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Abstract. Interface automata [deH01] have been introduced as an interface theory [deH01a] capable of func-
tioning as a behavioral type system. Behavioral type systems describe dynamic properties of components and
their compositions. Like traditional (data) type systems, behavioral type systems can be used to check compati-
bility of components. In this paper, we use interface automata to devise a behavioral type system for Ptolemy II,
leveraging the contravariant and optimistic properties of interface automata to achieve behavioral subtyping and
polymorphism. Ptolemy II is a software framework supporting concurrent component composition according
to diverse models of computation. In this paper, we focus on representing the communication protocols used
in component communication within the behavioral type system. In building this type system, we identify two
key limitations in interface automata formalisms; we overcome these limitations with two extensions, transient
states and projection automata. In addition to static type checking, we also propose to extend the use of interface
automata to the on-line reflection of component states and to run-time type checking, which enable dynamic
component creation, morphing application structure, and admission control. We discuss the trade-offs in the
design of behavioral type systems.

Keywords: Behavioral types; Behavioral subtyping; Component-based design; Interface automata; Polymor-
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1. Introduction

Type systems are one of the most successful formal methods in software design. Modern polymorphic type sys-
tems, with their early error detection capabilities and the support for software reuse, have led to considerable
improvements in development productivity and software quality.

For embedded systems, concurrent component-based design is established as an important approach to han-
dle complexity. Many tools have been developed to support this design methodology, including for example
Simulink (from The MathWorks), SPW (the Signal Processing Worksystem, from Cadence), CoCentric Sys-
tem Studio (from Synopsys), Metropolis [GoS02], and Ptolemy II [BCD02]. In such tools, components are (at
least conceptually) concurrent, and interact by sending messages according to some communication protocol.
Such component-based design has been termed actor oriented [Lee02], to distinguish it from object oriented,
where components (in practice) interact by method calls. The communication protocols and concurrency policies
together are called the model of computation.

Correspondence and offprint requests to: Edward A. Lee, EECS, University of California, Berkeley CA 94720, USA. Email: eal@eecs.
berkeley.edu



A behavioral type system and its application in Ptolemy II 211

In any form of component-based design, type systems can be used to greatly improve the quality of design
environments. Fundamentally, a type system detects mismatches at component interfaces and ensures compo-
nent compatibility. Interface mismatch can happen at (at least) two different levels. One is the data type level.
For example, if a component expects to receive an integer at its input, but another component sends it a string,
then the first component may not be able to function correctly. Many type system techniques in general purpose
languages can be applied effectively to ensure compatibility at this level (see [XiL00] and the references therein).
The other level of mismatch is the dynamic interaction behavior, such as the communication protocol the com-
ponents use to exchange data. Since embedded systems often have many concurrent computational activities and
mix widely differing operations, components may follow widely different communication protocols. For exam-
ple, some might use synchronous interaction (rendezvous) while others use asynchronous message passing (see
[Lee02] for many more examples). So far, most type system research for component-based design concentrates
on data types, and leaves the checking of dynamic behavior to other techniques.

Largely outside the component-based design community, type systems that capture various dynamic proper-
ties of programs have been studied under various settings, such as concurrent ML [NiN94], actor-based languages
[CPS97], object-oriented subtyping [LiW94], π -calculus and similar process algebras [IgK01] [KPT96] [NaN99]
[NNS99] [PiS93] [Pun96] [RaR02], the CHAM formalism [IWY00], architectural description languages [AlG97],
and popular languages like C [STS01] and Java [LBR98][LNS00]. However, these systems do not address the
challenges of component-based design directly, either because the properties they capture are not critical for
component-based design, or because they are too abstract to be implemented in the existing tools directly.

In this paper, we present a practical behavioral type system that captures the dynamic aspects of component
interaction. In our approach, different interaction types and the dynamic behavior of components are described
by automata, and type checking is conducted through automata composition. In this paper, we choose a particu-
lar automata model called interface automata [deH01] to define types. Interface automata have two key strengths
for our purposes. First, their composition semantics uses an “optimistic” approach that leads to simple compo-
sitions and straightforward compatibility checking. Second, unlike most automata formalisms, they treat inputs
and outputs differently, in a manner analogous to the co/contra-variance relation in function subtyping; this
enables a useful form of subtyping that permits the definition of behaviorally polymorphic components. A third,
less critical strength is that the visual representation of interface automata is more accessible than the algebraic
notations used in many methods, although the latter are often more compact.

Traditionally, automata models are used to perform model checking at design time. Here, our emphasis is
not on model checking to verify arbitrary user-defined behavior, but rather on compatibility of the composition
of pre-defined types. In object-oriented type systems, scalability is ensured by building composite types from a
pre-defined set of primitive types. Users do not extend the set of primitive types (typically). We similarly propose
to define a set of primitive behavioral types that captures key properties of models of computation and the com-
ponents that operate within them. Much as an object-oriented type system does not capture all aspects of the
static structure of an application, our behavioral type system will not capture all aspects of the dynamic behavior.
If we design it well, however, it will capture enough aspects to greatly improve design. We also propose to extend
the use of automata to on-line reflection of component state, and to do run-time type checking.

To explore these concepts, we have built an experimental platform based on the Ptolemy II component-based
design environment [BCD02]. This platform includes a visual editor for defining behavioral types and a suite of
tools for composing and analyzing these type definitions. All graphics in this paper are taken from this visual
editor. All compositions have been computed using its tools, and all subtyping relations have been checked using
its tools.

We have found that the design of behavioral types shares the same goals and trade-offs with the design of
a data-level type system. At the data level, research has been driven to a large degree by the desire to combine
the flexibility of dynamically typed languages with the security and early error-detection potential of statically
typed languages [Ode96]. As mentioned earlier, modern polymorphic type systems have achieved this goal to a
large extent. At the behavioral level, type systems should also be polymorphic to support component reuse while
ensuring component compatibility.

In programming languages, there are several kinds of polymorphism. In [CaW85], Cardelli and Wegner dis-
tinguished two broad kinds of polymorphism: universal and ad hoc polymorphism. Universal polymorphism is
further divided into parametric and inclusion polymorphism. Parametric polymorphism is obtained when a func-
tion works uniformly on a range of types. Inclusion polymorphism appears in object oriented languages when a
subclass can be used in place of a superclass. Ad hoc polymorphism is also further divided into overloading and
coercion. In systems with subtyping and coercion, types naturally form a partial order [DaP90]. For example,
in object-oriented languages, the partial order is the inheritance hierarchy, and in languages that support type
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conversion, the relation in the partial order is the conversion relation, such as Int � Double, which means that an
integer can be converted to a double. This latter relation is sometimes considered as subtyping between primitive
data types [Mit84]. In the Ptolemy II data type system, the type hierarchy is further constrained to be a lattice,
and type constraints are formulated and solved over the lattice [XiL00][Xio02].

We form a polymorphic type system at the behavioral level through an approach similar to subtyping. Interface
automata have an alternating simulation relation. This relation is analogous to the co/contra-variance relation
in function subtyping, and is natural for the subtyping relation in our system. Using this relation, we organize all
the interaction types in a partial order. Given this hierarchy, if a component is compatible with a certain type A,
it is also compatible with all the subtypes of A. This property can be used to facilitate the design of polymorphic
components and simplify type checking.

Even with the power of polymorphism, no type system can capture all the properties of programs and allow
type checking to be performed efficiently while keeping the language flexible. So the language designer always
has to decide what properties to include in the system and what to leave out. Furthermore, some properties that
can be captured by types cannot be easily checked statically before the program runs. This is either because the
information available at compile time is not sufficient, or because that checking those properties is too costly.
Hence, the designer also needs to decide whether to check those properties statically or at run time. Any type
system represents some compromise. For example, array bound checking is very helpful in detecting program
errors, but it is hard, and sometimes even impossible, to do efficiently by static checks. Some languages, such as
C, do not perform this check. Other languages, such as ML and Java, perform the check, but at run time, and at
the cost of run time performance. Some researchers propose to perform this check at compile time [XiP98], but
the technique requires the programer to insert annotations in the source code, since modern languages do not
include array bounds in their type systems.

Type systems at the behavioral level have similar trade-offs. Among all the properties in a component-based
design environment, we choose to check the compatibility of communication protocols as the starting point. This
is because communication protocols are the central piece in many models of computation [Lee02] and deter-
mine many other properties in the models. Our type system is extensible so other properties, such as deadlock in
concurrent models, can be included in type checking. Another reason we choose to check the compatibility of
communication protocols is that it can be done efficiently, when components are connected. More complicated
checking may need to be postponed to run time.

In our earlier work [LeX01], we use interface automata to specify the interaction types and use alternating
simulation as the subtyping relation. Recently, we observed that the original interface automata model needs
some extensions to work better in more situations, and some of the relations among behavioral types are not
directly captured by alternating simulation. We include these extensions and some experimental results in this
paper.

The rest of this paper is organized as follows. Section 2 gives an overview of interface automata. Section
3 discusses our extensions. Section 4 describes Ptolemy II, with emphasis on the implementation of various
communication protocols. Section 5 presents our behavioral type system, including the type definition, the type
hierarchy and some type checking examples. Section 6 discusses some issues in the behavioral type systems and
related works. The last section concludes the paper and points out our future research directions.

2. Overview of interface automata

2.1. An example

Interface automata were devised for capturing the temporal aspects of software component interfaces [deH01].
As with other automata models, interface automata consist of states and transitions, and are usually depicted by
bubble-and-arc diagrams. There are three different kinds of transitions in interface automata: input, output, and
internal transitions. When modeling a software component, input transitions correspond to the invocation of
methods on the component, or the returning of method calls from other components. Output transitions corre-
spond to the invocation of methods on other components, or the returning of method calls from the component
being modeled. Internal transitions correspond to computations inside the component.

In behavioral-level modeling, one of the most frequently used examples is buffered communication. We will
use interface automata to model such a scenario. Assume we have two software components, a Producer and
a Consumer, and that they communicate through a one-place buffer. The buffer component has the following
methods: put(), get(), hasRoom(), and hasToken(). The producer uses hasRoom() to check whether the buffer has
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Fig. 1. Interface automaton model for a one-place buffer (only the consumer interface is modeled)

room for a token. If this method returns true, it calls the put() method to put a token into the buffer. Similarly,
the consumer uses hasToken() to check whether the buffer contains a token. If this method returns true, it calls
get() to extract the token. For the moment, let’s just model the part of the buffer interface used by the consumer.
We will add the interface for the producer in later examples. Figure 1 shows the interface automaton model for
the buffer. This and the subsequent figures are drawn in the Ptolemy II software [BCD02], within which we have
built a “domain” for representing, composing, analyzing, and manipulating interface automata.

The convention in interface automata is to label the input transitions with an ending “?”, the output tran-
sitions with an ending “!”, and internal transitions with an ending “;”. The block arrows on the sides of Fig. 1
denote the inputs and outputs of the automaton. They are:

• g: the invocation of the get() method of the buffer (an input);

• t : the token returned in the get() call (an output);

• hT : the invocation of the hasToken() method of the buffer (an input);

• hTT : the value true returned from the hasToken() call, meaning that the buffer contains a token (an output);
and

• hTF : the value false returned from the hasToken() call, meaning that the buffer does not contain a token (an
output).

Notice that the interaction with the producer is abstracted into one internal transition p pR. Here, p denotes
the invocation of the put() method, and pR denotes the return of the put() call. The initial state is state 0. When
the actor is in this state, and the consumer queries whether there is a token by calling hasToken(), the receiver
returns false. This call and its return is modeled by the transition from state 0 to 4, and 4 to 0. If the producer
deposits a token, the automaton will move to state 2. At this state, the hasToken() call will return true. If the
consumer calls get() at state 2, the buffer will return a token for this call. This is modeled by the transition from
state 2 to 3, and 3 to 0.

This example illustrates an important characteristic of interface automata. That is, they do not require all the
states to accept all inputs. This characteristic makes them light-weight. In Fig. 1, the input g is only accepted at
state 2, but not in any other states. This is different from I/O automata [LyT81], which is syntactically similar to
interface automata. By not requiring the model to be input enabled, interface automata models are usually more
concise, and do not include states that model error conditions. In fact, interface automata take an optimistic
approach to modeling, and they reflect the intended behavior of components under a good environment. Under
this philosophy, error conditions are usually not explicitly modeled. For example, in Fig. 1, we do not have states
and transitions to describe the case when get() is called on an empty buffer.
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(a) (b)

Fig. 2. Two consumer automata

(a) (b)

Fig. 3. Composition of BufferForConsumer in Fig. 1 and the two consumer automata in Fig. 2

2.2. Composition and compatibility

Two interface automata can be composed if the names of their transitions (excluding the “?, !, ;”) are disjoint,
except that an input transition of one may coincide with an output transition of the other. These overlapping
transitions are called shared transitions. Shared transitions are taken synchronously, and they become internal
transitions in the composition. Internal states are like the τ -step in CCS, or concealed states in CSP.

Figure 2 shows two consumer automata that can be composed with the automaton BufferForConsumer in
Fig. 1. The Consumer automaton in Fig. 2(a) keeps calling the hasToken() method of the buffer until it returns
true, then calls the get() method to extract the token. When composed with the BufferForConsumer automaton,
all the transitions are shared transitions, and the composition result is shown in Fig. 3(a). In Fig. 2(b), the con-
sumer calls get() without first checking whether a token is available. When this automaton is composed with the
buffer, it may issue an output that the buffer does not accept. For example, when both automata are in state 0,
ConsumerNoHT may issue g, which BufferForConsumer does not accept. This means that the pair of states (0,
0) in the product automaton BufferForConsumer × ConsumerNoHT is illegal.

In interface automata, illegal states are pruned out in the composition. Furthermore, all states that can reach
illegal states through output or internal transitions are also pruned out. This is because the environment cannot
prevent the automata from entering illegal states from these states. As a result, the composition of BufferFor-
Consumer and ConsumerNoHT is an empty automaton without any states, as shown in Fig. 3(b). This is a key
property of interface automata. More conventional automaton composition always results in a state space that
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Fig. 4. A buffer that can return a default token

is the product of the composed state spaces, and hence is significantly larger. Interface automata often compose
to form smaller automata.

The above examples illustrate the key notion of compatibility in interface automata. Two automata are com-
patible if their composition is not empty. This notion gives a formal definition for the informal statement “two
components can work together”. The composition automaton defines exactly how they can work together. In
behavioral types, we use interface automata to describe various communication protocols, or the interaction types
for components. To check whether a certain component is compatible with a communication protocol, we can
simply compose the automata models of the component and the protocol, and check whether the result is empty.
This yields a straightforward algorithm for type checking, which is the main attraction of interface automata to
behavioral types.

The approach to composition in interface automata is optimistic. If two components are compatible, there is
some environment that can make them work together. In the traditional pessimistic approach, two components
are compatible if they can work together in all environments. Although the guarantee provided by the optimistic
approach appears weaker, this approach is more natural for design purposes, because components are usually
designed under assumptions about the environment. Also, the authors of interface automata pointed out that the
composition of interface automata is often smaller and thus easier on the user, than the traditional pessimistic
models, which must take all kinds of environment into account.

2.3. Alternating simulation

Interface automata have a notion of alternating simulation, which, unlike the conventional simulation relation
in automata theory, treats inputs and outputs differently to provide a co/contra-variance relation like that found
in function subtyping. We use alternating simulation to simplify type checking and to realize behaviorally poly-
morphic interfaces. Informally, for two interface automata P and Q, there is an alternating simulation relation
from Q to P if all the input transitions of P can be simulated by Q, and all the output transitions of Q can be
simulated by P . The formal definition, which involves the notions of ε-closure and externally enabled inputs and
outputs, is given in [deH01]. These notions are for taking into account the fact that the internal transitions of P
and Q are independent. Since we do not need this level of detail here, we omit the precise definition. Instead, we
just give an example of alternating simulation:

The BufferWithDefault automaton in Fig. 4 models a buffer that can return a default token when it is empty.
This automaton has an additional state, 6, compared to the one in Fig. 1, and the transition between state 0
and this state models the get() call and the return of the default token when the buffer is empty. If we com-
pare BufferWithDefault with BufferForConsumer, since all the transitions at the states 2, 3, 4, 5 are the same
in them, the requirement for alternating simulation is trivially satisfied. At state 0, all the input transitions of
BufferForConsumer, which is just hT ?, can be simulated by BufferWithDefault, and all the output transitions of
BufferWithDefault, which is empty, can be trivially simulated by BufferForConsumer. So there is an alternating
simulation relation from BufferWithDefault to BufferForConsumer.

If there is an alternating simulation relation from Q to P , a theorem states that if a third automaton R is
compatible with P , and the input transitions of Q that are shared with the output transitions of R is a subset of
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Fig. 5. A one-place buffer

Fig. 6. A producer

the input transitions of P that are shared with the output transitions of R, then Q and R are also compatible. In
our example, since the Consumer automaton is compatible with BufferForConsumer, it is also compatible with
BufferWithDefault.

3. Extensions to interface automata

In constructing our behavioral type system and attempting to use it to represent key properties of Ptolemy II
domains and components, we encountered two key obstacles. First, modeling atomic actions that involved more
than one transition in an automaton proved extremely awkward, and yet was very commonly needed. Second,
the usual way of composing interface automata, which matches inputs and outputs by name, does not provide
sufficient scoping constraints to handle practical designs; in particular, composing more than two automata that
interact through different interfaces is awkward. We describe here two extensions to interface automata that
address these obstacles.

3.1. Transient states

Suppose we want to extend the buffer example above to include the producer in the model. We can design a buffer
like the one in Fig. 5, and a producer like the one in Fig. 6. In both figures, p and pR represent the call to the put()
method and its return, and hR, hRT, hRF represent the call to hasRoom() and the two possible return values,
true and false. These are the interaction between the buffer and the producer. Now, if we compose the Producer
in Fig. 6, the Buffer in Fig. 5, and the Consumer in Fig. 2(a), the result is an empty automaton!
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Fig. 7. A buffer with transient states

This result may be surprising, but if we examine these automata carefully, we can find many ways that the
composition gets into illegal states. For example, if the producer calls hasRoom(), the Producer automaton moves
to state 1, and the Buffer moves to state 6. At this time, if the consumer calls hasToken(), the Buffer automaton
cannot accept this call at state 6, so the state (1, 6, 0) in Producer × Buffer × Consumer is illegal. Another situation
where we enter illegal state is that the producer calls put(), but before this call is returned, the consumer calls
hasToken(). Since these illegal states are reachable from the initial states of the automata, the whole composition
is empty.

The issue here is that when we design the buffer like Fig. 5, we assume that its methods execute atomically.
In fact, when we implement such a buffer in software, we probably will protect all of its methods, put(), get(),
hasRoom(), and hasToken(), as critical sections. For example, if we implement these methods in Java, we will
make them synchronized methods to achieve mutual exclusion. However, in interface automaton, there is an
intermediate state between the input transition that represents a method call, and the output transition that
represents the return of the call. So in the interface automaton model, the methods are not intrinsically atomic.

It is possible to modify these models to achieve mutual exclusion. For example, if we want to model the
synchronization mechanism in Java, we can add an output “lock” and another “unlock,” and then any correct
composition would have to check so that it never tries to send an automaton an input if it is locked. This would
be very cumbersome. Since such mutexes are so common, we want to support them in the automata formalism.
Moreover, they are more commonly needed in interface automata than in ordinary automata because of the
separation of inputs and outputs.

To do this, we introduce a notion of transient state. These are the above intermediate states. We denote these
states with a “t” at the end of their names in our block diagrams, as shown in Fig. 7. Transient states can only
have output and internal transitions emanating from them. When we compose two automata, and one of the
automata is in transient state, we do not take any output transition from the non-transient state, and just move
along the output or internal transitions of the transient state. That is, the machine that is in a non-transient state
stutters (remains in the same state and produces no output) or takes a transition in response to an input. To
illustrate this with a simple example, consider two automata in Figs. 8(a) and 8(b). Without considering transient
states, their composition is empty, as shown in Fig. 8(c). This is because that the automaton in (b) may send out
b!, which is not enabled at state 0 in the automaton in (a). However, if we treat state 0 in the first automaton as
transient, then the composition of the two automata is not empty, as shown in Fig. 8(d). As a bigger example,
the composition of the Producer in Fig. 6, the BufferWithTransient in Fig. 7, and the Consumer in Fig. 2(a) is
shown in Fig. 9.

We currently do not allow the composition to enter a pair of states where both of them are transient. Relaxing
this constraint requires further research.

Notice that transient state is not required for traditional finite state machine (FSM) models [LeV01]. In FSM,
we can combine an input and an output into one transition, but then we lose the co/contra-variance relation like
that found in function subtyping. For example, the FSM model for the buffer is shown in Fig. 10. By adding
the notion of transient states to interface automata, we achieve the ability in FSM to model atomic input and
output.
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(a) (b)

(c) (d)

Fig. 8. Example of transient state

Fig. 9. Composition of the Producer in Fig. 6, BufferWithTransient in Fig. 7, and Consumer in Fig. 2(a)

3.2. Explicit connections and projection automata

In most formalisms for composing automata, including interface automata, an output of one automaton is
matched to an input of another by name matching. Unfortunately, there are only weak notions of scoping for
such names, so the names, in effect, become global. It is difficult to express that a particular output might be
intended for consumption by a particular other automaton, and be intended to be ignored by another automaton
in a composition. Thus, we cannot easily distinguish the erroneous case, where one automaton issues an output
that the other cannot accept, from the harmless case, where one automaton issues an output that is ignored by
the other automaton and becomes an output of the composition. We give an example to illustrate the problems
this creates.

In BufferWithTransient in Fig. 7, there are four methods: put(), get(), hasRoom(), and hasToken(). Since
the last two are not directly used for communication, they can be viewed as “overhead” of the communication.
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Fig. 10. FSM model for the buffer in Fig. 7

Suppose we want to study the amount of this overhead; we can count the number of times these two methods are
called. To do this, we can update BufferWithTransient by sending out a “count” output every time hasRoom() or
hasToken() is called. This buffer is shown in Fig. 11. Here, the output c represents the count event. It goes to a
certain counter component.

Intuitively, BufferWithCounter in Fig. 11 should function as a subtype of BufferWithTransient. That is, it
should compose with any consumer that BufferWithTransient can compose with. In interface automata, the sub-
type relation is the alternating simulation relation. Regrettably, these two automata do not have an alternating
simulation between them. If we analyze them carefully, we realize that the additional output c in BufferWith-
Counter is “interfering” the alternating simulation. Even though this output does not affect the consumer, it
obscures the relation between the two buffer automata with respect to the consumer.

The problem here is weak scoping. We wish for the output c to be ignored by the consumer, which should
stutter when the BufferWithCounter takes the transition that produces c. When BufferWithCounter is composed
with Consumer, the composition should have an output c.

An alternative way to show that the output of one automaton is destined for another is shown in Fig. 12, which
shows a composition of BufferWithCounter (Fig. 11) with Consumer (Fig. 2a). When forming this composition,
we wish to ignore all inputs and outputs except those shared by the two automata. In Fig. 12, that sharing is
indicated by explicitly connecting the ports rather than by name matching. Moreover, which inputs and outputs
are exported to become inputs and outputs of the composition is also shown explicitly. In this example, it is all
the inputs and output that are not shared by the two automata. It is now become clear why our visual notation
shows the input and output symbols as ports as well as annotations on the transitions. These ports are essential to
hierarchical design with strong scoping. Note further that this notation eliminates the need to refer to an output
by the same name as that of the corresponding input in another automaton, although we do not exploit that
possibility here.

Formally, to “ignore” some inputs or outputs when forming a composition, we simply convert any transitions
labeled with these inputs and outputs into internal transitions. We can view this operation as a projection of one
automaton to the subset of inputs and outputs shared with another automaton. The projection of BufferWith-
Transient and BufferWithCounter to Consumer are shown in Figs. 13 and 14, respectively.

Now, if we compute the alternating simulation between BufferWithTransientToConsumer and BufferWith-
CounterToConsumer, there is indeed an alternating simulation from BufferWithCounterToConsumer to Buffer-
WithTransientToConsumer. So we have revealed the intuitive refinement relation between these two automata.

In this case, we can check that Consumer is compatible with BufferWithTransientToConsumer (Fig. 13),
and from this, we can infer without checking that Consumer is compatible with BufferWithCounterToConsumer
(Fig. 14). When using explicit connections as in Fig. 12, we can always tell which subset of the inputs and outputs
is pertinent to a composition, and hence how to check compatibility.

The key result is that if an automaton is compatible with a projection automaton, it is also compatible with
the original automaton. More specifically, if P ′ is the projection of P onto R, and P ′ and R are compatible, P
and R are compatible. To see this, notice that the product automata P ×R and P ′ ×R have the same set of states
and transitions, except that some of the transition labels are different. In particular, some of the input and output
transitions in P × R are changed to internal transitions in P ′ × R. Also, These two product automata have the
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Fig. 11. A buffer that counts the overhead methods

Fig. 12. Explicit connections and hierarchy provide scoping. Here, only the shared inputs and outputs (connected in the middle) are involved
in checking compatibility

Fig. 13. The projection of BufferWithTransient onto Consumer
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Fig. 14. The projection of BufferWithCounter onto Consumer

producer
actor

consumer
actor

IOPort

Receiver

Fig. 15. A simple model in Ptolemy II

same set of illegal states. Furthermore, for all the states in P × R that can reach illegal states through internal
and output transitions, there corresponding states in P ′ × R can also reach the corresponding illegal states. In
another word, when we prune out all the illegal states and all the states that can reach the illegal states through
internal and output transitions in the two product automata, the set of states being pruned in P ′ × R is a super
set of that of P × R. So if the composition of P ′ × R is not empty, P × R is not empty.

Given this, we have the following:
Given three interface automata P , Q, and R, let P ′ and Q′ be the projections of P and Q onto R. If P ′ is

compatible with R, and there is an alternating simulation from Q′ to P ′, then Q is compatible with R.
In our example, P is BufferWithTransient, P ′ is BufferWithTransientToConsumer, Q is BufferWithCounter, Q′

is BufferWithCounterToConsumer, and R is Consumer. Since Consumer is compatible with BufferWithTransientTo-
Consumer, it is also compatible with BufferWithCounter.

We can obtain similar result for the Producer automaton by symmetry.
The BufferWithTransient, Producer, and Consumer automata discussed in this model can be viewed as a par-

ticular implementation of a model of computation. In this model, the communication between the producer and
the consumer is asynchronous, and their execution is not statically scheduled. There are many other models of
computation with various nice properties, such as static schedulability and determinacy [Lee02]. Some of these
models are implemented in the Ptolemy II environment.

4. Ptolemy II – A component-based design environment

Ptolemy II [BCD02] is a system-level design environment that supports component-based heterogeneous model-
ing and design. The focus is on embedded systems. In Ptolemy II, components are called actors, and the channel
of communication between actors is implemented by an object called a receiver, as shown in Fig. 15. Receivers
are contained in IOPorts (input/output ports), which are in turn contained in actors.

Ptolemy II is implemented in Java. The methods in the receiver are defined in a Java interface called Receiver.
This interface assumes a producer/consumer model, and communicated data is encapsulated in a class called
Token. The put() method is used by the producer to deposit a token into a receiver. The get() method is used by
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the consumer to extract a token from the receiver. The hasToken() method, which returns a boolean, indicates
whether a call to get() will trigger a NoTokenException.

Aside from assuming a producer/consumer model, the Receiver interface makes no further assumptions. It
does not, for example, determine whether communication between actors is synchronous or asynchronous. Nor
does it determine the capacity of a receiver. These properties of a receiver are determined by concrete classes that
implement the Receiver interface. Each one of these concrete classes is part of a Ptolemy II domain, which is a
collection of classes implementing a particular model of computation. In each domain, the receiver determines
the communication protocol, and an object called a director controls the execution of actors. From the point of
view of an actor, the director and the receiver form its execution environment.

Each actor has a fire() method that the director uses to start the execution of the actor. During the execution,
an actor may interact with the receivers to receive or send data. Some of the domains in Ptolemy II are:

• Communicating Sequential Processes (CSP): As the name suggests, this domain implements a rendezvous-
style communication (sometimes called synchronous message passing), as in Hoare’s communicating sequen-
tial processes model [Hoa78]. In this domain, the producer and consumer are separate threads executing the
fire() method of the actors. Whichever thread calls put() or get() first blocks until the other thread calls get()
or put(). Data is exchanged in an atomic action when both the producer and consumer are ready.

• Process Networks (PN): This domain implements the Kahn process networks model of computation [Kah74].
The Ptolemy II implementation is similar to that by Kahn and MacQueen [KaM77]. In that model, just like
CSP, the producer and consumer are separate threads executing the fire() method. Unlike CSP, however, the
producer can send data and proceed without waiting for the receiver to be ready to receive data. This is
implemented by a non-blocking write to a FIFO queue with (conceptually) unbounded capacity. The put()
method in a PN receiver always succeeds and always returns immediately. The get() method, however, blocks
the calling thread if no data is available. To maintain determinacy, it is important that processes not be able
to test a receiver for the presence of data. So the hasToken() method always returns true. Indeed, this return
value is correct, since the get() method will never throw a NoTokenException. Instead, it will block the calling
thread until a token is available.

• Synchronous Data Flow (SDF): This domain supports a synchronous dataflow model of computation [LeM87].
This is different from the thread-based domains in that the producer and consumer are implemented as finite
computations (firings of a dataflow actor) that are scheduled (typically statically, and typically in the same
thread). In this model, a consumer assumes that data is always available when it calls get() because it assumes
that it would not have been scheduled otherwise. The capacity of the receiver can be made finite, statically
determined, but the scheduler ensures that when put() is called, there is room for a token. Thus, if scheduling
is done correctly, both get() and put() succeed immediately and return.

• Discrete Event (DE): This domain uses timed events to communicate between actors. Similar to SDF, actors
in the DE domain implement finite computations encapsulated in the fire() method. However, the execution
order among the actors is not statically scheduled, but determined at run time. Also, when a consumer is fired,
it cannot assume that data is available. Very often, when an actor with multiple input ports is fired, only one
of the ports has data. Therefore, for an actor to work correctly in this domain, it must check the availability
of a token using the hasToken() method before attempting to get a token from the receiver.

As can be seen, different domains impose different requirements for actors. Some actors, however, can work
in multiple domains. These actors are called domain-polymorphic or behaviorally-polymorphic actors. One of the
goals of the behavioral type system is to facilitate the design of behaviorally-polymorphic actors.

In Ptolemy II, there are more than ten domains implementing various models of computation, including the
ones discussed above. One of these domains implements interface automata.

5. Behavioral types

5.1. Type definition

As we mentioned before, we use interface automata to describe the behavior of Ptolemy II components. In Fig. 16,
the automaton SDFConsumer describes a consumer actor designed for the SDF (synchronous dataflow) domain.
The inputs and outputs of the automaton are:
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Fig. 16. Interface automata model for an SDF consumer actor

Fig. 17. Interface automaton for a behaviorally-polymorphic consumer actor

• fC: the invocation of the fire() method of the consumer actor.
• fCR: the return from the fire() method.
• g: the invocation of the get() method of the receiver at the input port of the actor.
• t : the token returned in the get() call.
• hT : the invocation of the hasToken() method of the receiver.
• hTT : the value true returned from the hasToken() call, meaning that the receiver contains one or more tokens.
• hTF : the value false returned from the hasToken() call, meaning that the receiver does not contain any token.

The initial state is state 0. When the actor is in this state, and the fire() method is called, it calls get() on the
receiver to obtain a token. After receiving the token in state 3, it performs some computation, and returns from
fire().

In the SDF domain, an actor assumes that its fire() method will not be called again if it is already inside this
method. Also, the scheduler guarantees that data is available when a consumer is fired, so the transition from
state 2 to state 3 assumes that the receiver will return a token. An error condition, such as the receiver throws
NoTokenException when get() is called, is not explicitly described in the model.

The automaton shown in Fig. 17 describes an actor that can operate in wider variety of domains. Since this
actor is not designed under the assumption of the SDF domain, it does not assume that data are available when
it is fired. Instead, it calls hasToken() on the receiver to check the availability of a token. If hasToken() returns
false, it immediately returns from fire(). This is a simple form of behavioral polymorphism.

In Ptolemy II, actors interact with the director and the receivers of a domain. In Figs. 16 and 17, the block
arrows on the left side denote the interface with the director, and the ones on the right side denote the interface
with the receiver. As discussed in Sect. 4, the implementation of the director and the receiver determines the
semantics of component interaction in a domain, including the flow of control and the communication protocol.
If we use an interface automaton to model the combined behavior of the director and the receiver, this automaton
is then the type signature for the domain. Figure 18 shows such an automaton for the SDF domain. Here, p and
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Fig. 18. Type signature of the SDF domain

Fig. 19. Type signature of the DE domain

pR represent the call and the return of the put() method of the receiver, they are abstracted out as an internal
transition p pR in the figure. This automaton encodes the assumption of the SDF domain that the consumer
actor is fired only after a token is put into the receiver.1

The type signature of the DE domain is shown in Fig. 19. In DE, an actor may be fired without a token being
put into the receiver at its input. This is indicated by the transition from state 0 to state 7. Figures 18 and 19 also
reflect the fact that both of the SDF and the DE domains have a single thread of execution, so the hasToken()
query may happen only after the actor is fired but before it calls get(), during which time the actor has the thread
of control.

CSP and PN are two domains in Ptolemy II in which each actor runs in its own thread. Figures 20 and 21 give
the type signature of these two domains. These automata are simplified from the true implementation in Ptolemy
II. In particular, CSPDomain omits conditional rendezvous, which is an important feature in the CSP model of
computation. Conditional rendezvous is implemented by a set of classes in Ptolemy II: ConditionalBranchCon-
troller, ConditionalSend, and ConditionalReceive. Their operation can also be modeled by interface automata.

In CSP, the communication is synchronous; the first thread that calls get() or put() on the receiver will be
stalled until the other thread calls put() or get(). The case where get() is called before put() is modeled by the

1 This is a simplification of the SDF domain, since an actor may require more than one token to be put in the receiver before it is fired. This
simplification makes our exposition clearer, but otherwise makes no material difference.
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Fig. 20. Type signature of the CSP domain

Fig. 21. Type signature of the PN domain

transitions among the states 1, 3, 4, 5, 10. The case where put() is called before get() is modeled by the transitions
among the states 1, 6, 8, 9, 10.

In PN, the communication is asynchronous. So the put() call always returns immediately, but the thread calling
get() may be stalled until put() is called. The case where get() is called first in PN is modeled by the transitions
among the states 1, 3, 5, 10 in Fig. 21, while the case where put() is called first is modeled by the transitions among
the states 1, 6, 9, 10.

Given an automaton modeling an actor and the type signature of a domain, we can check the compatibility
of the actor with the communication protocol of that domain by composing these two automata. Type checking
examples will be shown below in Sect. 5.3.

5.2. Behavioral-level type order and polymorphism

If we compare the domain automata described in the previous section, we can see that they are closely related.
This relationship can be captured by the alternating simulation relation of interface automata. In particular,
there is an alternating simulation relation from SDF to DE, from PN to DE, and from CSP to DE. Also, there
are alternating simulation relations between any pair of automata among SDF, PN, and CSP, in any direction.
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Fig. 22. A directed graph showing the alternating simulation relation among domain types

Fig. 23. An example of behavioral-level type order

This is shown by the directed graph in Fig. 22. From a type system point of view, the alternating simulation
relation denoted in this figure is the subtyping relation. For example, SDF is a subtype of DE, and SDF and PN
are subtypes of each other. This subtyping relation can help us design actors that can work in multiple domains.
According to the theorem in Sect. 2.3, if an actor is compatible with a certain domain D, then the actor is also
compatible with the subtypes of D. Therefore, this actor is behaviorally polymorphic.

In this formulation, the subtyping relation is not anti-symmetric. That is, two distinct types can be subtypes
of each other. This is different from some other type system, such as the data type system in Ptolemy II [XiL00].
When the subtyping relation is anti-symmetric, the subtyping relation induces a partial order. But we do not
have a partial order in Fig. 22. However, if we combine the strongly connected components (SCC) into one node,
the component graph becomes a partial order. In Fig. 22, there is one SCC consisting of SDF, PN, and CSP.
The partial order induced by the component graph is shown in Fig. 23. In this figure, we also added a top and
a bottom element. They represent possible domain behavior in extreme cases. One possible design of these two
automata is shown in Fig. 24. In this figure, both automata have a single state. The BOTTOM automaton has all
the input transitions, and the TOP automaton has all the output transitions. They may not be directly useful in
practice, but they provide helpful insights. We will discuss these two automata further in Sect. 6.3.

When studying the compatibility with actors, the behavioral type order gives a good description for the rela-
tion among various behavioral types. From Fig. 23, it is evident that if an actor is compatible with DE, it is also
compatible with any of SDF, PN, and CSP. Also, the TOP automaton has an alternating simulation relation from
all the domain-specific automata. So if an actor is compatible with this automaton, it is compatible with all the
domains.

5.3. Type checking examples

Let’s perform a few type checking operations using the actors and domains in the earlier sections. To verify that
the SDFConsumer in Fig. 16 can indeed work in the SDFDomain, we compose it with the SDFDomain autom-
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Fig. 24. TOP and BOTTOM of the behavioral type order

Fig. 25. Composition of SDFDomain in Fig. 18 and SDFConsumer in Fig. 16

aton in Fig. 18. The result is shown in Fig. 25. As expected, the composition is not empty so SDFConsumer is
compatible with SDFDomain.

Now lets compose DEDomain with SDFConsumer. The result is an empty automaton shown in Fig. 26. This
is because the actor may call get() when there is no token in the receiver, and this call is not accepted by an empty
DE receiver. The exact sequence that leads to this condition is the following: first, both automata take a shared
transition fC. In this transition, DEDomain moves from state 0 to state 7, and SDFConsumer moves from state 0
to state 1. At state 1, SDFConsumer issues g, but this input is not accepted by DEDomain at state 7. So the pair
of states (7, 1) in DEDomain × SDFConsumer is illegal. Since this state can be reached from the initial state (0,
0), the initial state is pruned out from the composition. As a result, the whole composition is empty. This means
that the SDF consumer cannot be used in the DE Domain.

The PolyConsumer in Fig. 17 checks the availability of a token before attempting to read from the receiver.
By composing it with DEDomain, we verify that this actor can be used in the DE Domain. This composition is
shown in Fig. 27. Since SDFDomain is below DEDomain in the behavioral type order of Fig. 23, we have also
verified that PolyConsumer can work in the SDF domain. Therefore, PolyConsumer is behaviorally polymorphic.
As a sanity check, we have composed SDFDomain with PolyConsumer, and the result is shown in Fig. 28.

We have also checked that PolyConsumer and SDFConsumer are compatible with CSPDomain and PNDo-
main. For the sake of brevity, we do not include these compositions in this paper.

In Ptolemy II, there is a library of about 100 behaviorally-polymorphic actors. The way that many of these
actors consume and process tokens can be modeled by the PolyConsumer automaton.

Fig. 26. Composition of DEDomain in Fig. 19 and SDFConsumer in Fig. 16, which is an empty automaton
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Fig. 27. Composition of DEDomain in Fig. 19 and PolyConsumer in Fig. 17

Fig. 28. Composition of SDFDomain in Fig. 18 and PolyConsumer in Fig. 17

5.4. More detailed models for Ptolemy II domains

In the previous sections, the domain automata are designed at a fairly abstract level. That is, they model the
combined behavior of a director and a receiver, and they only have the interface to the consumer actor exposed.
If we want to model the domains in a little more detail, we can model the directors and receivers separately, and
explicitly expose the producer interface. When we do so, we will have more than two automata in the system, so
we will need to have transient states in the model.

Starting from SDF again, Fig. 29 shows an SDF director for the producer/consumer model in Fig. 15. Here, fP
and fPR represent the firing of the producer actor and the return of this fire() call. Obviously, the firing schedule
in this simple model is just to fire the producer, followed by the consumer, then repeat the cycle indefinitely.

Figure 30 shows an SDF receiver. This receiver is more general than the one described in SDFDomain in
Fig. 18 in that it can hold multiple tokens. In particular, at state 2, where a put() call is just returned, the receiver

Fig. 29. An SDF director
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Fig. 30. An SDF receiver

Fig. 31. A producer

allows another put() call to come before get() is called. This is modeled by the transition p from state 2 to state
1. Also, after a get() call, the receiver may not be empty, so a transition t from state 3 may take the receiver back
to state 2. Notice that states 1t, 3t, 4t, and 5t are transient, for reasons similar to the transient states in Fig. 7.

The composition of SDFDirector and SDFReceiver represents the behavior of the SDF domain. This com-
position can be composed with a producer actor and a consumer actor. Figure 31 describes the behavior of a
typical producer actor. It simply calls put() in its fire() method. As a type checking example, we can compose
SDFDirector, SDFReceiver, Producer, and SDFConsumer together, as shown in Fig. 32.

Now let’s look at the DE domain. Figures 33 and 34 shows a DE director and a DE receiver, respectively.
Different from the SDFDirector, the DEDirector does not statically schedule the firing of the producer and con-
sumer. Also, since actor execution in DE is scheduled based on the time events occur, a token put into a receiver
may not be immediately available for the consumer until the simulation time reaches the time of the token, so we
have a transition pR from state 1 to 0 in DEReceiver.

If we want to check the subtyping relation between SDF and DE, we can use the compositional property of
alternating simulation [deH01] to simplify the checking. According to this property, if SDFDirector is a subtype
of DEDirector, and SDFReceiver is a subtype of DEReceiver, we have the composition of SDFDirector and
SDFReceiver to be a subtype of the composition of DEDirector and DEReceiver. Indeed, we have verified the
relation between the directors and receivers, so we know that above result holds. This is shown in Fig. 35.

For the producer/consumer model, the director in the PN domain will create two threads to run the producer
and consumer, as shown in Fig. 36(a), (b). The whole PN director is the composition of these two, as shown in
Fig. 36(c). The receiver for the PN domain is shown in Fig. 37. It performs blocking read and non-blocking write.
That is, if the get() call arrives before put(), it blocks. But the put() call never blocks. This receiver also allows
multiple put() calls before get().

If we want to check the subtyping relation between PN and SDF, we can check whether there is an alternating
simulation between the directors and receivers of these two domains. Unfortunately, they do not have the same
relation as we had with the simple domain models in Sect. 5.2. Here, the only alternating simulation we have is
one from the SDFDirector to PNDirector. This example shows that the subtyping relation depends on the design
of the domain automata. In the SDFReceiver automaton in Fig. 30, the hasToken() call returns false at state 4t,
while the PNReceiver in Fig. 37 returns true in the same state. This difference breaks the alternating simulation
relation. However, this lack of alternating simulation does not mean that an SDF actor cannot work in the PN
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Fig. 32. The composition of SDFDirector, SDFReceiver, Producer, and SDFConsumer

Fig. 33. A DE director

Fig. 34. A DE receiver

Fig. 35. Using the compositional property to show that SDFDomain is a subtype of DEDomain
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Fig. 36. PN director

Fig. 37. A PN receiver

domain. In fact, with respect to the communication protocol, any SDF actor can work in the PN domain. It is
just that the alternating simulation does not capture this relation.

Although there is no alternating simulation from PNDirector to SDFDirector, there is actually an alternating
simulation when these automata are projected to the producer or consumer automata. Fig. 38(a), (b) show the
projection of SDFDirector and PNDirector onto the Producer in Fig. 31. We can verify that (1) There is an
alternating simulation from PNDirectorToProducer to SDFDirectorToProducer; (2) SDFDirectorToProducer is
compatible with Producer. So according to the result in Sect. 3.2, we know that PNDirector is compatible with

Fig. 38. Projection of SDFDirector and PNDirector to Producer
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Producer. This example shows that the projection automata can be used to expose some alternating simulation
relations when the original automata do not have this relation.

We skip the director and receiver automata for the CSP domain. The CSP director automaton is the same as
the PNDirector in Fig. 36, and the CSP receiver performs both blocking read and blocking write.

6. Discussion

6.1. Reflection

So far, interface automata have been used to describe the operation of Ptolemy II components. These automata
can be used to perform compatibility checks between components. Another interesting use is to reflect the com-
ponent state in a run-time environment. For example, we can execute the automaton SDFConsumer of Fig. 16
in parallel with the execution of the actor. When the fire() method of the actor is called, the automaton makes
a transition from state 0 to state 1. At any time, the state of the actor can be obtained by querying the state of
the automaton. Here, the role of the automaton is reflection, as realized for example in Java. In Java, the Class
class can be used to obtain the static structure of an object, while our automata reflect the dynamic behavior of
a component. We call an automaton used in this role a reflection automaton.

6.2. Trade-offs in type system design

The examples in Sects. 5.1 and 5.4 shows that there is no canonical type representation because behavioral types
can be specified at different abstraction levels. These examples focus on the communication protocol between one
or two actors and their environment. This scope can be broadened by including the automata of more actors and
using an even more detailed domain model in the composition. Also, properties other than the communication
protocol, such as deadlock freedom in thread-based domains, can be included in the type system. However, these
extensions will increase the cost of type checking. So there is a trade-off between the amount of information
carried by the type system and the cost of type checking.

The previous examples also show that the subtyping relation among domain types can help simplify type
checking. However, because the alternating simulation relation is sensitive to the design of the domain automata,
we do not always have the same subtyping relations in different designs. In some cases, such as in Sect. 5.4, we
can increase the set of relations captured by using the projection automata, but this is not always possible. So
the trade-off between the amount of information carried by the types and the number and structure of subtyping
relations in the system also needs to be considered.

Another dimension of the trade-offs is static versus run-time type checking. The examples in the last Sect. are
static type checking examples. If we extend the scope of the type system, static checking can quickly become
impractical due to the size of the composition. An alternative is to check some of the properties at run time. One
way to perform run-time checking is to execute the reflection automata of the components in parallel with the
execution of the components. Along the way, we periodically check the states of the reflection automata, and see
if something has gone wrong.

These trade-offs imply that there is a big design space for behavioral types. In this space, one extreme point
is complete static checking by composing the automata modeling all the system components, and check the
composition. This amounts to model checking. To explore the boundary in this direction, we did an experiment
by checking an implementation of the classical dining philosophers model implemented in the CSP domain in
Ptolemy II. Each philosopher and each chopstick is modeled by an actor running in its own thread. The chopstick
actor uses conditional send to simultaneously check which philosopher (the one on its left or the one on its right)
wants to pick it up. We created interface automata for the Ptolemy II components CSPReceiver, Philosopher, and
Chopstick, and a simplified automaton to model conditional send. We are able to compute the composition of all
the components in a two-philosopher version of the dining philosopher model, and obtain a closed automaton
with 2992 states. Since this automaton is not empty, we have verified that the components in the composition are
compatible with respect to the synchronous communication protocol in CSP. We also checked for deadlock inher-
ent in the implementation, and are able to identify two deadlock states (states without any outgoing transitions)
in the composition, which correspond to the situation where all the philosophers are holding the chopsticks on
their left and waiting for the ones on the right, and the symmetrical situation where all philosophers are waiting
for the chopsticks on their left.
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Fig. 39. Composition of BOTTOM and SDFConsumer or PolyConsumer

Our goal here is not to do model checking, but to perform static type checking on a non-trivial models.
Obviously, when the model grows, complete static checking will become intractable due to the well-known state
explosion problem.

Another extreme point in the design space for behavioral types is to rely on run-time type checking completely.
For deadlock detection, we can execute the reflection automata in parallel with the Ptolemy II model. When the
model deadlocks, the states of the automata will explain the reason for the deadlock. In this case, the type system
becomes a debugging tool. The point here is that a good type system is somewhere between these extremes. We
believe that a system that checks the compatibility of communication protocols, as illustrated in Sect. 5, is a good
starting point.

6.3. TOPTOPTOP and BOTTOMBOTTOMBOTTOM

We have shown one possible design for the top and bottom elements of the behavioral type order in Fig. 24.
These two automata are very general in that they are not only the top and bottom elements of the partial order
in Fig. 23, but also the top and bottom of the partial orders formed by any set of automata with the same set of
input and output transitions. In other words, there is an alternating simulation relation from any automaton to
the TOP automaton in Fig. 24, and an alternating simulation relation from the BOTTOM automaton in Fig. 24
to any automaton with the same inputs and outputs.

The TOP automaton simply uses the signature of the component’s interface and abstracts from all specific
behaviors. It does not allow any method calls. If we can design an actor that is compatible with the TOP autom-
aton, then that actor will be maximally polymorphic in that it will be able to work in any domain that may be
created. However, it is easy to see that this is almost impossible. The TOP automaton may issue any output at
any time, and cannot ever accept any inputs, so no non-trivial actor can be compatible with it. This means that
we cannot hope to design a non-trivial actor that will be able to work in any environment.

On the other hand, the BOTTOM automaton is compatible with any actor automaton. For example, the
compositions of BOTTOM with the SDFConsumer or the PolyConsumer are shown in Fig. 39. The two com-
positions are the same. Intuitively, since the BOTTOM automaton does not have any output transitions, it does
not call the fire() method of the actor, so there is no interaction between the BOTTOM automaton and the actor
automaton.

The TOP and BOTTOM automata represent two extremes of the possible environments for actors. The
TOP is the most stringent environment in which no non-trivial actor can work, while BOTTOM is the laxest
environment in which an actor is not asked to do anything.

6.4. Related work

6.4.1. Behavioral types

In traditional type systems, types abstract the values that an expression may return. Many researchers have pro-
posed extensions to capture the execution behavior for various languages. For example, the effect system [Nie96]
augments types with effects, which describe the side-effects that an expression may have, such as read/write effects
on the store, or exceptions that may be raised by the expression. One application of effect analysis is in parallel
computers. If two expressions do not have interfering effects, then a compiler can schedule them in parallel. In
[NiN94], Nielson and Nielson extended the effect system to capture the communication behavior of concurrent
ML (CML) programs. In their system, communication behaviors can be included in type inference, and the
inference result indicates whether a program only spawns a finite number of processes, or only creates a finite
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number of channels. In these cases, the compiler may allocate the processes to available processors or allocate
communication resources statically.

Behavior analysis has also been applied to actor based languages. For example, Colaco et al. presented a
type inference system for a primitive actor calculus [CPS97]. In the actor model, the communication topology is
dynamic, so some messages sent out by actors may never be handled. The aim of the inference system is to detect
these orphan messages. This system is based on set constraints [Aik94]. It can detect many orphan messages
statically and the remaining messages dynamically based on the static type information.

For object-oriented languages, various notions of behavioral subtyping have been proposed [LiW94][LeD00],
which extends the conventional OO subtyping to support the specification and checking of invariants and pre
and post conditions. For example, an invariant of a bag object is that its size is always less than its bound, and
a subtype of bag has to ensure that this invariant holds. While these kinds of properties are important and their
violations are the source of many software errors, we are more interested in checking the communication behavior
in this work.

Many authors have proposed type systems based on π -calculus or similar calculi. These systems check differ-
ent properties. For example, Milner’s polyadic π -calculus just checks the arities of channels, that is, the number
of inputs and outputs along the channel [Mil91]. The extension by Pierce and Sangiorgi captures the polarity, or
directionality of channels [PiS93], and Kobayashi, et al. further capture multiplicities, or the number of times the
channels can be used [KPT96]. Sumii and Kobayashi proposed a system to ensure deadlock freedom [KSS00].
The type model of Puntigam ensures that all the messages sent by a client process are understood by a server,
and Puntigam and Peter later extended it to ensure that the server sends the promised responses [PuP99].

In Ptolemy II, some of these properties are handled by the data-level type system. For example, multiple
inputs and outputs in one communication are usually accomplished by passing record tokens and record types
are checked together with other data types. Separating the data-level and behavioral-level issues simplifies the
type systems. Some other properties, such as channel direction, is naturally encoded in the interface automata
representation, and are included in the compatibility check.

Some type systems based on process algebras, such as the behavioral type system of Najm, et al. [NaN99][NNS99]
and the system of Ravara and Vasconcelos [RaV97] capture the non-uniform service availability. In both systems,
behavioral types specify the set of methods (services) an objects supports. This set is dynamic since the set of
supported methods may change after each method call. For example, an object implementing a one place buffer
has a put() and a get() method for writing and reading data into and from the buffer. When the buffer is empty,
the set of supported methods includes only the put() method. After put() is called, the set includes only the get()
method, and so on. The basic goal here is to ensure that an object does not receive a method call that is not
supported. This error condition is analogous to the error condition that results in illegal states in the composition
of interface automata, but type checking in interface automata is easier. Also, since interface automata can be
easily described in bubble and arc diagrams, the type representation in our system is easier to understand than
the algebraic form used in both approaches. In [RaV97], a type is defined as a graph with states and transitions,
where the transitions represent invoked methods. In these transitions, input, output and internal transitions are
not distinguished. We believe the distinction of I/O transitions in interface automata makes them a better choice
for modeling software, because there is a natural distinction between the caller and callee of a method, or the
sender and receiver of a message. In [NaN99], the definition of subtyping distinguishes the sending and receiving
of messages. If a type X2 is a subtype of a type X1, then all the receiving actions of X1 can be performed by
X2, and all the sending actions of X2 can be performed by X1. This is analogous to the alternating simulation
relation of interface automata and the co/contra-variance relation in function subtyping.

The systems of Igarashi and Kobayashi [IgK01] and Rajamani and Rehof [RaR02] also supports subtyping.
The former is a meta type system for the π -calculus, from which a set of type systems checking different prop-
erties can be derived. In this system, the subtyping relation Γ1&Γ2 � Γ is true, where Γ1, Γ2, and Γ are process
types, and & represents internal choice. This is not true in our system. In general, if a certain environment Γ
is compatible with Γ1, it may not be compatible with Γ1&Γ2 since Γ2 may issue output that is not compatible
with Γ . So our definition of subtyping is more appropriate for our purpose. In [RaR02], Rajamani and Rehof
used a behavioral type system for checking π -calculus programs. In particular, they checked the conformance
of software implementation against a specification. They were interested in checking whether a message-passing
software is stuck-free, i.e., a message sent by a sender will not get stuck without received by a receiver, or a
receiver waiting for a message will not get stuck without receiving a message from some sender. To be able to
check this property at an abstract level, they defined a conformance relation stronger than alternating simulation.
In Ptolemy II, stuck-free is not an important property to check, because it is in general not a failure condition.
It could be normal for an actor to try to read a token, but not getting it.
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Extended type systems for checking behavioral properties have also been developed for popular languages
such as C [STS01] and Java [LBR98][LNS00]. However, these systems do not check the compatibility of commu-
nication protocols.

6.4.2. Component interfacing

In hardware design, many people have proposed techniques of protocol synthesis to connect components with
different interfaces [COB92][COB95][EiP00][ETT98][OrB97][PRS98]. There are two approaches to protocol syn-
thesis. One is library or template based. For example, Eisenring and Platzner [EiP00] develop a tool that provides
a template and a corresponding generator method for each interface type. The other is to generate a converter
from the two interfaces to be connected. For example, Passerone et al. [PRS98] describe the communication
protocols of the two components to be interfaced by two finite state machines, and the converter is essentially
the product machine, with invalid states removed. Compared with this approach of component interfacing, our
approach is to design polymorphic components with tolerant interfaces, so that they can be used in different
settings. We do not insert converters in the middle. Besides, there are two additional differences between our
system and the protocol synthesis techniques.

One difference is that behavioral types cover multiple models of computation, while protocol synthesis usually
concentrates on interfacing different implementations of one model of computation. For example, Passerone et
al. [PRS98] focus on synchronous model (shared clock); Eisenring and Platzner [EiP00] study dataflow models
implemented by queues between component; in [ETT98], Eisenring et al. design a system using synchronous da-
taflow; and in [OrB97], Ortega and Borriello use a communication protocol with a non-blocking write behavior,
which is similar to the one in process networks.

Another difference is on the level of abstraction. Since design is a process of refinement, the description of
a component may exist at different levels. In [ETT98], Eisenring, et al. divide the possible abstractions into two
levels: abstract communication types and physical communication types. Abstract communication types includes
buffered versus non-buffered, blocking versus non-blocking, synchronous versus asynchronous communication.
Physical communication types includes memory-mapped I/O, interrupt or DMA-transfer. In [BLO98], Borri-
ello, et al. gave a more contiguous categorization of interface levels: electrical, logical, sequencing, timing, data
transaction, packet, and message. The behavioral type work addresses the highest level in this classification:
different mechanisms for message passing. It covers the abstract communication types. On the other hand, most
work on protocol synthesis is at the hardware or architecture levels. For example, reconfigurable computing with
FPGA is targeted in [EiP00]; [PRS98] is about RTL level interface synthesis; the problem of mapping a high-level
specification to an architecture is considered in [OrB97]; and a system to generate interface between a set of
microprocessors and a set of devices is described in [COB92][COB95].

The differences between our type system and the work in protocol synthesis make them complementary to
each other. They may be used at the different stages of the design process.

7. Conclusion and future work

We have presented the use of interface automata to devise a behavioral type system for Ptolemy II, a software
framework for concurrent component composition. We have leveraged the contravariant and optimistic proper-
ties of interface automata to achieve behavioral subtyping and polymorphism, and we have extended interface
automata in two ways to deal with atomicity in concurrent actions and with scoping problems. Transient states
allow us to model mutual exclusion easily, thus improving the modeling of atomic actions. Projection automata
improve the scoping of named inputs and outputs.

Based on the extended interface automata, we have described a type system that captures the interaction
dynamics in a component-based design environment. The interaction types and component behavior are described
by interface automata, and type checking is done through automata composition. Our approach is behaviorally
polymorphic in that a component may be compatible with multiple interaction types. The relation among the
interaction types is captured by a behavioral type order using the alternating simulation relation of interface
automata. We have shown that our system can be extended to capture more dynamic properties, and that the
design of a good type system involves a set of trade-offs. Our experimental platform is the Ptolemy II design
environment. All the automata in this paper are built in Ptolemy II and their compositions are computed in
software, except that some manual layout is applied for better readability of the diagrams.
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We also proposed using automata to do on-line reflection of component states. In addition to run-time type
checking, the resulting reflection automata can add value in a number of ways. For example, in a reconfigurable
architecture or distributed system, the state of the reflection automata can provide information on when it is safe
to perform mutation. Reflection automata can also be valuable debugging tools. This is part of our future work.

In addition to its usual use in type checking, our type system may facilitate the design of new components or
Ptolemy II domains. In Ptolemy II, domains can be combined hierarchically in a single model. Using behavioral
types, it might be possible to show that the composition of a domain director and a group of actors behaves like
a polymorphic actor in some other domains. This is also part of our future research.
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