
DOI 10.1007/s00165-006-0013-4
BCS © 2006
Formal Aspects of Computing (2007) 19: 191–203

Formal Aspects
of Computing

Code-carrying theories
Bart Jacobs, Sjaak Smetsers and Ronny Wichers Schreur
Institute for Computing and Information Sciences, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

Abstract. This paper is both a position paper on a particular approach in program correctness, and also a con-
tribution to this area. The approach entails the generation of programs (code) from the executable content of
logical theories. This capability already exists within the main theorem provers like Coq, Isabelle and ACL2 and
PVS. Here we will focus on issues portraying the use of this methodology, rather than the underlying theory. We
illustrate the power of the approach within PVS via two case studies (on unification and compression) that lead
to actual running code. We also demonstrate its flexibility by extending the program generation capabilities. This
paper fits in a line of ongoing integration of programming and proving.

Keywords: PVS; Functional languages; Proof assistants; Code generation; Unification; Compression

1. Introduction

Program correctness has always been an important topic in computer science. Various techniques have been devel-
oped in the past. They all involve a suitable addition of logical statements to executable code. Scalability is one of
the main concerns that hamper real impact and progress. The underlying issues dealing with language semantics
are non-trivial for realistic languages (such as Java, C or C++). Static techniques (like in [Cop05, HoP04]) can be
effective, but only cover logical statements of limited complexity. A more complex logic requires user interaction.

We briefly review two approaches in more detail. In traditional program verification, one uses Hoare logic,
possibly in combination with a weakest precondition calculus. Proof construction and verification are intended to
be performed during code development. A modern incarnation of this approach is the Java Modeling Language
(JML), see [BCC05]. Experience in this area (see for instance [JaP04]) indicates that the expressive power of the
logical language (such as JML) quickly becomes a bottleneck. Verifications often require many auxiliary logical
definitions and results. Hoare logic was not designed to handle them.

Proof-carrying code (PCC) is a more recent technique, see [Nec97]. The crucial point is to separate proof
construction and proof checking—exploiting the fact that construction is generally much harder than checking.
Within PCC, proof construction is still completed during code development. The code can then be shipped with
the proof, so that any user can check the proof before execution. This approach is intended specifically for mobile
code. It requires that checking is relatively easy and thus only works for simple properties (like resource-usage
bounds and memory safety).

Here we are interested in the correctness of relatively complex programs. A typical example is compression and
decompression, as studied in Sect. 4. In this case, the previously mentioned approaches (traditional Hoare logic
and PCC) do not work: the logical complexity required for verification lies beyond these methods. An alternative
approach that we wish to explore turns things around. Instead of adding logical statements to existing programs,
it starts from an expressive logical language—such as available in modern theorem provers—and formulates both
the program and its correctness within the logical setting. Typically one can define algebraic data types (sometimes

Correspondence and offprint requests to: Sjaak Smetsers, E-mail: s.smetsers@cs.ru.nl

192 B. Jacobs et al.

even coalgebraic ones) and define recursive functions on them. One then generates a conventional program from
the (executable part of the) logical theories. We like to call this the “code-carrying theories” (CCT) approach, as a
linguistic variation on “proof-carrying code” (PCC). It is not the same as program extraction from constructive
proofs (like in the theorem prover Coq), as will be discussed below. The approach has been around in one form
or another for quite some time, see for instance [KMM00, BeN00, PaW93, Mun03], and is often presented as a
form of rapid prototyping. The main aim of this paper is to put it more firmly on the agenda, by illustrating its
usability potential, especially in the context of the theorem prover PVS. We shall largely ignore the underlying
theory, and take the translation itself for granted.

The main advantage of CCT is that it uses one single powerful framework for the development of both the
code, and of all the logical machinery (auxiliary definitions and lemmas) needed to prove its correctness. In
order to prevent confusion we shall refer to the representation of executable code at this logical level as “abstract
code”. It is transformed into “conventional code”. The transformation is needed because theorem provers do
not provide an efficient environment for execution. As stated above, for non-trivial programs the required logical
machinery is extensive and goes beyond what other approaches offer.

The conventional program generated is typically a functional one, in a language such as Lisp, ML, Ocaml or
Clean. In principle, there is no objection to generating imperative programs, though it requires more work. We
shall not focus on that aspect.

We shall have a closer look at two specific incarnations, in Coq and in PVS—but there is also comparable
work for Isabelle [BeN00] and ACL2 [KMM00].

1.1. Program development in Coq

Since the early work of Paulin [Pau89], program development and extraction has been an important topic in
the line of work surrounding the theorem prover Coq. This has already yielded some impressive results, like the
Compcert project [Ler06] in which a formally certified C-compiler has been developed. The basic idea is to use
the propositions-as-types paradigm to view proofs as terms that contain computational content, which can be
extracted. However, what is called “program extraction” in the Coq setting can be done in basically two manners
(see also [BeC04]):

1. The direct approach, in which an abstract functional program is written directly in the logical language of
Coq (much like in ML). Properties about such abstract programs can then be formulated in separate state-
ments and proven. Independently, the abstract program can then be translated into a conventional one, in a
relatively straightforward manner.

2. The propositions-as-types approach, in which the rich type-based logical language of Coq is used for specifi-
cation, for instance in order to construct a proof/term inhabiting the proposition/type:

{i: Z | i � 0} −→ {p: Z | p is ith prime}.
Such a proof/term implicitly contains a program that yields a prime number for each non-negative inte-
ger. Extracting such programs from proofs is more advanced (and profoundly studied) than the previously
mentioned direct approach. It also has more problematic issues, especially with respect to efficiency (see for
instance [CrS03]).

What we have labeled the “code-carrying theories” approach, belongs to the set of direct approaches. It is
simple and straightforward. For further exploration we shall use PVS rather than Coq. The main reason is that the
constructive nature of Coq (with explicit proof objects) introduces unnecessary complications that only distract
from the essentials and make things harder than needed.

1.2. Program development in PVS

Version 2.3 of PVS introduced a relatively unknown feature called “ground evaluation”. It allows execution
of functional definitions in PVS, after having been translated to Common Lisp. Munoz [Mun03] improved the
usability of this feature by combining it with PVS’ semantic attachments in his system PVSio. It is a library
extension that enriches PVS with standard programming functionalities, such as string and file manipulation,
printing, floating point arithmetic, etc. PVSio extends the programming capabilities of PVS: via such semantic
attachments, various features of specific programming languages can be incorporated in the PVS language, to

Code-carrying theories 193

ensure a more complete generation of programs from logical theories. Hence this approach, within PVS, offers
a great potential for actual use.

1.3. Programming and proving

One can expect that the willingness to prove correctness of programs increases proportionally to the level of
abstraction in which they have been written. In particular, declarative (functional or logic) programming lan-
guages command programmers to use a programming style that results in programs which are much closer to a
formal specification than for instance imperative programming. Besides, most theorem provers support the spec-
ification of functions in a declarative style. Hence, the step from declarative programming to theorem proving is
relatively small. As there is a remarkable, but often unnoticed resemblance between proving and programming
(both activities require a similar mixture of creativity, insight, and drive), the integration of theory and program
development will stimulate, on the one hand, programmers to specify “executable theories”, and on the other
hand, theoreticians to write “correct programs”.

1.4. Outline

The rest of this paper is organized as follows. We initiate by illustrating the actual use of the CCT approach for
two classical algorithms, namely unification (for first order theories) in Sect. 3 and compression in Sect. 4. These
two algorithms illustrate two different ways in which to use CCT. Unification is just one small aspect of algebraic
specifications. It requires standard theory development, including signatures, algebras, term models (as initial
algebras), etc. Hence, unification appears in an approach “from theories to programs”. We shall present (de)com-
pression in Sect. 4 as an illustration in the other direction: an algorithm that requires a non-trivial amount of ad
hoc theory for its correctness. These different directions illustrate the point that CCT may partially be based on
a standard library of theories and algorithms, while partly on ad hoc theories developed for a specific purpose.
The first point may constitute a community effort, leading to open source repositories of code-carrying theories,
supported by translations to different back-end programming languages. On the side we would like to remark that
the actual verification of the (de)compression algorithms is highly non-trivial, and may be seen as a contribution
itself. As far as we are aware, a formalized proof has not been given before. Section 5 describes the conventional
programs that arise from theory developments in PVS. Unification is translated to a program in the functional
language Clean [PlE01], and (de)compression is translated to Lisp. The resulting conventional programs can be
run, for instance from the command line, or as a constituent of a larger development. The translation to Clean
is ongoing work, which will be described in greater detail elsewhere. Finally, Sect. 6 wraps up with conclusions,
contributions, experiences, and directions for further work.

2. PVS

As a short introduction to PVS, we will briefly recall the basics (see also [OSR01a]).
The specification language of PVS is based on classical, typed higher-order logic. Both the use of basic types,

like integers, booleans and reals, and compound types (built with type constructors, such as records, tuples,
and function types) are permitted in PVS. Moreover, recursive data types can be introduced via algebraic type
definitions.

As an example of a user-defined data type, consider the following parameterized definition of a binary tree:

BinTree [V : TYPE] : DATATYPE

BEGIN

leaf : leaf?
node(el:V , left, right: BinTree) : node?

END BinTree

The data type has two constructors, leaf and node, with which trees can be built. In addition, two recognizers
leaf? and node? are defined (observe that in PVS question marks are permitted in identifiers), which can be used
as predicates for testing whether a tree object starts with the corresponding constructors. The field names el, left
and right can be used as accessors to extract these components from a node. However, often for extraction it is

194 B. Jacobs et al.

more convenient to use the built-in pattern matching, via CASES expressions. Consider, for example, the following
function tree2List that collects all elements of a tree in a list.

tree2List(t:BinTree) : RECURSIVE list [V] �
CASES t OF

leaf: null,
node(e ,l ,r): append(tree2List(l) ,cons(e ,tree2List(r)))

ENDCASES

MEASURE size(t)

The MEASURE specification is mandatory when defining a recursive function, such as tree2List shown above.
For, in PVS it is required that all functions are total. This measure is used to show that the function terminates.
This is done by generating a proof obligation indicating that the measure strictly decreases at each recursive call.
Obviously, the size of the tree fulfills this property. But how can we give an appropriate measure for the function
size itself ? A solution is that for every data type PVS generates a number of functions and axioms, which can
be used freely in any theory that imports the data type. Among them, one is the ordering<<on trees indicating
whether the first argument tree is a subtree of second one. In a measure specification,<<can be used as follows:

size(t:BinTree) : RECURSIVE int �
CASES t OF

leaf: 0,
node(e ,l ,r): size(l) + size (r) + 1

ENDCASES

MEASURE t BY <<

Predicate subtypes and dependent types can be used to introduce type constraints. For instance, sorted list
can be defined as follows:

sortList : TYPE � { l : list [V] | ∀ (i ,j:below(length(l))): i<j ⇒ nth(i) � nth(j) }
Here, below(n) is an example of a dependent type: the set of all natural numbers smaller than n. Because of

this dependency, the list elements indexed by i and j (zero based) are guaranteed to exist. As explained below,
operators can be overloaded in PVS. The type checker determines that � is a binary relation over V.

PVS specifications are organized into parameterized theories that may contain declarations of functions, axi-
oms, theorems, etc. The PVS language provides the usual arithmetic and logical operators, function application,
lambda abstraction, and quantifiers. Names may be overloaded, including those of the built-in operators such
as < and +. Unlike most functional languages, the type system of PVS is not polymorphic. However, by using
parameterized theories one can simulate polymorphism to some extent. As an example, consider the following
theory.

FOLD [X ,Y : TYPE] : THEORY

BEGIN

ifoldr(n:nat) (gen_fun: [below(n) → X] , zero:Y, comb: [X ,Y → Y]) : RECURSIVE Y �
I F n � 0
THEN zero
ELSE comb(gen_fun(0) , ifoldr(n-1) (λ(i:below(n-1)): gen_fun(i+1) , zero, comb))
ENDIF

MEASURE n

ifoldr_all : LEMMA

∀(n:nat,gen_fun: [below(n) → X] , zero:Y, comb: [X ,Y → Y]):
∀ (p:pred [X] ,q:pred [Y]):

(∀ (x:X ,y:Y): p(x) ∧ q(y) ⇔ q(comb(x ,y))) ⇒
(((∀ (i:below(n)) : p(gen_fun(i))) ∧ q(zero))

⇔
q(ifoldr(n) (gen_fun,zero,comb)))

ifoldr_some : LEMMA

∀(n:nat,gen_fun: [below(n) → X] , zero:Y, comb: [X ,Y → Y]):
∀ (p:pred [X] ,q:pred [Y]):

Code-carrying theories 195

(∀ (x:X ,y:Y): p(x) ∨q(y) ⇔ q(comb(x ,y))) ⇒
(((∃ (i:below(n)) : p(gen_fun(i))) ∨q(zero))

⇔
q(ifoldr(n) (gen_fun,zero,comb)))

END FOLD

In essence, the operation ifoldr is the same as the standard polymorphic foldr operation applied to the list
gen_fun(0), gen_fun(1), ..., gen_fun(n-1). Specified in a functional language, this operation would get type:

ifoldr : : Int → (Int → a) → b → (a → b → b) → b

The polymorphic type variables are “implemented” as the theory parameters X and Y. Unfortunately, the use
of ifoldr in another theory will require an import of the FOLD theory in which the actual types are explicitly
specified, although these types can be derived easily from the context in which the ifoldr occurs. Opposing the
inconvenience is the elegant possibility to provide the function definition with some basic properties, such as
ifoldr_all and ifoldr_some.

The present paper focusses on specifications, not on proofs. Hence we will not go into the details of the
PVS-proof checker; see for example [OSR01b].

3. From theories to programs

Typing is an application area in which theory and practice are closely related. A formal treatment of typing
usually consists of a (syntax-directed) derivation system, and a type-inference algorithm on which actual imple-
mentations of such a system are based. Correctness proofs, connecting type derivation and type inference, are
typically done manually. The same is true for additional properties, such as subject reduction relating typing to an
operational semantics. In this section we will show that our proposed method enables the development of both
theory and implementation in a single framework. This has the advantage that not only the correctness proofs
themselves but also the generated type-inference algorithm are correct, contrary to the “manual approach”.
Indeed, close inspection of type theoretical papers often reveals many relatively small errors. However, our main
goal is not to track down these kinds of mistakes. Instead, this section is meant as an illustration of our point of
view, that program correctness and program development can go hand in hand.

Working out a fully fledged typing system is beyond the scope of this paper. Here, we restrict ourselves to the
core of most polymorphic type-inference algorithms, Robinson Unification [Rob65].

We initiate by introducing some basic notions. In order to represent types we introduce a data type for first
order terms. These are composed of variables and application.

Terms [V : TYPE , %for variables
F : TYPE , %for function symbols
ar : [F → nat] %for arity of function symbols

] : DATATYPE

BEGIN

vrbl (vrblindex:V) : vrbl?
funapp(fun:F, args: [below(ar(fun)) → Terms]) : funapp?

END Terms

As usual, each symbol in F is equipped with an arity that indicates the number of arguments which an appli-
cation of that symbol is supposed to have. Dependent types offer an elegant way to express this requirement. In
fact, this theory is so general that what we call terms, may just as well be called types.

A substitution, and the related domain and range sets dom? and ran? are defined as follows.

Substitution : TYPE � [V → Terms]

dom?(s:Substitution): PRED [V] � {v:V | ¬s(v) � vrbl(v)}
ran?(s:Substitution): PRED [V] � {v:V | ∃(w:V) : dom?(s) (w) ∧ fvs(s(w)) (v)}

Here, fvs is a (recursive) predicate that returns the free variables of a given term.
Substitutions are lifted to types in the usual way, which also enables the definition of substitution composition.

We make use of the reduce function for the Terms data type. This (fold-like) function is internally generated by
PVS and can often be used as a substitute for explicit recursion.

196 B. Jacobs et al.

subst(t:Terms, s:Substitution) : Terms
� reduce(s ,λ(f:F ,args: [below(ar(f))→Terms]):funapp(f ,args)) (t)

o(s2 , s1:Substitution) : Substitution � λ(v:V) : subst(s1(v) , s2)

A substitution s is idempotent if s ◦ s � s. Proving the following two properties is not difficult.

idempotent?(s:Substitution) : bool � ((s o s) � s)

idempotent_variables : LEMMA idempotent?(s) ⇔ dom?(s) ∩ ran?(s) � ∅

�(s1 , s2:Substitution) : bool � ∃ (s3:Substitution) : s2 � (s3 o s1)

substitution_preorder : LEMMA preorder? [Substitution] (�)

Note that preorder? is a predefined PVS predicate. Similarly, we can introduce relatively standard notions
such as instance and most general unifier, thus providing a framework for developing the theory of types.

3.1. Unification

The basis for almost any type-inference system, and also for logical programming, is unification or resolution:
the process of identifying two terms through systematic replacement of variables by other expressions. An actual
implementation of this algorithm was first described by Robinson [Rob65]. We have used a slightly different
version corresponding to the inference system as presented in [BaS01]. The difference with the original algorithm
is that recursion is replaced by iteration. As usual, recursion removal requires the explicit use of a stack which,
in this particular case, is implemented as a list of type equalities. Moreover, while solving these equalities the
algorithm maintains an accumulator which keeps track of all substitutions that have been performed. To deal
with the possibility that unification can fail, the result of the algorithm is not merely a substitution, but rather a
lifted substitution in which the ⊥-case indicates failure.

Our claim is that the algorithm gives the most general unifier, provided that the initial terms are unifiable.
Otherwise, it returns ⊥. This calls for the following definitions.

EqStack : TYPE � list [[Terms, Terms]]

unify(eqs: EqStack,s:Substitution) : RECURSIVE lift [Substitution] �
CASES eqs OF

null : up(s) , %lifted substitution
cons(eq , l) :

LET (t1 ,t2) � eq IN

I F t1 � t2
THEN unify(l , s)
ELSIF vrbl?(t1)
THEN I F fvs(t2) (vrblindex(t1))

THEN bottom
ELSE LET t_for_v � unit WITH [(vrblindex(t1)):�t2] IN

unify(subst(l , t_for_v) , t_for_v o s)
ENDIF

ELSIF vrbl?(t2)
THEN I F fvs(t1) (vrblindex(t2))

THEN bottom
ELSE LET t_for_v � unit WITH [(vrblindex(t2)):�t1] IN

unify(subst(l , t_for_v) , t_for_v o s)
ENDIF

ELSIF fun(t1) � fun(t2)
THEN unify((zipFuns(ar(fun(t1))) (args(t1) ,args(t2)) (l)) ,s)

Code-carrying theories 197

ELSE bottom
ENDIF

ENDCASES

MEASURE stack_measure(eqs)

Here, the function zipFuns takes two functions as arguments, and pushes the terms given by those two functions
pairwise onto the stack. unit denotes the identity substitution. These functions are defined by:

zipFuns(n:nat) (f1 , f2: [below(n) → Terms]) (st:EqStack) : EqStack �
ifoldr(n) (λ(i:below(n)): (f1(i) ,f2(i)) , st , cons)

unit : Substitution � λ(v:V) : vrbl(v)

As explained in Sect. 2, a recursive function definition in PVS should always contain a MEASURE specification,
which guarantees that the function itself will terminate. The measure we have used in unify is based on the
observation that each iteration will decrease either the number of distinct variables, say nV , or the size of the
types, say sT , appearing on the stack. This leads to the following definition in terms of the lexicographic ordering
on 〈nV , sT 〉, using lex2 (an ordering on pairs based on ordinals) from the PVS prelude.

stackeq_measure(se:EqStack) : ordinal � lex2(card(fvs(se)) , size(se))

Proving that this measure is correct (using ordinal induction) is straightforward. Before stating the main the-
orem about unify we introduce the notion of unifier and two auxiliary lemmas from which correctness follows
almost directly.

unifier?(s:Substitution) (t1 ,t2:Terms) : bool � subst(t1 ,s) � subst(t2 ,s)
unifier?(s ;Substitution) (eqs:EqStack) : bool � every(unifier?(s)) (eqs)
unifier?(s:Substitution) (s1:Substitution): bool � (s � s o s1)

unifier_sound : LEMMA

∀ (eqs:EqStack, s1:(idempotent?) , s2:Substitution):
disjoint?(dom?(s1) ,fvs(eqs)) ∧ unify(eqs , s1) � up(s2) ⇒

(unifier?(s2) (eqs) ∧ unifier?(s2) (s1))

unifier_complete : LEMMA

∀ (eqs:EqStack, s1 , s2:Substitution):
unifier?(s2) (eqs) ∧ unifier?(s2) (s1) ⇒

LET ls � unify(eqs , s1) IN up?(ls) ∧ down(ls) � s2

The proofs of both lemmas are again done by ordinal induction. The side conditiondisjoint?(dom?(s1) ,fvs(eqs))
used in unify_sound appears to be necessary for applying the induction hypothesis in the case that a variable is
unified with a term.

The proofs are quite extensive. A mixed top–down/bottom–up approach involving several more or less ad
hoc lemmas to structure the overall proof appears to be much more convenient than performing the proofs in a
single session. All in all, the proofs are rather straightforward. Interested readers are referred to the PVS files1.

This brings us to the main property of unify:

unify_correct : LEMMA

∀ (eqs:EqStack, s:Substitution):
(unify(eqs ,unit) � up(s) ⇒ unifier?(s) (eqs))

∧
(unifier?(s) (eqs) ⇒ LET ls � unify(eqs ,unit) IN up?(ls) ∧ down(ls) � s)

As said before, unification can be used to construct a complete type-inference algorithm. The usual procedure
is to introduce an appropriate programming language accompanied with a type-derivation system. The latter can
directly be formalized in PVS as an inductive predicate. Again, a correctness property that connects the algorithm
to the derivation system can be formulated easily. For example, this can be done with Milner’s type-inference

1 All the proofs presented in this paper are stored in a zip archive that can be obtained via http://www.cs.ru.nl/∼sjakie/
files/cct06.zip.

198 B. Jacobs et al.

algorithm W using Isabelle/HOL, as in [NaN99]. In essence, the proof itself is not more difficult than if it was to
be done manually. The advantage is that of course in the end, the complete proof is fully (machine) checked.

4. From programs to theories

This section focuses on a version (from [SaR92]) of the classical Lempel–Ziv–Welch (LZW) compression algo-
rithms [ZiL77, Wel84]. The aim is to prove the obvious requirement that decompression after compression yields
the identity. At the same time the formalisation (in PVS) should yield an executable program. The verification
challenge turns out to be far from trivial. It requires a substantial amount of logical machinery, of which a sketch
will be presented below. Thus it forms an appropriate example where the CCT approach of investigating abstract
code within a logical setting is most appropriate. Unlike the unification example from the previous section, the
logical theory surrounding (de)compression is not developed in advance, independently of the algorithm. On the
contrary, it is the algorithm that drives the ad hoc theory development.

4.1. The abstract code

During compression and decompression, suitable trees and tables are created, which are discarded at the end. The
main verification task is to establish a suitable relationship between these trees and tables, from which correctness
follows.

First, the following constants and types are fixed. Actually, our formalization uses parameters instead of
constants, but we shall present the standard values here, in order to be more concrete.

codesize � 4096 code � {0,1 , .. , codesize-1}
symbolsize � 256 symbol � {0,1 , .. , symbolsize-1}
counter � lift [code] coderange � {symbolsize, .. , codesize-1}

A symbol string or code string is then a list of symbols or codes, respectively. The idea of compression is to turn a
symbol string into a code string by cleverly associating codes with symbol sub-strings. These associations are built
up as the input symbol string is scanned, so we need a counter holding the next free code value. The maximum
number of associations is codesize. Since the counter may reach this maximum value, we like to model it via a
lift, so that the bottom value means overflow, and the admissible counter values appear with tag up.

Compression makes use of ternary trees, where each node may contain a pair of elements from symbol and
coderange. In PVS this is defined as a datatype LZWTree, which is introduced with two constructors leaf and
node in:

LZWtree : DATATYPE

BEGIN

leaf : leaf?
node(ch : symbol, co : coderange,

sm : LZWtree, eq : LZWtree, gr : LZWtree) : node?
END LZWtree

In principle one can use a single tree to store all symbols and codes. But it turns out to be more efficient to
use an array of trees, one for each symbol. The tree at position s:symbol contains the codes for all encountered
substrings starting with symbol s. Thus we use:

LZWtreetable : TYPE � ARRAY [symbol → LZWtree]
inittable : LZWtreetable � λ(s:symbol) : leaf

We shall now present the compression algorithm lzw in three steps, starting from the highest level:

lzw(i : list [symbol]) : list [code] � encode(up(symbolsize) , i , inittable)

where encode is a recursive function that builds up the output code string via an auxiliary insert function:

encode(ctr : counter, i : list [symbol] , tt : LZWtreetable) RECURSIVE list [code] �
CASES i OF

null : null ,
cons(h ,t): I F t � null THEN (: h :) %return singleton list

Code-carrying theories 199

ELSE LET %insert symbol h (as code) in tree tt(h)
(c ,l ,s) � insert(ctr , h , t , tt(h))

IN %put resulting code c at head, and continue
%encoding with rest of list and updated treetable.

cons(c , encode(inc(ctr) , l , tt WITH [h:�s]))
ENDIF

ENDCASES

MEASURE length(i)

insert(ctr : counter, prev : code , i : (cons? [symbol]) , t : LZWtree)
: RECURSIVE [code, list [symbol] , LZWtree] �

CASES t OF

leaf : I F up?(ctr) %maximum not yet reached
THEN (prev, i , node(car(i) , down(ctr) , leaf, leaf, leaf))
ELSE (prev, i , leaf) ENDIF ,

node(ch ,co ,sm ,eq ,gr) : I F car(i) < ch
THEN LET (c ,l ,s) � insert(ctr , prev, i , sm)

IN (c , l , node(ch ,co ,s ,eq ,gr))
ELSIF car(i) > ch
THEN LET (c ,l ,s) � insert(ctr , prev, i , gr)

IN (c , l , node(ch ,co ,sm ,eq ,s))
ELSIF cdr(i) � null %end of input reached
THEN (co , null, t)
ELSE LET (c ,l ,s) � insert(ctr , co , cdr(i) , eq)

IN (c , l , node(ch ,co ,sm ,s ,gr))
ENDIF

ENDCASES

MEASURE ct BY <<

The MEASURE used ininsert is the standard subterm order on trees, denoted by<<. The notation (cons? [symbol])
in one of the argument types of insert is the type of non-empty symbol strings.

The decompression function wzl works the other way around, by reconstructing a symbol string from a code
string. It also builds up data structures along the way, which are not trees this time but rather two tables, called
pTable for prefix table and lsTable for last symbol table, consisting of mappings from codes to (lower) codes
and to symbols, respectively:

pTable : TYPE � {a : [code → code] | ∀(c:code) : c � symbolsize ⇒ a(c) < c}
init_pTable : pTable � λ(c:code) : 0
lsTable : TYPE � [code → symbol]
init_lsTable : lsTable � λ(c:code) : 0

Associated with these tables there are auxiliary functions for constructing symbol strings and for updating:

firstSymbol(co:code, pt:pTable) : RECURSIVE symbol �
I F co < symbolsize THEN co
ELSE firstSymbol(pt(co) , pt)
ENDIF MEASURE co

code2string(co:code, pt:pTable, lst:lsTable) : RECURSIVE (cons? [symbol]) �
I F co < symbolsize THEN (: co :)
ELSE append(code2string(pt(co) , pt , lst) , (: lst(co) :))
ENDIF MEASURE co

updateTables(new ,next:code, prev:below(next) , pt:pTable, lst:lsTable) : [pTable, lsTable] �
(pt WITH [(next) :� prev] ,
lst WITH [(next) :� I F new � next

THEN firstSymbol(prev, pt)
ELSE firstSymbol(new , pt) ENDIF])

200 B. Jacobs et al.

We are finally in a position to define the decompression algorithm:

wzl(i:list [code]): lift [list [symbol]] �
CASES i OF

null : up(null) ,
cons(h ,t) : %head of the input must be a symbol that appears as

%head of the output.
I F h < symbolsize
THEN CASES decode(up(symbolsize) , h , t ,

init_pTable, init_lsTable) OF

bottom : bottom,
up(d) : up(cons(h , d))

ENDCASES

ELSE bottom
ENDIF

ENDCASES

where the recursive function decode does the real work:

decode(ctr:counter, prev :{c:code | c < ctr} , i : list [code] , pt : pTable, lst:lsTable)
: RECURSIVE lift [list [symbol]] �

CASES i OF

null : up(null) ,
cons(h ,t) : I F ctr � bottom

THEN CASES decode(ctr , h , t , pt , lst) OF

bottom : bottom,
up(d) : up(append(code2string(h , pt , lst) , d))

ENDCASES

ELSIF h � down(ctr)
THEN LET (npt ,nlst) � updateTables(h ,down(ctr) ,prev,pt ,lst)

IN CASES decode(inc(ctr) , h , t , npt , nlst) OF

bottom : bottom,
up(d) : up(append(code2string(h , npt , nlst) , d))

ENDCASES

ELSE bottom
ENDIF

ENDCASES MEASURE length(i)

This completes the description of the abstract compression and decompression code in PVS.

4.2. Verification sketch

For the verification we need to establish that the tree that is created during the compression of a symbol string i,
is suitably related to the tables that arise during the decompression of the code string lzw(i). This match relation
between trees and tables is formalized as follows.

tables_match_tree?(t:LZWtree, p:code, pt:pTable, lst:lsTable) : RECURSIVE bool �
CASES t OF

leaf : TRUE ,
node(ch ,co ,sm ,eq ,gr) : pt(co) � p∧ lst(co) � ch∧
tables_match_tree?(sm ,p ,pt ,lst) ∧
tables_match_tree?(eq ,co ,pt ,lst) ∧
tables_match_tree?(gr ,p ,pt ,lst)

ENDCASES MEASURE t BY <<

The code parameter p corresponds to the index of a tree in a tree table. Using the notion of a path in a tree we
can give an alternative description of this match relation. This requires some auxiliary definitions. First we define
types,

Code-carrying theories 201

direction : TYPE � {L , M , R} %left, middle, right
treepath : TYPE � list [direction]

and then the associated “look-up” functions:

path2node(tp:treepath, tr:LZWtree) : RECURSIVE lift [[symbol, coderange]] �
CASES tr OF

leaf : bottom,
node(ch ,co ,sm ,eq ,gr) : CASES tp OF

null : up((ch ,co)) ,
cons(h ,t) : CASES h OF

L : path2node(t ,sm) ,
M : path2node(t ,eq) ,
R : path2node(t ,gr)

ENDCASES

ENDCASES

ENDCASES MEASURE tr BY <<

path2previous(tp:treepath, tr:LZWtree, p:code) : RECURSIVE code �
CASES tr OF

leaf : p ,
node(ch ,co ,sm ,eq ,gr) : CASES tp OF

null : p ,
cons(h ,t) : CASES h OF

L : path2previous(t ,sm ,p) ,
M : path2previous(t ,eq ,co) ,
R : path2previous(t ,gr ,p)

ENDCASES

ENDCASES

ENDCASES MEASURE tr BY <<

We can then prove, for variables t:LZWtree, p:code, pt:pTable, lst:lsTable,

tables_match_tree?(t , p , pt , lst)
⇔

∀(tp:treepath) : up?(path2node(tp ,t)) ⇒
LET node � down(path2node(tp ,t)) IN

pt(proj_2(node)) � path2previous(tp ,t ,p) ∧ lst(proj_2(node)) � proj_1(node)

A basic result is that identical strings are contained in matching trees and tables. This forms the basis for the
correctness result. What remains to be established is showing that the match relation is indeed a suitable invariant.
Our method of achieving this is rather ad hoc. We define a new coding function endecode that combines both
encoding and decoding on shared data. A crucial element of the proof is showing that the match relation holds
for all iterations of this endecode function. This involves many intermediate results, as can seen in the PVS files.
We conclude with the main result:

wzl_lzw : THEOREM

∀(i:list [symbol]) : wzl(lzw(i)) � up(i)

5. Running programs

To further test the CCT approach we implemented a prototype of a translator from PVS theories to Clean
modules. This section briefly reports the set-up of this prototype.

The translator is not designed to handle the PVS language completely. Rather, we assume that the programmer
uses a suitable subset of PVS that can be translated to Clean. The translator should generate readable Clean code.
This increases the trust that the Clean code correctly implements the original PVS theory. Where possible the
translator preserves typing information. While not all proof information can be represented in Clean, the types

202 B. Jacobs et al.

do provide some safeguard that the functions are used correctly. This is especially important in the generated
interfaces which form the boundary between those modules that have been proved correct, and the rest of the
program.

5.1. Translation details

For the largest part, PVS and Clean are very similar and the translator’s job is mostly pretty-printing each PVS
language construct in the corresponding Clean syntax. Both languages are purely functional languages with
record types, algebraic types, lists, tuples, and so on. The main differences lay in the type systems, the module
systems, and the handling of arrays.

The PVS language contains predicate subtypes, which have no counterpart in Clean. The translator omits the
subtype predicate. For example, for the definition of sortList in Sect. 2 the translator generates the following
Clean type synonym definition.

: : SortList v :== List v

Clean’s type checker cannot guarantee that values of type SortList are indeed sorted, but for the generated
Clean code this property does hold, as this was already proved in PVS. For Clean code which was not generated
from PVS and that uses generated Clean code the property may not be satisfied. In such a situation it is conceiv-
able that the translator generates code to perform run-time checks on the subtype predicates. This has not been
implemented in the current prototype.

PVS supports operator overloading in which the same function symbol can represent different functions,
depending on the number and types of the function’s arguments. In Clean, overloaded functions with same name
have to be instances of the same class. These two approaches are not directly compatible. The prototype translator
shuns this issue, and assumes that all functions with the same name in PVS form members of a common class in
Clean. A more refined translator could disambiguate the function symbols if it is impossible to express them in
Clean as instances of the same class, or allow the programmer to choose a suitable mapping.

The translator generates a separate Clean module for each PVS theory. In PVS, theories can be parameterized
with types and values. The type parameters appear as polymorphic type variables in the generated declarations.
The translator passes the value parameters as additional arguments to the respective generated functions.

The Clean programming language supports arrays with destructive updates. Clean’s uniqueness type system
ensures that these arrays are used single-threadedly and thus that these updates can be performed safely. It is
difficult to exploit destructive arrays directly in the generated Clean code, without essentially doing the same
uniqueness analysis in PVS. Instead, we might expect the programmer to write programs with array updates in
a monadic style (e.g., see [JoW93]). This could also be the first step towards an entirely imperative version of the
program that could be translated to Java or another imperative target language.

In PVS all functions are total, and as such the evaluation order of expressions does not influence the outcome.
By default, the evaluation strategy of Clean is lazy, however the evaluation order can be made strict via strictness
annotations. This is often more efficient than lazy evaluation. For this reason the current translator adds these
strictness annotations where possible.

We have tested the implementation with both the unification and the LZW algorithm with positive results.
However, at this stage we are not yet ready to present concrete performance figures.

6. Conclusions

In this paper, we have illustrated how programming and theorem proving can be integrated.
To be useful in program development, a proof assistant should provide a formalization of standard program-

ming libraries. In general, a library is just a collection of functions, commonly characterized by type signatures.
For theorem proving a library description should not merely contain an adequate specification of formal prop-
erties of each function (for which type signatures are probably insufficient) but also a collection of properties
corresponding to combinations of these functions. For example, the PVS prelude contains several operations
on lists, like append, length, and reverse, and properties of these operations themselves (like associativity of
append, or invertibility of reverse), but also properties of combinations, such as the fact that the length of the
result of appending two lists is the same the sum of both lengths. Clearly, the number of combined properties
drastically increases with the number of operations.

Code-carrying theories 203

To compete with standard program-developing tools in terms of effectiveness, there is a need for a large
collection of basic theories, preferably organized in well-structured, easily accessible modules. This not only
mandates a huge implementation effort, but also an appropriate infrastructure that enables both development
and distribution of newly developed components. It goes without saying that standardization of existing theories
is a must. This observation immediately raises the following questions.

• Which theories do we consider as fundamental in a programming context?
• For what kind of application areas do we believe that CCT will be successful?
• How can we set up an appropriate infrastructure for sharing libraries?
• Which source end destination language(s) should we support, and how do we handle language specific prop-

erties, like in PVS? For instance, the language Clean supports destructive updates, which, in particular, are
very useful if the program contains arrays. However, the semantics of Clean requires that these arrays are
used in a single threaded way. How can we enforce this in PVS?

These questions form the basis for further research.

References

[BaS01] Baader F, Snyder W (2001) Unification theory. In: Robinson A, Voronkov A, (eds) Handbook of automated reasoning, vol I,
chap 8, Elsevier Amsterdam, pp 445–532

[BeN00] Berghofer S, Nipkow N (2000) Executing higher order logic. In: Callaghan P, Luo Z, McKinna J, (eds) Types for Proofs and
Programs, number 2277 in Lect Notes Comp Sci, Springer, Berlin Heidelberg New York, pp 24–40

[BeC04] Bertot Y, Castéran P (2004) Interactive theorem proving and program development. Texts in Theor Comp Sci, Springer, Berlin
Heidelberg New York

[BCC05] Burdy L, Cheon Y, Cok D, Ernst M, Kiniry J, Leavens G, Leino K, Poll E (2005) An overview of JML tools and applications.
Int J Softw Tools Technol Transf 7(3):212–232

[Cop05] Copeland T (2005) PMD applied. Centennial Books, San Francisco
[CrS03] Cruz-Filipe L, Spitters B (2003) Program extraction from large proof developments. In: Basin D, Wolf B, (eds), Theorem

proving in higher order logics, number 2758 in Lect Notes Comp Sci, Springer, Berlin Newyork 205–220
[HoP04] Hovemeyer D, Pugh W (2004) Finding bugs is easy. SIGPLAN Not., 39(12):92–106
[JaP04] Jacobs B, Poll E (2004) Java program verification at Nijmegen: developments and perspective. In: Futatsugi K, Mizoguchi F,

Yonezaki N, (eds), Software Security — Theories and Systems, number 3233 in Lect Notes Comp Sci, pp 134–153. Springer,
Berlin

[JoW93] Jones SLP, Wadler P (1993) Imperative functional programming. In: Conference record of the Twentieth Annual ACM SIG-
PLAN–SIGACT Symposium on Principles of Programming Languages, Charleston, South Carolina, pp 71–84

[KMM00] Kaufmann M, Manolios P, Moore J (2000) Computer-aided reasoning: An Approach. Kluwer, Newyork
[Ler06] Leroy X (2006) Formal certification of a compiler back-end or: programming a compiler with a proof assistant. SIGPLAN

Not., 41(1):42–54
[Mun03] Munoz C (2003) Rapid prototyping in PVS. Technical Report NIA Rep. No. 2003-03, NASA National Institute of Aerospace.

http://research.nianet.org/∼munoz/PVSio/
[NaN99] Naraschewski W, Nipkow T (1999) Type inference verified: algorithm W in Isabelle/HOL. J Automated Reasoning,

23(3–4):299–318
[Nec97] Necula GC (1997) Proof-carrying code. In: Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on principles of

programming languages (POPL ’97), Paris, pp 106–119
[OSR01a] Owre S, Shankar N, Rushby J, Stringer-Calvert D (2001a) PVS language reference (version 2.4). Technical report, Computer

Science Laboratory, SRI International, Menlo Park, CA
[OSR01b] Owre S, Shankar N, Rushby J, Stringer-Calvert D (2001b) PVS prover guide (version 2.4). Technical report, Computer Science

Laboratory, SRI International, Menlo Park, CA
[Pau89] Paulin-Mohring C (1989) Extracting Fω’s programs from proofs in the Calculus of Constructions. In: Principles of programming

Languages, ACM Press, pp 89–104 seattle
[PaW93] Paulin-Mohring C, Werner B (1993) Synthesis of ML programs in the system Coq. J Sym Comput, 5–6:607–640
[PlE01] Plasmeijer R, van Eekelen M (2001) Concurrent CLEAN Language Report (version 2.0). http://www.cs.ru.nl/∼clean/.
[Rob65] Robinson J (1965) A machine-oriented logic based on the resolution principle. J. ACM, 12:23–41
[SaR92] Sanders P, Runciman C (1992) LZW text compression in Haskell. In: Launchbury J, Sansom P, (eds), Proceedings Glas-

gow Workshop on Functional Programming, Workshops in Computing, Ayr, Scotland. Springer, Berlin Heidelberg Newyork,
pp 215–226

[Wel84] Welch TA (1984) A technique for high-performance data compression. IEEE Comput, 17(6):8–19
[ZiL77] Ziv J, Lempel A (1977) A universal algorithm for sequential data compression. IEEE Trans Inform Theory, 23(3):337–343

Received 22 March 2006
Revised 7 August 2006
Accepted 1 September 2006 by C. B. Jones
Published online 25 November 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

