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Abstract. Morgan’s refinement calculus is a successful technique for developing software in a precise and consis-
tent way. This technique, however, can be hard to use, as developments may be long and repetitive. Many authors
have pointed out that a lot can be gained by identifying commonly used development strategies, documenting
them as tactics, and using them as single transformation rules. Also, it is useful to have a notation for describing
derivations, so that they can be analysed and modified. In this paper, we present ArcAngel, a language for defining
such refinement tactics; we present the language, its semantics, and some of its algebraic laws. Apart from Angel,
a general-purpose tactic language that we are extending, no other tactic language has a denotational semantics
and proof theory of its own.
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1. Introduction

The refinement calculus of Morgan [Mor94] is a modern technique for formal program development. By repeat-
edly applying transformation rules to an initial specification, we produce a program that implements it correctly;
however, this may be a hard task, since developments are often long and repetitive. Some development strategies
may be captured as sequences of rule applications, and used in different developments, or even several times within
a single development. Identifying these strategies, documenting them as refinement tactics, and using them as
single transformation rules brings a profit in time and effort. Also, a notation for describing derivations can be
used for modifying and analysing formal derivations.

In this paper we present a refinement-tactic language called ArcAngel, derived from the more general tactic
language, Angel [MGW96, Mar96]. In [OlC00], we give an informal description of ArcAngel and use it to
formalise commonly used refinement strategies; here we provide a formal semantics. Based on these definitions,
we have proved over seventy laws of reasoning, which support a strategy of reduction to a normal form for a
subset of ArcAngel. We discuss this work here; all the laws, their proofs, and a detailed account of the reduction
strategy may be found in [Oli00].

Angel is a general-purpose tactic language that is not tailored to any particular proof tool; it assumes only
that rules transform proof goals. A refinement-tactic language must take into account the fact that, when applying
refinement laws to a program, we get not only a program, but proof obligations as well. So, the result of applying
a tactic is a program and a list of all the proof obligations generated by the individual law applications. ArcAngel’s
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constructs are similar to Angel’s, but are adapted to deal with the application of refinement laws to programs.
In particular, ArcAngel’s structural combinators are used to apply tactics to program components. Angel is
distinctive because it is the only tactic language to have a denotational semantics and an accompanying proof
theory. In this paper, the semantics and laws are specialised to ArcAngel.

In Section 2, we give an overview of the refinement calculus. In Section 3, we introduce ArcAngel, and in
Section 4, we give its formal semantics and present some of its laws. In Section 5, we give some examples of tactics
and their application. Finally, in Sections 6 and 7 we discuss related and future work. Appendix A presents the
model used in the semantics of ArcAngel for infinite lists, and Appendix B presents the refinement laws used in
this paper.

2. Refinement Calculus

Morgan’s refinement calculus [Mor94] is based upon a unified language for specification, design, and implemen-
tation; its syntax is presented in Fig. 1. The syntactic category name is the set of valid names; we use name∗ to
denote a possibly empty list of (comma-separated) names, and similarly for expression∗. The syntactic categories
predicate and expression are, as expected, those of first-order predicates and expressions over data types like
integers, sets, and others; their definitions are standard and are omitted.

A program may be a specification statement, and program development is the application of a sequence
of refinement laws to transform a specification into program code that correctly implements it. Specification
statements take the form w : [ pre, post ], where the frame w lists the variables that may be changed, pre is
the precondition, and post is the postcondition. When a state satisfies the precondition, the execution of the
specification statement changes the variables listed in the frame so that the final state satisfies the postcondition.
References in the postcondition to the initial value of a variable x are written x0; 0-subscripted variables like this
are called initial variables. A precondition true may be omitted.

The language of the refinement calculus includes all the constructs of Dijkstra’s language of guarded com-
mands [Dij76]. Local variables, logical constants, and procedures may be declared in block constructs that restrict
the scope of definitions. For procedures, we follow the approach in [Bac87, CSW97, CSW98], which is based on
parameterised commands. Arguments may be passed by value, by result, or by value-result. A recursive procedure
is declared using a variant block, which declares the procedure, a variant, and the main program. The variant
may be used to develop a recursive implementation for the procedure’s specification.

A detailed presentation of the refinement calculus can be found in [Mor94]; we introduce refinement laws as
we need them in examples. Appendix B lists the refinement laws we use here. Related work on refinement calculi
can be found in [Bac78, Mor87, Bav98].

3. ArcAngel

The syntax of ArcAngel is displayed in Fig. 2. The syntactic category args is the set of possibly empty comma-
separated lists of arguments enclosed in parentheses; an argument is a predicate or an expression; and pars is
the set of possibly empty comma-separated lists of (parameter) names enclosed in parentheses. The definitions
of these syntactic categories are standard and are omitted. Finally, the notation tactic+ is used to represent a
non-empty list of tactics; in examples we number this list. A pair of square brackets represents optional clauses.

There are three distinct kinds of tactics: basic tactics are the simplest tactics; tacticals are combination of
tactics; and structural combinators are tactics used to handle parts of a program. Some of the basic tactics and
most of the tacticals are original to ArcAngel; most of the structural combinators in ArcAngel do not exist in
Angel.

The most basic tactic is a simple law application: law n(a). The application of this tactic to a program has two
possible outcomes. If the law n with arguments a is applicable to the program, then the application actually occurs
and the program is changed, possibly generating proof obligations. If the law is not applicable to the program,
then the application of the tactic fails. The construct tactic n(a) applies a previously defined tactic as though it
were a single law. The trivial tactic skip always succeeds, and the tactic fail always fails; neither generates any
proof obligations. The tactic abort neither succeeds nor fails, but runs indefinitely.
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program ::� name∗ : [predicate, predicate] [specification statement]
| name∗ :� expression∗ [multiple− assignment]
| program; program [sequence]

| if [] i • predicate→ program fi [conditional]
| do [] i • predicate→ program od [loop]

| [[ var varDec • program ]] [variable block]

| [[ con varDec • program ]] [constant block]

| [[ proc name �̂ procBody • program ]] [procedure block]

| [[ proc name �̂ procBody variant name is expression • program ]]
[variant block]

| name [procedure call]
| name(expression+) | (parDec • program)(expression+)

procBody ::� program | (parDec • program)

parDec ::� val varDec | res varDec | val-res varDec | parDec; parDec 1g

varDec ::� name+ : Type | varDec; varDec

Fig. 1. Abstract Syntax of the language of Morgan’s Refinement Calculus.

3.1. Tacticals

In ArcAngel, tactics may be sequentially composed: t1; t2. This tactic first applies t1 to the program, and then
applies t2 to the outcome of the application of t1. If either t1 or t2 fails, then so does the whole tactic. When it
succeeds, the proof obligations generated by the application of this tactic are those resulting from the application
of t1 and t2.

For example, consider the program x : [ x � 1 ]. We could implement this by first strengthening the postcon-
dition to x � 1, and then replacing it with a simple assignment. The necessary tactic is law strPost(x � 1); law
assign(x :� 1). After the application of the first tactic, the resulting program is x : [ x � 1 ] and the proof obliga-
tion is x � 1⇒ x � 1. After the application of the assignment introduction law, we get the program x :� 1 with
the two proof obligations x � 1⇒ x � 1 and true⇒ 1 � 1.

As already explained, arguments are expressions or predicates. In examples, however, for clarity, sometimes we
use programs and declarations as arguments as a syntactic sugar. For instance, above, we write law assign(x :� 1),
but the arguments are actually x and 1. We use the same sort of notation for parameter names, and for arguments
and parameters of tactics.

Tactics may also be combined in alternation: t1 | t2. First t1 is applied to the program. If the application of t1
leads to success, then the composite tactic succeeds; otherwise t2 is applied to the program. If the application of t2
leads to success then the composite tactic succeeds; otherwise the composite tactic fails. If one of the tactics aborts,
the whole tactic aborts. When a tactic contains many choices, the first choice that leads to success is selected. It is
the angelic nature of this non-determinism, in which alternative tactics that lead to success are chosen over those
that lead to failure, that earned Angel and ArcAngel (A Refinement Calculus for Angel) their names.

For example, suppose that we have a useful tactic t that relies on the frame containing only the variable
x, and that we want to generalise it to t′, which applies to specification statements with frame x, y. We could
define t′ to be law contractFrame(y); t. Unfortunately, the resulting tactic no longer applies where we found t
to be useful, since contracting the frame will surely fail in such cases. Instead, we can use the compound tactic
( law contractFrame(y) | skip ); t. Now, if contracting the frame works, we do it; if it does not, then we ignore it;
either way, we apply t next. The tactic ( skip | law contractFrame(y) ); t has the same effect. In this case, the tactic
t is applied without any prior change to the specification statement. If this application does not succeed, the law
contractFrame is applied before a new attempt to apply t.
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tactic ::� law name args | tactic name args [law and tactic application]

| skip | fail | abort
| tactic; tactic [sequence]

| tactic | tactic [alternation]

| ! tactic [cut]
| µ name • tactic [recursion]

| succs tactic | fails tactic [assertions]

| tactic ; tactic [structural combinators]

| if tactic+ fi | do tactic+ od

| var tactic ]] | con tactic ]]

| pmain tactic ]] | pmainvariant tactic ]]

| pbody tactic ]] | pbodyvariant tactic ]]

| pbodymain tacticBody tacticMain ]]

| pmainvariantbody tacticBody tacticMain ]]

| val tactic | res tactic | val-res tactic

| con v • tactic [constants]

| applies to program do tactic [patterns]

tacDec ::� Tactic name pars tactic
[ proof obligations predicate+ ]
[ program generated program ] end

tacProg ::� tacDec∗tactic

Fig. 2. Abstract Syntax of ArcAngel.

The angelic non-determinism can be implemented through backtracking: in the case of failure, law applications
are undone to go back to the last point where further alternatives are available and can be explored. This,
however, may result in inefficient searches. Some control over this is given to the programmer through the cut
operator. The cut tactic ! t behaves like t, except that it returns the first successful application of t. If a subsequent
tactic application fails, then the whole tactic fails. Consider our previous example once more, supposing that
law contractFrame(y) succeeds, but that t subsequently does not. There is no point is applying the trivial tactic
skip and then trying t again. Instead, we should cut [ClM81] the search: !( law contractFrame(y) | skip ); t.

Suppose that we have a tactic u that performs some simple task, like identifying an equation in a specification
postcondition and then applying the rule of following-assignment. Such a simple tactic may be made more useful
by applying it repeatedly, until it can be applied no more. ArcAngel has a fixed-point operator that allows us
to define recursive tactics. Using this operator, we can define a tactic that applies u exhaustively: the tactic
µ X • ( u; X | skip ) applies u as many times as possible, terminating with success when the application of u fails.
Recursive application of a tactic may lead to non-termination, in which case the result is the same as the trivial
tactic abort.

The tactic con v • t introduces v as a set of free variables ranging over appropriate syntactic classes in t,
angelically chosen so that as many choices as possible succeed. An example of its use is presented in Section 4.

The tactic applies to p do t is used to define a pattern for the programs to which the tactic t can be applied. It
introduces a meta-program p that characterises the programs to which this tactic is applicable; the meta-variables
used in p can then be used in t. For example, the meta-program w : [ pre, post1 ∨ post2 ] characterises those
specifications whose postcondition is a disjunction; here, pre, post1, and post2 are the meta-variables. Consider
as an example a commonly used refinement tactic: strengthening a postcondition by dropping a disjunct. This
tactic is formalised as applies to w : [ pre, post1 ∨ post2 ] do law strPost(post1).
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Two tactics are used to make tactic assertions that check the outcome of applying a tactic. The tactic succs t
fails whenever t fails, and behaves like skip whenever t succeeds. On the other hand, fails t behaves like skip if t
fails, and fails if t succeeds. If the application of t runs indefinitely, then these tacticals behave like abort. A simple
example is a test to see whether a program is a specification statement. We know that it is always possible (but
seldom desirable) to strengthen a specification statement’s postcondition to false; however, the tactic applies only
to specification statements. So our test may be coded as succs( law strPost(false) ).

3.2. Structural Combinators

Very often, we want to apply individual tactics to subprograms. The tactic t1 ; t2 applies to programs of the form
p1; p2. It returns the sequential composition of the programs obtained by applying t1 to p1 and t2 to p2; the proof
obligations generated are those arising from both tactic applications. Combinators like ; are called structural
combinators. These combinators correspond to the syntactic structures in the programming language. Essentially,
there is one combinator for each syntactic construct.

For alternation, there is the structural combinator if t1 [] . . . [] tn fi , which applies to an alternation if g1 → p1

[] . . . [] gn → pn fi. It returns the result of applying each tactic ti to the corresponding program pi . For example,
if we have the program

if a < b→ x : [ x < 0 ][]a � b→ x : [ x � 0 ][]a > b→ x : [ x > 0 ] fi

and tactic

if law assign(x :� −1) [] law assign(x :� 0) [] law assign(x :� 1) fi

we obtain three proof obligations true ⇒ −x < 0 and true ⇒ 0 � 0, and true ⇒ 1 > 0, and the resulting
program is

if a < b→ x :� −1 [] a � b→ x :� 0 [] a > b→ x :� 1 fi

For iterations do g1 → p1 [] . . . [] gn → pn od, we have a similar structural combinator do t1 [] . . . [] tn od .
The structural combinator var t ]] applies to a variable block, and con t ]] to a logical constant block; each

applies its tactic t to the body of the block. For example, if we apply to

[[ var x : N • x : [ x � 0 ] ]]

the structural combinator

var law strPost(x > 0) ]]

we get the new variable block

[[ var x : N • x : [ x > 0 ] ]]

and the proof obligation x > 0⇒ x � 0.
In the case of procedure blocks and variant blocks, the structural combinators pmain t ]] and pmainvariant t ]]

are used, respectively; they apply t to the main program of the blocks. For example, applying the tactic

pmain law strPost(x > 0) ]]

to the procedure block

[[ proc nonNeg �̂ x : [ x > 0 ] • x : [ x � 0 ] ]]

we get the program

[[ proc nonNeg �̂ x : [ x > 0 ] • x : [ x > 0 ] ]]

and the proof obligation x > 0⇒ x � 0.
To apply a tactic to a procedure body, we use the structural combinators pbody t ]] and pbodyvariant t ]] , which

apply to procedure and variant blocks, respectively. For argument declaration, the combinators val t, res t, and
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val-res t are used, depending on whether the arguments are passed by value, result, or value-result. For example,
when the following tactic

pbody val-res law strPost(x > 0) ]]

is applied to the procedure block

[[ proc nonNegArg �̂ (val-res x : N • x : [ x � 0 ]) • x : [ x > 0 ] ]]

it returns the proof obligation x > 0⇒ x � 0 and the program

[[ proc nonNegArg �̂ (val-res x : N • x : [ x > 0 ]) • x : [ x > 0 ] ]]

It is also possible to apply tactics to a procedure body and to the main program of a procedure block, or a variant
block, at the same time. For this, we use the structural combinators pbodymain tb tm ]] and pmainvariantbody tb tm ]] ,
which apply to procedure blocks and variant blocks, respectively. They apply tb to the body of the procedure, and
tm to the main program.

We may declare a named tactic with arguments using the construct Tactic n(a) t end. For documentation
purposes, we may include clauses proof obligations and program generated; the former lists the proof obligations
generated by the application of t, and the latter shows the program generated. These two clauses are optional as
this information can be inferred from the tactic itself. The effect of Tactic n(a) t end is that of t which is named n
and uses the arguments a; the presence of the optional clauses does not affect the behaviour.

A tactic program consists of a sequence of tactic declarations followed by a tactic that usually makes use of
the declared tactics. Several examples of the use of ArcAngel can be found in Section 5 and in [OlC00].

4. Semantics of ArcAngel

Tactics are applied to a pair: the first element of this pair is a program to which the tactic is applied; the second
element is the set of proof obligations generated to obtain this program. This pair is called RCell (refinement
cell), and is defined as follows:

RCell �� program × P predicate

The result of a tactic application is a possibly infinite list of RCells that contains all possible outcomes of its
application: every program it can generate, together with the corresponding proof obligations (existing obligations
and those generated by the tactic application). Different possibilities arise from the use of alternation, and the
list can be infinite, since the application of a tactic may run indefinitely. If the application of some tactic fails,
then the empty list is returned.

Tactic �� RCell �→ pfiseq RCell

The type pfiseq RCell is that of possibly infinite lists of RCells. We use the model for infinite lists proposed
in [Mar95]; this is summarised in Appendix A. In this model, finite, partial, and infinite lists are considered. A
partial list ends in an undefined list, denoted ⊥. An infinite list is a limit of a directed set of partial lists.

In order to give semantics to named laws and tactics, we need to maintain two appropriate environments.

LEnv �� name �→ seq argument �→ program �→ RCell

TEnv �� name �→ seq argument �→ Tactic

A law environment records a set of known laws; it is a partial function whose domain is the set of known laws.
For a law environment �L and a given law name n, �L n is also a partial function: it relates all valid arguments of
n to yet another function. For a valid argument a, �L n a relates all the programs to which n can be applied when
given arguments a; the result is a refinement cell.

For example, let �L be an environment that records the law strPost. For a predicate post′ and a program
w : [ pre, post ] we have

�L strPost post′ ( w : [ pre, post ] ) � ( w : [ pre, post′ ], { post′ ⇒ post } )
This means that if we apply strPost with argument post′ to the program w : [ pre, post ], we change its postcondition
to post′, but we must prove that post′ ⇒ post. We are interested in environments that record at least the laws of
Morgan’s refinement calculus in [Mor94].
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Similarly, a tactic environment is a function that takes a tactic name and a list of arguments, and returns a
tactic.

4.1. Tactics

We define the semantic function for tactics inductively; it has the type

[[ ]] : tactic→ LEnv→ TEnv→ Tactic

The basic tactic law n(a) is that which applies a simple law to an RCell.

[[ law n(a) ]] �L �T (p, pobs) �
if n ∈ dom �L ∧ a ∈ dom(�L n) ∧ p ∈ dom(�L n a)
then

let (newp, npobs) � �L n a p in [(newp, pobs ∪ npobs)]
else [ ]

We check to see if the law name n is in the law environment �L, and if the arguments a and program p are
appropriate. If these conditions hold, then the tactic succeeds, and returns a list with a new RCell. The program
is transformed by applying the law to the program p; the new proof obligations are added to the proof obligations
pobs of the original RCell. Otherwise, the tactic fails with the empty list as result. We use angle brackets to delimit
finite lists; possibly infinite lists are delimited by square brackets.

The semantics of tactic n(a) is similar to that of the law construct. Its definition is

[[ tactic n(a) ]] �L �T r �
if n ∈ dom �T ∧ a ∈ dom �T n
then �T n a r
else [ ]

If the tactic is in the tactic environment, and if the arguments are valid, then the tactic succeeds; it returns the
result of applying the tactic to the arguments. Otherwise, the tactic fails.

The tactic skip returns its argument unchanged; the tactic fail always fails.

[[skip ]] �L �T r � [r]

[[fail ]] �L �T r � [ ]

The sequence operator uses a construction known as the Kleisli composition [Lan91]. It applies its first tactic to
its argument, producing a list of cells; it then applies the second tactic to each member of this list; finally, this
list-of-lists is flattened to produce the result.

[[ t1; t2 ]] �L �T � ∞�/ · ( [[ t2 ]] �L �T )∗ · ( [[ t1 ]] �L �T )

For a total function f : A→ B, f ∗ : pfiseq A→ pfiseq B is the map function that operates on a list by applying
f to each of its elements; the operator · is used to compose functions; and ∞�/ is the distributed concatenation
operation. Formal definitions of these operators and others to follow can be found in Appendix A.

The semantics of the alternation operator is given by concatenation: the possible outcomes of each individual
tactic are joined to give the list of possible outcomes of the alternation.

[[ t1 | t2 ]] �L �T � ∞�/ · [ ( [[ t1 ]] �L �T ), ( [[ t2 ]] �L �T ) ]◦

The function ◦ applies a list of functions to a single argument and returns a list containing the results of the
applications.

The cut operator applies its tactic to its argument, taking the first result (if it exists) and discarding the rest;
if there is no first result, then the cut tactic fails.

[[ ! t ]] �L �T � head ′ · ( [[ t ]] �L �T )

The function head ′ is just like the usual head operator on lists, except that it is total: head ′ [ ] � [ ].
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The recursion operator µ has a standard definition [DaP90] as a least fixed point. For a continuous function
f from tactics to tactics, we have that

( µ X • f (X ) ) �
⊔

{ i : N • f i(abort) }

where f i represents i applications of f .
This definition makes sense if the set of tactics is a complete lattice. First, we define a partial order for lists:

the completely undefined list ⊥ is the bottom element. One list is less than another, s1 �∞ s2, whenever they are
equal, or the first is a partial list that forms an initial subsequence of the second.

For tactics, as they are partial functions, we may lift the ordering on lists of RCells to an ordering on tactics.
We can say that t1 �T t2 ⇔ ( ∀ r : RCell • t1 r �∞ t2 r ). As the set of lists of RCells is a complete lattice, the set
of tactics is also a complete lattice, using the order above [DaP90].

The bottom element is used in the semantics of abort, which runs indefinitely.

[[abort ]] �L �T � ⊥
The tactics succs t and fails t are defined as follows. While abortion arises from a tactic that does not terminate,
failure arises from the application of a law or tactic to a program that is not in its domain, or with inappropriate
arguments. In this case, the result is the empty list, as no program or proof-obligation is generated.

succs t r � (if t r � ⊥ then abort else (if t r � [ ] then fail else skip) r)
fails t r � (if t r � ⊥ then abort else (if t r � [ ] then skip else fail) r)

If the application of t aborts, so do succs t and fails t. If it fails, then succs t fails and fails t skips. Finally, if it
succeeds, succs t skips and fails t fails.

4.2. Structural Combinators

The structural combinators apply tactics to components of a program independently (and so can be thought of
as in parallel), and then reassemble the results in all possible ways. There is one combinator for each construct in
the programming language.

The structural combinator t1 ; t2 applies to a sequential composition p1; p2. Independently, t1 is applied to p1

and t2 is applied to p2; the resulting alternatives are assembled into pairs, so that the first is an alternative outcome
from t1 and the second is an alternative outcome from t2; finally, these pairs are combined with the sequential
composition tactical.

[[ t1 ; t2 ]] �L �T (p1; p2, pobs) � �;∗ ( �( 〈 ( [[ t1 ]] �L �T ) (p1, pobs), ( [[ t2 ]] �L �T ) (p2, pobs) 〉 ) )

The distributed cartesian product operator � is defined in Appendix A. The sequential combination function
�; sequentially composes the programs and unites the proof obligations.

�; : RCell∗ �→ RCell
�; 〈(p1, pobs1), (p2, pobs2)〉 � (p1; p2, pobs1 ∪ pobs2)

The symbol �→ indicates that �; is a partial function since it is defined only for lists with two elements.
The semantics of the structural combinators if fi and do od use a few functions which are explained and

defined in [Oli00]; we start by giving a simple example. Consider the RCell

( if x � 0→ x : [ x � 0, x > y ] [] x < 0→ x : [ x < 0, x < z ] fi, {x � 1} )
and the tactic

if law weakPre(true) | law assign( x :� x + 1 ) [] law assign( x :� x − 1 ) fi

First of all, we extract the commands from each branch of the conditional; the function extractP does this for us.

extractP( x � 0→ x : [ x � 0, x > y ] [] x < 0→ x : [ x < 0, x < z ] )
� 〈 x : [ x � 0, x > y ], x : [ x < 0, x < z ] 〉
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The function �r constructs an RCell with a given program p and an empty set of proof obligations. We map �r
over our list of commands.

�r ∗ ( 〈x : [ x � 0, x > y ], x : [ x < 0, x < z ]〉 ) �
〈( x : [ x � 0, x > y ],∅ ), ( x : [ x < 0, x < z ],∅ )〉

Now, we need to apply each tactic to its corresponding command.
We use the function apply that takes two lists: the first is a list of functions, and the second is a list of elements

to which the functions are applied; it returns a list of the results applying each function in the first list to the
corresponding element in the second list. In our example we have

apply 〈 law weakPre(true) | law assign( x :� y + 1 ), law assign( x :� z − 1 ) 〉
〈 ( x : [ x � 0, x > y ],∅ ), ( x : [ x < 0, x < z ],∅ ) 〉

� 〈 law weakPre(true) | law assign( x :� y + 1 ) ( x : [ x � 0, x > y ],∅ ),
law assign( x :� z − 1 ) ( x : [ x < 0, x < z ],∅ ) 〉

� 〈 [ ( x : [ x > y ], {x � 0⇒ true} ), ( x :� y + 1, {x � 0⇒ y + 1 > y} ) ],
[ ( x :� z − 1, {x < 0⇒ z − 1 < z} ) ] 〉

Now, we have to take the distributed cartesian product of this list to get all the possible combinations of the cells
of the first list with the cells of the second list.

�〈 [ ( x : [ x > y ], {x � 0⇒ true} ), ( x :� y + 1, {x � 0⇒ y + 1 > y} ) ],
[ ( x :� z − 1, {x < 0⇒ z − 1 < z} ) ] 〉

� [ 〈 ( x : [ x > y ], {x � 0⇒ true} ), ( x :� z − 1, {x < 0⇒ z − 1 < z} ) 〉,
〈 ( x :� y + 1, {x � 0⇒ y + 1 > y} ), ( x :� z − 1, {x < 0⇒ z − 1 < z} ) 〉 ]

The function extractG makes a list of guards of the guarded command. In the example we have

extractG( x � 0→ x : [ x � 0, x � x0 + 1 ] [] x < 0→ x : [ x < 0, x � x0 − 1 ] ) � 〈x � 0, x < 0〉
We combine the list of guards with each element of the list of RCells we get from the distributed cartesian product
above. The function insertG takes a list of guards gi , a list of RCells ( pi, pobsi ), and returns a pair, where the first
element is a guarded command and the second is a set of proof obligations.

The guarded command associates each guard gi to the program pi : it is g1 → p1 [] g2 → p2 [] .... The set of
proof obligations is the union of the pobsi .

We use the function mkGC to apply insertG 〈x � 0, x < 0〉 to each element of the cartesian product above.

mkGC 〈x � 0, x < 0〉
[ 〈 ( x : [ x > y ], {x � 0⇒ true} ), ( x :� z − 1, {x < 0⇒ z − 1 < z} ) 〉,
〈 ( x :� y + 1, {x � 0⇒ y + 1 > y} ), ( x :� z − 1, {x < 0⇒ z − 1 < z} ) 〉 ]

� [ ( x � 0→ x : [ x > y ] [] x < 0→ x :� z − 1, {x � 0⇒ true, x < 0⇒ z − 1 < z} ),
( x � 0→ x :� y + 1 [] x < 0→ x :� z − 1, {x � 0⇒ y + 1 > y, x < 0⇒ z − 1 < z} ) ]

The last step, to rebuild the RCells, uses the function �if . The arguments of this function are the original set
pobs of proof obligations and the list of RCells ( gci, pobsi ) generated in the previous step. The result is the list
of RCells ( if gci fi, pobs ∪ pobsi ); each guarded command in the argument list is turned into a conditional, and
the set of original proof obligations is added to those generated by the tactic.

In our example we have

�if {x � 1}
[ ( x � 0→ x : [ x > y ] [] x < 0→ x :� z − 1, {x � 0⇒ true, x < 0⇒ z − 1 < z} ),
( x � 0→ x :� y + 1 [] x < 0→ x :� z − 1, {x � 0⇒ y + 1 > y, x < 0⇒ z − 1 < z} ) ]

� [ ( if x � 0→ x : [ x > y ] [] x < 0→ x :� z − 1 fi,
{x � 0⇒ true, x < 0⇒ z − 1 < z, x � 1} ),

( if x � 0→ x :� y + 1 [] x < 0→ x :� z − 1 fi,
{x � 0⇒ y + 1 > y, x < 0⇒ z − 1 < z, x � 1} ) ]
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With this example as motivation, we present the definition of the combinator for the conditional.

( [[ if tacs fi ]] �L �T )( if gc fi, pobs ) �
�if pobs (mkGC (extractG gc) (�(apply (([[ ]] �L �T ) ∗ tacs) (�r ∗ (extractP gc)))))

First, we extract the commands from the branches gc of the conditional (extractP). Then, we construct a list of
RCells with these commands as their programs, and an empty set of proof obligations (�r∗).

We apply each element of the list tacs of tactics to the corresponding element in the list of RCells we constructed
(apply (([[ ]] �L �T ) ∗ tacs)). The next step is to take the distributed cartesian product of the resulting list (�).

Finally, we rebuild the conditionals with the resulting commands (mkGC (extractG gc)) and add the original
proof obligations pobs to the new sets of proof obligations (�if pobs). The similar definition of do od may be
found in [Oli00].

The structural combinator var ]] applies a tactic to the program in a variable block and rebuilds the variable
blocks. Its formal definition is

( [[ var t ]] ]]�L �T ) ( [[ var d • p ]] , pobs ) � (var d) ∗ ( [[ t ]] �L �T (p, pobs) )

The function var rebuilds the variable block after the application of the tactic to its body. It takes as arguments a
variable declaration and an RCell. The result is a new RCell containing a variable block built from the declaration
and the program. The proof obligations are not changed.

var : Declaration→ RCell → RCell

var d (p, pobs) � ( [[ var d • p ]] , pobs )

The structural combinator con ]] is defined similarly.
The structural combinator pmain ]] is used to apply a tactic to the main program of a procedure block. Its

definition is as follows.

( [[ pmain t ]] ]] �L �T ) ( [[ proc n �̂ p1 • p2 ]] , pobs ) � (procm n p1) ∗ ( [[ t ]] �L �T (p2, pobs) )

where

procm : name→ program→ RCell → RCell

procm n p1 (p2, pobs) � ( [[ proc n �̂ p1 • p2 ]] , pobs )

The function procm is similar to var; it rebuilds the procedure block. The definitions of the other combinators
that apply to procedure and variant blocks are very much like those shown here.

For parameter passing, we give as an example the semantics of val . Its definition is

[[ val t ]] �L �T ( (val v : T • p) (a), pobs ) � (val v T a) ∗ ( [[ t ]] �L �T (p, pobs) )

where

val : name→ Type→ args→ RCell → RCell

val v T a (p, pobs) � ( (val v : T • p)(a), pobs )

This structural combinator applies the tactic to the body of the parameterised command and then rebuilds it,
using the function val.

The tactic con v • t introduces v as a set of variables whose values are taken from an appropriate syntactic class
denoted TERM below. These variables are used in t as elements of its syntactic class. Their values are angelically
chosen so that the tactic succeeds. Its semantics is

[[ con v • t ]] �L �T � [[ |v∈TERM t(v) ]] �L �T

where |v∈TERM t(v) is an alternation of all tactics that can be obtained from t, with v ranging over all values in
TERM . This is an infinite alternation, which can be defined as follows.

| ∞i�0 f (i) � µ X • F (X0)

where F (Xi) � f (i) | F (Xi+1).
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The tactic applies to p do t needs to consider all ways in which the given program can match p. Its semantics
uses the function equals, that yields a tactic that succeeds only if it is presented with an RCell matching the given
program:

equals : RCell → Tactic

equals r r � [r]
equals r h � [ ], if h �� r

The definition of the tactic applies to p do t is

[[ applies to p do t ]] �L �T (p1, pobs) � [[ con p • equals (p, pobs); t ]] �L �T (p1, pobs)

For simplicity, we use the meta-program p as a variable itself; the alternative is to consider the individual
variables of p. In con p • equals (p, pobs); t, an instantiation of p is angelically chosen to ensure the success
of equals (p, pobs); t. The tactic equals (p, pobs) succeeds only for those instantiations that match its argu-
ment: (p1, pobs); so equals (p, pobs) is a filter for the instantiations of p: only those that match p1 are considered.
If there is none, the tactic fails. If a successful instantiation can be chosen, the instantiated values are used in t,
which is applied to (p1, pobs).

4.3. Tactic Declarations and Programs

A tacDec includes a tactic name n in the domain of the tactics environment. This element is mapped to a new
function that, for each possible argument v ∈ TERM , gives the semantics of the tactic when the arguments of
the tactic are replaced by v. The clauses proof obligations and program generated do not change the semantics of
a tacDec given below.

[[ ]] : tacDec→ LEnv→ TEnv→ TEnv

[[ Tactic n(a) t end ]] �L �T � �T ⊕ {n �→ { v ∈ TERM • v→ [[ t[a \ v] ]] �L �T }}
where ⊕ is the overriding operator.

A tacProg is a sequence tds of tacDec followed by a main tactic t. The semantics is that of t, when evaluated
in the environment determined by the tactic declarations and the given laws environment. The definition is as
follows.

[[ ]] : tacProg→ LEnv→ TEnv→ TEnv

[[ tds t ]] �L �T � [[ t ]] �L (decl tds �L ∅)
This environment is defined by the function decl.

decl : tacDec∗ → LEnv→ TEnv→ TEnv

decl 〈〉�L �T � �T
decl (td1 tds) �L �T � ( decl tds �L ( [[ td1 ]] �L �T ) )

In the case that we have an empty tactic declaration, this function returns the tactics environment given as
argument. Otherwise, it uses the tactic environment resulting from the first tactic declaration to evaluate the rest
of the declarations.

4.4. Laws of ArcAngel

We have proved most of the laws proposed in [MGW96] for Angel in the context of ArcAngel [Oli00]. Some
of these laws are used to reduce tactics to a normal form proposed for a subset of ArcAngel. As examples of
these laws, we have associativity laws for tactic sequences and alternations, and distributive laws for alternation
over sequence, and vice-versa. We have that skip is a neutral element in sequential composition, as fail is for
alternation; the sequential composition of fail with any tactic is the same as fail itself. A few more interesting
laws are shown below.
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Law !t1; !t2 �!(!t1; !t2)
Law succs t; t � t
Law t1 ; (t2 | t3) � (t1 ; t2) | (t1 ; t3)
Law (t1 | t2) ; t3 � (t1 ; t3) | (t2 ; t3)

The first law shows that it is unnecessary to avoid backtracking in a sequential composition that already avoids
backtracking in each of its parts. The second shows that to verify that t succeeds and then to apply t is the same
as applying t directly. Finally, the third and the fourth laws show that the structural combinator ; distributes
over alternation.

We have proved in [Oli00] that tactics written in the subset of ArcAngel, using basic laws, alternation, sequential
composition, skip, fail, and !, have a normal form and that it is unique. This normal form provides a notion of
completeness for the set of laws we have proved. This normal form is similar to that presented in [MGW96],
and since we proved that the Angel’s laws are valid for ArcAngel, we can adopt a similar normal-form reduction
strategy.

5. Examples

In this section we give a few examples of ArcAngel programs. The first two, followingAssign and leadingAssign,
implement two derived rules from Morgan’s calculus. Their implementations demonstrate the usefulness of
ArcAngel’s logical constants in pattern-matching. The third program formalises a strategy from the literature for
developing a loop.

5.1. Following Assignment

In [Mor94, p.32], the derived rule of following assignment is presented as a combination of the assignment and
sequential composition laws; in other words, it is rather like a tactic for using the more basic laws of the calculus.
Of course, there is a big difference between a tactic and a derived rule. The former is a program that applies
rules; proof obligations arise from the law applications. A derived rule is a law itself, that is proved in terms of
applications of other laws. Tactics are much more flexible, since they can make choices about the form of the
resulting program.

Following assignment splits a specification statement into two pieces, the second of which is implemented by
the assignment x :� E. If we apply seqComp( post[x \ E] ) to w, x : [ pre, post ] we get the program

w, x : [ pre, post[x \ E] ]; w, x : [ post[x \ E], post ]

If we now apply assign( x :� E ) to the second statement, we get our assignment x :� E and the proof obligation
post[x \ E]⇒ post[x \ E]. This is a simple tautology, but remains part of the documentation of the tactic, as the
proof obligation is raised every time the tactic is applied.

Tactic followingAssign ( x, E )
applies to w, x : [ pre, post ] do

law seqComp( post[x \ E]); ( skip ; law assign( x :� E ) )

proof obligations

1. post[x \ E]⇒ post[x \ E]

program generated

w, x : [ pre, post[x \ E] ];
x :� E

end

There is a further restriction on the use of this tactic: it uses a simple form of the law of sequential composition
that forbids initial variables in postconditions. If applied to a specification statement that does not satisfy this
restrictions, followingAssign fails.
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5.2. Leading Assignment

In [Mor94, p.71], the presentation of the derived rule for leading assignment is a little more complicated than that
of the following assignment:

Law 13.1 § leading assignment For any expression E,

w, x : [ pre[x \ E], post[x0 \ E0] ]

� x :� E;
w, x : [ pre, post ]

The expression E0 is that obtained from E by replacing all free occurrences of x and w with x0 and w0, respectively.
The complication arises from the need to find predicates pre and post, such that, when appropriate substitutions
are made, they match the current goal. The solution in ArcAngel is to use logical constants.

Tactic leadingAssign ( x, X , E )
applies to w, x : [ pre[x \ E], post[x0 \ E0] ] do

law seqCompIV ( x, X , pre ∧ x � E0 );
con law assignIV ( x :� E ) ; law strPostIV (post); law weakPre(pre) ]] ;
law removeCon(X )

proof obligations

1. (x � x0) ∧ pre [x \ E]⇒ ( pre ∧ x � E[x \ x0])[x \ E]
2. ( pre ∧ x � E [x \ X ])[x, w \ x0, w0] ∧ post⇒ post[x0 \ E0][x0 \ X ]
3. ( pre ∧ x � E [x \ X ])⇒ pre

program generated

x :� E; w, x : [ pre, post ]
end

If applied to a specification statement w, x; [pre[x \ E], post[x0 \ E0]] this tactic first splits it using the law
seqCompIV . As seqComp, this law introduces sequences, but it applies to specification statements that make use
of initial variables; it declares a logical constant to record the initial value of x. This gives:

[[ con X •
x : [pre [x \ E], pre ∧ x � E [x \ x0] ]; w, x : [pre ∧ x � E[x \ X ], post[x0 \ E0][x0 \ X ] ]

]]

The first specification statement is refined to x :� E, using the assignIV law: a law for introducing assignments
that considers the presence of initial variables. The precondition and postcondition of the second specification
statement are changed to pre and post, respectively, and finally the logical constant is removed. The law strPostIV
is the strengthening postcondition law that takes initial variables into account. The proof obligations are generated
by the applications of the laws assignIV , strPostIV , and weakPre, respectively; they always hold.

5.3. Tactic replConsByVar

In [OlC00], several well-known strategies for developing loops [Gri81, Kal90] are formalised in ArcAngel, and
we give an example of one of the resulting tactics here. The tactic replConsByVar allows the user to choose an
iteration invariant by replacing a constant in the postcondition by a variable.

The tactic replConsByVar has five arguments: the declaration of the fresh loop-index variable newv : T ; the
constant to be replaced cons; an invariant on the loop indexes invBound ; the loop initialisation ivar :� ival; and
an integer-valued variant.
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Tactic replConsByVar ( newv : T , cons, invBound, ivar :� ival, variant )
applies to w : [ pre, post ] do

law varInt(newv : T );
var law strPost(post[cons \ newv] ∧ newv � cons);

tactic takeConjAsInv(invBound, ivar :� ival, variant); ]]

proof obligations

1. post[cons \ newv] ∧ newv � cons⇒ post
2. post[cons \ newv] ∧ newv � cons ∧ invBound ⇒ post[cons \ newv] ∧ newv � cons
3. pre⇒ ( post[cons \ newv] ∧ invBound )[ivar \ ival]

program generated

[[ var newv : T •
ivar :� ival;
do ¬ newv � cons→

newv, w : [ post[cons \ newv] ∧ invBound ∧ ¬ newv � cons,
post[cons \ newv] ∧ invBound ∧ 0 � variant < variant[newv \ newv0] ]

od
]]

end

This tactic first introduces the new variable, then it strengthens the postcondition to replace the constant by the
new variable. Afterwards it calls the tactic takeConjAsInv to introduce the iteration. The proof obligation 1 is
generated by the law strPost, and the others are generated by the tactic takeConjAsInv. The proof obligations 1
and 2 always hold. The tactic takeConjAsInv implements another, simpler strategy for loop development: taking
a conjunct of the postcondition as the main part of the invariant.

Tactic takeConjAsInv ( invBound, ivar :� ival, variant )
applies to w, ivar : [ pre, invConj ∧ notGuard ] do

law strPost( invConj ∧ notGuard ∧ invBound );
law seqCom( invConj ∧ invBound );
(law assign( ivar :� ival ) ; law iter(〈¬ notGuard〉, invConj ∧ invBound, variant));

proof obligations

1. invConj ∧ notGuard ∧ invBound ⇒ invConj ∧ notGuard
2. pre⇒ ( invConj ∧ invBound )[ivar \ ival]

program generated

ivar :� ival;
do ¬ notGuard →

w : [ invConj ∧ invBound ∧ ¬ notGuard,
invConj ∧ invBound ∧ 0 � variant < variant0 ]

od
end

This transforms a specification w : [pre, invconj ∧ notGuard ] into an initialised iteration, and has three argu-
ments: an invariant invBound on the loop indexes; the loop initialisation ivar :� ival; and the integer-valued
variant.

It first strengthens the postcondition using the argument invBound , then introduces a sequential composition.
Next, the law assign is applied to the first program of the composition to introduce the initialisation, and the law
iter is applied to the second program in order to introduce the iteration. The first proof obligation is generated by
the application of law strPost, and the second by the application of law assign. The first proof obligation always
holds.

Consider the problem described in [WoD96, p.314, Example 19.15]: “We would like to develop an algorithm
that converts numbers from a base β to the base 10. For an n + 1 digit number, a solution that requires more than n
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multiplications is not acceptable.” The problem is to compute the value of a polynomial
∑n

i�1 ai ∗ β i−1 efficiently,
where the ais are the digits in base β. The solution, well-known to numerical analysts, involves Horner’s rule: the
polynomial has the same value as H1,n, where Hn,n � an, and Hi,n � ai + β ∗Hi+1,n, for i < n.

The specification statement d : [ d � H1,n ] may be refined to a program that initialises d to Hn,n, and then
repeatedly multiplies d by β and adds the next coefficient, until it finally adds a1. To develop this program, we
use the tactic of replacing a constant by a variable. We first introduce a fresh loop-index variable, j, that ranges
between n and 1, requiring that, at any instant, d will have the value Hj,n; this is our invariant for the loop.

Our specification is refined to code by the tactic

replConsByVar( j : Z, 1, 1 � j � n, (j, d :� n, an), j − 1 );
var skip ; do assign( j, d :� j − 1, aj−1 + β ∗ d ) od

It generates the following proof obligations:

1. d � Hj,n ∧ j � 1⇒ d � H1,n
2. d � Hj,n ∧ j � 1 ∧ 1 � j � n⇒ d � Hj,n ∧ j � 1
3. true⇒ ( d � Hj,n ∧ 1 � j � n )[j, d \ n, an]

and the following program.

[[ var j : Z •
j, d :� n, an;
do ¬ j � 1→ j, d :� j − 1, aj−1 + β ∗ d od

]]

The first two proof-obligations are trivial, and the last one follows from the definition of Hn,n.

6. Related Work

Gardiner and Vickers developed the refinement tool Red, reported in [Vic90]. It is implemented in Prolog and
maintains three interactive windows: one contains the state of the program text being developed; the second
contains the proof obligations; and the third contains a tree of the refinement operations performed to obtain the
program. In [Vic94], the authors describe a language for representing the refinement tree. The key idea is that,
for every construct of the target programming language, there is a corresponding construct in the transformation
language. This work is the origin of Angel’s structural combinators [MGW93]. The language presented, however, is
not a language to describe tactics; it is, as already said, a language to describe refinement. There are no constructs
for alternation or recursion.

Grundy [Gru92] proposes a refinement tool based on window inference. The tool runs on top of the HOL
theorem prover; because the HOL system is programmable, users can add their own commands to automate
refinements that they frequently repeat, although this is not the main focus of the work. Tactics are written using
simple tacticals, such as THEN, ORELSE, and REPEAT.

Later, Grundy and his colleagues [BGL97] extended that work to produce a more user-friendly tool with
a graphical interface. The authors mention that ML can be used to package transformations, but point out
themselves that this brings the difficulty of requiring knowledge of HOL and ML. While ML does have a formal
semantics, it is difficult to reason about tactics written in such a general language.

Groves, Nickson, and Utting [GNU92, Nic94] describe a refinement tool, placing special emphasis on tac-
tics. The tool is implemented in Prolog, whose programming capabilities are available to the user. Nickson’s
thesis [Nic94] contains a collection of examples showing how various common development patterns (like intro-
ducing various kinds of loops) may be encoded as tactics. These tactics are expressed directly in Prolog, rather
than a special tactic language. This means that tactics have all the normal Prolog control mechanisms and can do
arbitrary computations in deciding what steps to take, and constructing new components, but all modifications to
the program being constructed are done by applying refinement rules. In their tool, the rule for leading assignment
is programmed as
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-- Leading Assignment
tactic leading_assignment(V := E)[get_assignment(V := E)]

when free_of_var(V, Pre):
Vars: [Pre, Post] <<

(
refine Vars: [Pre, Post]

using split_spec(Pre and V = E)
giving ( AssSpec; Rest ),

refine AssSpec using intro_assign(V := E)
).

If the parameter to the tactic V := E is not supplied, the user is prompted to supply it interactively. The subject
of this tactic will match any specification statement that does not mention the target of the assignment in its
precondition. The body of the tactic is a sequence of two refinement steps. The first uses a rule of sequential
composition to split the specification statement into two parts: AssSpec, the assignment specification, and the
Rest of the specification. The giving clause is used to associate names to components of programs resulting
from law applications and allow subsequent law applications to these components; this is a role similar to that
of ArcAngel’s. The second step of leading_assignment applies a rule of assignment introduction to AssSpec;
as there is nothing further to refine from this sub-program, there is no giving clause.

Van de Snepscheut [vdS94] describes a notation for formula manipulation and an associated editor that
together provide support for the development of programs by stepwise refinement (Proxac). Although the idea
seems not to have been taken further, van de Snepscheut suggested viewing the program transformations as the
commands in a programming language for formula manipulation including function composition, conditionals,
and a fixed-point operator.

Queensland University’s program refinement tool, PRT [CHN98], originally had a tactic language inherited
from Ergo, on which it was based. Later, a tactic language based on Angel was added; this language, Gumtree,
is described in [MNU97a, MNU97b].

Back and von Wright [BaW90] show how to use HOL to prove refinement rules correct and how to apply
such rules to formalise program refinement. In [WHL93], von Wright and his colleagues continue this work by
describing how the HOL theorem prover may be used to apply the rules from a refinement calculus. They formalise
methods for data refinement, proving the validity of refinement rules within their theory. The main aim of the
work is to use HOL to generate the verification conditions for refinement steps. Simple tactics for refinement are
programmed in ML.

A survey of various early refinement tools may be found in [CHN94].

7. Conclusions

We have presented ArcAngel, a refinement-tactic language. Using this language, it is possible to specify commonly
used strategies of program development. Tactics can be used as transformation rules, which shortens developments
and improves their readability.

We defined the semantics of ArcAngel based on Angel semantics. The difference is that Angel is a very general
language and its goals have no defined structure. For us, a goal is called an RCell, which is a pair with a program
as its first element and a set of proof obligations as its second element. The application of a tactic to an RCell
returns a list of RCells containing the possible output programs with their corresponding set of proof obligations.

We have shown the soundness of algebraic laws for reasoning about ArcAngel tactics. We covered most of the
laws that have been proposed for Angel. For the vast majority of them, proofs are not available in the literature
and are provided in [Oli00] in the context of ArcAngel. Since these laws are valid, the strategy proposed to reduce
finite Angel tactics to a normal form can be applied to ArcAngel tactics. In [Oli00] we have expanded the proofs
of the lemmas and theorems involved, exemplifying some of the procedures.

Generalising the normal form to encompass the rest of the language is not trivial and is still to be done.
Basically, there are three points to conclude this task. We must include the basic tactic tactic n. The idea is to
introduce the body of n wherever this tactic is applied. The other points consist of including recursion and the
structural combinators. We have to extend the normal form to handle these. In the case of structural combinators,
we believe we should allow their occurrence wherever a basic law is allowed in the presented normal form, and
require that the component tactics in the structural combinators are already in the normal form.
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As well as carrying on further work on the proof of laws and on defining a normal form for the whole of
ArcAngel, we intend to implement a tool to support the definition and application of ArcAngel tactics. This tool
is going to be provided as an extension to Refine [CRC99], a refinement tool developed by our group.

Our work, however, has shown that there are very interesting issues in specialising Angel to the refinement
calculus, and this is independent of any particular tool. These issues are worthy of further investigation in their
own right.
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A. Infinite Lists

We present the model for infinite lists adopted here from [Mar95]. The set of the finite and partial sequences of
members of X is defined as

pfseq X ::� partial〈〈seq X 〉〉 | finite〈〈seq X 〉〉
We define an order � on these pairs such that for a, b : pfseq X , if a is finite, then a � b if, and only if, b is also
finite and equal to a. If a is partial, then a � b if, and only if, a is a prefix of b.

� : pfseq X ↔ pfseq X
∀ gs, hs : seq X •

finite gs � finite hs⇔ gs � hs
finite gs � partial hs⇔ false
partial gs � finite hs⇔ gs prefix hs
partial gs � partial hs⇔ gs prefix hs

A chain of sequences is a set whose elements are pairwise related.

chain : P(P(pfseq X ))
∀ c : P(pfseq X ) • c ∈ chain⇔ ( ∀ x, y : c • x � y ∨ y � x )

The set pchain contains all downward closed chains.

pchain : P chain[X ]
∀ c : chain[X ] • c ∈ pchain⇔ ( ∀ x : c; y : pfseq X | y � x • y ∈ c )

The set pfiseq contains partial, finite, and infinite list of elements of X , which are prefixed-closed chains of
elements in pfseq X .

pfiseq X �� pchain[X ]

The idea is that ⊥ � partial 〈〉, the empty list [ ] � finite 〈〉, the finite list [e1, e2, . . . , en] is represented by the set
containing finite 〈e1, e2, . . . , en〉 and all approximations to it. An infinite list is represented by an infinite set of
partial approximations to it. The infinite list itself is the least upper bound of such a set.

The definitions of the functions used in this paper are as follows.

1. The map function maps a function f to each element of a possibly infinite list.

pfmap : (X → Y )→ pfseq X → pfseq Y
∀ xs : seq X ; f : X → Y •

pfmap f (finite xs) � finite (f ◦ xs) ∧
pfmap f (partial xs) � partial (f ◦ xs)

∗ : (X → Y )→ pfiseq X → pfiseq Y
∀ c : pfiseq X ; f : X → Y •

f ∗ ⊥ � ⊥
f ∗ c � { x : c • pfmap f x }

The function pfmap maps the function f to the second element of x.
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2. The distributed concatenation returns the concatenation of all the elements of a possibly infinite list of possibly
infinite lists.
∞�/ : pfiseq(pfiseq X )→ pfiseq X

∀ s : pfiseq(pfiseq X ) •
∞�/ s �

⊔

∞{ c : s • ∞∧/ c }

It uses the function
∞∧/, which is the distributed concatenation for pfseq(pfiseq X ). The function cat is the

standard concatenation function for X ∗.
∞∧/ : pfseq(pfiseq X )→ pfiseq X
∞∧/(f , 〈〉) � ∅
∞∧/(p, 〈〉) � (p, 〈〉)
∞∧/(f , 〈g〉) � [g]
∞∧/(p, 〈g〉) � [g] ∧ {(p, 〈〉)}
∞∧/(f , gs � hs) � (

∞∧/(f , gs))
∞� (
∞∧/(f , hs))

∞∧/(f , gs � hs) � (
∞∧/(f , gs))

∞� (
∞∧/(p, hs))

The function
∞� is the concatenation function for possibly infinite lists. Its definition is

∞� : pfiseq X × pfiseq X → pfiseq X

∀ a, b : pfiseq X •
a
∞� b � { x : a; y : b • x ∧ y }

where the function ∧ is the concatenation function for pfseq X defined as
∧ :: pfseq X × pfseq X → pfseq X

∀ gs, hs : seq X ; s : pfseq X •
finite gs ∧ finite hs � finite (gs � hs)
finite gs ∧ partial hs � partial(gs � hs)
partial gs ∧ s � partial gs

3. The function head ′ returns a list containing the first element of a possibly infinite list.

head ′ : pfiseq X → pfiseq X

head ′ xs � take 1 xs

It uses the function take that returns a list containing the first n elements of a possibly infinite list.

take : N→ pfiseq X → pfiseq X

take n⊥ � ⊥
take 0 xs � [ ]
take n [ ] � [ ]
take n xs � [head xs] � (take (n− 1) (tail xs))

For a list (x : xs), the function head returns x and the function tail returns xs. For a pair (a, b), the function
first returns a and the function second returns b.

4. The function ◦ applies a possibly infinite list of functions to a single argument.
◦ : pfiseq(X �→ Y )→ X → pfiseq Y

⊥◦ x � [ ]
[ ]◦ x � [ ]
[f ]◦ x � [f x]
(fs � gs)◦ x � fs◦ x � gs◦ x
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5. The function � is the distributed cartesian product for possibly infinite lists.

� : seq(pfiseq X )→ pfiseq(seq X )

�〈xs〉 � e2l ∗ xs
�(xs : xss) � [(a : as) | a← xs, as←� xss]
where
e2l x � [x]

B. Refinement Laws

Law strPost(post2).
w : [pre, post1] � w : [pre, post2]
provided post2 ⇒ post1

Law strPostIV (post2).
w : [pre, post1] � w : [pre, post2]
provided pre[w \ w0] ∧ post2 ⇒ post1

Law weakPre(pre2).
w : [pre1, post] � w : [pre2, post]
provided pre1 ⇒ pre2

Law assign(w, E).
w : [pre, post] � w :� E
provided pre⇒ post[w \ E]

Law assignIV (w, E).
w, x : [pre, post] � w :� E
provided (w � w0) ∧ pre⇒ post[w \ E]

Law fassign(x, E).
w, x : [pre, post] � w, x : [pre, post[x \ E]]; x :� E

Law seqComp(mid).
w : [pre, post] � w : [pre, mid ]; w : [mid, post]
provided mid and post have no free initial variables.

Law seqCompIV (x, X , mid).
w, x : [pre, post] � [[ con X • x : [pre, mid ]; w, x : [mid [x0 \ X ], post[x0 \ X ]]
provided mid does not contain other initial variables beyond x0.

Law varInt(n : T ).
w : [pre, post] � [[ var x : T • w, x : [pre, post]]]
provided x does not occurs in w, pre, and post.

Law contractFrame(x).
w, x : [pre, post] � w : [pre, post[x0 \ x]]

Law removeCon(x).
[[ con c : T • p]] � p
provided c does not occur in p.
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