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Refinement is complete for implementations
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Abstract. Modal transition systems specify sets of implementations, their refining labelled transition systems,
through Larsen & Thomsen’s co-inductive notion of refinement. We demonstrate that refinement precisely cap-
tures the identification of a modal transition system with its set of implementations: refinement is reverse contain-
ment of sets of implementations. This result extends to models that combine state and event observables and is
drawn from a SFP-domain whose elements are equivalence classes of modal transition systems under refinement
[HJS04], and abstraction-based finite-model properties proved in this paper. As a corollary, validity checking is
model checking for Hennessy-Milner formulas that characterize modal transition systems with bounded com-
putation paths. We finally sketch how techniques developed in this paper can be used to detect inconsistencies
between multiple modal transition systems and, if consistent, to verify properties of all common implementations.
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1. Introduction

Formal modelling of computing systems and analysis of such models have always been key techniques of the
formal-methods communities. We mention requirement elicitation, program analysis, many software-validation
techniques, and protocol verification as beneficiaries of modelling and analysis of models. One such technique,
model-checking [CE81, QS81], has been extremely successful as a formal method. In model-checking, a model
M captures relevant aspects of a computer artifact, a formula φ denotes static or dynamic goals that the arti-
fact should meet, and M |� φ holds iff goal φ is met by model M. Using conjunction we may assume in this
discussion that only one goal φ needs to be checked. Since M is an abstraction of some concrete artifact C, i.e.
C is a refinement of M, we desire that goals verified on the abstraction hold in the concrete artifact: for all φ,
M |� φ should imply C |� φ. If the judgment M |� φ is undecidable or has too high complexity, we want to
find an abstraction A of M such that A |� φ implies M |� φ for all φ. In either case we are concerned with
defining an efficiently decidable notion of refinement, whose relational inverse is abstraction, such that certifi-
cations of goals are preserved under refinement. Once such a framework for abstraction-based model checking
is in place, we may also use it to check loose specifications M that model a potentially infinite set of concrete
artifacts C.

The vast majority of model-checking frameworks utilize labelled transition systems as models, perhaps allow-
ing for state-based or quantitative variations thereof. Properties φ are then typically expressed in a temporal logic
such as computation tree logic [CE81, QS81] or linear-time temporal logic [GPVW95]. The tremendous success
of this approach to formal verification is tarnished by two related short-comings:
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1. models may be specifications and the under-specification of certain aspects may not be expressible; or
2. models may be abstractions of models or artifacts but sound reasoning for goals that mix path quantifiers is

required; or the transfer of verifications and refutations of goals from an abstract to the abstracted model
is desired – none of these are catered for by the standard approach of abstraction for model checking in
[CGL94].

Example 1.1 To illustrate the first point, consider the specification of a global assembly cache within the Micro-
soft .NET framework [EJS03]. Such a cache C consists of a set of components cs. Each component c ∈ cs offers
a set of services export to other components and requires a set of services import from other components. A
service could be a type, a field, a method, etc. A component may have a service called main that would start
the execution of software. But a component does not necessarily have such a service, e.g. the component could
provide “plug-ins” only.

This optional specification of structure is not possible in labelled transition systems or their state-based versions.
Similarly, labelled transition systems cannot specify that “Event α could possibly lead from state s to state s ′
but is not guaranteed to have that ability.” Either the triple (s, α, s ′) is in the transition relation of the labelled
transition system in question, and then such a behavior is always possible, or it isn’t, and then such a behavior is
always impossible.

To appreciate the second point, let M ′ be an abstraction of M and let us say that goal φ is verified in M ′ iff
M ′ |� φ holds; otherwise, φ is refuted in M ′. It is then elementary to see that the sound transfer of refutations
and verifications from M ′ to M requires that for all goals φ we have (M |� φ iff M ′ |� φ): Suppose that M ′ |� φ
holds, then φ is verified at M ′ and so the sound transfer of verifications yields that M |� φ holds; conversely if
M ′ �|� φ holds, then φ is refuted at M ′ and the sound transfer of refutations renders M �|� φ. If goals subsume
Hennessy-Milner logic [HM85], this forces M and M ′ to be bisimilar which, as noted by Larsen & Thomsen
in [LT88], is too restrictive for aggressive abstraction techniques of state-space compression needed in model
checking.

One can show that this limitation is closely related to the problems encountered with the mix of path quantifi-
ers [HJS01]. A labelled transition systemM may have another labelled transition systemMsafe as a safe simulation
that can match all transitions fromM co-inductively. Then every trace of events observable forM is also a possible
trace inMsafe. So if we restrict reasoning to universal path properties such as “on all paths, if an alarm is triggered,
the monitor will inevitable receive this alarm,” then verifications on Msafe are sound for M [CC77]. Dually, one
may develop a notion of live simulation for which verifications of existential path properties such as “there is
always a way to reach a stable state again” is sound. Mixing universal and existential path properties, e.g. “at all
reachable states there is a path to some stable state,” naturally leads to the formulation of 3-valued models and
their checks [CC00].

Such a mix may even occur if it is not discernible from the structure of the formula φ as can be seen by
the problem of checking reachability in linear-time temporal logic or computation-tree logic, a universal path
quantifier, in the presence of simple fairness constraints, an existential path quantifier. This mix of quantifiers
and the need for abstraction-based model checking are even harder to escape in modelling applications that
require path constraints not expressible in temporal logics. We mention the extension of model checking to
hybrid logics in the context of modelling mobility and agents in distributed systems [FdR03], where existential
constraints are needed to express the unique location of agents and universal constraints are needed to specify
safety properties.

By now it is well understood that both of the two short-comings above can be addressed within a 3-valued
model-checking framework [Lar89, Dam96, BG99, BG00]. In 3-valued models, an atomic observable, e.g. “in
state s an event α can lead to state s ′,” can not only be “true” or “false” but may be under-specified in that it
could be optional, “true or false,” empowering specifiers and implementors alike with more degrees of freedom.
In Example 1.1 the signature declaration “a component may have a main service” is optional in this sense. In
identifying scalars with singletons we may write tt � {tt}, ff � {ff }, and ⊥ � {tt, ff } for the values of these observ-
ables, respectively. Note that we can determine the value of observables by asking and answering the questions
“Is the observed value tt? And if not, is it ⊥?” as two “no” replies determine that the value of the observable is ff .
Therefore any 3-valued model M can be presented as a pair of two two-valued models (Ma,Mc). The acronym
“a” stands for asserted whereas “c” denotes consistent model observables. Accordingly, the truth values tt and
ff are interpreted as tt and ff in Ma and in Mc, respectively; and ⊥ is interpreted as ff in Ma and as tt in Mc; see
Fig. 1.
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Fig. 1. On the right: a 3-valued transition system with two states and a set Act � {α} of possible events. On the left: the corresponding
interpretation which shows only may-transitions Rc \ Ra (with value ⊥ on the right, dashed lines in figures) and solid must-transitions Ra

(with value tt, solid lines in figures); “transitions” with value ff are omitted

1.1. Completeness of refinement for models of propositional logic

For sake of illustration and in order to gently stage the development of our technical material, we first sketch a
3-valued model-checking framework for propositional logic. The grammar for formulas is

φ ::� p | ¬φ | φ ∧ φ (1)

where p ranges over a countable set of propositional variables Var. We write φ ∨ ψ for ¬(¬φ ∧ ¬ψ). A model
M is a total function M : Var → {tt, ff ,⊥}. Model M is a standard 2-valued model if ⊥ is not in the range of M,
whereas a value M(p) � ⊥ expresses that model M is uncertain about the truth value of p. This uncertainty is
best expressed non-deterministically by identifying tt with {tt}, ff with {ff }, and ⊥ with {tt, ff }. This identification
immediately gives us the compositional weak semantics, Kleene’s strong interpretation of 3-valued propositional
logic [Kle52], by applying logical connectives point-wise and collecting results as a set. For example, ⊥ ∧ tt � ⊥
since

{tt, ff } ∧ {tt} � {tt ∧ tt, ff ∧ tt} � {tt, ff } . (2)

Similarly, we obtain ¬⊥ � ⊥, tt ∨ ⊥ � tt etc.

Example 1.2 For a model M with M(p) � ⊥ the tautology p ∨ ¬p evaluates to ⊥ ∨ ¬⊥ � ⊥. This loss of
precision suggests that there is a more precise, strong semantics for 3-valued propositional logic.

Given two modelsM,M ′ : Var → {tt, ff ,⊥} we say thatM refines, is abstracted by,M ′ iff for all p ∈ Var we have
M ′(p) � M(p) where ⊥ is the least element and tt and ff are maximal, incomparable elements with respect to
�. One can quickly see that a model M ′ has no refinements other than itself iff M ′ contains no uncertainty, i.e.
iff ⊥ is not in the range of M ′. Otherwise, if M ′ maps exactly k < ∞ many variables to ⊥, then M ′ has 2k many
maximal refinements and one could define a strong semantics by appealing to those 2k models [Bla80]. If we call
maximal refinements “implementations” we can show that implementations completely determine refinement.

Proposition 1.1 For any modelsM,M ′ : Var → {tt, ff ,⊥} we have thatM refinesM ′ iff all implementations ofM
are also implementations of M ′.

Proof. Since refinement is a transitive relation the “only if” part is shown. Conversely let all implementations of
M be implementations ofM ′. We need to show thatM refinesM ′. For p ∈ Var it suffices to showM ′(p) � M(p).
Proof by contradiction: If M ′(p) �� M(p), then M ′(p) �� ⊥. Without loss of generality M ′(p) � tt. If M(p) � tt
we are done. Otherwise, let M ′′ : Var → {tt, ff ,⊥} be defined by M ′′(q) � ff if M(q) � ⊥; and M ′′(q) � M(q)
if M(q) �� ⊥. Then M ′′ is an implementation of M and therefore an implementation of M ′ by assumption. So
tt � M ′(p) � M ′′(p) � ff is a contradiction. �

The proof above is very simply and would hardly be worth mentioning. But this paper sets out to generalize
this fact from propositional models to behavioral models in which we have finitely many events and not only one
but possibly infinitely many states.

1.2. Refinement for behavioral models

Three-valued labelled transition systems can be represented as Larsen & Thomsen’s modal transition systems
[LT88]. Figure 2 depicts two modal transition systems. A modal transition systemM � (Ma,Mc) is such that, for
each mode m ∈ {a, c},Mm is a labelled transition system (�,Rm) where� is a set of states andRm ⊆ �×Act×�
is a transition relation over a set of events Act; furthermore, Ra is contained in Rc. If we think of a modal
transition system as a specification, we must ask what are its implementations. Intuitively, a refinement M ′ of M
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Fig. 2. Two modal transition systems with distinguished filled, initial states. The one to the right refines the one to the left
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Fig. 3. Two modal transition systems with filled initial states. The one to the right implements the one to the left

resolves some may-transitions (⊥ values, elements ofRc \Ra, dashed lines in figures) to must-transitions (tt values,
elements of Ra, solid lines in figures) or to absent transitions (ff values, elements of the complement of Rc) and
honors all tt and ff values ofM. The resolution of ⊥ to tt constitutes a choice to implement, whereas a resolution
of ⊥ to ff reflects a choice not to implement optional behavior. This naive intuition is being formalized in Larsen’s
co-inductive definition of refinement M≺M ′ [LT88], M ′ refines/is abstracted by M, generalizing bisimulation to
the 3-valued setting; see Fig. 2. Definition 2.2 re-states the notion of refinement formally. An implementation I
of M should accordingly resolve all may-transitions to must-transitions or absent transitions, forcing I a � I c,
and honor all tt and ff values of M, as can be seen in Fig. 3. One could summarize this discussion of refinement
into a slogan: “Must stays Must, May may be Must or Absent, and only Must and May may cause a Must.”
In this way, we recognize implementations as refining labelled transition systems and may define the class of
implementations of M as

I[M] � {I modal transition system | I a equals I c & M≺I } . (3)

Since refinement ≺ is transitive [Lar89], it is immediate that M≺M ′ implies I[M ′] ⊆ I[M]; all implementa-
tions of a refinement are implementations of what is being refined. So refinement of modal transition systems is
sound if modal transition systems are interpreted as their respective classes of implementations since subsequent
refinements cannot introduce new implementations.

In this paper we ask, and answer affirmatively, whether refinement is complete for this interpretation:

“For all modal transition systems M and M ′:
If all implementations of M ′ are implementations of M, does M ′ refine M?” (4)

Therefore, refinement does not lose any precision if interpreted as reverse inclusion of sets of implementations, the
scenario on the left of Fig. 4 is the norm whereas the scenario on the right is impossible. Answering the question
in (4) is non-trivial for two reasons. First, refinement can be captured as a winning strategy in a two-person game

N
N

M M

Fig. 4. Triangles denote the class of refinements of their lower endpoints. Top horizontal lines indicate the classes of implementations. To the
left: Model N refinesM so all implementations of N are implementations ofM. To the right: All implementations of N are implementations
of M, but N does not refine M; this paper shows that this is impossible for modal transition systems
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and our proofs depend on the ability to dynamically synthesize winning strategies out of implementations. Second,
such a synthesis of winning strategies from implementations may be difficult to obtain for infinite-state or cyclic
models and we seem to require a tool that allows us to restrict attention to certain finite-state models. We address
the latter problem by expressing the model-checking framework for modal transition systems in a mathematical
universe D that plays a double role [HJS04] as a SFP-domain [AJ94] and, up to refinement equivalence, as a
modal transition system. A side effect of our affirmative answer is that I[M ′] ⊆ I[M] can be verified or refuted
by always winning a game that involves M and M ′ only. We develop more consequences of this completeness
result toward the end of this paper.

1.3. Weak and strong semantics of Hennessy-Milner logic

For the technical development of this paper we need to define M|�aφ, the weak semantics of Larsen [Lar89]
denoted by |� in loc. cit., and defined over formulas φ of Hennessy-Milner logic [HM85]

φ ::� tt | ¬φ | 〈α〉φ | φ ∧ φ (5)

where α ranges over a finite set of events Act. Larsen’s weak semantics for a pointed modal transition system
(N, i) � ((�,Ra ⊆ � × Act ×�,Rc ⊆ � × Act ×�), i), a modal transition system N with a designated initial
state i, is given by two judgments

(N, i)|�aφ φ is asserted at state i in N

(N, i)|�cφ φ may be consistent at state i in N
(6)

which are defined by structural induction on φ:

(N, i)|�att (N, i)|�ctt
(N, i)|�a¬φ iff (N, i) �|�cφ (N, i)|�c¬φ iff (N, i) �|�aφ

(N, i)|�m〈α〉φ iff (for some (i, α, i ′) ∈ Rm, (N, i ′)|�mφ) (N, i)|�mφ ∧ ψ iff ((N, i)|�mφ and (N, i)|�mψ)

where m ∈ {a, c}. Note that the definitions of the judgments |�a and |�c are mutually recursive via negation,
reflecting the duality between validity and satisfiability. The strong semantics, the two judgments (N, i)|�a+φ
and (N, i)|�c−φ are Bruns & Godefroid’s strong/thorough semantics of generalized model checking [BG00] and
defined as

(N, i)|�a+φ iff (for all (I, j ) ∈ I[N, i], (I, j ) satφ)

(N, i)|�c−φ iff (for some (I, j ) ∈ I[N, i], (I, j ) satφ)
(7)

where sat is the usual satisfaction relation for Hennessy-Milner logic over labelled transition systems and I[N, i]
is the class of pointed labelled transition systems that refine (N, i). Subsequently we write φ∨ψ for ¬(¬φ∧¬ψ),∨

for its nary version, and abbreviate ¬〈α〉¬ by [α].

Example 1.3 We verify or refute some concrete judgments |�a, |�c, |�a+, and |�c−. LetN be the modal transition
system on the left of Fig. 2.

1. Since (N, s3) �|�a〈γ 〉tt and (s1, α, s3) ∈ Rc we have (N, s1) �|�a[α]〈γ 〉tt.
2. By the semantics of negation and the previous item, we have (N, s1)|�c¬[α]〈γ 〉tt.
3. But we also have (N, s1)|�c−¬[α]〈γ 〉tt since t1 in the modal transition system M on the right of Fig. 3 imple-

ments s1 and (M, t1) sat¬[α]〈γ 〉tt.
4. We have (N, s3) �|�a〈α〉tt ∨ ¬〈α〉tt since (s3, α, s3) ∈ Rc but (s3, α, x) ∈ Ra for no x.
5. But we have (N, s3)|�a+〈α〉tt ∨ ¬〈α〉tt as the latter formula is a tautology over labelled transition systems.

Modal transition systems are more expressive than labelled transition systems as they can model classes
of implementations that are more general than equivalence classes of labelled transition systems with respect
to bisimulation. Consequently, |�a and |�a+ are more powerful than sat in their ability to verify goals for all
implementations of a modal transition system.

The weak semantics is sound in that

|�a ⊆ |�a+ if φ is asserted at (N, i) by |�a, then φ holds in all implementations of (N, i)

|�c− ⊆ |�c if some implementation of (N, i) satisfies φ, then (N, i)|�cφ holds
(8)
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but loses precision [BG00]. For example, for the modal transition system N on the left of Fig. 2 we saw that
(N, s3) �|�a〈α〉tt ∨ ¬〈α〉tt but (N, s3)|�a+〈α〉tt ∨ ¬〈α〉tt. This incompleteness of |�a with respect to |�a+ is to be
expected as (M, s)|�aφ∨ψ attempts to reason that all implementations of (M, s) satisfy φ∨ψ by trying to reason
that all implementations satisfy φ or all implementations satisfy ψ . On the other hand, the complexity of |�a in
the size of the model or formula is the one for the standard semantics sat [BG00] so practitioners can get the best
of both worlds, the generality of validity checking and efficiency of model checking, if they can verify (M, s)|�aφ.

1.4. Outline of paper

In this first section we attempted to give an informal overview of key concepts and contributions in this paper
without stressing the, admittedly, very technical nature of this work. In Sect. 2, we define modal transition systems
and refinement formally and present a process algebra MPA whose terms have partial modal transition trees as
meanings. A game semantics for modal transition systems and their refinement is presented in Sect. 3, character-
izing refinements as winning strategies for a verifier. The universal domain D and its key properties are featured
in Sect. 4 and, in Sect. 5, its topological structure is exploited to prove a finite-model property for abstractions in
the weak and in the strong semantics. Sect. 6 uses the material developed in Sects. 3–5 to prove the completeness
of refinement. As an immediate corollary, we obtain that Hennessy-Milner logic characterizes refinement in the
strong semantics as well. In Sect. 7 we explain that completeness of refinement means that validity checking is
model checking for characteristic formulas of partial modal transition trees. Sect. 8 demonstrates an application
of techniques developed in this paper: checking the consistency and collectively validating multiple models of
the same product or design. Finally, Sect. 9 states related work and Sect. 10 concludes. In order to facilitate the
progression of the narrative in this paper, we moved proofs of auxiliary or secondary results, as well as definitions
and expositions of existing results from domain theory and topology, to an appendix.

2. A process algebra for partial modal transition trees

Throughout we assume a finite set of events Act. We define modal transition systems formally.

Definition 2.1 (Mixed [Dam96, DGG97] and modal transition systems [LT88]) A mixed transition system [Dam96,
DGG97] is a tripleM � (�,Ra, Rc) such that, for every mode m ∈ {a, c}, the pair (�,Rm) is a labelled transition
system, i.e. Rm ⊆ � × Act × �. If Ra ⊆ Rc, we call M a modal transition system [LT88]. A mixed transition
system (M, i) with a designated initial state i is pointed. We call elements of Ra must-transitions and elements of
Rc \ Ra may-transitions.

In this paper we assume that mixed transition systems are image-finite, unless indicated otherwise, in that for all
s ∈ �, α ∈ Act, and m ∈ {a, c} the set {s ′ ∈ � | (s, α, s ′) ∈ Rm} is finite. In the definition of refinement, we work
with the relational inverse of the Q in [LT88, Dam96, HJS04], as done in [GJ02].

Definition 2.2 (Refinement [LT88, Dam96] and mix condition [HJS04]) LetM � (�,Ra, Rc) be a mixed transition
system.

1. A relation Q ⊆ � ×� is a refinement within M [LT88, Dam96] iff (s, t) ∈ Q implies for all α ∈ Act

(a) if (s, α, s ′) ∈ Ra, there exists some (t, α, t ′) ∈ Ra such that (s ′, t ′) ∈ Q;
(b) if (t, α, t ′) ∈ Rc, there exists some (s, α, s ′) ∈ Rc such that (s ′, t ′) ∈ Q.

We write s ≺M t or s ≺ t if there is some refinement Q with (s, t) ∈ Q. In that case t refines, is abstracted by,
s. States s and t are refinement-equivalent iff (s≺t and t≺s). We write (M, i)≺(N, j ) if j refines i in the mixed
transition system that is the disjoint union ofM and N . Let I[M, i] be the class of implementations of (M, i),
those mixed transition systems (N, j ) without any may-transitions that refine (M, i).

2. We say thatM satisfies the mix condition (MC) iff for all (s, α, s ′) ∈ Ra there is some (s, α, s ′′) ∈ Ra ∩Rc such
that s ′≺s ′′.

Example 2.1 Figure 5 [Hut05] reveals that mixed transition systems (�,Ra, Rc) that satisfy the mix condition
(MC) are refinement-equivalent to modal transition systems (�,Ra ∩ Rc, Rc) and so merely modal transition
systems in disguise [HJS04].
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s′ s′′
β

β

α

s

α

α
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α

β

s′

s

s′′

Fig. 5. On the left: a mixed transition system (�,Ra, Rc) satisfying the mix condition (MC). In this case dashed lines denote elements of Rc

and solid lines denote elements of Ra. For (s, α, s′) ∈ Ra there is (s, α, s′′) ∈ Ra ∩ Rc with s′≺s′′. The other tuple in Ra is matched by itself
as it is in Ra ∩ Rc. On the right: a modal transition system that is refinement-equivalent to the mixed transition system on the left. Its set of
must-transitions is Ra ∩ Rc (solid lines) and its set of may-transitions is Rc (solid or dashed lines)

⊥ −→γ
⊥ ⊥ MayStub

αtt.p −→α
tt p

MustPrefix
α⊥.p −→α

⊥ p
MayPrefix

p −→α
v p

′

p + q −→α
v p

′ LeftChoice
q −→α

v q
′

p + q −→α
v q

′ RightChoice

Fig. 6. Structural operational semantics for terms of the process algebra MPA. An expression p −→α
⊥ p′ denotes a may-transition from p to

p′ whereas p −→α
tt p

′ denotes a must-transition from p to p′, each labelled with some α ∈ Act. A value v stands for either ⊥ or tt. There are
no transitions out of 0 and the free occurrence of γ ranges over all events in Act

Since any element of I[M, i] can be “colored” with any set, I[M, i] is not a set but a class. This has neither con-
sequences for the results of this paper nor for practical aspects of model checking. Since the union of refinements
within M is a refinement within M, ≺M is the greatest refinement relation within M. In all respects, we identify
labelled transition systems with modal transition systems that have no may-transitions, i.e. for which Ra � Rc.
In that case, both |�a and |�c are equal to the standard satisfaction relation sat of Hennessy-Milner logic over
labelled transition systems.

Example 2.2 The relationQ � {(s1, t1), (s2, t2), (s3, t3), (s3, t4), (s3, t5)} between states of the pointed modal tran-
sition systems from Fig. 2 is a refinement within their union so s1≺t1 etc.

Definition 2.3 ([Hut04]) The process algebra MPA is a fragment of the modal process logic in [Lar89]:

p ::� 0 | ⊥ | αtt.p | α⊥.p | p + p (9)

where α denotes any event in Act and allp inp+p are different from 0 and ⊥. The structural operational semantics
for terms of MPA is given in Fig. 6. We write [| p |] for the modal transition system derived from term p ∈ MPA
and these rules.

The prefix αtt. is the sole direct source of must-transitions whereas ⊥ and α⊥. are the sole direct sources of
may-transitions. Non-determinism + is the indirect source of transitions.

Example 2.3 Figure 7 illustrates a process term p � α⊥.(βtt.⊥ + α⊥.βtt.⊥) + αtt.(αtt.0 + β⊥.⊥) ∈ MPA and its
operational meaning ([| p |], p) as a partial modal transition tree.

Such meanings ([| p |], p) are trees in that leaves either deadlock or turn into may-stubs that have may-tran-
sition loops for each γ ∈ Act, so may-stubs model partiality. Partial modal transition trees are finite trees that
approximate a set of infinite modal transition systems by abstracting some states and all their reachable states with
⊥. This idea of approximating infinite process terms or behaviors with finite ones can already be seen in the alge-
braic semantics à la Nivat-Courcelle-Guessarian [CN76] or à la Goguen-Thatcher-Wagner-Wright [GTWW77].
As this is elementary, we don’t show formally that every partial modal transition tree is the meaning of some
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β

γ ∈ Act

α

α

β

α

α

β

γ ∈ Act

γ ∈ Act

Fig. 7. The operational meaning of the term α⊥.(βtt.⊥ + α⊥.βtt.⊥) + αtt.(αtt.0 + β⊥.⊥) is a partial modal transition tree in that its leaves either
deadlock (0) or model a may-stub (⊥) that loops for all events γ ∈ Act

term of MPA and that every such meaning is a partial modal transition tree as all summands are guarded. For
example, the term α⊥.0 + βtt.0 + ⊥ is not in MPA as its rightmost summand ⊥ is not guarded by any prefix.

3. Refinements as winning strategies of a two-person game

Refinements of pointed modal transition systems can be characterized in terms of winning strategies of
Ehrenfeucht-Fraı̈ssé games, as worked out for labelled transition systems and bisimulation by Stirling in [Sti96].
The idea is that checking whether (M, i) is refined by (N, j ) can be reduced to showing that the verifier has a
winning strategy in a two-person game G[(M, i), (N, j )] played between a refuter, who tries to show that (M, i)
is not refined by (N, j ), and a verifier, who wants to establish that (N, j ) refines (M, i). Since modal transition
systems and refinement are generalizations of labelled transition systems and bisimulation, our adaptation of
Stirling’s concepts and results to refinement of modal transition systems is straightforward.

Definition 3.1 Let (M, i) and (N, j ) be two pointed modal transition systems.

1. We define a two-person game G[(M, i), (N, j )] as follows.

• Game positions are all pairs (s, t) where s and t are states of M and N , respectively;
• there are two players, a refuter and a verifier;
• each move consists of a question by the refuter followed, if possible, by an answer of the verifier:

– if in position (s, t) the refuter asks as question a Ra-transition (s, α, s ′) inM, the verifier has to answer
with a Ra-transition (t, α, t ′) in N resulting in the new game position (s ′, t ′);

– if in position (s, t) the refuter asks as question a Rc-transition (t, α, t ′) in N , then the verifier has to
answer with a Rc-transition (s, α, s ′) in M resulting in the new game position (s ′, t ′); since Ra ⊆ Rc,
the question or answer may well be a must-transition here;

• no other kinds of questions can be asked and only the refuter can ask questions; and
• a run is a possibly infinite sequence of moves beginning in the initial game position (i, j ); the refuter wins

only those runs on which the verifier eventually cannot answer; therefore, the verifier wins all infinite runs
and those runs with a position in which the refuter cannot ask a question.

2. A strategy for the refuter is a partial function that maps each game position to at most one legitimate question
for that position.
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3. A strategy for the verifier is a partial function that maps each game position and question for that position to
at most one legitimate answer to that question.

4. A strategy is winning if all runs played according to that strategy are won by the player who obeys it.

Therefore, strategies are history-free and winning strategies are total functions on positions reachable from
the initial position (i, j ).

Example 3.1 1. For the relationQ � {(s1, t1), (s2, t2), (s3, t3), (s3, t4), (s3, t5)}, which witnesses a refinement s1≺t1
of the pointed modal transition systems from Fig. 2, one can easily synthesize a winning strategy for the veri-
fier. For example, any question raised by the refuter in game position (s3, t3) has to be a Rc-transition from t3
labelled with α and the verifier responds with the Rc-transition from s3 back to itself. The refuter cannot ask
a question that involves a transition out of s3 in position (s3, t3) since there are no Ra-transitions out of s3.

2. To see a winning strategy for the refuter, consider the game G[(N, s1), (M, r)] whereN is the modal transition
system on the left of Fig. 2 and (M, r) is the pointed modal transition system from Fig. 7, r being the root
node. The refuter begins the run by asking the Ra-transition (s1, α, s3) in N . The verifier can only reply with
the Ra-transition labelled with α to the node n of the right subtree since the transition to the left subtree is
not in Ra. At game position (s3, n) the refuter can now ask the Rc-transition labelled with β and source n, but
the verifier has no matching answer in N out of s3.

As claimed, refinement between pointed modal transition systems is characterized by the existence of a winning
strategy for the verifier in the respective refinement game.

Theorem 3.1 Let (M, i) and (N, j ) be pointed modal transition systems. Then (M, i) is refined by (N, j ) iff the
verifier has a winning strategy in the game G[(M, i), (N, j )]. In that game, exactly one player has a winning
strategy.

Proof. The proof in [Sti96] can be generalized to be aware of the presence of two kinds of transitions and to make
use of the logical characterization of refinement through Hennessy-Milner logic in [Lar89, HJS04]. �

4. A universal domain and modal transition system

One can show completeness of refinement by assuming that (N, j ) does not refine (M, i) and constructing an
implementation of (N, j ) that is not an implementation of (M, i). Using Theorem 3.1, one could do this by
synthesizing a suitable implementation from a winning strategy for the refuter in the game G[(M, i), (N, j )]. We
do not know how to do this unless (M, i) and (N, j ) are partial modal transition trees. Therefore, we require a
tool that ensures it is sufficient to consider the case of partial modal transition trees. Before we present this tool
we recall concepts from domain theory [AJ94]. We refer to Appendix A for standard definitions, notation, and
results from topology and domain theory used subsequently.

The mixed powerdomain M[D] [Hec90, Gun92] of a SFP-domain D has as elements all pairs (L,U ) where
L is Scott-closed and U is Scott-compact saturated such that L and U satisfy the mix condition

L � ↓(L ∩ U ) . (10)

The order on M[D] is defined by

(L,U ) � (L′, U ′) iff (L ⊆ L′ & U ′ ⊆ U ) . (11)

The mix condition (10) turns out to precisely express the mix condition (MC) for mixed transition systems if, for
some event α, we interpret elements of L as Ra-successors and elements of U as Rc-successors of some state s
and see the order as refinement [HJS04]: if s ′ ∈ L, i.e. if (s, α, s ′) ∈ Ra, then there is some s ′′ ∈ L∩U with s ′ � s ′′
by (10) and so (s, α, s ′′) ∈ Ra ∩Rc. Definition 4.1 below makes all of this formal. For the sake of illustration, we
state a prominent example of the mixed power domain.

Example 4.1 1. [Hec90, Hec91] For D � {∗}, L[D] � U [D] � {{}, {∗}} as sets. The mixed powerdomain M[D]
contains exactly ({}, {}), ({∗}, {∗}), and ({}, {∗}) as all three pairs satisfy the mix condition (10), whereas the
pair ({∗}, {}) does not. If we write ⊥ � ({}, {∗}), tt � ({∗}, {∗}), and ff � ({}, {}), the order on M[D] is the
one used earlier on for refinement of models for propositional logic: ⊥ < tt, ff , the information ordering of
[BG99].
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e

m1 m2

⊥

d

Fig. 8. A domain in which d and e have the same set of maximal elements {m1,m2} above them although d and e are incomparable in the order

2. Note that in M[{∗}] it is the case that d � e iff all maximal elements above e are also above d. This is not
true in every domain. For example, it is false in the domain in Fig. 8 and known to be false in M[M[{∗}]]
[ABH97], but it is true in a domain D iff (for all d ∈ D, the element d is the infimum in D of all maximal
elements above d). We can show completeness of refinement only since our domain model is the fixed point
of a domain equation, which allows us to unfold the mixed powerdomain construction in an unbounded way.

Definition 4.1 ([HJS04])

1. Since M[D] is a SFP-domain if D is one [Hec90], we can solve the domain equation

D �
∏

α∈Act

M[D] (12)

where
∏
α∈Act denotes the product over all events in Act, and write D for the SFP-domain and initial solution

of that equation [HJS04].
2. Every element d ∈ D may be interpreted as a pointed mixed transition system (D, d) where d is the unique

initial state and the recursion d � ((da
α, d

c
α))α∈Act of (12) specifies that all d ′ in the set da

α (dc
α) are exactly

the Ra
α-successors (Rc

α-successors) of d in (D, d) (respectively). This makes D into a mixed transition system,
which we denote subsequently by D � (D,Ra,Rc).

3. As noted in Proposition 1 in [HJS04] and as seen in Example 2.1, the mix condition (10) guarantees that the
mixed transition system D is refinement-equivalent to the modal transition system (D,Ra ∩ R

c,Rc). Thus, all
reasoning that is invariant under refinement equivalence — as is the case in this paper — may be done with
the latter modal transition system instead of D and we abuse notation to refer to that modal transition system
as D as well.

We recall some facts from [HJS04] needed as basic tools in most proofs of this paper.

Facts 4.1 1. The order � on D is the greatest refinement in D, i.e. the union of all refinements within D: d � e
in D iff (D, d)≺(D, e) by Theorem 5 in [HJS04].

2. For all pointed modal transition systems (M, i) and φ of Hennessy-Milner logic, (M, i)|�aφ implies (M, i)|�cφ
by item 2 of Theorem 3 in [HJS04].

3. For all pointed modal transition systems without any may-transitions |�a and |�c equal the standard satis-
faction relation sat over labelled transition systems by Theorem 2 in [HJS04].

4. Refinement between modal transition systems without any may-transitions coincides with bisimulation
[Lar89].

5. For all pointed modal transition systems (M, i) and (N, j ) we have (M, i)≺(N, j ) iff (for all φ of Hennessy-
Milner logic, the relation (M, i)|�aφ implies (N, j )|�aφ) iff (for all φ of Hennessy-Milner logic, the relation
(N, j )|�cφ implies (M, i)|�cφ) by [Lar89] and Theorem 5 in [HJS04].

6. Every pointed modal transition system (M, i) has an embedding 〈|M, i |〉 ∈ D such that (D, 〈|M, i |〉) is refine-
ment-equivalent to (M, i) by item 1 of Theorem 6 in [HJS04]. In particular, the compact elements of D are
precisely the embeddings of partial modal transition trees. (We discuss details of this embedding on page 124.)

Example 4.2 1. Item 1 of Fact 4.1 means that we can identify the order on D with refinement on D. For example,
⊥D � {| 0 |} for the denotational semantics defined below and so (D, {| 0 |}) refines (D, {| ⊥ |}).

2. Item 2 allows us to weaken |�a judgments to |�c judgments. Let N be the model on the left of Fig. 2. Then
(N, s2)|�a[β]〈α〉tt and so (N, s2)|�c[β]〈α〉tt follows.



Refinement is complete for implementations 123

3. Item 3 can be appreciated by checking judgments |�m for the model on the right of Fig. 3.
4. Item 4 follows since then Rc � Ra so the definition of refinement reads as the familiar definition of bisimula-

tion.
5. The soundness part of item 5 is often used in this paper. Revisiting item 3 of Example 1.3 we learn that

(M, t1)|�c¬[α]〈γ 〉tt by item 3 of Fact 4.1 and so s1≺t1 implies (M, s1)|�c¬[α]〈γ 〉tt.
6. Let Act � {α, β}. If we extend MPA with recursion we can specify p � α⊥.(βtt.p + αtt.0) which is embed-

ded into D as pD via a system of recursive equations. We order α < β in tuples: 0D � (({}, {}), ({}, {})),
pD � (({},↑{p′

D
}), ({}, {})), and p′

D
� ((↓0D,↑0D), (↓{pD},↑{pD})).

In [Lar89] we find an alternative way of checking refinement by checking a system of greatest fixed-point equa-
tions with a semantics as in |�a. This system of equations simply expresses the refinement game as a system of
formulas such that its |�a check captures the existence of a winning strategy.

Definition 4.2 [Lar89] Let (M, i) � ((�,Ra, Rc), i) be a pointed modal transition system, not necessarily image-
finite. For each s ∈ � we define a formula X(M,s) via the greatest fixed point of the recursive equations

X(M,s) � ( ∧

(s,α,s ′)∈Ra

〈α〉X(M,s ′)
) ∧

∧

α∈Act

[α]
( ∨

(s,α,s ′)∈Rc

X(M,s ′)
)

(13)

for all s ∈ �, as specified in equation (3) in [Lar89]. Intuitively, each X(M,s) denotes the set of states t of M that
are refinements of s within M. Each equation (13) is a transducer that computes the set on the left-hand side
from the sets on the right-hand side such that the logical connectives are interpreted with respect to |�a as already
defined. To solve this system of equations, we initially set eachX(M,s) to be the entire state space and then update
the values of these sets simultaneously through their transducers for all s until all sets stabilize.

Please note that the conjunctions and disjunctions in (13) may well be infinite. Even for an image-finite pointed
modal transition system, the formulaX(M,i) is not in general expressible in the modal mu-calculus [Koz83] via its
explicit operator for greatest fixed points but it is expressible in this way if only finitely many states areRc-reachable
from i in M [Hut04].

Example 4.3 We write νZ.φ for greatest fixed-point formulas with recursion variable Z and recursion body φ
and express X(N,s1) for the s1 in the left of Fig. 3 as a closed formula of the modal mu-calculus using greatest
fixed points only. Let X(N,s3) be represented by the closed formula νZs3 .[α]Zs3 of the modal mu-calculus. Let
X(N,s2) be represented by the formula νZs2 .〈β〉Zs1 ∧ 〈γ 〉X(N,s3) ∧ [β]Zs1 ∧ [γ ]X(N,s3) which contains Zs1 as only
free variable. Finally, let X(N,s1) be represented by the closed formula νZs1 .〈α〉X(N,s3) ∧ [α](X(N,s3) ∨ X(N,s2)) of
the modal mu-calculus. Extending the semantics of |�a to greatest fixed points via greatest semantic fixed points
[HJS01] therefore captures the meaning of (M, i)|�aX(N,s1) stated in Definition 4.2.

At the end of this section, we see that X(M,i) is expressible in Hennessy-Milner logic for all pointed partial
modal transition trees (M, i). We now secure that |�a checks of X(M,i) capture refinement checks.

Lemma 4.1 Let (M, i) and (N, j ) be pointed modal transition systems, not necessarily image-finite. Then (M, i)≺
(N, j ) iff (N, j )|�aX(M,i).

Proof. Both statements are shown in the proof for Theorem 4.1 in [Lar89] for image-finite modal transition sys-
tems but this property is never needed in that proof, apart from the finiteness of disjunctions and conjunctions
on which we do not rely here. �

Definition 4.3 ([Hut04]) Figure 9 shows a denotational semantics {| p |} for terms p of MPA in D.

Example 4.4 For p � α⊥.⊥ + βtt.0 and Act � {α, β}, the pair {| p |} contains two pairs: ({},↑{| ⊥ |}) for α, and
(↓{| 0 |},↑{| 0 |}) for β.

We need to establish that the denotational semantics {| p |} captures the operational semantics [| p |].
Lemma 4.2 For all p of MPA, the pointed mixed transition systems ([| p |], p) and (D, {| p |}) are refinement-
equivalent.

Proof. We use structural induction on p and present only proofs for the two clauses for prefixes for sake of
illustration. Assume that ([| p |], p) and (D, {| p |}) are refinement-equivalent.
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{| 0 |} � (({}, {}))α∈Act {| ⊥ |} � (({},D))α∈Act

({| αtt.p |}a
α, {| αtt.p |}c

α) � (↓{| p |},↑{| p |}) ({| αtt.p |}a
β, {| αtt.p |}c

β) � ({}, {}), α �� β

({| α⊥.p |}a
α, {| α⊥.p |}c

α) � ({},↑{| p |}) ({| α⊥.p |}a
β, {| α⊥.p |}c

β) � ({}, {}), α �� β

{| p + q |}a
γ � {| p |}a

γ ∪ {| q |}a
γ {| p + q |}c

γ � {| p |}c
γ ∪ {| q |}c

γ , γ ∈ Act .

Fig. 9. Denotational semantics {| p |} for terms p of MPA in D; it interprets 0 as deadlock in D, ⊥ as the least element of D, + as the mix
union of [Hec90], and prefixes as expected except for saturations with ↓ and ↑ to ensure that the meaning is in D

1. We show ([| αtt.p |], p)≺(D, {| αtt.p |}):
• A Ra-transition out of ([| αtt.p |], αtt.p) can only arise through αtt.p −→α

tt p but ({| αtt.p |}, α, {| p |}) is a
R

a-transition in D and ([| p |], p)≺(D, {| p |}) by induction.
• Let ({| αtt.p |}, β, d) be a R

c-transition in D. Then β � α and d ∈ ↑{| p |}. By induction, ([| p |], p) refines
(D, {| p |}) which, together with {| p |} � d, item 1 of Fact 4.1, and the transitivity of refinement implies
([| p |], p)≺(D, d); and (αtt.p, α, p) is also a Rc-transition in [| αtt.p |].

2. Next we show (D, {| αtt.p |})≺([| αtt.p |], αtt.p):

• Let ({| αtt.p |}, β, d) be a R
a-transition. Then β � α and d ∈ ↓{| p |}. Induction renders that (D, {| p |}) is

refined by ([| p |], p) and so item 1 of Fact 4.1 and the transitivity of refinement imply (D, d)≺([| p |], p);
and (αtt.p, α, p) is a Ra-transition.

• A Rc-transition out of ([| αtt.p |], αtt.p) has to arise from αtt.p −→α
tt p but ({| αtt.p |}, α, {| p |}) is a R

c-
transition and ([| p |], p)≺(D, {| p |}) by induction.

3. We show ([| α⊥.p |], α⊥.p)≺(D, {| α⊥.p |}):
• There are no initial Ra-transitions out of ([| a⊥.p |], α⊥.p).
• Let ({| α⊥.p |}, β, d) be a R

c-transition. Then β � α and d ∈ ↑{| p |}. By induction, ([| p |], p)≺(D, {| p |})
which, as reasoned before, implies ([| p |], p)≺(D, d); and (α⊥.p, α, p) is also a Rc-transition.

4. Finally, we show (D, {| α⊥.p |})≺([| α⊥.p |], α⊥.p):

• There are no initial R
a-transitions out of (D, {| α⊥.p |}).

• A Rc-transition out of ([| α⊥.p |], α⊥.p) can only arise through α⊥.p −→α
⊥ p but ({| α⊥.p |}, α, {| p |}) is a

R
c-transition and ([| p |], p)≺(D, {| p |}) by induction. �

One can use that lemma to embed any pointed modal transition system (N, i) faithfully into D. For each
m � 0 let (N [m], i) be the partial modal transition tree that unwinds the transitions beginning from i in N as
a modal transition tree of depth m [HJS04]. If a leaf in that tree has a Rc-successor state in N , that leaf turns
into a may-stub; otherwise, said leaf deadlocks. Figure 10 depicts two of these approximations for the pointed
modal transition system (N, t1) of Fig. 2. For each m � 0 there is some pm ∈ MPA such that (N [m], i) is refine-
ment-equivalent to ([| pm |], pm) as all (N [m], i) are pointed modal transition trees. For example, for (N [2], t1) of
Fig. 10 we may choose p2 ∈ MPA as α⊥.(βtt.⊥ + γtt.⊥) + αtt.(αtt.⊥ + αtt.0). Furthermore, the set {{| pm |} | m � 0}
is directed in D as m � m′ implies (N [m], i)≺(N [m′], i). For example, we have (N [1], t1)≺(N [2], t1) in Fig. 10
where refinement is name identity on the common temporal layer except that may-leaves, e.g. t2 on the left, get
also refined by all successor states of their name-identical version in (N [2], t1), e.g. t1 and t3 as successor states of
t2 on the right. So

〈|N, i |〉 �
∨

m�0

{| pm |} (14)

exists as a directed supremum in D and (D, 〈|N, i |〉) and (N, i) are refinement-equivalent by item 6 of Fact 4.1.
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δ ∈ Act δ ∈ Act

αα

t1t1

t2 t3

α α

α αγ

δ ∈ Act δ ∈ Act δ ∈ Act

t1

t2 t3

t1 t3 t4 t5

β

Fig. 10. To the left: The approximation (N [1], t1) of the pointed modal transition system (N, t1) on the right of Fig. 2; note how t2 and t3 turn
into may-stubs since (t2, γ, t3) and (t3, α, t4) are in Rc inN . To the right: A more precise approximation (N [2], t1) of that same pointed modal
transition system, which recognizes that t5 deadlocks

ψ0 � ∧
α∈Act ¬〈α〉tt

ψ⊥ � tt

ψαtt .p � 〈α〉ψp ∧ [α]ψp ∧ ∧
β ��α ¬〈β〉tt

ψα⊥.p � [α]ψp ∧ ∧
β ��α ¬〈β〉tt

ψp+q � ∧{〈α〉ψr ′ | α ∈ Act, p + q −→α
tt r

′} ∧ ∧
α∈Act [α]

∨{ψr ′ | ∃v ∈ {⊥, tt} : p + q −→α
v r

′}
Fig. 11. The customizations of (13) for terms of MPA, where the shape of partial modal transition trees ensures that these formulas are
inductively definable within Hennessy-Milner logic: For all pointed modal transition system (N, i) we have (N, i)|�aψp iff ([| p |], p)≺(N, i).
The expressions ¬〈β〉tt above result from the expression . . . [β](

∨
. . . ) in (13) where the disjunction ranges over the empty set and therefore

denotes ff

From Theorem 6.4 in [Hec90] we can infer that the compact elements of D are all denotations of MPA:

K(D) � {{| p |} | p ∈ MPA} . (15)

In Example 4.3 we already saw that formulas X(M,s) are expressible in the modal mu-calculus for finite-state
models. For partial modal transition trees these formulas are even expressible in Hennessy-Milner logic.

Definition 4.4 For every p ∈ MPA let ψp of Hennessy-Milner logic be defined inductively as in Fig. 11.

We ensure that ψp captures X([|p|],p).

Lemma 4.3 For all p ∈ MPA and all pointed modal transition systems (N, i), not necessarily image-finite, we
have (N, i)|�aψp iff ([| p |], p)≺(N, i)

Proof. We prove this by structural induction on p.

• We have (N, i)|�aψ0 iff (there are no Rc-transitions whatsoever out of i in N ) iff ([| 0 |], 0)≺(N, i).
• We have (N, i)|�att and ([| ⊥ |],⊥)≺(N, i) for all pointed modal transition system (N, i).
• Using induction on p, we have (N, i)|�aψαtt .p iff (there is a Ra-transition (i, α, i ′) inN with ([| p |], p)≺(N, i ′);

all Rc-transitions (i, α, i ′′) in N satisfy ([| p |], p)≺(N, i ′′); and there are no Rc-transitions out of i in N for
other events). This exactly captures ([| αtt.p |], αtt.p)≺(N, i).
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same set of maximal elements

⊥D

[| φ |]a � {d ∈ D | d|�aφ}
contained in Vφ

Vφ Scott-open by Hofmann-Mislove Theorem

Vφ � {d ∈ D | ↑d ∩ max(D) ∈ [| φ |]a}

Fig. 12. A schematic description of the potential loss of precision of |�a over |�a+ represented by Vφ \ [| φ |]a. The properties of [| φ |]a and
Vφ stated in this figure are shown subsequently, except for Vφ ∩ max(D) � [| φ |]a ∩ max(D) which is obvious

• By induction on p, we have (N, i)|�aψα⊥.p iff (there are no Rc-transitions out of i for events other than α, and
all Rc-transitions (i, α, i ′) satisfy ([| p |], p)≺(N, i ′)). But this captures ([| α⊥.p |], α⊥.p)≺(N, i).

• Let (N, i)|�aψp+q . Then (N, i)|�a ∧
α∈Act

∧
p+q−→α

tt r
′ 〈α〉ψr ′ expresses that allRa-transitions out of p+q can be

answered in the game G[([| p + q |], p + q), (N, i)] such that a “winning” position for the verifier is reached by
induction; whereas (N, i)|�a ∧

α∈Act [α]
(∨{ψr ′ | ∃v ∈ {⊥, tt} : p + q −→α

v r
′}) states that all initial questions

asked as Rc-transitions from (N, i) can be answered in ([| p + q |], p + q) to reach a “winning” position for
the verifier as well, by induction. So (N, i) refines ([| p + q |], p + q).

�

5. Abstract witnesses

Before we can prove completeness of refinement we need to understand the topology of abstraction better. In
abstraction-based model checking for modal transition systems we would like a finite-model property for abstrac-
tions: if φ holds in some pointed modal transition system (M, i), there should be some finite-state (N, j ) such
that (N, j )≺(M, i) and φ holds in (N, j ) as well. If this were not the case, model checking φ for an infinite-stateM
through finite-state abstractions would be futile. This cannot always be secured. As Dams & Namjoshi [DN04]
point out, abstraction-based model checking of the modal mu-calculus is incomplete for finite-state modal tran-
sition systems as abstractions. In this section, we prove that such a finite-model property holds for partial modal
transition trees as finite abstractions of modal transition systems and Hennessy-Milner logic in the weak and
in the strong semantics. For the weak semantics this is perhaps rather obvious but we strengthen it to securing
that there are finitely many maximally abstract modal transition systems satisfying φ. This stronger result for the
weak semantics is then used to prove the result for the stronger semantics. We define the concepts of interest via
subsets of D.

Definition 5.1 Given φ of Hennessy-Milner logic, we define

[| φ |]a � {d ∈ D | (D, d)|�aφ}
[| φ |]c � {d ∈ D | (D, d)|�cφ}
Vφ � {d ∈ D | ↑d ∩ max(D) ⊆ [| φ |]a} .

(16)

The set Vφ has as elements those d ∈ D for which all “implementations” satisfy φ where “implementations”
refers to the interpretation of that notion in the model D and D. Soundness of |�a with respect to |�a+ there-
fore recognizes Vφ as a superset of [| φ |]a. See Fig. 12. For all pointed modal transition system (N, i) and φ of
Hennessy-Milner logic we have

(N, i)|�mφ iff 〈|N, i |〉 ∈ [| φ |]m (m ∈ {a, c}) (17)

by item 6 of Fact 4.1. Below we show this correspondence for the strong semantics and so Vφ faithfully models
implementations and the strong semantics of φ. The finite-model property for the weak semantics can surely
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be shown more directly than through arguments based on the model D. But we show a stronger property: the
desired finite-state model is an abstraction; and, for each formula of Hennessy-Milner logic, there are finitely
many maximally abstract models, which turn out to be partial modal transition trees. To do this, we need to
recognize labelled transition systems as elements of max(D), the set of maximal elements of D.

Proposition 5.1 ([Hut04]) For every labelled transition system (L, i), the element 〈|L, i |〉 is in max(D).

Now we can establish structural properties of the sets [| φ |]c, [| φ |]a, and Vφ .

Proposition 5.2 Let φ be any formula of Hennessy-Milner logic.

1. The sets [| φ |]a and [| φ |]c are Lawson-clopen in D.
2. There is a finite set Pφ ⊆ MPA such that

• [| φ |]a � ↑{{| p |} | p ∈ Pφ}; and
• for all pointed modal transition systems (N, i) with (N, i)|�aφ there is some p in Pφ with ([| p |], p)≺(N, i)

and ([| p |], p)|�aφ.

3. The sets [| φ |]a and Vφ are Scott-open in D and [| φ |]a ⊆ Vφ .
4. For all pointed modal transition systems (N, i), we have

(N, i)|�a+φ iff 〈|N, i |〉 ∈ Vφ . (18)

The proof for item 1 above was already given in Lemma 2 of [Hut04]. We obtain a first finite-model property.

Corollary 5.1 For every φ of Hennessy-Milner logic and pointed modal transition system (N, i): If we have
(N, i)|�a+φ, there is some p ∈ MPA such that ([| p |], p)≺(N, i) and ([| p |], p)|�a+φ.

Proof. If (N, i)|�a+φ, then 〈|N, i |〉 is contained in Vφ by item 4 of Proposition 5.2. The claim then follows from (15)
and item 3 of Proposition 5.2 since D is algebraic. �

Example 5.1 1. Unfortunately,

↓K(D) �⊆ K(D) (19)

so we can’t offer an easy proof that the p ∈ MPA in Corollary 5.1 may be chosen to be maximally abstract:
consider the pointed modal transition system (M, i) � ({i}, {}, {(i, α, i)}) with Act � {α, β}. InM there are no
must-transitions and one may-transition (i, α, i) ∈ Rc only. Then {| 0 |} is in max(D)∩K(D) and 〈|M, i |〉 � {| 0 |}
but 〈|M, i |〉 is not compact as it does not equal any of its finite approximations 〈|M[m], i |〉 with m � 1, for
may-leaves in each M[m] contain Rc-transitions for event β.

2. There are even infinite strictly descending chains (ln)n�1 in K(D). For each n � 1 let pn ∈ MPA be the term
α⊥.α⊥. . . . α⊥.0 which nests n may-prefixes for the same event α and then stops. Each ln � {| pn |} is compact
in K(D) and for all n < m we have lm � ln and ln �� lm.

6. Proving completeness of refinement

Now we can use the game-theoretic interpretation of refinement and our results from Sect. 5 to show that refine-
ment is complete. As the proof of Theorem 6.1 is rather involved we first give an informal outline of strategy
for this proof. In the next proposition we show that refinement is complete for partial modal transition trees as
models. Then we show that completeness of refinement holds iff the domain D satisfies that its order d � e is
equivalent to ↑e ∩ max(D) ⊆ ↑d ∩ max(D). Next we use topology, notably the Scott-openness of Vφ , to argue that
the equivalence of d � e and ↑e ∩ max(D) ⊆ ↑d ∩ max(D) is true for all d, e ∈ D iff it is true for d and e ranging
over K(D) only. Finally, we note that this property restricted to elements of K(D) is ensured by the completeness
of refinement for partial modal transition trees.

Proposition 6.1 For all partial modal transition trees (M, i) and (M ′, i ′) we have (M, i)≺(M ′, i ′) iff I[M ′, i ′] ⊆
I[M, i].

Proof. Since pointed modal transition trees are denotations of terms in MPA and since (M, i)≺(N, j ) implies
I[N, j ] ⊆ I[M, i], it suffices to show

“For all p, q ∈ MPA the relation I[[| q |], q] ⊆ I[[| p |], p] implies ([| p |], p)≺([| q |], q).” (20)
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which we do by induction on deg(q), the number of occurrences of prefixes γ⊥. in q summed up over all γ ∈ Act.
For example for the q from Fig. 7 we have deg(q) � 3, stemming from the two occurrences of α⊥. and one
occurrence of β⊥.

Base case: Let deg(q) � 0. Then the only may-transitions, if any, in ([| q |], q) stem from may-stubs ⊥. It
is sufficient to show that the verifier has a winning strategy in the game G[([| p |], p), ([| q |], q)]. The argument
is complex in that we use I[[| q |], q] ⊆ I[[| p |], p] to synthesize implementations on demand from which we
then synthesize the promised winning strategy for the verifier. This is done by a case analysis of the players’
behavior in runs. (If there are no may-stubs ⊥ in [| q |], the arguments below reduce to stating that ([| q |], q) is
its own implementation and therefore an implementation of ([| p |], p) as well.) Consider any run in the game
G[([| p |], p), ([| q |], q)].

• Suppose that the refuter never chooses a may-transition as a question in said run. Then all her questions are
must-transitions in ([| p |], p) or ([| q |], q). But then she cannot win this run. For let q1 be obtained from q
by replacing all occurrences of ⊥ in q with 0. Then ([| q1 |], q1) ∈ I[[| q |], q], since deg(q) � 0, and I[[| q |], q]
is contained in I[[| p |], p] by assumption. Thus, ([| q1 |], q1) ∈ I[[| p |], p] and so ([| p |], p)≺([| q1 |], q1). Said
run can be interpreted as a run in the game G[([| p |], p), ([| q1 |], q1)] and is therefore won by the verifier.

• Suppose that the refuter does choose a may-transition as a question in said run. Let (p′, q ′) be the first game
position in that run in which the refuter asks such a question, which has to be a transition in [| q |] derived from
q ′ −→α

⊥ q
′′ for some sub-terms q ′ and q ′′ of q and some α ∈ Act as the refuter cannot ask a may-transition in

([| p |], p). Since deg(q) � 0 we infer that q ′ and q ′′ are the same sub-term ⊥l, where l signifies this occurrence
of ⊥.
From position (p′,⊥l) in game G[([| p |], p), ([| q |], q)] the refuter can keep asking anyRc-transition questions
on the may-stub ⊥l which have to be answered by the verifier with an Rc-transition from p′ onwards in [| p |].
Therefore, we can construct a winning strategy for the verifier by showing that all such answers can be given
and can be chosen to reach a position (p′′,⊥l) such that there are no Ra-transitions out of p′′. This argument
is inductive in the length of the path from p′ to p′′, including the path of length zero, will trap the refuter in
the situation of asking Rc-transitions as questions in [| q |], and results in an infinite run won by the verifier.
We write

∑
for the nary version of non-deterministic choice + in MPA.

– Let the length of the path from p′ to p′′ be zero. We need to show that there are noRa-transitions out of p′
in [| p |]. Let α ∈ Act. Consider the implementation ([| q2 |], q2) of ([| q |], q) which replaces the occurrence
⊥l in q with (�β ��αβtt.0)l, where l still indicates the unique occurrence within the parse tree of q2, and
replaces all other occurrences of ⊥ in q with 0. Note that our run in the game G[([| p |], p), ([| q |], q)] up
to position (p′,⊥l) can be interpreted as a run in the game G[([| p |], p), ([| q2 |], q2)] as no may-transition
has been asked prior to that position. But all implementations of ([| q |], q) are also implementations of
([| p |], p) by assumption. So ([| p |], p)≺([| q2 |], q2) follows and the verifier has a winning strategy in that
game. This means that in position (p′, (�β ��αβtt.0)l) the refuter cannot ask a Ra-transition labelled with
α out of p′ as there are no such transitions out of (�β ��αβtt.0)l. Since α ∈ Act was arbitrary we conclude
that there are no Ra-transitions out of p′ in [| p |].

– Let α1 . . . αn be the entire sequence of events corresponding to the sequence of Rc-transition ques-
tions asked by the refuter from position (p′,⊥l) towards position (p′′,⊥l) in said run of the game
G[([| p |], p), ([| q |], q)]. Let α ∈ Act. Consider the implementation ([| q3 |], q3) of ([| q |], q) which replaces
the occurrence ⊥l in q with (α1

tt .α
2
tt . . . . α

n
tt .�β ��αβtt.0)l and replaces all other occurrences of ⊥ in q with

0. Our run in the game G[([| p |], p), ([| q |], q)] up to the position (p′′,⊥l) is interpretable as a run in the
game G[([| p |], p), ([| q3 |], q3)] up to position (p′′, (�β ��αβtt.0)l) since Ra ⊆ Rc. We may now reason in the
same manner as done for the path of length zero.

Inductive step: Let the statement (20) be true for all p, q ∈ MPA with deg(q) < n. Now let 0 < deg(q) � n
with I[([| q |], q)] ⊆ I[([| p |], p)]. Since deg(q) > 0 there is some α ∈ Act with some sub-term α⊥.q ′ in q. Define
q+ by replacing that sub-term in q with αtt.q

′ and let q− be obtained by replacing α⊥.q ′ in q with 0. These are
linear replacements, only that one occurrence of α⊥.q ′ is being replaced if α⊥.q ′ occurs more than once in q.
It is immediate that ([| q+ |], q+) and ([| q− |], q−) refine ([| q |], q) and that deg(q+) and deg(q−) are less than n.
But ([| q |], q)≺([| q+ |], q+) and I[[| q |], q] ⊆ I[[| p |], p] imply I[[| q+ |], q+] ⊆ I[[| p |], p] as refinement is tran-
sitive. Similarly, we establish that I[[| q− |], q−] ⊆ I[[| p |], p]. By induction on deg(q+) and deg(q−) we infer
([| p |], p)≺([| q+ |], q+) and ([| p |], p)≺([| q− |], q−), respectively.
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But then there exist somew+ andw−, respective winning strategies for the verifier in the two refinement games
G[([| p |], p), ([| q+ |], q+)] and G[([| p |], p), ([| q− |], q−)]. We synthesize from w+ and w− a winning strategy for
the verifier in the game G[([| p |], p), ([| q |], q)] as follows.

• As long as questions in the latter game are also questions in the game G[([| p |], p), ([| q− |], q−)] the verifier
answers according to w− and these questions and answers will be legitimate questions and answers in the
game G[([| p |], p), ([| q |], q)] since all transitions in [| q− |] are also in [| q |] and in the same mode.

• As soon as the refuter asks a question that is not in the game G[([| p |], p), ([| q− |], q−)], that question has to be
the may-transition stemming from the prefix α⊥. which is implemented in q+ as a must-transition. In particu-
lar, the position at which this question is raised is reachable from (p, q+) in the game G[([| p |], p), ([| q+ |], q+)].
Hence the verifier uses Ra ⊆ Rc to interpret that question as an Rc-transition in the game
G[([| p |], p), ([| q+ |], q+)] and replies with the answer according to w+. But this is a legitimate answer in
the game G[([| p |], p), ([| q |], q)], resulting in a position of that game from which onwards the refuter can only
reach positions and ask questions that are also positions and questions in the game G[([| p |], p), ([| q+ |], q+)],
respectively.

So regardless of whether the shift from w− to w+ ever happens, the verifier wins every run and therefore
([| p |], p)≺([| q |], q) follows. �

As stated in the outline of our proof strategy, we need to show that ↑〈|M,′ , i ′ |〉 ∩ max(D) ⊆ ↑〈|M, i |〉 ∩ max(D)
captures the relation I[M ′, i ′] ⊆ I[M, i] for all pointed modal transition systems (M, i) and (M ′, i ′).

Lemma 6.1 For all pointed modal transition systems (M, i) and (M ′, i ′) we have I[M ′, i ′] ⊆ I[M, i] iff
↑〈|M,′ , i ′ |〉 ∩ max(D) ⊆ ↑〈|M, i |〉 ∩ max(D).

In accordance with our overall strategy we now reveal that the domain is complete for refinements iff this is true
for its compact elements already.

Lemma 6.2 Suppose that for all compact elements k, l ∈ K(D) we have that ↑l ∩ max(D) ⊆ ↑k ∩ max(D) implies
k � l. Then this implication holds for all elements of D: for all d, e ∈ D the relation ↑e ∩ max(D) ⊆ ↑d ∩ max(D)
implies d � e.

Proof. Let d, e ∈ D with ↑e ∩ max(D) ⊆ ↑d ∩ max(D). Choose any k ∈ K(D) below d. As D is algebraic, it suffices
to show k � e. By (15) there is p ∈ MPA with k � {| p |} and so e ∈ Vψp by Lemma 4.3 since ↑e ∩ max(D) ⊆
↑d ⊆ ↑k, where ↑d ⊆ ↑k since k � d. But D is algebraic and the set Vψp is Scott-open by item 3 of Proposition 5.2.
So there is some l ∈ K(D) below e with l ∈ Vψp . Thus, ↑l ∩ max(D) ⊆ [| ψp |]a ∩ max(D) ⊆ ↑k ∩ max(D) which
implies k � l by the assumption of the lemma. So k � l � e renders k � e. �

Finally, we can tie together all arguments to secure the completeness of refinement.

Theorem 6.1 Refinement for pointed modal transition systems is complete with respect to the interpretation of
pointed modal transition systems as their respective classes of implementations: for all pointed modal transition
systems (M, i) and (N, j ) we have (M, i)≺(N, j ) iff I[N, j ] ⊆ I[M, i].

Proof. From Lemma 6.1 we know that the completeness of refinement holds iff for all d, e ∈ D the relation
↑e ∩ max(D) ⊆ ↑d ∩ max(D) implies d � e. By Proposition 6.1, Lemma 6.1 applied to partial modal transition
trees, and (15) this holds for all compact elements d, e ∈ K(D). By Lemma 6.2, this is sufficient. �

Using the completeness of refinement, we show that refinement is characterized by Hennessy-Milner logic
not only under the weak, but also under the strong semantics.

Corollary 6.1 For all pointed modal transition systems (M, i) and (N, j ) we have (M, i)≺(N, j ) iff (for all φ
of Hennessy-Milner logic, (M, i)|�a+φ implies (N, j )|�a+φ) iff (for all φ of Hennessy-Milner logic, (N, j )|�c−φ
implies (M, i)|�c−φ).

Using the results of Godefroid & Jagadeesan in [GJ03], we infer that refinement is complete for a host of 3-valued
models and their notion of refinement, including those that combine event and state information.

Corollary 6.2 Refinement is complete for implementations for the model-checking frameworks of Kripke modal
transition systems [HJS01] and partial Kripke structures [BG99].
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Proof. Godefroid & Jagadeesan show [GJ03] that there are linear-time and log-space translations between any of
these models and modal transition systems, and between Hennessy-Milner logic and the corresponding temporal
logics for the other models such that refinement and the meaning of model checks is preserved and reflected.
Thus our arguments are invariant under such a change of representation. �

7. Completeness of refinement as semantic minimization

This paper asks as second question whether a semantic minimization φ �→ φ+ exists for modal transition systems
and Hennessy-Milner logic:

“For all φ of Hennessy-Milner logic, is there some φ+ of Hennessy-Milner logic
such that for all pointed modal transition systems (M, i) : ((M, i)|�a+φ iff (M, i)|�aφ+)?” (21)

As Blamey has shown [Bla80], the answer is affirmative in the setting of 3-valued propositional logic where |�a is
Kleene’s strong 3-valued interpretation of propositional logic, our weak semantics, and |�a+ the super-valuational
meaning [vF66], our strong semantics. As one would expect for propositional logic, the length of φ+ is exponential
in the length of φ in the worst case.

Example 7.1 Let the formula φ be p ↔ q, which states that p and q have the same truth value. Then φ is seman-
tically self-minimizing in that we may choose φ+ to be φ. For if M is any 3-valued model for which φ evaluates
to ⊥ in the weak semantics, there will always be two refining 2-valued models for which φ evaluates to different
truth values.

The connection between semantic minimization and completeness of refinement can now be explained. In
Lemma 4.3 we showed that for all formulas ψp of Fig. 11 and for the operational meaning ([| p |], p) of the
process term p defined in Fig. 6 we have

([| p |], p)≺(M, i) iff (M, i)|�aψp ((M, i) pointed modal transition system) . (22)

Moreover, the set of all such ψp logically characterizes refinement by (15) and items 1 and 5 of Fact 4.1 in the
weak semantics. We introduce terminology for the case in which [| φ |]a in Fig. 12 is a proper subset of Vφ .

Definition 7.1 A formula φ of Hennessy-Milner logic loses precision iff (for some pointed modal transition system
(M, i), (M, i)|�a+φ but (M, i) �|�aφ).

Remark 7.1 The completeness of refinement is equivalent to the fact that no formula ψp loses precision. To see
this we repeatedly use (22), Lemma 4.3, and the fact that |�a equals sat on implementations:

• Assume that some ψp loses precision. Then there is some (M, i) with (M, i)|�a+ψp and (M, i) �|�aψp. The
former guarantees I[M, i] ⊆ I[[| p |], p], the latter means ([| p |], p) �≺(M, i), and so refinement is incomplete.

• Conversely, assume that no ψp loses precision. Proof by contradiction: Assume that I[M, i] ⊆ I[N, j ] and
(N, j ) � ≺(M, i). By items 1 and 6 of Fact 4.1 and (15) there is some p with ([| p |], p)≺(N, j ) such that
([| p |], p) �≺(M, i). From I[M, i] ⊆ I[N, j )] and ([| p |], p)≺(N, j ) we get (M, i)|�a+ψp as valid |�a checks are
preserved under refinement by item 5 of Fact 4.1. Thus, (M, i)|�aψp as well asψp does not lose precision. But
(M, i)|�aψp means ([| p |], p)≺(M, i), a contradiction.

That is, completeness of refinement is equivalent to the fact that ψ+
p of (21) exists for all formulas ψp of Fig. 11

and that ψ+
p may be chosen to be ψp; these formulas are semantically self-minimizing and so validity checks

(M, i)|�a+ψp are reducible to model checks (M, i)|�aψp. This insight corroborates that answering question (4)
is non-trivial since the semantics of ψp+q under |�a depend heavily on the evaluation of disjunctions, potentially
causing a loss of precision.

8. Checking consistency and verifying goals of multiple models

Before we conclude, we point out a genuine application of our results in the realm of requirements engineering.
Basic functional requirements may be captured as a term p of a process algebra, say, MPA for sake of simplicity.
In fact the process algebra MPA, enriched with parallel composition, is sufficient for activities such as state-
space exploration, simulation, and bounded model checking [BCCZ99] where one puts bounds on the depth of
computation paths.
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Fig. 13. Two modal transition systems with initial states s1 and s2, respectively, that have a common refinement

As requirements are likely to be under-specified, prefixes come in two modes, αtt. and α⊥., as in the process
algebra MPA. A considerable problem in practice is that there are often finitely many such terms p1, p2, . . . , pn
each describing requirements on, or aspects of, the same design or product. This raises fundamental problems:

1. Events known in one term may be foreign in another.
2. Does the finite set of terms {pk | 1 � k � n} have a common implementation?
3. If so, do all (respectively some) common implementations of that set satisfy a goal?

Example 8.1 Figure 13 depicts two modal transition systems that have a common refinement. The reader is
invited to determine whether all such common refinements satisfy that there is an event path on which β events
happen until one gets to a state at which not all α events lead to states at which β can happen.

The first problem could be solved by identifying and encoding all foreign events as may-transitions that can lead
from states to subsets of states with that imported foreign label, creating a common set of events for all terms
pk. Two obvious choices of such subsets are the entire state space, modelling state-wide divergence, and singleton
self-loops, modelling that local state is unaffected by foreign events.

The second problem may now be solved as follows. For each 1 � k � n let ([| pk |], pk) be the pointed modal
transition system that arises as the operational meaning of the term pk. We assume that each term p has a
formula ψp of some logic, not necessarily Hennessy-Milner logic or the modal mu-calculus, satisfying (22) for
a judgment |�a that interprets conjunction in a compositional manner. A common implementation is a pointed
labelled transition system that refines all of these pointed modal transition systems, therefore being a witness to
the satisfiability of

n∧

k�1

ψpk . (23)

Conversely, any labelled transition system that is a satisfiability witness of that formula has to be a common
implementation of all of the ([| pk |], pk) by (22). For MPA, the formulas in (23) can be computed inductively as in
Fig. 11 and satisfiability for Hennessy-Milner logic and labelled transition systems is PSPACE-complete, for this
is the case for the basic modal logic K and Kripke structures and there are linear-time and log-space translations
between these frameworks [GJ03]. These results are modest since practical specifications often require recursion
and so the ψpk in (23–27) need to be replaced with the X([|pk |],pk ) in (13) which are then expressible in the modal
mu-calculus if [| pk |] is finite-state.

For MPA, the third problem above can be specified in terms of |�a and |�a+ by exploiting the topological struc-
ture of the SFP-domain D. Each [| ψpk |]a is of the form ↑Ck for a finite set Ck ⊆ K(D) by Proposition 5.2. Since
the finite intersection of Scott-open, Scott-compact sets is again Scott-compact and Scott-open in a SFP-domain
[AJ94] we conclude that

n⋂

k�1

[| ψpk |]a � ↑{{| q |}} | q ∈ Q} (24)

for some finite setQ ⊆ MPA. The setQ is non-empty iff the first problem has a positive solution. In that case, each
([| q |], q) with q ∈ Q is a maximally abstract common refinement of all ([| pk |], pk), up to refinement equivalence,
and every common refinement of all ([| pk |], pk) is a refinement of some ([| q |], q) with q ∈ Q. Therefore, we can
answer whether all common refinements satisfy φ by answering
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“Does ([| q |], q)|�a+φ hold for all q ∈ Q?” (25)

A computationally less expensive approximation uses |�a in (25) instead of |�a+.
No doubt has the reader realized that this constitutes a solution only in as much as one is able to compute

all q ∈ Q from the set of all ([| pk |], pk). In the general case, we may have to rely on the validity of (22) to decide
whether all common implementations of all pk satisfy φ by checking the satisfiability of

¬φ ∧
n∧

k�1

ψpk (26)

over labelled transition systems and negating the answer of that check. Dually, in asking whether some common
implementation of all pk satisfies φ, we check whether

φ ∧
n∧

k�1

ψpk (27)

is satisfiable by some labelled transition system. The check for consistency in (23) is a special case of (27) where φ
equals tt and consistency checks should, intuitively, be in PTIME and not be PSPACE-complete or EXPTIME-
complete as is the case for checks of general Hennessy-Milner logic or modal mu-calculus formulas, respectively.

All this is modest but promising progress in a longstanding open problem in formal software engineering.1

9. Related work

Dams & Namjoshi [DN04] show that finite-state modal transition systems are incomplete as abstractions of
infinite-state modal transition systems for modal mu-calculus checking. They propose focused transition systems
as a generalization of modal transition systems, show completeness for this class of models, and define game
semantics for refinement of such systems and model checks of alternating tree automata on such systems.

In [Hut04] further structural properties of refinement are shown, notably, that max(D) is Lawson-closed in
D, that X � max(D) is a Stone space where the topology has basis {↑k ∩ max(D) | k ∈ K(D)}, and that the space
X is a topological model of all labelled transition systems over a finite set of events Act up to bisimulation such
that the embeddings of image-finite labelled transition systems are dense in X. Consistency measures for modal
transition systems are introduced and discussed. The journal version of that paper [Hut05] also presents a Galois
adjunction between compact sets of implementations and Scott-closed sets of modal transition systems.

The paper [HJS04] presents the SFP-domain D and its underlying modal transition system and provides
most of the basic facts on which the work in this paper relies. Although we have strived to make this paper
self-contained, we recommend reading [HJS04].

Uchitel & Chechik [UC04] merge modal transition systems with overlapping but different sets of events to
obtain a minimal common refinement and suggest user participation to explore common behavior if no minimal
common refinement exists.

The work proposed in Sect. 8 was continued in [HH04] which determined a polynomial-time algorithm for
checking whether multiple models have a common implementation. In loc. cit. summary models for diagnostic
purposes similar to those of [UC04] were also being defined.

Bruns & Godefroid develop 3-valued model checking in [BG99]; their generalized model checking in [BG00]
eradicates any loss of precision through automata-theoretic means that blow up the model to be checked. They
offer model-checking algorithms and complexity bounds for most practically relevant temporal logics. The
abstraction-based approach to 3-valued model checking is described in [GHJ01] and, by Godefroid & Jagadeesan,
in [GJ02].

Dams [Dam96] develops an abstract-interpretation and partition-refinement framework for model checking
based on mixed transition systems which are often not modal transition systems since optimality considerations
suggest to construct as few may-transitions and as many must-transitions as possible. It is unknown whether the
models in [Dam96] always satisfy the mix condition (MC) if they abstract concrete models.

The proof that semantic minimization, in the sense of (21), is possible for all formulas of propositional logic
is contained in Blamey’s thesis [Bla80], Theorem I.3.3. An implementation of such minimizations, using prime
implicants and binary decision diagrams, was given by Reps et al. in [RLS02].

1 The ideas proposed in this section lead subsequently to the work in [HH04], to which we refer to interested reader.
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The definition of modal transition systems and their refinement is given by Larsen & Thomsen in [LT88].
Larsen defines a semantics for Hennessy-Milner logic over modal transition systems and shows that it logically
characterizes refinement in [Lar89]; in loc. cit. he also proposes modal specifications as a way of combining modal
transition systems declaratively.

Cousot & Cousot invent abstract interpretation [CC77] as a formal framework in which one can express
abstractions of concrete data and transformations, and formulate soundness and optimality principles for ab-
stract interpretations of concrete transformations. In that context, non-distributive flow analyzes [NNH99] lose
precision in a way similar to the loss encountered by the weak semantics of Hennessy-Milner logic.

Van Fraassen defines the super-valuational meaning of propositional logic formulas in [vF66].

10. Conclusions

We presented the 3-valued model-checking framework for modal transition systems, their refinement, and a
weak and a strong semantics for Hennessy-Milner logic. The weak semantics, a bottom-up labelling algorithm
for model checks, is well known to lose precision. The strong semantics does not lose precision but known algo-
rithms require the transformation of the model under check. We asked whether one model refines another if and
only if its implementations are also implementations of the system it is refining. We answered this affirmatively
and thus showed that Hennessy-Milner logic characterizes refinement under the strong semantics. This also means
that the characteristic formulas of partial modal transition trees do not lose precision when checked under the
weak semantics.

The proofs of these results relied in part on a topological model developed with Jagadeesan & Schmidt in
[HJS04], a SFP-domain which is also a universal modal transition system. Using this model, we furthermore
secured that all model checks can be decided by model checks on partial modal transition trees that abstract the
model under check; and that, in the weak semantics, there are finitely many models – which happen to be partial
modal transition trees – that are maximally abstract with respect to satisfying a given formula of Hennessy-Milner
logic. For the strong semantics we proved that each model that satisfies a formula of Hennessy-Milner logic is
abstracted by a partial modal transition tree that satisfies that formula. These results constitute an abstraction-
based finite-model property for the weak and the strong semantics.

We presented some preliminary results on applications of this work in the context of determining whether
finitely many pointed modal transition systems have a common refinement and, if so, whether all common
refinements satisfy a goal.

Finally, we remarked that the results of this paper are stable under a change of representation as they apply
to 3-valued models that are state-based or combine state and event information.
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A. Definitions and established results from topology and domain theory

(We recommend [AJ94] for a thorough reference on these issues.) A partial order (D,�) is a set D with a binary
relation � onD that is reflexive, transitive, and antisymmetric. An upper bound for a subset A of a partial order
D is an element u ∈ D such that a � u for all a ∈ A; we write ub(A) for the set of upper bounds of A. The set
mub(A) � {u ∈ ub(A) | ∀d ∈ D : d � u & d ∈ ub(A) ⇒ d � u} consists of all minimal upper bounds of A in D.

A subset A of D is directed iff all finite subsets of A have an upper bound in A. Given X ⊆ D we write ↓DX
for {d ∈ D | ∃x ∈ X : d � x}, ↑DX for {d ∈ D | ∃x ∈ X : x � d}, and elide the subscript D if it is determined
by context. We use ↓x and ↑x if X � {x}. Subsets U of D with U � ↑U are upper sets, and subsets L of D with
L � ↓L are lower sets.

A partial order (D,�) is a dcpo iff all its directed subsets have a least upper bound
∨
A, i.e. iff there is some∨

A ∈ D with ub(A) � ↑∨A. An element k ∈ D is compact in a dcpo D iff for all directed sets A of D with
k �

∨
A there is some a ∈ A with k � a; we write K(D) for the set of compact elements. A dcpo D is algebraic

iff for all d ∈ D the set {k ∈ K(D) | k � d} is directed with least upper bound d. For a finite subset F of
D define mub1(F ) � mub(F ), mubn+1(F ) � mub(mubn(F )) for all n � 1, and mub∞(F ) � ⋃

n�1 mubn(F ). A
SFP-domain, also known as a bifinite domain, is an algebraic dcpoD such that for every finite subset F ⊆ K(D)
the set mub∞(F ) is finite and contained in K(D) with ub(F ) � ↑mub(F ).

A topological space (X, τ ) consists of a set X and a family τ of subsets of X such that {} and X are in τ , and
τ is closed under finite intersections and arbitrary unions. Elements O ∈ τ are τ -open, complements X \O with
O ∈ τ are τ -closed, and sets that are τ -open and τ -closed are τ -clopen. A topological space (X, τ ) is τ -compact
iff for all U ⊆ τ with X ⊆ ⋃ U there is a finite subset F ⊆ U with X ⊆ ⋃ F . A subset A of X is dense in (X, τ ) iff
A ∩O is non-empty for all non-empty O ∈ τ .

Given a topological space (X, τ ) and a subset Y ⊆ X, the subspace topology on Y consists of the set {O ∩ Y |
O ∈ τ }. A subset Y of X is τ -compact iff Y is compact in its subspace topology. A subset Y is τ -saturated in
X iff Y is the intersection of τ -open sets. The upper powerdomain U [X] is defined as the set of all τ -compact
τ -saturated subsets of X, ordered by reverse inclusion.

The definitions and characterizations below assume that D is a SFP-domain. The Scott-topology on D con-
sists of all subsets U of D satisfying U � ↑(U ∩ K(D)); such elements are Scott-open. The Lawson-topology on
D consists of all subsets V of D such that x ∈ V implies the existence of some k, l ∈ K(D) with x ∈ ↑k \ ↑l ⊆ V .
Note that every Scott-open is Lawson-open and every Scott-closed is therefore Lawson-closed. For all d ∈ D, the
set ↑d is Lawson-closed upper. A subset C of D is Scott-compact (Scott-)saturated in D iff C is Lawson-closed
upper in D. A subset U of D is Scott-open and Scott-compact iff U is of the form ↑F for a finite set F ⊆ K(D).

A collection (Fi)i∈I of subsets of D, indexed by a directed set (I,�), is filtered iff (for all i, j ∈ I there is
some k ∈ I with k ∈ ub({i, j}) such that Fk ⊆ Fi ∩ Fj ). The Hofmann-Mislove Theorem [HM81] states that
if the intersection

⋂
i∈I Ci of a filtered collection of Scott-compact saturated sets (Ci)i∈I in D is contained in a

Scott-open set U ⊆ D, then there is some i0 ∈ I with Ci0 ⊆ U already.

B. Proofs of auxiliary or secondary results

Proof of Proposition 5.1 Let (L, i) be a labelled transition system, a modal transition system with must-transitions
only, and set d � 〈|L, i |〉. Since (L, i) and (D, d) are refinement-equivalent by item 6 of Fact 4.1 and since |�a

equals |�c on modal transition systems with must-transitions only by item 3 of Fact 4.1, we infer that, for all φ of
Hennessy-Milner logic, ((D, d)|�aφ iff (D, d)|�cφ). Proof by contradiction: If d �∈ max(D), there is some e ∈ D

with d � e and e �� d. Since D is algebraic, the latter implies that there is some k ∈ K(D) with k � e and k �� d.
By (15) there is some p ∈ MPA with k � {| p |}. But k � e means (D, e)|�aψp and k �� d means (D, d) �|�aψp
by Lemma 4.3 which, as inferred above, implies (D, d) �|�cψp. But (D, e)|�aψp implies (D, e)|�cψp by item 2 of
Fact 4.1 and so d � e implies (D, d)|�cψp by item 5 of Fact 4.1, a contradiction. �

Proof of Proposition 5.2

1. We proceed by structural induction on φ of Hennessy-Milner logic. This is evident for the clauses
tt, negation, and conjunction since D is Lawson-clopen and clopens are closed under set complement
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([| ¬φ |]a � D \ [| φ |]c and [| ¬φ |]c � D \ [| φ |]a) and finite intersections. We require mode-dependent proofs
for 〈α〉φ, where [| 〈α〉φ |]m � {d ∈ D | dm

α ∩ [| φ |]m �� {}} for m ∈ {a, c}.
• Let m � a. By Theorem 4.2 in [HJS04] all [| ψ |]a, ψ formula of Hennessy-Milner logic, are Scott-open,

so [| 〈α〉φ |]a is Scott-open and therefore Lawson-open and it suffices to show that [| 〈α〉φ |]a is Lawson-
closed, i.e. Scott-compact as an upper set. By induction, [| φ |]a is Lawson-clopen; it is also Scott-open
so [| φ |]a � ↑Fφ for a finite subset Fφ ⊆ K(D) as D is algebraic. By the definition of [| 〈α〉φ |]a, we
have e ∈ [| 〈α〉φ |]a iff ea

α ∩ ↑Fφ �� {} iff ea
α ∩ Fφ �� {} (as ea

α is a lower set). For each y ∈ Fφ define
c(y) � (c(y)γ )γ∈Act ∈ D by c(y)β � ({},D) for all β �� α; and c(y)α � (↓y,D). Then C � {c(y) | y ∈ Fφ} is
finite and C ⊆ K(D). Since y ∈ c(y)a

α ∩ Fφ for all y ∈ C, we get ↑C ⊆ [| 〈α〉φ |]a as the latter set is upper.
Note that for each y ∈ Fφ we have c(y) � e in D iff y ∈ ea

α. Therefore, e ∈ [| 〈α〉φ |]a implies e ∈ ↑C. Thus,
[| 〈α〉φ |]a equals ↑C for the finite subset C of K(D).

• Let m � c. From Theorem 4.2 in [HJS04] we already know that [| 〈α〉φ |]c is Scott-closed and therefore
Lawson-closed. Thus, it suffices to show that [| 〈α〉φ |]c is Lawson-open. By induction, [| φ |]c is Lawson-
open and therefore D \ [| φ |]c � [| ¬φ |]a is Lawson-closed (and Scott-open), i.e. Scott-compact upper.
Since D is algebraic, [| ¬φ |]a � ↑F¬φ for a finite subset F¬φ of K(D). Thus, [| φ |]c � D \ ↑F¬φ . Inspecting
the definition of [| 〈α〉φ |]c, we infer e ∈ [| 〈α〉φ |]c iff there is some x ∈ ec

α such that x �∈ ↑F¬φ . Now let
d ∈ [| 〈α〉φ |]c. We claim that there are compact elements k and l with d ∈ ↑k \ ↑l ⊆ [| 〈α〉φ |]c, which
concludes the proof since ↑k \ ↑l is Lawson-open. Choose any k ∈ ↓d ∩ K(D). As for l � (lγ )γ∈Act, set
lβ � ({},D) for all β �� α; and lα � ({},↑F¬φ); in particular, l ∈ K(D). Note that l �� e in D iff ec

α �⊆ ↑F¬φ
iff (for some x ∈ ec

α, x �∈ ↑F¬φ). Therefore, d ∈ ↑k \ ↑l ⊆ [| 〈α〉φ |]c.

2. The first claim follows from item 1 and the fact that all [| φ |]a are Scott-open, as shown in [HJS04]. The second
claim follows from this, Lemma 4.2, and item 6 of Fact 4.1.

3. By item 2 of Theorem 4 in [HJS04] each [| φ |]a is Scott-open. The inclusion [| φ |]a ⊆ Vφ follows from item 5 of
Fact 4.1. The set Vφ is an upper set in D since d ∈ Vφ and d � e imply ↑e ∩ max(D) ⊆ ↑d ∩ max(D) ⊆ [| φ |]a
and so e ∈ Vφ . Let d ∈ Vφ . Since D is algebraic, it suffices to show that l ∈ Vφ for some l ∈ ↓d ∩ K(D)
as then Vφ is Scott-open. Let M be the intersection of all Lawson-closed upper subsets of D that contain
max(D). Then for every x ∈ D the set ↑x ∩M is Scott-compact and saturated in D as the intersection of two
Lawson-closed upper sets. Since D is algebraic, we infer that {↑l ∩M | l ∈ ↓d ∩ K(D)} is a filtered collection
of Scott-compact saturated subsets of D whose intersection equals ↑d ∩M. But the latter set is contained in
[| φ |]a. This is so since [| φ |]a is Lawson-closed upper; and d ∈ Vφ implies ↑d ∩ max(D) ⊆ [| φ |]a and so [| φ |]a
also contains the intersection of all Lawson-closed upper subsets containing ↑d ∩ max(D) — which is ↑d ∩M.
Since D is sober as an algebraic domain and since the filtered intersection of Scott-compact saturated sets⋂{↑l ∩ M | l ∈ ↓d ∩ K(D)} is contained in the Scott-open [| φ |]a, the Hofmann-Mislove Theorem [HM81]
implies the existence of some l ∈ ↓d ∩K(D) such that ↑l∩M ⊆ [| φ |]a. The latter implies ↑l ∩ max(D) ⊆ [| φ |]a
as max(D) ⊆ M, so l ∈ Vφ .

4. First, let 〈|N, i |〉 be in Vφ and consider any (M, j ) ∈ I[N, i]. By Proposition 5.1, 〈|M, j |〉 is an element of
↑〈|N, i |〉 ∩ max(D) and so 〈|N, i |〉 ∈ Vφ implies (D, 〈|M, j |〉)|�aφ whence (M, j )|�aφ by item 6 of Fact 4.1.
Thus, (N, i)|�a+φ follows.
Second, assume that (N, i)|�a+φ. Proof by contradiction: If 〈|N, i |〉 �∈ Vφ , then there has to be some m ∈
↑〈|N, i |〉 ∩ max(D) satisfying ¬φ. Let X(N,i) be the formula defined in (13) which satisfies, for all pointed
modal transition systems (M, j ), that (M, j )|�aX(N,i) iff (N, i)≺(M, j ). In particular, (D,m)|�aX(N,i). There-
fore, (D,m) is refinement equivalent to a labelled transition system by Theorem 2.2 of [Hut04], not necessarily
image-finite, that satisfies ¬φ ∧X(N,i). Since ¬φ is in Hennessy-Milner logic and since all bodies in anyX(N,i ′)
with i ′ being Rc-reachable from i in N involve finite disjunctions or conjunctions only — as (N, i) is image-
finite — there is some image-finite labelled transition system (L, l) that satisfies ¬φ ∧X(N,i) as well. But then
(L, l)|�aX(N,i) implies (N, i)≺(L, l) and so (L, l) is an implementation of (N, i) which does not satisfy φ, a
contradiction.

Proof of Lemma 6.1 Given ↑〈|M,′ , i ′ |〉 ∩ max(D) ⊆ ↑〈|M, i |〉 ∩ max(D), item 6 of Fact 4.1 and Proposition 5.1
imply I[M ′, i ′] ⊆ I[M, i]. Conversely, we use proof by contradiction. Suppose that ↑〈|M,′ , i ′ |〉 ∩ max(D) �⊆
↑〈|M, i |〉 ∩ max(D) and I[M ′, i ′] ⊆ I[M, i]. The former means that there is some m ∈ ↑〈|M ′, i ′ |〉 ∩ max(D) that
is not in ↑〈|M, i |〉 ∩ max(D), i.e. 〈|M, i |〉 �� m. Since D is algebraic, there is some p ∈ MPA with {| p |} � 〈|M, i |〉
and {| p |} �� m by (15).
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Since m ∈ ↑〈|M ′, i ′ |〉, we obtain (D,m)|�aX(M ′,i ′) by Lemma 4.1. But {| p |} �� m implies (D,m) � |�aψp
by Lemma 4.3 and so (D,m)|�a¬ψp as m ∈ max(D) so (D,m) is refinement-equivalent to a pointed
labelled transition system by Theorem 2.2 of [Hut04] and |�a equals |�c for (D,m). This implies (D,m)|�a+¬ψp∧
X(M ′,i ′) as |�a is sound and so there is some labelled transition system that satisfies ¬ψp ∧ X(M ′,i ′). But for all
states s of (M ′, i ′) the bodies inX(M ′,s) are finite conjunctions and disjunctions — as (M ′, i ′) is image-finite — and
¬ψp is a formula of Hennessy-Milner logic, so there has be to some image-finite labelled transition system (L, l)
satisfying ¬ψp ∧ X(M ′,i ′) as well. In particular, (L, l) satisfies X(M ′,i ′) and so (L, l) ∈ I[M ′, i ′] which is contained
in I[M, i] by assumption. Therefore, {| p |} � 〈|M, i |〉 � 〈|L, l |〉 implies that (L, l) satisfies ψp, a contradiction. �

Proof of Corollary 6.1 We write (1), (2), and (3) for the first, second, and third “iff” statement (respectively). Then
(1) ⇒ (2) holds as (M, i)≺(N, j ) implies I[N, j ] ⊆ I[M, i]. The implication (2) ⇒ (3) follows from the duality
of |�a+ and |�c− as the statements quantify over all φ of Hennessy-Milner logic. To see (3) ⇒ (1), we use proof by
contradiction. Assume (3) and let (M, i) �≺(N, j ). By Theorem 6.1, there is some (L, l) ∈ I[N, j ] \ I[M, i]. Then
(M, j ) �≺(L, l) implies that there is some p ∈ MPA with {| p |} � 〈|M, i |〉 and {| p |} �� 〈|L, l |〉 by (15). But then
{| p |} � 〈|M, i |〉 implies (D, 〈|M, i |〉)|�a+ψp since ↑〈|M, i |〉 ∩ max(D) ⊆ ↑{| p |} � [| ψp |]a, whereas {| p |} �� 〈|L, l |〉
implies (D, 〈|L, l |〉) �|�aψp and so (D, 〈|N, j |〉) �|�a+ψp as (L, l) ∈ I[N, j ]. But then (D, 〈|N, j |〉)|�c−¬ψp follows
by duality and so (3) implies (D, 〈|M, i |〉)|�c−¬ψp, a contradiction to (D, 〈|M, i |〉)|�a+ψp. �
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