role of “reliable capture of requirements, and their faithful encoding as specifications” (p. 3) and of “other formal
and informal documentation”(p. 4) besides “assertions internal to the program”. Nevertheless it still shares the
bias towards annotated program texts, as the objects to-be-verified, and towards solving “many of the problems
of programming error that afflict builders and users of software today” (p. 1).

Correspondence and offprint requests to: E. Börger, E-mail: boerger@di.unipi.it

226 E. Börger

However, as has been pointed out already in [Nau85], programming as the “activity of design and implemen-
tation of programmed solutions” for real-world problems is more than the production of annotated program
texts. The correctness of a programmed solution expresses a certain relation between the program and “the
affairs of the world that it helps to handle” (op.cit. p. 256), which means much more than just having a program
text that is “free of all errors of certain clearly specified kinds” [HM, p. 3]. The programming and verification
process, including the inevitable process of program modification during maintenance in response to changing
requirements or environmental conditions, need to refer to models (“theories”) of the relevant part of the real
world and to their properties against which code may be verified. In fact, compilable code for complex systems is
the result of two program development activities, which before the final code yield abstract models that have to
be checked too as correct:

• constructing ground models that capture and fully document the requirements. By ground models we mean
accurate “blueprints” of the piece of “real world” one has to implement, in the semiconductor industry also
called “golden models” [Sem05, p. 26].1 They define, as system reference documentation that binds all par-
ties involved for the entire development and maintenance process, the application-centric meaning of the to-
be-constructed programs, including their interaction with and their dependence on the system and software
environment, in an abstract and precise form, not only prior to coding, but also formulated in terms of the
application domain and at a level of detailing that is determined by the application problem and thus higher
than that of compilable code

• linking ground models to compilable code by a series of refinements, which introduce step by step the details
resulting from the design decisions for the implementation.

We argue in this paper, which is a reelaboration of the position paper [Bör], that a practically relevant ver-
ified software project has to be grounded-in-reality by relating the verification of the correctness of compilable
programs to the

• experimental validation of the application-domain-based semantical correctness for ground models (Sect. 2)
and to the

• mathematical verification of their refinements to compilable code (Sect. 3).

We also show (Sect. 4) that the Abstract State Machine (ASM) method, coming with an appropriate notion of
ground models [Bör03a] and a general notion of ASM refinements [Bör03b] that scales to systems of industrial
size, can establish such a methodical link between problems and their solutions encoded at the end of the develop-
ment chain into compilable code. This leads us to propose some research tasks for the verified software endeavour
(Sect. 5).

2. ASM Ground models (system blueprints): a semantical foundation for program verification

A main point where the verified software challenge as formulated in [Hoa03, HM] must be extended to become of
practical interest concerns the apparently implicit assumption that compilable programs constitute the true defi-
nition of the system they represent. The assumption expresses a widespread belief. However, reading a definition
given by code at best can inform about what the code does, but rarely this conveys also a clear idea about what the
code should do, so that in general code alone cannot “ground the design in reality”. This holds epistemologically
speaking—compilable programs typically provide no correspondence of the kind requested by a basic principle
of Carnap’s analysis of scientific theories [Car56] between the extra-logical theoretical terms appearing in the
code and their empirical interpretation—but also from a practical viewpoint since a documentation merely by
thousands of lines of code or module calls cannot be grasped and controlled reliably a human mind. The negative
(also economical) effect of such a lack of an appropriate system documentation is tangible in numerous famous
system breakdowns, which keep the ominous “software crisis” alive already for four decades, and in the typical
ad-hoc character of the fixes that too often are made without a deep understanding of the system and the real
causes for the failure and therefore cannot guarantee that the next breakdown will not occur soon. See also the
concern expressed in [Bal] that a verifying software project should not be focussed “on the analysis of artifacts
(programs) rather than on their design and construction” since

1 We avoid here the traditional term “specification” because of its frequent narrow understanding as system description by a purely declara-
tive characterization of the desired system properties. System models as we intend them here describe structures and their possible evolution
due to certain operations, so that the model may refer to (possibly internal) states, events and state changes of the system to-be-built.

Construction and analysis of ground models and their refinements as a foundation for validating computer-based systems 227

we cannot expect verification tools to inject high reliability into a program that was not designed with reliability in mind from the beginning.
We must think about reliability at every point in the software production process. If the starting point for verification is that we are given a
program and must attempt to verify it, we are in a losing position because we have so little leverage to affect the design of that program.

Defining what the software for a computer-based system is supposed to do takes place during the requirements
engineering phase2 in which a correct understanding-by-humans of the system-to-be-built has to be achieved,
including an understanding of its interaction with the environment where it is intended to operate, and to be
documented in a binding manner for the entire lifetime of the system (from development through evaluation to
maintenance3) and for all its stakeholders. In [Nau85] the knowledge that is acquired here is interpreted as a
theory, in the sense of Ryle [Ryl63] and Popper [PE77], in our specific case “a theory of how certain affairs of the
world will be handled by, or supported by, a computer program” (ibidem p. 255). Brooks [Bro87] speaks about
“the conceptual construct” or the “essence” of the software system, whose definition precedes the development
of code that is only its machine-managed representation.

We explain in the next two sections why and how what we call “ground models” can represent this “conceptual
construct” of software systems as a reference for its implementation by compilable code (“grounding the design
in reality”) and the code verification, which makes it mandatory to also check that the transformation of ground
models into code (read: by stepwise detailing, called refinement) preserves the application-centric ground model
correctness, as will be discussed in Sect. 3. We anticipate that this correctness preservation through refinements
helps to also solve a problem that is hardly tackled where code is taken as system definition, namely to faithfully
reflect changing requirements and to document their provably correct implementation in a transparent way.

2.1. Three basic semantical ground model attributes and how to establish them during requirements
capture

In this subsection we characterize the three basic semantical properties every ground model has to possess and
describe the three problems every satisfactory framework for ground models has to solve to be appropriate for
establishing those properties for a model proposed as ground model for a system.4

The notoriously difficult and error-prone elicitation of requirements is largely a knowledge-acquisition and
partly a formalization endeavor, to achieve an accurate understanding of the to-be-programmed task and of its
formulation. It has to realize the transition from usually natural-language and loose (so-called “informal”) prob-
lem descriptions to a sufficiently exact (unambiguous in the given context), minimal and concise formulation
in a binding document of “precisely what to build” [Bro87]. It is the role of ground models to represent this
application-problem-determined system content, which constitutes what is also called the software contract. To
establish that a model is indeed a faithful model of the to-be-constructed system, one must find appropriate ways
to explain that the model captures the intended requirements in a way that satisfies the following three basic
semantical model properties (CoCoCo-properties):

• Consistency. This refers to internal consistency and to consistency of different system views (model aspects).
It must guarantee that possibly conflicting objectives in the original requirements have been resolved.

• Correctness. This attribute expresses that each model element reflects the original intentions and that it is
correctly conveyed to the system designer. Paraphrasing Naur [Nau85, p. 256], a ground model must enable
“to explain, for each part of the model text and for each of its overall structural characteristics, what aspect
or activity of the world is matched by it”. Thus, correctness is not achieved by simply translating informal
requirements from a natural language into an accurate mathematical language, but in addition a content-
based justification of the semantical appropriateness of this translation is needed (see below the discussion
of the verification-method problem).

• Completeness. Completeness here means that every semantically relevant feature is present, including the nec-
essary underlying application-domain knowledge, that all contract benefits and obligations are mentioned
and that there are no hidden clauses. Paraphrasing Naur [Nau85, p. 256], “for any relevant aspect or activity
of the world” the ground model must enable “to state its manner of mapping in the model text”. In particular,
a ground model must contain as interface all semantically relevant parameters concerning the interaction
with the environment, and where appropriate also the basic architectural system structure. The completeness

2 We adopt the widespread use of this bombastic term to denote requirements elicitation, capture, analysis and documentation.
3 This implies that at each system change this documentation is updated correspondingly, to stay in sink with the code.
4 Some authors consider these ground model properties and the related problems as belonging to the pragmatics of specifications.

228 E. Börger

property “forces” the requirements engineer to produce a model which is “closed”. Due to the minimality
condition for ground models explained in Sect. 2.2, this closure is modulo some “holes”, which are however
explicitly delineated, including a statement of the assumptions made for them at the abstract level.5 How such
assumptions will be realized depends on the particular case: for external devices it is the role of the devices to
guarantee the assumptions, for internal software components the assumptions have to be guaranteed through
the detailed specification via subsequent refinements. Model “closure” implies that no gap in the understand-
ing of “what to build” is left, that there is no missing requirement—avoiding a typical type of software errors
that are hard to detect at the level of compilable code [R.L03, Fact 25]—and that every relevant portion of
implicit domain knowledge has been made explicit—thus protecting the programmers against error-prone
situations where they are forced to take decisions that fall into the responsibility of domain experts only.

Every solution of the system development task in question has to share these three basic semantical attri-
butes. For ground models one has to be able to establish them directly, without the possibility to derive them from
properties of another model to which the ground model could be related. To establish the CoCoCo-properties for
given models directly requires a framework to solve the following three fundamental methodological problems
concerning communication, verification and validation, for short called CVV-problems.

2.1.1. Communication

First of all ground models must be apt to mediate between the application domain, where the task originates which
is to be accomplished by the system to be built, and the world of models (which ultimately includes code), where
the relevant piece of reality has to be represented. This is largely a language and communication problem between
the software designers and the domain experts or customers—in a multi-disciplinary project they will come from
completely different disciplines and many of them will not have learnt to write or even to read code—the parties
who prior to coding have to come to a common understanding of “what to build”, to be explicitly documented in
a contract containing a model which can be inspected by the involved parties and binds them—once accepted—
for the rest of the system development and maintenance process.6 The language in which the ground model is
formulated must be appropriate to naturally yet accurately express the relevant features of the given application
domain, resulting from what is called domain analysis, and to be understood by the two parties. This includes
the capability to calibrate the degree of precision of the language to the given problem, so as to support the
concentration on domain issues instead of issues of notation. It also means that the modelling language should
come with a general (conceptual and application-oriented) data model together with a general function model
(for a process-oriented definition of the system dynamics) and a general interface concept to represent system
environments (consisting of the system users and of neighboring systems or applications) and state-based system
behaviour, including non-determinism and concurrency.

The communication problem is not restricted to the requirements engineering phase and the parties involved
there. It also appears where different groups, possibly working at different places, or multiple members of a large
group, have to cooperate on the construction of one software system, like engineers, system architects, design-
ers, programmers, testers, maintenance experts, etc. It is crucial for a realistic verified-programs-project to work
with an open yet coherent and accurate linguistic framework that is simple and general enough to solve this
communication problem, following the example of the language of mathematics and exact sciences where formal
expressions (equations, formulae or formal statements), tables, curves, figures, etc., together with natural language
text can form a consistent and in the given context sufficiently rigorous unit. A restriction to the language of
high-level programming languages does not solve the communication problem, as is well explained in [Abr], nor
does the restriction to a specific logic or formal (algebraic or similar) specification language.

5 A frequent case of such “holes” is represented by external technical devices, which interact via sensors and actuators with the software
to-be-built to control them. Here the role of ground models is to define the behaviour of the whole system, as it is supposed to happen in the
real world; the specification of the software control system can be extracted from the ground model. See [ABL96, BBD+96] for an example.
6 This meets a crucial practical concern, as is pointed out in [Par06]: the ground model allows the customers or future system users to
comment upon the system before it is built and to evaluate it after its completion for a verification that it meets the requirements, allowing
the involved parties also to settle disputes that may occur during or after the construction process and to communicate and decide upon
eventual changes (and which party has to pay for them!), when they appear during later development stages.

Construction and analysis of ground models and their refinements as a foundation for validating computer-based systems 229

2.1.2. Verification

The second problem a ground model framework must be well-suited to solve is a verification-method problem. It
is of epistemological nature and stems from the fact that there are no mathematical means to prove the correct-
ness of the transition from an informal to a precise description. Every chain of models, which formalizes given
requirements and comes for each model with a mathematical correctness proof with respect to its predecessor,
must end with one primary model,7 which can be related to the requirements only in a direct way, trying to
reach by inspection some kind of evidence of the desired correspondence between the model and the aspects
and activities of the real world the model is supposed to capture. This relates to Aristotle’s observation in the
Analytica Posteriora that to provide a foundation for a scientific theory no infinite regress is possible and that the
first one of every chain of theories has to be justified by “evident” axioms. Such an “evidence” of correctness is
what ground model inspection has to provide.8 Nothing better can be done, due to the fact that the individual
knowledge acquired by the human during the ground model construction necessarily transcends what is recorded
in the documented product and cannot be encoded in rules, as is well explained in [Nau85, Sect. 4 and 5].

Two kinds of means are needed to establish the CoCoCo-properties for a ground model. To check the complete-
ness property it must be possible to proceed via inspection (review) of ground models by the application-domain
expert,9 where inspection is to be taken in its traditional understanding, which is an “informal” activity but does
not exclude concrete pragmatic rules about the content (specific goals) and the procedure (management) of the
inspection process. But also appropriate forms of domain-specific reasoning, not limited to formal deductions
in a priori determined logic systems, have to be available together with formal reasoning methods to support the
designer in checking the internal consistency of the model, as well as the consistency of different system views.
In particular view consistency often is the result of an involved and complex process of resolving conflicting
objectives in the original requirements.

We believe that these two complementary forms of ground model verification are crucial for a realistic require-
ments-capture method, though in practice reasoning-based checking of ground model properties often is of less
importance than concept-focussed model inspection (see [Win90, Hal90]). Having both forms of ground model
verification provides a framework to extend the verified software project to “fail-proof systems” [HJ], i.e., reliable
systems that may not come with zero-defect code and may be built from unreliable parts.

2.1.3. Validation

The third problem ground models must help to solve is a validation problem. It must be possible to perform repeat-
able experiments where the model behaviour can be observed under given conditions and validated (see [Hei]),
in particular to run relevant scenarios (use cases), providing a framework for

• systematic attempts to “falsify” the model in the Popperian sense [Pop35] against (in Naur’s terms the “theory”
of) the to-be-encoded piece of reality,

• runtime verification and analysis.

This empirical criterion also takes into account that computer-based systems are not purely intellectual arte-
facts but inserted in a real-world environment, which offers itself more to testing methods than to mathematical
verification techniques. Furthermore, use cases often are part of the requirements and thus directly reflectable
through simulations. In case an entire system is conceived as defined by executable specifications of use cases
(see for example [HM01b]), this is captured by the corresponding ground model run segments (simulations). It is
an important technical side-effect that simulations also allow one to define—prior to coding—a precise system-
acceptance test plan and thus to use a ground model in two roles: (1) as an accurate requirements specification
(to be matched by the application-domain expert against the given requirements) and (2) as a test model (to
be matched by the tester against executions of the final code), where we consider environmental conditions as

7 For this reason ground models [Bör95] were originally called primary models [Bör94, Sect. 3].
8 Certainly the epistemological status of the underlying concept of evidence has to and can be clarified. See for example Carnap’s confir-
mation theory or the discussion on the role of axioms in science, e.g. in the controversy between Frege, who held a “platonistic” view, and
Hilbert, who held a “formalistic” position on the role of axioms for a foundation of mathematical theories, see [Bar71].
9 Providing a precise ground against which questions can be formulated, ground models support the Socratic method of asking “ignorant
questions” [Ber95] to check whether the semantic interpretation of the informal problem description is correctly captured by the mapping to
the terms in the mathematical model.

230 E. Börger

part of the requirements.10 These two roles support the combination of runtime verification with automatic test
generation of the type proposed in [ABG+05] and in general of model-based testing [Utt].

2.2. Three basic methodological ground model attributes

By the epistemological role of ground models to relate some piece of “reality” to a linguistic description, what
constitutes a ground model has no purely mathematical definition, though a scientific characterization of the
notion can be given in terms of epistemological concepts which have been elaborated for empirical sciences by
analytic philosophers, see for example [PE77, Ryl63, HM01a, HMC01]. Similarly, there can be (a) no algorithmic
criteria to decide whether a model is a correct ground model, and (b) no algorithmic system of rules one could
follow to construct appropriate ground models, although it is possible to formulate and learn problem-specific
ground model patterns and structuring principles.11 The problem is that the construction of ground models is
an activity of “matching some significant part and aspect of an activity in the real world to the formal symbol
manipulation that can be done by a program running on a computer” [Nau85, p. 253], based on knowledge that
“transcends that which is recorded in the documented products” (read: ground model), as is well explained in
op.cit. p. 256.

What one can do is to formulate methodological properties models must possess to serve as ground models
for computer-based systems. Such properties, together with the semantical CoCoCo-properties and the necessary
adequacy to solve the CVV-problems discussed in the previous section, provide a useful guideline for the choice
of an appropriate ground model language. In the International Technology Roadmap for Semiconductors, where
the word “golden model” is used instead of “ground model”, these models are characterized simply as “models
of the system’s intended behaviour” [Sem05]. This characteristic follows from the CoCoCo-attributes. We add
to it the following three more explicit methodological properties we view as distinctive for models to become
adequate as ground models.12 Ground models should be:

• precise at the appropriate level of detailing, to satisfy the required accuracy exactly, without adding unneces-
sary definitions that would limit the flexibility of multiple correct model instantiations. What is a “satisfactory
degree of exactness” and an “appropriate level of detailing” depends on the modelling task and the related
verification goal, has no general characterization and can be resolved only case by case and on pragmatic
grounds. The required precision has to provide however the basis for validating and verifying the semantical
CoCoCo-properties and thus requires that the modelling framework itself is equipped with a simple yet precise
semantical foundation, a prerequisite for rigorous analysis and reliable tool support.

• minimal (abstract). Minimality means that the model abstracts from details that are relevant either only for
the further design or only for a portion of the application domain which does not influence the system to
be built. Minimality guarantees that the model does not depend on any peculiarity of a possible concrete
implementation so that the solution space of the problem to be solved is not unnecessarily restricted.

• simple (concise) to be understandable and acceptable as contract by the two parties involved, domain experts
and system designers. This property should make ground models manageable for inspection and analysis,
help designers to resolve the “lack of scientific understanding on the part of their customers (and them-
selves)” [Hoa03, p. 66] and enable experts to “clearly explain why . . . systems indeed work correctly” [Abr], an
ability that characterizes the knowledge embodied in the “theory” the professional designer possesses about
the given real-world problem and its solution [Nau85, p. 255–256].

Obviously there can be a multiplicity of different ground models for one system, since there are usually many ways
to abstract from only implementation-relevant details. Also changing requirements can yield different ground
models, see the explanations below. This reflects the intrinsic creativity of defining ground models, an activity
which can never be completely mechanized, although one can learn many rules of thumb. In the case of a reen-
gineering project it can also happen that the code is the ground model, from which a high-level model is to be

10 We do not discuss here the much debated question whether and to which degree a model of the environmental conditions has to be part
of the software itself.
11 The reader who wants to see a simple example illustrating how to construct a ground model out of a loosely described set of requirements
may read [BGR06] and compare it with the other formalizations in the book.
12 We cannot emphasize enough that all these properties have a methodologically defensible meaning, although by their epistemological
nature for none of them can a mathematical (let alone a formal) definition be given.

Construction and analysis of ground models and their refinements as a foundation for validating computer-based systems 231

abstracted—maybe to be shown to be at least in part correctly refined by the existing code—before refining the
abstract model to the new code.

2.3. Language conditions for defining ground models

Unfortunately it is still strongly debated what kind of language is suited to express ground models and which
methods are appropriate for their analysis. To satisfy the above described ground model properties and to serve as
basis for a practical program verification project, neither can the ground model language be confined to the syntax
of some particular logic or specification language nor can the means of analysis be restricted to a priori fixed
rule-based (a fortiori if mechanized) reasoning schemes, contrary to what some formulations in [Hoa03, HM]
seem to suggest and also contrary to the view hold in [Moo] that “the “verification problem” is the theorem
proving problem, restricted to a computational logic”. It would not solve the communication problem since the
thorough training in mathematical logic it requires goes beyond the expertise that can reasonably be expected
from every software practitioner or domain expert. In addition, the purely declarative, non-executable character
which is intrinsic for logical, purely axiomatic system descriptions does not solve the validation problem. In fact,
most of the successful formal method tools, e.g. model checkers or theorem provers, are used for the verification
of internal properties of accurate models or of refinements which relate accurate models, much more than to for-
mulate ground models and to relate them to the encoded piece of reality; see for example the successful practical
applications of the B-method [Abr96, Mat99].

To understand what is needed, the pragmatic approach of applied mathematical sciences can help, where
each time the degree of rigour (read: of formalization or of detailing) used for definitions and proofs is chosen
to suit the problem under study. One has to select a framework that supports intuitive, content-oriented, pre-
cise modelling and reasoning, the way domain experts use it for high-level process-oriented system requirement
descriptions and software practitioners for their work with pseudo-code. The need to be able to tailor ground
models to resemble the structure and to reflect the degree of detail of the targeted real-world problem implies for
the used language to offer natural expressions of broad-spectrum data and process-control features: the ability
to directly speak about arbitrary objects, their properties, their relations with other objects, the operations one
can perform on them under specific conditions.

The well-known mathematical concept of structure, made explicit by Tarski, reflects this general concept of
not necessarily implementable data types, whereas the computational aspect of changing data values is naturally
expressed using dynamic-change expressions (rules) of the form

if Event then Actions

used in describing behavioural processes as well as processes of thought. Rules of this form are omnipresent in
scientific descriptions and occur in particular in UML state or activity diagrams, which are built from branching
(condition checking) nodes and action nodes. Obviously multiple interpretations of how such rules are applied
are in use, but the important thing is that for each use there is a clear definition of the underlying semantical
meaning.

For the sake of generality, Events have to be allowed to express any static or dynamic, process—internal
or environmental properties or relations among the relevant objects. Whether the used expressions belong to a
particular logic is of concern only when one embarks on mechanically simulating runs of abstract models or on
formalizing proofs (for mechanical verifications or proof-theoretic studies). Actions must be usable to describe
any dynamic (typically local) state change using any of the underlying internal or external operations. Not to
miss the needed generality and simplicity, it is important not to divorce the declarative expression of events (rule
guards) from the operational character of state-changing actions.13

2.4. Using ASMs for defining ground models

The language of Abstract State Machines (ASMs), which naturally extend Finite State Machines (FSMs) to work
over arbitrary structures [Bör05],14 uses for the definition of the dynamic behavior sets of rules as above, which at

13 This is exactly the opposite of the view taken in some purely logico-axiomatic approaches, as advocated for example in [Hal97, p.89] where
it is explained that “the most important characteristic of Z, which singles it out from every other formal method, is that it is completely
independent of any idea of computation.”
14 The original definition in [Gur91] is driven by a computation-theoretical concern.

232 E. Börger

each step are executed simultaneously to change the current state into the next state, modulo assumed values for
the monitored environment functions. A complete ASM model consists of its rules together with a definition of
its signature (the collection of data types, which defines the notion of machine states) and a list of all assumptions
made on the environment (the monitored locations), the underlying timing constraints, the data types, the class
of exceptions, but also the computing resources, the users, etc.

• Events are instantiated in ASM rules as arbitrary conditions (of whatever underlying signature for internal or
external environmental locations). This generalizes the firing conditions ctl state � i ∧ in � a of FSM tran-
sitions, which require the FSM to be in a particular internal (control) state i upon reading from a particular
input location a symbol or word a assumed as provided by the environment.15

• Actions are instantiated in ASM rules as sets of Updates of arbitrary memory locations f , which are allowed
to be parameterized by parameters a1, . . . , an of whatever type. Also the new values are allowed to be of
whatever type. This generalizes the effect of FSM instructions, which update exactly two locations yielding an
output value (typically a symbol or word over a given alphabet) and a change of the internal state ctl state.

In ASMs, memory locations and their values are described not by the three FSM locations in, out, ctl state
denoting numbers and symbols, but by arbitrary expressions of arbitrary types, built from arbitrary static and
dynamic internal or external operations that are present in the underlying structure, so that the updates take the
form and the mathematical meaning of array variable assignments f (t1, . . . , tn) :� t. This definition supports the
intuitive understanding of ASMs as virtual machines executing pseudo-code operating on abstract data struc-
tures. For a detailed definition of this semantics of ASMs, including a formalization using inference rules, see the
AsmBook [BS03, Sect. 2.4].

Consequently ASMs turn the intuitive concept of executing activities, consisting of whatever actions trig-
gered under whatever conditions by whatever events, into a precise mathematical notion of the desired generality
and thus constitute a conceptually simple, rigorous framework for building ground models satisfying the nine
properties listed above.

• Using ASMs for ground models solves the language and communication problem due to the simplicity and
generality of the language of ASMs, which uses only the fundamental if then construct of human thought
with a computational interpretation over arbitrary structures that can be easily grasped by everybody who
learnt the general language of science, whether domain expert, system designer or programmer. This com-
bination of generality and simplicity makes it to easy to define within the language specific notations where
these present an advantage, e.g. notations that directly reflect application-domain-characteristic concepts or
operations. For examples of ASM-formulations of specific constructs which characterize some widely used
system description languages see [BS03, Sect. 7.1].

• Using ASMs for ground models solves the verification problem since one can apply to an ASM both stan-
dard (pseudo-) code inspection—for checking the model correctness and completeness with respect to the
problem to be solved—and reasoning to analyze its consistency and other relevant model properties (“asser-
tions as specifications in advance of code” [Hoa03, p. 66]). Due to the flexibility of the language of ASMs,
such properties can be formulated in application-oriented or traditional mathematical terms, still free from
any further burden and restriction that typically derive from additional concerns about a formalization in a
specific logic language underlying a proof calculus one may want to use for logical deduction purposes. The
ASM framework also allows one to apply assertion-based techniques to abstract state-based run-time mod-
els; this combination of so-called declarative or property-based (static logical) and operational (run-time and
state-based) methods avoids the straitjacket of purely axiomatic descriptions. In fact to ASMs one can apply
whatever reasoning means are appropriate, ranging from intuitive considerations to formalized mechanically
checkable proofs within a specific logic calculus. The mathematical framework into which ASMs are embed-
ded does not limit the verification space to check the CoCoCo-properties, neither by Gödel incompleteness
nor by state explosion or similar insufficient-computing-power phenomena. It is important for the practical
success of the ASM method that it advocates a systematic separation of concerns, in particular to separate
design from verification and within verification different degrees of detailing justification chains.16

15 In control-state ASMs as defined in [Bör99], the top level system structure is characterized by FSM-reminiscent control states, which are
sometimes also called modes and represent a particular way of decomposing the set of states into a partioning of subsets of states one can
describe and analyze independently of each other.
16 This pragmatic scientific attitude is in contrast with the widely held belief that “the central concepts in software verification are program
code and formal proofs” [Schb], a view that underlies also the program verification project formulation in [Hoa03, HM].

Construction and analysis of ground models and their refinements as a foundation for validating computer-based systems 233

• The validation problem is solved by the operational pseudo-code character of ASMs, which come with a
standard notion of process, computation or run. Simulations of ground models are used in proofs of run-
time properties and supported by various tools that make large classes of ASMs prototypically executable,
see Sect. 4 or the survey [BS03, Chpa. 8].

• Using ASMs for modelling allows one to construct models that can be shown to possess the three basic
methodological ground model properties. In fact, ASM ground models can be tailored to the required degree
of precision and minimality by the possibility the language of ASMs—essentially the language of mathe-
matics—offers to fine-tune the description of the objects of discourse and their transformations (the “data
types”) to the intrinsic abstraction level of the application, without a priori concern about their executable
encoding (which remains a matter of further refinements, see Sect. 3). As pointed out above, ASMs have a
precise semantical foundation, which covers also non-determinism and concurrent execution and provides
a scientific basis for a rigorous analysis and understanding of ASMs as (possibly distributed) pseudo-code.
ASM ground models allow one to achieve conciseness mainly by avoiding any extraneous encoding and by
reflecting “directly”, through the abstractions, the relevant structure discerned in the real-world problem.

Furthermore, the abstract character of ASM ground models can be exploited to guide the user in the appli-
cation-domain-driven selection of test cases, exhibiting in the specification the relevant environment parts and the
properties to be checked, showing how to derive (specify or generate) test cases from use cases. The mathematical
character of ASMs allows one to also evaluate the test coverage of thus defined test cases. The operational char-
acter of ASMs supports defining in abstract run-time terms the expected system effect on samples—the oracle
definition which can be used for static testing, where the code is inspected and compared to the specification, but
also for dynamic testing where the execution results are compared. In particular in this way one can integrate into
the ASM method powerful verification techniques for automating the test case generation, like model-checking,
SAT solvers and constraint satisfaction algorithms.17 By appropriately refining the oracle, one can also specify
and implement a comparator by determining, for runs of the ground model and the final code, what are the states
of interest to be related (spied), the locations of interest to be watched, and when their comparison is considered
successful (the test equivalence relation). These features for specifying a comparator, using the knowledge about
how the oracle is refined, reflect the ingredients of the general notion of ASM refinements we discuss in Sect. 3.

To provide also some experimental credentials for the statement that the language of ASMs is appropriate as
ground model language, we provide in Sect. 4 pointers to some successful applications of ASM ground models
for the design and analysis of complex systems and conclude this section with pointers to two examples through
which the reader may check our claim. An elementary example, illustrating the construction of ASM ground
models out of informal requirements, can be found in [BGR06] and concretely compared to solutions using other
modeling frameworks presented in the same book [FH06]. The most advanced publicly accessible real-life case
study, which involves all the ground model and refinement capabilities offered by the ASM method, for both
design and analysis, is the Jbook [SSB01]. There, ASM ground models are developed for interpreters of Java
and of the Java Virtual Machine (JVM), including a bytecode verifier, together with a high-level definition of a
Java-to-JVM compiler. This compiler, which is proven to be correct for legal and well-typed programs, is refined
to a form of certifying compiler by annotating the instructions issued by the compiler with type information
that can be used to prove the typability of the generated code [SSB01, Theorem 16.5.1]. This is a mathematically
accurate form of Sun’s off-device pre-verification (without inlining subroutines) and guarantees at compile time
that the generated code will pass the bytecode verifier. Apparently it still represents a challenge for current com-
puter-based theorem proving systems to mechanize such bytecode verification proofs for bytecode compiled from
Java programs and to reuse those proofs for the compilation of C# programs to CLR code (see the corresponding
refined ASM ground models constructed in [BFGS05, FB05]). Encouraging examples for computer-based proofs
of Java/JVM-subset properties can be found in [BGLC02, Moo03, KN06].

3. ASM refinements: management of design decisions, their verification and documentation

Typically there is more than one step to go from a ground model to compilable code. For example often a ground
model—the requirements specification—is first enriched to a design specification, which is then implemented by
code. “. . . the specification of a large system is not a monolithic text but rather a succession of more and more

17 For the formulation of concrete research challenges in this direction see [J.R].

234 E. Börger

precise mathematical models taking account gradually of the requirements of the future system” [Abr]. The char-
acteristic phenomenon that occurs during this process, which eventually yields the definition of the compilable
code, is known as “explosion of ‘derived requirements’ (the requirements for a particular design solution), caused
by the complexity of the solution process” and encountered “when moving from requirements to design” [R.L03,
Fact 26]. The numerous and often orthogonal design decisions taken during this process have to be integrated
into the link one has to establish between the ground model analysis and the verification of compilable code.

The question is how to link the ground model through the intermediate models to compilable code in such a
way that the code verification by the compiler can be traced back to the validation or verification of the ground
model and vice versa. This is the role of the classical refinement method [Wir71, Dij72]. We have generalized
the underlying refinement concept to ASMs (see [Bör03b] for a recent survey) with the goal to support practical
system validation and verification techniques that scale up to complex systems and make changing requirements
traceable.

Differently from most refinement concepts in the literature, ASM refinements are not necessarily syntax-
directed but may concern different components which are all affected by some common feature, e.g. security.
Nevertheless also particular forms of refinement can be defined which are compositional, for example analogues
of the syntax-directed refinement notions of the B-method [Abr96]. ASM refinements allow one to split checking
complex detailed properties into a series of simpler checks of more abstract properties and their correct refinement,
following the path of design decisions chosen to rigorously link through various levels of abstraction the system
architect’s view (at the abstraction level of a blueprint) to the programmer’s view (at the level of detail of com-
pilable code). In addition, successive ASM refinements provide a systematic code development documentation,
which supports design validation (simulation and inspection), reuse and maintenance and includes behavioural
information by state-based abstractions, thus leading to “further improvements to quality and functionality of
the code . . . by good documentation of the internal interfaces” [Hoa03, p. 66]. The practitioner can use ASM
refinements for reasons mentioned already in the previous section for ASM ground models: namely the transition
from one to a more refined model, or vice-versa in the case of a reengineering project, can be fine-tuned to the
new details one wants to introduce, without being hindered by any notational overhead.

Using a chain of stepwise refined models enhances the designer’s activity, in particular when it comes to react
to so-called changing requirements. Having stepwise refined models at their disposal enables the designer and
the system maintenance expert to exactly localize the “right” level of abstraction where a desired change has to
be performed and from where it has to be transferred to the more detailed lower levels. This supports an explicit
tracing of requirements changes from the ground model to code, in a particularly simple way when the changes
are purely incremental so that they can be captured by conservative model extensions. Purely incremental require-
ments changes give rise to multiple ground models, each one reflecting one set of requirements. “Freezing” a set
of requirements in one model does not prevent changing that set and formalizing it by a refined ground model
as more desired details become visible. This is the place where the ideas about “regression verification” proposed
in [SG] can be used. A good refinement strategy aims in particular at encapsulating orthogonal features, which
can be added incrementally to models in different ways. Therefore a sequence of successive changes down to
executable code, triggered by changing a particular feature at a specific level of abstraction, does not produce
extraneous additional work but is nothing else than introducing all the details which are needed anyway, however
in fully documented single steps rather than in one fell swoop. This makes it easier to understand the changed
implementation details and to control their effect on the entire system.

As observed in [Abr], collections of models at different refinement levels can be exploited also for an efficient
composition of large systems, namely by selecting the models that are appropriate for the needed software system
features, possibly adapting them by refining them further or implementing them in a particular programming
language, with tools and theories that suit these features and facilitate their verification along the lines of the
model composition. An example from the area of programming languages is found in the incremental develop-
ment of models for Java and the JVM in orthogonal layers (see [SSB01]), similarly for C# and the .NET CLR
(see [BFGS05, FB06]), supporting instruction-wise descriptions of individual programming constructs one can
put together as needed for a language definition; see also [BS04] where interpreters for Java and C# are derived by
instantiating a general scheme for the interpretation of object-oriented language features. Such a component-wise
system definition also supports verifiable definitions of the structure and the semantical content of managed code,
moving away from the classical static compile-link-run model of language semantics to where meta-programming,
generative programming and multistage programming are leading, namely to work with VM-based (interpreted
or compiled) managed code and managed execution. Programs are composed and generated from separately
definable code patterns, code fragments written in different languages and/or components according to directives
expressed through metadata, instantiating a general problem solution to particular cases of the problem.

Construction and analysis of ground models and their refinements as a foundation for validating computer-based systems 235

Fig. 1. The ASM refinement scheme

We now briefly explain the definition of the ASM refinement scheme.

3.1. ASM refinement scheme

In choosing how to refine an ASM M to an ASM M∗, one has the freedom to define the following items, as
illustrated by Fig. 1:

• a notion (signature and intended meaning) of refined state,
• a notion of states of interest and of correspondence between M-states S and M∗-states S∗ of interest, i.e. the

pairs of states in the runs one wants to relate through the refinement, including usually the correspondence
of initial and (if there are any) of final states,

• a notion of abstract computation segments τ1, . . . , τm, where each τi represents a single M-step, and of cor-
responding refined computation segments σ1, . . . , σn, of single M∗-steps σj , which in given runs lead from
corresponding states of interest to (usually the next) corresponding states of interest (the resulting diagrams
are called (m, n)-diagrams and the refinements (m, n)-refinements),

• a notion of locations of interest and of corresponding locations, i.e. pairs of (possibly sets of) locations one
wants to relate in corresponding states,

• a notion of equivalence ≡ of the data in the locations of interest; these local data equivalences usually accu-
mulate to a notion of equivalence of corresponding states of interest.

Once the notions of corresponding states and of their equivalence have been determined, one can define that
M∗ is a correct refinement of M if and only if every (infinite) refined run simulates an (infinite) abstract run with
equivalent corresponding states. More precisely: fix any notions ≡ of equivalence of states and of initial and final
states. An ASM M∗ is called a correct refinement of an ASM M if and only if for each M∗-run S∗

0 , S∗
1 , . . . there

are an M-run S0, S1, . . . and sequences i0 < i1 < . . . , j0 < j1 < . . . such that i0 � j0 � 0 and Sik ≡ S∗
jk for each k

and either

• both runs terminate and their final states are the last pair of equivalent states, or
• both runs and both sequences i0 < i1 < . . ., j0 < j1 < . . . are infinite.

The M∗-run S∗
0 , S∗

1 , . . . is said to simulate the M-run S0, S1, The states Sik , S∗
jk are the corresponding states of

interest. They represent the end points of the corresponding computation segments (those of interest) in Fig. 1, for
which the equivalence is defined in terms of a relation between their corresponding locations (those of interest).
The scheme shows that an ASM refinement allows one to combine in a natural way a change of the signature
(through the definition of states and of their correspondence, of corresponding locations and of the equivalence of
data) with a change of the control (defining the “flow of operations” appearing in the corresponding computation
segments), thus integrating declarative and operational techniques and classical modularization concepts.

This refinement definition taken from [Bör03b] generalizes other more restricted refinement notions in the
literature, as analysed in [Sch01a, Sch05], and scales to the controlled and well documented development of large

236 E. Börger

systems. In particular it supports modularizing ASM refinement correctness proofs aimed at mechanizable proof
support, see [Sch01a, SSB01, BD96, BR95].

4. Some work done using the ASM method

The proposal to use Abstract State Machines (a) as precise mathematical form of ground models and (b) for
a generalization of Wirth’s and Dijkstra’s classical refinement method [Wir71, Dij72] to a practical framework
supporting a systematic separation, structuring and documentation of orthogonal design decisions goes back
to [Bör90a, Bör90b, Bör94]. It was used there to define what became the ISO standard of Prolog [BD90]. Since
then numerous case studies provided ground models for various industrial standards, e.g. for the forthcoming
standard of the Business Process Execution Language for Web Services [RFV06], for the ITU-T standard for
SDL-2000 [GGP03], for the de facto standard for Java and the Java Virtual Machine [SSB01], the ECMA standard
for C# and the .NET CLR [BFGS05, SB04, FB06], the IEEE-VHDL93 standard [BGM94]. The ASM refinement
method [Bör03b] has been used in various ASM-based design and verification projects surveyed in [Bör02].

The ASM method has been linked to a multitude of analysis methods, in terms of both experimental valida-
tion of models and mathematical verification of their properties. The validation (testing) of ASM models can be
obtained by the simulation of ASM runs, which is supported by numerous tools to mechanically execute ASMs
(ASM Workbench [Del01], AsmGofer [Scha], an Asm2C++ compiler [Sch01b], C-based XASM [AK01], .NET-
executable AsmL engine [Fou01], CoreASM Execution Engine [F+]). The verification of ASM properties has been
performed using justification techniques ranging from proof sketches [BM97b] over traditional [BD96, BM97a]
or formalized mathematical proofs [SN01, NS03] to tool supported proof checking or interactive or automatic
theorem proving, e.g. by model checkers [Win97, DW00, GTW03], KIV [SA97] or PVS [Dol98, GR00]. As
needed for a comprehensive development and analysis environment, various combinations of such verification
and validation methods have been supported and have been used also for the correctness analysis of compil-
ers [DGVZ98, KKP+03] and hardware [TWFT00, TKW00, Sch02, Hab05].

For more applications of the ASM method to the design and the analysis of complex computer-based sys-
tems and their verified refinement from ground models to compilable code, including industrial system devel-
opment and re-engineering case studies that show the method to scale to large systems, see the AsmWebsite
http://www.eecs.umich.edu/gasm and the AsmBook [BS03].

5. A research challenge and some milestones ahead

The main goal we propose is to lift Hoare’s challenge from program verification to a discipline of verifiable
system development. This implies the development of an integrated tool support for hierarchies of verifiable and
validatable model refinement patterns, which link in a provably correct and modular way the application-con-
tent of systems, as defined by ground models, to verifiable compilable programs. We think about extensions and
enhancements of the currently available model development and analysis tools, targeted at combining in one
project the definition of abstract models and their stepwise refinements to compilable code with their simulation
and verifications of their properties. This overall goal splits into various subgoals for the generation, verification
and validation of ground models and their refinements.

A refinement generator milestone consists in defining practical model refinement schemes (refinement patterns),
which capture established programming knowledge, together with justifications of their correctness. Refinement
steps that can be automated are to be expected typically in domain-specific applications (see the discussion of
refinement generators in [Abr, Smi]). Where the refinement process is highly creative, interactive schemes can still
be helpful to guide the refinement process by a combination of user-insight and mechanized tactics. In particular,
these refinement schemes should allow the verifier to turn model properties into software interface assertions
comprising behavioural component aspects, to be used where state-based run-time features are crucial for a satis-
factory semantically founded correctness notion for code.18 An example for a concrete subgoal of the refinement
method milestone are the stateful specifications for Java libraries advocated in [Alu].

18 The distinction between assertions and specifications (models) and their properties is taken from [Abr]. Assertions are predicates that
describe certain (typically local) properties one wants to be checked at run-time. Model properties can be more general, for example global
properties.

Construction and analysis of ground models and their refinements as a foundation for validating computer-based systems 237

A refinement verifier milestone is to enhance current logical or computer-based verification systems by means
to prove the correctness of ASM refinement steps, building upon and extending the work surveyed in [BS03,
Ch.9]. A first step could consist in linking ASMs to Event-B [Abr03, Abr04] along the lines of [Bör06], so that
the B verification tool set can be exploited to verify properties of ASMs and in particular the correctness of ASM
refinement steps.

A refinement validator milestone consists in linking the refinement of ground models to ASM execution tools
to make the generation and systematic comparison of corresponding test runs of abstract and refined machines
possible. In particular relating system and unit level test results should be supported by this enhancement of ASM
execution tools.

A ground model pattern milestone consists in collecting patterns of frequently occurring model schemes, raising
the level of abstraction at which popular programming and design patterns are defined. Useful ground model pat-
terns are to be expected in domain-specific applications, as became visible for process interaction schemes [BB05]
and web service mediation [ABFL06].

A runtime verifier milestone consists in instrumenting current high-level model execution tools (e.g. interpret-
ers for ASMs or event-B models or model checkers for TLA+ models, for more see [HG]) to monitor the truth
of selected properties at runtime, enabling in particular the exploration of ground models to detect undesired or
hidden effects or missing behaviour.

A re-engineering method milestone is to define methods to extract ground models from legacy code as basis
for analysis (and re-implementation where possible), as done for a middle-size industrial case study in [BPS00].

A system certification milestone is to integrate ground model validation and analysis into industrial system
certification processes, to formulate the technical content of software reliability for embedded systems. This effort
can build upon the use that has been made of ASM ground models to formulate industrial standards mentioned
in Sect. 4.

A verified compiler milestone is to verify the verifying compiler itself by extending the work of the Veri-
fix [GDG+96] project to build proven to be correct compilers for a variety of real-life languages and target
machines, where ASM ground models were used to describe the underlying real-life machines to run compilers.
For recent work on compiler certification, guaranteeing that the safety properties proved on source code hold
for the executable compiled code as well, see [Ler06]. Such work presupposes in particular rigorous models for
the semantics of the underlying source and target program languages.

This list is not exhaustive. There are more problems to be solved, in particular on the requirements engineering
side, where the major question is how to turn requirements into rigorous ground models. The literature contains
promising examples of application-domain specific approaches to be integrated here, e.g. the SCR method [Hei99]
or the Requirements State Machine technique defined in [Lev00], which relates process-control systems to meth-
ods for checking a set of criteria identifying missing (as well as incorrect or ambiguous) requirements.

6. Concluding remark

Our proposal to lift Hoare’s program verifier challenge [Hoa03, HM] from compilable code to the set of all sys-
tem development products—including in particular the ground models resulting from the requirements capture,
all the intermediate refined models resulting from further design and the compilable code—goes in the same
direction as Abrial’s proposal of a System Construction Database that “can be used not only to store future
software components but also, more importantly, their various abstract, and later refined, mathematical models
. . . Specification, and design, and corresponding tools, are put together with implementation and corresponding
tools. In this respect, the System Construction Database contains the on-going design history of the software
construction.” [Abr].

One reviewer asked what the advantages of the ASM method are over other approaches, whether it is “just a
difference of notation” or whether there are “fundamental advantages”. We do not claim any exclusivity for the
ASM method and instead advocate the use of coherent combinations of whatever rigorous practical methods
can be of help to build provably reliable software. In this perspective, the conceptual simplicity of ASMs as FSMs
updating arbitrary locations (read: general states), coupled to the use of standard algorithmic notation, consti-
tutes a practical advantage: it makes ASMs understandable for application-domain experts and familiar to every
software practitioner, thus supporting the mediation role ground models play for linking in an objectively check-
able way informal requirements (read: natural-language descriptions of real-world phenomena) to mathematical
models preceding compilable code. Also Event-B [Abr03, Abr04] programs, a sublanguage of B [Abr96], share
this simplicity. In fact they can be defined by a class of basic ASMs [Bör06].

238 E. Börger

A further practical advantage of the ASM method is that it offers an open but coherent conceptual framework
that allows designers, programmers, verifiers and testers

• to exploit the abstraction/refinement pair for a systematic separation of different concerns, like requirements
capture, specification, design, coding, model and code maintenance and reuse, validation (testing, inspection),
verification, etc.,

• to use any fruitful combination of whatever precise techniques are available—whether or not formalized within
a specific logic or programming language or tool—to define, experimentally validate and mathematically verify
a series of accurate system models leading to compilable code. This feature is crucial for a wide-spectrum
method as well as for an accurate integration of system design with verification tools (see [dMOR+]),

• to objectively document the system design and analysis activities of each stakeholder in such a way that new-
comers can gain a complete and correct understanding of the system and of its implementation by studying
this information.

In conclusion, the ASM method represents a solid basis for a practical verified-programs project that scales to
systems of industrial size.

Acknowledgment

We thank Peter Sestoft for having directed our attention to Naur’s paper [Nau85] and Natarajan Shankar for
making us aware that the need for the concept of “ground model” has recently been recognized in the International
Technology Roadmap for Semiconductors [Sem05].

References

[ABFL06] Altenhofen M, Börger E, Friesen A, Lemcke J (2006) A high-level specification for virtual providers. Int J Bus Process Integra-
tion Management 4(1)

[ABG+05] Artho C, Barringer H, Goldberg A, Havelund K, Khurshid S, Lowry M, Pasareanu C, Rosu G, Sen K, Visser W, Wahington
R (2005) Combining test case generation and runtime verification. Theoret Comput Sci 336(2–3):209–234

[ABL96] Abrial J-R, Börger E, Langmaack H (1996) The steam boiler case study: competition of formal program specification and
development methods. In: Abrial J-R, Börger E, Langmaack H (eds) Formal methods for industrial applications. Specifying
and programming the steam-boiler control, Vol. 1165 of Lecture Notes in Computer Science. Springer, Berlin Heidelberg New
York, pp 1–12

[Abr] Abrial J-R On constructing large computerized systems (a position paper). In [Meyer05]
[Abr96] Abrial J-R (1996) The B-book. Cambridge University Press, Cambridge
[Abr03] Abrial J-R (2003) Event based sequential program development: application to constructing a pointer program. In: Proceedings

of FME 2003. pp 51–74. Springer, Berlin Heidelberg New York
[Abr04] Abrial J-R (2004) Event driven distributed program construction, Version 6
[AK01] Anlauff M, Kutter P (2001) Xasm Open Source. http://www.xasm.org/
[Alu] Alur R Trends and challenges in algorithmic software verification. In [Meyer05]
[Bal] Ball T The verified software challenge: a call for a holistic approach to reliability. In [Meyer05]
[Bar71] Barnocchi D (1971) L’‘Evidenza’ nell’assiomatica aristotelica (contributo all’interpretazione dell’assiomatica aristotelica alla

luce della moderna logica matematica). Proteus 5:133–144
[BB05] Barros A, Börger E (2005) A compositional framework for service interaction patterns and communication flows. In: Lau K-K,

Banach R (eds), Formal methods and software engineering. Proceedings of 7th international conference on formal engineering
methods (ICFEM 2005), Vol. 3785 of LNCS, pp 5–35. Springer, Berlin Heidelberg New York

[BBD+96] Beierle C, Börger E, Durdanović I, Glässer U, Riccobene E (1996) Refining abstract machine specifications of the steam boiler
control to well documented executable code. In: Abrial J-R, Börger E, Langmaack H (eds) Formal methods for industrial appli-
cations. Specifying and programming the steam-boiler control, number 1165 in LNCS, pp 62–78. Springer, Berlin Heidelberg
New York

[BD90] Börger E, Dässler K (1990) Prolog: DIN papers for discussion. ISO/IEC JTCI SC22 WG17 Prolog Standardization Docu-
ment 58, National Physical Laboratory, Middlesex

[BD96] Börger E, Durdanović I (1996) Correctness of compiling Occam to Transputer code. Comput J 39(1):52–92
[Ber95] Berry DM (1995) The importance of ignorance in requirements engineering. J Syst Softw 28(2):179–184
[BFGS05] Börger E, Fruja G, Gervasi V, Stärk R (2005) A high-level modular definition of the semantics of C#. Theoret Comput Sci

336(2–3):235–284
[BGLC02] Betarte G, Gimenez E, Loiseaux C, Chetali B (2002) Formavie: formal modelling and verification of the java card 2.1.1 security

architecture. In: Proc. eSmart
[BGM94] Börger E, Glässer U, Müller W (1994) The semantics of behavioral VHDL’93 descriptions. In: EURO-DAC’94. european

design automation conference with EURO-VHDL’94. Los Alamitos, California IEEE Computer Society Press, pp 500–505
[BGR06] Börger E, Gargantini A, Riccobene E (2006) Abstract state machines. A method for system specification and analysis. In:

Frappier M, Habrias H (eds) Software specification methods: an overview using a case study. HERMES Sc Publ, pp 103–119

Construction and analysis of ground models and their refinements as a foundation for validating computer-based systems 239

[BM97a] Börger E, Mazzanti S (1997) A practical method for rigorously controllable hardware design. In: Bowen JP, Hinchey MB,
Till D (eds) ZUM’97: the Z formal specification notation, Vol. 1212 of LNCS. Springer, Heidelberg New York, pp 151– 187

[BM97b] Börger E, Mearelli L (1997) Integrating ASMs into the software development life cycle. J Universal Comput Sci 3(5):603–665
[Bör] Börger E Linking content definition and analysis to what the compiler can verify. In: [Meyer05]
[Bör90a] Börger E (1990) A logical operational semantics for full Prolog. Part I: selection core and control. In: Börger E, Kleine Büning H,

Richter MM, Schönfeld W (eds) CSL’89. 3rd workshop on computer science logic, Vol. 440 of Lecture Notes in Computer
Science. Springer, Berlin Heidelberg New York, pp 36–64

[Bör90b] Börger E (1990) A logical operational semantics of full Prolog. Part II: built-in predicates for database manipulation. In:
Rovan B (ed) Mathematical foundations of computer science, Vol. 452 of LNCS. Springer, Berlin Heidelberg New York, pp
1–14

[Bör94] Börger E (1994) Logic programming: the evolving algebra approach. In: Pehrson B, Simon I (eds) IFIP 13th world computer
congress, Vol I: Technology/foundations. Elsevier, Amsterdam, pp 39–395

[Bör95] Börger E (1995) Why use evolving algebras for hardware and software engineering? In: Bartosek M, Staudek J, Wiederman J,
(eds) Proceedings of SOFSEM’95, 22nd seminar on current trends in theory and practice of informatics, Vol. 1012 of Lecture
Notes in Computer Science. Springer, Berlin Heidelberg New York, pp 236–271

[Bör99] Börger E (1999) High-level system design and analysis using Abstract State Machines. In: Hutter D, Stephan W, Traverso P,
Ullmann M (eds), Current trends in applied formal methods (FM-Trends 98), Vol. 1641 of LNCS. Springer, Berlin Heidelberg
New York, pp 1–43

[Bör02] Börger E (2002) The origins and the development of the ASM method for high-level system design and analysis. J Universal
Comput Sci 8(1):2–74

[Bör03a] Börger E (2003) The ASM ground model method as a foundation of requirements engineering. In: Dershowitz N (ed) Verifi-
cation: theory and practice, Vol. 2772 of LNCS. Springer, Berlin Heidelberg New york, pp 145–160

[Bör03b] Börger E (2003) The ASM refinement method. Formal Aspects Computing 15:237–257
[Bör05] Börger E (2005) The ASM method for system design and analysis. A tutorial introduction. In: Gramlich B (ed) Proceedings of

FroCoS, Vol. 3717 of LNAI, Vienna. Springer, Berlin Heidelberg New York
[Bör06] Börger E (2006) From finite state machines to virtual machines (Illustrating design patterns and event-B models). In:

Cohors-Fresenborg E, Schwank I (eds) Präzisionswerkzeug Logik–Gedenkschrift zu Ehren von Dieter Rödding. Forschung-
sinst. für Mathematikdidaktik Osnabrück. ISBN 3-925386-56-4

[BPS00] Börger E, Päppinghaus P, Schmid J (2000) Report on a practical application of ASMs in software design. In: Gurevich Y,
Kutter P, Odersky M, Thiele L (eds) Abstract State Machines: theory and applications, Vol. 1912 of LNCS. Springer, Berllin
Heidelberg New York, pp 361–366

[BR95] Börger E, Rosenzweig D (1995) The WAM—definition and compiler correctness. In: Beierle C, Plümer L (eds) Logic pro-
gramming: formal methods and practical applications, Vol. 11 of studies in computer science and artificial intelligence, chap 2.
North-Holland, Amsterdam

[Bro87] Brooks FP Jr (1987) No silver bullet. Computer 20(4):10–19
[BS03] Börger E, Stärk RF (2003) Abstract State Machines. A method for high-level system design and analysis. Springer, Berlin

Heidelberg New York
[BS04] Börger E, Stärk RF (2004) Exploiting abstraction for specification reuse. The Java/C# case study. In: Bonsangue M (ed.) For-

mal methods for components and objects: 2nd international symposium (FMCO 2003 Leiden), Vol. 3188 of LNCS, pp 42–76.
Springer, Berlin Heidelberg New York

[Car56] Carnap R (1956) The methodological character of theoretical concepts. In: Feigl H, Scriven M (eds), Minnesota studies in the
philosophy of science, Vol. 2. University of Minnesota Press, pp 33–76

[Del01] Del Castillo G (2001) The ASM workbench. A tool environment for computer-aided analysis and validation of abstract state
machine models. PhD Thesis, Universität Paderborn

[DGVZ98] Dold A, Gaul T, Vialard V, Zimmermann W (1998) ASM-based mechanized verification of compiler back-ends. In: Glässer U,
Schmitt P (eds) Proceedings of 5th International Workshop on ASMs. Magdeburg University, pp 50–67

[Dij72] Dijkstra EW (1972) Notes on structured programming. In: Dahl O-J, Dijkstra EW, Hoare CAR (eds), Structured Programming,
pp 1–82. Academic, New York

[dMOR+] de Moura L, Owre S, Ruess H, Rushby J, Shankar N Integrating verification components. In [Meyer05]
[Dol98] Dold A (1998) A formal representation of Abstract State Machines using PVS. Verifix Technical Report Ulm/6.2, Universität

Ulm
[DW00] Del Castillo G, Winter K (2000) Model checking support for the ASM high-level language. In: Graf S, Schwartzbach M (eds)

Proceedings of 6th Internatonal Conference TACAS 2000, Vol. 1785 of LNCS. Springer, Berlin Heidelberg New York, pp
331–346

[F+] Farahbod R et al. The CoreASM project. http://www.coreasm.org
[FB05] Fruja NG, Börger E (2005) Analysis of the .NET CLR exception handling. In: Skala V, Nienaltowski P (eds) 3rd international

conference on .NET technologies, .NET 2005, Pilsen, pp 65–75
[FB06] Fruja NG, Börger E (2006) Modeling the .NET CLR exception handling mechanism for a mathematical analysis. J Object

Technology 5(3):5–34
[FH06] Frappier M, Habrias H (2006) Software specification methods: an overview using a case study. HERMES Science Publishing
[Fou01] Foundations of Software Engineering Group, Microsoft Research (2001) AsmL. Web pages at http://research.micro-

soft.com/foundations/AsmL/
[GDG+96] Goerigk W, Dold A, Gaul T, Goos G, Heberle A, von Henke FW, Hoffmann U, Langmaack H, Pfeifer H, Ruess H,

Zimmermann W (1996) Compiler correctness and implementation verification: the verifix approach. In: Fritzson P (ed) on
compiler construction, proceedings poster session of CC’96, Linköping, Sweden IDA Technical Report LiTH-IDA-R-96-12

[GGP03] Glässer U, Gotzhein R, Prinz A (2003) Formal semantics of sdl-2000: status and perspectives. Comput Netw 42(3):343–358

240 E. Börger

[GR00] Gargantini A, Riccobene E (2000) Encoding Abstract State Machines in PVS. In: Gurevich Y, Kutter P, Odersky M, Thiele
L (eds) Abstract State Machines: theory and applications, Vol. 1912 of LNCS, pp 303–322. Springer, Berlin Heidelberg New
York

[GTW03] Gawanmeh A, Tahar S, Winter K (2003) Interfacing ASMs with the MDG tool. In: Börger E, Gargantini A, Riccobene E
(eds), Abstract State Machines 2003–advances in theory and applications, Vol. 2589 of Lecture Notes in Computer Science.
Springer, Berlin Heidelberg New York, pp 278–292

[Gur91] Gurevich Y (1991) Evolving algebras. A tutorial introduction. Bull EATCS 43:264–284
[Hab05] Habibi A (2005) Framework for system level verification: the systemC case. PhD Thesis, Concordia University
[Hal90] Hall A (1990) Seven myths of formal methods. IEEE Softw 11–19
[Hal97] Hall JA (1997) Taking Z seriously. In: ZUM’97, Vol. 1212 of Lecture Notes in Computer Science. Springer, Berlin Heidelberg

New York, pp 89–91
[Hei] Heimdahl MPE Let’s not forget validation. In [Meyer05]
[Hei99] Heitmeyer C (1999) Using SCR methods to capture, document, and verify computer system requirements. In: Börger E, Hörger

B, Parnas DL, Rombach D (eds) Requirements capture, documentation, and validation. Dagstuhl seminar no. 99241, Schloss
Dagstuhl

[HG] Havelund K, Goldberg A Verify your runs. In: [Meyer05]
[HJ] Holzmann GJ, Joshi R Reliable software systems design: Defect prevention, detection, and containment. In: [Meyer05]
[HM] Hoare T, Misra J Verified software: theories, tools, experiments. Vision of a Grand Challenge project. In: [Meyer05]
[HM01a] Haeberer AM, Maibaum TSE (2001) Scientific rigour, an answer to a pragmatic question: a linguistic framework for software

engineering. Number 21 in Proceedings of international conference on software engineering (ICSE 21), Toronto. IEEE CS
Press, pp 463–472

[HM01b] Harel D, Marelly R (2001) Capturing and executing behavioral requirements: the play-in/play-out approach. Technical report
MCS01-15, Weizmann Institute of Science, Israel

[HMC01] Haeberer AM, Maibaum TSE, Cengarle MV (2001) Knowing what requirements specifications specify. Typoscript
[Hoa03] Hoare CAR (2003) The verifying compiler: a grand challenge for computing research. J ACM 50(1):63–69
[J.R] Rushby J Automated test generation and verified software. In: [Meyer05]
[KKP+03] Kalinov A, Kossatchev A, Petrenko A, Posypkin M, Shishkov V (2003) Using ASM specifications for compiler testing. In:

Börger E, Gargantini A, Riccobene E (eds) Abstract State Machines 2003–advances in theory and applications, Vol. 2589 of
LNCS. Springer, Berlin Heidelberg New York, p 415

[KN06] Klein G, Nipkow T (2006) A machine-checked model for a Java-like language, virtual machine and compiler. ACM Trans
Program Lang Syst

[Ler06] Leroy X (2006) Formal certification of a compiler back-end or: Programming a compiler with a proof assistant. In: Proceedings
of POPL’06. ACM

[Lev00] Leveson NG (2000) Completeness in formal specification language design for process-control systems. In: Formal methods in
software practice, pages 75–87. ACM Press

[Mat99] Methodologies and technologies for industrial strength systems engineering. http://www.matisse.qinetiq.com/, 1999. Project
number IST-1999-11435

[Moo] Strother Moore J A mechanized program verifier. In [Meyer05]
[Moo03] Moore JS (2003) Proving theorems about Java and the JVM with ACL2. In: Broy M, Pizka M (eds) Models, Algebras and

Logic of Engineering Software, Vol. 191. IOS Press
[Meyer05] Meyer B (2005) Proceedings of IFIP WG conference on verified software: tools, techniques, and experiments, ETH, Zürich,

October. http://vstte.ethz.ch/papers.html
[Nau85] Naur P (1985) Programming as theory building. Microprocess Microprogram 15:253–261
[NS03] Nanchen S, Stärk RF (2003) A security logic for Abstract State Machines. In: TR 423 CS Dept ETH Zürich
[Par06] Parnas DL (2006) The use of precise documentation in software develpment. Tutorial at FM 2006, see http://fm06.mcmas-

ter.ca/t8.htm
[PE77] Popper KR, Eccles JC (1977) The self and its brain. Routledge and Kegan Paul, London
[Pop35] Popper KR (1935) Logik der Forschung. Zur Erkenntnistheorie der modernen Naturwissenschaft. (Engl. Translation: The

Logic of Scientific Discovery, Hutchinson 1959, Routledge 1992 and 2002), Wien
[RFV06] Glässer U, Farahbod R, Vajihollahi M (2006) An abstract machine architecture for Web service based business process man-

agement. Int J Bus Process Integration Manage
[R.L03] Glass RL (2003) Facts and Fallacies of Software Engineering. Addison-Wesley, Reading
[Ryl63] Ryle R (1963) The concept of mind. Penguin Books, Harmondworth
[SA97] Schellhorn G, Ahrendt W (1997) Reasoning about Abstract State Machines: the WAM case study. J Universal Computer

Science, 3(4):377–413
[SB04] Stärk RF, Börger E (2004) An ASM specification of C# threads and the. NET memory model. In: Zimmermann W, Thalheim

B (eds) Abstract State Machines 2004, Vol. 3052 of LNCS, pp 38–60. Springer, Berlin Heidelberg New York
[Scha] Schmid J Executing ASM specifications with AsmGofer. Web pages at http://www.tydo.de/AsmGofer
[Schb] Schürmann C Meta-logical frameworks and formal digital libraries. In: [Meyer05]
[Sch01a] Schellhorn G (2001) Verification of ASM refinements using generalized forward simulation. J Universal Comput Sci 7(11):952–

979
[Sch01b] Schmid J (2001) Compiling Abstract State Machines to C++. J Universal Comput Sci 7(11):1069–1088
[Sch02] Schmid J (2002) Refinement and implementation techniques for Abstract State Machines. PhD Thesis, University of Ulm
[Sch05] Schellhorn G (2005) ASM refinement and generalizations of forward simulation in data refinement: a comparison. Theoret

Comput Sci 336(2-3):403–436
[Sem05] Semiconductor Industry Assoc (2005) International technologoy roadmap for semiconductors. Design. http://www.itrs.net/

Common/2005ITRS/Design2005.pdf
[SG] Strichmann O, Godlin B Regression verification–a practical way to verify programs. In [Meyer05]

Construction and analysis of ground models and their refinements as a foundation for validating computer-based systems 241

[Smi] Smith DR Generating programs plus proofs by refinement. In [Meyer05]
[SN01] Stärk RF, Nanchen S (2001) A logic for Abstract State Machines. J Universal Comput Sci 7(11):981–1006
[SSB01] Stärk RF, Schmid J, Börger E (2001) Java and the Java Virtual Machine: definition, verification, validation. Springer, Berlin

Heidelberg New York
[TKW00] Teich J, Kutter P, Weper R (2000) Description and simulation of microprocessor instruction sets using ASMs. In: Gurevich Y,

Kutter P, Odersky M, Thiele L (eds) Abstract State Machines: theory and applications, Vol. 1912 of Lecture Notes in Computer
Science, pp 266–286. Springer, Berlin Heidelberg New York

[TWFT00] Teich J, Weper R, Fischer D, Trinkert S (2000) A joint architecture/compiler design environment for ASIPs. In: Proceedings
of the international conference on compilers, architectures and synthesis for embedded systems (CASES2000), pp 26–33, San
Jose, CA, ACM Press

[Utt] Utting M Model-based testing. In [Meyer05]
[Win90] Wing JM (1990) A specifier’s introduction to formal methods. Computer, 8–24
[Win97] Winter K (1997) Model checking for Abstract State Machines. J Universal Computer Science 3(5):689–701
[Wir71] Wirth N (1971) Program development by stepwise refinement. Comm. ACM 14(4)

Received 17 April 2006
Revised 15 August 2006
Accepted 7 October 2006 by J. C. P. Woodcock
Published online 9 February 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

